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ABSTRACT 
 
 

BRYN LAUREN ADAMS. Development of a methanotrophic alternative daily cover to 
reduce early landfill methane emissions. (Under the direction of DR. HELENE HILGER) 
 
 

Final covers, especially when supplemented with gas collection, are highly 

engineered systems to prevent landfill methane release into the atmosphere. However, 

some methane production begins even before open cells are covered and often well 

before final capping, representing an unaddressed source of methane release. A number 

of biotic cover designs, such as biofilters, biocovers, and bio-“windows”, have been 

proposed as supplements to gas collection or as top covers on older landfills lacking gas 

collection systems.  These systems employ media that promote the growth of bacteria 

which are able to oxidize methane to carbon dioxide and water. The purpose of this 

investigation is to explore the potential use of the methane oxidation capacity of 

methanotrophs embedded in a “biotarp” to mitigate methane release from open, active 

landfill cells.  If successful, the biotarp could serve as an alternative daily cover during 

routine landfill operation.  

A mixed methanotroph cell population was enriched and isolated from landfill 

cover soil. Three cell immobilization techniques were evaluated, including cell 

entrapment in alginate beads and in liquid-core gel capsules. Adsorption to a synthetic 

geotextile was found to be most feasible and yield the best methane oxidation rates (2.0 g 

CH4/day). Evaluation of nine geotextiles produced two that would likely be suitable 

biotarp components. Pilot tarp prototypes were tested in continuous flow systems 

simulating landfill gas conditions. Multilayered biotarp prototypes consisting of 

alternating layers of the two geotextiles were found to remove 16% of the methane 
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flowing through the biotarp. The addition of landfill cover soil, compost, or shale as 

amendments to the biotarp increased the methane removal to over 30%. With successful 

methane removal in a laboratory bioreactor system, prototypes were evaluated at a local 

landfill using flux chambers installed atop a landfill section with an intermediate cover 

layer. The 4-layered biotarp and amended biotarp configurations were all found to 

decrease landfill methane flux; however negative controls were also observed to reduce 

methane flux equally well. Spatial and chronological variations in methane flux were also 

noted.  



v 
 

 

 
ACKNOWLEDGEMENTS 

 
 

 Foremost, I would like to express my utmost gratitude to Dr. Helene Hilger, 

advisor extraordinaire.  Your role has extended far beyond that of advisor, the least of 

which include advocate, grammar instructor, role model, motivator, and friend. Thank 

you for being an exceptional example of a mentor, scientist, and a successful woman; and 

relentlessly challenging me, whilst always mindful of my best interests. An equally 

heartfelt gratitude is also extended to my dissertation committee members for their 

support and guidance throughout this entire endeavor.  

 Many individuals have directly contributed to this research and their involvement 

has been essential. I thank Dr. Jean Bogner for her valuable guidance concerning many 

aspects of this project, particularly the field work. I also thank David Jones and Chris 

Timpson for providing materials, Gary Abernathy for constructing the continuous flow 

chambers, Dr. Levente Bodrossy for conducting the diagnostic microarrays, Laura 

Shewmon for embedding and slicing geotextile samples, Jill Hudak and Dr. Didier Dreau 

for microscopy assistance, and Richard Jones for assistance with bioreactor optimization 

and much more. I also appreciate the assistance of many former and current students: 

Lindsey Talmadge, Julianne Todd, Kristen Sangliani, Bryant Scarlett, Craig Midget, 

Gabbi Martinson, Swetha Manian, Mary Fabian, Darla DeStephanis, Jean Hamm, and 

especially Fabien Besnard, who worked side-by-side with me throughout this entire 

project. 



vi 
 

 

And finally, I owe my deepest gratitude to my family and dear friends. Thank you 

all for your support and encouragement over the years, and for always, at least, 

pretending you understood what my research was all about. I love you all. 



vii 
 

 

TABLE OF CONTENTS 
 
 

CHAPTER 1: INTRODUCTION AND RESEARCH OBJECTIVES             1 

CHAPTER 2: LITERATURE REVIEW                4 

 Methane and Global Climate Change  4 

 Landfill and Methane Production  10 

 Immobilization   18 

 Methanotrophic Bacteria               27 

CHAPTER 3: ENRICHMENT AND SELECTION OF A MIXED            35 
           METHANOTROPHIC POPULATION 

 
 Introduction                 35 

 Materials and Methods               38 

 Results and Discussion               43 

CHAPTER 4: IMMOBILIZATION OF A MIXED METHANOTROPHIC           51 
  POPULATION BY ADSORPTION AND ENTRAPMENT   

Introduction                 51 

 Materials and Methods               52 

 Results and Discussion               58 

CHAPTER 5: EFFECTS OF TEMPERATURE, STARVATION AND           66 
           WASHING ON METHANE OXIDATION BY  
           METHANOTROPHIC CELLS IMMOBILIZED ON  
           A SYNTHETIC GEOTEXTILE 

 Introduction                 66 

 Materials and Methods               68 

 Results and Discussion               71 

 
 



viii 
 

 

CHAPTER 6: EVALUATION OF CANDIDIATE GEOTEXTILE            79 
           TO ASSESS THEIR SUITABILITY FOR A  
           METHANOTROPH EMBEDDED BIOTARP PROTOTYPE 

 Introduction                 79 

 Materials and Methods                80 

Results and Discussion               83 

CHAPTER 7: USE OF CONTINUOUS FLOW CHAMBERS IN            89 
           THE EVALUATION OF POTENTIAL BIOTARP  
           PROTOTYPES 

 
Introduction                 89 

 Materials and Methods               90 

 Results and Discussion               97 
 
CHAPTER 8: DEVELOPMENT AND USE OF A BIOFILM          104 

           STAINING TECHNIQUE TO VISUALIZE  
           METHANOTROPH ATTACHMENT 

Introduction               104 

 Materials and Methods             105 

 Results and Discussion             108 

CHAPTER 9: FIELD-TRIALS OF A METHANOTROPH           117 
           IMMOBILIZED BIOTARP 

 Introduction               117 

 Materials and Methods             118 

 Results and Discussion             125 

CHAPTER 10: SUMMERY OF CONCLUSIONS            133 
           AND RECOMMENDATIONS     

REFERENCES               141 

APPENDIX A: MICROARRAY ANALYSIS OF MIXED           179 
              METHANOTROPH POPULATION



 
 

 

CHAPTER 1: INTRODUCTION AND RESEARCH OBJECTIVES 
 
 

Landfills are one of the largest anthropogenic sources of methane in the U.S. and 

throughout the world. Upon landfill closure, final caps are highly engineered to prevent 

fugitive methane emissions into the atmosphere. However, during the time an open cell is 

being filled, no measures are taken to mitigate the early methane emissions. Methane 

production begins soon after waste placement and is likely routinely released and emitted 

through the 15 cm layer of soil placed over the waste at night. In a 2001 investigation of a 

French landfill site, Bogner found methane fluxes as high as 100-200 g/m2 day over open 

cells (unpublished).  

One category of methane mitigation technology that may be adaptable for open 

cell emissions mitigation is biotic cover designs. These include biofilters (120), biocovers 

(154), and biowindows (279), all of which are being tested for the removal of low-level 

emissions from closed landfill sites. These systems employ media that promote the 

growth of methanotrophic bacteria, a robust group of bacteria that use methane as their 

sole carbon and energy source. This energy is harvested from the oxidation of methane to  

carbon dioxide and water (133). They are abundant in ecosystems where methane is 

present, such as peat soils (281), arctic wetlands (334), freshwater lake sediment (74), 

rice paddies (72), and landfill cover soil (60, 166, 300, 308, 347). In addition to the 

mitigation of methane, these organisms are also capable of co-metabolizing some non-

methane hydrocarbons (17, 205, 282).  
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U.S. federal law requires that daily cover be placed over open landfill cells at the 

end of each working day, and approved alternative daily cover (ADC) materials may be 

used in place the 15 cm of soil. The objective of this project was to investigate the 

feasibility of creating a methanotroph-embedded ADC, or “ biotarp”, to reduce early 

methane emissions from landfilled waste in open cells or under temporary cover (Fig. 1). 

As conceptualized, the biotarp would be portable, amenable to reactivation, and cost 

effective due to its ability conserve landfill air space. Specifically, the biotarp would be 

placed atop the refuse in open landfill cells at the conclusion of each working day and 

stored off the landfill during operation hours. While in place, early methane emissions 

Figure 1. Conceptualized diagram of a methanotroph embedded biotarp to serve as 
an alternative daily cover and mitigate early methane emissions from landfilled 
waste. 
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from the refuse would be oxidized by methanotrophs immobilized within the biotarp. As 

methane is produced by the waste, it is oxidized by embedded methanotrophs as it passes 

through the tarp.  

In order to develop and determine the feasibility of a methanotroph embedded 

biotarp, the following specific research objectives were investigated: 

i) Isolation of  a mixed methanotroph population from landfill cover soil 

ii) Identification of a feasible immobilization technique that enhanced methane 

oxidation 

iii) Determination of immobilized methanotroph responses to temperature variation, 

methane starvation, and washing 

iv) Evaluation and selection of biotarp prototype components 

v) Construction and evaluation of biotarp prototypes using continuous flow 

chambers 

vi) Visualization and verification of immobilized methanotrophs in prototypes 

vii)  Evaluation of biotarp prototypes under field conditions 

 

 
 
 



 
 
 
 
 

CHAPTER 2: LITERATURE REVIEW 
 
 

Methane and Global Climate Change 

Methane is the most abundant organic gas in the atmosphere (67, 77) and is the 

second largest contributor to greenhouse gases after carbon dioxide (160). Although the 

concentration of methane is significantly lower than carbon dioxide, it has a much higher 

energy reemission. Solar radiation is absorbed by the Earth and a portion emitted into 

space in the form of infrared radiation. Methane and other greenhouse gases trap this 

radiation within the atmosphere. At higher green house gas concentrations, more energy 

is absorbed and radiated back to the Earth’s surface.  Molecule for molecule, methane 

absorbs infrared radiation about 21 times more efficiently than carbon dioxide (199).  

As a result of methane’s increased radiation adsorption capacity, a decrease in 

methane emissions has been estimated to be 20-60 times more efficient than an 

equivalent reduction in carbon dioxide for mitigating global climate change (146, 325). 

Atmospheric methane has a lifetime of approximately 12 years, with 90% being oxidized 

by hydroxyl  radicals in the troposphere (331).  Studies of air samples trapped in polar ice 

provide a 420,000 year record of atmospheric methane and carbon dioxide levels (260). 

These data indicate that current methane levels are unprecedented and that increases in 

methane correspond to increases in global temperatures. In the last 300 years, the 

concentration of atmospheric methane has increased from 0.75 to 1.7 parts per million by 

volume (ppmv). This concentration continues to increase by 0.8-1.0% per year, and it is 
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estimated to reach 2.1 to 4.0 ppmv by the year 2050 (267). Lelieved et al. (199) predicted 

that increases in atmospheric methane concentrations will decrease hydroxyl radical 

concentrations and thus, increase the methane lifetime up to 20% by the year 2050.

Using methane levels during the 1970’s, Donner and Ramanathan (99) calculated 

the global surface temperature will increase by 1.3 K due to the effects of methane alone. 

The Intergovernmental Panel on Climate Change (IPCC) has indicated that anthropogenic 

increases in greenhouse gases contribute, in part, to global climate change. Furthermore, 

current climate models show that by 2100, the average temperature will increase by 1.4–

5.8°C, with the greatest increases occurring at higher latitudes and over land (160). 

Global average annual rainfall is also predicted to increase and flooding could become 

more severe, although many mid and lower latitude land regions will become drier.  

Methane Sources 

Methane emissions, both natural and anthropogenic in origin, have been estimated 

to be over 500 teragrams (Tg)/year. Sixty percent of methane emissions have been 

attributed to human activities, such as agriculture, fossil fuel use and waste disposal, 

while the main natural sources of methane are wetlands, termites, oceans, and methane 

hydrates.  

Wetlands. Wetlands, defined as environments with standing water for all or part 

of the year,  produce 27% of the total methane emissions (approx. 145 Tg/year) (160). 

The wetlands provide an anaerobic, organic carbon rich environment, optimal conditions 

for the establishment of a large population of methanogenic bacteria. These bacteria then 

produce methane from acetate and hydrogen (258). A number of environmental 
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parameters influence the amount of methane released from wetlands, including nutrient 

availability, vegetation cover, water table depth, and soil temperature (232, 327).  

Termites. Although the amount of methane released by a single insect is small, the 

large number of termites, along with their wide geographical distribution, makes them a 

significant source of methane (167). Termite methane production accounts for 

approximately 4% (20 Tg/year) of the total methane emissions. Methanogenic bacteria 

located in the hindgut  region of the termite gut (132) convert carbon dioxide and 

hydrogen into methane (251). Some studies suggest that diet may influence the amount of 

methane produced, with soil-fed termites emitting more methane than wood-fed termites 

(26, 46). 

Oceans. Methane is slightly supersaturated in seawater, with the highest 

concentrations in near-surface water (67). This source is responsible for only 2% (10 

Tg/year) of methane emissions (160). The exact sources of oceanic methane are not clear, 

although anaerobic niches in fish intestines, fecal pellets and decaying plankton are likely 

sources (254). Cold gas seeps and hydrothermal vents are also sources of methane, 

although the extent to which they contribute is not currently clear. 

Hydrates. Methane hydrates are the frozen form of natural gas. They usually form 

in deep sea sediments, which are high in organic content. Methane and other low 

molecular weight gases are trapped in a water lattice as a clathrate (291). Changes in the 

surrounding temperature, pressure, or salinity cause the release of methane from the 

hydrates (315). It has been estimated that 5 Tg/year are released from methane hydrates, 

contributing to approximately 1% of total methane production. 
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Fossil fuels. Fossil fuels, an anthropogenic methane source, account for 18% of 

the total methane emissions, releasing 95 Tg methane into the atmosphere each year. The 

primary source is natural gas leaks, which occur during processing, transportation and 

distribution (21). The exact leakage rate remains unclear, as they vary between countries 

(197) and leakage may be lower in developed countries because transportation is more 

tightly controlled (181). Methane is also emitted from coal mines, where it is released 

from layers of coal during the mining process (21).  

Domestic ruminates. Methane emissions from domestic ruminants, including 

cattle, sheep, buffalo, and goats, are associated with methane production in the 

gastrointestinal tract. Many dietary factors influence methane production, including feed 

processing, as well as starch and lipid content (28).  These emissions account for 18% (93 

Tg/year) of annual methane emissions (160) and results from the incomplete digestion of 

low quality feed. 

Waste decomposition. Approximately 59 Tg (9%) of methane is emitted yearly 

due to the decay of biogenic waste in anaerobic environments, mainly landfills and 

wastepools (288). Wastewater has been identified as a source of methane, resulting from 

the anaerobic digestion of organic materials. It has been estimated that approximately 

13.6m3 methane is produced per 1000 people/day (312). Methane production in landfills 

will be discussed in detail in following sections. 

Rice cultivation. Rice paddies are one of the most important sources of 

anthropogenic methane, producing 11% of the total methane released annually. They are 

flooded most of the year for rice cultivation and methane is produced in a manner similar 

to that in natural wetlands (18). Three distinct pathways of methane release in rice 
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paddies have been identified; methane dissolved gas bubbles, dissolved methane 

diffusing into the vapor phase, and plant mediated transport (282).  

Biomass burning. Biomass burning represents the smallest percentage of 

anthropogenic methane emissions, 10% (52 Tg/year). However, this is an important 

source of other pollutants in addition to methane. If combustion is incomplete, large 

quantities of methane and other higher-order hydrocarbons are released (200).   

Methane Sinks 

Although there are numerous sources of methane, there are only three types of 

methane sinks, or means of methane removal. The major methane sink, a reaction 

between methane and hydroxyl radicals in the troposphere, consumes 90% of the 

atmospheric methane released. The minor methane sinks are removal by dry soil 

oxidation (approximately 5%) and transport to the stratosphere, where methane is 

consumed by reactions with chloride ions (124, 289). 

Figure 2. Natural and anthropogenic sources of methane 
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Reactions with hydroxyl radicals. Hydroxyl radicals are produced in the 

atmosphere when ozone reacts with water vapor in the presence of ultraviolet light. In the 

troposphere, the hydroxyl radicals react with methane to form water and carbon dioxide 

(67). Other greenhouse gases, including carbon monoxide, may also react with the 

hydroxyl radicals. Therefore, when the concentration of these other gases increase and 

theycompete for the hydroxyl radicals, the lifetime of methane in the atmosphere also 

increases (209). When NOx is plentiful in the atmosphere, it can catalyze the breakdown 

of formaldehyde, an intermediate of methane oxidation, ozone and carbon dioxide (268).  

Oxidation in soil. Methane oxidation in soil is thought to be due largely to the 

metabolism of methane by microorganisms, primarily a group of methane-oxidizing 

bacteria called methanotrophs (166, 337), although nitrifiers, some yeasts, and even some 

anaerobes likely undergo reverse methanogenesis (66, 266, 336, 350, 351). Among 

methanotrophs, there are two distinct groups, each distinguished by their methane 

affinity. Although much is known about the low affinity methanotrophs that can initiate 

metabolism only at high methane concentrations (> 40 ppm), the bacterial population 

responsible for oxidation at low methane levels (<12 ppm) is less well characterized (22). 

Methane oxidation by methanotrophs will be discussed in further detail in following 

sections. 

Other methane sinks. In the stratosphere, methane reacts with chloride atoms to 

form hydrochloric acid. It is estimated that less than one Tg/year is removed in this 

manner (78).  
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Landfill and Methane Production 

Landfills are among the largest anthropogenic sources of methane,  and were 

reported to account for approximately 37% of the annual methane emissions in the 

United States for 2001 (160). For this reason, solid waste management remains a critical 

element of climate change mitigation. Approximately 245.7 million tons of municipal 

solid waste (MSW) was generated in the US in 2005, with 54% of the waste being buried 

in landfills. Although the number of landfills in the US has decreased significantly over 

the last eighteen years, the size of individual landfills has increased (324). Landfills will 

likely remain the primary means of waste disposal because landfilling is the least 

expensive waste management alternative in the U.S.  

Structure and Design 

An engineered landfill is a controlled method of solid or hazardous waste disposal 

that is designed to prevent pollution or degradation of the surrounding environment. 

Subtitle D of the Resource Conservation and Recovery Act (RCRA), as well as state 

regulations, seeks to ensure that buried waste is sequestered from the environment. A 

landfill site is typically excavated and a liner system installed along the bottom and 

lateral sides. This liner system includes a 0.67-1.0 m compacted clay layer overlain with 

a 1.5 mm thick geosynthetic (impermeable synthetic noncellulose) liner material. It 

serves to prevent leachate (liquid produced from the degradation of waste) from 

contaminating groundwater. A leachate collection system is also installed within the liner 

system and directs the leachate to low points at the bottom landfill. The collected leachate 

is removed either by gravity flow or pumping, and is then treated, recirculated, or 

transported off site for disposal.  
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The basic unit of a landfill is a cell, which includes daily deposits of compacted 

waste and daily layers of cover material. A cell is typically 3 m in height, although 

heights of 10 m have been employed. Cells typically have a rectangular area and steeply 

sloping sides. Waste is deposited into a cell each day and compacted to 710-950 kg/m3. 

At the end of each work day, the waste is covered by soil, which excludes disease 

vectors, rodents, and some rainwater, and minimizes odor and windborne litter. A given 

cell is filled to a designated height, after which a new cell is begun. After adjacent cells in 

a sector are filled to the same height, they are collectively referred to as a lift (Fig. 3). An 

intermediate cover is then installed. This cover is typically a 15 cm layer of soil or 

combination of soil and compost that provides a more permanent barrier to odor and 

stormwater. New cells are then established over the intermediate cover until the landfill 

section has reached a pre-determined height. A final cover is then placed on the landfill to 

minimize infiltration of rain water and dispersion of waste. This cover also aides in the 

long-term maintenance of the landfill. The exact composition of the final cover is set 

forth by local governments. It will typically consist of a gas control layer that routes gas 

to flares or a gas collection system, a filter and drainage layer, and a layer of seeded 

topsoil for erosion control.  

Methane Generation in Landfills 

The biological decomposition or organic matter in the buried waste and the 

concomitant generation of gaseous by product is mediated by microorganisms. Overall, 

these processes pass through a number of defined phases, although the rate can vary from 

region to region in a given landfill due to the heterogeneous nature of the deposited 

waste. The end-product of these processes is methanogenesis. The first phase is aerobic, 
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with both O2 and NO3 used as electron acceptors for the metabolism of readily 

biodegradable soluble sugars (3). After oxygen and nitrogen are depleted, an anaerobic 

phase begins (4), and carboxylic acids, ammonia, CO2 and H2 accumulate, as well as 

acetate and alcohols, due to the hydrolysis of polymers such as carbohydrates, fats, and 

proteins by fermentative microorganisms. As these new by-products accumulate, the 

anaerobic, methanogen population expands. Methanogen catabolism follows one of two 

paths, with cells deriving energy by either producing methane from hydrogen and carbon 

dioxide or converting acetic acid to methane and carbon dioxide. When these reactions 

are fully developed, the degradation is considered to be in accelerated methane 

production, designated as the third phase (5). The two paths for methane production are 

shown below (225): 

 

 

Figure 3. Diagram of a typical landfill. 
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Accelerated methane production is followed by a decelerated phase, where the rate of 

methane production decreases as substrates become depleted (235).  

Landfill Alternative Daily Covers 

Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal 

Facility Criteria requires landfill owners or operators to cover compacted waste with 15 

cm of earthen material at the end of each operating day; more frequent coverage is 

required if there are problems with disease vectors, fires, odors, wind-blown litter or 

scavengers. This type of daily landfill cover consumes valuable landfill space and 

reduces the landfill operating life. In cases where soil is not available on site, it must be 

purchased and transported to the site, which significantly increases operating costs. As a 

result, several types of alternative daily covers (ADC) have been developed and can be 

categorized as blankets, sprays, and slurries of waste materials.  

Blanket ADCs are large tarps that cover the working surface of a landfill. This 

type of ADC is out in place at the end of each operating day, and although many are 

placed by landfill staff, some are applied with dedicated motorized roller machines. 

Reusable tarps made of various types of polypropylene or polyethylene geomembranes 

are taken up each morning, while non-reusable blanket ADCs are composed of thin 

polyethylene, polypropylene, or polyvinyl chloride. Some non-reusable blankets will 

thermally degrade in 4-6 weeks; however, others must be perforated to allow them to be 

left in place without acting as an impermeable layer.  

 Spray ADC may be applied as either a slurry or a foam. Slurries are solids, such 

as newspaper, mixed paper, wood fiber, cement kiln dust or fly ash, mixed with water 

and sprayed over the working landfill surface. The slurry is applied in a thin layer and is 
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designed to harden over the waste after 20 minutes to 2 hours. Foams are composed of 

synthetic materials, such as resins or soaps, and are mixed with water prior to application 

as a thin layer with a specialized foam sprayer. However, unlike a slurry ADC, the foam 

does not harden. Compared to daily cover soil, both blanket and spray ADCs take up 

negligible landfill volume. 

Waste ADCs may employ yard waste, municipal or industrial sludge, auto 

shredder waste, shredded tires, cement kiln dust, and impacted soil. Although the waste 

material consumes fill capacity that is approximately equal to that of traditional daily soil 

cover, it does generate some tipping fee revenue (137).  

Biotic Methane Mitigation Systems 

Final capping systems for modern landfills are highly engineered to efficiently 

prevent methane release into the atmosphere (312). At large landfills, they typically 

include some type of active or passive gas collection system. However, once methane 

generation has entered the decelerated phase of production, the costs of operating a 

collection system may not be warranted, and a variety of engineered bio-based covers are 

being pilot tested to control methane emitted during the low production period.  

