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ABSTRACT

ASHUTOSH DUTTA. Autonomous Cyber Defense: Formal Models and
Applications. (Under the direction of DR. BEI-TSENG CHU)

With technological advancements, cyber attacks are highly automated and organized

with asymmetric advantages over defenders regarding cost and efforts. Attackers

employ sophisticated and diversified approaches to achieve attack objectives while

being stealthy [1]. Therefore, enterprises strive for autonomous frameworks to opti-

mize cybersecurity planning through addressing uncertainties related to attackers and

the environment. However, most existing cybersecurity defense solutions are static

and highly rely on human expertise, which inevitably decreases odds for defenders.

This dissertation aims to advance state of the art by developing new models and

frameworks to enact automated and dynamic defense planning optimization for cy-

ber risk and attack mitigation. This dissertation has three objectives: (1) developing

a framework to compute optimal cyber risk mitigation planning, (2) developing a

framework to achieve real-time defense optimization against strategical cyber attacks

in a stochastic environment, and (3) developing defense models to cope with dynamic

attack and environment behavior.

In the second chapter, this dissertation presents formal models of an automated

cyber risk mitigation framework, named CyberARM, to compose an optimal set of

cybersecurity defense controls as cybersecurity portfolio for an enterprise. Computing

a cost-effective portfolio to optimize Return on Investment (ROI) is still a highly

complex and error-prone task due to the large number of security controls, and cor-

related risk factors (e.g., vulnerabilities and attack techniques) of an escalated and

diversified attack surface. CyberARM formulates the decision-making problem as

Constraint Satisfaction Problem (CSP) to compute a correct-by-construction cyber-

security portfolio. The computed portfolio wants to maximize ROI considering the
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increasingly evolving threat actions after satisfying all user requirements (e.g., budget

and mission-oriented constraints). Moreover, the computed portfolio answers three

fundamental questions: (1) “what" security controls are needed for “which” security

function (i.e., Identify, Protect, Detect, Respond, and Recover), (2) “where" to en-

force (Network, Device, People, Application, and Data), and (3) “why" it is effective

in the cyber attack kill chain phases. The evaluation results show that CyberARM

can approximate a cost-effective cybersecurity portfolio for large enterprises applying

its model reduction and decomposition approaches.

In the third chapter, this dissertations presents a multi-agent distributed cyber

defense framework, named Horde, to defend sophisticated Infrastructural Distributed

Denial of Service (I-DDoS) attacks autonomously. In I-DDoS attacks, attackers tar-

get core backhaul links to impede the availability of critical networks or servers

while avoiding end-system defenses [2, 3]. Despite the extensive efforts in devel-

oping DDoS mitigation solutions, the sophistication and potential impact of I-DDoS

attacks continue to grow significantly. To protect critical network links, Horde as-

signs autonomous agents that compute cost-effective composition of defense tactics

(i.e., limiting, filtering, diversion, rerouting) dynamically at real-time, considering

the expected behavior of I-DDoS attackers and the network. It establishes auto-

mated collaboration among agents to share spare bandwidth for rerouting prioritized

traffic of congested links through alternative routes. Horde formulates the problem

of an agent’s decision-making using Reinforcement Learning (RL) and applies Par-

tially Observable Markov Decision Process (POMDP) to solve it, after reasoning over

uncertainties of decision parameters.

In the fourth chapter, this dissertation presents models aiming to infer expected

behavior of attacker and environment to integrate into decision-making, in order

to confront dynamic I-DDoS attackers in an uncertain environment. Most existing

game-theoretic DDoS frameworks struggle due to static assumptions on attackers and
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critical environmental parameters. This chapter presents incremental and online ap-

proaches to learn currently adopted attack strategies and critical decision parameters

of the network without requiring deep domain knowledge. The autonomous defense

model enables Horde agents to evolve dynamically through observing, hypothesizing,

and investigating and deciding via the interaction experience with the environment

and attackers. This enables to not only observe and respond to I-DDoS attacks timely

and effectively but also exhibit a robust behavior against evasion and deception at-

tacks. The evaluation results on diversified attack strategies show that Horde agents

can serve more than 97% benign traffic despite dynamic attack and network behavior

and attack detection inaccuracies.
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CHAPTER 1: Introduction

The advancement of technologies has engendered the emergence of diversified de-

vices and applications. These devices and applications enable the processing and

sharing of information with better flexibility and control by connecting with cyber.

Indeed, applications of cyber have stretched from personal domains such as home

automation to critical national infrastructures such as smart grid, gas, and oil grid.

Due to such reliance on cyber, any interruption induces a significant negative impact

on our lives and business. The incident of hacking an electric utility’s SCADA (Su-

pervisory Control and Data Acquisition) system in Ukraine is such an example, that

caused approximately 6 hours of power blackout for a quarter of a million people [4].

The exponential rise of cyber connectivity with heterogeneous assets (e.g., devices,

applications, services, and others) has made operating and managing cyber extremely

complex. New vulnerabilities never cease to appear due to erroneous configurations

or weakness in software/firmware. Moreover, many vulnerabilities remain undiscov-

ered until being attacked (i.e., zero-day vulnerabilities), and many remain unpatched

due to compatibility issues or tendencies to ignore software/firmware update. Hence,

cyber expansion is also responsible for the rapid escalation of the cyber attack sur-

face (i.e., available attack approaches to exploit system vulnerabilities). Therefore,

any cyber system such as Cyber Physical Systems (CPSs) are more susceptible to

cyberattacks than ever before.

Despite investing a lot of money for cyber risk mitigation, cyber incidents still

tend to escalate. In fact, no money is adequate to deploy a bullet-proof risk miti-

gation planning against such an extensive and diversified attack surface. Therefore,

enterprises quest for a cost-effective cyber risk mitigation planning, termed as cy-
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bersecurity planning, to minimize the risk within the limited budget considering the

potential attack surface and its sophistication. However, manual planning is infeasible

due to complex cyber architecture, attack sophistication, and numerous correlated cy-

ber factors (e.g., threat, attack techniques, vulnerabilities, and others). The situation

exacerbates further due to diversified enterprise-oriented policies regarding business,

operations, and others. Therefore, manual defense configurations are often not only

non-optimal but also erroneous.

Cyber adversaries nowadays adopt automated tools to launch the attack at high

speed with low traces. According to NETSCOUT, it only takes five minutes to attack

an IoT (Internet of Things) device after being connected with the internet, and Offi-

cial Annual Cybercrime Report (ACR) has predicted that there will be a ransomware

attack in every 14 seconds [5]. Sophisticated adversaries discover deployed defense

plans and evade these with innovative approaches. They follow a specific strategy that

maximizes attack objectives by observing the network condition and consequences of

past attack actions. In fact, seven out of ten predominant MITRE ATT&CK tech-

niques [6] of last year belong to Discovery attack tactic [7]. They evolve to encroach

into critical systems or applications by exploiting new vulnerabilities or old vulner-

abilities with innovative attack techniques. The attacker infers entry points, current

defense configuration, or effective attack vectors through reconnaissance and discov-

ery. For example, the attacker can use CrackMapExec and Kwampirs to discover the

password policy [8]. He can use BRONZE BUTLER to determine follow-on behaviors

or check the infection status on victims [9]. Moreover, state-sponsored and coordi-

nated attacks such as Advanced Persistent Threat (APT) attacks are well-resourced

to exert advanced automated techniques to attack critical infrastructures persistently

while being stealthy. As a result, they provide little time to react while disabling

countermeasures, counter-attacks, or human interference in the first place.

On the contrary, enterprises relying on static defense planning and human interfer-
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ence to detect or respond to cyber attacks are slow to defend such automated cyberat-

tacks. Therefore, there exist profound demands for automated cyber decision-making

frameworks to effectuate optimal defense plannings. These frameworks endeavor to

minimize cyber risk while satisfying all requirements regarding budget, operation,

safety, and security [10] of an enterprise or infrastructure. However, to compute an

effective risk mitigation plan, defense optimization frameworks must address the fol-

lowing challenges: (1) asymmetric cyber warfare, (2) lack of domain-specific data, (3)

establishing automated collaboration and coordination, and (4) scalability.

The first challenge is asymmetric cyber warfare that arises due to the attacker’s

asymmetric advantages over the defender regarding cost and efforts [10]. While the

defender has to concern all possible attack approaches, a single loophole or vulnerabil-

ity may be enough for the attacker. Additionally, cybersecurity countermeasures are

generally more expensive, approximately four times of attack cost, due to installation

and utility cost (e.g., loss of usability due to restricted access) [11]. According to

InfraGard reports, a low-end cyberattack causing $34 to launch could return $25,000

in a month, while the expensive-end attack causing a few thousand dollars could re-

turn more than $1 million [12]. Importantly, attackers can easily afford to try various

attack approaches due to the low cost of attack tools that can be as low as $1 in dark

web [5]. Therefore, the defense optimization framework must predict the imminent

potential cyberattacks to prioritize them for mitigating. Besides, to cope with fail-

ures of proactive approaches, defense configurations need to be reactive to respond

to cyberattacks or recover from attack impact. Indeed, layered defense-in-depth to

avoid single-point-of-failure is the fundamental requirement to implement a resilient

defense configuration. Moreover, to react to the attacker’s strategical adaptions ef-

fectively, the defense framework must infer the attacker’s strategical adaptations, at

least probabilistically, to minimize the cyber risk or attack impact.

The second challenge arises from the lack of domain-specific data, which makes for-
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mulating the cyber environment with numerous correlated factors very hard. Besides,

many of these factors exhibiting uncertain properties can only be observed partially

with incomplete and imperfect information. For example, all sensitive network links

may not be observed altogether to detect suspicious activities due to limited energy,

which induces incompleteness into the gathered information. Without domain-specific

data and deep domain knowledge, deterministic or static approaches of formulating

stochastic environment behavior become overly conservative. Moreover, cyber in-

frastructures generally have diversified requirements that must not be violated to

maintain their expected behavior, safety, and security. Many of these requirements

depending on dynamic environment properties, can only be known after going to

operations [13]. This necessitates the refinement of defense policies dynamically by

actively learning the environment.

The third challenge, establishing automated collaboration and coordination, needs to

be addressed to enable optimal defense configurations across the network. Distributed

attacks such as link-flooding DDoS (Distributed Denial of Service) attacks [3, 2] de-

mand collaborations among ISPs or ASPs for effective defense, which are generally

indefensible at the target enterprise premises. Besides, flooding the downstream ISPs’

links also incur unaffordable network utilization at upstream ISPs. Hence, upstream

network points or cyber entities should step up and collaborate among themselves to

defend such distributed attacks. Here, cyber entities represent ISPs, domains, ASPs,

sub-domains, enterprises, or departments. However, there still lack of consensus col-

laborative intentions among these entities, who are mostly apathetic to it due to the

lack of automation.

The fourth challenge, scalability, needs to be addressed to cope with the exponen-

tial growth of problem space due to the size and exponential expansion of cyber. The

computational complexity of decision optimization algorithm must not grow signifi-

cantly with the increase of cyber, especially for real-time optimization.
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In both industry and academia, researchers have put tremendous efforts into au-

tomating cybersecurity planning applying different approaches such as formal mod-

eling, game theory [14], machine learning, sequential decision process [15, 16], rein-

forcement learning [17, 18], and others for past several years. Though these works

have provided insights about the basic properties of automated defense frameworks,

these frameworks have several limitations regarding dynamic defense optimization.

Firstly, most of these frameworks consider static or strict assumptions about at-

tackers, which restrict the scope of attack models unrealistically. As a result, these

frameworks fall short in defeating dynamic and adaptive attackers. Secondly, these

frameworks ignore uncertainties of dynamic environmental factors (e.g., background

traffic, hardware failures, sensor errors, and others), that deviate the reality far from

the modeled or simulated environment. Thirdly, these frameworks’ objective functions

only focus on local cyber risk mitigation of an enterprise without exploring the scope

of collaborations. Fourthly, these frameworks fail to tackle the exponential growth

of computational complexity with the increase of critical resources. Hence, these are

incompetent for real-time defense optimization considering dynamic attackers and

correlated environmental factors.

The objective of the dissertation is to develop methods, models, and frameworks

for automating optimization of cybersecurity decision-making to employ dynamic,

context-aware, and cost-effective cybersecurity planning against sophisticated and

adaptive attacks. Notably, context depends on the current environment/network

condition and currently adopted attack strategy. This dissertation presents feasible

and scalable models to solve real-world cybersecurity decision problems and automate

collaborations among heterogeneous entities. However, this dissertation does not

discuss any financial model to establish incentives for collaborations.

This dissertation mainly focuses on two problems: (1) optimal defense resource

allocations of an enterprise through recognizing potential attack surface and satisfy-
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ing diversified business or mission-oriented policies, and (2) distributed multi-agent

dynamic decision-making against strategical and adaptive I-DDoS (Infrastructural

Distributed Denial of Service) attacks. The first research problem investigates data-

driven planning of coarse-grained security countermeasures, which is discussed in

chapter 2. The other research problem investigates experience-oriented planning of

fine-grained and dynamic defense strategies against I-DDoS attacks, which is divided

into two problems and discussed in chapter 3 and chapter 4.

In summary, this dissertation solves the following research problems:

• The first research problem aims to compute a cost-effective Cybersecurity Port-

folio for an enterprise after satisfying all of its requirements regarding business,

mission, security, and others.

• The second research problem aims to develop a multi-agent distributed frame-

work to optimize I-DDoS defense composition autonomously at real-time to

defend adaptive I-DDoS cost-effectively. This framework to be deployed by

upstream network points must be flexible to collaborate with other upstream

network points.

• The third research problem aims to develop models to integrate the Evolve

capability into I-DDoS defense framework to address the dynamic behavior of

the network and attackers.

1.1 Motivation

This section discusses motivations of research problems of this dissertation.

• Automated Cyber Risk Mitigation Optimization: The exponential ex-

pansion of cyber has not only expanded the attack surface but also increased

security countermeasures or controls to defend those. Security guidelines such

as CIS Critical Security Control [19], MITRE [6] gather a comprehensive set
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of defense approaches, but it is infeasible to deploy all these mitigation ap-

proaches with a limited budget. Moreover, enterprises generally have many

requirements that, if violated, induce colossal loss. For example, a web applica-

tion hosting advertisements should not adopt white-list based URL filtration,

as it will not conform with business objectives. Therefore, enterprises wish to

conduct cybersecurity investments in a way that it will minimize the risk within

the affordable budget while conforming with all given requirements. According

to MarketsandMarkets (a market research firm), the cybersecurity investment

market will reach at $248 billion that is almost twice the current market by 2023

[20]. However, enterprises still fail to invest appropriately, and a survey of over

1,500 organizations reveals that approximately two-thirds of organizations’ de-

fense plannings are ineffective [21]. As a result, cyberattacks continue to haunt

enterprises, and are predicted to appear with more intensity and sophistication

in the near future. Only in 2020, induced global loss due to successful attacks

has exceeded $1 trillion [21].

Deploying an optimal cybersecurity investment plan, known as Cybersecurity

Portfolio, has become a pivotal responsibility of a CISO (Chief Information Se-

curity Officer) or CSO (Chief Security Officer) of an enterprise. Importantly,

besides minimizing the cyber risk, a cybersecurity portfolio must satisfy all

requirements regarding budget, operation, usability, safety, and others of an

enterprise. However, it is very challenging because there exist (1) complex

correlations among components of attack vectors and vulnerabilities, (2) het-

erogeneous effectiveness (i.e., success probability against an attack) of security

countermeasures, (3) enterprise oriented resiliency requirements, (4) diversi-

fied business or mission oriented policies/requirements and regulations, and (5)

non-linear growth of problem space with the increases of asset list. This is why

previously adopted ad hoc and manual approaches to optimize cybersecurity
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investment plan is not only error-prone but also infeasible for a modern-day

enterprise with a large number of assets. Hence, computing the cost-effective

cybersecurity portfolio is still the holy grail of cybersecurity.

• Autonomous Cyber Defense Against Adaptive I-DDoS: Despite exten-

sive efforts to defend against Distributed Denial of Service (DDoS) attacks, the

sophistication of DDoS continues to evolve to defeat advanced defense tech-

niques. According to Neustar (a telecommunication company), there was a

151% increase of DDoS incidents only in the first half of 2020 compared to

2019, with a significant spike in attack innovations and sophistication [22]. In-

frastructural Distributed Denial of Service (I-DDoS) is one variant of sophisti-

cated attacks, that aims to bring devastating impact on critical infrastructures

of victims [23]. In I-DDoS attacks, attackers target core/critical backhaul links

carrying a significant portion of traffic of targeted critical networks or servers,

in order to impede the availability of those critical servers or networks [3, 2].

There are two variants of I-DDoS attacks: (1) Direct, and (2) Indirect, based on

intended destinations of attack traffic. In Indirect I-DDoS, instead of sending

traffic directly to target networks, the attackers send traffic to selected decoy

bots or decoy servers residing in the victims’ neighborhood to congest critical

links. Notably, in both Direct and Indirect I-DDoS, downstream end-system

defenses cannot resist these attacks effectively as congestion at upstream links

already blocks traffic before reaching to downstream network points [24, 25, 26].

Defending sophisticated I-DDoS attackers is challenging because they adopt

mixed strategies with varying (1) traffic rate (aggressive or low), (2) bots’ lo-

cation distribution (sparse or dense), and (3) number and location of decoys

servers to maximize the stealthiness while maintaining menacing attack inten-

sity. Instead of always relying on elephant flows (i.e., large continuous traffic

flow) only, they may emphasize on shrewd attacks (i.e., comparatively low-rate
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attacks) for imitating legitimate traffic behavior to deceive Intrusion Detection

System (IDS) or attack flow classifiers. The situation aggravates for Indirect at-

tacks as victims remain ignorant about attack traffic. Nowadays, attackers can

afford to launch such distributed and adaptive attacks due to the easy availabil-

ity of compromised end-points, commercialized DDoS servers, and automated

tools for attack coordination [27]. In fact, I-DDoS attackers are highly advanced

who learn about network conditions and adapt their strategies accordingly to

sustain the attack impact while evading detection and mitigation. According to

Neustar, almost all mitigated DDoS threats had multiple attack vectors while

52% attacks exerted three or more vectors [22]. Therefore, enterprises spanning

from financial to manufacturing, healthcare to streaming, or small to large are

at continuum risk of I-DDoS that can completely cripple network infrastructure

to deny the availability of services.

1.2 Research Objectives

The main objective of this dissertation is to design automated cybersecurity decision-

making frameworks to dynamically optimize defense strategies against adaptive and

diversified attackers, through solving challenges related to limited resource, incom-

plete or imperfect knowledge about environment, mission or business oriented policies,

state space explosion, and stochastic environment behavior. This section describes

research objectives of chapter 2, 3, and 4 respectively:

• Automated Cyber Risk Mitigation Optimization: The goal of this re-

search is to develop an automated decision-making framework for CISOs, called

CyberARM, to compute the cost-effective Cybersecurity portfolio within a lim-

ited budget, considering all correlations among attack vectors, vulnerabilities,

assets, and security countermeasures. Besides, the portfolio must be able to

satisfy enterprise specific resiliency requirements and all mission, business, se-

curity, or usability oriented requirements. One of the fundamental contribution
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of the work is prioritizing the attack surface of an enterprise that, if mitigated,

improves Return On Investment (ROI) significantly. Moreover, the computed

portfolio must reason over following questions: (1)What security functions (i.e.,

identify, protect, detect, respond, and recover) it will offer, (2) Where (i.e., at

which layers of environment) it will apply security functions, and (3) When

(kill chain phase) and against which threat actions it will defend. To optimize

defense plan through answering mentioned questions, this dissertation aims to

develop a systematic way to categorize security countermeasures based on their

defensive traits. This framework ensures the scalability for enterprises with

large number of assets and diversified requirements.

• Autonomous Cyber Defense Against Adaptive I-DDoS: The goal of this

research is to develop a multi-agent distributed framework, called Horde, to

optimize defense composition autonomously against adaptive and strategical I-

DDoS attacks at a stochastic environment. The framework assigns a dedicated

and autonomous agent for each of the critical links, that independently opti-

mizes the defense composition of traffic limiting/filtering and traffic diversion

(e.g., traffic rerouting) at its assigned link. Horde must enable automated col-

laborations among agents of same and other Horde for sharing link bandwidth,

in order to deploy traffic rerouting to avoid congestions. An agent’s decision

model must be scalable to ensure defense optimization dynamically at real-time

through addressing stochastic network behavior and integrating the probable at-

tack behavior into decision-making. Besides, the decision model must address

uncertainties related to environmental decision parameters such as understand-

ing current link condition, IDS uncertainties in distinguishing attack traffic, and

others. At any specific time-sequence, an agent tries to answer following ques-

tions: (1) which flows need to be dropped?, (2) which flows need to be rerouted?,

and (3) which flows need to be allowed through regular routes? The aggregation
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of all agent’s independent decision-making collectively maximizes the benign

traffic serving while also maximizing the benign traffic drop.

• Integrating Evolve Capability into Defense Model: The goal of this re-

search is to integrate Evolve capability into Horde agent’s decision process, so

that, it can cope with dynamic behavior of the environment. The objective of

this chapter is two-fold: (1) predicting the attack behavior, and (2) optimal

tuning of critical decision parameters. Understandably, without understanding

the attack behavior, defense optimization is not feasible. Due to lack of data

on diversified and adaptive I-DDoS attack strategies, Horde must deploy an in-

cremental approach that can learn the currently adopted attack strategy based

on previous interactions with the attacker. Such decision model must not only

be able to cope with attack adaptations but must also be robust against attack

deceptions. This chapter focuses on tuning critical decision parameters such as

system dynamics (i.e., regulating changes of link condition due to attack and

defense interplays) and discount factor (i.e., regulating future impact). More-

over, Horde agents must cope with IDS inaccuracies that mainly change with

the stealthiness or aggressiveness of attack behavior. Another objective of this

chapter is to evaluate Horde against diversified I-DDoS attack strategies in a

dynamic setting.

1.3 Background

This section describes some modeling approaches that are applied to solve problems

of this dissertation.

1.3.1 Satisfiablity Modulo Theories (SMT)

SMT is a form of Constraint Satisfaction Problems [28], that generalizes boolean

SAT [28] theories to deal with integers, real numbers, arrays, and other data struc-

tures efficiently. Moreover, SMT enables extensive formal modeling approaches com-
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pared to SAT, and SMT-solvers are powerful tools to solve constraint satisfaction

problems in many domains such as discovering security vulnerabilities, hardware and

software verification, counterexample generation, scheduling, and planning, solving

graph problems, and others [29]. SMT formulas are expressed in classical first-order

logic, where predicates from many background theories replace binary variables of

SAT. Modern SMT-solvers can satisfy formulas with thousands of variables and mil-

lions of clauses [30]. SMT-solver is applied to compute risk mitigation planning that

optimizes decision-making with bounded rationality.

1.3.2 Sequential Decision Process (SDP)

A sequential decision process (SDP) is the process of optimizing an agent’s decision

making. The agent has to interact synchronously with the external environment by

acting and observing [31] the consequences of actions. To apply SDP, the subjected

environment needs to (1) exhibit stochastic behavior that means the consequence

of an action is not always the same, and (2) satisfy the markovian property that

specifies the transition to the next state depends on the current state and action. In

a stochastic environment, the decision-making approach needs to be sequential rather

than action planning to address the dynamic properties of the environment.

The sequential decision process model consists of the following parameters:

• Set of states, S, where a state defines a distinct condition of the environment,

• Set of actions, A,

• State transition function, T : S × A −→ S ′, where T (s, a, s′) = P (s′|s, a)

specifies the probability of transition to next state s′ ∈ S from the current state

s ∈ S and action a ∈ A.