Bio-based systems exploit the fact that some microorganisms can oxidize methane 

as it permeates upward into the aerobic regions located at the top of the waste (79, 207, 

214, 337). Such systems seek to provide ideal conditions for methane oxidizer growth 

and enhance the microbial population interface between the waste and the atmosphere. 

These systems may also be used alone during new landfill start up or as a supplement to 

gas collection in order to capture fugitive methane emissions. They are also suitable at 

small landfills where gas collection is not technically or economically feasible (153). 
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Three basic types of biogas collection systems have been designed and pilot tested: 

biocovers, biofilters, and biowindows (153).  

Biocovers 

 One of the original biocovers investigated was a compost biocover that was 

employed to reduce methane emissions from a closed landfill site in Austria (158). 

Several types of compost and configurations were assessed including (a) well composted 

municipal solid waste underlain with coarse gravel; (b) composted sewage sludge layered 

directly over the waste; (c) sewage sludge compost underlain by compacted loam; and (d) 

sewage sludge compost underlain with coarse gravel. Methane was found to be emitted 

from control plots and plots not underlain with gravel. However, no methane was 

detected from plots where either sewage sludge compost or municipal solid waste 

compost was underlain with gravel. The authors concluded that the gravel layer was 

important for gas distribution and porosity, while the compost provided the proper water-

holding capacity and good thermal insulation properties. Subsequent laboratory 

investigations found that a mature and porous compost enhanced methane uptake over 

that achieved in conventional landfill cover soil (154). The addition of a substrate that 

increased porosity also proved to be important in the optimization of methane 

consumption in simulated biocover samples.  

In the US, pilot tests using compost biocovers have demonstrated potential for 

mitigating methane emissions in a variety of landfill settings (19). Methane uptake in 

areas topped with a biocover was almost double that in control sites with intermediate 

cover. A biocover configured for a closed landfill by Stern et al. (297) used crushed glass 

for a gas distribution layer covered by pre-composted yard or garden waste over 
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intermediate cover. Their biocover cells reduced methane emissions 10-fold relative to 

non-treated control cells. The authors concluded that the increased methane oxidation by 

the biocover was a result of longer gas retention times due to higher contact time in the 

cover. Greater insulation against moisture loss likely resulted in less desiccation in the 

thicker compost cover material and, thus, a reduced methane flux was observed.  

Biofilters 

Biofilters are also designed to host a methane oxidizer population, as well as other 

microbes that can remove odor and no-methane organic compounds (NMOC’s); 

however, they are confined to smaller areas and require an active or passive system to 

feed the landfill gases into the filter. Oxygen is obtained from the air diffusing downward 

into the material; therefore, a particular biofiltration material must have high gas 

permeability, large surface area, and proper environmental conditions to promote 

methanotrophic growth and methane oxidation. (153). Various types of media have been 

investigated under laboratory conditions, including assorted composts (95, 112, 299, 304, 

344), wood chips, bark mulch, peat, or glass (292), bottom ash (221), porous clay pellets 

(120), sand and soils (256, 262), and mixtures of organic and inert materials (100, 228).  

Laboratory columns simulating biofilters showed successful methane removal 

(136, 256, 292, 305, 344). Although the biofilter composition (soil, glass tubing, wood 

fiber, and compost) and methane inflow rates varied among experiments, the studies 

noted that methane removal was dependent on the initial methane concentration. Field 

studies of biofilters have also shown success in methane reduction. A field scale compost 

biofilter was able to remove 10-20 g CH4/m3⋅hour with methane loading rate of 9-112.5 

g/m3⋅hour (303), while a biofilter constructed with pelleted inorganic porous clay topped 
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with 10 cm of grassed removed a maximum 80 g CH4/m3⋅hour, almost 100% of methane 

input (121). In a biofilter containing compost underlain with bark or wood chips, 90% 

methane removal was observed with a methane loading rate of 1.1-2.5 g CH4/m3⋅hour 

(299). Although various biofilter configurations showed successful methane removal in 

the field, it was found that high landfill gas input can limit performance if the methane 

flux from below outpaces the rate at which oxygen can diffuse downward (121). 

Temperature (120, 304), moisture holding capacity (262) and exopolymeric substance 

(EPS) formation (305) are also important influences in biofilter functioning. It has been 

suggested that nutrient imbalance (316) or other stressors (118) can promote EPS 

formation, which can be problematic in bio-based systems as it tends to clog the system 

and slow the rate of methane oxidation (145). 

Biowindows 

Biowindows are similar to biocovers, but they cover only small regions of a 

landfill rather than the entire surface. They are used where a full biocover is not 

warranted (e.g. to address isolated “hot spots”, where cracks in the landfill surface 

develop), and no gas collection system is present to feed a biofilter. Biowindows are 

integrated into a conventional landfill cover in discrete sections, offering a “path of least 

resistance” for leaking gas (153).  A field-scale project is currently underway at the Fakse 

landfill in Denmark in which sections of the final cover has been replaced with high 

methane oxidation materials. 10 x 10 m biowindows were constructed by placing 1 m of 

composted garden waste over 10-15 cm gravel layer (115). The maximum methane 

oxidation capacity of the compost was measured to be approximately 150 g CH4/day 

using laboratory batch and column studies (116).   
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Immobilization  

Immobilization techniques have been widely explored over the last 30 years and 

have been applied to all types of cells, organelles, as well as enzymes, proteins, and other 

subcellular structures (61, 175, 342). An immobilized cell is defined as a cell, or remnant 

thereof, that by natural or artificial means is prevented from moving independently of its 

neighbors to all parts of the aqueous phase of the system under study (310). Numerous 

investigations have demonstrated the advantages associated with the use of immobilized 

cells. Pashova et al. (257) found pectinolytic enzyme activity levels were greatly 

increased in immobilized cells of Aspergillus niger compared to free cells. Others found 

that when  Pseudomonas sp. and Xanthomonas maltophilia were immobilized, the 

degradation rate for acrylamide increased (243).  Further examples of  immobilized cells 

and organelles has been discussed by Mattaisson (220). 

Six distinct types of general immobilization methods have been defined: covalent 

coupling, affinity immobilization, adsorption, confinement in a liquid-liquid emulsion, 

capture behind a semi-permeable membrane, and entrapment (212). Covalent coupling is 

a common technique used to immobilize enzymes to a solid support by permanently 

covalently bonding them  together (310). This method is not used often with viable cells, 

as the covalently immobilized cells are unable to divide (212). Affinity immobilization 

takes advantage of the fact that some cells have unique surface characteristics that allow 

them to selectively bind to a substrate (310). Staphylococcus aureus cells were 

immobilized to plastic coated with fibronectin and collagen due to this organism’s natural 

affinity for these substrates (223). An Escherichia coli strain expressing a cellulose 

binding domain was successfully immobilized to cellulose supports (332). The 
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confinement of cells, organelles, or molecules within a liquid-liquid emulsion is an 

efficient means to forgo problems associated with the use of a solid support. In this 

technique, the biocatalyst of interest is entrapped within one liquid phase that forms small 

droplets when introduced into a second liquid phase. The cells must be stable in the two 

liquid phase systems selected and the required nutrients must be portioned along with the 

cell. Although such systems can prove suitable for small-scale laboratory work, they are 

considered  impractical for industrial scale applications because of the high material costs 

(310).  Capture behind a semi-permeable membrane involves the use of hollow fibers. In 

this process, macromolecules are retained within the system, but free diffusion of some 

low molecular weight solutes is permissible. Multiple individual fibers are bundled 

together to allow bulk flow in and out of the system. The space between the fibers can be 

packed with cells in such a manner that nutrients are continuously delivered to the cells 

and waste removed. Although this system can be very useful for maintaining cells, fiber 

pores can easily become blocked, and it is difficult to remove adherent cells from the 

apparatus (310).  Adsorption and entrapment will be discussed in detail below. 

Adsorption 

Adsorption involves nonspecific interactions between cells and the surface 

support material. Bhamidimarri (25) describes three types of forces involved in microbial 

adsorption: short range forces, interfacial reactions, and long range forces. Short range 

forces are thought to be the most important (259) and include dipole-dipole interactions 

and hydrogen bonding. Interfacial reactions are those involved in the conditioning of the 

surface by microbial production of EPS. Long-range forces consist of Van der Waals 

forces and electrostatic interactions. The electrostatic forces result from the charges 
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associated with the cell and the surface of the support. Mozes et al. (236) presented 

evidence that adsorption of microorganisms to a support was the result of electrostatic 

interactions. Adsorption has been optimized by altering the electrostatic charges of cells 

and a support surface to increase the immobilization yield (231). The role of Van der 

Waals forces in adsorption has been shown empirically by Klotz et al. (184). They 

demonstrated the adherence of Candida albicans and other Candida spp. to inert plastic 

surfaces was a result of Van der Waals attractive forces. In addition to cells being 

attached to a surface by adsorption, a portion of the cell population may remain 

physically trapped within the support, but dispersed in the liquid phase and not physically 

attached (183).  

In addition to physio-chemical attachments, cellular structures can contribute to 

adsorption. Three types of cell- mediated attachments to surfaces have been identified: 

extracellular adhesions, holdfasts, and lipopolysaccharide attachment (25). Furthermore, 

flagella are thought to aid in chemotactic responses and hold cells in close proximity to 

the surface.  

It is likely that some combination of cellular, physical and chemical factors 

mediate the passive attachments of cells to surfaces, depending on the particular microbe 

and surface involved. What is clear is that cell adsorption is a fairly common 

phenomenon, and it has even been shown to increase the activity of cells. Slabova and 

Nikitin (290) employed methanol-degrading bacterial strains immobilized via adsorption 

to polypropylene or polyvinyl formal foam. Foam granules were incubated in a turbid 

bacterial culture (OD 2-2.5) for 1-1.5 hours, washed, and placed in fresh nutrient medium 

for 1 day. The granules were then removed, washed and placed in fresh medium, with 



21 
 

 

this process repeated seven times to obtain granules with well-absorbed cells. The three 

strains examined were able to maximally utilize the substrates when adsorbed to both 

types of supports. A recombinant Escherichia coli strain, which produced human 

epidermal growth factor (hEGF), was adsorbed onto porous polyurethane foam particles 

in order to enhance plasmid stabilization (62). The cells were added to a flask or bubble 

column containing the foam particles and allowed to adhere in culture. These 

immobilized cells resulted in enhanced hEGF secretion rates.  

The use of adsorbed cells has been shown to have many practical applications. 

Pseudomonas putida cells were immobilized by adsorption onto magnetite in order to 

treat Cu 2+-containing municipal wastewater (333). A strain of blue green microalgae was 

immobilized on a loofa sponge in a continuous flow fixed bed column reactor to 

efficiently remove heavy metal ions from aqueous solution (278). Tse and Yu (319) 

adsorbed a Pseudomonas strain capable of degrading synthetic dyes to porous glass beads 

and solid polyvinyl alcohol particles to increase degradation efficiency from an initial 

rate of less than 10%  to 80%. Cells adsorption is also used to mount samples for atomic 

force microscopy (AFM), such that three-dimensional images of cells under 

physiological conditions can be obtained (106).  

Adsorption has several advantages over other immobilization techniques. It is the 

most gentle immobilization method because it is passive, and only the natural properties 

of the cells and support surface are involved (310). Furthermore, it typically requires no 

changes in cultivation conditions (183). Many investigations of adsorbed cells 

demonstrate increased cellular activity (217, 242); however this is not always the case 



22 
 

 

(56, 298, 341). It has been suggested that the increase in activity is a result of increase 

nutrient concentration and not the physical attachment (362). 

 Despite the advantages, there are several potential problems with using 

adsorption to immobilize cells. When the adsorption is mainly physio-chemical and 

nonspecific, cells may desorb from the surface as readily as they attach (310). 

Furthermore, changes in ionic strength (219, 342) or pH (342) can lead to cell desorption, 

as can gas or liquid shearing forces (310). For these reasons, cell immobilization by 

adsorption is not ideal for harsh or highly variable environments.   

The type of support selected for adsorption is also critical. The support must be 

nontoxic and have a high surface area accessible to the cell (188). Atkinson et al. (14) 

expanded the description of a desirable support material to include the ability to 

withstand heat sterilization, to resist microbial degradation, have cost appropriate to the 

application, and possess the ability to be reused. A variety of organic and inorganic 

supports have been explored, including polyurethane foam (216), wood shavings (127), 

stainless steel wire meshes (126), natural cellulose sponge (278), ceramics (217), brick 

(253), porous glass (242), and alumina (191). 

In addition to retention, many applications require that the cells be able to grow 

and replicate. Microorganisms attached to a surface by physio-chemical interactions often  

lead to the formation of biofilm (250). Biofilms are actually quite common in nature, with  

attached microorganisms vastly out-numbering planktonic organisms in natural 

environments (104).  

The formation of a biofilm enhances attachment of cells to the support and 

increases their resistance to environmental stresses. In a review exploring the incentives 
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for bacterial biofilm production, Jefferson (161) suggests that biofilms play a protective 

role by allowing the cells within it to withstand shear forces, nutrient deprivation, pH 

changes, oxygen radicals, disinfectants, and antibiotics better than planktonic organisms. 

However, there can also be some limitations for cells deep in a biofilm if substrate cannot 

easily diffuse through the matrix layers (237).  A portion of cells within a biofilm can 

become nutrient and oxygen deprived, leading to lowered cellular activity. The trade-off 

between some of these benefits and drawbacks may offer an explanation in the 

inconsistency in reported cell performance among various investigations.  

Entrapment 

Cell entrapment is the most frequently used immobilization technique, wherein 

cells are contained in an artificial three-dimensional gel matrix. Unlike adsorption, there 

are many different methods to entrap cells, and they are typically independent of the 

natural properties of the cells themselves (310). There are also many different materials 

that can be utilized to entrap cells, and material selection depends on cell type and 

application properties. A few of the most common materials include alginate, polyvinyl 

alcohol, and proteins.  

Polyvinyl alcohol (PVA) is a hydrophilic polymer in which hydrogen bonding 

occurs between neighboring hydroxyl groups of the polymer chain to form a non-

covalent network (349). At temperatures below 0°C, this bonding is enhanced and is 

considerably stronger (208). PVA is very stable and resists biodegradation, making it 

ideal for nonsterile conditions. The gel strength can be modified by the degree of 

deacetylation, polymer chain length, concentration, and thaw time (349). In 1998, Jekel et 

al. (162) introduced a new method that allowed gelation at room-temperature, which 
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avoided much of the cell loss that occurred during the freezing process. Application of 

PVA-entrapped include  ethanol production (270), wastewater nitrification (151), enzyme 

production (218),  nucleoside synthesis (317, 318) and gasoline desulferization (201). 

Proteins have many properties that make them excellent candidates for use in 

entrapment techniques. The type of film formed depends on their composition 

(proportion of hydrophobic and hydrophilic residues) and the degree of unfolding they 

undergo, with the film forming as the unfolded protein separates from the solvent phase. 

Most protein films are moisture sensitive, but provide an excellent barrier to nonpolar 

substances, such as oxygen and fats (329). Good film performance correlates with good  

surface active properties, film forming and mechanical properties, high gas barrier 

properties, and a high resistance to organic solvents and fats (88). Other beneficial 

properties are that it be biodegradable, and easily modifiable. Each protein film type may 

have unique properties that make it suitable for a particular application. Both animal and 

plant proteins are available, and include collagen, gelatin, keratin, wheat gluten, soy and 

pea proteins (329).  

The methods by which cells can be entrapped are numerous. One such method is 

spray drying, where a cell suspension is atomized using compressed air or nitrogen. The 

product is collected in a desiccation chamber and dried under a current of hot air (329). 

Entrapment by extrusion disperses cells within a molten mass, which is then cooled and 

solidified (314). During the coacervation method, the protein is precipitated onto the cell 

as a coating (329). Recent applications include the use of whey protein to immobilize 

probiotics (272), the use of a starch-milk-gluten matrix to co-immobilize lactic acid 
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producing bacteria (261), and the conversion of sucrose via intracellular invertase by 

cells immobilized in gelatin (307).  

One common immobilization technique is to entrap cells in alginate beads or 

sheets (229). Alginates are natural marine polymers that have been used in various 

applications for emulsification, thickening, film formation and gelation (252). They are 

composed of copolymers of D-mannuronic (M) and L-glucoronic (G) acid joined in a 

blockwise fashion by a glycosidic bond, allowing for three possible configurations: M-

blocks, MG-blocks, and G-blocks.  

Bead preparation involves two main steps; first the formation of an alginate bead 

with an internal cell-containing core, and then gelation of the alginic acid by multivalent 

cations (310). Cells are added to a solution of alginate and added dropwise into a bath of 

dilute aqueous CaCl2. The Ca2+ ions react with the alginate molecules, causing them to 

cross-link (229). This alginate gels and traps the cells inside a solid-gel bead. The bead 

size is an important element in a successful entrapment procedure. Beads should be large 

enough to contain the cells and be handled with ease. The exact size depends on the type 

of nozzle used, the viscosity of the alginate solution, and the fall distance to the CaCl2 

bath. The gelling solution can also affect bead size, with a low G-content alginate being 

more susceptible to volumetric changes (229).   

Some applications of alginate entrapment include the use of immobilized 

organisms to deliver probiotic organisms beads (193),  to remove contaminates in 

wastewater treatment processes (309),  and degrade soil contaminates (202) among 

numerous other uses. One of the most notable uses of alginate beads is in the 
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development of tissue replacement and artificial organs, such as the immobilization of 

islet of Langerhans as an artificial pancreas for the treatment of Type I diabetes (361). 

 Alginate gel entrapment has many advantages, mainly that it tends to be very 

mild on cells and maintains high viability (310).  It is easily performed, and the alginate 

itself is inert and nontoxic (174, 175, 264, 269). However, the ionotrophic nature of the 

alginate makes it highly susceptible to chelating agents, such as phosphate, lactate, and 

citrate (229). Also, cells that are located at the bead surface are likely to proliferate more 

rapidly, leading to mass transfer resistance and bead leakage at the surface (286, 287, 

311). The alginate bead has a gel polymeric matrix pore size of approximately 10nm 

(182), which reduces the space in which cells can proliferate and prevents high cell 

densities from being reached. Furthermore, as the cell density increases within the bead, 

the strength of the matrices decreases (249).  

Entrapment of cells using liquid core alginate gel (also referred to as hydrogel 

membrane) capsules is similar to the formation of alginate beads, in that similar 

components are used. However, gel capsule formation is accomplished by a reversal of 

solutions – cells mixed in a dilute CaCl2 solution are added dropwise to an alginate 

solution. Calcium ions diffuse from the center of the droplet and bind alginate chains at 

the surface, such that an alginate membrane will form around a soft gel core of CaCl2/cell 

mixture. The gel core will not solidify, as it does in the alginate bead (295). This 

technique has several advantages over the use of alginate beads, primarily that the cells 

never directly contact the alginate solution. Additionally, capsule size, membrane 

thickness, and pore-size can be altered during gel capsule production. Capsule size can 

range from 100 µm to several mm in diameter and is determined by the microdroplet 
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generator aperture size. The membrane thickness is determined by the droplet incubation 

time in the alginate solution; decreasing this time produces a thinner membrane, while 

increasing this time thickens the membrane. The addition of various molecular weights 

and the concentration of non-gelling polymer, such as dextran, to the CaCl2 solution can 

be used to create specific pore sizes within the capsule. After capsule formation, these 

non-gelling polymers will diffuse out (247).  

Methanotrophic Bacteria 

Methanotrophic bacteria are aerobic, Gram negative microbes that can utilize 

methane as their sole carbon and energy source. Methanotrophs are able to enzymatically 

oxidize methane (from both atmospheric and high methane sources) by combining it with 

oxygen to form carbon dioxide and water.  As a result of their methane oxidation activity, 

they play a role in the global methane cycle, serving  as the largest biological methane 

sink (133, 179).   

Taxonomy 

At present, there are 13 recognized methanotroph genera (29, 44, 93, 94, 133, 

143, 321, 348), which were originally classified as Type I, II, or X based on morphology 

and physiology. Whittenbury et al. (339) isolated over 100 methane utilizing organisms 

and grouped them according to a Type I or Type II membrane structure. Type X was later 

added to accommodate the characterization of Methylococcus capsulatus and other 

similar organisms (133). 16S ribosomal DNA sequence analysis confirmed the presence 

of three distinct groups, with Type I and X methanotrophs forming distinct clusters in the 

gamma subdivision of the Proteobacteria and Type II clustering in the alpha subdivision 

(45, 47). However, methanotroph taxonomy was later revised, and Type X organisms  
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Table 1. Methanotroph Classifications 
Characteristics Type I Type II 
Proteobacterial subdivision gamma alpha 

Cell morphology short rods, usually occur singly; 
some cocci or elipsoids 

crescent-shaped rods, rods, 
pear-shaped cells, sometime 

occurs in rosettes 
Membrane arrangement   

bundles of vesicular disks yes no 
paired membranes 
aligned to periphery of 
cells 

no yes 

Nitrogen fixation no yes 

Resting stages   
Exospores no some strains 

Cysts some strains some strains 
RuMP pathway present yes no 
Serine pathway present no yes 

Major phospholipd fatty acids  14.0, 16:1ω7c, 16:1ω5t 18:1ω8c 

 Adapted from Hanson and Hanson (133) 

 

were grouped with Type I as Family Methylococcacea (45, 47). A summary of 

characteristics distinguishing the two types is presented in Table 1. 

Methane Oxidation 

The first step in the metabolic pathway of  methane oxidation is initiated by the 

enzyme methane monooxygenase (MMO) (10, 11, 82-84). This enzyme catalyzes the 

insertion of oxygen into the methane molecule to form methanol and water. Two 

isoforms of this enzyme have been identified in methanotroph: soluble MMO (sMMO) 

and membrane-bound or particulate MMO (pMMO).  All but one methanotroph genera 

express the pMMO, and only a small group is capable of expressing both isoforms (101).  

sMMO is composed of three components: a hydroxylase, where the active site is 

located, a reductase that transports electrons from NADH to the active site, and a 

regulatory protein (230). As the name implies, this enzyme remains soluble after high 

speed centrifugation (82, 206) and is highly conserved among species that express it 
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(238, 239).  sMMO has a wide range of substrate specificity, oxidizing various alkanes, 

alkenes, and aromatics compounds (71).  pMMO, though much more prevalent in 

methanotrophs, is less well characterized due to being an integral membrane protein. This 

isoform has three subunits, α, β, and γ (203, 359) and evidence suggests that the active 

site contains copper ions (57, 203).  

After methane is oxidized to methanol, it is then further oxidized to formaldehyde 

by periplasmic methanol dehydrogenase (MDH) (10, 86, 352). The formaldehyde is then 

assimilated into the cell by either the serine or ribulose monophosphate (RuMP) pathway, 

or oxidized to formate by the formaldehyde dehydrogenase (FalDH) (11, 133). The serine 

pathway is utilized by Type II methanotrophs, whereas Type I methanotrophs utilize the 

RuMP pathway. Both pathways allow formaldehyde to be converted to intermediates, 

which are then used for the biosynthesis of cellular products (9, 96, 263). Two moles of 

formaldehyde and 1 mole of carbon dioxide are used to form a three-carbon intermediate 

in the serine pathway. In the RuMP pathway, 3 moles of formaldehyde are used (9, 11, 

90, 194, 263). Formate, which results from the oxidation of formaldehyde, is further 

oxidized to carbon dioxide by a NAD-dependent formate dehydrogenase (9, 96). 