• Set of observations, Ω,

• Observability matrix function, O : S × A −→ Ω, where O(s, a, o) = P (o|s, a)
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Figure 1.1: An example of Sequential Decision Process. The environment consists of
two states S1 and S2, and two actions a1 and a2. The computed policy π determines
the optimal action At for the given belief (probabilistic estimation of current state)
bt at current time-sequence t.

specifies the probability of observing o ∈ Ω at the current state s ∈ S when the

recent executed action is a ∈ A,

• Reward function, R : S × A × O × S ′ −→ R, where R(s, a, s′, o) specifies the

reward, R, achieved by executing action a ∈ A that transits the environment

from current state s to next state s′ when the observation is o ∈ Ω,

• Discount factor, γ ∈ [0, 1), that regulates how far the agent will look to under-

stand consequences of considered actions.

Several algorithms such as value iteration and policy iteration can solve the decision-

process model to compute a policy [31, 32]. The computed optimal policy aims to

maximize the accumulated rewards by executing the optimal sequence of actions

throughout time-sequences based on conditions of the environment. The computed

optimal policy, π, determines the optimal action for a given belief. Belief is a prob-

abilistic distribution over possible states, that contains a value for each state s ∈ S

specifying the probability s as current state st. The belief function depends on state
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transition probabilities, conditional observation probabilities, and current observa-

tion.

Fig. 1.1 illustrates an example of sequential decision process. At the start of current

time-sequence t, the agent determines belief bt based on the recent observations (e.g.,

network symptoms, senor values) ot. The computed policy π determines the action

At for the current belief bt. After executing At, at the next time-sequence t + 1, the

agent observes Ot+1 and determines reward Rt+1.

Based on observability and knowledge about the environment, there are three ap-

proaches of the sequential decision process:

• Markov Decision Process (MDP): MDP assumes the full observability of

the environment [31]; hence, the agent can determine the underlying state cer-

tainly. Therefore, only one value in belief vector is one, and all other values are

zero. Hence, MDP is only a tuple of 5 parameters: (S,A, T,R, γ).

• Partially Observable Markov Decision Process (POMDP): POMDP is

used when the environment is only partially observable [33]. Due to imperfect

and incomplete information, the agent cannot determine the underlying state

certainly. Hence, the agent determines the belief that characterizes the current

state probabilistically based on recent observation. POMDP model consists of

all 7 parameters of SDP: (S,A, T,Ω, O,R, γ).

• Reinforcement learning (RL): RL is another type of sequential decision

process, where the environment is unknown [34]. Therefore, the agent does not

know state transitions or observation matrix. It differs from supervised learning

as there is no dataset to dictate or model its optimal action. Instead, the agent

learns or approximates the environment based on its observations about the

consequences of executed actions.

One of the challenges in RL is to balance the trade-off between exploration and
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exploitation. Here, exploitation means leveraging previous knowledge gained

by exploring consequences of past actions, and exploration specifies gaining

new knowledge by executing unexplored actions. Most of the current model-

free reinforcement learning approaches only require four parameters: S, O, A,

and R, and mapping from current observations to the current state is handled

implicitly in the decision optimization model. A relatively new approach, named

Deep Reinforcement learning (DRL), solves RL using deep learning and has

shown good results for complicated games like AlphaGo, Atari, and others [35].

1.4 Research Challenges

In order to achieve all research objectives, this dissertation addresses following

challenges:

• Computing a cost-effective cybersecurity portfolio for an enterprise is a challeng-

ing task, because there exist various security countermeasures that diverge in

their defense approaches. These security countermeasures despite having same

objective (e.g., protecting web-browser) differ not only in defense effectiveness

but also in cost regarding installment or deployment. Moreover, the problem

intensifies due to numerous and diversified enterprise-oriented requirements.

To address the challenge, this dissertation formulates the problem of optimal

defense planning as Constraint Satisfaction Problem (CSP) that aims to max-

imize ROI. This model considers all requirements as constraints of CSP, that

makes it flexible in considering any enterprise-specific requirement and expert

knowledge such as “Do not deploy white-list based url filtration for the ad-

vertising web-application”. Using the Markov chain property, this approach

correlates security countermeasures having heterogeneous effectiveness and cost

with attack vectors consisting of threat, threat actions, and vulnerabilities. The

formulated model computes an optimal security planning that induces cost less
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than the affordable budget (in dollars). It guarantees to keep the residual cyber

risk (i.e., unmitigated cyber risk despite deploying security countermeasures)

within a tolerance level after satisfying all enterprise-specific requirements.

• Recognizing the relevant attack surface for an enterprise requires formulating

an appropriate metric for attack prioritization, which is still a well-sought re-

search problem. Modeling such attack prioritization metric is challenging due to

correlations among attack components (i.e., threat, threat actions, vulnerabili-

ties), varying exertion likelihood of threat action depending on data and assets’

types, non-homogeneous inter-dependencies among threat and threat actions,

and missing attack incident reports. Additionally, multiple vulnerabilities ex-

isting at the same asset may have heterogeneous exploitability (i.e., risk of a

vulnerability being exploited).

To address the challenge, this dissertation presents a metric that formulates the

risk due to the threat of a particular attack (e.g., hacking, phishing) by predict-

ing the exertion likelihood of its associated threat actions (e.g., sql-injection,

send email-attachment). CyberARM estimates the exertion likelihood of a

threat action against an asset based on not only attack incident and vulner-

ability scanning reports but also based on its type (e.g., desktop, application)

and domain (e.g., financial, public news). Instead of considering directly, Cy-

berARM considers the impact of a vulnerability through its associated threat

actions that have non-negligible exertion likelihood. Hence, even though multi-

ple vulnerabilities with varying severity may exist in the same asset, risk due to

them will be neither overestimated nor underestimated. Moreover, by leverag-

ing associations among threat actions and existing vulnerabilities, CyberARM

considers the impact of a potential threat action that is missing in available

attack incident reports.
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• Satisfying diversified requirements exacerbates the problem of defense optimiza-

tion not only from the computational perspective but also from the implementa-

tion perspective. To address the high granularity of requirements, the planning

must consider more in-depth reasonings for recommending specific subset of

security countermeasures. Moreover, the framework must be flexible to incor-

porate any new constraint/requirement or changes of existing requirements, and

inefficient modeling of any of such constraints deviates the defense plans from

desired outcomes.

To address the challenge, this dissertation presents a data model that defines

the approach to select relevant security countermeasures (security products)

through selecting security controls (i.e., particular mechanism of defense). This

model provides details reasonings about why a security control is selected, and

how it maximizes ROI. Moreover, CyberARM contains a categorization of se-

curity controls based on their defense traits. Thus, CyberARM is capable to

integrate fine-grained requirements relevant to threat action and defense phases

into its decision model.

• The computational complexity grows exponentially with the increases of assets

of an enterprise, that makes computing optimal portfolio for a large enterprise

automatically very hard. The increase of assets expands the attack surface, as

well as requirements, that consequently expand the candidate-set of security

countermeasures. As a result, discovering the most cost-effective plan from

numerous combinations of countermeasures is computationally very challenging.

To address the challenge, this dissertation presents two heuristic approaches that

CyberARM leverages for model reduction and decomposition. These heuristic

functions improve the computation complexity by pruning the problem space

significantly. In order to increase cost-effectiveness of recommended planning,
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CyberARM applies an incremental approach that continues trying to improve

the previously discovered plan through toughening minimum cost-effectiveness

(i.e., ROI) requirement, until it fails to find a better solution.

• Effective defense planning to impede I-DDoS requires predicting attack behavior

by inferring currently adopted attack strategies. However, this is very challeng-

ing as attackers adapt their strategies according to their observations about the

current network condition and previous attack consequences. Besides, sophisti-

cated attackers may also execute random actions to deceive the attack prediction

model. As attack strategies largely depend on the domain or environment be-

havior, domain-specific data is required to train the prediction model, which is

hard to get.

To address the challenge, this dissertation applies time series forecasting [36]

to predict the next attack behavior probabilistically, based on previous attack

actions observed by agents across the network. To implement time series fore-

casting, it uses Recurrent Neural Network (RNN) that can infer dynamic tem-

poral behavior based on sequences in observed attack actions. This approach

follows never ending learning [37], that actively learns the attack behavior by

updating the attack prediction model incrementally with new attack observa-

tions. Moreover, it can not only learn new attack strategies but also detect

attacker’s strategical adaptations and attack deceptions without requiring any

preliminary domain-specific data.

• To understand the effectiveness of defense actions against I-DDoS, the agent

needs to understand consequences of attack and defense interplays, that depend

on the behavior of the environment. However, the environment consists of many

correlated and uncertain factors such as the amount of benign traffic, physical

link failures, unanticipated queuing delays, current attack behavior, and others.
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Moreover, due to lack of domain-specific data or deep knowledge, integration of

these factors implicitly into decision-making, even probabilistically, is infeasible.

Besides, attack distinguishability that also regulates defense effectiveness is not

always the same. Therefore, it is very hard to formulate the behavior of the

environments considering all these correlations and uncertainties.

To address the challenge, this dissertation formulates consequences of attack

and defense interplays using the Markovian property, which specifies that the

probabilistic transitions from current state to next state depend on the combi-

nation of attack and defense actions. These state transitions are uncertain due

to not considering other dynamic environmental factors explicitly for inferring

next state. To determine these probabilistic state transitions, the agent lever-

ages a Q-table that does not require any complex model of environment. This

Q-table updates its values based on its observations throughout the passage

of time. The evaluation empirically shows that using this approach, the agent

converges to the optimal defense decision-making within reasonable time.

• Alongside the behavior of the network that can only be observed partially, I-

DDoS defense optimization depends on attack behaviors. Hence, the I-DDoS de-

fense decision-making needs to be formulated as a partially observable stochas-

tic game (POSG). However, the POSG problem with multi-objective rewards

(different payoffs for different players) can only be approximated for small or

limited scenarios. Therefore, real-time defense optimization for upstream net-

work points having many critical resources is computationally infeasible using

POSG.

To address this challenge, this dissertation presents a novel approach to in-

tegrate expected attack behavior at current context into the defense agent’s

decision-loop. Thus, it reduces the POSG problem into a single agent (defense
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agent) decision-making problem solvable by POMDP. Many existing algorithms

can approximate POMDP solution with closer proximity to the optimal solu-

tion. Alongside improving the computation complexity of the problem, this

approach enables the incorporation of different payoffs of different players. To

ensure dynamic defense optimization while not losing granularity due to prob-

lem reduction (i.e., from POSG to POMDP), the POMDP model is dynamically

updated based on recent experience and learning of attack behaviors and critical

factors.

• The emergence of optimal aggregated/global defense policy with multi-agent de-

fense planning is very challenging, because all agents’ defense planning must or-

chestrate in an effective way. Besides, all agents need to perform asynchronously

to avoid delays of synchronous decision-making. However, integrating all agents’

decision-models explicitly into an agent’s decision-optimization is infeasible due

to high computational and modeling complexities. Besides, it arises another

challenge – which agent’s model will determine first and what should be the cor-

rect modeling sequence? Additionally, due to a lack of domain-specific data,

integrating the expected behavior of other agents into an agent’s decision pro-

cess is not generally possible.

To address this challenge, this dissertation divides the problem of computing

global optimal policy into multiple sub-problems, where an agent solves its

associated subproblem without concerning other agents’ behavior. To do so,

this dissertation decouples the agents’ collaboration model (aims to improve

other agents’ conditions) from its decision model (aims to optimize its own

local defense planning). The presented collaboration model establishes agents’

interactions regarding bandwidth sharing with the guarantee of no conflict and

wastage of spare bandwidth. Because of the decoupling, an agent’s decision

model only focuses on maximizing benign traffic serving through its link.
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1.5 Related Work

This section describes the current state-of-the-art relevant to research problems of

this dissertation.

1.5.1 Automated Cyber Risk Mitigation Optimization

Economic models of cybersecurity risk management focus on critical assets, vul-

nerabilities, and threat likelihood to mitigate the risks while maintaining the balance

between cost and benefit of security investment [38], [39], [40]. However, most of

these frameworks are very coarse-grained and rely only on qualitative values to com-

pute and assess cyber risk mitigation plans. As these frameworks are not scalable or

flexible enough to work with continuous quantitative values, they may fail to assess

a defense plan in mitigating risk with fine-grained reasonings [41]. As a result, these

works cannot distinguish among defense plans regarding benefits and costs appropri-

ately. In general, organizations quantify ROI to evaluate the benefit of the security

portfolio compared to its installment, deployment, and usability cost [42], [39]. Yet

determining asset values and threat or threat action rates properly is itself a chal-

lenging problem, and uncertainties of these values also introduce uncertainties in the

effectiveness of security countermeasures. It is observed in [43] that such uncertain

values cause deviations from optimal plannings. This work used a multi-objective

multiple-choice knapsack for its security planning optimization. Some researchers ap-

plied fuzzy approaches to address uncertainties such as [41] that considers fuzzy value

for threat rates to estimate the risk. This approach has used a genetic algorithm to

compute the near-optimal security portfolio.

Researchers have solved zero-sum control games to define how security controls

need to be implemented and how frequently (e.g., daily scanning, monthly scanning)

these proactive security controls need to act [44]. However, these frameworks do

not consider correlations among threat and threat actions, which made defense plan
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assessment very hard due to failing to address sensitivity related to correlations.

Some researchers tried to minimize average expected loss by quantifying Value at

Risk (VaR) that specifies how much risk of cyber attacks is still existing [45]. Some

researches aimed to minimize the worst case loss by quantifying Conditional Value

at Risk (CVaR) that specifies the maximum possible loss considering potential cyber

attacks [46].

Security portfolio is also assessed by quantifying the lowest expected profit (PaR)

that anticipates the lowest expected return due to deploying considered security port-

folio [47]. This research also considered customers’ willingness to pay for service into

the cost function. On the other hand, researchers have proposed Tailored Tabu Search

(TS)-based heuristic approach [48] and heuristic genetic algorithm [49] to maximize

the mitigation of the existing vulnerabilities in the network or system. However, most

of these frameworks consider same likelihoods of threat actions for all enterprises,

which may vary with asset types and enterprises in real-world scenarios. Though at-

tacks may exploit multiple vulnerabilities [50], their success likelihoods of exploitation

do not remain the same. Hence, the checklist based mitigation cannot evaluate the

security portfolio. In contrast, the presented CyberARM in this dissertation not only

considers correlations among threat, threat actions, and vulnerabilities but also cor-

relates vulnerability exploitation with asset types and domains. Besides, CyberARM

addresses their probabilities based on both cyber incident reports and vulnerability

reports while addressing the likelihood of missing reports. Importantly, these proba-

bilities vary across the enterprise, asset types, and domains.

1.5.2 Autonomous Cyber Defense Against Adaptive I-DDoS

Over the years, researchers have proposed many automated techniques to defend

DDoS attacks [51]. Though their applications have several limitations, they provide

valuable hints about mitigating DDoS attacks.

1. Detections or Deterrence Based Frameworks: Researchers endeavor to cre-
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ate profiles of legitimate sources, in order to distinguish attack flows [52] or malicious

sources [53], based on packet rate statistics [54], wavelet analysis [55], time-series

behavioral deviations [56], and packet properties [57, 58, 59]. To detect attack bots,

SPIFFY [60] leverages virtual bandwidth expansion, and Defense by Offense [61]

encourages sources to increase traffic rate. Both these works assume full upload

bandwidth consumption by these attack bots. However, such assumption is not nec-

essarily true due to cheap price of bots, and also, it may deteriorate the congested

conditions further. There are frameworks that ask sources to solve puzzles [62], [63]

to deter attack bots, which demand extra computations from benign users too. Some

frameworks apply Pushback [64], packet marking [65, 24], history [66], score [25], or

hop-count [26] based filtering approach to minimize or deter attack traffic transition.

However, one of the severe limitations of these filtering and puzzle or offense based

deterrence is the computation overhead induced to process massive traffic.

2. Bandwidth or Route Isolation Based Frameworks: Bandwidth isolation

approaches based on destination provided capabilities [67, 68], trust-domain [69], and

inter-domain bandwidth isolation [70] seek to guarantee services for top privileged

users. Some approaches deter attackers by packet rerouting [71], topology obfuscating

[72], or Virtual Network placement and migration [73]. Firstly, these approaches

demand dedicated spare bandwidth which is expensive and can only protect top

prioritized users. Secondly, sources with capabilities or trust may be compromised

and flood the network easily. Nyx leveraged BGP poisonings to avoid the congested

link and setup a minimized detour to ensure service to prioritized ASes [74], but it

cannot guarantee the desired path isolation due to the visibility of BGP messages to

other ASes [75].

3. Defense Composition Frameworks: Game theory based defense frameworks

such as DDos traffic injection game [76], optimizing firewall setting against bandwidth
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depletion [77, 78], fair bandwidth allocation among all genuine IP addresses [79], and

signaling game based service hoping strategy [80] are presented, but these works can-

not offer required defense adaptations at real-time against adaptive I-DDoS attackers.

Game-theoretic frameworks have been proposed to mitigate DoS and DDoS attacks

on SDN networks [81]. Researchers aim to infer attack strategies through modeling

the attack intents and objectives to choose the appropriate game between attackers

and defenders [82], which is only feasible for known or static domains. Moreover, these

works are rigid in modeling attack behaviors while also failing to integrate uncertain-

ties of many critical factors. A bayesian network-based semi-form game integrates

strategic thinkings [83] of attackers and defenders from the same sophistication lev-

els, but it relies on static attack utility function which is hard to approximate under

environment uncertainties. Researchers also applied sequential planning to mitigate

DDoS attacks effectively assuming deterministic behavior of the network that is not

realistic [84]. Some researchers have applied Monte Carlo Process to find game-

theoretic equilibria for Moving Target Defense planning considering few static attack

strategies [85]. SDN-based Bohatei [86] is scalable and dynamic but does not work

against I-DDoS attacks.

1.6 Contributions

This dissertation presents following majors contributions:

• Formal models of an automated multi-dimensional decision-optimization frame-

work to compute cost-effective and resilient portfolio for any large enterprise.

The computed portfolio minimizes cyber risk within the affordable budget while

guaranteeing to satisfy any cybersecurity investment requirements.

• A pragmatic data-driven methodology to prioritize the menacing attack surface

by quantifying their risks using a novel probabilistic risk metric. This met-

ric addresses non-homogeneous relationships among threat, threat actions, and
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vulnerabilities against an asset.

• An autonomous multi-agent architecture to employ dynamic and optimal de-

fense strategy compositions for protecting critical network links against I-DDoS

attackers. This architecture ensures scalability in enacting real-time I-DDoS

defense optimization at upstream network points.

• A hybrid Reinforcement Learning (RL) approach to optimize defense composi-

tion through integrating the stochastic network behavior and expected attack

behavior into the decision-loop. It fastens the convergence of an agent’s decision-

optimization towards optimal actions by ignoring the exploration of irrelevant

actions. It actively learns the environment and adaptive attack behavior based

on interactive experience without requiring deep-domain knowledge or human

intervention.

• An effective attack prediction approach using time series forecasting. This ap-

proach trains a Deep Neural Network (DNN) model that learns attack traits

through inferring dynamic temporal dependencies in observed attack action se-

quences. It can detect attacker’s strategical adaptations and shows robustness

against adversarial machine learning.

• A model, BRITE loop, defining capabilities of an autonomous defense agent.

BRITE model enables agents to not only observe and actuate but also to un-

derstand and investigate in order to accurately estimate the environment state

under uncertainty, and evolve to learn about the system dynamics and param-

eters for optimizing the decision-making.



CHAPTER 2: Automated Planning of Risk Mitigation using Cyber Defense Matrix

In the past few years, cyber attacks have been tremendously increasing in their

sophistication, magnitude, and impact demanding a genuine effort from academic,

industry, and government agencies to create guidelines for security controls. These

guidelines are used as a defacto standard for measuring and mitigating risk against

evolving cyber attacks. An example of this effort is the CIS Critical Security Con-

trol [19] enlisting a comprehensive set of defense approaches as security controls.

However, the deployment of all security controls is irrational and economically in-

feasible due to constraints such as limited budget and business policies. Hence, risk

mitigation planning is an essential process for Chief Security Officers (CISOs) and

cybersecurity analysts to determine the appropriate countermeasures to deploy in

order to create a cost-effective cybersecurity portfolio. However, composing such a

portfolio to optimize the cyber defense Return on Investment (ROI) is an arduous

and error-prone task for the following reasons:

• First, this decision-making is a multi-dimensional process that requires to con-

sider multiple critical factors: threat surface, previous attack incidents, security

controls effectiveness, risk appetite, and resource constraints.

• Second, the computation complexity to discover such portfolio grows non-linearly

with the increase of assets of different types and asset values (regarding Confi-

dentiality, Integrity, and Availability).

• Third, there is a lack of mechanisms to cope with security control failures which

are unavoidable. Therefore, enterprises usually use ad hoc and manual tech-

niques to choose security controls, which does not systematically yield measur-
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able risk mitigation and ROI values.

Though some researchers aim to optimize the decision-making for cyber risk[48, 47,

41, 44], they are too general and do not address the problem of risk mitigation through

selecting the optimal set of security controls and correlating attack tactics, techniques,

and vulnerabilities.

As three pivotal factors of cybersecurity decision-making, CISOs seek to determine

“what" security controls (and security functions), “where" to deploy effectively, and

“why" or for what purposes. In this research, I consider the widely used Critical

Security Controls (CSC) of Center of Cybersecurity (CIS) [19] (other security controls

can also be used) and Security functions of NIST Cybersecurity Framework [87] to

answer “What”. CIS CSC is the prioritized set of defense actions, that accumulates

globally accepted security best practices to defend and to minimize the consequences

of cyber attacks [19]. Additionally, I consider five deployment options (Network,

Device, People, Application, and Data) for enforcing CSC (and their corresponding

products) to answer “where”. To answer “why", we use text mining techniques to

extract a large number of threat actions from MITRE Attacks Tactics, Techniques,

and Procedures (TTP) [6], and thousands of Symantec cyber threat intelligence (CTI)

reports [88]. Thereupon, these threat actions are associated with security controls

(CSC sub-controls) in the context of the kill chain of threat lifecycles. Ultimately,

threat actions defensible by CSCs at kill chain phases answer “Why” the enterprise

needs a particular set of security controls.

2.1 Problem Statement

The goal of this chapter is to develop an automated decision-making framework

called CyberARM (Cyber Automated Risk Mitigation) to assess and manage cyber

risks effectively by computing the desired cost-effective risk mitigation plan [89, 90].

CyberARM guarantees the satisfaction of business policies regarding risk appetite,

ROI, and budget and cybersecurity policies regarding resiliency, defense-in-depth,
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and others. To satisfy policies regarding defense phases and understanding the risk

plan acutely, this dissertation presents a multi-dimensional model named Cyber De-

fense Matrix (CDM) (Fig. 2.3). Previously, a concept of Cyber Defense Matrix was

presented in [91, 92] that aligns security countermeasures across NIST Cybersecurity

Framework (first dimension) to protect assets such as devices, applications (second

dimension).

This dissertation extends the existing concept of CDM by integrating three frame-

works: (1) NIST Cybersecurity Framework [87], (2) CIS CSC [19], (3) Cyber Kill

Chain into a single structure. In this dissertation, this model categorizes the secu-

rity controls based on three fundamental properties: Security Function, Enforcement

Level, and Kill Chain Phase, which are three dimensions of the extended CDM. How-

ever, the concept of this extended CDM is different than the existing CDM. The

two-dimensional CDM categorizes security countermeasures based on their security

function and types (e.g., application, data, and others) of assets these defend. In

contrast, the extended three-dimensional CDM categorizes security countermeasures

based on: (1) what security functions these offer, (2) where these operate (i.e., en-

forcement level), and (3) at which kill chain phases of a particular threat action these

confront. Markedly, the second dimension of this extended CDM is different from

the other CDM, because it defines where security controls operate instead of which

type of assets these defend. To clarify, for instance, a security control may protect

an application or desktop from malware by blocking malicious domain; hence, this

security control in the three-dimensional domain resides in the network layer.

The extended multi-dimensional Cyber Defense Matrix (CDM) divides risk miti-

gation against the continuum of sophisticated cyber attacks into many phases, that

enables the framework to meet up strict resiliency requirements (e.g., multi-layer and

multi-control, k-resiliency, and others). Fig. 2.2 illustrates an example of cybersecu-

rity planning by CyberARM, where SF (Security Function), EL (Enforcement Level),
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Figure 2.2: Cyber Defense Matrix in Action - An Example

and Kill Chain Phase depict three dimensions of CDM. To clarify, a security control

3.5 represent the 5th sub-control “Deploy Automated Software Patch Management

Tools” of CSC 3 [19]. In Fig. 2.2, the red pattern shows the most cost-effective

portfolio composed by CyberARM with higher ROI. However, CyberARM deviates

its planning (as shown by the green pattern) from the red pattern when the user has

specific preferences for recovering (“Recover”) from attacks.

The CyberARM decision-making is a computationally complex Constraint Satis-

faction Problem (CSP). Therefore, I developed an algorithm to decompose the CSP

to accommodate a large number of distinct cyber assets, that significantly improves

the scalability of CyberARM. I compute and verify the generated planning to check



30

its compliance with the constraints using a SMT verification solver, Z3Prover/z3 [93].

This chapter contains the following novel capabilities:

• The main contribution of this chapter is the development of an automated multi-

dimensional resilient decision-making approach to recommend the cost-effective

set of security controls and the corresponding countermeasures (cybersecurity

products). The presented approach can solve the problem for a large enterprise

of 15000 assets and shows robustness in the presence of uncertainties and noise.

• This dissertation presents a pragmatic data-driven threat prioritization frame-

work to quantify the risks based on a probabilistic model developed using threat

incident reports and vulnerability scanning reports. Moreover, this framework

considers a realistic attack model where an adversary can exert several attack

actions (threat actions) exploiting different vulnerabilities to execute a success-

ful attack (threat) and vice versa.

• This dissertation presents a heuristic approach applying model reduction and

decomposition to approximate a cost-effective risk mitigation plan with reduced

computational complexity. These heuristic approaches enable the framework to

employ a cost-effective portfolio for large enterprises. This dissertation empir-

ically shows that these heuristic models reduce the computational complexity

significantly while approximating the plan closer to the optimal plan.

2.1.1 Architecture Overview of CyberARM

Figure 2.1 show CyberARM architecture with user inputs, and outputs. It takes

the following user inputs: (1) Cyber assets information that includes services, and the

value of the asset (in $$) (i.e., the inflicted loss due to a compromise of confidentiality,

integrity, or availability (CIA) of a particular asset), (2) Vulnerability scanning reports

which includes the existing vulnerabilities, and the CVSS score of these vulnerabilities,

(3) Enterprise business requirements specifying the maximum target budget, risk
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appetite and RoI, (4) Attack incident history (optional) which includes the previous

cyber incident reports, and (5) Enterprise security policies (optional), if any, such as

the priority of certain security function, enforcement level or guaranteed resiliency for

mission-critical assets. The output of CyberARM includes a recommendation of the

cost-effective cybersecurity planning with installation cost, global residual risk, risk

statistics per threat action and assets, and RoI.

CyberARM instigates the risk management through uncovering the most menacing

threat surface that the tool prioritizes to alleviate using “Attack Incident Reports”

(if provided), “Vulnerability Reports”, and asset values. Threat surface amalgamates

the distinct pairs of threat (e.g.,Hacking, Malware, Social Engineering) and threat

action. However, threat actions types vary as some threat actions are fine-grained

(e.g. overwrite ferite script files), whereas, some are very generic like Sql Injection. In

figure 2.1, “Threat Prioritization” module prioritizes the combinations of threat and

threat actions against “Assets” using the estimated quantitative risk based on “Risk

Mitigation Threshold”.

The following step is the identification of the set of security controls enforceable

against at least one of the prioritized threat actions. For this research, we create a

comprehensive mapping from CIS security controls to the threat actions shown by

“Security Controls & Threat Action Mapping” in figure 2.1. Accordingly, the module

named “Security Controls & Threat Action Mapping” picks the appropriate set of

security controls (candidate set of security controls) for the prioritized threat actions

(output of “Threat Prioritization”). Moreover, the framework prunes the set based on

our model reduction and includes the “Indirect” threat action (not prioritized before

but defendable using the pruned set) into the threat surface. “Categorized Security

Controls” module contains all CSC security controls categorized based on Security

Function (SF), Enforcement Level (EL), and Kill Chain Phase (KC Phase) which are

three dimensions of CDM structure.
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The next step is the formation of “Candidate-set of Security Control Products”

where each product implements one or more security controls of the candidate-set

of controls. In this research, we assume that CyberARM contains a list of currently

available “Security Control Products” and their association with CIS security controls.

To clarify, an association between a product and security control defines that the

product implements the security control. In general, such an association is easily

obtainable from the products’ descriptions. However, the users (CISOs) can also

provide this association of products and security controls as input.

Thereupon, CyberARM engine (“Solver” in the fig. 2.1) infers the appropriate

subset from the candidate-set of products for each quadrant of CDM structure to

compose the desired cybersecurity planning ensuring less residual risk than risk ap-

petite and greater ROI than user-defined minimum ROI within the bounded resource

(Budget). Moreover, the users can tweak the planning by providing their business-

oriented policies (User Requirements) which enhances the usability of the proposed

tool across diversified enterprises.

As an example, figure 2.2 illustrates a case where the user wants to know the cost-

effective set of security controls. CyberARM discovers planning (green) with ROI

11.6, but it includes CSC 1.2 when the user emphasizes more on detecting (“Detect”)

attacks and generates planning with ROI 10.5.

2.2 CyberARM System Primitives

This section describes basic components of CyberARM residing in the framework

internally.

2.2.1 Cyber Defense Matrix (CDM)

Cyber Defense Matrix structure in Fig. 2.3 resemblances the deployable cyber

defense strategy using three dimensions. These three dimensions represent three

fundamental properties of a security control: Security Function (SF), Enforcement
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Level (EL), and Kill Chain Phase (KC Phase). It segregates cyber defense into many

stages or phases, and as a result, the tool can employ divide and conquer against the

sophisticated and advanced threat actions. This multi-dimensional CDM structure

constitutes of 8× 5× 5 quadrants, where each quadrant represents a distinct defense

phase. Moreover, a threat action propagates through different stages (quadrants)

of CDM structure in its lifespan and achieves its objectives when it defeats all the

deployed countermeasures at those stages.

The first dimension of the CDM structure, kill-chain-phase (KC phase), has eight

different values: Reconnaissance, Weaponization, Delivery, Exploit, Installation, C2,

Execute, and Maintain. There is a plane (2D matrix) in the CDM structure for each

distinct KC phase, which depicts the defense strategy at that particular KC phase.

In general, kill chain phase defines the current attack stage; hence, the KC phase

dimension illustrates which security controls encounter the threat actions during a

particular stage of their life-cycles. Therefore, this dimension delineates “Why” the

security controls require to be enforced. Besides, the framework can consider any

requirement related to the life phase of the threat actions because of this dimension.

For example, the framework can satisfy a user preference in preventing threat actions

during the “Exploit” phase.

The second dimension (Enforcement Level) outlines the layers where the chosen

security controls confront threat actions. Specifically, the enforcement level of a secu-

rity control depends on the attributes on which it operates. As an instance, a control

named “Blacklist IP Address (12.3)” resides in the “Network” layer as it operates on IP

address, whereas “Establish Secure Configurations (5.1)” control belongs in the “Ap-

plication” layer due to its operations on the configurations of applications. Therefore,

this dimension answers “Where” the security controls terminate the progression of the

attackers and consequently, enables the articulation of CyberARM’s decision based

on defense layers.
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Figure 2.3: Cyber Defense Matrix (CDM) Structure

Security function, third and last dimension, is the exact type of defense actions

executed by the security controls. NIST framework has categorized these defense ac-

tions into five groups: Identify, Protect, Detect, Respond, and Recover [87]. In fact,

security controls at a particular enforcement level of CDM structure exercise these

security functions sequentially as drawn in Fig. 2.3. In essence, CyberARM depicts

“What” terminates the attackers and meets the user requirements (e.g., cost distribu-

tion among security functions, guaranteed resiliency at specific security function) by

leveraging this dimension.

CyberARM evaluates possible defense strategies for each phase of the CDM struc-

ture individually to form the recommended planning. Moreover, CDM structure

enables the tool to meet the diversified security requirements (e.g., multi-layer and

multi-control resiliency, specific security portfolio preference) of various enterprises

emerged due to the heterogeneity in their business objectives and policies. Cyber-

ARM investigates across SF, EL, and KC Phase dimensions and also across the

defense phases of CDM structure to do so. Therefore, this structure strengthens

CyberARM to leverage specialized humans decisions into automation by integrating

CISOs’ knowledge and experiences as policies. Finally, CyberARM chooses the rel-
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evant subset of security controls and the associated products for each quadrant in a

way that it guarantees the orchestration (e.g., considerations of correlations among

the products in defending threat surface) with other quadrants to assure resiliency

and cost-effective plan. Therefore, CyberARM fills all quadrants of CDM structure

with the optimal set of security controls to compute and recommend a cost-effective

CDM as optimal cybersecurity planning.

2.2.2 Security Controls Categorization

To determine the locus of a security control in CDM structure, I categorize all

considered security controls based on their fundamental defense properties that are

represented by three dimensions of CDM structure. Moreover, security control and

its associated security products can belong to more than one quadrant, where an

association between security product and security control specifies that the product

has implemented the security control with non-trivial effectiveness. Aforementioned,

CyberARM considers the widely recognized 20 Critical Security Controls (CSCs) of

CIS Controls [19] as a use case, that categorizes all security controls based on their

defense objectives. Each CSC consists of more than one security control such as, for

example, CSC 7 aiming to protect email and web browsers grouped 10 security con-

trols. In CSC 7, the second security control (CSC 7.2) blocks unauthorized scripts,

whereas the fourth security control (CSC 7.4) performs network-based URL filtering.

I collaborate with CIS to map security controls to “Security Function”, “Enforcement

level (EL)”, and “Kill Chain Phase (KC Phase)” [19] according to NIST framework

[87]. Though CyberARM considers security controls of CIS Critical Security Con-

trols (CSCs), this framework is flexible to incorporate any newly discovered security

controls or security controls from other frameworks.

Fig. 2.2 contains the categorizations of all security controls of first 14 CIS CSCs,

where a security control 3.5 in (Application, Protect) quadrant with red color (the

same color as “Exploit” in Kill Chain Phase) defines that it provides security function
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Table 2.1: Security Controls to Threat Action Mapping

Security Control Threat Action
Network Based URL Filters Malicious C2 Connection
Limit Unauthorized Scripts Cross Site Scripting (XSS)

Password Constraints Brute Force Attack
Limit External Devices Unapproved Hardware

Block Malicious Email Attachment Phishing

“Protect” at enforcement level “Application” against threat actions during “Exploit”

kill chain phase. Understandably, all security control products having same defense

properties (security function, enforcement level, and kill-chain phase of encountering

threat actions) like its associated security controls belong to same quadrants. Hence,

CDM structure encloses similar security controls and products into a particular de-

fense group based on their defense traits, where a defense group encounters attack

actions during a specific attack phase.

2.2.3 Threat Action to Security Control Mapping

In order to identify the appropriate set of security controls against specific threat

actions, CyberMirror needs a mapping from CSCs to threat actions. CyberARM

contains a comprehensive manual mapping from CSCs to Threat Actions. As a use

case study, threat actions are extracted from Symantec reports [88], Mitre Attacks [6],

and VERIS using TTPDrill [94]. Thereupon, I manually associate each CSC security

control to appropriate threat actions by analyzing their course of mitigation actions,

and these associations have been validated using experts’ opinions. Table 2.1 shows

some examples of security controls to threat actions mapping, where, for example,

the first association depicts that Network Based URL Filters can defend Malicious

C2 Connection with a considerable effectiveness.

Understandably, a security control product has non-zero or significant effectiveness

against all threat actions associated with its implemented security controls. To clarify,

products offering Limit Unauthorized Scripts can defend Cross Site Scripting (XSS)
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with an effectiveness defining the defense accuracy regarding true and false positive,

and true and false negative. Importantly, two products offering same security control

not only have different effectiveness but also have different deployment costs. Notably,

CyberARM does not consider a security product against a specific security control if

its effectiveness is lower than another product while having a higher deployment cost.

Though I assume the effectiveness of these products for this research, frameworks like

[95, 96] can assess the effectiveness or defense accuracy of these products in terms of

performance score (recall, precision, F1 score). Moreover, CyberARM supports both

qualitative and quantitative effectiveness measurements.

2.3 CyberARM Data Model

CyberARM data model in Fig. 2.4 illustrates the approach of determining the

candidate-set of security control products from the user-given list of asset entities

using Entity Relationship Diagram (ERD). Most importantly, this data model cor-

relates objects of the framework to translate into logic, and allows it to increase

CyberARM’s capabilities without significant alternation. In the figure, rectangular,

diamond and elliptical shapes represent entities (objects), actions, and attributes re-

spectively. An action describes the relation between two entities, and an attribute

defines the property of an entity or an action. Moreover, any underlined attribute in

Fig. 2.4 is a primary key that is used to designate the specific entity or action.

The Contains action between Asset and Vulnerability entities enlists the existing

vulnerabilities on the assets discovered by vulnerability scanning tools. Each vul-

nerability has two properties represented as attributes: a unique CVE ID and CVSS

score that defines the severity of the vulnerability. Notably, severity of a vulnerability

specifies how exploitable the vulnerability is to launch a successful attack; hence, risk

of an attack exploiting a particular vulnerability increases with the increase of CVSS

score. Moreover, each asset has a value as a property that defines the impact induced

due to compromising the asset. Importantly, the value is a function of Confidentiality,
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Figure 2.4: CyberARM Data Model

Integrity, and Availability that are generally dependent on the domain of the asset.

To clarify, the asset of the advertising domain does not have large value regarding

Confidentiality but has significant value considering Integrity and Availability. On

the other hand, the asset containing historical data of an enterprise comparatively

has higher value regarding Confidentiality and Integrity while it can afford the loss

of availability for a certain time.

The framework recognizes Threat Action (attack technique) entities who can ex-

ploit these vulnerabilities against the Asset by Exploits entities that represent cor-

relations among threat actions and existing vulnerabilities. Such correlations can

be defined based on attack incident reports, NVD CVE list [97], and vulnerability

and weakness repositories [97, 98, 99]. Thus, the framework recognizes the set of

Threat Action entities likely to be successfully exercised against the Asset entities.

Besides, the framework extracts Threat (attack tactic) entities capable of exerting

these Threat Action to violate CIA (Confidentiality, Integrity, and Availability) of

the assets. Attack incident reports, and ATT&CK Mitre framework [6] generally de-
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fine such relationships. Hence, CyberARM determines the threat surface subjected to

eliminate using correlations among threat, threat actions, vulnerabilities, and assets.

The Defends action delineates the Security Control entities applicable against

Threat Action entities at the specific Kill Chain Phase. Security controls to threat

actions mapping (described in Section 2.2.3) draw correlations among threat actions

and security controls, whereas MITRE ATT&CK framework describes associations

among threat actions and kill-chain-phase. Therefore, the framework determines the

relevant set of security controls as candidate-set of security controls that can de-

fend the prioritized threat surface with a non-trivial effectiveness. Additionally, Pro-

vides defines the Security Function of these security controls; whereas, Is_Enforced

describes the Enforcement Level obtained by security control categorization 2.2.2.

Therefore, Provides, Is_Enforced, and Defends fill the quadrant of CDM structure

with the appropriate set of security controls.

Finally, CyberARM selects the security control products that implement security

controls of the candidate-set by Implements action that correlates Product with Se-

curity Control entities. In summary, the model illustrates the approach for deciding

candidate-set of security products spread throughout quadrants of CDM structure.

2.4 Threat Prioritization

It is almost impossible to design a bulletproof defense strategy that stops the exe-

cution of all cyber attacks. Besides, it may not be worthwhile to invest resources in

eliminating threat actions with lower impacts or small exertion likelihoods. This is

why, appropriate and worthwhile cybersecurity investment instigates with threat pri-

oritization that aims to realize the most menacing threat surface as prioritized threat

surface for the given asset list. Importantly, elimination of such prioritized threat

surface aids CyberARM not only to maximize Return On Investment (ROI) but also

to improve its scalability by pruning irrelevant search space. In this research, the

prioritized threat surface comprises of distinct combinations of threat and threat ac-
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tions as distinct Attack Vector, and CyberARM obtains relational associations among

threats and threat actions from Uses relationships in Fig. 2.4. This module has three

major parts: (1) Determining Risk of all Threat Actions, (2) Determining Global

Risk, and (3) Composing Prioritized Threat Action Set.

2.4.1 Determining Risk of All Threat Actions

The risk due to a threat action depends on its likelihood of exertion by adversaries,

and also on its capability in exploiting existing vulnerabilities. In order to understand

the exploitability or severity of the vulnerabilities, I adopt Common Vulnerability

Scoring System (CVSS) [97]. In general, the likelihood of threat action exertion de-

pends on the sophistication of executing the threat action, and it generally decreases

with the increase of sophistication according to available threat incident reports. For

instance, Brute Force action is much easier to execute than Cross Site Scripting (XSS)

due to less technical difficulties. Therefore, rational cybersecurity investment must

not defend sophisticated threat action ignoring the most frequently appeared threat

actions. However, a threat action needs to exploit a vulnerability to execute a success-

ful attack, and hence, the sophistication of a threat action may increase due to small

CVSS value of a vulnerability that it can exploit. For example, Brute force action

against a password-constrained system is hard than executing XSS. Importantly, if a

threat action can exploit multiple existing vulnerabilities, CyberARM considers the

maximum CVSS score out of CVSS scores of those vulnerabilities.

According to the Exploits relationship in Fig. 2.4, CyberARM picks the set of threat

actions against an asset that can exploit any of the existing vulnerabilities (CVEs)

of that asset. Notably, though vulnerability scanning across the network enlists all

existing vulnerabilities of a network, it cannot reveal the zero-day vulnerability. This

research focuses on enlisted vulnerability, and aims to address zero-day vulnerabili-

ties as our future tasks. Thereupon, CyberARM follows two different approaches to

estimate the likelihood of those associated threat actions. In first approach, when
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previous security incident reports are available, CyberARM initially distinguishes

distinct attack vectors by extracting combinations of threat t, threat action ta, asset

type a, and domain d from these reports to calculate probabilities p(ta, t, a, d). In

another approach, when no extracted attack vector from given reports can exploit an

existing vulnerability, CyberARM identifies all the associated threat actions for that

vulnerability to create distinct attack vectors. Then, it assigns a minimum probabil-

ity value mδ using Eqn. 2.1 that specifies the assignment of probabilities for attack

vectors comprising a distinct combination of threat and identified threat actions (i.e.,

not extracted from available incident reports). Importantly, CyberARM applies Eqn.

2.1 when no threat action from given reports can exploit an existing vulnerability or

there is no incident report given by the user.

In Eqn. 2.1, p(taj, ti, ak, dk) describes the likelihood of exerting threat action taj

that imposes threat ti against asset k(ak, dk) that is of type ak (e.g., mail server,

database) in business domain dk (e.g., infrastructure, finance, public information).

Besides, Vk is the set of existing vulnerabilities that no threat action of given reports

can exploit. Notably, taVk is the set of threat actions that can exploit vulnerability

of Vk but have zero probability based on given reports.

∀(taj ∈ taVk),∀(ti ∈ Thj), p(taj, ti, ak, dk) = mδ (2.1)

where, Thj is the set of threats which use threat action taj.

Then, CyberARM determine the conditional probability p(taj|ti, ak, dk) that speci-

fies the probability of exerting threat action taj when the attacker wants to transform

threat ti into successful attack against asset k, using following equation:

p(taj|ti, ak, dk) =
p(taj, ti, ak, dk)∑
w p(taw, ti, ak, dk)

(2.2)

Similarly, CyberARM determines the probability p(ti|taj, ak, dk) that specifies the
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probability of transforming threat ti into successful attack when the attacker exerts

threat action taj against asset k, using following equation:

p(ti|taj, ak, dk) =
p(taj, ti, ak, dk)∑
w p(taj, tw, ak, dk)

(2.3)

Thereafter, CyberARM determines the likelihood of exerting threat action taj

against asset k, using the following equation:

p(taj|ak, dk) =

∑
x p(taj, tx, ak, dk)∑

w

∑
x p(taw, tx, ak, dk)

(2.4)

The framework computes the conditional probability p(ti|ak, dk) that defines the like-

lihood of transforming threat ti into successful attack against asset k, using following

equation:

p(ti|ak, dk) =
∑
w

p(ti|taw, ak, dk)× p(taw|ak, dk) (2.5)

where, CyberARM determines p(ti|taw, ak, dk) and p(taw|ak, dk) using Eqn. 2.3 and

Eqn. 2.4 respectively.

Finally, CyberARM determines the imposed risk Rk
j by threat action taj on asset

k, using the following equation:

Rk
j =

∑
y∈{C,I,A}

∑
i

Sjk × p(taj|ti, ak, dk)× p(ti|ak, dk)× I
k
i (y) (2.6)

where, Sjk defines the maximum CVSS score among all existing vulnerabilities of

asset k that are exploitable by threat action taj. Besides, Iki (y) specifies the impact

of executing threat ti successfully against asset k due to losing of Confidentiality

(C), Integrity (I), or Availability (A), where impact defines the expected loss due to

transforming the threat into successful attack against the asset.

In risk metric (defined in Eqn. 2.6), CyberARM considers the impact I ik of threat i
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separately for C, I, and A to integrate effects of ti more precisely, that also aids to con-

sider the impact according to the domain of the asset. For instance, database storing

public information has zero impact regarding confidentiality, whereas, database stor-

ing social security information of employees/clients has significant impact regarding

confidentiality.

2.4.2 Determining Global Risk

The global risk GR of the enterprise is the summation of all risks imposed by all

relevant threat actions against all assets of the enterprise, which is formulated in the

following equation:

GR =
∑
k∈EA

∑
j∈tak

Rk
j (2.7)

where, EA is the asset list of the enterprise, and tak is the set of threat actions

against asset k.

2.4.3 Composing Prioritized Threat Action Set

CyberARM chooses the minimum subset of threat actions that, if mitigated, will

lower the risk than given risk appetite AR. However, the computed cybersecurity

planning may not completely eradicate the likelihood of some threat actions due to

the failure probability of security controls or requiring more investment than miti-

gated risk (will reduce ROI). Therefore, CyberARM considers Expected residual risk

percentage, (1−δe), of prioritized threat action set despite deploying computed cyber-

security planning. Here, δe is the weighted average of effectiveness of security control

products, that can be formulated through iterating over all possible threat actions

and assets using the following equation:

δe =

∑
taj

(
∑

k R
k
j )e

j
w∑

tax
(
∑

y R
y
x)exw

(2.8)

where, ejw is the effectiveness of a security control product w in mitigating threat
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action taj.