Factors Influencing Methane Oxidation 

Methanotrophs are ubiquitous and have been found in swamps, rivers, rice 

paddies, oceans, ponds, soil from meadows, deciduous forests, streams, sewage sludge, as 

well as deep sea mussels (73, 134, 135, 142, 147, 155, 284, 285, 301, 339). A number of 

factors influence the type of methanotroph present in a given environment, as well as the 

population density of each type. One such factor is methane concentration. High 

concentration methane environments, such as landfills, as well as low methane 
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concentration environments (atmospheric concentrations) are dominated by different 

methanotrophic species (102, 129, 130). With the exception of one strain, all pure culture 

isolates are low affinity methane oxidizers that require rather high methane 

concentrations to initiate metabolism (186).  Thus, little is known about the physiology of 

the high affinity methanotrophs.  

Several key environmental parameters that affect methanotroph methane 

oxidation rates are temperature, the presence of ammonia and nitrate compounds, and 

moisture content. Landfill soil incubated under batch conditions shows a clear oxidation 

response to temperature, with lower methane uptake rates at lower temperatures (below 

20°C) and an optimal temperature at 35-37°C (89, 330). Similar temperature optima were 

found with biofilter material (120). Einola et al (105) found methane oxidation occurred 

in landfill cover soil samples incubated over the range of 1-19°C. Some evidence 

suggests that temperature may also affect the population structure of methanotrophic 

communities. Borjesson et al. (40) observed that landfill soil samples incubated at 

temperatures between 3°C and 10°C consisted of only Type I methanotrophs, whereas 

samples incubated at 20°C consisted of both types of methanotrophic bacteria. 

Furthermore, microarray analysis of biofilter samples showed that incubations at different 

temperatures led to distinct changes in methanotrophic community composition (119).  

Methane oxidation can be inhibited by ammonia, which acts as both a competitive 

inhibitor and leads to the production of hydroxylamine (27, 48, 51, 76, 178, 248). The 

lack of specificity of sMMO and pMMO leads to its reaction with ammonia, as well as 

methane. These enzymes oxidized ammonia to nitrate; however methanotrophs can 

derive no energy from the reaction (213). Furthermore, the oxidation of ammonia 



31 
 

 

produces hydroxylamine as a by-product, a compound that can also inhibit MMO activity 

(156).   

Soil moisture content is possibly the most important factor affecting methane 

oxidation. Most investigations have found that approximately 15% moisture is optimal 

for methane oxidizers in soil (33, 43). In contrast compost, which is much more porous 

and water absorbent, supports optimum methane oxidation in the range of  45-110% 

moisture(234). The lower porosity of soil and sand (relative to compost) requires that soil 

moisture levels be sufficiently low enough to allow gas permeation (176). If a soil pore is 

completely filled with water, the transport of oxygen to the soil bacteria is slowed 

markedly. The diffusion coefficient of methane is 104-fold lower in water than in air.  

Castro et al. (53) observed the negative effect of high moisture content in forest soil. 

Methane consumption declined as moisture increased from 60 to 100% water-filled soil 

pore space (190). Lower than optimal moisture levels are also problematic (34); Whalen 

et al. (337) demonstrated that deviations from the optimal soil moisture content resulted 

in decreased methane oxidation rates in landfill cover soil. At the optimal moisture 

content of 11%, approximately 35% of the methane was oxidized in 12h; however as the 

moisture content increased to 46% or decreased to 5%, the methane oxidation rate was 

essentially unchanged. 

Molecular Detection Techniques 

The use of traditional cultivation techniques to isolate and characterize methane 

oxidizers in environmental samples has proved difficult due to their slow growth rate of 

methanotrophs and their susceptibility to competition from bacterial and fungal 

heterotrophic contaminates. During a survey of methanotrophic isolates, Whittenbury et 
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al. (339) noted the frequency of heterotroph contamination, and this has been echoed in 

subsequent methanotrophic isolation attempts by other investigators (15, 91, 120, 186, 

246, 308, 335). For these reasons, molecular techniques have been routinely used to 

assess methanotrophic populations.  

Polymerase chain reaction (PCR) has been utilized in several different capacities 

to detect methanotrophic bacteria. It has been used to verify indirect enrichment and 

isolation techniques, where methanotrophs are not surveyed directly from their natural 

environment. Svenning et al. (308) enriched soil samples by incubating them with 

methane and isolated putative methanotrophic organisms using a membrane diffusion 

process that yielded colonies on the surface of a polycarbonate membrane. PCR of 

conserved 16S rRNA sequences from the resulting colonies was then used to confirm that 

isolates were, in fact, methanotrophs. PCR has also been used in conjunction with other 

molecular techniques, such as restriction fragment length polymorphisms (RFLP) or 

rRNA sequencing to identify methanotrophs (226, 245). Additionally, real-time PCR has 

been used to detect and quantify methanotrophic DNA in environmental samples. Kolb et 

al. (187) employed real-time PCR targeting the pmoA gene to document the abundance of 

various methanotroph groups in DNA extracts from rice paddy soil.  

Denaturing gradient gel electrophoresis (DGGE) has been frequently used to 

provide a direct visualization of dominant methanotrophic populations, and it is often a 

precursory step in phylogenetic studies. Identical length PCR fragments are separated 

based on sequence variation on a denaturing gradient polyacrylamide gel. Differences in 

DNA sequences lead to variations in mobility within the gel, and distinct banding 

patterns therefore emerge (241). Henckle et al. (138) first utilized DGGE to monitor a 
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rice field soil methanotroph population using amplified sequences for genes encoding the 

subunit of the pMMO enzyme. Although the use of 16S rRNA primers yields more 

unique sequences than from pMMO genes, the rRNA based method was slower to 

develop due to the need for nested PCR during the amplification step to increase 

specificity to methanotrophs (320, 347).  Bodelier et al. (28) devised an improved DGGE 

strategy using combinations of universal and specific primers to avoid nested PCR and 

improved the specificity of the technique, allowing more phylogenetic data to be gathered 

on environmental samples with a high abundance of methanotrophic bacteria. 

Fluorescent in situ hybridization (FISH) utilizes labeled probes to stain and 

enumerate cells without their prior isolation or purification from a variety of natural 

environments (240). Due to the diversity of methanotrophs, multiple rRNA probes are 

necessary to detect all genera. Gulledge et al. (128) constructed a suite of 16S rRNA 

probes that could distinguish between Type I and Type II species with a high degree of 

specificity. Of 87 methanotrophic sequences surveyed, this probe suite provided 97% 

coverage. Eller et al. (107) also utilized methanotroph type-specific probes and general 

eubacterial probes to differentiate microbes isolated from rice soil and root samples. 

Dedysh et al. (92) was the first to report the use of FISH to detect and enumerate 

methanotrophs in indigenous environments. Using the Eller probes, as well as novel 

probes, the authors were able to visualize and quantify bacterial cells on a peat matrix. 

The use of FISH has recently been combined with fluorescence activated cell sorting 

(FACS) to enumerate and sort methanotrophic cells enriched from complex environments 

(170). Cells derived from lake sediment were first hybridized with methanotrophic Type I 

and II specific probes. FACS was then used to count and separate the cells, such that a 
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subsequent diagnostic RT-PCR could be performed to survey the methanotrophic species 

present in the sediment sample. 

An analysis of phospholipid fatty acids (PLFA) can also be used to detect and 

characterize methanotrophic populations. This technique is based on the unusual fatty 

acids (16:1ω8 and 18:1ω8 derivatives) found in methanotroph cell membranes. The 

methanotrophic biomass and population characterization of peat samples were 

successfully performed using PLFA analysis, and the cell number estimates derived from 

the analysis corresponded well with enumeration studies using fluorescently- tagged 

antibodies (306). PLFA analysis has also been used to identify unique methanotrophic 

species (122). Analysis of extracts from a biofilter charged with landfill gas containing 

significant amounts of trace organics revealed a highly specific population of Type II 

methanotrophs.  

With the emergence of microarray technology, and particularly, the development 

of methanotroph -specific diagnostic microarrays, this technique is becoming more 

common for studying methanotrophs. A DNA-based microarray was developed by 

Bodrossy et al. (32) and has been used to identify methanotrophic genera in simulated 

landfill cover (300) and actual landfill cover soil (54), as well as a method to monitor 

shifts in population composition due to temperature changes (119) or nutrient 

supplementation (55). The development of mRNA-based DNA microarrays has allowed 

for the analysis of the composition and function of methanotrophic communities (31). 

The expression of the two types of MMO were monitored in various acidic soil samples 

and differences in the community structure among the samples examined using mRNA-

based microarrays (63). 
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CHAPTER 3: ENRICHMENT AND SELECTION OF A MIXED 
METHANOTROPHIC POPULATION 

 
 
 

Introduction 

The existence of methanotrophs was proposed by Söhngen to explain the lower 

atmospheric methane concentrations as compared the amount produced in nature. He 

suggested that these differences in methane levels were due to microbial methane 

oxidation in soil. In 1906, he isolated the first methanotroph, Bacillus methanicus, from 

aquatic plants (293).  Few investigations into the detection, isolation and characterization 

of methanotrophs were conducted until the 1960’s, at which time Fosters and Davis 

began to isolate methane-utilizing bacteria (114).  In discussing methane-oxidizing 

bacteria, Howard Dalton described the turning point in methanotrophic microbiology to 

be work conducted by Whittenbury and colleagues (81). In their studies, over 100 

aerobic, methane-oxidizing bacteria were isolated, and from this, a classification system 

based mainly on morphology and carbon assimilation was devised (338, 339). Since this 

time, many investigations have detected or isolated methanotrophs from diverse 

environments, including sanitary landfills. 

Methanotroph detection and characterization in landfill cover soil has proved to 

be somewhat easier than their isolation. The development of a variety of reliable and 

specific molecular techniques has enabled detection and identification of methanotrophs, 

in a culture independent manner. For example, Wise et al. (347) employed primer sets 
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specific for Type I and Type II 16S ribosomal DNA sequences to amplify DNA extracted 

from landfill soil. Clone libraries were developed and sequenced to elucidate 

phylogenetic relationships between the isolates and known methanotrophs. The authors 

also utilized denaturing gradient gel electrophoresis (DGGE) analysis to establish a 

methanotrophic community profile based on differences in the variable region 3 of 16S 

ribosomal DNA.  Another molecular detection technique - catalyzed reporter deposition 

(CARD)-FISH has been used to enumerate methanotrophs in cover soil samples. 

Horseradish peroxidase-bound probes were used to detect methanotrophic cells in cover 

soil, and the signal was further amplified by fluorescently-labeled tyramide (168).  The 

results suggested that 108-109 methanotroph cells/g dry soil were present in landfill soil 

samples - counts several orders of magnitude higher than observed by traditional most 

probable number (MPN) techniques. The use of stable isotope probing (SIP) containing 

labeled methane has also been valuable in the detection of methanotrophs, as they utilize 

methane as their sole carbon source and will therefore integrate carbon isotopes into 

DNA, as well as other cellular molecules containing carbon. Peat landfill cover soil 

samples were incubated in a 13C-methane atmosphere. Active methanotrophic DNA 

fractions were detected by the presence of 13C-DNA.  These sequences were then 

identified using clone libraries, microarray analysis, and DGGE to develop a 

methanotrophic community profile in acidic peat cover soil (54).  

Early reports of isolation attempts of methanotrophs from landfill soil document 

the challenges of this process, perhaps as a result of large heterotrophic populations in 

environmental samples. Whalen et al. (337)  attempted to isolate methanotrophs from 

landfill cover soil by incubating a soil slurry in a 1:1 methane-in-air headspace for one 
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month before streaking this enriched sample onto solid media. This process ultimately 

yielded only a single isolate, which was not classified. Jones and Nedwell (166) also 

struggled to isolate methanotrophic cells from landfill soil samples. They initially used 

standard bacteriological agar to solidify a mineral salts medium; however, high levels of 

contaminating organisms were found to “apparently [grow] on organic impurities in the 

agar.” Dalton (81) suggested that a heterotroph population were surviving on excreted 

methanotroph products, as opposed to organic impurities in the agar.  Jones and Nedwell 

investigated other solidifying agents and ultimately utilized silicon dioxide, which 

reduced the growth of contaminating organisms and permitted methanotroph 

enumeration.  

Wise et al. (347) successfully isolated several methanotrophs from landfill cover 

soil using an extraction-dilution technique. Soil samples were serially diluted every 8 

days and the nutrient and pH levels were adjusted to promote methanotrophic growth.  

They found that high nutrient levels favored the growth of Type I methanotrophs, 

whereas low nutrient levels promoted Type II growth. The use of sample dilution for 

methanotroph isolation has also been employed by other investigators. Svenning et al. 

(308),  used a modified dilution technique that utilized a membrane surface on which 

cells could form colonies. Specifically, a landfill soil slurry was diluted and spread onto a 

membrane floating atop a sterile soil slurry. This method permitted direct enumeration 

without prior enrichment. Interestingly, only an agricultural soil slurry was found to be a 

successful growth medium and poor results were obtained using the soil from which the 

samples originated. Also, a 47d incubation period was required for colony development.  
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Of the landfill cover methanotroph isolation methods published thus far, some 

have been more successful than others. However, all are time intensive and hindered by 

frequent heterotroph contamination, and no selective methanotroph medium has yet been 

developed to aid in the isolation of methanotrophs from environmental samples. 

The purpose of this investigation was to explore a variety of isolation techniques 

in order to obtain a mixed population of methanotrophic bacteria from landfill cover soil. 

A diagnostic microarray analysis was used to confirm the presence of methanotrophs and 

identify genera within the population. Additionally, heterotrophs present in the 

methanotroph population were also isolated and identified. 

Materials and Methods 

Site and Sampling 

Fresh landfill cover soil core samples (24.5 cm x 4 cm) were collected from 

Renaissance Park (Charlotte, NC), where recreational fields have been constructed atop a 

closed landfill. This site has a history of methane production, and soil regions with high 

methane emissions had previously been identified (144).  

Soil Enrichment  

Large stones and debris were manually removed and the core sample soil was 

mixed. The mix was divided into duplicate 50 g subsamples and placed in 1000 mL gas-

tight jars with a threaded cap. The caps were fitted with a Swage-lok compression fitting 

and sealed with a silicone septum. A gas-tight syringe was used to prepare a 9% or 45% 

methane-in-air headspace (347).  This headspace concentration was monitored by gas 

chromatography and maintained for 12 days at room temperature, with the headspace 

replenished as needed. 
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Isolation of Methanotrophs by Enriched Soil Dilution in NMS 

 Whittenbury’s Nitrate Mineral Salts (NMS) (339), the standard methanotrophic 

growth medium, was prepared at three different concentrations: 1/100 strength, 1/10 

strength, and full strength. A 0.3 g sample from the 9% enriched soil sample was added 

to 10 mL of each NMS dilution in customized 100 mL gas-tight bottles (Pyrex). The 

bottles were sealed with metal port fittings made for use with chemostat systems (Bellco, 

Vineland, NJ). The port opening was capped with a white plastic septum (Kontes Glass 

Company, Vineland, NJ) in which a silicone septum had been secured using silicone 

caulking. A silicone gasket (45 mm) was placed between the metal fitting and the 

threaded bottle cap (45 mm with 33.3 mm hole) (Fig. 4). A gas-tight syringe was used to 

create a 20% methane-in-air headspace, and the headspace was monitored by gas 

chromatography for 21 days at room temperature.  

 

Figure 4. Gas-tight bottle sealed with metal port fittings and capped with a white 
plastic septum containing a silicone septum. 
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Isolation of Methanotrophs by Adsorption from Enriched Soil 

 The moisture content of 20 g subsamples of the landfill cover soil incubated under 

9% headspace methane was adjusted to 15% (w/w) and placed in 100 mL gas-tight 

bottles. Five materials were tested for their ability to adsorb and host methanotrophic 

cells present in the soil. The supports tested were natural sponge (Florida Sponge, 

Pinellas Park, FL), a 0.95 cm x 2 cm x 4 cm sample of a highly wettable polypropylene 

(PP) nonwoven geotextile (Ten Cate Nicolon, Pendergast, GA), a small sub-section of 

injection molded polypropylene plastic tower packing material (AceChemPack Tower 

Packing Co, Hangzhou,China), a 90 mm diameter circle of polycarbonate membrane with 

a 0.22 µm pore size (GE Osmonics, Minnetonka, MN), and glass beads with a 200-300 

mm diameter (Polysciences, Warrington, PA ) (Fig. 5). The enriched soil was incubated 

with the supports for 20 day at room temperature under a 20% methane-in-air headspace. 

Methane uptake was monitored by gas chromatography and methane replenished as 

needed.  

After the 20 day incubation, supports from bottles with the highest methane 

oxidation capacity were removed to fresh 100 mL gas-tight jars containing 10 mL of 

NMS. The samples were shaken at room temperature for 21 days under a 20% methane-

in-air headspace, replacing the headspace as needed. The spent media was collected, 

pooled, and diluted 1:1 in fresh NMS to create liquid cultures containing a mix of soil 

methanotrophs released from the supports. The fresh liquid cultures were shaken at room 

temperature in 100 mL gas-tight bottles in a 10% methane-in-air headspace. Methane 

uptake was monitored by gas chromatography and the resulting mixed methanotroph 
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stock was maintained by fresh inoculations into NMS as the methane headspace was 

depleted. This cell population was used in subsequent laboratory investigations, including 

the population characterization described in the following sections. 

DNA Isolation and Methanotrophic Diagnostic Microarray Analysis 

  DNA was extracted from an overnight mixed methanotroph liquid culture using a 

DNeasy Tissue Kit (Qiagen, Inc.), according to manufacturer instructions. DNA 

microarray analysis was conducted as previously described (300) by Dr. Levente 

  A B 

C D 

E 

Figure 5. Five supports incubated in enriched landfill soil for isolating 
methanotrophs by adsorption. A natural sponge, B highly wettable PP nonwoven 
geotextile, C subsection of injected molded polypropylene plastic tower packing 
material,  D  polycarbonate membrane, E glass beads 
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Bodrossy at the Austrian Research Centers in Seibersdorf, Austria. Briefly, the 

pmoA/amoA genes were amplified from the samples to obtain RNA transcripts. The 

purified RNA was fragmented and tested for hybridization with a variety of molecular 

probes. These probes were derived from sequences specific to various types of 

methanotrophs with diverse origins. Hybridized slides were scanned, and the results were 

normalized to a positive control (300).  

Isolation of Non-methanotrophic Organisms 

 In order to detect the presence of non-methanotrophs in the mixed culture, streak 

plates were prepared on Luria-Bertani (LB) agar and incubated at room temperature 

overnight. Colonies were isolated and restreaked on NMS agar plates. The plates were 

incubated in a 1:1 methane-in-air headspace for 3 weeks in an anaerobic chamber fitted 

with a gas-tight quick release valve. Gram staining was also performed using a four-step 

Gram stain kit according to manufacturer’s instructions (BD Biosciences, Franklin Lakes, 

NJ). The identity of isolates was determined by using 16S rRNA amplification by 

SeqWright, Inc. (Houston, TX) and comparing the isolate sequences to known microbial 

sequences using MicroSeq® ID Software. 

Gas Chromatography 

A gas chromatograph (Shimadzu GC-14A) equipped with a CTR1 column 

(Alltech, Deerfield, IL) and a thermal conductivity detector was used to simultaneously 

measure the methane, oxygen, carbon dioxide, and nitrogen concentrations in injected gas 

samples. The helium carrier gas was set at a flow rate of 60 cm3/minute, and the detector 

temperature was set to 75ºC. The injector and oven temperature were both maintained at 

60ºC. Standard curves were generated using ultra-high purity methane and carbon 
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dioxide (National Welders, Augusta, GA), and oxygen and nitrogen were obtained from 

atmospheric air sampling each time the GC was employed. 

Results and Discussion 

Various optimal methane headspace concentrations have been offered in the 

literature for optimal methanotroph enrichment from environmental samples (50, 169, 

196). Therefore, a low and high initial enrichment methane headspace concentration was 

tested. Throughout the 21 day soil enrichment, both headspace concentrations showed an 

overall decrease in methane and oxygen concentrations with a concomitant increase in 

the carbon dioxide concentration. These changes are indicative of methane oxidation and 

suggest that an active methanotroph population was present. Methane oxidation rates in 

soil enriched in a 9% methane-in-air headspace were statistically higher, with a p <0.05 

(Fig. 6). These soil samples consumed an average of 47 g CH4/day, while soil incubated 

in 45% methane headspace had an average methane uptake rate of only 5 g CH4/day. 

Despite having a lower initial methane concentration, the 9% methane headspace samples 

contained more oxygen, which is also needed for methane consumption to occur. These 

data suggest that methanotrophs in the high methane headspace incubation quickly 

depleted the oxygen levels, yielding a low daily methane consumption. Joergensen  and 

Degn (165) measured an oxygen to methane ratio of 1.7 for Type I methanotroph, 

Methylosinus trichosporium, and a ratio of 1.5 for a Type II methanotrophic strain. 

Similarly, environmental samples containing methanotrophs (wetland, agricultural, and 

forest soil, as well as lake sediment) were found to have an oxygen to methane ratio of 

1:1.57-1:1.97. Methanotroph growth was observed when the methane oxidation reaction 

was optimally reached (6). Czepiel et al. (79) showed that methane oxidation rates were 
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independent oxygen concentration at compositions greater than 3%. Based on the 

observed experimental data and reported oxygen levels, a methane headspace 

concentration of 20% methane was employed, which prevented oxygen concentrations 

from falling below 3% during subsequent enrichment attempts. 

Wise et al. (347) found that the medium nutrient concentration was an important 

factor in the ability to isolate methanotrophs. Therefore, three concentrations of NMS 

were investigated as diluents for methanotroph isolation from enriched landfill cover soil. 

Overall, there were no differences in methane uptake between the three concentrations 

(Fig. 7). Initially, all cultures showed reasonable methane uptake rates, which declined to 

no detectable methane uptake after 21 day (data not shown). Although such soil dilution 

 

Figure 6. Average daily methane uptake of landfill cover soil enriched in a 9% or 
45% methane-in-air headspace. Error bas represent the standard deviation of two 
replicate samples.  indicates a statistically significant difference (p<0.05) 
compared to soil enriched in a 45% methane headspace. 
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techniques have been employed in previous studies to isolate methanotrophs (108, 339, 

347), sustained methane uptake was not successful in this investigation. The lack of 

prolonged methane consumption may have been due to the growth of heterotrophic 

organisms utilizing organic substrates in the soil, as samples were observed to become 

turbid in the absence of detectable methane oxidation. 

A second alternative method of isolating methanotrophs was devised whereby 

supports were placed directly into the soil. This method offered an attachment surface for 

growth, in addition to soil particles. After incubation, the supports were removed to liquid 

NMS media. The supports tested included materials with characteristics likely to support 

Figure  7. Isolation of methanotrophs by incubation of enriched landfill cover soil 
in various strengths of NMS. Error bas represent the standard deviation of two 
replicate samples. 
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cell attachment and biofilm growth, including high moisture holding capacity and a large 

surface area available for colonization.  

Methane oxidation was observed to increase in all samples, including soil only 

controls. After 20 days incubation, only the sponge and synthetic geotextile samples had 

methane uptake rates significantly different from the controls (Fig. 8). The geotextile and 

natural sponge consumed 17 g CH4/day and 13 g CH4/day, respectively, compared to the 

9 g CH4/day consumed by the soil only control and other supports. The sponge and 

geotextile both had high moisture holding capacity and high surface area, which are 

Figure 8. Isolation of methanotrophs from enriched landfill cover soil by adsorption 
onto natural sponge (▲), synthetic geotextile (●), glass beads (), plastic filter 
packing (□), polycarbonate membrane (○), and negative control (). Error bars 
represent the standard deviation of two replicate samples. 
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predicted to be important for successful colonization. It is likely that the high moisture 

holding capacity allowed cells to be adsorbed as moisture was absorbed.  

 Sustained methane uptake was observed after transferring the sponge and 

geotextile to fresh NMS (Fig. 9). An average methane uptake of 1.1 g CH4/day was 

observed in samples containing the natural sponge and 0.85 g CH4/day was observed in 

samples containing the geotextile. There was no statistically significant difference found 

between the methane uptake by samples containing the natural sponge and geotextile. 