To address the residual risk induced due to imperfect security effectiveness, Cyber-

ARM chooses the minimum subset of threat action in a way that its aggregated risk,

mR, is greater than (GR − AR) and satisfies the following constraint:

mR ≥ (GR − AR)(1 + (1− δe) + (1− δe)2 + .......+ (1− δe)n)

mR ≥ (GR − AR)× 1− (1− δe)n

δe

mR ≥
GR − AR

δe
[if n −→∞]

The above constraint compels CyberARM to enhance prioritized list to cover up

for the increased likelihood of unmitigated risks (lower δe). Presumably, with the

decrease of weighted effectiveness δe (ranging [0,1]), CyberARM has to expand the

chosen threat action set due to increase of mR. CyberARM composes the prioritized

threat action set to defend based on mR by the approach of Alg. 1.

In Alg. 1, CyberARM creates a list of objects comprised of threat action id (j),

its imposed risk (Rk
j ), asset id (k) at line 3-6 followed by prioritization in descending

order based on imposed risk Rk
j at line 7. Importantly, CyberARM considers two

types of threat action set: (1) Direct, and (2) Indirect. Direct threat action set

imposes at least mR risk cumulatively, and CyberARM prioritizes the set to deploy

security control products against it. Whereas, Indirect threat action set are threat

actions that CyberARM does not aim to mitigate, but chosen products against direct

threat action set can mitigate these. The inclusion of Indirect threat action set aids

CyberARM to evaluate products more precisely. In line 9-14, CyberARM composes

Direct threat action set imposing at least mR and includes into a list TP . In line 16,

CyberARM composes candidate set of security control products, cd_SP, to defend

Direct threat action set (described in Section 2.5.2). In line 18-22, CyberARM selects

those threat actions into TP that can be defended by candSP but not included in
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Direct threat action set to compose Indirect threat action set. Finally, the algorithm

returns the threat action set TP as Prioritized Threat Action Set that CyberARM

aims to mitigate.

Algorithm 1: prioritizeThreatActionSet
Input : Minimum Imposed Risk mR, Global Risk GR, Threat Action Set TA,

Enterprise Asset List EA
Output: Prioritized Threat Action Set TP
// This function prioritizes Threat Action Set to identify the

cost-effective set of Security Controls of an Enterprise.
1 ta_risk_list=[ ]
// Creating list of threat action and its imposed risk

2 for k in EA do
// TA(k) is the threat action set of asset k

3 for j in TA(k) do
4 ta_risk_list.append([j,Rk

j ,k])
5 ta_risk_list = Sorted(ta_risk_list)// Sort based on 2nd Index (risk)
// Selecting Direct Threat Actions

6 TP = [ ], ir = 0
7 for ta in ta_risk_list do
8 if ir ≥ mr then
9 break

10 ir += ta[1]
11 TP .append([ta[0],ta[1],k,True])//True defines direct threat action

// Select N number of security products against each threat
action of TP

12 candSP = chooseSecurityControlProducts(TP ,N)
// Selecting Indirect Threat Actions

13 for sc,k in candSP do
// taksc is the threat action set defensible by a security

control product sc for asset k
14 for ta in taksc do
15 if Rk

ta > 0 then
16 TP .append([ta,Rk

ta,k,False])//False defines indirect threat action
17 return TP

2.5 Composing Candidate Security Control Product Set

Candidate Security Control Product Set consists of security control products/technologies

that can defend the prioritized threat surface effectively. This section describes the

composition of security control products and their reduction.
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2.5.1 Selecting Security Control Products

Composing Candidate Security Control Product Set, candSP , instigates with ex-

tracting security controls to defend Direct prioritized threat action set, TDP . Afore-

mentioned, there exists a relationship table Defends (shown in Fig. 2.4) that specify

which security controls can defend which threat actions at which kill-chain-phases.

Based on this, CyberARM extracts security controls that can defend at least one of

TDP at a particular kill-chain-phase. Besides, based on Provides and Is_Enforced re-

lationship tables, CyberARM knows what types of security functions these extracted

security controls offer at which layers. After extracting the relevant security controls,

CyberARM prunes any security control if it fails to satisfy any user requirement.

For example, an enterprise hosting a Web application to offer information about its

business model to clients or potential clients, may not want to deploy CSC 7.4 that

obstructs any unauthorized URL. Because, this contradicts the purpose of the web

application as enterprise may not know potential clients or future clients beforehand

for authorizing their URLs. Therefore, CyberARM prunes any security control re-

lying on URL-based filtering for such assets (e.g., advertising site, news sites) if the

user provides it as a requirement.

Using associations defined by Implements in Fig. 2.4, CyberARM extracts prod-

ucts that implement any of the chosen security control to compose initial candSP .

However, CyberARM prunes a product w for a specific asset k if it requires more

investment than the offered benefit, where the benefit of w depends on the impact

(imposed risk) of threat actions that w can defend. CyberARM formulates the benefit

Bk
w of w for k by the following equation:

Bk
w =

∑
j∈wk

ta

(1− ejw)Rk
j (2.9)

where, wta is the threat actions set that w can defend, ejw is the effectiveness of
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w in defending threat action taj, and Rk
j is the imposed risk by taj on k. Hence,

CyberARM ignores w for k if Bk
w < (Cw + δw), where Cw is the implementation cost

of w, and δw is a benefit threshold that can be determined based on weighted benefits

of other products.

2.5.2 Model Reduction

This step prunes the candidate set of security products, candSP (obtained from

previous Section 2.5.1), for reducing the problem space to improve scalability. Impor-

tantly, scalability is a critical factor for any cybersecurity planning automation due

to the exponential growth of product combinations of candSP with the increase of

assets. Hence, CyberARM applies a heuristic function that removes less cost-effective

products from candSP to prune the irrelevant search space. The basis of the heuristic

function is that cost-effective products maximize ROI due to following constraint:

Cewi
≥ Cewj

=⇒ Cewi
− 1 ≥ Cewj

− 1

=⇒ Bwi

Cwi

− 1 ≥ Bwi

Cwi

− 1

=⇒ ROIwi
≥ ROIwj

where, Bwi
, Cwi

, Cewi
, and ROIwi

are benefit (determined by Eqn. 2.9), cost,

cost-effectiveness, and Return on Investment (ROI) of a product wi respectively.

However, the above constraint will restrict CyberARM to select products only

against threat action with high risk, that will be redundant for those threat actions.

This is why, CyberARM always ensures the selection of N number of products against

any threat action in the pruned candSP . Understandably, one of critical parameter

of this step is to select the optimal N∗, for which, CyberARM performs linear search

(discussed in Section 2.6.1.8) based on residual risk of computed CDM.

In general, increasing N enhances resiliency against threat actions, and experi-

mental results show that if a security configuration with a larger N cannot improve
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the solution regarding cost-effectiveness, increasing N further will not have any added

benefit. This happens when the added resiliency against a threat action is redundant,

because the residual risk is already too low that benefits of new countermeasures be-

come trivial compared to deployment cost. However, this may also happen due to

failing to find a satisfiable solution within finite time because of the exponential

growth of problem space due to larger N .

Alg. 2 describes the approach/function of composing and pruning candSP , that

takes threat action set TP and N as inputs. Importantly, CyberARM endeavors

to minimize the overall risk of the enterprise, and does not emphasize in mitigat-

ing specific threat action unless specified by user explicitly as requirement. Hence,

CyberARM considers overall benefit of a product considering its effects against all

associated threat actions to defend the subjected asset. Notably, CyberARM does

not consider a product if its alternative can defend same threat action set with same

effectiveness but less deployment cost. While iterating over threat actions of TP (line

2), it ignores any indirect threat action, and selects N number of security control

and products only for direct threat action (line 4). At line 5-7, CyberARM selects

products of each security control that can defend threat action ta while not violating

any given user-requirement. At line 8, CyberARM calls the function getSortedProd-

ucts to sort all selected products in descending order based on their cost-effectiveness

considering all prioritized threat actions for the asset of ta. At line 10-15, CyberARM

inserts N number of distinct products against each ta. Thus, CyberARM composes a

concise set of candidate products, candSP , based on cost-effectiveness to address the

computation growth of problem space. After this, CyberARM temporally removes

indirect threat actions that cannot be defended with any of the security products in

candSP to avoid unnecessary complexity.
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Algorithm 2: chooseSecurityControlProducts
Input : Threat Action Set TP , Maximum Number of Security Products N
Output: Candidate Set of Security Products candSP
// This function composes set of security control products that

can defend direct threat actions of TP cost effectively based
on given N.

1 candSP=[ ]
2 for ta in TP do
3 prod_for_ta = [ ]

// ta contains (threat action id, imposed risk, asset id,
Flag), Flag is True iff Direct Threat Action

4 if ta[3] then
// scta is the security control set that can defend ta.

5 for sc in scta do
6 if sc does not violate any constraint of asset ta[2] then

// Wsc is the product set that implement sc.
7 prod_for_ta.append(Wsc)

// The function "getSortedProducts" sorts its argument
"prod_for_ta" in descending order of their
cost-effectiveness.

8 sorted_Prod = getSortedProducts(prod_for_ta)
9 num_Prod = 0

10 for k in range(len(sorted_Prod)) do
11 if (sorted_Prod[k], ta[2]) not in candSP then
12 candSP .append([sorted_Prod[k], ta[2]])
13 num_Prod + = 1
14 if num_Prod == N then
15 break
16 return candSP
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2.6 Composing Resilient CDM

The objective of the CyberARM is to fill each quadrant of CDM structure with

the appropriate set of security controls, so that, all deployed security control across

all quadrants will collaborate cost-effectively to offer an optimal CDM as resilient cy-

bersecurity planning. This section describes how CyberARM computes the planning:

2.6.1 Risk Mitigation Formalization

Residual risk is the remaining risk due to success probabilities of threats due to

prevailing success likelihood against particular assets despite the deployment of CDM.

Therefore, CyberARM aims to compute the cost-effective CDM as cybersecurity plan-

ning that minimizes the residual risk towards a tolerance level after satisfying all

given user-requirements. Moreover, the deployment cost of the computed CDM must

not exceed the user-given budget. This section explains how we ascertain the cost-

effectiveness of cybersecurity planning regarding ROI for an enterprise.

In all following formulas, KC, EL, and SF are sets or lists representing kill-

chain phase, Enforcement Level, and Security Function dimensions of CDM structure

respectively, and index of all these list starts from 1 while increasing by one along

the sequence. To clarify, for instance, SF (1) specifies the first value of the list SF

which indicates the Identify security function, whereas, SF (2) indicates the Protect

security function.

KC = {Reconnaissance,Weaponization,Delivery, Exploit,

Installation, C2, Execute,Maintain}.

EL = {Network,Device, People, Application,Data}.

SF = {Identify, Protect,Detect, Respond,Recover}.

Importantly, the likelihood of successful exertion of any threat or threat action

specifies the probability that an adversary will enact the threat or threat action

which will be successful in executing an attack. The likelihood of successful exertion
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depends on two different probabilities: (1) Exertion likelihood (represented by smaller

p) that is the probability of applying it by the adversary determined during threat

prioritization (Section 2.4), and (2) Success likelihood (represented by capital P )

that is the prevailing likelihood of it despite deploying CDM (determined in following

subsections).

2.6.1.1 Success likelihood of threat

As illustrated by many-to-many relationship in Fig. 2.4, an adversary may ex-

ert one or more threat actions to transform a threat into successful attack against

particular assets. Hence, the success of a threat is contingent on the success of its as-

sociated threat action set. Importantly, the threat becomes a successful attack if any

of its associated threat action defeats all deployed products across CDM structure.

Therefore, the success likelihood, P k
i , of transforming a threat ti into a successful

attack against asset k depends on the probability that any threat action taj of asso-

ciated threat action set Tai becomes successful. This intuition is formulated using

the following equation:

P k
i = 1−

∏
taj∈Tai

(1− Prkj ) (2.10)

where, Prkj is the likelihood of successfully exerting a threat action taj against asset

k.

The likelihood Prkj depends on two factors: (1) exertion likelihood, p(taj|ti, ak, dk),

of threat action taj (determined in Eqn. 2.2), and (2) success/prevailing likelihood,

P k
j , of taj at asset k. Hence, CyberARM formulates Prkj using the following equation:

Prkj = P k
j × p(taj|ti, ak, dk) (2.11)

where, ak and dk are asset type and domain of asset k respectively.



52

2.6.1.2 Success Likelihood of Threat Action

This sub-section describes how CyberARM determines the success likelihood P k
j of

threat action taj to integrate into Eqn. 2.11. A threat action becomes successful if and

only if it defeats all deployed countermeasures (security control products) confronted

while propagating through different quadrants of CDM structure. Therefore, the

success likelihood of a threat action depends on its success probability across all

quadrants. Notably, the success likelihood of a threat action at a particular quadrant

depends on the effectiveness of deployed products operating in the quadrant, that is

formulated using the following equation:

P zyx
jk =

∏
w∈T j

zyx

(1− ejw × Sw) (2.12)

where, zyx represents the quadrant of CDM structure with kc phase z, enforcement

level y, and security function x, and P zyx
jk specifies the success likelihood of threat

action taj against deployed products at zyx quadrant. Besides, T jzyx represents the

candidate-set of products that can defend threat action taj during its kc phase z

by security function x at enforcement level y, Sw specifies whether the product w is

deployed (Sw = 1) or not (Sw = 0), and ejw specifies the effectiveness of w against taj.

Therefore, to become successful at a particular enforcement level y during a specific

kc phase z, the threat action taj needs to defeat all products offering any security

function through operating on properties of y against its phase z. For instance, the

success of a threat action at Network (enforcement level) during Delivery kc phase

delineates that all products operating on the attributes of the network fail to prevent

the threat action during its delivery by the adversary. CyberARM formalizes this
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logic in the following equation:

P zy
jk =

∏
x∈SF

∏
w∈T j

zyx

(1− ejw × Sw) (2.13)

Understandably, the success likelihood of the threat action is actually the same

to the probability that all deployed products fail against the considered threat ac-

tion. Hence, considering all quadrants of CDM structure, CyberARM formulates the

success likelihood, P k
j , of taj against asset k, using the following equation:

P k
j = Sjk ×

∏
z∈KC

∏
y∈EL

∏
x∈SF

∏
w∈T j

zyx

(1− ejw × Sw) (2.14)

where, Sjk is the maximum CVSS score considering all existing and exploitable vul-

nerabilities of taj. This factor is important because no threat action can be successful

without having a exploitable vulnerability, and higher Sjk means higher success rate

of the subjected threat action.

Notably, a product w may reduce risks of multiple threats by inhibiting any of their

mutual threat actions, while w can also defend multiple threat actions of a specific

threat. Thus, CyberARM incorporates correlations among products, threats, and

threat actions into planning evaluation.

2.6.1.3 Global Residual Risk

Global residual risk, GrR, is the aggregation of all remaining risks of all threats

against all assets of the enterprise. If Rrki is the residual risk of a threat ti against

asset k, CyberARM formulates GrR using the following equation:

GrR =
∑
k∈EA

∑
ti∈Th

Rrki (2.15)

where, EA is the asset list of the enterprise, and Th is the list of existing threats
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across all assets of the enterprise.

Residual risk, Rrki , of a threat ti at asset k depends on (1) the successful exertion

likelihood, Prki , of ti against asset k, and (2) the impact of the threat Iki on k regarding

loss of CIA. CyberARM formulates Rrki using the following equation:

Rrki =
∑

l∈C,I,A

Prki × Iki (l) (2.16)

where, Iki (l) is the loss of l (C, I, or A) due to successful exertion of ti.

The successful exertion likelihood, Prki , of Eqn. 2.16 depends on two factors: (1)

Exertion likelihood p(ti|ak, dk) (determined in Eqn. 2.5), and (2) Success likelihood

P k
i (determined in Eqn. 2.10). Based on these two values, CyberARM formulates

Prki using the following equation:

Prki = P k
i × p(ti|ak, dk) (2.17)

2.6.1.4 Budget and Risk Appetite Constraint

The recommended CDM must guarantee less remaining residual risk GrR (from

Eqn. 2.15) than risk appetite AR, that CyberARM formulates using constraint U c
gr.

U c
gr : GrR ≤ AR (2.18)

Besides, the installation/deployment cost IC of CDM must not exceed the afford-

able user-given budget B, that CyberARM formulates using constraint U c
B.

U c
B : IC =

∑
w∈T

Cw × Sw ≤ B (2.19)

where, T contains all the products of candidate-set. Notably, both U c
gr and U c

B are

mandatory constraint that the user must provide to CyberARM.
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2.6.1.5 Return on Investment Constraint

Restrained Return On Investment (ROI) restricts the feasible solution space to

mandate CyberARM to recommend a better solution regarding cost-effectiveness,

while satisfying all given user-requirements (constraints). In Eqn. 2.20, ROIU is the

user-given minimum ROI requirement, and ROID is the ROI of the recommended

cybersecurity planning (CDM) D.

ROID =
(GR −GrDR )− IC

IC

U c
ROID

: ROID ≥ ROIU (2.20)

where, GrDR is the remaining residual risk if D is deployed as CDM. Therefore,

increasing ROIU compels CyberARM to recommends better solution if any, but re-

duces the number of satisfiable solutions. Notably, ROIU is a mandatory constraint,

but CyberARM searches for optimal ROIU if not given by the user.

2.6.1.6 Enterprise Oriented User Requirements

Alongside the mandatory constraints (risk appetite, budget, and ROI), the user

can provide optional diversified mission-oriented policies. This subsection describes

some of enterprise oriented and non-mandatory user requirements that CyberARM

currently can formulate.

• Multi-Layer and Multi-Control Resiliency User Requirements: Cyber-

ARM can satisfy users’ heterogeneous multi-layer (vertical) and multi-control

(horizontal) resiliency (diversified security control products with different secu-

rity functions) configurations. Multi-layer resiliency (vertical) is the capability

of defending a threat action at different enforcement levels to enable defense-in-

depth and also to avoid the single point of failure. For example, the following

constraint U c
ml

describes the enforcement of a minimum one product with se-
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curity function of Protect (SF (2)), Detect (SF (3)), or Response (SF (4)) in at

least three different enforcement levels.

Ftak =
{
y|y ∈ EL ∧ ∃w(Sw ∧ w ∈

⋃
x∈Rsd

(
⋃
z∈KC

T takzyx))
}

U c
ml

: |Ftak | ≥ 3

where, Ftak is the set of deployed security products to defend asset k against

threat action set tak, and Rsd = {SF (2), SF (3), SF (4)}.

• Cost Distribution: The enterprise may have a security portfolio preferring

particular security functions, enforcement levels, and kill chain phases. In such

cases, CyberARM introduces constraints across the dimensions of CDM struc-

ture. Even, it is possible to define such preference for a specific quadrant of CDM

structure. To clarify, three constraints named Cost Distribution constraints are

described below.

The first requirement, U c
d(2), imposes the constraint that the rate of investment

in deploying products offering Protect with respect to the total deployment cost

cannot be less than cf ∈ [0, 1].

ICd(2)
=
∑
z

∑
y

∑
w∈TzySF (2)

Cw × Sw

U c
d(2) : ICd(2)

≥ cf × IC

where, ICd(2)
is the total deployment cost of considered CDM to ensure Protect.

The first requirement imposes minimum c1% investment of total investment in

protecting assets depicted by a constraint on “Protect" of SF axis. ICSF (x) is the

installment cost at xth security function of SF axis hence, ICSF (2) represents the
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cost at “Protect". Similarly, I have described other two constraints ConsEL(2) and

ConsKC(3) across EL and KC Phase axis respectively where ICEL(2) and ICKC(3) are

the cost at “Network” of EL and “Delivery” of KC phase respectively.

ICSF (2) =
∑
z∈KC

∑
y∈EL

∑
w∈(z∩y∩SF (2))

Cw × Sw

ConsSF (2) : ICzy
SF (2) ≥

c1

100
× IC

ConsEL(2) : ICEL(2) ≥
c2

100
× IC

ConsKC(3)) : ICKC(3) ≥
c3

100
× IC

2.6.1.7 K-Resiliency Constraint

The users can enable K-Resiliency (K is the maximum number of failed security

products) to aspire guaranteed resiliency against a group of threat actions (RSta) for

some assets or may desire more strict resilient configuration for some crucial assets.

The framework can support such K-Resiliency requirements, and in the following

formula, we introduce a constraint defining K-resiliency for some assets, RSEA against

specific threat actions. Here, tak is a threat action against asset (k) and Ftak is the

number of selected products applicable against it. Similarly, we can build constraints

for other user-defined resiliency configurations to fed to CyberARM.

ConsKRes
: ∀tak((k ∈ RSEA) ∧ (tak ∈ RSta)) =⇒ (Ftak > K)

2.6.1.8 Discovering Cyber Defense Matrix (CDM)

As the ultimate goal, CyberARM fills each quadrant of the CDM structure with

the subset of the candidate-set applicable at that quadrant. Thereupon, CyberARM

aggregates all chosen subsets of deployable products across all the quadrants of the

CDM structure to construct CDM which satisfies all given constraints (Cons). CDM
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is the desired cost-effective cybersecurity planning.

Cons =
∧
r

Consr, where, r ∈ {B,ARisk,ROI, UC}

CDM =
⋃
k

⋃
tak

⋃
D

T takD |= Cons,D = KC × EL× SF

CyberARM follows the approach described in algorithm 3 to compute the desired

Algorithm 3: Discover Cybersecurity Portfolio
Input : Threat Action Set TP , Budget B, Risk Appetite AR, ROI and User

Constraints Cons
Output: Cybersecurity Portfolio CDM
// This function computes the cost-effective cybersecurity

portfolio.
1 mt = findMeanEffectiveness() // Compute the mean effectiveness of

security control products.
2 Nx = log(0.005)

log(1−mt)
// Find the number of maximum number of security

products that will keep the success rate of a threat action
less than 1%.

3 GrR = −1 // Residual Risk
4 CDM = none
// Incrementally improving CDM through iterating from N = 1 to

N = Nx.
5 for N in range(1, Nx + 1) do

// Calling Algorithm 2.
6 candSP = chooseSecurityControlProducts(TP ,N)

// Minimum global residual risk if whole candSP is deployed.
7 Grmin = minResidualRisk(candSP )
8 if AR >= Grmin then

// Call SMT Solver to compute the CDM.
9 Md = Solver(Cons,CDM)

10 if Md is UNSAT then
11 break
12 CDM = Md.getModel()
13 GrR = CDM .getResidualRisk()
14 ROIU = ROIU + 1

// Change the constraint of ROI (cost-effectiveness).
15 changeRiskAppetiteConstraint(Cons)

CDM of an enterprise. This algorithm takes the prioritized threat action set TP ,
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budget B, risk appetite AR, and all requirements Cons as Input, and it provides the

cost-effective CDM as output. In line 1, it finds the mean effectiveness of security

products using Eqn. 2.8 that is used to find the maximum number of security prod-

ucts, Nx at line 2. This Nx approximates how many security countermeasures needs

to be deployed against a threat action to keep its remaining risk or success likelihood

at a negligible level (0.5% at the algorithm) considering the mean effectiveness of

security products.

To find optimal N∗, this algorithm starts from 1 and continues incrementing by

1 until reaching Nx. CyberARM uses linear search instead of binary search because

binary search confronts more unsatisfiable scenarios than linear search. According

to experiments in evaluation, on average, figuring out unsatisfiability takes more

time than discovering a satisfiable solution; as a result, linear search is faster in

approximating a better solution. Most importantly, binary search is not suitable for

the problem as it may quit without searching a lower N that may have better solution

but within the range of the previous two values of N with satisfiable scenarios.

In line 6, the algorithm chooses the set of security control products that can defend

threat action set TP , where N is the number of maximum security control products

against a specific threat action. In line 7, the algorithm finds the minimum risk Grmin

that will remain despite deploying all security products of candSP . In line 8, it checks

whether the risk appetite AR is less than Grmin. If it does not satisfy, the algorithm

tries with another N as there is no way to find a satisfiable solution. Otherwise, at

line 9, it calls SMT-solver to compute a CDM with Cons and CDM (computed at

previous iteration) as arguments. This SMT-solver tries to improve the previously

computed CDM by introducing increased ROIU (line 14) in Cons, and the computed

CDM must satisfy all requirements in Cons. If the solver finds a satisfiable solution

for increased ROIU , it saves the model and residual risk. In line 15, the minimum

ROIU is increased in Cons that is used for the next model discovering, which compels
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the SMT-solver to find a better solution concerning ROIU .

2.6.2 Model Decomposition

Though the candidate set pruning improves the performance of CyberARM sig-

nificantly, an enterprise with a massive number of critical assets may still suffer for

the exponential growth of the search space. Therefore, an algorithm is developed to

divide the problem into a finite number of independent subproblems, and the aggre-

gated solution of all the subproblems still satisfies the user-defined requirements of

Cons. To do so, the problem space for each of the sub-problem requires to remain

equal to achieve better performance. The complexity of a problem largely depends

on the number of assets, risk tolerance (difference rate between the risk appetite and

minimum residual risk), budget deficiency (difference between the given budget and

maximum cost to deploy all products of candidate-set), which is also observed in the

experiment (shown in 2.7.3.1). Th risk tolerance RT and budget deficiency Bd are

defined using the following equations:

RT =
AR −Grmin
Grmin

, Bd =
max(0,Mc −B)

Mc

where, AR and B are the given risk appetite and budget respectively, and Grmin

andMc are the minimum residual risk and deployment cost respectively if all security

products of candidate-set are deployed.

Therefore, this module aims to keep all three properties (i.e., number of assets,

risk tolerance, budget deficiency) the same for all sub-problems to distribute the

computational hardness equally among all sub-problems. To achieve that, CyberARM

distributes assets among D sub-problems in a way that the risk variance, V arR, of

sub-problem will be minimized, while the difference in the number of assets between

two sub-problems cannot be greater than one. Variance V arR is defined using the
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following equations:

Rk =
∑
j∈TP

Rk
j

V arR =
∑
n∈D

∑
m∈D

|
∑
k∈En

A

Rk −
∑
l∈Em

A

Rl| (2.21)

where, Rk is the total imposed risk on asset k, TP is the threat action set, and En
A is

the asset list in sub-problem n.

Algorithm 4: Model Decomposition
Input : Candidate Security Control Set candSP , Sorted asset list on

descending order of their risks E ′A, Risk of sorted asset list R′,
Number of sub-problems D, Budget B

Output: List of assets of sub-problems SbA, List of Imposed Risk of
sub-problems SbR, List of Budget SbB

1 SbA =[ ], SbR =[ ], SbB =[ ] // Initialize array of asset list, risk,
and budget of D sub-problems.

2 for i in range(D) do
// Iterating loop from 0 to D-1

3 SbA.append([ ])
4 SbR.append([0,i])
5 SbB.append(0)
6 i = 0, dir = 1
7 for k in E ′A do
8 SbA[i].append(k) // append the asset
9 SbR[i] += R′[k] // add the risk of the asset

10 if (dir == 1 and i == D − 1) or (dir == −1 and i == 0) then
11 dir *= −1 // changing the rotation
12 i += dir ∗ 1

13 mC = [ ]
14 for i in range(D) do
15 mC.append(findExpectedCost(candSP ,SbA)) // Find the expected

implementation cost of security products to defend assets
of a sub-problem.

// Budget Distribution among sub-problems
16 for i in range(D) do
17 SbB[i] = SbB [i]

sum(SbB)
×B

Algorithm 4 describes the approach that decomposes the problem into D sub-
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problems by minimizing V arR. In order to accomplish these objectives, CyberARM

initially sorts all the assets in descending order based on their imposed risk, which

is considered as input alongside other variables in Algorithm 4. In line 1-5, this

algorithm initializes three lists to return distributed asset list in sub-problems SbA,

imposed risk of distributed assets in sub-problems SbR, and allotted budget for sub-

problems SbB.

To distribute the assets, this algorithm applies a modified version of round-robin.

This modified version has two directions: right (incrementing sub-problem index by

1) and left (decreasing sub-problem index by 1). Therefore, for the first D assets (i.e.,

right direction), each sub-problem gets one in sequence from 0 to D-1 by increasing

index by 1. However, for the next D assets (i.e., left direction), each sub-problem gets

one in sequence from D-1 to 0 by decreasing index by 1. This approach minimizes

varR while satisfying the constraint regarding the different number of assets in any

two sub-problems. This approach is implemented at line 6-12. Afterward, in line

13-15, the framework determines the expected cost of the products in candidate-

sets for each sub-problem, which depends on both the deployment cost and benefits

of products. In line 16-17, this algorithm allocates the budget for the sub-problem

based on its expected cost requirement, in order to maintain similar budget gaps

among sub-problems.

2.7 Evaluations

This section discusses the experiment setup and the performance of CyberARM in

mitigating risk. This section also describes the sensitivity of CyberARM with respect

to many critical factors. Moreover, it provides a detailed analysis on the scalability

of the tool.
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2.7.1 Experiment Setup

This experiment considers an enterprise network that has 10% diversity regarding

asset types (e..g., application, server, desktop) in two different domains (e.g., financial,

public information). This experiment distributes the value of the assets using Normal

distribution, where an asset value x defines that the asset is x times more expensive

compared to the lowest asset value. In all experiments (if not mentioned explicitly),

ROI is always greater than 10, and risk appetite is 30% of the total imposed risk

when the budget is 60% of the required budget to eliminate 90% of the risk. In all

experiments, CyberARM must consider three mandatory requirements: risk appetite,

budget, and ROI.

The framework is developed using Python 2.7, and the tool is available in [100].

This web-application provides the feature of CyberARM as software-as-service that

can be used to compute cybersecurity portfolio for an enterprise considering its re-

quirements. This web-application is developed using Django framework and Python

2.7. Besides, this web application contains CSC categorization and a comprehensive

mapping of security controls and threat actions. As SMT-Solver, this framework uses

z3-prover [93].

2.7.2 Scalability

The evaluation of this chapter assesses the scalability of the tool with respect to the

number of assets and number of constraints. It is also analyzed how computational

complexity changes due to constricting requirements. The evaluation also shows the

benefits of applying model decomposition.

2.7.2.1 Impact of Asset Size and ROI

The average execution time to discover the satisfiable model stretches in Fig. 2.5a,

because the prioritized threat surface, as well as the candidate-set, widens due to

the increase in the number of critical assets. The performance of the tool regarding



64

500 1000 2000 3000 4000 5000 6000
Number of Assets (10% Diversity)

0

20

40

60

80

100

120

140

160

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

)

Execution Time w.r.t Number of Assets

10
13
16
20

ROI

(a)

500 1000 2000 3000 4000 5000 6000
Number of Assets (10% Diversity)

0

10

20

30

40

50

60

70

80

90

100

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

)

Execution Time w.r.t Number of Assets

ROI
ROI, CDM Cost Distribution Ratio

Constraints

(b)

Figure 2.5: Impact on Execution Time due to (a) Varying number of assets and ROI,
and (b) Increasing number of constraints.

scalability is evaluated by increasing the number of assets from 510 to 6010. More-

over, four different user-defined minimum ROI constraints: 20, 16, 13, and 10 have

been introduced. In all cases, I keep 25% budget deficiency and maximum 25% risk

tolerance. I observe that the size of the candidate set swelled up approximately 8.5

times due to the increase of assets from 510 to 6010. In the figure, the required time

for 6010 assets is 30 times than the time of 1010 assets, whereas it is more than 9

times than the time of asset-set 2010 for ROI 10. Hence, the computational com-

plexity of CyberARM increases approximately in a quadratic fashion. Additionally,

though the required time is similar for ROI 10 and 13, the comparison of the required

time between ROI 20 and ROI 10 shows that the complexity of the tool changes

non-linearly for the increase of minimum ROI due to the shrinking of solution space.

However, discovering the solution for more than 6000 assets within 2 minutes shows

CyberARM’s applicability for large problem.

2.7.2.2 Impact of User Constraints

Different cost distribution constraints (optional constraints) are introduced to un-

derstand the growth of complexity due to increasing the number of constraints. In

Fig. 2.5b, the blue curve illustrates the execution time when there is only mandatory

constraints (i.e., budget, risk appetite, and ROI), and the red curve illustrates the
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Figure 2.6: (a) Impact on risk mitigation due to increasing number of sub-problems,
and (2) Impact on execution time due to increasing number of sub-problems.

execution time when there are both optional and mandatory constraints. Two curves

are almost similar until 2000 assets, but it deviates for further increase of assets.

The deviation shows that the computational complexity enhances with the increase

of number of constraints. Though the execution time increases with the increase of

constraints, the deviation between these two curves remain same despite the increase

of number of assets. This shows that the increasing of number of assets does not

drastically change the computational complexity when the set of constraints is same.

2.7.2.3 Impact of Model Decomposition

In this experiment, I evaluate the performance of the presented decomposition algo-

rithm that divides the problem into D number of similar sub-problems. Experiments

have been run for several D: 1, 2, 3, 4, and 5, where D = 1 represents the global

problem. In Fig. 2.6b, the required time of discovering a model is minimum for D = 5

and maximum for D = 1. Markedly, CyberARM could not find the solution within

600 secs for 10K and 15K assets for D = 1. Though the complexity of the problem

is decreasing due to the increase of D, there is a payoff regarding residual risk due

to subdivisions. As seen in the figure 2.6a, the divergence from the cost-effective

solution (residual risk when D = 1) increments with the increase of D. However,

the maximum deviation is approximately 3% which is very low compared to the gain
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Figure 2.7: Impact on Execution Time of (a) Risk Tolerance, (b) Budget Deficiency.

in the required time. This shows that CyberARM’s model decomposition improves

computational complexity significantly while not compromising too much regarding

effectiveness of security portfolio.

2.7.3 Performance Analysis

This section describes the performance of CyberARM in mitigating cyber risk with

respect to the given budget. It also analyzes the impact of N (i.e., number of security

control products against a specific threat action) on risk mitigation for varying bud-

gets. This section also discusses the sensitivity of the tool to critical factors. In this

section, risk mitigation threshold, MT , defines the ratio of threat actions subjected

for elimination.

2.7.3.1 Impact of Complexity Index

The running time of CyberARM is directly proportional to the Complexity Index

CI (defined in Eqn. 2.22), where BG is the budget deficiency, RT is the risk tolerance,

and N is the number of security control products chosen against a threat action. CI ′

represents the complexity index of the previous time.

CI ∝ CI ′ × δN ×
( δBG

2
)2

δR2
T

(2.22)

• Decreasing Risk Tolerance: The performance of CyberARM is evaluated



67

for varying the risk tolerance RT from 5% to 35% for the fixed budget deficit

BG and N . This experiment considers 20% BG for all four asset-sets EA of

sizes: 2000, 3000, 4000, and 5000. However, at 5% risk tolerance, a satisfiable

model is found only for 2000 asset-set. The minimum risk tolerance for other

ascending 3000, 4000 and 5000 asset sizes are 6.5%, 7%, and 8% respectively.

The progression of the execution time for rising RT is plotted in Fig. 2.7a, and

it shows that there are quadratic declines in the execution times from 10% to

15% risk tolerance for all asset-sets, and the slope for 5000 asset set is much

steeper. The increment of RT widens the solution space by increasing the inter-

distance between minimum risk and risk appetite. This is why, in Eqn. 2.22, CI

is inversely proportional to the square of RT increment. However, the required

time becomes constant after reaching 20% risk tolerance as the solution space

becomes sufficiently wide.

• Increasing Budget Gap: With the amplification of BG, the performance

of CyberARM exacerbates as the solution space erodes because of inflation of

budget deficiency. Figure 2.7b illustrates the performance in terms of execution

times for same asset-sets: 2000, 3000, 4000, and 5000 at fixed RT (RT = 30%)

while increasing BG from 5% to 50%. The increase rate of execution time is

approximately zero until 35% budget gap followed by quadratic escalations of

all four plots. Therefore, these patterns in Fig. 2.7b prove that the performance

of the tool quadratically degrades with an increase of BG for fixed RT and N ,

which satisfies the square proportionality in CI.

• Fixed BG
RT

, Varying N: The performance of the tool for various N is evaluated

while keeping the ratio of BG and RT fixed for the same asset-set 5000. It

is observed in Fig. 2.8a that the performance for N = 1 and N = 2 are

not changing much, though the candidate-set of products has grown twice of
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Figure 2.8: (a) Impact on Execution Time for same Complexity Index, and (b) Impact
on Residual Risk of Risk Mitigation Threshold (ratio of threat actions prioritized for
mitigation).

its initial size due to increase of MT from 0.7 to 0.90. Though the execution

time for N = 3 requires 50 seconds more for 5% increase of MT , it is still

small compared to the expansion of problem space. So, the computational

complexity is dependent on N , while the other factors of CI remain fixed. In

this experiment, CI is same for same N , and therefore, the increase rate is

negligibly changing despite the increase of MT .

2.7.4 Impact of Risk Mitigation Threshold

In this experiment, I try to analyze how the threat prioritization regulates the

performance of CyberARM and how its behavior changes with the increase of bud-

get. This experiment keeps minimum ROI requirement same and aims to minimize

residual risk. With the increase of MT , the threat surface includes the less impactful

threat action, which increases the problem space. Therefore, the increase of budget

deficiency BG is high compared to risk tolerance RT , that increases CI due to the

increase of MT . As a result, due to the bounded rationality, irrational MT con-

sidering current budget degrades the performance due to finite amount of time for

solving. Figure 2.8b illustrates the mininum Residual Risk achieved by CyberARM

at various MT for increasing budget. As can be seen, residual risk is minimum for

MT = 0.85 during the budget ranging from 5.5 unit to 6.5 unit (1 unit = 106) which
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Figure 2.9: (a) Impact on Mitigated Risk with respect to Budget for varying Max-
imum Number of Security Control Product (N), and (b) Optimal Risk Mitigation
Threshold with respect to Budget for varying Maximum Number of Security Control
Product.

MT = 0.90 surpasses with the enhanced budget. For further addition of budget

after Budget = 7.5unit, the residual risk is minimum at MT = 0.95. Therefore,

CyberARM’s performance in computing cybersecurity portfolio also largely depends

on minimum imposed risk mR of threat prioritization module.

2.7.4.1 Impact of N on Risk Mitigation Threshold

In Fig. 2.9a, the performance of N = 3 is worst whenever N = 1 is better than

N = 2, where N is the number of security controls selected against each threat

action. However, after Budget = 8 unit, the curve of N = 3 surpasses the curve of

N = 1. The reasoning for such behavior is clear from Fig. 2.9b where optimal MT is

gradually increasing for each N and is high for smaller N . The difference in optimal

MT for N = 1 and N = 2 is 17.5% initially which decreases gradually due to the

increased budget. Therefore, with the increase of budget, resilient configuration offers

more benefit and thereby, N = 2 offers less residual risk than N = 1 eventually in

Fig. 2.9b.

2.7.5 Use Case Study

In order to demonstrate the validity and the robustness (sensitivity to noise in asset-

set input) of CyberARM, a synthetic dataset is created for an enterprise asset list EA
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Table 2.2: Reports on Use Case Study

Top Threat Action (TA) Cyber Defense Matrix (CDM) Summary
Asset (Type,Domain) TA Name Vul. (CVE #) Residual Risk (%) Product (CSC) SF EL KC Properties Value

A5 (Database, F) Privilege Abuse 2008-3979
2004-1338 8.5 P1 (4.3) 2 3 3 User Input (Constraints)

P3 (4.6) 2 3 3 Risk Appetite 30%

A21 (System Admin, F) Phishing 2017-12290
2012-1862 4.95

P12 (17.1) 2 3 3 Min. ROI 15
P17 (17.3) 2 3 7 Budget $ 505.7K
P21 (12.3) 3 1 6 Mitigation

Threshold 0.8
A31 (Web Server, F) Brute Force 2017-12129

2003-1363 3.4 P4 (4.2) 2 3 4
P27 (4.5) 2 3 4 Output (CDM)

A24 (CMS, F) XSS 2018-9173 5.13 P15 (7.3) 2 4 4 Global Residual
Risk 24.9%P19 (12.5) 3 1 3

A33 (Router, F) Backdoor 2004-1921
2014-0659 5.13

P37 (3.6) 3 4 4 ROI 20.5
P15 (12.4) 2 1 7 CDM Cost $ 505.3K
P7 (8.1) 3 2 8 Execution Time 189s

with 5000 critical assets. I have produced vulnerability reports from the descriptions

of CVE repositories and generated a collection of threat incident reports using VERIS,

Symantec, and incident reports obtained from our industry collaborators. T

• Report on Use Case: Table 2.2 contains a partial snapshot of the problem,

where Top Threat Actions (TAs) enlisted five most menacing threat actions

among the prioritized threat actions. The most deadly threat action for the

given EA is “Privilege Abuse” which exploits the existing CVE-2008-3979 and

CVE-2004-1338 for transforming threats “Hacking” and “Misuse” into success-

ful attacks against A5. Here, A5 is a “Database” server in “Financial (F)”

domain. Besides Budget, Risk Appetite, and Minimum ROI constraints in

the table, three user requirements are introduced, which specify minimum in-

vestment in “Protect” (SF axis), “Application” (EL axis), and “Exploit” (KC

axis) require to be 40%, 15%, and 25% respectively. Table 2.2 also shows

the CDM computed by CyberARM to defend these threat actions. To clar-

ify, it chose P1 (4.3) and P3 (4.6) as the effective countermeasures to pre-

vent “Privilege Abuse”, where P3 (4.6) implements CSC 4.6 that resides in

CDMQuadrant(Delivery, People, Protect). From table 2.2, we can see that

CDM satisfies all mandatory requirements and have invested 51%, 19%, and

27% across “Protect”, “Application”, and “Exploit” respectively.

• Impact of Model Reduction: In this experiment, I evaluate the model re-
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Figure 2.10: Comparing the performance of CyberARM with two different approaches
of pruning in terms of (a) Residual Risk, and (b) Execution Time.

duction approach based on cost-effectiveness (CyberARM’s approach) with two

different approaches. In one approach, I prune the candidate-set based only

on expected benefit, whereas, in another approach, I randomly select a specific

number of products. Fig. 2.10a and Fig. 2.10b represent the performance due

to pruning regarding residual risk and the execution time. CyberARM’s ap-

proach has the minimum residual risk for all different risk mitigation thresholds

MT (Fig. 2.10a), where the random approach has satisfiable models only for

two MT : 80% and 85%. The pruning based on expected benefit is less effective

than CyberARM’s approach as some products although having high benefits

may be very expensive. The dotted line represents the time required to prove

the unsatisfiability. As can be observed, both the residual risk and the execution

time is better if the framework prunes based on cost-effectiveness.

• Impact of Noise in Asset Values: The user-given asset value in the enter-

prise asset-set EA concerning CIA may contain errors or noise. I discover CDMs

for three different distributions of asset values; Normal, Uniform, and Power

Law, while injecting noise in new 5% asset value incrementally until reaching

30% gross noise ratio. The deviation rate of planning from the ideal CDM (no

noise) w.r.t. the total noise ratio is illustrated in Fig. 2.11. The figure shows
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Figure 2.11: CyberARM’s robustness against noise in asset values.

that the divergence due to noise is not drastic, instead approximately equal to

the noise percentage. Therefore, noise cannot incur the avalanche effect in our

decision-making, that proves the robustness of CyberARM to noise.

2.8 Summary

This chapter presents models, frameworks, and implementation of an automated

tool named CyberARM that computes the cyber risk mitigation portfolio of an en-

terprise to minimize cyber risk after satisfying all enterprise-oriented requirements.

Alongside minimizing risk, CyberARM also verifies its conformity with the given re-

quirements. Even for large enterprise, CyberARM requires few minutes to compute

its portfolio applying its model decomposition and reduction approach. According to

evaluation, it computes a cost-effective security portfolio for an enterprise with 15k

assets within 100 seconds, which proves its applicability for both offline and online

decision-optimization.

In the evaluation, CyberARM’s model reduction approach is compared with other

possible reduction approaches, and evidently, CyberARM’s model reduction based on

cost-effectiveness defeats other approaches regarding mitigated risk, as well as com-

putational complexity. Moreover, CyberARM’s model decomposition approach does

not deviate significantly from the optimal planning while reducing the complexity

significantly. These experimental observations prove the rationality of CyberARM’s
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heuristic assumptions. This chapter also analyzes the sensitivity of CyberARM to-

wards many critical factors, that can provide valuable insights for further improve-

ment of defense planning concerning bounded rationality. However, further analysis

of sensitivity to many other critical factors is required to improve the model decom-

position approach, that I plan to conduct in future extensions. As per evaluation,

CyberARM’s planning does not deviate drastically from the optimal plan in cases of

noise in asset values, which shows its robustness.

This chapter focuses on selecting an optimal subset of security controls to defeat

the menacing threat surface against the enterprise. However, it does not concern

how to design such security controls that define fine-grained defense actions to be

enforced against specific attack types (e.g., DDoS, malware propagation). Designing

such security controls requires an understanding of the attack scope and behavior

of the environment where it will be deployed. Therefore, the next chapter focuses

on composing fine-grained and dynamic defense compositions against I-DDoS attacks

considering the dynamic environment and attack behavior.



CHAPTER 3: Autonomous Cyber Defense Against Adaptive Multi-strategy Attacks

Infrastructural Distributed Denial of Service (I-DDoS) attacks continue to be one

of the most devastating cybersecurity attacks today [101]. In I-DDoS attacks, at-

tackers target core backhaul links to impede the availability of critical networks or

servers, in order to block legitimate traffic from reaching to victim servers without

confronting any resistance from end-system defenses [24, 25, 26]. Moreover, I-DDoS

attackers are highly sophisticated because they are constantly learning about network

conditions and adapting their strategies dynamically to evade existing defense mech-

anisms. Therefore, attackers adopt mixed strategies with varying target links, traffic

rate (aggressive or low), bots’ location distribution (sparse or dense), and distribution

of decoys servers to maximize attack stealthiness.

Existing DDoS mitigation approaches generally leverage the following two main

techniques: (1) traffic limiting/filtering that aims to maximize the attack traffic

drop [60, 24, 25, 26], or (2) traffic diversion that aims to guarantee the delivery

of top prioritized users [74, 71, 54]. Traffic filtering approaches usually use static

policies based on traffic flow features such as traffic rate, packet size, source IP, and

others [102, 54, 103, 55, 56]. However, sophisticated I-DDoS attackers constantly

evaluate the rate of attack traffic drop and network links’ conditions, and adapt their

attack strategies (e.g., traffic rate of malicious bots, bot distributions, target servers,

etc.) to reduce the distinguishability of attack traffic [60, 2]. In addition, traffic

filtering at the end-system is ineffective against indirect I-DDoS as attack bots send

traffic towards decoy servers rather than the end-host victims.