Furthermore, this rate of methane uptake was sustained over the 21 days of enrichment 

for both supports (data not shown). Negative controls, containing NMS alone, showed 

negligible methane uptake. 

There was also evidence that continued enrichment of the supports in liquid media 

(with aeration) allowed microbes to move from the supports into the solution. The NMS 

Figure 9. Average daily methane uptake by cells adsorbed to supports placed in 
NMS. Error bars represent the standard deviation of two replicates. 
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was observed to increase in turbidity, and the pooling of spent media from these samples 

yielded a liquid culture capable of consuming methane and producing carbon dioxide. As 

cultures were further enriched by dilution in fresh NMS over several weeks, a rapid and 

high methane oxidation rate of nearly 100% methane oxidation in 24 hours was obtained.  

In order to confirm that the mixed methanotroph culture derived in this way did, 

in fact, contain methanotrophic cells, DNA was extracted from the enriched sample and a 

diagnostic microarray performed. The resulting analysis confirmed the presence of 

methanotrophs belonging to the Methylobacter, Methylosinus, and Methylocystis genera. 

Methylobacter species are Type I methanotrophs, while Methylosinus and Methylocystis 

species are Type II methanotrophs. Hybridization with probe Peat264, designed against 

pmoA sequences derived from a peat soil sample (265), was also observed (Appendix A). 

The genera found in the enrichment culture are among those that grow optimally under 

mesophilic conditions (31). Various studies of methanotroph populations in 

environmental samples have also found that only a few genera dominate (16, 28, 31, 92, 

187). The species found here are consistent with those commonly found together (347), 

although they represent two very different optimal growth conditions. Type I 

methanotrophs dominate in low methane, high oxygen conditions, while the opposite is 

true for Type II methanotrophs (6, 139). Additionally, the DNA sequence, from which 

Peat264 probe was derived, was found to be closely related to Methylocystis parvus 

(265). This is consistent with the positive Methylocystis probe results in the microarray 

assay. 



49 
 

 

  In addition to multiple methanotrophic genera, one non-methanotrophic 

microorganism was isolated from the mixed methanotroph culture. Streak plates on 

nutrient rich agar revealed one smooth, off-white colony on LB agar. When colonies 

were streaked on NMS agar plates and incubated under a 50% methane-in-air headspace, 

no growth of this isolate was evident. This indicates that the isolate was not a facultative 

methanotroph. Gram staining showed that the isolate was a Gram negative coccobacillus, 

and 16S rRNA sequencing indicated it was a member of the Acinetobacter genus, having  

99.81% sequence homology to Acinetobacter genomospecies 3 (Fig. 10). Others 

similarly report non-methanotrophic species in environmental methanotrophic samples. 

For example, Dunfield et al. (103) isolated four distinct non-methanotrophs from a four 

year old methanotroph culture. The non-methanotroph found in our studies, 

Acinetobacter, is ubiquitous in soil and water (140), and therefore its occurrence is not 

considered notable. Although no organic carbon source was provided in the culture, 

Acinetobacter likely utilized metabolic by-products produced by the methanotrophs. No 

Figure 10. Phylogenetic relationship of the landfill cover soil isolate to 
Acinetobacter species based on 16S rRNA sequencing. 
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attempts were made to screen for additional non-methanotrophs using other growth 

conditions; therefore ,other organisms may be present in the mixed methanotroph culture.  

Due to their slow growth and unique nutritional requirements, the isolation of 

methanotrophs from environmental sources is difficult. Only a small number of studies 

have reported attempts to isolate methanotrophs from landfill cover soil, an 

environmental source in which they are abundant (308, 337, 347). In this study, cell 

adsorption to a porous support was shown to successfully aid in the enrichment of a 

robust, mixed methanotroph population from landfill cover soil. By using a diagnostic 

microarray, exhaustive culturing of individual methanotrophic isolates was not required 

to broadly characterize the population. The use of nutrient rich agar was an efficient, 

(although not absolute) technique to quickly detect non-methanotrophs. Both culture-

dependent and culture-independent methods could be used to monitor the heterogeneity 

of the mixed methanotrophic culture. To our knowledge, this is the first time such an 

adsorption technique has been used for a methanotrophic population enrichment and 

isolation from landfill cover soil samples. When coupled with microarray analysis, it 

proved to be an effective method to develop liquid cultures of methanotrophs. 

  



 
 
 
 
 

CHAPTER 4: IMMOBILIZATION OF A MIXED METHANOTROPHIC 
POPULATION BY ADSORPTION AND ENTRAPMENT 

 

Introduction 

 Attachment of cells or cell components to a surface has been exploited for a 

variety of purposes, including water and air treatment (164, 177, 212, 294, 309); enzyme 

production (8, 172, 189); and biosensors (24, 198, 326). As described in Chapter 2, 

methods of immobilization fall into six general categories: covalent coupling, affinity 

immobilization, adsorption, confinement in a liquid-liquid emulsion, capture behind a 

semi-permeable membrane, and entrapment (212).  In this investigation, the 

immobilization of methanotrophic bacteria was examined with the aim of creating a 

methanotroph embedded tarp matrix to mitigate methane emissions from landfills. 

 Two immobilization schemes were investigated because, of the six types, these 

were the mildest and most likely to be feasible for use in a biotarp. The first, adsorption, 

is the simplest and most gentle immobilization technique, relying on natural bacterial 

attachment properties, such as biofilm formation (25). The ability of methanotrophs to 

form a biofilm, or extracellular polymeric substance (EPS), is well documented (65, 93, 

145, 149, 163, 211, 339, 353). Adsorption has been employed to coat porous glass beads 

with a Methylosinus sp. cell paste in order to enhance propylene conversion to propylene 

oxide (148). Methanotrophic cells have also been adsorbed to pretreated activated carbon 

supports to increase the production of methanol from methane (358). Xin et al. (354) 
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utilized methanotrophic bacteria adsorbed to diatomite particles in a fluidized bed system 

to produce epoxypropane from a mixture of methane, propene, and oxygen gases.  

The second immobilization scheme evaluated here was cell entrapment, where 

bacteria are integrated into a liquid matrix that gels or solidifies. Methylosinus 

trichosporium cells immobilized in DEAE cellulose were used in the biosynthesis of 

methanol from biogas in batch and continuous cell reactor systems (227). Uchiyama et al. 

(323) used a variety of immobilization techniques, including entrapment in Ca-alginate, 

ĸ-carrageenan, and agarose beads, to enhance trichloroethylene (TCE) degradation by 

methanotrophic cells. These immobilized cells yielded comparable or higher activity than 

planktonic cells. 

 To our knowledge, no immobilization technique has ever been utilized to enhance 

methane oxidation by methanotrophic cells. Three immobilization procedures were 

selected for evaluation: adsorption, entrapment in alginate beads and entrapment in a 

liquid core alginate gel. The methane oxidation performance of cells immobilized by 

each procedure was assessed, and the feasibility of each product for biotarp use was taken 

into account in the assessment. 

Materials and Methods 

Cell Culture and Conditions 

 A mixed methanotrophic cell population, enriched and isolated from landfill 

cover soil as previously described, was grown in Whittenbury’s NMS (339). Cells were 

incubated under a 10% methane-in-air headspace in 100 mL gas tight bottles at room 

temperature with constant shaking.  
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Synthesis of Alginate Beads 

 Alginate beads were prepared using a modification of the method described by 

Knaebel et al. (185) (Fig. 11). A 50 mM HEPES solution was prepared and pre-heated to 

80°C and divided into 30 mL, 25 mL, and 20 mL aliquots. To each, sodium alginate 

(Sigma Aldrich, St. Louis, MO) was added under continuous stirring and heat, such that 

the final concentration after the addition of cells was 6% (w/v).  The alginate solutions 

and a 500 mL 0.1 mM CaCl2 bath solution were then sterilized by autoclaving, and 

allowed to cool to room temperature overnight.  

Two different cell concentrations were tested by the addition of 5 mL or 10 mL of 

an overnight methanotroph population to the appropriate solution to bring the final 

volume to 30 mL and mixed by gentle stirring. This yielded a 33% cell suspension bead 

solution containing approximately 2.5x107 colony forming units (cfu)/ mL, a 17% cell  

Figure 11. Immobilization of a mixed methanotroph population by entrapment 
in alginate beads (left) or liquid-core gel capsule beads (right). 
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suspension bead solution containing approximately 5.0x108 cfu/mL and a bead solution 

containing no methanotrophic cells. 

 Beads were synthesized by feeding droplets of the solution into a continuously 

stirred 0.1mM CaCl2 bath (Fig. 12). Droplets were created using a low-flow peristaltic 

pump that fed the alginate solution through 2 mm diameter silicone tubing with a 1mm 

diameter connector fitted at the end. The droplets fell from a height of approximately 17 

cm above the CaCl2 bath. Beads were formed at a rate of 1 bead/5 seconds, and they were 

stirred in for an additional 30 minutes before removal by straining through a sterile mesh. 

The beads from each cell concentration were divided into duplicate 100 mL gas-tight 

bottles with a 10% methane-in-air headspace. Beads were incubated at room temperature 

for 3 day, with the headspace methane concentration monitored each day by gas 

chromatography.  

Figure 12. Apparatus for synthesis of alginate beads. The alginate/cell mixture 
was pumped and added dropwise to a CaCl2 bath. 
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Synthesis of Liquid-Core Gel Capsules 

 Synthesis of liquid-core gel capsules was based on a method described by 

Koyama and Seki (192) (Fig.11) . A sterile solution containing 2% (w/v) CaCl2 and 20% 

(w/v) PEG 8000 was prepared. Either 5 mL or 10 mL aliquots of an overnight mixed 

methanotroph population were added to this solution, with a final volume of 30 mL. This 

yielded a 33% cell suspension bead solution containing approximately 5.3x107 cfu/mL 

and a 17% cell suspension bead solution containing approximately 1.1x108 cfu/mL. A 30 

mL solution containing no cells was also prepared as a negative control. A 1.92 % (w/v) 

alginate solution was prepared by slowly adding the sodium alginate to a 0.1% (w/v) 

Tween 60 solution that was pre-warmed to approximately 70°C. The solution was 

incubated overnight in a 70°C water bath to completely dissolve the alginate before 

autoclave sterilization.  

Beads were synthesized using a peristaltic pump as described previously, but here 

CaCl2 droplets were dispensed into an alginate bath. Beads were formed at a rate of 1 

bead/45 seconds, and after 10-15 beads were formed, they were removed with sterile 

forceps and placed in a sterile 2% (w/v) CaCl2 gelation solution (pH 6.0) for 10 minutes. 

This process was repeated until 30 mL of gel capsule beads were synthesized. After 

formation, each batch was divided between two sterile gas-tight bottles and incubated  

under a 10% methane-in-air headspace at room temperature. The methane concentration 

in each bottle was monitored by gas chromatography for 3 days.  
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Adsorption of Cells to Various Materials 

 Six different support types were tested for their ability to maintain a robust 

population of methanotrophs: natural sponge (Florida Sponge, Pinellas Park, FL); a 0.95 

cm x 2 cm x 4 cm sample of a highly wettable PP nonwoven geotextile (Ten Cate 

Nicolon, Pendergast, GA); a 2.5 x 3 x 4 cm piece of synthetic foam padding with a 1.2 

lb/ft3 density (Foamorder, San Francisco, CA); a small sub-section of injection molded 

polypropylene plastic tower packing material (AceChemPack Tower Packing Co, 

Hangzhou,China); a 90 mm diameter circle of polycarbonate membrane with a 0.22 µm 

pore size (GE Osmonics, Minnetonka, MN); and glass beads with a 200-300 mm 

diameter (Polysciences, Warrington, PA ) (Fig. 13). The supports were selected because 

they possessed one or more of the following properties: (i) high surface area; (ii) good 

Figure 13. Immobilization of a mixed methanotroph population by adsorption to 
various support materials, A natural sponge, B foam padding, C nonwoven 
geotextiles, D plastic trickling filter medium, E polycarbonate membrane filter, 
and F glass beads. 

B 
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water holding capacity; and/or (iii) a known propensity for methanotroph or bacterial 

biofilm attachment. An overnight mixed methanotrophs population was diluted 1:10 in 

fresh NMS and 5 mL aliquots were added to each gas-tight bottle containing a sterile 

support material. Positive controls consisted of 5 mL portions of culture without the 

addition of a support. All samples were incubated under a 10% methane-in-air headspace 

concentration and incubated at room temperature. After 24 hours, the methane headspace 

concentration was analyzed by gas chromatography.  

Accumulation of Biomass on Supports 

 All supports were sterilized, dried for 6 hours in a pre-warmed 105°C oven, and 

cooled in a desiccator before pre-weighing. Overnight mixed methanotrophs were diluted 

1:10 in fresh NMS, and 10 mL were placed in a gas-tight bottle with each support type in 

triplicate. The headspace gases were initially adjusted to 10% methane-in-air, and 

readjusted to this concentration every 2-3 days for 15 days during incubation at room 

temperature. After this incubation period, supports were then placed in a pre-warmed, 

105°C oven to dry for 6 hours, cooled in a desiccator, and re-weighed. The biomass 

accumulation on each support was calculated as the increased weight of the supports after 

incubation. 

Statistical Analysis 

Data were compared using a One-way ANOVA with a Tukey’s multiple comparison test. 

Statistical analysis was performed with Prism GraphPad software (GraphPad Software 

Inc., San Diego, CA). 

Gas Chromatography 
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A gas chromatograph (Shimadzu GC-14A) equipped with a CTR1 column (Alltech, 

Deerfield, IL) and a thermal conductivity detector was used to simultaneously measure 

the methane, oxygen, carbon dioxide, and nitrogen concentrations in injected gas 

samples. The helium carrier gas was set at a flow rate of 60 cm3/min, and the detector 

temperature was set to 75ºC. The injector and oven temperature were both maintained at 

60ºC. Standard curves were generated using ultra-high purity methane and carbon 

dioxide (National Welders, Augusta, GA), and oxygen and nitrogen were obtained from 

atmospheric air sampling each time the GC was employed. 

Results and Discussion 

Alginate beads were successfully synthesized, with a 4 mm diameter and a solid 

inner core. Methane oxidation by alginate beads containing both cell concentrations was 

initially very low, but increased over several days. After three days, the 5.0x108 cfu/mL 

beads consumed an average of 0.72 g CH4/day and the 2.5x107 cfu/mL beads consumed 

an average of 0.3 g CH4/day. The cell free control beads had an average methane 

oxidation rate of 0.15 g CH4/day (Fig. 14). There was a statistically significant increase in 

methane uptake in the 5.0x108 cfu/mL beads, as compared to the control and the 2.5x107 

cfu/mL beads. However, there was no significant difference between the control and 

2.5x107 cfu/mL beads. Methane removal in bottles with control beads is likely due to 

methane dissolution into the carry-over liquid surrounding the beads, since no carbon 

dioxide production was observed here. Carbon dioxide production with concomitant 

methane and oxygen consumption was observed in beads containing methanotrophic 

cells. 
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Although the results clearly indicate that embedded methanotrophic bacteria can 

successfully oxidize methane, and that the methane uptake rate is proportional to the 

number of cells embedded, it should be noted that there is a limit to the number of cells 

that can be embedded per bead. Beads composed of a 50% methanotroph culture were 

attempted but were unsuccessful. Once dissolved in the HEPES, the bead solution was 

too viscous for bead formation. 

The lack of significant methane oxidation during the first two days of bead 

incubation suggests that an acclimatization period was necessary. This may be due to a 

delay in the transfer of methane molecules into the beads or an adjustment of the 

methanotrophic cells to growth conditions and methane oxidation within the alginate 

Figure 14. Methane oxidation by alginate beads synthesized with various amounts of 
a mixed methanotroph population.  indicates a statistically significant difference 
from negative controls (no cells) (p<0.01). Error bars represent the standard 
deviation of two replicates. 

  
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beads. There was also likely some cell replication during this period, although it was not 

possible to obtain a final cell count. A more serious problem with the beads was their 

rapid desiccation rate in open air. They also failed to rehydrate when soaked in water or 

HEPES. This propensity to desiccate could not be overcome and was the impetus to 

pursue liquid-core gel encapsulation. 

During the synthesis of liquid-core gel capsule beads, gelation and proper bead 

formation was found to be highly influenced by the CaCl2 concentration and the shear 

forces of the stirring alginate solution. At lower CaCl2 concentrations, gelation occurred 

too slowly and spherical beads did not form. The stirring rated needed to be slow enough 

to prevent the formation of comet-shaped bodies, but fast enough to prevent beads from 

Figure 15. Methane oxidation by liquid-core gel capsules synthesized with various 
amounts of a mixed methanotroph population and negative control capsules 
containing no cells. Error bars represent the standard deviation of two replicates. 



61 
 

 

aggregating and fusing. Further, bead detention time in the alginate solution affected the 

thickness of the capsule. Multiple trials led to a detention time of 40 minutes, and 

formation of 10-15 beads at a time allowed batches of liquid-core gel capsules to be 

formed with relatively similar capsule thickness.  

Unfortunately, the successfully prepared methanotrophic liquid-core gel capsules 

showed no statistically significant increased methane oxidation beyond that of controls 

(Fig. 15) or that of cells embedded in solid core alginate beads. Addition of NMS to the 

incubation bottles did not stimulate activity. One explanation may be that the higher 

levels of calcium ion exposure introduced by the 2% CaCl2 solution were inhibitory. A 

typical methanotroph culture medium contains only 0.02% CaCl2 (339). No reports on 

calcium homeostasis or calcium toxicity in methanotrophs have been published, but 

Rosch found that increased calcium levels were toxic to Streptococcus pneumoniae cells 

and a calcium efflux pump was required to survive under such conditions (275). Also, the 

alginate gel capsule may have been too thick to allow for sufficient gas exchange or 

nutrient transfer. Bead synthesis systems are commercially available and can easily allow 

the various parameters to be manipulated in order to optimize capsule formation. Perhaps 

successful methane oxidation by cells entrapped in a gel capsule could be achieved with  

further capsule optimization. However, like the alginate beads, the liquid core gel 

capsules quickly dessicated in air and were not considered suitable immobilization 

methods for biotarp development.   

When the mixed methanotroph culture was applied to various support materials 

and monitored for activity, the natural sponge support showed the greatest methane 

uptake rate (2.9 g CH4/day), which was 7.5-fold higher than the positive control 



62 
 

 

(planktonic methanotrophs) and significantly different (p<0.001) from all other supports 

tested (Fig. 16). The geotextile and synthetic foam padding also supported high methane 

oxidation (1.4 and 2.0 g CH4/day, respectively) at rates that were significantly higher than 

the positive control (p<0.001), but significantly lower than that of methanotrophs 

incubated onto the sponge. Differences in methane uptake activity between the other 

support materials examined and the control were not statistically significant.  

The relationship between absorbency and methane oxidation was not immediately 

assumed because the material properties contributing to methanotrophic cell attachment 

Fig. 16. Methane uptake by a mixed methanotroph culture adsorbed to various 
supports. Negative controls contained sterile NMS (no cells)  and positive controls 
contained planktonic methanotrophs in NMS (no supports) Error bars represent the 
standard deviation of three replicate samples.  indicates a p<0.05 and  
indicates a p<0.001 for means compared to all other conditions. 

 

 
 
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were unknown. The materials selected had a variety of physical properties and were 

utilized in other cell immobilization configurations. By surveying methane uptake of 

methanotrophs attached to the materials, characteristics which contributed to increased 

methane oxidation could be identified. Findings from these experiments suggest that 

methanotrophs applied to and incubated with the natural sponge, synthetic foam padding, 

and a geotextile consumed methane more efficiently than planktonic cells. Furthermore, 

the supports with the highest methane uptake were found to absorb all liquid culture 

applied. In samples with the least absorbent supports (plastic filter packing, 

polycarbonate membrane, and glass beads), the majority of the liquid culture remained 

suspended in the culture bottle, resembling the positive control. This is consistent with 

these supports yielding a methane oxidation rate similar to that of the positive controls. 

Clearly, the greater methane uptake by the more absorbent materials suggests that 

the higher methane oxidation was likely due to more cells having attached to the more 

absorbent material. Therefore, the amount of attached biomass on each material surface 

was measured. Geotextile samples were found to have a higher average biomass 

accumulation than the sponge (87 mg vs. 57 mg); however, the sponge replicates showed 

high variability, and overall, there was no significant difference between the biomass 

accumulated on any of the various supports (Fig. 17).  These data suggest that the 

methane oxidation levels observed was not merely a function of the number of attached 

cells on a particular surface. Furthermore, this indicates that differences in previously 

observed methane oxidation rates between materials were not due to differences in cell 

numbers. The enhanced performance by methanotrophs incubated with the natural 

sponge, geotextile or foam padding is likely due to properties of these materials 
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themselves. Perhaps the higher water holding capacity of these materials increased the 

concentration of dissolved methane and thus, higher oxidation rates were possible.   

 As screening experiments were concluded, several of the support matrices (plastic 

filter packing, glass beads, and polycarbonate membrane) were eliminated from further 

consideration due to their low methane uptake performance, handling difficulties, and 

low water holding capacities. The sponge and foam showed good potential for supporting 

methane oxidizing organisms, but it was felt that gas permeability through them would be 

limited, especially at high water content. Additionally, the natural sponge was found to be 

subject to degradation over time. The synthetic geotextile was selected for further study 

Figure 17. Biomass accumulation on various supports after incubation in a mixed 
methanotroph population for 15 days. Error bars represent the standard deviation of 
three replicate samples. 
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because of its low propensity for biological degradation, good performance in the 

methane uptake capacity comparisons, and its ability to hold water but still maintain good 

gas permeability. It was also much thinner than both the natural sponge and foam 

padding, making it more suitable for handling under field conditions. 

 Three different types of cell immobilization were investigated as possible means 

to immobilize methanotrophic bacteria into a biotarp. The use of cells entrapped in 

alginate beads or liquid-core gel capsules were eliminated due to their high propensity for 

desiccation and the inability to re-hydrate them. Adsorption was found to be a more 

successful immobilization technique, particularly adsorbing cells to supports which had a 

high moisture holding capacity. Of the six supports examined, the synthetic geotextile 

was chosen for further study. The increased metabolic activity of immobilized cells 

compared to planktonic is consistent with many other reports; however this investigation 

was the first to show that methane oxidation can be increased by adsorbing 

methanotrophic cells to a support.  



 
  

  

 
CHAPTER 5: EFFECTS OF TEMPERATURE, STARVATION, AND WASHING ON 

METHANE OXIDATION BY METHANOTROPHIC CELLS IMMOBILIZED ON  
A SYNTHETIC GEOTEXTILE 

 
 
Introduction 
 

The effects of temperature fluctuations and carbon starvation on immobilized 

methanotrophs are of interest when biological-based methane mitigation systems are 

designed for landfills. In this study, the feasibility of a methanotroph-embedded 

geomembrane biotarp is assessed in terms of whether or not methane oxidation can be 

sustained when temperature and methane availability fluctuate. In general, laboratory 

studies on methanotroph cell responses to various types of stress are limited, and this is 

particularly true with respect to carbon starvation. Furthermore, no studies to date have 

examined the effects of temperature and methane starvation on immobilized 

methanotroph methane oxidation. 

Seasonal differences in ambient and landfill soil methane oxidation rates are 

linked, in part, to temperature (41, 42, 59). Temperature effects were clearly 

demonstrated in laboratory landfill cover soil columns, with methane oxidation rates 

increasing as a function of temperature (33, 40, 89, 337). More recently, temperature 

changes have been shown to influence the methanotroph population composition (40, 

119, 233). King and Adamsen (180) examined the methane oxidation of Methylomonas 

rubra in liquid culture at various temperatures from 5°C to 45°C at a low (100 ppm) or 

high (10,000 ppm) methane headspace concentration. Methane oxidation was found not 
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only to vary with temperature, but the amount of variation was a function of the methane 

concentration. Uchiyama et al. (322) investigated the molecular response of 

Methylocystis sp to temperature stress by exposing cells to cold and heat. They found 

four polypeptides were up-regulated and 12 were induced by cold stress. Another 5 

polypeptides were induced by heat stress as well. These proteins and the exact cellular 

mechanisms for these responses were not determined. 