For traffic diversion, the defender reroutes traffic of Autonomous Systems (AS) [74]

or whitelisted sources [71] through alternative links with spare bandwidth to avoid the
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congested links. However, the attacker possesses a cost-asymmetry advantage over the

defenders due to the higher price of link bandwidth but the lower price of bots [60]. To

clarify, the cost of bandwidth of a transit link is 7-80 times higher than the attackers’

cost of flooding the links [60]. Therefore, in response to traffic rerouting, the attacker

may increase the attack traffic volume or extend the target link-set exploiting this

cost-asymmetry advantage [2]. In contrast, the defender cannot provide extensive

bandwidth to confront such attackers due to high bandwidth price, which exacerbates

further due to the special support required in the network infrastructure for traffic

rerouting [73, 75]. In addition, defining complete whitelisting is often infeasible,

particularly for widely accessed public domain services (e.g., Wikipedia, Github).

Static defense strategies fail against such sophisticated attackers who dynamically

evolve to overcome the deployed defenses. Hence, effective I-DDoS mitigation solu-

tions must incorporate a range of defense actions, that are dynamically configurable

and composable based on the experience and learning of attack behaviors and de-

fense effectiveness. The state-of-the-art solutions are simply not there yet to pro-

vide such adaptive capability for autonomous DDoS defense. Though several static

[78, 76, 79, 104, 81] and dynamic game [82, 80, 77] based approaches aim to compose

multi-strategy DDoS defense planning, these analyses cannot yield effective solution

at real-time from the stance of computing the equilibrium points due to the im-

posed bounded rationality [83]. On the other hand, some works [83, 85] aiming to

enforce real-time defense planning offer coarse-grained adaptations while considering

very restrictive attack models that are far from reality. Besides, these works are not

applicable (or scalable) for real-time defense optimization against I-DDoS.

3.1 Problem Statement

This dissertation presents a novel approach (framework, model, and implemen-

tation) offering a fully autonomous cyber defense mechanism against highly sophis-

ticated and dynamic I-DDoS attackers, called Horde. This chapter presents a dis-
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tributed multi-agent architecture that protects critical network links collaboratively

without human involvement using Reinforcement Leaning (RL) based decision models

[105]. This architecture enables the generation of fine-grained multi-strategy compo-

sitions of traffic limiting and diversion at real-time based on learning of dynamic

adversary behavior and network conditions. Horde computes the optimal sequence

of defense actions to force attackers to be bankrupted (e.g., install more bots), de-

tected (e.g., withdraw shrew attacks), or non-lethal, by exploiting the phenomena

that an attacker may not be able to achieve high impact, high stealthiness, and low

cost simultaneously. Although Horde utilizes the traffic flow risk score provided by

an Intrusion Detection System (IDS) to quantify the potential of a source being a

malicious bot, its decision-model copes with the IDS inaccuracies (false negative and

false positive).

The presented approach advances the area of autonomous defense by addressing

three key challenges through: (1) improving an agent’s RL exploration by prun-

ing irrelevant search space, (2) developing models to integrate any attack behavior

dynamically into agent’s decision-process, and (3) optimizing defense strategy at real-

time. To address the first challenge, Horde applies a hybrid approach of RL learning

that formulates the RL-agent’s environment with two factors: system dynamics and

expected attack behavior using the Bayesian chain rule. Such decomposition of the

environment with fine-grained information aids the agent to avoid exploring irrelevant

actions that may not be possible with traditional RL learning approaches. It aids not

only to converge faster but also to avoid executing irrelevant disastrous actions. To

address the second challenge, Horde extends the POMDP model used to solve RL-

model by integrating the expected attack behavior into agent’s decision model. This

extended model enables decision-making optimization based on not only the expe-

rience about defense consequences but also the adaptive attack strategies, without

struggling with the complexity and rigidity of stochastic games. With the dynamic
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approach of POMDP solving, Horde can incorporate changes in network and attack

behavior into the decision-model. To address the third challenge, a novel model for au-

tonomous defense, BRITE Loop (Observe-Understand-Investigate-Evolve-Actuate),

is developed and integrated into the agents’ decision-making process. BRITE model

enables agents to not only observe and actuate but also to understand and investigate

to accurately estimate the environment state under uncertainty, in order to opti-

mize decision-making. It also enables the agent to evolve to cope with the dynamic

properties of system dynamics and critical parameters. This distributed multi-agent

architecture with BRITE loop address the real-time defense optimization challenge.

In summary, the presented approach formulates the agent’s decision-making prob-

lem as RL-model and applies POMDP to solve it, to compute optimal defense com-

position through interacting synchronously with the environment and addressing the

imperfect attack detectability and network observations [31]. This approach reduces

the agent’s exploration space and aids in converging towards the optimal solutions

fast in a new domain or after a domain shift. The effectiveness of this approach

is evaluated against numerous adaptive attack strategies in various network environ-

ments. These experiments show that the agent can deliver approximately 97% benign

traffic despite diversified attack sophistication and IDS uncertainties.

This chapter offers the following main contributions:

• An effective approach that integrates the attack behaviors, system dynam-

ics, and IDS inaccuracies into the agent’s RL decision-model and balances the

exploration-exploitation trade-off more optimally.

• A distributed multi-agent autonomous architecture to employ dynamic and op-

timal defense strategy compositions for protecting critical network links against

I-DDoS attackers, where the agent learns to optimize decision-making based on

interactive experience instead of relying on static human configurations.
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• A model named BRITE loop to define the capabilities of an autonomous cyber

defense agent that aims to optimize decision making in a stochastic and dynamic

environment.

3.2 Attack Model

The objective of the attacker is to disrupt the availability of critical servers by

congesting critical or backbone links that carry significant portion of traffic of target

area/network. This section gives an overview of attack types, attack actions, and

attack workflow.

I-DDoS Attack Type: The attacker sends traffic from distributed bots (botnet)

to execute I-DDoS that are of two types based on attack destinations: 1) Indirect,

and 2) Direct. The difference between these is that in Indirect I-DDoS attack, instead

of sending traffic directly to the target, the attacker sends traffic to selected decoy

bots (Coremelt [3]) or decoy servers (Crossfire [2]) which are neighbours of the target

area. As a result, critical links of a target area shared with those destination decoys

or bots get congested. In Fig. 3.2, there are three critical links: L1, L2, and L3 for

target network W . Attack bots send traffic to bots and decoys to congest links L1

and L3 respectively, in order to induce delay and drop for benign traffic transmitting

through these to reach W .

Attack Actions: At a specific time-sequence t, the attacker may perform same or

different actions against different links. This section describes different attack actions,

that are mainly classified into three major actions.

1. Reconnaissance: The attacker’s Reconnaissance aims to identify critical links

that, if flooded, maximize target area’s flow disruptions. To do so, the attacker sends

traceroute or pathping commands from attack botnet to target areas to find flow

density of a targeted link [2, 3], which is high for a critical link [2]. Therefore, many

traceroute packets transmit through the link when the attacker performs Reconnais-

sance across it. As links’ flow densities follow power-law distribution, only attacking
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few links with high densities satisfies attacker’s objectives [2]. However, he periodi-

cally performs Reconnaissance to identify new critical links appeared (or disappeared)

due to ISP’s load balancing approach or traffic engineering [2].

2. Launch Attack: If the Reconnaissance identifies the subjected link as criti-

cal, the attacker may launch or continue sending traffic with a specific attack tactic

through it to induce congestion. Notably, properties such as traffic protocol, ingress

ports, and others vary across attack flows. He composes diversified attack tactics by

tuning following parameters:

• Adjusting Botset: According to attacks in [2, 3], the attacker generally adjusts

attack botnet by executing one of following: (1) Use Existing Bots (i.e., continuing

with previous botset) that compromises stealthiness but causes less attack cost, (2)

Extend Botnet (i.e., recruiting new bots or reactivating silent bots) that increases

attack volume but causes more cost, or (3) Change Bot Distribution (i.e., replacing

a portion of the previous botset) that enhances stealthiness but causes more cost.

Therefore, the attacker increases stealthiness by executing Change Bot Distribution

more [2]. Whereas, he executes Extends Botnet to increase attack volume or lower

bots’ traffic rate without compromising the attack intensity.

• Adjusting Traffic Rate: The attacker strategically adjusts his bots’ traffic rate

by executing one of 1) Use Existing Traffic Rate, 2) Decrease, or 3) Increase Traffic

Rate [2]. Generally, decreasing traffic rate increases stealthiness but shrinks attack

volume, which is opposite for increasing traffic rate [60]. To avoid early congestion

while dynamically assigning attack flow rate, he uses bandwidth estimation tools (e.g.,

Pathneck [106]).

3. Inactive: The attacker may pause or stop sending traffic through a specific link

due to strategical reasonings or others.

Attack Workflow: This dissertation assumes that a sophisticated and rational
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Figure 3.1: Attack Model

I-DDoS attacker is adaptive who observes the network condition and previous attack

consequences to decide his next attack action. Therefore, as illustrated in Fig. 3.1,

attack workflow has two parts: sense-making and decision-making. In this research,

the attacker’s has 11 actions including 9 ways of launching attack (i.e., 9 attack

tactics) considering possible combinations of adjusting botset and traffic rate. The

attacker executes same/different actions for different critical links, and Fig 3.1 depicts

the workflow against such a targeted critical link at t.

1. Attacker’s Sense-making: At the start of t, the attacker receives observations

about the link, based on which, he analyzes link utilization, number of bots blocked or

rate limited, Quality of Service (QoS), and response ratio of his connection-oriented

traffic (e.g., TCP, ICMP). For bots sending connection-less traffic (e.g., UDP), he

may send connection-oriented probe packets to reduce uncertainties. However, at-

tacker’s observations may not reveal all these information certainly. Hence, through

addressing uncertainties, he infers previous attack actions’ outcomes (e.g., Failure,

Minor Success, and Success) probabilistically.

2. Attacker’s Decision-making: Based on sense-making, the attacker decides

his next action that defines whether to send traceroute packets (Reconnaissance), or
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attack traffic (Launch Attack with particular tactic), or no traffic (Inactive) through a

specific critical link at any time t. This dissertation assumes that the attacker follows

a specific strategy that dictates his next optimal action based on current environment

condition and enacted defense plan. For example, an attack strategy recommends

“Decrease traffic rate if most of attack traffic are dropped"; whereas, another strategy

recommends “Inactive" for the same case. Importantly, attack strategy considers two

sensitive attack parameters: aggressiveness and stealthiness. Stealthy attacker puts

more emphasis on stealthiness and prefers stealthy attack tactic. For instance, low

detectability of shrewd attack flow motivates stealthy attacker to lower traffic rate

or change bot distribution frequently. In contrast, aggressive attacker (e.g., time

or cost-constrained) puts more emphasis on aggressiveness and prefers aggressive

attack actions. For example, they keep traffic rate high or use all bots simultaneously

(increases detectability due to repeated use) to achieve his goals within a short time

or budget. Moreover, an attacker can change his attack characteristic (e.g., from

stealthy to aggressive), that is called Attacker’s Characteristic Type Adaptation.

3.3 Horde Deployment and Architecture

This section gives an overview about the deployment of Horde and its components,

that is illustrated in Fig. 3.2.

3.3.1 Horde Deployment

An upstream entity such as ISP, AS, or large enterprise network deploys the frame-

work, Horde, to protect its or clients’ critical links, which have several advantages:

• Defending I-DDoS at upstream network point is essential not only due to its

effectiveness and flexibility with a view over aggregated traffic behavior, but also due

to defense infeasibility at target area [107, 108].

• The upstream Horde can offer cost-effective and real-time defense-as-service to

its clients. In contrast, enterprises unwilling to pay to upstream have to buy and
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Figure 3.2: Architectural Overview of a Horde deployed at an upstream ISP to protect
Critical Links. An agent di is responsible to optimize defense composition to protect
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integrate more hardware appliances into their infrastructure to defend diversified I-

DDoS approaches, which is tedious, ineffective, and expensive [86].

• Filtering malicious traffic at upstream link is also beneficial for an ISP due to

significant reduction in its network usage [109].

These advantages have encouraged commercial efforts from many ISPs [110]. No-

tably, a downstream ISP can pay to upstream ISP, for instance, tier-3 ISP pays

to tier-2 ISP for getting I-DDoS defense service. Moreover, such defense-as-service

model may induce inter-ISP (among ISPs of the same tier) economic relations, where

an ISP collaborates to reroute its traffic through links of other ISPs to employ fast and

efficient recovery from failures [70]. Importantly, inter-ISP collaboration is beneficial

for a participating ISP because it (1) gets paid for carrying others’ traffic through its

currently spare bandwidth, and (2) can reroute its prioritized traffic through others in

cases of congestions at its links. Therefore, researchers develop and recommend client-

to-ISPs (or ASes) and inter-ISP (or inter-AS) collaborations models such as CoDef

[111], SIBRA [70], and SENSS [108] to enable efficient DDoS defense. Moreover,
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SENSS offers an automated and secured approach to establish such collaborations

with low deployment cost on ISPs’ existing infrastructures. Though Horde does not

necessarily require inter-ISP collaboration, Horde’s efficacy boosts with more par-

ticipation of ISPs into the collaboration due to more traffic rerouting options and

significant deviations among mutated and previous routes. However, defining eco-

nomic models to establish such collaborations is out of this paper’s scope, but Horde

can leverage the payment model described in SIBRA.

3.3.2 Horde Architecture

Horde mainly consists of the following components:

1) Autonomous Defense Agent: Horde employs intelligent and autonomous

entities as Autonomous Agents which are responsible to enact optimal defense plan

against diversified I-DDoS without any human intervention. Horde assigns a dedi-

cated agent for each critical link of a Horde customer (pay incentives), that indepen-

dently optimizes defense planning at real-time to protect its assigned link. In Fig.

3.2, Horde at ISP assigns agents d1, d2, and d3 to protect critical links L1, L2, and

L3 respectively for a customer W . Importantly, Horde activates an agent of a critical

link if it is transmitting an abnormal volume of traffic or traceroute packets, and

inactivates if traffic volume is normal for many time-sequences.

Scalability: Generally, a small set of links (i.e., critical links) carries most traf-

fic of a target area (i.e., network or domain) as internet’s data connectivity follows

power-law distribution [2, 73]. Moreover, according to experiments (using PlanetLab)

on numerous enterprises, only four links carry 60-90% flow densities [112]. Hence, the

approach of assigning one agent for a critical link is scalable, for which, the owner of

Horde also gets paid. Besides, an agent is neither computationally nor financially ex-

pensive, and Horde’s collaboration model ensures no conflict between any two agents.

2) Agents’ Collaborations: Horde agents mainly collaborate for traffic rerouting

with its artificial manager, which is responsible for both intra-Horde and inter-Horde
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(among Hordes of different ISPs/ASes) collaborations. Fig. 3.3 illustrates intra-

Horde collaborations forHorde1, and inter-Horde collaborations ofHorde1 with outer

Horde2 and Horde3. In Horde1, agent di is responsible for critical link Li, and only

d1 is active due to excessive traffic at its link L1. To reroute traffic through alternative

links with spare bandwidth (i.e., leftover link bandwidth after consumption by current

traffic), the manager keeps traces of two bandwidth types: 1) Inner bandwidth (spare

or required to mitigate excessive traffic) inside the owner ISP, and 2) Outer spare

bandwidth of other Hordes. In Fig. 3.3, the Inner stack has one red BW box for

L1 specifying required bandwidth, and two green boxes for L2 and L3 specifying

their spare bandwidth. Besides, Horde1 is notifying other Hordes about its spare

bandwidth while receiving notifications about their spare bandwidth.

In Fig. 3.3, agent d1 asks for spare bandwidth, where red boxes at index 1 and

2 define bandwidth required for route mutation and slicing (details in Section 3.6)

respectively. The manager replies with allocated spare bandwidth, where green boxes

at index 1 and 2 define spare bandwidth for route mutation and slicing respectively.

At a specific time, the agent executes either route mutation or route slicing; hence, the

same spare bandwidth can be allocated both at index 1 and 2. Importantly, an ISP
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knows routing policies, BGP path information, and customer IP ranges of neighbor

ISPs [113], that the manager can access alongside routing configurations of its own

ISP. Hence, the manager is responsible to determine whose spare bandwidth to allot

for which agents. Besides, Routing Information Base (RIB) storing multiple routes

for a destination AS can be used for alternative route selections [114].

The manager temporarily locks (not accessible anymore) the allotted bandwidth if

Inner, or asks corresponding managers to lock otherwise. However, after computing

the optimal defense action by the requesting agent (d1), the manager unlocks or asks

to unlock the non-required bandwidth portion. Thus, Horde avoids conflicts among

agents and ensures less traffic rerouting than available spare bandwidth.

3) Attack Prediction Model: As shown in Fig. 3.2, all agents send their ob-

servations regarding attack actions to an Attack Prediction Model. The artificial

manager of the Horde retrains the model based on these observations to learn the

currently adopted attack strategy actively. This model may or may not be trained

with initial domain-specific data, but it never stops learning that helps it to learn

any new attack strategy based on agents’ interactive experience. This model not only

detects the attacker’s strategical characteristic adaptations (e.g., from aggressive to

stealthy) but also shows robustness against attack deceptions that aim to deceive

the prediction model by executing random actions ignoring his strategy. However,

the model assumes that he cannot execute random actions frequently in order to not

deviate too much from his goals.

4) Traffic Classifiers to Distinguish Attack Flows: Horde accommodates

both signature and anomaly based classifiers/IDS to distinguish attack flows; where,

the signature, knowledge, or rule based detector matches a traffic pattern with the

previously identified attack signature profiles [115, 116]. In contrary, anomaly based

classifiers quantify the the deviations of traffic flows’ behaviors from normal behaviors

[117]. It is hard, if not infeasible, for an attacker to mimic the aggregated benign
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behavior from all aspects. Moreover, some traffic properties/features need to be

deviated from normal behavior for successful attack execution. For instance, even

the stealthiest attacker has to send abnormal amount of HTTP GET requests (e.g.,

click an image) to decoy servers to execute Crossfire, that may induce attack alerts

[118]. However, considering all features in a single classifier will lead to overfitting due

to the curse of dimensionality [119], while identifying the optimal set of features on-

the-fly against a specific attack strategy is hard. Therefore, Horde deploys multiple

lightweight anomaly-based traffic classifiers, where a classifier is trained with a distinct

set of coarse-grained traffic features assuming that particular feature combinations

may expose specific attack approaches (e.g., DNS amplification, low-rate TCP, and

others) better.

Technologies for detecting network anomalies have spanned from time-series fore-

casting [56] and signal processing [55] to network-wide approaches considering traf-

fic rate [60], entropy [103], packet properties [54, 53], puzzle-game [63], and others

[107]. There are tremendous efforts ongoing, boosted by recent advancements of

Graphics Processing Unit (GPU), to develop lightweight Network-IDS (NIDS) such

as LADS [107], FADM [120], Zeek [121], and SNORT [122]. These IDSs aim to bal-

ance the trade-off between scalability and accuracy to detect attack at real-time with

low-latency at upstream points. However, Horde considers the likelihood of poor

performance by all classifiers. Each distinct classifier independently quantifies the

maliciousness of existing flows based on its feature set to provide risk scores. The

maximum value among all IDS scores is considered as risk score of a source. For

anomaly based classifier, risk score ranges between 0 and 1, but it is either 0 (benign)

or 1 (malicious) for signature based classifier.

3.4 Overview and Reasoning of Defense Agent’s Decision-making

This section gives an overview of defense objectives, and decision formalization of

an agent.
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Figure 3.4: Defense Agent Sequential Decision Process

• Defense Objective The agent mainly applies two defense techniques: (1) Traffic

Limiting that aims to maximize attack traffic drop, and (2) Traffic Diversion that

aims to exhaust attack resources or enhance attack distinguishability while ensuring

transmission of prioritized flows. The agent considers different compositions of these

two techniques, that vary regarding traffic ratios and approaches. Presumably, traffic

limiting depends on IDS performance that be jeopardized by attack indistinguishabil-

ity and induces non-tolerable benign traffic drop. In contrary, traffic diversion imposes

risk of delaying benign traffic for rerouting through non-optimal routes, and induces

operational costs for route reconfigurations that complicate further while rerouting

through multiple alternative links. Moreover, traffic diversion may be infeasible due

to scarce of available spare bandwidth.

Therefore, the main objective of an agent is to compute context-aware and opti-

mal composition of traffic limiting and diversion dynamically at real-time to protect

its assigned link, where the context depends not only the current environment and

expected attack behavior but also the defense deployability, cost, and expected effec-

tiveness. Consequently, the collective defense plan emerged due to all agents’ actions

maximizes benign traffic serving with minimized cost.

• Defense Planning Formulation An autonomous agent’s defense workflow has

two parts: 1) Sense-making that aims to understand the effectiveness and deployabil-
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ity of available defense strategies for the current environment, and 2) Decision-making

that aims to compute optimal defense strategy based on sense-making. As shown in

Fig. 3.4, the agent formulates the environment with two components: (1) current

attack behavior that will be the reaction to current defense plan, and (2) system

(environment) dynamics that regulate changes of its assigned link due to attack and

defense interactions. The environment exhibits stochastic behavior because of (1)

adaptive attack behavior specifying that the attacker adapts its attack approaches,

and (2) stochastic system dynamics specifying that the consequence of a specific at-

tack and defense interplay is not always same. Therefore, the agent formulates the

decision-optimization problem as Sequential Decision Process (SDP) [31] to optimize

planning at a such stochastic environment.

Understandably, to optimizing decision-making, the agent needs to know both the

attack behavior and system dynamics. However, initially, the agent has no or limited

knowledge of these parameters due to lack of deep domain knowledge or data. Hence,

the agent’s SDP is formulated using RL, where the agent’s sense-making understands

possible consequences of defense strategies by actively (i.e., never stops learning)

learning system (environment) dynamics and attack strategy (to predict the next

attack reaction) [13].

• Solving Agent’s Reinforcement Learning (RL) Model Horde solves the RL-

model using dynamic POMDP planning, in order to exploit available knowledge on

system dynamics and current attack strategy more specifically. This approach inte-

grates fine-grained information about attacker’s behavior into agent’s decision-model.

In contrast, using traditional model-free RL learning, the agent has to either ignore

attack behavior that reduces the accuracy of defense plan or embed the expected

attack behavior into state space that makes real-time defense optimization computa-

tionally infeasible. As the attack behavior can only be learnt probabilistically, con-

sidering probabilities of possible attack actions into state space, even qualitatively,
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incurs state-space explosion. Moreover, this approach confiscates agent’s exploration

to avoid exploring irrelevant defense plan at current environment condition, that aids

the agent not only to converge faster towards optimal planning but also to minimize

negavtie impact of exploration.

At each time t, the agent creates a new POMDP model, which is a tuple of 7

parameters (S,A, T,ΩS,MO, R, γF ). S is state space, A is defense space, ΩS is ob-

servation space, and O represents observation matrix, which are primitives of agent’s

POMDP model. T is state transition matrix defining probable effectiveness of defense

actions, R is reward function quantifying possible payoffs of defense actions, and γf

is the discount factor that defines how far into future the agent looks to understand

current defense consequences into future. T , R, and γf changes with time that the

agent always needs to update. By solving the POMDP model, the agent computes an

optimal policy that recommends the optimal action for the current belief, where belief

probabilistically define the current environmental condition to address imperfect and

incomplete observability of the environment.

3.5 Capabilities of Autonomous Defense Agent

This dissertation presents BRITE loop (at Fig. 3.5) that divides the agent’s work-

flow from observation to action execution into five different phases to generate the

POMDP model. This section gives an overview of BRITE loop phases, where first

four phases involves sense-making followed by decision-making at last phase.