 Carbon starvation effects on methanotrophs are poorly characterized. In forest soil 

columns, Schnell and King (280) found that methane oxidation rates during methane 

deprivation decreased exponentially over 38 days. Furthermore, after 16 days of methane 

re-introduction, oxidation activity could not be restored. Kightly et al. (176) found that 

even after 8 days without methane, landfill soil columns packed with one meter of sandy 

soil resumed methane uptake within 48 hours of methane re-introduction. The recovered 

oxidation rate was the same as the steady-state rate reached prior to starvation. Based 

upon the contradicting findings of these studies, the response of methanotrophs to 

methane starvation is not clear and may depend on the soil type, the soil’s previous 

history to methane exposure, the methanotroph population characteristics, and the 

methane concentration. Roslev and King observed that 70 days methane starved liquid 

cultures of Methylosinus trichosporium OB3b showed a nearly 100% decrease in 

methane oxidation capacity and a 28% cell protein loss. Furthermore, methane addition 

for 48 hours did not stimulate oxidation. After six weeks incubation on nitrate mineral 

medium under a 30% methane-in-air headspace, only 4% of the initial cells remained 

culturable. Their results suggested that methanotroph type and growth phase influenced 

the methane starvation response (276, 277). 
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 The present study aims to evaluate the effects of temperature and methane 

fluctuations on methanotrophs immobilized in a potential biotarp the methane uptake of 

component. As the biotarp will be used on an active landfill cell that could be open for a 

year’s duration, methane oxidation over a typical annual temperature range for a 

temperate climate will be monitored. Since the biotarp will only be employed to cover an 

open landfill cell during evenings and weekends, it will experience cyclical changes in 

methane availability. When it is not in service, it will not be exposed to methane.  

The response of immobilized cells to methane starvation is therefore, an important 

indicator of potential biotarp success under field conditions. 

Materials and Methods 

Cell Culture and Conditions 

 A mixed methanotrophic cell population, enriched and isolated from landfill 

cover soil as previously described, was grown in Whittenbury’s NMS (339)  under a 10% 

methane-in-air headspace in 100mL gas tight bottles at room temperature with constant 

shaking.  

Effects of Temperature on Methane Oxidation  

 An overnight mixed methanotroph cell population was diluted 1:10 into fresh 

NMS and 5 mL aliquots were placed into gas tight bottles containing a 38 x 63.5 mm 

piece of 20 oz/yd2 (osy) wettable PP geotextile. Previous studies showed that the cells 

will adsorb to the geotextile matrix create a methanotroph-embedded biotarp. A 10% 

methane-in-air headspace was prepared and replicate samples were placed at 5, 15, 25 or 

35°C for 24 hours. Sterile NMS incubated at room temperature served as a negative. The 
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initial and finial methane headspace concentrations were determined by gas 

chromatography.  

Effects of Long-term Methane Starvation on Renewed Methane Oxidation 

An overnight mixed methanotroph population was diluted 1:10 in fresh NMS and 

5 mL aliquots added to gas tight bottles containing a 38 x 63.5 mm piece of 20 osy 

wettable PP geotextile. A negative control was prepared with sterile NMS. All bottles 

were prepared with a 10% methane-in-air headspace and the initial methane headspace 

concentration was measured using gas chromatography. Samples were incubated at room 

temperature for 24 hours, after which the methane concentration was measured and used 

to calculate the initial methane oxidation rate.  

Samples were starved by opening the bottles and allowing atmospheric air to enter 

and replace the headspace gases. After recapping, gas chromatography was used to 

confirm that no methane was present, the samples were incubated at room temperature 

and a 10% methane-in-air headspace was reintroduced after 2, 5, 7, or 9 days. The 

methane headspace concentration was measured by gas chromatography after a 24 hour 

incubation and the final methane uptake rate calculated. 

Effect of Intermittent Methane Starvation on Methane Uptake 

An overnight mixed methanotroph population was diluted 1:10 in fresh NMS and 

a 5 mL aliquot added to gas-tight bottles containing a 38 x 63.5 mm piece of 20 osy 

wettable PP geotextile. A negative control was prepared with sterile NMS. A 10% 

methane-in-air headspace was prepared in each bottle, and the initial methane headspace 

concentration was determined by gas chromatography. All samples were incubated with 

methane for 18 hours, and then the headspace was sampled to determine the final 
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methane concentration and the methane oxidation rate. All sample headspace volumes 

were refreshed, and positive control samples were prepared with a 10% methane-in-air 

headspace. Starved sample headspace gases consisted of atmospheric air only. After 12 

hours, methane was reintroduced into starved samples and all samples were further 

incubated for an additional 12 hours, followed by the calculation of methane uptake. 

After this initial 24-hour period, all headspace gases were refreshed and the 12-hour 

starvation cycle was repeated for 5 times over 5 days.  

Cell Stability Assay 

An overnight mixed methanotroph population was diluted 1:10 in fresh NMS to a 

final volume of 35 mL in 250 mL gas-tight bottles in triplicate. Seven pieces of 38 x 63.5 

mm 20 osy wettable PP geotextile were placed in each bottle and a 10% methane-in-air 

headspace was prepared. The geotextiles were incubated for 15 days, with the methane 

headspace refreshed every 2-3 days. After incubation, three geotextile sections were 

placed directly into sterile gas-tight bottles with a 10% methane-in-air headspace as 

positive controls. The remaining 18 geotextile sections were removed to 50 mL conical 

tube containing 40 mL sterile DI water. The sections were shaken at 450 rpm, and three 

samples removed to gas-tight bottles, with a 10% methane-in-air headspace, each hour 

over 5 hours. The initial and finial methane headspace concentrations at 24 and 48 hours 

were determined by gas chromatography. 

Statistical Analysis  

Data were compared using a One-way ANOVA with a Tukey’s multiple 

comparison test and a Two-Way ANOVA. Statistical analysis was performed with Prism 

GraphPad software (GraphPad Software Inc., San Diego, CA).  
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Gas Chromatography 

A gas chromatograph (Shimadzu GC-14A) equipped with a CTR1 column 

(Alltech, Deerfield, IL) and a thermal conductivity detector was used to simultaneously 

measure the methane, oxygen, carbon dioxide, and nitrogen concentrations in injected gas 

samples. The helium carrier gas was set at a flow rate of 60 cm3/min, and the detector 

temperature was set to 75ºC. The injector and oven temperature were both maintained at 

60ºC. Standard curves were generated using ultra-high purity methane and carbon 

dioxide (National Welders, Augusta, GA), and oxygen and nitrogen were obtained from 

atmospheric air sampling each time the gas chromatograph was employed. 

Results and Discussion 

 Methane uptake was highly influenced by temperature (Fig 18). Samples held at 

5°C performed similarly to negative controls, with 0.1 g CH4/day removed. Samples 

incubated at 15°C had slightly higher methane oxidation rates; however this increase was 

not statistically significant. Samples incubated at 25°C and 35 °C had average methane 

uptake rates of 2.2 g CH4/day and 3.3 g CH4/day, respectively. These rates were 

significantly higher (p<0.001) than those at the lower temperatures. Additionally, the 

35°C oxidation rates were significantly higher (p<0.01) than the 25°C rates.  

Increased methane oxidation with increasing temperature is consistent with 

landfill cover field observations (41, 59), laboratory landfill soil investigations (33, 40, 

89, 337), and laboratory investigations involving pure methanotroph cultures (180). 

Maximum methane oxidation for the immobilized mixed methanotroph population in this 

investigation occurred at 35°C, however methane oxidation may be maintain at 

temperatures higher than 35°C (330). Such temperatures were not examined, as they are 
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unlikely to be encountered under field conditions. These data also indicate that, 

neglecting other factors, a methanotroph immobilized biotarp will function optimally at 

higher temperatures and may not provide much mitigation at lower temperatures. The 

methanotroph population employed was enriched and maintained at room temperature, 

and the optimal growth conditions were likely the moderate temperatures of 25 and 35°C. 

However, there is evidence that mixed methanotroph populations can shift to meet altered 

growth conditions. Gebert et al. (120) enriched biofilter media samples containing a 

mixed methanotroph population was incubated at 28°C and found to have a methane 

oxidation temperature optimum of 38°C. However, when the media samples were 

enriched at 10°C, the optimal temperature for methane oxidation was 22°C. Examination 

of the methanotroph in each samples revealed that the dominant methanotrophic species 

Figure18. Methane uptake by cells adsorbed to a geotextile at various temperatures. 
Error bars represent the standard deviation of three replicate samples. Control 
samples contained planktonic cells held at room temperature. a indicates a p<0.01 
for means compared to 25°C. b indicates a p<0.001 for means compared to 15°C. c 
indicates a p<0.001 for means compared to 5°C. 

b 
c 

a 
b 
c 
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had shifted. This was later supported by diagnostic microarray analysis, which confirmed 

the population shift was due to temperature (119). The mixed methanotroph population 

utilized in this investigation was maintained at 25°C, favoring mesophilic methanotrophs. 

It was incubated at low temperatures for only 24 hour. Incubation of these samples at 

lower temperature for longer time periods might allow for a population shift to occur, as 

observed by Gebert et al. (119), so that more robust  and psychrophilic or psychrotolerant 

methanotrophs could mediate methane oxidation in the low temperature range.  

Methanotrophs absorbed to a geotextile had an initial average methane uptake rate 

of 1.9 g CH4/day. Renewed methane uptake was observed for all starvation durations 

(Fig. 19). After two days, a mean renewed methane uptake of 3.4 g CH4/day was 

observed, which is almost a 2-fold increase over the baseline uptake rate. However, after 

5, 7, and 9 days in the absence of methane, uptake rates declined 2.3, 1.7, and 12.5 fold, 

respectively. Negative controls with cell-media showed no methane uptake.  

The increased methane uptake rate observed in the two day starved samples 

indicated that cell growth took place during the starvation period. As methane is soluble 

in both distilled water and seawater (356), it is also likely soluble in NMS. It is possible 

that the methanotrophs utilized methane that dissolved during the initial incubation 

period. It is also possible that cell growth did not occur, but that the stress of starvation 

induced a physiological response that increased the subsequent methane uptake rate. 

These data indicate that immobilized cells can tolerate a two day period of methane 

starvation and that short periods of starvation may enhance the oxidation rate.  
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Although methane uptake rates were much lower in samples exposed to a 5 day 

starvation period, detection of some methane oxidation indicated that a portion of the 

cells survived starvation and were metabolically active when methane was added to the 

headspace. Other cells in these populations may have been dying or entering a dormancy 

state (338). Methylosinus trichosporium forms exospores when methane starved (271), 

while other methanotrophs, such as Methylobacter, Methylococcus, and Methylomonas, 

form cysts (338). If these survival structures were present in the longer starved samples, 

the 24-hour period after methane re-introduction may not have been sufficient to allow 

for germination. Whittenbury and Dalton (338) noted that older exospores (7 days to 18 

Figure 19. Initial () and final () methane uptake rates by a mixed methanotroph 
population adsorbed to a geotextile and methane starved for various amounts time. 
Error bars represent the standard deviation of three replicate samples.   indicates a 
p<0.05 and  indicates a p<0.01 as compared to the means specified. 

  
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months) required 7-15 days to germinate. Longer recovery incubations with methane may 

be required for methane oxidation to return to its initial oxidation rate. This evidence also  

suggests that a methanotroph embedded biotarp could be stored off the landfill surface 

for short periods of time, without causing a loss of methane uptake potential.  

Conceptually, a biotarp would be methane starved approximately every 12 hours 

while a landfill cell is being filled; therefore, the effects of methane starvation cycles was 

investigated. After the first 12-hour starvation cycle, there was no difference in the 

methane uptake by starved and control cells (Fig. 20). However, after the second cycle of 

starvation, methane oxidation levels began to decline, and methane uptake fell to only 0.5 

g CH4/day after the fifth cycle. Control samples that received methane every 24 hours 

with no starvation period, showed an initial methane uptake increase, but it was not 

Figure 20. Methane uptake by geotextile adsorbed methanotrophs under a constant 
methane atmosphere () or cycle of 12 hours methane, then 12 hours air (). Error 
bars represent the standard deviation of three replicate samples.  
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sustained. By day three, uptake in controls began to decline as well. This was unexpected, 

as methane was plentiful in these samples, and a steady state rate was anticipated by day 

3 or 4. The results suggest that multiple 12 hours cycles of on-off methane cycling had a 

more significant effect on renewed methane uptake than a single 24 hours interruption of 

continuous methane provision. 

On the other hand, the decline in methane uptake rates by control samples also 

indicated that methane starvation was not the only factor influencing oxidation rates. 

Although the methane headspace was refreshed every 24 hours in the controls, the 

inorganic nutrients were not. The depletion of the inorganic salts in the NMS medium 

may have caused the decline in methane uptake by controls and amplified the effects of 

starvation in the methane cycled samples. Subsequent experiments were conducted in 

which additional NMS was added to the samples (data not shown). However, no increase 

in methane uptake was observed. 

In addition to temperature and starvation stress, biotarp methanotrophs will also 

be subject to the effects of precipitation in the field. For this reason, the firmness of cell 

attachment to the geotextile was determined by monitoring methane uptake after 

washing. Methane uptake by unwashed samples was 2.3 g CH4 after 24 hours, and 

generally decreased over the 5 hours of washing (Fig. 21). Oxidation rates declined by 

approximately 74% in washed samples, however there was no further decline in methane 

oxidation after the first hour. These data suggest that there is a significant cell loss 

initially, as indicated by the lower methane oxidation rate. However, a population of cells 

remains attached in the biotarp and methane oxidation continues through at least 5 hours 

of washing.  Methane uptake increased further after 48 hours post- washing in all samples 
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(with a daily methane uptake similar to the 24 hour post-washing rate), indicating 

continued activity of the remaining cells. These data suggest the biotarp may be capable 

of repopulation following cell during a precipitation event.   

The methanotroph biotarp will ultimately be employed atop open landfill cells, 

where it will need to perform over a range of seasonal temperatures. Its daily removal 

from the landfill cells during operational hours requires that it be able to resume methane 

uptake after intermittent starvation. These results suggest that changes in temperature and 

methane availability may be significant challenges for immobilized methanotroph cells. 

Although these findings suggest that methane oxidation rates will be poor at lower 

temperatures, it may be possible for the population to shift and acclimate to field 

conditions. Evidence also indicates that the daily removal of the methanotroph biotarp 

Figure 21. Methane uptake by a mixed methanotroph population adsorbed to 
geotextile sections at 24 hours () and 48 hours () after washing in dI water for 
various lengths of time. Controls were unwashed geotextiles sections. The error bars 
represent the standard deviation of three replicate samples. 
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will likely result in the inability of the biotarp to maintain its methane oxidation capacity. 

Furthermore, nutrient addition may be required in some form to sustain the biotarp under 

field conditions. Precipitation during field use may also contribute to lower methane 

oxidation, likely resulting from cell loss from the biotarp. As part of a functional biotarp, 

these factors will impact its effectiveness during field use. 

 
 



 

 

 
CHAPTER 6: EVALUATION OF CANDIDIATE GEOTEXTILE TO ASSESS THEIR 
SUITABILITY FOR A METHANOTROPH EMBEDDED BIOTARP PROTOTYPE 

 

Introduction 

 Previous experiments compared a variety of materials for use in a biotarp, and 

synthetic nonwoven geotextile proved to be among the best for supporting methanotroph 

growth and robust methane oxidation. The materials examined were selected based on 

reports of their successful use in other cell immobilization applications. Water holding 

capacity (WHC) proved to be the most significant factor affecting methane oxidation 

capacity, and the geotextile proved to be the most feasible for field use among the 

materials possessing this characteristic. 

 Geotextiles, also referred to as geosynthetics, are a family of geomaterials used in 

a wide variety of civil engineering applications. These are permeable, synthetic textiles 

that are used as a separator, filter, reinforcement, protection, or as a liquid barrier, and 

most American geotextiles are manufactured from polyester or polypropylene fibers. 

Two types of geotextiles are commercially available: woven and nonwoven. Woven 

geotextiles are made of fibers that are interlaced together to form a fabric, whereas 

nonwoven geotextile fibers are randomly distributed into layers to form a felt-like web. 

Depending on the specific properties and configuration, geotextiles are used in roads and 

pavements, subsurface drainage, erosion and sediment control, reinforced soil systems, 

and seepage control systems (123). Geotextiles are also used in landfill designs as part of 

a liner system. 
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 A variety of commercial and custom-manufactured geotextiles were provided by 

project collaborator TenCate Geosynthetics, and each was evaluated as a potential biotarp 

components. The geotextiles were compared for their relative WHC and ability to support 

high methane oxidation activity. The results from these evaluations were used to select 

geotextile materials for biotarp prototype design. 

Materials and Methods 

Cell Culture and Conditions 

 A mixed methanotrophic cell population, enriched and isolated from landfill 

cover soil as previously described, was grown in Whittenbury’s NMS (339)  under a 10% 

methane-in-air headspace in 100 mL gas tight bottles at room temperature with constant 

shaking.  

Geotextiles 

Nine geotextiles fabrics (TenCate Geosynthetics, Pendergrass, GA) were tested 

for their ability to support methanotrophs and methane oxidation. The samples differed in 

thickness, fiber density, water affinity, and chemical composition (Table 2). 

Geotextile Water Holding Capacity  

Each type of geotextile was cut into 7.5 cm squares and the thickness and dry 

weight of each was measured. The swatches were then soaked in deionized (DI) water for 

10 min and the saturated weight measured. Each swatch was then squeezed by hand until 

no further water could be removed and the final weight obtained. Geotextiles were 

assigned a letter designation to allow materials to be easily distinguished in this 

investigation. 
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Geotextile
Thickness 

(cm)
Color Characteristics

A 20 osy wettable PP 0.81 ± 0.04 White Common geotextile

B 160N 0.30 ± 0.06 Black Common geotextile

C
20 osy wettable PP 3 

denier
0.97 ± 0.01 White

Version of 20 osy wettable PP 

with a lighter thread

D
6 osy wettable PP 3 

denier
0.46 ± 0.04 White

Version of 160N with a lighter 

thread

E FR 60 0.36 ± 0.05 White

Treated with polyphosphate-

based additive to release 

inorganic phosphate when 

wetted

F 160N + FR 60 0.61 ± 0.05

White 

and 

Black

Composite of 160N and FR 60

G 30 osy PP 1.27 ± 0.01 White
Thicker version of the 20 osy 

wettable PP

H S1600 0.50 ± 0.01 Grey
Needle-punched, nonwoven PP 

fibers 

I IR 26 0.70 ± 0.01 Black
One side heat fused during 

fabrication

Table 2. Geotextile comparison for potential biotarp components

Methane Oxidation Capacity 

 Each type of geotextile was cut into 7.5 cm squares and washed thoroughly in DI 

water. Washing consisted of three sequences of soaking in DI water for 10 minutes 

followed by rinsing in running DI water. The wash process was important because some 

of the materials tested produced soap-like foam when wetted. Preliminary trials showed 

that this wash procedure was adequate for removing all traces of foam and debris from 
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the fabrication process. After washing, the swatches were sterilized. The geotextile pieces 

were inoculated with 10mL of an overnight mixed methanotroph population and 

incubated in gas tight bottles with a 10% methane-in-air headspace at room temperature. 

The methane headspace concentration in each bottle was measured by gas 

chromatography at the start of a trial and measured again after a 24 hour incubation.  

Phosphate Release by Geotextiles with a Phosphate Additive 

 Candidate geotextile material E (FR60) with phosphate incorporated and FR120, 

which is composed of two thicknesses of FR60 fused together were evaluated for their 

phosphate release rate. If the phosphate leached slowly, it could act as a slow-release 

nutrient for associated methanotrophs. This feature could be an asset for biotarp 

methanotrophs as previous experiments indicated nutrient depletion may contribute to 

poorly sustained methane oxidation, particularly when methane starved. It was thought 

that the phosphate, if released slowly and continually, might enhance methanotroph 

performance. However, if the phosphate leached rapidly and at high concentrations, it 

could challenge the osmotic stability of the microbes. Therefore, the phosphate release 

rates of these geotextiles were assessed. 

Newly cut, square (4x4cm) sections of geotextiles FR60 and FR120 (with FR120 

being twice as thick as FR60) were placed in a flask containing 100mL DI water and 

shaken at 400 rpm. After 5, 10, 20, and 30 minutes, 5 mL water samples were removed 

and diluted 1:10 in fresh DI water. The phosphate concentration was measured using the 

PhosVer® 3 method (Hach Co., Loveland, CO) for reactive phosphorous 

(orthophosphate) and a HachDR2500 colorimeter. The geotextile swatches were then 

transferred to 100 mL fresh DI water to determine if additional phosphate release would 
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occur.  After shaking for 5 minutes, 5 mL of liquid were removed and the phosphate 

concentrations of the undiluted samples were measured.  

Statistical Analysis 

Data were compared using a One-way ANOVA with a Tukey’s multiple 

comparison test. Statistical analysis was performed with Prism GraphPad software 

(GraphPad Software Inc., San Diego, CA).  

Gas Chromatography 

A gas chromatograph (Shimadzu GC-14A) equipped with a CTR1 column 

(Alltech, Deerfield, IL) and a thermal conductivity detector was used to simultaneously 

measure the methane, oxygen, carbon dioxide, and nitrogen concentrations in injected gas 

samples. The helium carrier gas flow rate was 60 cm3/min, and the detector temperature 

was set to 75ºC. The injector and oven temperature were both maintained at 60ºC. 

Standard curves were generated using ultra-high purity methane and carbon  

dioxide (National Welders, Augusta, GA), and oxygen and nitrogen were obtained from 

atmospheric air sampling each time the GC was employed. 

Results and Discussion 

 The WHC of the nine geotextiles varied widely (Table 3). The relative 

performance of the swatches was compared by expressing the highest WHC, that 

geotextile I, at 100% and expressing all others as percentages of that maximum. 

Geotextiles A, H and I had the best water holding capacity of the nine materials tested 

after draining, with A and H holding 99.3% and 92.5% as much as I, respectively. None 

of the other drained samples retained more than 70% of the water retained by I. Material 

H had the maximum water holding capacity of the group when wrung dry, with I and A  
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Table 3. Water holding capacity of geotextiles tested drained and wrung dry 

  

Thickness 
(m) and 
volume 

(m3) of a 
1.0 m2 
swatch 

Dry 
Density 

Water 
Retained 
Drained 

Water 
Retained 

Wrung Dry 

Relative Water 
Holding 
Capacity 
Drained 

Relative Water 
Holding  
Capacity 

Wrung Dry 

    g/cm3 g/cm3 g/cm3 % of max % of max 

A 0.0081 0.12 0.803 0.378 99.3 82.8 

B 0.0028 0.104 0.237 0.176 29.3 38.7 

C 0.0097 0.079 0.3 0.068 37.1 15 

D 0.0041 0.052 0.571 0.211 70.7 46.4 

E 0.0041 0.055 0.456 0.139 56.4 30.5 

F 0.0064 0.083 0.529 0.203 65.5 44.6 

G 0.0127 0.075 0.522 0.26 64.6 56.9 

H 0.005 0.144 0.748 0.456 92.5 100 

I 0.007 0.165 0.808 0.403 100 88.5 
              
       
       
       
retaining 88.5% and 82.8% as much water as material H, respectively. Based on their 

water holding performance and thinness relative to the other materials, geotextiles H 

(S1600) and I (IR 26) were judged to be excellent candidates for further study.  