1) Observe: An agent’s sense-making initiates with observing the network symp-

toms and IDS risk scores for existing flows as feedback from the environment, that

may also include benign users’ feedback for losing or delaying their packets.

2) Understand: Based on recent observations, the agent analyzes its link con-

dition and attack intensity (using IDS risk scores) to understand the current envi-

ronment. Based on the analysis, the agent computes belief about current state of

the environment. This information is critical, because, for instance, traffic limiting
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Figure 3.5: BRITE Loop

is ineffective when the congestion is due to abnormal amount of benign traffic. At

this phase, the agent characterizes the last attack behavior/action probabilistically

and sends it to the Attack Prediction Model that is retrained using all agents’ recent

attack observations. Then, for all possible defense scenarios at current link condi-

tion, the agent learns the next attack action probabilistically against its link using the

prediction model.

3) Investigate: The agent’s understanding about the link condition may some-

times fail to address uncertainties, that necessitates Investigation to integrate addi-

tional measurements in such cases. Moreover, it aims to tackle adversarial machine

learning [123] by investigating whether the recently observed attack action is decep-

tive or not.

4) Evolve: An agent evolves to cope with the change of environment such as,

for instance, though traffic filtering was effective against stealthy attack actions, it is

currently failing. Therefore, it has to actively refine the knowledge about its link’s

system dynamics through weighing recent observations and previous knowledge ap-

propriately. By considering the updated system dynamics and predicted attack be-

havior during Understand, the agent creates state transition matrix T . At this phase,

the agent also learns discount factor γf of POMDP, and updates its expectation about

IDS error rate.
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5) Actuate: At this phase, the agent computes expected rewards R of POMDP

for all possible attack and defense scenarios based on its sense-making at previous

phases. Using model primitives and recently learnt T , γF , and R, the agent creates

POMDP and solves it at real-time to get the optimal policy. The policy recommends

dynamic and optimal composition of defense approaches based on current environ-

mental condition that is inferred at Understand phase.

The next Section 3.6 describes agent’s defense approaches that the agent combines

to create defense space A consisting of composite defense actions/strategies.

3.6 Defense Approaches of An Agent

The agent applies two approaches of traffic diversion: (1) Route Mutation, and (2)

Route Slicing, and two approaches of traffic limiting: (1) Selective, and (2) Sampled.

1. Route Mutation: Route mutation reroutes traffic of a specific victim destination

(i.e., Horde’s customer) through an alternative link with spare bandwidth, that makes

previous critical link non-critical [71]. Horde chooses the alternative link exploiting

the property that well-crafted path diversity either increases distinguishability or

exhausts resources of indirect attackers. Because, significant route deviations force

the attacker to change decoy servers, decoy bots, or source bots.

Themanager of Horde selects alternative links satisfying constraints such as Reach-

ability (i.e., traffic must reach to the destination), Load satisfaction (i.e., chosen link

must be able to carry traffic load), QoS (i.e., tolerable network latency), and Loop

avoidance (i.e., no loop at the new route), according to the approach in [73]. Addi-

tionally, it tries to minimize the set of common destinations of traffic transmitting

through previous and alternative links (if such information is available).

Presumably, to attack the new critical links, attack bots have to exhibit one of the

following properties:

(a) Bots Changing Destination Decoys: Bots that change destinations showing
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high correlations with route mutations are more likely to be detected, because benign

users hardly show such correlated behaviors [111, 124]. It also breaks the property

of bot indistinguishability of Crossfire attack due to associations with multiple decoy

servers [2].

(b) Bot Disappearance: These bots stop sending traffic, because their target links

are not critical anymore. Besides, persistent traffic sending to specific destination

incurs indications as attack contributors [2]. Though these bots seem suspicious,

Horde cannot detect these only based on disappearance.

(c) Bot Reappearance: Bot that disappears with route mutation but reappears

again if a particular link becomes critical again, are high likely to be detected. For

instance, if source si appears when lj becomes critical and disappears otherwise, then

well-crafted traffic diversion reveals attack bot like si.

(d) Newcomers: Bots appearing for the first time to send traffic to new decoys

cannot be suspected with high confidence. However, to avoid properties (a) and

(c), these should not be used after route mutation assuming that bots avoid non-

critical links. Therefore, frequent change of critical links exhausts attack resources in

buying/renting such newcomers.

On principle, attack bots send multiple traceroutes to detect destination decoys and

early congestion [2] for indirect I-DDoS, that significantly increases with route muta-

tion. Besides, analysis on Mirai [125] and Conficker [126] reveal that most bots came

from small set of ASes [74, 111]. Hence, correlating traceroutes and ASes with suspi-

cious sources can also reduce uncertainties regarding maliciousness. Thus, route mu-

tation enhances detectability of stealthy indirect attack bots. Though route mutation

carries direct I-DDoS traffic to newly chosen links, it enhances attack sophistications

regarding early congestion avoidance, more attack flows, and others.

2. Route Slicing: This approach transmits prioritized flows of the agent’s link
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(a) Timid Limit Function (b) Aggressive Limit Function

Figure 3.6: Rate Limiting Functions. A composite action with timid or aggressive
traffic limiting chooses one limit function based on current context and amount of
traffic it wants to drop.

through multiple alternative links, whose volume cannot exceed excessive traffic un-

like route mutation. It actually offers extra virtual bandwidth to remove congestions

at the critical link. The agent reroutes top prioritized flows for ensuring their reacha-

bility. In response, attackers have to recruit more bots (exhaust attack resources) or

increase bots’ traffic rate (increase detectability). Moreover, indirect attackers have

to attack more critical links simultaneously that demands more efforts for selecting

decoys, estimating bandwidth across routes, tracing routes, and others.

3. Selective Traffic Limiting: It drops or restricts traffic rate of suspicious flows by

dynamically defining maximum allowable traffic rate as threshold that differs among

existing sources based on link condition, current traffic patterns, sources’ risk scores,

and predicted attack strategy. This dissertation presents a new approach of dynamic

traffic limiting that is more effective than traditional rate limiting approaches due to

not blindly restricting all sources within the same limit without concerning risk scores

and other critical environmental factors [83]. Blind restriction induces huge benign

traffic drop during large volume attacks due to preference of traffic policing (dropping

excessive traffic) over shaping (queuing excessive non-prioritized traffic) [127]. The

agent considers following function genres to define thresholds:

• Timid Limiting: Timid approach initiates traffic dropping from comparatively

lower ranges to find stealthy attack flows. It drops few flows from lower ranges while
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increasing drop non-linearly towards higher ranges. This approach is beneficial when

attack is comparatively stealthy and IDS has non-negligible false positive rate.

• Aggressive Limiting: It adopts comparatively aggressive approach in dropping

traffic from higher risk score ranges assuming better detectability of attack flows.

However, it still allows some traffic from sources with higher scores.

• Traditional Blocking: It drops all flows of a source if its risk score above than

a threshold γs, that is very effective with highly accurate IDS.

Fig. 3.6a and 3.6b show some timid and aggressive limiting functions satisfying

convex and concave properties respectively, where a value at Y-axis represents the

percentage of traffic dropped having risk score x (at X-axis). Both timid and ag-

gressive limiting allow some traffic of sources with higher risk scores, which may help

to reduce uncertainties regarding their maliciousness. Because, unlike benign users,

attack bots either continue sending traffic without concerning maximum allowed rates

or disappear. Even if those bots send traffic following maximum allowed rate, the

attacker needs to rent new bots to meet attack volume expectation. Notably, a limit

function implements blocking by assigning allowed traffic rate to 0 and rate limiting

by restricting traffic rate within [0,1).

4. Sampled Traffic Limiting: This approach samples sources to drop traffic for

finding new attack signatures to boost IDSs’ performance. This approach is expensive

in terms of dropping benign traffic, and the agent generally executes this approach in

cases when it fails with other limiting approaches while having no/less spare band-

width for further traffic diversion. Generally, such cases may appear against those

indirect attackers if and only if the attacker can always afford newcomers to defeat

traffic diversion. However, executing such indirect attacks is realistically infeasible

due to non-zero bot cost and are not considered in this research. In contrary, such

cases may be induced by direct I-DDoS attackers who can afford traffic sending at
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very low rate. However, such attacks, though direct, is very difficult to launch due

to sending traffic to few destinations that increases detectability and requiring high

number of bots to keep traffic rate low. Hence, it is rational to assume that such direct

attacks, if happens, can only occur at victim premises instead of highly provisioned

ISP links.

At this approach, the agent creates clusters based on traffic properties such as

source and destination IP, source AS, traffic rate and protocol, and others. It drops

traffic uniformly from all clusters, and the dropped flow from a cluster is chosen

randomly. This approach assumes that the volume of attack traffic is higher than

benign traffic; hence, the probability of dropping attack traffic is higher despite ran-

dom limiting. To known whether sources of dropped traffic are malicious or not,

their destinations send puzzles [62] to those sources assuming that benign sources

will solve these puzzles. Thus, the agent may discover new attack traits that can

probabilistically detect a portion of previously stealthy attack bots.

The next Section 3.7 discusses primitives of Horde’s POMDP models.

3.7 An Agent’s POMDP Model Primitives

This section describes basic components of an agent’s defense model.

3.7.1 Defense Action Space

Horde’s defense space A consists of multiple composite defense actions/strategies

that are created by combining traffic limiting approaches with traffic diversion ap-

proaches. Each composite action is distinct considering limit function type, traffic

diversion type, and diversion/limiting ratio. Table 3.1 shows A, where TM is the

excessive traffic volume that needs to be mitigated to remove congestion from the

agent’s link, and TC is the volume of traffic of victim clients. In the table, Inactive

action defines that the agent does nothing.

In the table, each composite defense action has particular traffic diversion volume
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Figure 3.7: An Optimal Defense (Composite) Strategy that agent d1 is executing on
its link L1 by borrowing bandwidth from d2. The red portion in the plot of traffic
volume specifies dropped traffic, green portion specifies rerouted traffic, and all other
traffic are transmitted through L1.

Table 3.1: Defense Action Space A

Defense Type Limit Function Type Traffic Diversion Type Diverted Traffic Volume (TD)
Inactive N/A N/A N/A

Composite
Defense
Action

Timid Route Slicing
0

r1 × TM
r2 × TM

Aggressive Route Slicing
0

r1 × TM
r2 × TM

Traditional Route Slicing
0

r1 × TM
r2 × TM

Sampled Route Slicing
0

r1 × TM
r2 × TM

N/A Route Slicing TM
N/A Route Mutation TC
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TD and traffic limiting volume TL that is equal to max(TM −TD, 0). TD depends on ri

that defines a ratio depending on the currently available spare bandwidth SB, and ri <

ri+1 (e.g., r1 = 33% and r2 = 66%). Understandably, a particular defense strategy

becomes more vigorous in dropping traffic with the increase of TL. Notably, at the

second last row, there is no limiting function as the volume of diverted traffic volume

is equal to the excessive traffic. In the last row, no limiting is required as all clients’

traffic are rerouted through alternative links. Though repeated traffic rerouting can

find probable target customer [124], Horde has to perform route mutation for all

customers through different links to avoid congestion. Fig. 3.7 illustrates a composite

defense action, where the Green and Red portions of plot “Traffic Volume across Risk

Scores” represent TD and TL respectively, and the rest of the traffic (grey bars) use

their regular routes through L1.

At each time, for each composite action/strategy ad ∈ A, the agent dynamically

determines “one” context-aware limit function (timid function in Fig. 3.7) based on

its limit function type, current traffic distribution across risk scores, and associated

TL. The chosen function drops TL through minimizing expected false positive fp. The

agent determines the expected false positive rate fp and false negative rate fn of limit

function Yd considered for ad, using following equations:

fp =

∑
x∈X(1− x)× Yd(x)× Tx∑

k∈X Yd(k)× Tk

fn =

∑
x∈X x× (1− Yd(x))× Tx∑

k∈X(1− Yd(k))× Tk

(3.1)

where, Tx is traffic volume with risk score x, Yd(x) is the ratio of Tx that Yd will

drop, and
∑

k Yd(k)× Tk ≈ TL that is the amount of traffic ad wants to drop.

3.7.2 Attack Action Space

Table 3.2 illustrates the attack action space required to formulate the attack model

at Section 3.2. β represents the type of botset adjustment, and χ specifies qualitative
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Table 3.2: Attack Action Space (V)

Action Type
Adjusting
Botnet
β

Botnet
Adjusting
Rate (χ)

Adjusting
Traffic
Rate (τ)

Attack Tactic
Characteristics

Inactive _ _ _ Silent

Reconnaissance _ _ _ Discover Target
Link

Launch Attack

Use Existing
Botnet

_ Same Same Attack
_ Decrease Y+1
_ Increase E+1,Y+(-1)

Extend Botnet

Low
Same E+1

Decrease Y+1
Increase E+2,Y+(-1)

Medium
Same E+2

Decrease E+1,Y+1
Increase E+3,Y+(-1)

High
Same E+3

Decrease E+2,Y+1
Increase E+4,Y+(-1)

Change Bot
Distribution

Low
Same Y+1

Decrease E+(-1),Y+2
Increase E+1

Medium
Same Y+2

Decrease E+(-1),Y+3
Increase E+1,Y+1

High
Same Y+3

Decrease E+(-1),Y+2
Increase E+1,Y+2

levels (i.e., low, medium, and high) defining percentages (e.g., low means less or equal

to 33%) of adjustment. χ specifies the botnet extension rate (percentage of new bots)

when β is Extend Botnet, or botnet change rate (percentage of replaced bots) when β

is Change Bot Distribution. The traffic adjustment is represented by τ that has three

values: Same, Increase, and Decrease. Notably, though the attacker adjusts each

bot’s traffic rate separately, the agent only concerns about the mean traffic rate that

can insinuate attack action’s aggregated stealthiness or aggressiveness. Moreover,

each attack action has a level of stealthiness Y +ni and expansion E+nj (column 5),

where positive ni or nj defines the increase of stealthiness and expansion respectively.
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Table 3.3: Observations Space (ΩS)

Link Utilization Packet Drops
Utilization Value (u) Symbol Drop Ratio (l) Symbol

u ≤ 0.33B u1 l ≤ γ1 l1
0.33B < u ≤ 0.67B u2 γ1 < l ≤ γ2 l2

0.67B < u ≤ B u3 γ2 < l ≤ γ3 l3

3.7.3 State Space of Agent’s Link

State qualitatively represents the link condition considering attack intensity and

traffic congestion. The following states give qualitative but comprehensive view over

link condition.

• Normal (N): The link contains zero or negligible attack flows during this

state.

• Abnormally Highly Utilized (H): At this state, attack flow intensity is not

at its peak due to partial success of attackers (or defenders), attack initiation,

or strategic attack reduction. Though the abnormal link utilization at this state

is still tolerable, it forecasts the imminent high attack flow intensity.

• Flooded (F): The attack severity is at its peak engendering significant packet

delays and drops.

3.7.4 Agent’s Observations for Understanding Link Condition

The agent observes link symptoms, based on which, the agent tries to understand

the current link state. Though deep analysis of flows can infer the current link state

certainly, it is infeasible for a real-time system. Instead, inspecting packet drop rate,

delays, utilization, and others and correlating these with previous attack history are

more pragmatic. Therefore, our agents analyze Packet Drop Rate and Link Utilization

as real-time observations, which can provide insight about the network state with

comparatively less uncertainties [128, 129]. Table 3.3 shows the observations space

Ωs of our POMDP model, where B is the link bandwidth, and γi is defined threshold.
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Table 3.4: Observation Table

Observation (Link Utilization) pg pi pĝ p̂i
Low 0.2 0.2 0.6 0.7

Medium 0.4 0.6 0.4 0.3
High 0.6 0.5 0.2 0.1

Composing Observation Matrix for Agent’s POMDP Model: The environ-

ment is only partially observable with imperfect observations; hence, the agent cannot

certainly know about the current state only based on observations. To clarify, higher

packet drop rate generally occurs due to attack traffic (high correlation), but it might

also happen due to abnormal amounts of benign traffic, data link layer failures, and

others [129] (low correlation). Therefore, the agent composes observation matrix MO

(for POMDP) to define correlations among states and observations, which is required

to address uncertainties in associating current observation to the underlying state.

MO contains p(o|s) for all possible state s ∈ S and observation o ∈ Ωs, where, p(o|s)

specifies the likelihood of observing o ∈ Ωs at a state s ∈ S. It determines P (o|s)

assuming same probability p(o) for all observations, using following equation:

p(o|s) =
p(s|o)p(o)∑
i∈ΩS

p(s|i)p(i)
=

p(s|o)∑
i∈ΩS

p(s|i)
(3.2)

where, p(s|o) defines the probability that the current state is s when the observation

is o.

Determining State-Observation Correlations: This section describes how the

network administrator updates p(s|o) based on recent observations and experience.

The conditional probabilities p(s|o) of a state s ∈ S after observing o ∈ Ωs depend

on both benign and attack behaviors and may not be static. To learn these, since a

particular observation o at time t to time t+ x, the network administrator monitors

two properties: potential botset size and their flow growth rate, to find the aggregated

change of these properties within that time window. Based on these properties for
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incidents with observation o, he estimates (updates) four probabilities: (1) Probabil-

ities of increasing flow growth rate, pg, (2) Probabilities of increasing botset, pi, (3)

Probabilities of decreasing flow growth rate, pĝ, and (4) Probabilities of decreasing

botset, p̂i. Similarly, he calculates these probabilities for all possible observations.

Table 3.4 shows such an example, where each row is associated with a specific type

of link utilization observations.

For each o, the agent considers the state as Normal (N) if both properties are

decreasing, because attack flow intensity reduces from N . It considers it as Abnor-

mally Highly Utilized (W ) if one is increasing and other is non-decreasing, because

attack flow intensity increases from W . It considers it as Flooded (F ) if exactly one

is increasing and the other is decreasing, because the attacker is diversifying attack

vectors. Notably, when the state is F , the attacker is not trying to change the attack

intensity as he already met the expected intensity. There is another case when both

remain unchanged, which belongs to either N or F depending on the current link

utilization u. The network administrator determines these conditional probabilities

using following equation:

p(N |o) = pĝp̂i + (1− u)(1− pĝ − pg)(1− p̂i − pi)

p(H|o) = (1− pĝ)pi + (1− p̂i)pg − pgpi

p(F |o) = pĝpi + p̂ipg + u(1− pĝ − pg)(1− p̂i − pi) (3.3)

The following Sections 3.8-3.9 describe phases of BRITE loop with details.

3.8 Understand & Investigate Phases of Agent

After observing the network symptoms at Observe phase, the agent enters into

Understand & Investigate phase of BRITE loop (Fig. 3.5), and initiates its efforts to

learn non-static POMDP parameters. At this phase, it mainly focus on understanding

current environment and attack strategy based on observations.
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3.8.1 Computing Agent’s Belief

Based on current observation o ∈ ΩS and last defense action ad ∈ A, the agent

computes Belief bt that is the probabilistic distribution among possible states to

deduce the current state of the link probabilistically. The agent determines bt using

Eqn. 3.4 that extends the traditional belief calculation to integrate expected attack

behavior.

∀s ∈ S, bt(s) =
1

p(o|bt, ad)
×

p(o|s)
∑
s′′∈S

∑
av∈V

pt−1(s|s′′, ad, av)q(av)bt−1(s′′) (3.4)

p(o|bt, ad) =
∑
s

p(o|s)
∑
s′′

∑
av

pt−1(s|s′′, ad, av)q(av)bt−1(s′′)

where, bt(s) is the probability of state as current state, p(o|s) comes from Ob-

servation matrix MO, q(av) is the likelihood of av as previous attack action, and

pt−1(s|s′′, ad, av) is the system dynamics at previous time.

3.8.2 Quantifying Defense Effectiveness

Defense effectiveness of a defense action ad ∈ A at current state s ∈ S specifies

a vector consisting of transitional probabilities pt(s′|s, ad) for all possible next states

s′ ∈ S. Here, p(s′|s, ad) defines the probability of transiting to next state s′ ∈ S from

current state s ∈ S for ad. Understanding defense effectiveness is essential to optimize

decision-making for the current situation. As Horde formulates the defense agent’s

decision-making as POMDP problem, T of defense agent’s POMDP is composed by

computing defense effectiveness for all ad ∈ A and s ∈ S. However, in reality, such

state transitions also depend on the attack actions that can only be known proba-

bilistically. Therefore, the agent calculates expected defense effectiveness considering
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expected attack behavior, using following equation:

pt(s
′|s, ad) =

∑
av∈V

pt(s
′|s, ad, av)× pt(av|s, ad) (3.5)

where, pt(s′|s, ad, av) represents system dynamics, and pt(av|s, ad) defines the likeli-

hood of av as attack reaction to ad at s.

Eqn. 3.5 iterates over over all attack actions av ∈ V to integrate expected attack

behavior into agent’s defense effectiveness [130]. Besides being stochastic, defense

effectiveness changes with time due to non-stationary system dynamics and adaptive

attack behavior. The agent predicts the next attack behavior at Understand phase

(discussed in next section), and refines system dynamics at Evolve phase (discussed

in section 4.2.1).

3.9 Actuate Phase of Agent

During Actuate phase, the agent completes sense-making by computing expected

rewards followed by solving the POMDP model to generate optimal policy.

3.9.1 Quantifying Agent’s Reward

The agent computes reward for all possible defense and attack scenarios to complete

the parameterR of Horde’s POMDPmodels. Reward quantifies the payoff of a defense

action/strategy against a specific attack action based on changes (improvement or

degradation) of link condition. For all possible scenarios considering all current state

s ∈ S, next state s′ ∈ S, defense action ad ∈ A, and attack action av ∈ V , the agent

formulates reward using the following equation:

R(s′, s, ad, av) = (Ψs −Ψs′)− fp(1 + δp)TLIl − TDId + Cv + εd

where, Ψs is the average amount of benign traffic dropped previously at state s, fp is

the expected false positive rate, δvp is the IDS error rate regarding fp.
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In the equation, Ψs is determined based on historical data or experience. The

second and third terms compute expected loss due to benign traffic drop and delay,

where Il and Id are cost of dropping and delaying per GB benign traffic respectively.

Hence, reward depends on both historical or previous experience and expectation over

benign traffic drop. Besides, it includes Cv representing the attack cost to incentivize

those defense actions which increase attack costs.

In the equation, εd is the incentive for executing less-explored defense actions.

Exploration is a critical criterion for a RL agent to avoid the local optima. However,

over exploration slows down the policy convergence and induces regret (i.e., loss due to

deviating from optimal solution). Hence, εd must be able to address the exploration-

exploitation dilemma of the agent’s RL approach. Horde applies UCB1-NORMAl

policy for exploration [131], that achieves the logarithmic regret uniformly over time.

εd of defense action ad is determined using the following equation:

εd =

√
(wd − ndrd2)× ln(n− 1)

nd × (nd − 1)

where, wd is the aggregated squared rewards for executing ad, nd is the number of

time ad executed, rd is the average reward, and n is the number of time passed.

The incentive for a defense action ad increases due to deviations in rewards and

less execution (n >> nd) of ad. Importantly, due to the exploration incentive, if any

two actions have the same expected payoffs and effectiveness, the agent chooses the

one that is less explored.

Finally, the agent determines the reward of ad by integrating the expected attack

behavior in Eqn. 3.6, where, p(av|s, ad) is the probability of next attack action av for

current state s in reaction to ad.