 Of the nine geotextiles, G, H, and I (30 osy PP, S1600 and IR26) supported more 

than 0.7 g CH4 uptake/day (Fig.22), which was significantly higher (p<0.05) than the 

rates of most other materials. Of these three high performers, the uptake rate of H 

(S1600), one of the thinner materials tested, was also significantly higher than that of the 

other two. 
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It is important to note that for these experiments, each material was allowed to 

adsorb a cell suspension and then drain. Therefore, the number of methanotroph cells 

held in each material depended on its WHC. Assuming the WHC in Table 3 apply and    

the culture contained approximately 108 cells/mL, the cells present in each test swatch 

were calculated and used to normalize the methane uptake according to the number of 

cells present (Table 4). Based on the normalized results, material B had the highest 

uptake rate per 108 cells. This rate was more than two-fold higher than material H, the 

next highest performer and the performance of material I was about half that of H. 

A B C D E F G H I 

F** 
D* 

F** 
D 

F** 
E** 
D** 
C* 
B* 
A** 

I 
G 
F** 
E** 
D** 
C** 
B** 
A** 

F** 
E** 
D** 
A** 

Figure 22. Comparison of methane uptake by methanotrophic cells immobilized in 
various geotextiles materials, as described in Table 2. A p< 0.05 compared to a 
specific geotextile is indicated by the letter designation.  * indicates p<0.01, and ** 
indicates p<0.001. Error bars represent the standard deviation of three replicate 
samples. 
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When the WHC and methane oxidation activity are considered together (Table 5), 

it is clear that sample B with the highest methane oxidation activity had the lowest WHC 

of all candidates (37.1%). It may be that the poorer water adsorption capacity of material 

B facilitated better gas penetration to the cells, allowing more oxygen and methane to 

reach the cells. However, the next highest methane oxidation activity was evident in 

material H, which had the third highest WHC (92.5%). 

  When a field setting was considered, water holding capacity was judged to be a 

critical factor for good performance under varying weather conditions, and subsequent 

continuous flow tests were performed with materials H and I. Additionally, materials H 

and I were existing commercial Ten Cate products, available in 20 ft wide rolls. Although 

the size of geotextile pieces needed for testing samples in the continuous flow chambers 

was quite small (17.8 x 30.5 cm), the ability to create large test samples for field trial was  

Volume/ swatch Culture Retained Methane Consumed in 24h

(cm
3
) (est.’d mL) (mL/10

8
 cells)

A 0.0081 5.69 67.1

B 0.0028 0.73 760

C 0.0097 2.8 186

D 0.0041 1.95 167

E 0.0041 1.6 261

F 0.0064 2.99 71.6

G 0.0127 5.77 133

H 0.005 3.4 294

I 0.007 5.19 140

Table 4. Batch methane oxidation rates for samples normalized for cells 

adsorbed 
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important. Also, geotextile I, (IR 26) had a fused side, which was considered a potentially 

valuable characteristic. If the fused surface was placed face-up, the gas might compress 

beneath it, retarding the flow rate through it and resulting in longer gas retention time 

within tarp and with the methanotrophs. 

Results from tests of the phosphate treated tarps indicated that both types tested 

released most of the leachable phosphate they contained within five minutes of being in 

excess DI water (Fig. 23). The thinner material (FR60) released less phosphate (average 

3.87 mg PO4-P/L) than the thicker FR120 geotextile (average 20.52 mg PO4-P/L). After 

the first five minute trial was completed, geotextiles were removed to fresh DI water and 

shaken an additional five minutes, but no further phosphate release was detected (data not 

shown).  The methanotroph growth media, Whittenbury’s NMS, has a phosphate 

concentration 0.42 mg phosphate/L (339). Cells adsorbed to these phosphate-enhanced 

Thickness (m) and 

volume (m 3) of a 1.0 m 2 

swatch

Relative Water Holding 

Capacity Drained            

(% of max)

Methane Consumed in 

24h (mL/10
8
 cells)

A 0.0081 99.3 67.1

B 0.0028 29.3 760

C 0.0097 37.1 186

D 0.0041 70.7 167

E 0.0041 56.4 261

F 0.0064 65.5 71.6

G 0.0127 64.6 133

H 0.005 92.5 294

I 0.007 100.0 140

Table 5. Relative water holding capacities and weight of geotextile materials
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geotextiles would be exposed to phosphate concentrations far higher than those found in 

routine culture, where they could suffer from damaging osmotic shock. Therefore, the 

FR60 and FR120 materials were eliminated as suitable candidates for a biotarp prototype.  

 

Figure 23. Phosphate release by FR60 () and FR120 (). Error bars represent the 
standard error of the mean of three replicate samples. 



  

 

CHAPTER 7: USE OF CONTINUOUS FLOW CHAMBERS IN THE EVALUATION 
OF POTENTIAL BIOTARP PROTOTYPES  

 
 

Introduction 

 Previous experiments showed that immobilization of a mixed methanotroph 

population in a synthetic geotextiles produced an increased methane oxidation rate and 

represents a practical material for use as a biotarp on open landfill cells. Geotextile 

materials S1600 and IR26 were selected for further trials based on their methane 

oxidation capacities and water holding capacities relative to other candidate geotextiles. 

The focus of subsequent laboratory trials was to test the candidate materials under 

continuous flow rather than batch conditions. 

 In batch tests, methane is sealed in a gas-tight bottle so that the methanotrophic 

cells are surrounded by a given supply of methane for the entire incubation period, which 

is typically 24 hours. This configuration is suitable for some initial relative comparisons 

of material performance, but it is not fully representative of landfill conditions, where 

exposure of methanotrophs to a particular mass of methane is more fleeting. While it is 

true that methanotrophs in landfill cover soil may be exposed to a continuous supply of 

methane daily that methane is part of a biogas mix (about 50% methane and 50% carbon 

dioxide) that is part of a moving stream of emitted gas. A typical emission rate from an 

open landfill cell might range from 100-200 g CH4/m2 day (Bogner, unpublished), as 

such landfill methanotrophs have a limited time with a given group of methane molecules 
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as the gases move through the soil and into the atmosphere. The natural landfill methane 

environment presents a unique set of challenges for biotarp methanotrophs. 

In order to simulate conditions of constant gas flow, continuous flow chambers 

were designed and constructed. Briefly, a synthetic landfill gas mix entered a chamber 

and was routed beneath a biotarp prototype affixed in the chamber. The gas flowed 

upward through the tarp at a constant rate to simulate the flow of biogas from the landfill 

into the biotarp. Compressed air was introduced near the top of the chamber above the 

prototype, to simulate atmospheric air in field conditions. The continuous flow chamber 

design allowed all gas flows to be controlled and monitored. By combining flow and 

concentration measurements, biotarp methane removal efficiency was calculated.  

Preliminary experiments were conducted using single and double geotextile 

(S1600 and IR26) layer tarps. These experiments revealed that, not only was methane 

oxidation in these prototypes very low, but that air currents within the building were 

interfering with accurate gas flow measurements. To prevent current interferences, 

acrylic shields were placed around the continuous flow chambers. Smoke tests were also 

used to visualize the path of gas flow paths and confirm that there was no short circuiting 

or leaks (23). Based on these tests, a final chamber was configured, and it is that final 

design that is presented in the following sections.   

Materials and Methods 

Continuous Flow Chamber Design 

 Continuous flow chambers were fabricated from 25.4 cm diameter cylindrical 

acrylic plastic cut to 45.7 cm lengths. The cylinders were oriented horizontally so that 

each chamber was 25.4 cm high and 45.7 cm long. Each cylinder was sealed closed at 



91 
 

 

one end and equipped with a gas-tight removable lid at the other end. Holes were drilled 

for two 3.175 mm brass bulkhead tube fittings (Swagelok, Solon, OH) to pass through the 

sealed wall. The fittings were spaced 7.6 cm apart horizontally from the center. A 3.175 

mm brass union tube fitting (Swagelok, Solon, OH) was installed at the center of the lid 

(Fig.24).  

The lower bulkhead fittings on the closed end of the chamber were used to 

accommodate a 20.3 cm length of 3.175 mm diameter stainless steel tubing. The tubing 

was perforated with holes to deliver a synthetic landfill gas mix to the chamber. A bed of 

gravel was spread beneath the bottom pipe to enhance gas mixing. A 38.1 cm length of 

3.175 mm diameter perforated stainless steel tubing was used to form a U-shaped air 

inlet, which was fitted in the upper bulkhead fitting on the closed end of the chamber. 

A circle of furnace filter fabric was cut from a 2.5 cm thick rectangular 

commercial furnace filter (E-Z flow II, Flanders PrecisionAire, St-Petersburg, FL). The 

circle was sized to snugly cover the cross-sectional area of the cylindrical, near the open 

end of the chamber to ensure that gases from the chamber were well mixed before 

entering the septum-covered outlet of the chamber. The removable exit lid was fitted with 

a butyl rubber gasket to ensure a gas-tight seal when the chamber was closed. Six bolts 

equipped with wing nuts were screwed in the body of the chamber. The lid was secured 

gas-tight by tightening the wing nuts, which engaged the gasket. 

Inside Frame  

A 9.525 mm thick acrylic base section was permanently fixed inside the chamber. 

It was 30.5 cm long and 17.8 cm wide with a 17.8 cm x 11.3 cm opening in the center. 
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Continuous flow 
chamber output  
 

Air Filter  Gravel 

Perforated pipe delivering 
methane and carbon 
dioxide  
 

Inside frame 
emplacement  
 

Continuous flow lid  
Perforated “U” pipe delivering air  
 

Figure 24. Laboratory continuous flow chamber bioreactor. A) Schematic drawing. 
B) Side view photo of chamber. C) Inner view photo of chamber. 

A 
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Perforated “U” pipe delivering air  
 

Inside frame 
emplacement  
 

Air Filter  
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Ten, 5 cm long screws (3.175 mm diameter) were distributed evenly around the inside 

frame. The screws were equipped with metal washers and wing nuts. 

A second internal unit consisted of two 3.175 cm thick Plexiglas plates (25.4 cm x 

16.5 cm). They were used to sandwich the test prototype, and they had a 17.8 cm by 11.3 

cm opening that matched the opening of the larger frame. A line of holes was drilled on 

opposite sides of each plate. The frames were stacked vertically with a biotarp sample in 

place, and the bolts and wing nuts were used to secure the tarp. The secured prototype 

was then placed in the chamber and sealed to the base support piece with silicone 

(Silicone II, GE) at the time of testing (Fig.25).  

Inflow Gases 

The inflow gases consisted of synthetic landfill gas entering the chamber through 

the lower inlet and air entering though the upper inlet. The synthetic landfill gas was a 

rubber sealing 
(not represented 
on the bottom 

of the first 
small frame) 

 

wing nut and 
metal ring 

 

geotextile tested with a duct tape 
frame (not represented here) 

 
small frames 

3.175mm dia.,    
5 cm long 

screws 

big frame 

Figure 25. Biotarp in smaller removable frame secured in permanent frame 
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1:1 mixture of ultra high purity methane and dry bone carbon dioxide (National/Specialty 

Gases, Durham, NC). The gases were combined in a tubular mixing chamber before 

entering the bioreactor. The mixing chamber was a 45.7 cm length of 5.4 cm diameter 

white PVC pipe filled with glass wool to enhance mixing. The gas delivery system was 

plumbed with stainless steel tubing and Swagelok fittings. Each gas was metered through 

flow controllers (0-5 mL/min range, VCD 1000, Porter Instrument Inc.) into the mixing 

chamber. 

The mixture exited through a single outlet at the other end of the mixing chamber 

and passed (via a bulkhead fitting) to the stainless steel sparging tube inside and near the 

bottom of the continuous flow chamber. An additional fitting plugged with a silicone 

septum (Sheet Mat 250c, Alltech, Deerfield, IL) was placed at the end of the mixing 

chamber to monitor mixing efficiency. The flows were calibrated and monitored with a 

mass flow meter (ADM 2000, Humonics J&W Scientific, Folson CA), and pretests were 

conducted to ensure that the flow entering and exiting the mixing chamber were equal. A 

1 mL/min inlet flow rate of synthetic landfill gas yielded a flux rate of 20-25 g/ m2 day 

through a tarp secured in the bioreactor. In order to attain this rate, a rate of 0.5 mL/min 

each of methane and carbon dioxide was required. Medical grade air (Linde Gas, 

Independence, OH) simulating the atmosphere was metered through a flow controller 

(range 0-25 mL/min) to the upper stainless steel perforated tubing at a rate of 5 mL/min. 

Cell Culture and Conditions 

 A mixed methanotrophic cell population, enriched and isolated from landfill 

cover soil as previously described, was grown in Whittenbury’s NMS (339)  under a 10% 

methane-in-air headspace in 2 L gas tight flasks. Each flask was capped with a butyl 
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rubber stopper fitted with a silicone septum filled Swagelok cap. The methanotroph 

population was maintained at room temperature with constant stirring.  

Biotarp Prototype Configurations 

A multilayer tarp was prepared by alternating layers of 16.5 cm x 25.4 cm 

sections of washed and sterilized IR26 and S1600. The IR26 piece were placed fused side 

up in the second and fourth (top) layers to yield a configuration with a fused top surface. 

A one liter overnight mixed methanotroph population was washed and resuspended in 

fresh NMS. The swatches were soaked in the resuspended methanotroph population for at 

least 10 min, removed, and allowed to drain until no further liquid dripped from them. 

The edges of a test sample were covered with duct tape to prevent gas short circuiting and 

then “sandwiched” between the two small Plexiglas frames and anchored to the larger 

frame inside the bioreactor. All biotarp samples were tested against negative control 

samples that were similarly prepared without the addition of methanotrophic cells to the 

NMS solution. 

A second prototype was assembled that consisted of the methanotroph-embedded 

4-layered biotarp and a ⅓ cm thick layer of intermediate cover soil (Allied Waste landfill, 

Cabarrus County, NC) between the second and third layers. Before addition to the tarp, 

approximately 400 g of the soil was enriched by incubation in a gas-tight jar under a 50% 

methane-in-air headspace for 2 days. Negative controls consisted of a NMS soaked 4-

layered biotarp.  

A compost addition to the 4-layered tarps as described above was examined by 

adding a ⅓ cm layer of finished compost (Compost Central Municipal Yard Waste 

Composting Facility, Charlotte, NC) between the third and fourth layer. Like the soil, the 
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compost was first pre-incubated in a gas-tight jar with a 50% methane-in-air headspace 

for 2 days. The negative control tarp was a multilayer tarp prepared with sterile NMS 

only. 

Shale was also examined as an additional biotarp additive. The shale Fines 

(Carolina Stalite) were sieved to produce a 2.00-4.76 mm particle size fraction, washed 

with DI water and autoclaved. It was then pre-incubated in either excess solution of an 

overnight mixed methanotroph population or in sterile NMS for about 30 min. The 

biotarp was amended with the methanotroph-soaked shale, while the negative control 

tarps were amended with NMS-soaked shale. Like the soil and compost-amended tarps, a 

⅓ cm layer of shale was placed in the middle of the four geotextile layers. 

Continuous Flow Chamber Sampling and Data Analysis 

 Three continuous flow chambers were operated simultaneously, two containing 

biotarp prototypes and the other containing a corresponding negative control.  To 

calculate methane oxidation in each chamber, gas flows and concentrations into and out 

of each chamber were monitored and used in a mass balance analysis. For gas 

concentrations, results from duplicate samples were averaged. Each sample was collected 

in a 50 µl gas-tight syringe (Hamilton syringe, Reno, Nevada). Inlet gas was sampled 

from the PVC tube mixing chamber, and outlet gas was sampled at the continuous flow 

chamber exit. Inlet and outlet flows were measured using a volumetric flow meter ADM 

2000 (Humonics J&W Scientific, Folson CA). During flow measurement, the flow meter 

was connected to a computer equipped with companion software, and flow measurements 

were recorded at 2 sec intervals for 7 min and averaged. The percentage of methane 

removed by the biotarp was calculated according to the following equation: 
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in in out out
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Q  C  - Q  C
% removal = 100

Q  C
!

  

 
 
 
Where Qin = flow in (mL gas/min) 

Cin = methane concentration in inflow (mL CH4/100 mL gas) 

             Qout = exit flow (mL gas/min) 

Cout = methane concentration in exit flow (mL CH4/100 mL gas) 

Results and Discussion 

The overall average methane uptake rate of two independent evaluations of a 

four-layered biotarp was 16%, with a maximum removal of 23% attained during one trial. 

Methane uptake remained constant for the first 4 days, after which it decreased regularly 

each day until reaching 3% uptake on day 9 (Fig. 21A). This four-layered biotarp 

configuration yield higher methane uptake rates than single or double layer designs 

examined in preliminary trials, and methane uptake was sustained for a much longer time 

in the multi-layered tarps (23). It is not clear whether the improved performance was due 

to the higher number of methanotrophs present in the four-layered biotarps or to the 

increased retention time the greater thickness offered, though both likely contributed. It 

would then follow that a six- or eight-layered biotarp would increase methane uptake 

further. Although this is likely, these types of prototypes were not constructed or tested 

because they would be too bulky for storage and handling under field conditions. Since 

increasing the number of geotextile layers was not an option, biotarp amendments were 

investigated to increase gas detention, and as a result, methane uptake. 
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The addition of landfill soil to the biotarp proved beneficial, increasing the 

average methane uptake rate of three independent trials to 26% removal, a rate over 1.5-

fold higher than the 4-layered prototype (Fig. 21B). There was also considerable variation 

between replicates, ranging from 21% to 31%, particularly early in the time course. 

However, unlike the unamended 4-layered biotarp, performance was sustained, with little 

overall change during the 9 days of monitoring.  

Figure 20. Methane uptake by multilayered biotarp prototype. Error bars represent 
the standard deviation of duplicate samples. A four layered biotarp prototype with no 
amendments. B four layered biotarp prototype with a landfill soil amendment. C four 
layered biotarp prototype with a compost amendment. D four layered biotarp 
prototype with a shale amendment. 

A B 

C D 
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 The compost additive yielded similar results with the overall average methane 

uptake rate of two independent compost-amended multilayered biotarps calculated to be 

27% (Fig. 21C).  The variability between replicates was very high, ranging from 20% to 

35% removal, but like the soil, this average was higher than the unamended four-layered 

biotarp. There was no difference in the between compost and soil amended biotarps.  

 The addition of shale to the multilayer biotarp produced an overall average 

methane removal for three independent evaluations of 32%, which was found to be 2-fold 

higher than the unamended four-layered, soil amended (p<0.001), and compost amended 

(p<0.01) prototypes. Although methane removal began at 50%, it was observed to decline 

to 28% by day 8 (Fig. 21D). As observed in other prototype trials, there was large 

variability between the biotarp replicates, and values ranged from 59% to 21%. During 

each continuous flow chamber trial, condensation was evident on the walls of biotarp 

chambers, but not on the walls of the controls. This is noteworthy because water is a 

product and indicator of methane oxidation. The removal of methane and oxygen by the 

biotarps with an accompanying production of carbon dioxide and condensed water were 

not observed in any negative control chambers. Therefore, methane reduction was not 

likely the result of its adsorption or dissolution, but rather the result of biotic activity by 

the methanotroph immobilized geotextiles.  
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It is well known that soil microbes can require trace micronutrients from the soil 

or by-products from other microbes to flourish. Since the methanotroph population 

employed in this investigation was enriched from landfill soil, the soil addition may have 

provided nutrients or other factors that enhanced methane oxidation. The soil itself also 

contained methanotrophs, and enrichment likely further increased the number of 

methanotrophs present in the biotarp. Thus, the landfill soil amended biotarp may have 

contained a larger number of methanotrophic organisms than the multilayered biotarp 

alone, which was a confounding factor in the comparison of the two types of tarps. 

Additionally, the large variation observed between replicates may have resulted from 

variations in the soil. Fresh soil samples were collected for each trial, and therefore the 

number and composition of microbes was likely different. Even slight differences in the 

soil added to each replicate may have contributed to the variability. Nevertheless, the soil 

addition did add a valuable attribute to the biotarp prototype, namely increased 

performance duration and stability. 

Compost has been shown to be a good host matrix for methanotrophs (153) and 

has been used in various types of experimental biotic landfill covers to successfully 

reduce methane emissions (1, 19, 158, 234, 297, 305, 360). This success is likely due in 

None Landfill soil Compost Shale

Mean 163.4 305.9 285.2 374.9

SD 5.9 2.8 3.6 6.6

Maximum 217 342.8 330.5 479.7

Minimum 75.5 276.7 251.2 279.5

Amendment

Table 6. Mass of Methane Consumed by Biotarp Prototypes
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part to its excellent water holding capacity, which is a property previously identified as 

important for biotarp performance. It is not surprising that the addition of compost to the 

biotarp led to increased methane uptake over the unamended multilayered biotarp. Like 

the addition of intermediate landfill cover soil to the biotarp, methanotrophs were also 

likely present in the compost samples, particularly after enrichment. However, it is not 

clear, whether the increased methane removal was due to the introduction of additional 

methanotrophs or to particular compost properties (i.e. moisture, nutrients, or gas 

retention) that stimulated the existing methanotrophs. The large variation between 

prototype evaluations further confounded the methane removal trend. As in the case of 

soil addition, compost was collected fresh each time the prototype was assembled, so that 

variability in the physical, chemical, and microbial composition of the samples may 

account for some of the variation observed.  

Shale is a very light, small rock frequently used to reduce the density of concrete. 

It is extremely porous, and it is similar to the expanded clay particles that have been used 

as effective methanotroph supports in methane biofilters (120). Its high porosity and 

surface area may have allowed better gas penetration, greater water holding capacity in 

pores, or more sites for cell attachment. Additionally, the shale may have functioned as 

an additional gas distribution layer, a factor important in enhancing methane oxidation 

(154). Again, as previously noted with other additives, the pre-incubation of shale in 

methanotroph-rich NMS may have added additional methanotrophs to the biotarp relative 

to those in the unamended trials. There was high variability within replicates. Although 

the measurements relied on instrumentation that was subject to air pressure fluctuations, 
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which could have contributed to the high variability, efforts were made to control this 

interference by the time these trials were conducted. 

Batch conditions are useful in rapid methane removal evaluations by 

methanotrophs in various configurations and conditions. However, the use of continuous 

flow chambers provides a more realistic methane environment, and is very different from 

the batch methane environment. The primary difference is the number of contacts a single 

methane molecule has with a given methanotrophic cell. In batch, methanotrophic cells 

are surrounded by methane molecules, and a given methane molecule will eventually 

contact a methanotrophic cell and diffuse into it for oxidation. This is a result of the gas 

being confined to the culture bottle. Under continuous flow conditions, a methane 

molecule has a finite time interval in which it is available for diffusion into a given 

biotarp methanotrophic cell. If the molecule does not enter a methanotroph for oxidation, 

the cell will have another opportunity to capture another methane molecule, as the 

methane supply is continuous.  However, the methane molecule escapes from the biotarp 

to be emitted into the atmosphere and is not available again for oxidation. For this reason, 

performance in batch cannot be used to predict performance under field conditions. 

The evaluation of a multilayered biotarp under continuous flow indicated that gas 

detention time within the biotarp was critical for methane removal. The addition of 

additives, including landfill soil, compost, and a methanotroph/shale mix led to an 

increase in the methane removal over the unamended biotarp. The addition of 

amendments may have contributed to higher methanotrophic cell numbers in the biotarp, 

provided additional nutrients, or increased the gas detention and distribution. The data 

also suggest that the densification and addition of more methanotrophic cells to the 
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biotarp may increase methane removal, as well. The combination of increased gas 

detention and cell numbers within the biotarp seem to be central to improving biotarp 

performance.



 

 

 
CHAPTER 8: DEVELOPMENT AND USE OF A BIOFILM STAINING TECHNIQUE 

TO VISUALIZE METHANOTROPH ATTACHMENT 
 
 

Introduction 

 Biofilms consist of a community of bacterial cells enclosed in a self-produced 

polymeric matrix and are typically adherent to inert and living surfaces (75). They are 

ubiquitous in nature, with surface attached bacterial cells out numbering planktonic cells 

(104). Biofilm formation has been characterized into two general stages, the first being 

primary bacterial adhesion. Initially, cells must come into contact with the surface 

through Brownian motion, sedimentation (255), or active transport mediate by flagella 

and chemotaxis (87). The cells then attach reversibly due to the surface physico-chemical 

properties (104), such as electrostatic and hydrophobic interactions, steric hindrance, van 

der Waal’s forces, temperature and hydrodynamic forces (7, 52). The second phase of 

bacteria surface attachment is the locking or anchoring phase. During this time, adhesion 

is strengthened by producing exopolysaccharides that complex with the surface 

irreversibly (7). Biofilm formation has several advantages for the cells, helping them 

concentrate nutrients, promoting genetic exchange (98), and protecting them from hostile 

environmental conditions and external predation (104). 

 Due to the environmental, industrial, and medical importance of biofilms, 

numerous techniques have been developed to visualize them (49, 110, 141, 152, 244, 

355). One technique utilizes lectins, which are plant, animal or microbial proteins that 

bind to specific carbohydrate residues that compose polysaccharides and biofilms (173). 
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Concanavalin A is a plant derived lectin (125) that selectively binds to α-mannopyranosyl 

and α-glucopyranosyl residues (131, 215) of  bacterial polysaccharides (204). 

Concanavalin A has been used to stain biofilms on various surfaces (58, 171, 210) and 

originating from various microbes (70, 195, 340). Furthermore, lectins have been 

previously utilized in this laboratory to successfully visualize the methanotroph 

colonization of filter membrane segments incubated in soil column reactors (109).  

In previous work, it was assumed that incubation of geotextile sections in a mixed 

methanotroph population led to the cell adsorption and methane oxidation activity was 

due to these adsorbed cells. Methanotrophic biofilm production is well documented (12, 

13, 30, 38, 65, 111, 145, 211, 273, 343), and it was thought that their attachment to the 

geotextile fibers was mediated by biofilm production. However, there was no direct 

evidence of this. In order to visualize how the methanotrophs were associated with the 

geotextile, a technique was developed in which embedded biotarp prototype samples 

were sliced and stained to identify polysaccharides and methanotrophic cells. The validity 

of each staining protocol was first established, and then the two techniques were 

combined to provide a method for the simultaneous visualization of cell population and 

extracellular polysaccharides (EPS) architecture within the geotextile. 

Materials and Methods 

Cell Culture and Conditions 

 A pure culture of Type I methanotroph, LW13 (16), Type II Methylocystis parvus 

OBBP (339), and a mixed methanotrophic cell population, were grown in Whittenbury’s 

NMS (339). Cells were incubated under a 10% methane-in-air headspace in 100 mL gas 

tight bottles at room temperature with constant shaking.  
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Preparation of Control Geotextile Samples 

 Geotextile material 160N was washed, sterilized, and cut into 4x4cm squares 

prior to placement in 100 mL gas-tight bottles with 5 mL of an overnight methanotroph 

culture and the headspace was adjusted to 10% methane-in-air. The cells were incubated 

with the geotextile sections for 7 days, with the methane headspace refreshed every two 

days. Negative controls were also prepared from the washed and sterilized geotextile, 

however no cells were applied. 

Preparation of Biotarp Samples 

 After a complete trial in the bioreactor, a multi-layered biotarp prototype 

containing shale was sectioned into 4x4 cm squares. The shale pieces were removed to 

improve embedding and slicing. Two types of negative controls were prepared; one from 

a prototype sample that was not exposed to cells and another that was formalin fixed just 

after soaking in a cell preparation. 

Cell Fixation, Embedding, and Slicing 

 Each geotextile section was fixed in 50 mL of a 5% formalin solution for 5 min at 

the North Carolina State School of Veterinary Medicine Histology Laboratory, the 

geotextile samples were further cut to fit 12 x 16 x 5 mm plastic molds (ES Sciences, 

East Granby, CT). Samples were dehydrated in a series of increasing ethanol 

concentrations (70%, 80%, 95% and 100%) for one hour each under gentle vacuum. 

Samples were then transferred to Technovit 7100 (Heraeus Kulze, Wehrheim) infiltrate 

with a 30-60 min vacuum treatment during infiltration, followed by infiltration overnight 

at room temperature. After 24 hours, the infiltrate was changed again, and samples 
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remained in infiltrate until embedded. Samples were embedded in Technovit 7100 glycol     

methacrylate resin (Heraeus Kulze, Wehrheim) according to manufacturer instructions. 

Hardened blocks were placed in a 65°C oven for one hour and stored in a desiccator box 

prior to microtoming. A glass knife was used to cut 2.5 micron sections, which then 

placed on charged slides. 

Fluorescent In Situ Hybridization (FISH) 

A hybridization buffer was prepared from 720 µL 5 M NaCl, 80µL Tris-HCl, 4 

µL 10% SDS, and 800 µL deionized formamide and the volume brought to 4 mL with 

RNase free water. A Kim-wipe dampened with hybridization buffer was used to create a 

moist chamber in a Petri dish, and 200 µL of hybridization buffer was applied to each 

geotextile sections. The chamber was placed in a pre-heated 46°C incubator for 30 min. 

Oligonucleotide probes (128) are described in Table 6  (MWG Biotech, High Point, NC) 

and were applied to each section at a concentration of 0.01 µg/µL. They were mixed well 

with the hybridization buffer in the dark and further incubated in a 47°C pre-warmed 

oven hybridization chamber for 90 min. A wash buffer was prepared by the addition of 

Probe Probe sequence (5' !3')
Fluorescent 

tag
Probe Target

Am445 CTTATCCAGGTACCGTCATTATCGTCCC FLUOS _-Methanotrophs

Gm633 AGTTACCCAGTATCAAATGC CY-3
Methylobacter  and 

Methylomicrobium

Gm705 CTGGTGTTCCTTCAGATC CY-3
!-Methanotrophs 

except Methylocaldum

Table 7. Oligonucleotide probes targeting methanotrophic bacteria
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2000 µL 1 M Tris-HCl, 4300 µL 5 M NaCl, 1000 µL 0.5M EDTA, 100 µL 10% SDS, 

and brought to 100 mL with RNase free water. The wash buffer was prewarmed to 51°C 

in a water bath before use. Slides were rinsed well with the wash buffer and then flooded 

before being incubated for 10 min at 51°C. Slides were rinsed with DI water and dried 

overnight at room temperature.  

Biofilm Staining 

 A 1 mg/mL stock solution of Concanavalin A conjugated to Alexa Fluor 488 

(green fluorescence) or Alexa Fluor 594 (red fluorescence) (Invitrogen, Eugene, OR) was 

prepared in a 0.1 M sodium bicarbonate (pH 8.3) solution. Sections were stained by 

diluting 10 µL of the Concanavalin stock in 90µL sodium bicarbonate solution and 

incubated in the dark at room temperature for 30 min. Slides were rinsed with DI water 

and dried overnight. Type I RNA probes were utilized in combination with Alexa Fluor 

488 tagged-Concanavalin and Type II probes were used with Alexa Fluor 594 tagged-

Concanavalin.  

Microscopy 

 Slides were examined on an inverted fluorescent microscope (Olympus 1X71) 

with the appropriate filters and images captured using a digital camera (Olympus DP70) 

mounted atop the microscope.  

Results and Discussion 

 Geotextile Batch Incubations. For EPS detection, geotextile samples were 

embedded in acrylic resin, sliced, and stained with a Concanavalin A, where fluorescence 

indicated the presence of EPS. Positive controls, prepared from methanotroph incubated 

samples, were observed to stain positive for EPS when both fluorochromes were utilized 
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(Fig. 27A and C). The fiber structure could clearly be distinguished from the background, 

indicating that EPS coated the fibers and resulting in either green or red fluorescence. As 

the culture contained almost exclusively methanotrophs, the EPS observed is most likely 

of methanotroph origin. Negative control geotextile samples showed virtually no 

fluorescence (Fig. 27B and D). This lack of staining indicated that the stain was specific 

for EPS and did not bind to the geotextile or embedding material.  

A B 

Figure 27. Concanavalin A staining for methanotroph EPS. A) Geotextile sample 
incubated for one week with methanotrophs and stained with Concanavalin A-Alexa 
Fluor 488. B) Negative control geotextile (no cells) stained with Concanavalin A-
Alexa Fluor 488. C) Geotextile sample incubated for one week with methanotrophs 
and stained with Concanavalin A-Alexa Fluor 594. D) Negative control geotextile 
(no cells) stained with Concanavalin A-Alexa Fluor 594. All sections were viewed a 
100X magnification. 

C D 
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Methanotroph EPS is synthesize as part of a capsule (339, 353) and biofilm (150, 

163), and as much as 62% of the cell biomass has been measured to be polysaccharide 

(150). Therefore, it is not surprising that significant amounts of EPS were present on 

methanotroph incubated geotextile fibers. Concanavalin A is specific for glucose and 

mannose residues (131, 215), which have been detected in methanotroph EPS. However, 

other monosaccharide residues are present in methanotroph EPS as well (64, 150, 353). It 

Figure 28. Fluorescent In Situ Hybridization controls on synthetic geotextile 
sections. A) Type I positive control methanotroph LW13 hybridized with CY-3 
(red) tagged RNA probes. B) Type I negative control (no cells) hybridized with 
CY-3(red) tagged RNA probes. C) Type II positive control methanotroph 
Methylocystis parvus OBBP hybridized with FLUOR (green) tagged RNA probes. 
D) Type II negative control (no cells) hybridized with FLUOR (green) tagged RNA 
probes. 

A B 

D C 
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is also important to note that Concanavalin A is not specific for methanotroph produced 

EPS, and will also bind to polysaccharides originating from other microbial species. 

 When the batch incubated geotextile samples were subjected to FISH using 

probes specific for Type I and II methanotrophs, significant amounts of red fluorescence 

was observed as indicated by either red or green fluorescence (Fig. 28 A and C). 

Negative control geotextile samples, which contained no cells, lacked any detectable 

fluorescence from the methanotroph RNA probes (Fig. 28 B and D).  Individual 

geotextile fibers could be distinguished in both methanotroph incubated samples, 

suggesting the bacterial cells are associated with the fiber surface. Furthermore, the 

presence of EPS around the fibers (Fig. 27 A and C) suggests that it is mediating cell 

attachment, as would be expected. The microscopy also indicates that attachment was 

higher on M. parvus OBBP geotextile sections, as almost all cells appeared to be 

associated with the geotextile fibers. On the other hand, there was significant amount of 

Type I probe hybridization independent of the geotextile fibers. Such difference may be 

the result of differences in the propensity of attachment or EPS production between the 

two strains. As sections were viewed at 100X magnification, the fluorescent points are 

not single cells, but rather cell aggregates. It is not certain if the unattached cells were an 

artifact of the embedding and slicing, or were never attached to the fibers at all. It is 

possible that not all cells became associated with the geotextile fibers, but some remain 

suspended in the NMS liquid trapped between fibers.  

Biotarp Incubations in Continuous Flow Chambers. The combined EPS and cell 

staining technique was applied to subsamples of shale amended biotarp prototypes that 

either received no incubation; that were incubated without methanotrophs; and that were 
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A B 

C D 

E F 

Figure 29. Shale amended biotarp prototype sections stained for Type I 
methanotrophs (red) using FISH and EPS (green) using Concanavalin A. A) 
Negative control biotarp section (no cells). B) Initial biotarp sample (fixed 
immediately after cell application). C-F) Biotarp layers from bottom to top, after 9 
days incubation in a laboratory continuous flow chamber. All sections viewed at 
100X magnification.  
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Figure 30. Shale amended biotarp prototype sections stained for Type II 
methanotrophs (green) using FISH and EPS (red) using Concanavalin A. A) 
Negative control biotarp section (no cells). B) Initial biotarp sample (fixed 
immediately after cell application). C-F) Biotarp layers from bottom to top, after 9 
days incubation in a laboratory continuous flow chamber. All sections viewed at 
100X magnification.  
 

A B 

C D 

E F 
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active biotarps treated with the methanotroph population. Negative control biotarp 

sections, which were incubated in the absence of cells, showed negligible fluorescence 

from hybridized Type I or II methanotroph RNA probes or from the lectin stain for EPS 

presence (Fig. 29A and Fig. 30A). This confirmed that in the absence of cells and EPS, 

there was no nonspecific binding of these molecules in active biotarp samples. When the 

biotarp prototype inoculated with the mixed methanotroph population but not incubated 

was stained, there was little EPS and few cells (Fig. 29 B and Fig. 30B). The EPS 

detected in these sections was likely carried-over from culture growth. When multiple 

fields were examined, cell aggregates appeared to be evenly distributed throughout the 

sections. The fiber definition seen in positive controls stained for EPS and for 

methanotroph coated fibers was not evident, indicating that there was no attachment and 

colonization of the geotextile immediately upon exposure to cells in NMS. 

 When a sample from an active biotarp was examined after its incubation in a 

continuous flow chamber, there was significant EPS accumulation in each layer of the 

prototype (Fig. 29 C-F and Fig. 30 C-F). Likewise, methanotrophic cells were present in 

all layers, and at much higher numbers than were observed in the biotarp prototype tested 

before chamber incubation. Growth was not confluent throughout a section, but the 

majority of the areas stained positive for methanotrophs co-localized with areas positive 

for EPS, suggesting that the polymer matrix was generated by associated cells. 

Furthermore, the shapes of the co-stained areas are consistent with the size and shape of 

fibers expected in the geotextile. Although most methanotrophs appeared to be attached 

and surrounded by EPS, both unattached cell aggregates and unpopulated EPS were 

observed.  
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 There appeared to be more Type I methanotrophs in the middle two layers, 

relative to the outer layers, of the four layered biotarp. It was clear that all layers were 

colonized. There did not appear to be a difference in Type II methanotroph distribution. 

The uneven colonization may be due to the presence of other microbes or the simple 

result of methane “hotspots” that formed when injected gas followed a path of least 

resistance through the biotarp matrix. It is also possible that the shale placed between the 

two middle layers of the biotarp added methanotrophs, such that the layers adjacent to the 

shale were more highly populated. However, the shale methanotroph population 

contained both methanotroph types and the cell density should have increased in Type II 

samples as well. Since continuous flow chambers are not a sterile environment, some of 

the apparently cell-free EPS may have been due to the presence of other organisms. 

Similarly, the free cells may have been an artifact of the section preparation or a true 

phenomenon reflecting that not all methanotrophs were present as attached cells.  

 The hybridization of both Type I and II methanotroph RNA probes with cells in 

the mixed methanotroph population applied to the biotarp was consistent with diagnostic 

microarray results. These results detected the Type I genera Methylobacter and Type II 

genera Methylosinus and Methylocystis (Appendix A).  Furthermore that co-staining 

technique help to elucidate the ways in which methanotrophs exist in EPS and the way 

EPS and cells are associated with the geotextile matrix. The results also demonstrate the 

elegant utility of combining EPS and bacteria-specific staining techniques. The combined 

staining system in this investigation was used to assess EPS and methanotrophic cell 

configurations in a geotextile material, but the methodology could be generalized to a 

variety of sessile cell systems.   
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 A number of investigations have utilized methanotroph biofilms for various 

purposes (13, 111, 113, 273, 292, 302), however most investigators have assumed that 

the cells were attached and provided no evidence of material association. Clapp et al. (69) 

examined trichloroethylene removal by methanotrophs in a membrane bioreactor. 

Scanning electron microscopy was utilized to visualize methanotrophic cells as well as 

the biofilm. This investigation is the first reported use of fluorescent microscopy to 

visualize an active methanotroph population attachment to a material surface from a 

bioreactor system. This method allows for the simultaneous detection and visualization of 

methanotrophic cells and EPS. It was used to confirm that methanotrophs immobilized 

within a biotarp are associated with the geotextile fibers, likely attached to the fibers 

through the production of EPS. This evidence further supports the speculation that 

methanotrophs were adsorbed to the geotextile through the production of EPS.



 
 
 
 
 
CHAPTER 9: FIELD-TRIALS OF A METHANOTROPH IMMOBILIZED BIOTARP 

 
 

Introduction 

Global landfill methane emissions are estimated to be 14-40Tg/year (33, 35), 

making landfills a significant source of methane and a contributor to global climate 

change. Anaerobic organic waste decomposition in landfills yields methane at a rate 

about 257 L /kg wet refuse. Methane formation is facilitated by methanogenic 

microorganisms that cleave acetate into methane and carbon dioxide or reduce carbon 

dioxide and hydrogen (328). Landfill methane emission rates are variable, ranging from 

0.0004 to 4000 g CH4/m2 day (36, 37, 41, 59, 79). The rate for a given site depends on 

biological, chemical, and physical processes occurring within the soil, and therefore, 

large rate variations can occur  even at a single site (296).  

Methanotrophic biocovers can mitigate landfill methane emissions. A biocover is 

an engineered cover designed to provide a hospitable environment for methanotrophic 

bacteria, which can consume methane. Biocovers are typically made with composted 

organic material, which offers a support structure for the bacteria as well as a permeable 

matrix for gases to enter and leave. Methanotrophs are aerobes, so they need access to 

atmospheric oxygen as well as methane coming from the decomposing waste layers. 

A biocover consisting of shredded yard waste atop tire chips was investigated at 

the Outer Loop Landfill (Louisville, KY). Methane fluxes through a vegetated biocover 

were compared to those through a vegetated cover soil, and fluxes through the soil were 
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significantly higher than those through the biocover (19). A biofilter, which consisted of 

layered (top to bottom) humic topsoil (loamy sand) covered with grass vegetation, sand, 

gravel, crushed porous clay, and a final layer of gravel for water drainage, was used to 

remove methane from collected landfill gas. The gas was fed through the bottom of the 

biofilter, and methane removal was calculated at almost 100% (121). Humer and Lechner 

reported  near total methane removal as well, when they tested a biocover composed of 

0.9 m of sewage sludge compost or municipal solid waste compost placed atop 0.3 m of a 

coarse gravel gas distribution layer (157).  

Together, these studies show that biotic treatment systems are viable tools for 

mitigating landfill methane emissions. Yet, they do not capture all the methane that is 

emitted from the open landfill cell during the time it is being filled. This study examines 

some prototype biotarps that aim to capture methane emitted from the open cell of a 

landfill when the landfill is not in service. 

The concept of a biotarp to mitigate methane emissions from open landfill cells 

has been studied in the laboratory. Methanotrophic bacteria immobilized in a synthetic 

geotextile were tested in laboratory continuous flow chambers, where a multi-layered tarp 

removed 40%. Based on these laboratory findings, a field-scale biotarp prototype was 

designed, and its methane removal capacity was monitored on intermediate cover at a 

nearby landfill. Flux chambers were constructed and installed at the landfill site to 

monitor methane fluxes with and without the biotarps in place.  

Materials and Methods 
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Culture Conditions 

A mixed methanotrophic cell population, enriched and isolated from landfill cover soil as 

previously described in this investigation, was grown in Whittenbury’s NMS (339)  under 

a 10% methane-in-air headspace in 2 L gas tight flasks. Each flask was capped with a 

butyl rubber stopper fitted with a Swagelok cap containing a silicone septum. The 

methanotroph population was maintained at room temperature with constant stirring. 

Flux Chamber Design 

 Flux chambers were used to measure methane flux from the landfill surface. Each 

of the six flux chambers consisted of two parts, as shown in Figure 31. The chamber base 

was constructed of a 40.6 cm diameter and 22.9 cm high, 3.175 mm thick, stainless steel 

cylinder. A 2.5 cm wide stainless steel ring was welded to the inside circumference of the 

cylinder, 7.6 cm from the base. A channel, 2.5 cm wide, was located at the top of each 

cylinder to accommodate a removable cover. The cover was made from a 3.175 mm 

thick, stainless steel bowl with a gas-tight septum inserted into the top of the dome. The 

septum was assembled from an open-cap stainless steel union tube fitting (Swagelok, 

Solon, OH) and a silicone septum was fitted into the cap to allow sampling with a gas-

tight needle. 

Evacuated Vial Preparation 

Evacuated vials were used to collect gas samples from the flux chambers. The 20 

mL serum bottles (Wheaton, Millville, NJ) were closed with a butyl rubber septum 

stopper (Bellco Glass Inc., Vineland, NJ) and secured with an aluminum cap. Vials were 

evacuated using a high vacuum pump (GEM 8990A,Welch), fitted with a digital vacuum 

gauge (DVG64, Omega) capable of measuring pressure values less than 200 mTorr. A 
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Swagelok fitting 

Cover  

Inner support ring for 
prototype 

Chamber base 

Biotarp prototype 

Two semicircular rings to 
secure prototype in place 

Figure 31. Flux chamber configuration. A) Diagram of flux chamber. B) Photo of flux 
chamber components. C) Photo of biotarp prototype in flux chamber. D) Photo of 
assembled flux chamber. 

A 

B C 

D 
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manifold was constructed to allow seven vials to be evacuated simultaneously. The 

manifold was constructed using 3.175 mm, stainless steel tubing, stainless steel union 

cross fittings, and stainless steel union tees (Swagelok, Solon, OH). Valves were included 

in the manifold to control the flow to each vial. The head of a 1 mL plastic syringe 

(Becton Dickinson & Co.) fitted with a 22G needle (Becton Dickinson & Co) was 

secured to the end of each manifold line. Vials were attached to the manifold by inserting 

the needle through the vial septum. A 50mTorr vacuum was applied to the vials and 

preliminary tests showed that they could reliably hold the vacuum for at least three days. 

Field Biotarp Prototype Configuration and Preparation 

A multilayer tarp was prepared by alternating layers of 40.64 cm diameter, 

washed and sterilized Ten Cate geotextiles IR26 and S1600. The IR26 had a fused side 

and a non-fused side. It was placed fused side up in the second and fourth (top) layers. 

The tarps were soaked in 1 L of an overnight methanotroph population for at least 10 

min, removed, and allowed to drain until no further liquid dripped from them. Control 

biotarps were prepared with either sterile NMS or DI water. 

A second prototype was assembled that consisted of the methanotroph-embedded 

multilayered biotarp, and a 0.33 cm thick layer of intermediate cover soil (Allied Waste 

landfill, Cabarrus County, NC) between the second and third layers. Approximately 400 

g of landfill soil were enriched by incubation in a gas-tight jar under a 50% methane-in-

air headspace for 2 days before the soil was added to the tarp. Negative controls consisted 

of a NMS-soaked four-layered biotarp without soil.  

Compost additive tarps consisted of the multilayered tarp as described above with 

a 0.33 cm layer of finished compost (Compost Central Municipal Yard Waste 
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Composting Facility, Charlotte, NC) set between the third and fourth layer. Like the soil, 

the compost was first pre-incubated in a gas-tight jar with a 50% methane-in-air 

headspace for 2 days. The negative control tarp was a multilayer tarp prepared with 

sterile NMS only. 

Shale was also examined as an additional biotarp additive. Shale Fines (Carolina 

Stalite) were sieved to produce a 2.00-4.76 mm particle size fraction that was washed 

with DI water and autoclaved. It was then pre-incubated in either excess solution of an 

overnight mixed methanotroph population or in sterile NMS for about 30 min. The 

biotarp was amended with the methanotroph-soaked shale, while the negative control 

tarps were amended with NMS-soaked shale. Like the soil and compost-amended tarps, a 

0.33 cm layer of shale was placed in the middle of the four geotextile layers. 

Landfill Gas Flux Measurements 

Field trials were conducted at the Allied Waste landfill in Cabarrus County, NC. 

The study site was a section where intermediate soil cover was atop one year old 

municipal waste. The intermediate cover was composed of ~30 cm of clay topped with 

30 cm of top soil. Six flux chambers (Fig. 31) were installed at random locations within a 

20 ft x 20 ft area. The base of each chamber was set firmly into the ground, so that about 

4 cm of the base depth was below grade. Additional soil was placed around the perimeter 

of the chamber and packed down tightly to seal the interface between the base and the 

surface. 

The prototypes were placed atop the inside ring at the bottom of each base. 

Another stainless steel ring was placed on top of each prototype to secure it in place and 

prevent gas short circuiting. After each prototype was in place, the chamber lid was set in 
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a channel that ringed the top perimeter of the base, and four spring clamps were used to 

secure the cover to the base. Water was then poured into the channel to form a gas-tight 

seal between the lid and the base.  

Immediately after preparing the seal, a gas sample was removed, and 

subsequently thereafter in 3 or 5 min intervals for 15 min. Gas samples were collected in 

60 mL plastic syringes (Becton Dickinson, Franklin Lakes, NJ) equipped with a 22G 

needle and a gas-tight valve. The syringes were used to withdraw 50mL of gas from the 

flux chamber through the gas-tight septum, which was then injected into an evacuated 

vial. During sampling, the site temperature was measured and atmospheric pressure 

obtained from local meteorological data was recorded. 

Landfill Gas Flux Determination  

The methane concentration of each sample measured in the laboratory using gas 

chromatography. The methane concentration for each chamber was plotted over time, and 

linear regression was used to generate a regression coefficient (R2). If the R2 value was 

greater than 0.9, the best-fit line was considered acceptable, and the slope of the line was 

used to calculate the methane mass flow rate in ppm/min. The volumetric methane flux 

for a given chamber was calculated using the following equation (274): 

4
CH

VMPc
J = 1.44

ART
 

Where, 

 J = volumetric methane flux (g/m2 day) 

 V = flux chamber volume above landfill surface (m3) 

 M = molar mass of methane (g) 

 P = barometric pressure (atm) 
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 c = methane concentration (ppm) 

 A = biotarp surface area (m2) 

 R = ideal gas constant (L⋅atm/mol K) 

 T = air temperature (K)  

Gas Chromatography 

A gas chromatograph (SRI Instruments, 8610C) equipped with a CTR1 column 

(Alltech, Deerfield, IL) and a thermal conductivity detector (TCD) and flame ionization 

detector (FID) was used to measure the methane concentrations of injected field gas 

samples. Gas exiting the column flowed through the two detectors in series, with the 

helium carrier gas set at a flow rate of 20 cm3/min. High methane concentrations were 

detected by TCD, with a detector temperature set to 100ºC. The injector and oven 

temperature were both maintained at 60°C. Low methane concentrations were detected 

by FID, which received both hydrogen set at a flow rate of 25 cm3/min and ambient air 

(from an internal air compressor), set at a flow rate of 250 cm3/min. A standard curve for 

TCD was generated using ultra high purity methane (National/Specialty Gases, Durham, 

North Carolina). Standard curves for FID were generated using 10% methane (nitrogen 

balance), 100ppm methane (nitrogen balance), and 10ppm methane (air balance) 

standards (Matheson Tri-Gas, Twinsburg, OH). A 5mL syringe (Becton Dickinson & 

Co.) fitted with a 22G needle (Becton Dickinson, Franklin Lakes, NJ) and a gas-tight 

valve was used to withdraw 2.5 mL of a gas sample from the vials. The samples were 

then injected into a 1 mL injection loop, which delivered the gas to the column. The 

manufacture’s software package, Peak Simple 3.29, was used to plot and integrate peaks 

generated from both detectors.  
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Measurement of Ammonia in Landfill Gas Samples 

 A 4% (w/v) solution of boric acid was prepared and 25 mL aliquots placed in 25 

mL gas-tight bottles. Standards were prepared by injecting known volumes of pure 

ammonia gas into the boric acid, which traps the ammonia to form an ammonium-borate 

complex. Ammonia was detected using the Hach Nitrogen Ammonia kit (Hach Method 

10031), with some modifications. A 0.1 mL aliquot of the boric acid-ammonia solution 

was added to the Hach reagents, according to manufacturer’s instructions, and incubated 

for 20 min. Sample absorbency were read at 425 nm and a standard curve constructed 

using duplicate samples of each standard amount. An R2 value of one was considered 

acceptable. 

Landfill gas samples were collected from two chambers and 1 mLwas injected 

into the boric acid as described. The absorbency measured, and using the standard curve, 

the concentration of ammonia was determined. 

Statistical Analysis 

  Data were compared using linear regression, Student’s t-test and One-way 

ANOVA with a Tukey’s multiple comparison test. Statistical analysis was performed 

with Prism GraphPad software (GraphPad Software Inc., San Diego, CA). 

Results and Discussion 

Methane flux rates were measured at thre depths: (i) atop the bare refuse; ii) about 

20 cm below the surface of the intermediate cover soil; and (iii) at the surface of the 

intermediate cover (Table 8). Over bare refuse, methane fluxes were highest, ranging 

from 420 to 5500 g/m2 day. At 20 cm into the intermediate cover, fluxes ranged from 14 

to 1300 g CH4/m2 day, while atop the intermediate cover soil, the fluxes ranged from 0.86 
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to 40 g CH4/m2 day. Considerable variation in methane fluxes within a specific site and 

between the six sites was found. The flux at one single location varied over two-fold, 

from 1830 g CH4/m2⋅d to 4400 g CH4/m2⋅d during one four week monitoring interval. 

Temperatures ranged from 8°C to 23°C over the course of the trials, and a  relationship 

between temperature and methane flux has been well documented in landfills (41, 222, 

224, 313), wetlands (97, 117, 345, 346) and rice paddies (68, 357). The decrease in 

methane flux with increasing temperatures is thought to result from higher methane 

1 mean 1153.71 1320.84 6.37

SD 536.31 995.18 4.87

2 mean 2596.15 537.27 24.48

SD 1160.41 475.47 20.89

3 mean 5493.91 481.89 7.1

SD 2554.27 361.05 6.1

4 mean 2675.8 334.91 39.4

SD 1572.18 280.74 44.57

5 mean 4219.93 14.15 16.61

SD 1911.72 8.98 7.47

6 mean 422.49 367.76 0.86

SD 214.47 174.69 2.31

Bare Refuse 

Flux

20 cm Deep 

Flux

Intermediate 

Cover FluxChamber

Table 8. Mean flux (g/m 2day) from 6 chambers set in bare 

refuse, 20 cm into the intermediate cover, and atop 

intermediate cover.
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oxidizer activity at higher temperatures. The large spatial and temporal flux variations 

were observed here is also consistent with reports from other sites (1, 2, 33, 37-39, 79).  

The decrease in methane flux with depth is due in part to the natural concentration 

gradients that result from multigas mixes, as atmospheric oxygen and nitrogen diffuse 

down into the soil, while carbon dioxide and methane are diffusing upward. The presence 

of resident methanotrophic bacteria in the intermediate soil cover also likely contributed 

to differences in flux with depth. These organisms are ubiquitous in soil, and their 

presence in intermediate cover soil would be very likely. Methanotrophs have been 

detected and/or isolated from final landfill cover soil samples (54, 166, 168, 308, 337, 

347), however no attempts to isolated methanotrophs from intermediate cover have been 

reported. As the flux rates most similar to those found over open landfill cells (100-200 g 

CH4/ m2 day, Bogner, unpublished) corresponded best to those found at 20 cm below the 

intermediate cover here, all subsequent experiments were conducted at this depth.  

  While the addition of compost, landfill cover soil, and shale to the biotarp 

prototype yielded increased methane removal in laboratory continuous flow chambers, 

biotarp efficacy was not evident in the field. Soil amended biotarps, unamended biotarps, 

and negative control tarps with no methanotrophs added reduced methane fluxes by 94%, 

88%, and 80% respectively (Fig. 32). Although there was a slight increase in methane 

removal by the soil amended biotarp, there was not a statistically significant difference 

between the three groups (p<0.05). The soil additive likely contained additional 

methanotrophs that could facilitate methane oxidation and therefore a higher flux 

reduction was measured. The soil also originated from the same site, thus this biotarp 

contained cells acclimated to landfill conditions.  
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The addition of compost to the biotarp under field conditions appeared to lower 

the effectiveness of the biotarp. The unamended biotarp reduced methane flux by 67% , 

while the negative control yielded an 81% reduction. The biotarp amended with compost 

only reduced the flux by 53%. There was no statistically significant difference (p>0.05) 

between the three conditions (Fig. 33).  

In trials with shale included in the biotarp, the methane flux reduction was 47%, 

which was slightly lower than the 55% reduction by the negative control (Fig. 34) 

containing not methanotrophs and no shale. Again, there was no statistically significant 

difference between the control and shale amended biotarp (p>0.05). The unamended 

biotarp was not included in this experiment so that a higher number of replicates could be 

Figure 32. Methane flux reduction by a four layered methanotroph immobilized 
biotarp, a biotarp amended with enriched landfill cover soil, or a negative control 
tarp (NMS only). Error bars represent the standard error of the mean (SEM) of 
duplicate samples. 
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utilized. However, the increase in replicates did not reveal any statistically significant 

differences between the treatments. 

Although the multi-layered biotarp prototypes, particularly those with a shale 

additive, were successful in methane removal under simulated landfill conditions in the 

laboratory, such success was not easily translated to field conditions. Overall, there was 

no difference between negative controls, the four layered biotarp configuration, and 

configurations with amendments. The lack of significance between any experimental 

condition and the negative control suggests that the biotarp prototypes are not effective at 

reducing methane emissions in the field, despite the good performance of biotarps in the 

laboratory and much poorer performance of control tarps in the laboratory chambers. The 

reductions accomplished by the negative controls in the field suggest that a wetted tarp 

without methanotrophs would reduce emissions. To determine the extent to which a 

moist tarp alone can reduce methane flux, dry four layered tarps and tarps saturated with 

Figure 33. Methane flux reduction by a four layered methanotroph immobilized 
biotarp, a biotarp amended with compost, or a negative control tarp (NMS only). 
Error bars represent the standard error of the mean (SEM) of duplicate samples. 
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dI water were compared in flux chambers. The average methane emissions reduction by 

the wet tarp was 89%, while the average flux reduction by the dry tarp was 63% 

reduction (Fig. 35). Methane reduction by the wet tarp was significantly higher (p<0.05) 

than the dry.  

Taken together, these data suggest that the moisture on the biotarps contributed to 

methane flux reductions even in the absence of methanotrophic bacteria. The water may 

serve as a retardant to methane flow by physically blocking flow; by slowing the rate of 

gas diffusion through the pores of the geotextile where water is present; and by 

incorporating some methane that dissolves in the liquid.  

There were a number of challenges present in the field that did not exist in the 

laboratory. The high day-to-day and even hour-to-hour variability in baseline fluxes from 

a given chamber made it difficult to compare trials from one treatment to another within a 

Figure 34. Methane flux reduction by a four layered methanotroph immobilized 
biotarp amended with shale or a negative control tarp (NMS only). Error bars 
represent the standard error of the mean (SEM) of three replicate samples. 



131 
 

 

given chamber or between chambers. The year over which these tests were conducted 

was a particularly wet one, and the opportunity to conduct field tests was reduced by the 

number of rainfall events that occurred during field testing. There may also be other 

volatile compounds present in the buried waste that were toxic to methanotrophs in the 

tarp.  

Ammonia was detected in both flux chambers sampled, with concentrations 

ranging from 4-9 mg/L over a 15 min range (Fig. 36). Furthermore, the amount of 

ammonia present was similar at both chamber sites. These findings are noteworthy 

because ammonia is toxic to methanotrophs and may explain the poorer biotarp 

performance under field conditions. Ammonia is a known component of biogas and is 

produced from the decomposition of proteins (20). At low concentrations, it can be 

oxidized by methanotrophs due to the low specificity of the MMO enzyme (80, 159, 

Figure 35. Methane flux through a wet and dry tarp. Error bars are the standard 
deviation of three replicates.  indicates a statistically significant difference 
(p<0.05). 

 
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339). At high concentrations, however, ammonia can inhibit methane oxidation (85, 283). 

It is likely that ammonia may have inhibited oxidation by the laboratory and compost 

methanotrophs immobilized in the biotarp. The landfill soil amendment may have 

contained ammonia oxidizing microorganisms, which reduced ammonia levels locally 

within the biotarp and made methanotroph methane oxidation possible.  

 

 

  

 

 

Figure 36. The ammonia concentration in landfill gas samples collected from two 
flux chambers (  chamber 1 and  chamber 2) over a 15 minute period. Error bars 
represent the standard deviation of two replicate samples. 



 
 
 
 
 

CHAPTER 10: SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS 
 
 

The purpose of this investigation was to develop a methanotroph embedded 

biotarp to function as a reusable, alternative daily cover that also mitigates early methane 

emissions from open landfill cells. To populate the biotarp and facilitate methane 

mitigation, methanotrophs were successfully enriched and isolated from landfill cover 

soil. Several isolation methods were explored, and all were challenging and time 

intensive.  Furthermore, some methods were hindered by frequent heterotroph 

contamination. Isolation by adsorption onto a natural sponge and a synthetic geotextile 

were found to be the most successful. This technique likely exploited the natural adherent 

properties of methanotrophs, namely EPS. This method also probably minimized 

heterotroph interference because active methanotrophs were adsorbed from conditions 

that suited their growth.  

Methane oxidation measurements and a diagnostic microarray confirmed that a 

robust population of methanotrophs was enriched from landfill cover soil. The microarray 

was sensitive down to the genera level, and only one non-methanotroph was isolated. 

Although further isolations and RNA sequencing would better characterize the 

population, this was not done because it was anticipated that biotarps would develop 

different population mixes in the field. Furthermore, characterization of landfill 

methanotroph populations had previously been reported by Wise et al. (347) and was 

beyond the scope of this investigation.  
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Three different immobilization techniques were investigated to embed 

methanotrophs into the biotarp. Cell entrapment in alginate beads and liquid-core gel 

capsules were evaluated because they would allow methanotrophic cells to be 

concentrated and maintained in a bead/capsule within the biotarp. Entrapment, 

particularly in liquid-core gel capsules, would also allow nutrients to be stored along with 

the methanotrophic cells. Through the use of automated bead synthesizing equipment, 

production could easily be scaled up to supply entrapped methanotrophs for commercial 

biotarp production. However, several problems with entrapment as an immobilization 

scheme were encountered. Both alginate beads and the gel capsules desiccated quickly 

when exposed to the open air and did not rehydrate when moistened. Furthermore, 

preliminary studies of methane flow through biotarp samples in the continuous flow 

chambers indicated that methane flow was not evenly distributed and methane “hotspots” 

were created in the tarps. Methanotrophs contained in beads or gel capsule would be 

unable to move to the high methane flow areas, which could reduce the overall 

effectiveness of the biotarp. The methane oxidation rates by entrapped cells were much 

lower compared to methanotrophs adsorbed to various materials, therefore no longer term 

methane oxidation studies of entrapped methanotrophs were conducted. However, other 

investigations have found that as the cell population expands within the bead, mass 

transfer resistance occurs (286, 287). Despite the problems found with cell entrapped in 

this investigation, it may be a feasible option using commercially available bead 

synthesizing systems. Such automated systems would allow multiple bead characteristics, 

such as diameter, wall thickness, pore size, core volume, etc, to be optimized for maximal 

methane oxidation capacity.  
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The highest methane oxidation rates measured during the survey of 

immobilization schemes occurred in cells adsorbed to a natural sponge, foam padding, 

and synthetic geotextile. Biomass accumulation measurements indicated that although 

methane oxidation was highest in samples containing the most water absorbent materials, 

it was not due to increased cell numbers. This suggests that the high surface area 

provided better methane exposure and/or materials chemical and physical properties 

promoted higher methane oxidation. Although the highest methane oxidation rates were 

observed with the sponge and foam padding, they were judged too bulky for field use. 

Adsorption was judged to be a very easy method for immobilizing methanotrophs. It 

would allow free cell movement throughout the tarp, an important feature for targeting 

higher cells densities around methane hotspots. However, because cells are not 

irreversible anchored within the biotarp, cell loss can occur. This was confirmed by 

stability assays that showed an approximately 70% loss after washing. Nevertheless, the 

remaining population was viable, and such washing may function to refresh the biofilm 

after heavy rainfall events. 

The biotarp must be designed to target year round methane emissions from active 

landfill cells. There is very little basic research regarding the molecular and physiological 

responses of methanotrophs to temperature stress. Therefore, it was necessary to 

determine the methane oxidation response of immobilized methanotrophs at various 

temperate climate temperatures. Methane uptake rates increased with increasing 

temperatures, up to 35°C, and an optimal temperature range for this methanotroph 

population was evident. The finding of shifts in dominant methanotroph species and 

temperature optima with altered incubation temperatures suggests that biotarp 
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methanotrophs may acclimate to lower seasonal temperatures. Although acclimatization 

may occur, oxidation rates will likely continue to be lower at lower temperatures, as 

methanotrophic growth and likely enzymatic activity, would be lower as well. 

As the biotarp will be in place during the evenings and weekends, methanotrophs 

in the tarp will encounter daily starvation periods. The data indicated that methane 

oxidation could be renewed after cells were methane starved; although the renewed rates 

declined the longer cells were starved. Oxidation rates also declined during a 12-hour 

“on-off” methane cycling regime. Positive control samples showed a similar, but delayed 

decline, indicating that factors other than methane starvation were contributing. Reports 

of methane starvation and renewed methane uptake in the literature vary, and the results 

of starvation studies in this investigation are not consistent with any previously reported 

findings. This confirms that the starvation response depends on many factors, including 

the methanotroph population composition, methane history, and environment. 

Furthermore, the decline in methane oxidation by controls that received methane 

continuously over five days suggests that either inorganic nutrient depletion or EPS 

accumulation may be contributing factors to the observed reduce methane uptake. It may 

be necessary to provide inorganic nutrients to biotarp in the form of a daily spray or in a 

slow-release capsule. EPS accumulation, which can limit oxygen and methane diffusion 

to the cells, may be reduced by rainfall events 

The results of these environmental stress challenges suggest that low temperatures 

and methane starvation may reduce biotarp performance in field trials. It is possible that 

with continued exposure to field conditions, an initial inoculation of methanotrophs could 

yield an adapted population that could tolerate temperature and starvation stressors better 
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than the laboratory population. Furthermore, the washing out of cells could reduce EPS 

build-up within the biotarp and aid in sustained methane oxidation activity. 

Evaluation of six different materials commonly used in cell immobilization 

applications indicated that a synthetic geotextile was most suitable as a biotarp 

component. A number of commercial and custom-manufactured geotextile materials were 

evaluated for their water hold capacity and ability to promote methane oxidation, as a 

part of the biotarp development. Of the nine geotextiles examined, Ten Cate Nicolon 

product materials S1600 and IR 26 were found to have both high water holding capacity 

and support high methane oxidation. Therefore, these materials were selected as 

components of a biotarp prototype. Evaluations of the various geotextiles demonstrated 

the importance of material properties that facilitate both high methane oxidation (a 

function of the water/methanotroph culture holding capacity) and high gas permeability.  

Mass balance calculations were conducted for methane into and out of each 

continuous flow chamber. Preliminary experiments indicated that a multi-layered biotarp 

performed better than a single-layered biotarp, removing an average of 17% of the 20-25 

g/m2 day entering the bioreactor. Water condensation, oxygen consumption, and carbon 

dioxide production were also evident in chambers with active biotarps, while these 

changes were absent in control tarps. The methanotroph activity level in the chambers 

was a markedly different from batch studies. The difference was likely due to the 

residence time of the methane molecules with the cells. In batch, methanotrophic cells are 

surrounded by a given mass of methane for 24 hours. Under continuous flow, there is a 

finite time that a methane molecule has to diffuse into the cell. If diffusion does not 
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occur, the methane molecule escapes and the cell does not have another opportunity to 

oxidize that molecule.  

In order to enhance methane uptake levels, various amendments were tested in 

four-layer biotarp prototypes. The amendments were landfill cover soil, compost, or shale 

which maintained more uniform methane oxidation rates over time and yielded average 

methane removal rates of 32%, 30%, and 40%, respectively. In addition to increasing gas 

detention within the biotarp, these amendments also introduced some additional 

methanotrophs, as well as changes in moisture conditions, other microbes and microbial 

products, and different surfaces for binding. Results from the continuous flow chambers 

revealed the need for increased gas detention time with the embedded cells. Gas 

distribution could also be examined in future prototypes to ensure that methane flow 

occurs uniformly across the biotarp to prevent the formation of methane hotspots. As 

increased methane removal by amended biotarps may be due, in part, to additional 

methanotrophs, promotion of growth within the biotarp could further increase removal 

rates. This could be achieved by supplying cells with inorganic nutrients or by increasing 

methane exposure. Methane oxidation rates can be increased by improving the biotarp 

design. Figure 36 illustrates important features of an ideal biotarp configuration. In this 

ideal design, the bottom layer should be composed of a highly gas permeable material 

that allows gases to enter, but not exit. The layer above that should consist of a material 

that promotes good gas distribution, such that the methane load is uniform across the 

biotarp. The inner layer should promote gas detention, methanotroph growth, and 

attachment; while the top layer should encourage methane detention, but oxygen 

penetration and carbon dioxide release.  
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To confirm that methane oxidation was mediated by methanotrophs, and to 

visualize biofilm architecture in the geotextile, FISH was used to fluorescently label Type 

I and Type II methanotroph cells with type-specific RNA probes. The lectin, 

Concanavalin A was used to visualize EPS. Together, this staining technique clearly 

showed that the methanotrophs were associated with the EPS and that most appeared to 

be associated with the geotextile fibers due EPS production. Although, the depth of the 

cells could not be determined using standard fluorescent microscopy, the use of confocal 

microscopy would provide some insight into cell location. This information would be 

important in determining if reductions in methane oxidation rates were due to 

accumulation of EPS, in which case cells would be located under a thick EPS layer.  

Examination of biotarp samples after incubation in the continuous flow indicated 

that both Type I and II methanotrophs, as well as EPS, coated geotextile fibers. This was 

consistent with diagnostic microarray analysis that showed both types of methanotrophs 

present. The density of methanotrophs on the geotextile fibers was lower than expected. 

High gas 
permeability 

High gas 
detention, 

methanotroph 
growth and 
attachment 

High gas 
distribution 

Figure 37. Ideal biotarp prototype based on results from continuous flow chamber 
trials. 
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This indicates that the methanotroph load on the biotarp can be increased and 

methanotroph growth within the biotarp should be promoted.  

 Field tests of the biotarp prototypes used flux chambers set in intermediate cover 

at a local landfill. Baseline readings showed that a wide range of methane fluxes could be 

measured both at a given flux chamber site and between sites and may be confounding 

the biotarp performance. A reduction in methane flux was observed, relative to bare soil, 

when the prototypes were placed in the flux chambers; however there was no statistically 

significant difference between negative control tarps, the four-layered biotarp, or biotarp 

with any of the amendments. Additionally, ammonia was detected in the landfill gas, and 

is a known inhibitor of methanotroph methane oxidation. The addition of ammonia 

oxidizing microorganisms to the biotarp may be necessary to overcome ammonia-

mediated methane oxidation inhibition.  

 The goal of this project was to determine the feasibility and to develop a 

methanotroph embedded biotarp.  A method for immobilizing methanotrophs was 

identified and positive results were found using several biotarp prototypes in laboratory 

bioreactors. However, laboratory stress tests and field evaluations suggest that a number 

of biotarp features and properties need to be addressed, including methanotroph loading, 

nutrient supplementation, methane detention and distribution. Overall, the findings 

suggest that a methanotroph embedded biotarp appears to be a feasible strategy to 

mitigate methane emission from landfill cells. Further modification of the biotarp 

prototypes as recommended here, should facilitate increased methane removal under field 

conditions.  
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