R(s′, s, ad) =
∑
av∈V

R(s′, s, ad, av)× p(av|s, ad) (3.6)
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3.9.2 Dynamic Defense Planning Generation

After calculating rewards, the agent generates a new POMDP model based on all

system primitives (S, A, Ωs, and O) and learnt non-static parameters (T , R, and γf ).

POMDP Solution Methods: The agent solves the POMDP model using Heuris-

tic Search Value Iteration (HSVI) [32], to approximate the policy with a bounded re-

gret rate J (user-defined) that defines the precision of our approximation algorithm.

The agent cannot apply exact solution approach such as Policy iteration [132], Value

Iteration [133] as the agent is Boundedly Rational [134] due to required real time op-

timization. Given an initial belief, HSVI prunes irrelevant (unreachable) belief space

to ensure fast and real-time optimization [135]. It computes the optimal policy π∗ to

recommend optimal action a∗d for current belief bt (π∗(bt) → a∗d), using the following

approach:

V π(bt) = E

[
∞∑
t=0

γtfR(s′, s, atd)|bt, π

]

π∗ = arg max
π

V π(bt)

where, V π(bt) is the accumulated rewards that is maximized by applying policy π,

considering the present and possible future payoffs R(s′, s, atd) (of Eqn. 3.6) with

discount factor γf .

3.10 Summary

This chapter presents models and framework named Horde to automate real-time

and dynamic defense composition to protect critical network links against I-DDoS

effectively. According to experiments in evaluation, Horde ensures the transmission

of more than 97% of benign users in most of cases. Horde applies a hybrid RL learn-

ing approach that learns the environment by integrating the system dynamics and

expected attack behavior into the environment. It will be interesting to analyze how
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more fine-grained defense composition may aid to reduce benign traffic drop, while

also ensuring that such extension will not deteriorate Horde’s scalability significantly

concerning computational complexity. Moreover, there is scope to improve the sam-

pled traffic limiting by improving the clustering and sampling approach. Horde reacts

not only to the change of current link condition but also to the adapted attack be-

havior. Without requiring domain-knowledge and explicit attack strategies, Horde’s

agent converges to the optimal defense composition within few time-sequences based

on its interactive experience. This shows Horde’s applicability for real-world scenar-

ios, where gathering deep domain-specific knowledge is generally infeasible without

going to operations.

This chapter focuses on real-time defense optimization autonomously that requires

some understanding and reasoning of the behavior of the environment and attack-

ers. However, this chapter does not address how these agents evolve to cope with

dynamic environment and attack behaviors. Horde needs to implement Evolve capa-

bilities of BRITE loop to deploy autonomous agents in a environment whose behavior

changes with time due to critical network events. Moreover, an agent’s decision-model

expects the expected attack behavior to be integrated, but such expected attack be-

havior changes with the attacker’s strategical adaptations/evolvement. However, it

is infeasible to have data or knowledge on all possible attack approaches, that neces-

sitates the attack behavior learning on-the-fly. Therefore, the next chapter focuses

on developing models to learn attack strategy on-the-fly and Evolve to cope with

environmental changes, based on interactive experience. Moreover, the next chap-

ter discusses the evaluation of Horde against diversified attack strategies in dynamic

environment.



CHAPTER 4: Evolution of Defense Planning for Dynamic Defense Optimization

Against Strategical I-DDoS Attacks

Understanding the network behavior is essential to optimize the I-DDoS (Infras-

tructural Denial of Service) defense planning. Most enterprise I-DDoS solutions rely

on human inputs/configurations which are not only static but also ad-hoc. In con-

trast, the network is so dynamic with many correlated factors, that may make these

inputs irrelevant. For example, newly appeared bug in a updated firmware induces

huge traffic queuing delay for previously effective traffic rerouting. Defining such

fine-grained network behavior manually or formulating the network considering its

correlated and uncertain factors is very hard, if not impossible. This chapter presents

methods and models, deployable by Horde (discussed in previous chapter 3), to learn

the currently adopted attack strategy and consolidate the capability of evolving to

cope with changes of the environment. These capabilities need to be integrated into

Horde to make it applicable in a dynamic environment against strategical and adap-

tive attackers.

The easy affordability of bots with wide global distribution makes nowadays DDoS

attackers more sophisticated and diversified. For example, indirect attacks like Cross-

fire defeat traffic load balancing or rerouting by congesting new critical links with

different set of bots [2]. Hence, deploying effective defense is unachievable without

understanding the attack reaction. Besides, failing to cope with the changes of critical

environmental factors make these enterprise solutions non-optimal; as a result, these

organizations easily fall victim to I-DDoS attacks despite adopting strong mitigation

approaches [136]. For instance, enterprises either allow too much attack traffic or drop

too many benign traffic due to being non-adaptive to IDS performance which changes
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with stealthy attack behavior or abnormal benign traffic behavior. This chapter de-

velops an attack prediction model to learn the currently adopted attack strategy in

an online approach based on recent attack observations. It is necessary to predict

the imminent attack behavior required for employing proactive, as well as, optimal

reactive defense approach. With its incremental and interactive learning approach,

the prediction model learns new attack strategy and their adaptations without being

trained explicitly with deep domain knowledge and data.

To integrate the evolve capability of BRITE loop into Horde, this chapter presents

models to tune critical system parameters: (1) system dynamics, (2) discount factor,

and (3) IDS error rate incrementally, based on recent experience. System dynamics

regulate the behavior of the link condition with respect to the enacted defense and

attack approaches, understanding which, is indispensable for defense optimization.

Discount factor (ranging between [0, 1]) defines the future-horizon until which current

defense action will have impact. Without determining optimal discount factor, the

decision-making converges to a non-optimal solution due to greedy decision-making or

redundant overestimation. Horde determines IDS error rate as the expected deviation

of IDS risk scores from real scores (i.e., 0 for benign users, and 1 for attack bots)

to incorporate the likelihood of IDS inaccuracies into decision-optimization process.

This chapters presents approaches that learn or refine these parameters in an online

approach to evolve decision-optimization according to the dynamics of system.

The evaluation experiments show that Horde agents can cope with dynamic attack

and network behavior effectively by integrating models for attack prediction and de-

fense planning evolution. The experiments on diversified and adaptive attack strate-

gies reveal that the attack prediction model can detect sophisticated attack strategies

with high accuracy despite being unseen. It also shows that it can distinguish between

attacker’s strategical adaptations and attack deceptions.

In summary, this chapter offers following contributions:
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• An online approach to train an attack prediction model that can learn any

attack strategy without being explicitly trained. Alongside detecting attacker’s

strategical adaptations, this model is robust against attack deceptions.

• An autonomous approach to integrate the evolve capability into Horde agent’s

decision-making that can cope with the change of critical link behavior, and IDS

inaccuracies. It also presents an incremental approach to train a Deep Neural

Network model to predict the optimal discount factor.

The next Section 4.1 describes how Horde learns attack strategy on-the-fly, and

the following Section 4.2 discusses how the agent evolves according to changes of the

environment.

4.1 Characterization of Attack Behavior

An agent must reason over next attack behaviors to determine context-aware opti-

mal defense action. For instance, deploying traffic filtering against stealthy attackers

is expensive due to the risk of higher benign traffic drop, whereas, traffic rerouting

against easily distinguishable attack flows seems unnecessary. Hence, a Horde agent

determines state transition matrix of its POMDP through integrating the expected

attack behavior. The expected next attack behavior is a probabilistic distribution

across attack action space V , that specifies the probability of each action as next

attack action. Determining it is essential to perform strategic reasoning required to

deploy optimal, as well as proactive defense. However, predicting next attack behav-

ior is challenging due to lack of domain knowledge on diversified attack approaches

and their adaptations. A dynamic attacker cannot be expected to choose same at-

tack action always at a particular network condition, because he adapts his attack

strategy with the observations of previous attack consequences. For example, an

attacker who previously became stealthier after flooding the network finds out that

aggressive attack behavior at flooded condition achieves his objective faster. Thus,
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the attacker can adapt his strategy according to his observations from the network.

Hence, the agents need to deploy an incremental approach to learn attack strategy

and adaptations continuously based on recent attack symptoms.

Another challenge related to attack prediction arises due to random attack exe-

cution instead of following current strategy to deceive the prediction model [123].

Therefore, the attack prediction model must not only learn new attack strategy with-

out explicit pre-training but also be robust against attack deceptions. Additionally,

due to imperfect observations, an agent cannot identify the last attack action cer-

tainly, that makes certain attack prediction infeasible. Moreover, attack observations

are also partial with imperfect and incomplete information. Hence, attack and de-

fense observations may not be identical, which may also be responsible to confront

different attack approach than anticipated. Therefore, the agent aims to determine

the expected next attack behavior through addressing all these uncertainties.

Let assume that p(s′|s, ad) is the probability of transiting from current state s to

next state s′ for defense action ad. The Horde agent creates the state transition

matrix, T , of its POMDP model with all p(s′|s, ad) considering all possible values of

s ∈ S, s′ ∈ S, and ad ∈ A. It formulates p(s′|s, ad) using the following equation:

p(s′|s, ad) =
∑
av∈V

p(s′|s, ad, av)× p(av|s, ad) (4.1)

where, p(s′|s, ad, av) is the probability of transiting from current state s to next

state s′ for combination of attack av and defense ad action. In Eqn. 4.1, p(av|s, ad) is

the probability of confronting av as next attack reaction against the employed defense

action ad at a specific state s.

In this dissertation, expected attack behavior is a matrix defining p(av|s, ad) for all

attack av at possible current state s against defense ad. This section describes the

Horde’s approach to determine p(av|s, ad) for all possible state s ∈ S and defense
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actions ad ∈ A, where p(av|s, ad) is the probability of confronting av as next attack

reaction against the employed defense action ad at a specific state s.

Overview of the approach: From an defense agent’s perspective, the rational

attacker determines his next action considering the current context that mainly de-

pends on (1) what is the current network link condition?, (2) what is the consequence

of last attack actions?, and (3) what is the currently deployed defense action? Any

rational attacker reasons over the first question, because the effectiveness of an attack

action largely depends on the current link condition. The attacker tries to reason over

the second question, because it mainly aids him to decide whether he needs to change

the current attack strategy or not. For example, if the attacker finds out that the

defender cannot detect attack bots despite having high traffic rate, then he is more

likely to continue with that cheap approach. Concerning the third question, it is ra-

tional to assume that the attacker tries to infer the next defense action, for example,

he decreases traffic rate in reaction to emphasized traffic filtering.

Both the first and third question are already integrated in p(av|s, ad); hence, the

agent needs to expand p(av|s, ad) to make it more fine-grained to integrate the second

question. The consequence of last attack action defines the improvement or degrada-

tion of the link condition due to the last attack and defense interaction. To understand

it, the agent needs to know the last state s′′. Hence, Horde expands pt(av|s, ad) to

incorporate state transition from previous state s′′ ∈ S to current state s ∈ S, using

the following equation:

pt(av|s, ad) =
∑
s′′

pt(av|s, s′′, ad)× pt−1(s′′|s, ad)

=
∑
s′′

pt(av|s, s′′, ad)× bt−1(s′′) (4.2)

where, bt−1(s′′) is the previous belief about last state s′′.

To integrate the last attack and defense reaction, Horde expands Eqn. 4.2 into
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Figure 4.1: Learning Attack Strategy. An agent creates new datarows based on attack
observations from the network, that is used to updated the RNN model.

Eqn. 4.3 to include previous attack action a′v and previous defense action a′d.

pt(av|s, ad) =
∑
a′v

∑
s′′

pt(av|s, s′′, ad, a′d, a′v)

×pt(a′v|s, s′′, a′d)× bt−1(s′′)

=
∑
a′v

∑
s′′

pt(av|s, s′′, ad, a′d, a′v)× q(a′v)× bt−1(s′′) (4.3)

where, pt(av|s, s′′, ad, a′d, a′v) specifies the probability of av for the context (s, s′′, ad, a
′
d, a
′
v),

and q(a′v) represents the likelihood that the last attack action was a′v.

In Eqn. 4.3, the given condition (s, s′′, ad, a
′
v, a
′
d) is the context, where (s, s′′, a′d, a

′
v)

specifies last attack consequence, s specifies current link condition, and ad is the

currently considered defense plan. Therefore, the agent reasons over what action the

attacker is likely to do at a specific context? to predict pt(av|s, ad), which is regulated

by the currently adopted Attack Strategy. Hence, to characterize the attack behavior

(as shown in Eqn. 4.3), the agent has to do two things: (1) identify the last attack

action for q(a′v), and (2) learn the attack strategy to predict next attack action.

Fig. 4.1 illustrates the online approach of characterizing the attack behavior, using
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the approach of agent (d1) as an example. At each time-sequence, the attacker exe-

cutes attack actions on the network, and d1 observes it from the network. From these

observations, d1 creates an attack snapshot, based on which, d1 identifies the last

attack action. Based on identified last attack action, the agent creates new datarows,

where |V ′| is the likelihood distribution for the last attack action. Similarly, all other

agents observe attack actions at their links and create datarows. Based on all these

datarows, the RNN model is updated incrementally. While determining the effec-

tiveness of a defense action, all agents ask the model to predict the expected attack

behavior on their links for given context, which is shown by Predicted Attack Behavior

in Fig. 4.1.

Section 4.1.1 describes how the agent identify previous attack action probabilisti-

cally, and section 4.1.2 describes how the agent learns attack strategy.

4.1.1 Identifying Previous Attack Action

Characterizing the last attack action is essential to retrain the attack prediction

model and refines the system dynamics. Notably, this action has generated the cur-

rently existing attack traffic. To identify it, the agent creates a potential Attack

Snapshot comprising the number of newly appeared and disappeared bots with mean

traffic rate and risk scores, based on given benign traffic statistics. As shown in Fig.

4.1, the agent creates a new attack snapshot based on attack observations from the

network, that is used to identify the last attack action. We assume that the network

administrator knows the benign traffic behavior and can create benign traffic profiles

and statistics containing information such as distributions of ratios of new benign

sources appearance and disappearance with mean values and variance. These statis-

tics can be time-sensitive which means that the administrator may follow different

distributions at different time. For example, during a product release, a website may

be hit by more users at a time with longer session interval.

This attack snapshot is created assuming that anything unusual is mostly due to the
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attack action. However, the agent considers the uncertainties related to the abnormal

benign traffic behavior. Based on this snapshot, the agent characterizes the attack

action using Algorithm 5 which determines four types of parameters: (1) probability

of different action types (i.e., Reconnaissance, Launch Attack, Inactive), (2) botset

adjustment type β, (3) botset adjustment level χ, (3) traffic rate adjustment τ , and (4)

likelihood of not identifying appropriate β. According to these parameters, the agent

composes a likelihood matrix named “Characterized |V ′|” quantifying the likelihood

q(a′v) of each a′v ∈ V as last attack action as the output of this step.

The rest of the section describes the details of Algorithm 5 that mainly performs

following actions:

• Determining Action Type: In line 1-4 of Algorithm 5, the agent determines: (1)

V ′[Iv] that defines the likelihood of Inactive (Iv) attack action, (2) V ′[R] that defines

the likelihood of Reconnaissance, and (3) la that defines the probability of launching

attack. Here, rs defines the increased amount of scanning traffic compared to mean

scanning traffic, G is the distribution of benign traffic volume, and T is the current

amount of benign traffic.

• Determining Botset Adjustment Type (β) and Level (χ): In line 5-23,

Algorithm 5 determines two attack parameters: β and χ. At line 5-8, it deter-

mines the rate of bot appearance βa and disappearance βd assuming that the appear-

ance/disappearance of extra sources is generally due to bots, where n′b is number of

bots at immediate past. However, it considers uncertainties related to appearing or

disappearing more benign sources (discussed later).

It assigns (1) β = 0 (same botset) if negligible bot appearance, (2) β = 2 (changed

bot distribution) if bot appearance is same as disappearance, and (3) β = 1 (extended

botset) if bot appearance is non-negligibly higher than disappearance. For β = 1 or

β = 2, it also assign the value for χ based on adjustment level (line 14-17 and 20-23),
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Algorithm 5: Determine Previous Attack Action
Input : Changed Ratio of Scanning Traffic rs.
Output: Characterized Attack Distribution V ′.

1 V ′[Iv] = 1− P (G ≥ T ) // Probability of Inactive.
2 V ′[R] = rs // Probability of Reconnaissance.
3 la = 1− V [Iv]− V [R] // Probability of Launch Attack.
4 Normalize(V [Iv],V [R],la)
5 number of newly appeared bots, ba = as − as
6 bot appearance rate, βa = ba

n′
b

7 number of disappeared bots, bd = ds − ds
8 bot disappearance rate, βd = bd

n′
b

9 if βa ≈ βd then
10 if βa == 0 then

// Case: Use Existing Bots
11 β = 0, χ = None

12 else
// Case: Changed bot distribution

13 β = 2
14 for i in range(3) do
15 if βa ≤ (i+ 1)0.33 then
16 χ = i
17 break
18 if βa > βd then

// Case: Extended Botset
19 β = 1
20 for i in range(3) do
21 if (βa − βd) ≤ (i+ 1)0.33 then
22 χ = i
23 break

// Assigning Traffic Rate
24 previous traffic rate m′t = mt

25 current traffic rate mt = T
ns

26 if m′t ≈ mt then
27 τ = 0
28 if m′t > mt then
29 τ = 1
30 else
31 τ = 2
32 V ′ = address_uncertainties(V ′,la,β,χ,τ)
33 return V ′
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whereas, χ is None for β = 0 due to no adjustment. Notably, this algorithm does

not consider the case with higher bot disappearance rate, due to considering it with

V ′[Iv].

• Adjusting Traffic Rate (τ): In line 24-31, the agent determines whether the

mean traffic rate remain unchanged (τ = 0), decreased (τ = 1), or increased (τ = 2),

where T and ns are the current traffic volume and number of sources respectively.

Algorithm 6: Addressing Attack Characterization Uncertainties
Input : Attack Vector V ′, Launch Attack Probability la, Botset Adjustment

β, Bot Adjustment Level χ, Traffic Rate Adjustment τ
Output: Attack Vector V ′
// Consider uncertainities in attack characterization

1 if β == 0 then
2 V ′[(β, χ, τ)] = la
3 V ′[(β + 1, χ, τ)] = la × P (X < as)× µr(as)
4 V ′[(β + 2, χ, τ)] = la × P (X < as)× P (Y < ds)

5 if β == 1 then
6 V ′[(β − 1, χ, τ)] = la × P (X > as)× (1− µr(as))
7 V ′[(β, χ, τ)] = la
8 V ′[(β + 1, χ, τ)] = la × P (Y < ds)× (1− µr(as))
9 if β == 2 then

10 V ′[(β, χ, τ)] = la × P (X > as)× P (Y > ds)
11 V ′[(β + 1, χ, τ)] = la × P (X < as)× µr(as)
12 V ′[(β + 2, χ, τ)] = la
13 Normalize(V ′)
14 return V ′

• Addressing Uncertainties: At line 32, Algorithm 5 calls Algorithm 6 to assign

uncertainties in attack characterization induced due to abnormal appearance/disappearance

of benign users. In Algorithm 6, P (X < as) and P (Y < ds) respectively define proba-

bilities of appearing and disappearing less benign sources than normal, and µr defines

the mean risk score of newly appeared sources.

Algorithm 6 considers three mutually exclusive cases based on botset adjustment

type β (determined in Algorithm 5). In all these cases, we consider the likelihood of
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Figure 4.2: An Example showing reasoning over previous attack experi-
ence/observations. Characterized attack behavior is the probabilistic distribution
across attack actions computed as last attack action. Each leaf represents a specific
case, and red and green edges define attack and defense actions respectively.

not identifying (1) unchanged botset (β = 0) due to appearing and disappearing more

benign sources, (2) botset extension (β = 1) due to appearing less benign sources,

and (3) bots’ changed distribution due to appearing and disappearing less benign

sources.

4.1.2 Learning Attack Strategy

Though it is impossible to know the attack strategy certainly, previously observed

attack sequences provide insights to learn attack strategy probabilistically. Fig. 4.2

illustrates an example of previously observed attack trends. In the figure, the link

transits from Abnormally Utilized state to Flooded state when the defense action is

Traffic Rerouting and attack action is Extend Botset & Traffic Rate for some past

cases. When the defender previously executed Timid Limiting at such a scenario,

the identified attack reaction followed the probabilistic distribution of Characterized

Attack Behavior in one particular incident. Hence, previous attack observations can
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reveal attack trends like the example.

Therefore, Horde deploys a Deep Learning Model (DNN) as Attack Prediction

Model (shown in Fig. 3.2), that leverages previously observed attack traits under

particular contexts to actively learn attack strategy in an online approach. For in-

stance, an attack trait specifies that the attack action av followed a′v with likelihood

pt′(av|si, sk, ad, a′d, a′v) during a past time t′ when the context was (si, sk, ad, a
′
d, a
′
v).

In the example at Fig. 4.2, si is Abnormally Utilized state, sk is Flooded state, a′d is

Traffic Rerouting, and a′v is Extend Botset & Traffic Rate. Through analyzing pre-

viously observed pt′(av|si, sk, ad, a′d, a′v) (t′ represents past) under particular contexts,

it is possible to identify attack traits. Such attack traits can be leveraged to predict

pt(av|si, sk, ad, a′d, a′v) for all attack actions av and possible contexts, in order to reason

over upcoming attack action.

– Approach of Learning: After identifying the previous attack action, each

agent sends the probabilistic distribution |V ′| to the Horde’s manager as immediate

past attack action at its link. Thereupon, Horde trains the DNN model in an online

manner, using all agents’ experience on observing attack actions sequentially through-

out previous time sequences (t− 1, t− 2, ...0). It enables the model to learn any new

attack strategy and its adaptations without being explicitly trained. Deep learning

has shown good results in strategical reasoning at complicated reinforcement settings

such as Go, Dota where data is unavailable or less reliable [35]. Moreover, Horde can

detect attacker’s deceptions to confront adversarial machine learning. Importantly,

before deploying the model in the production environment, Horde simulates numerous

attack scenarios to train the model preemptively for days.

– Features and Labels: With the arrival of new observations, the agent creates

multiple datarows based on identified last attack action as shown in Fig. 4.1. In

these data, feature-set consists of context c (c = (s, s′, ad, a
′
d, a
′
v)) and v(c), and the
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class or label is the characterized |V ′| for previous attack action. Here, v(c) specifies

the likelihood of c as context of previous event, that the agent computes using the

following equation:

v(c) = bt−1(s′′)× bt(s)× q(a′v)

For each possible c with non-zero v(c), the agent creates a new datarow by asso-

ciating c with the characterized |V ′|. A dataset named Attack Strategy Knowledge

Database KD accumulates all the simulated and real attack scenarios.

– Prediction Model: Due to temporal dependence among attack observations,

the problem of predicting next attack action is similar to time series forecasting

that considers sequences in data. Though machine learning with sliding window

can transform sequential supervised learning into traditional supervised learning, it

cannot consider the temporal dependence outside of that window [36]. In contrast,

Recurrent Neural Network (RNN) allows dynamic temporal behavior [137] and fits

more with our problem. Moreover, Horde’s RNN model uses Long Short Term Mem-

ory (LSTM) network [137] that can memorize information over arbitrary time and

address long or short term dependencies. Horde’s RNN model has two hidden-layers

and applies Adam optimization [138] to minimize Mean Square Error (MSE). The

model uses Dense Layer [139] to produce the output vector with the size of attack

action space V , and leverages Cross-Entropy Softmax function [140] to distribute

probabilities among V . At each time, the previously trained model is refined using

the newly created data from recent observations. The model predicts the next at-

tack behavior as “Predicted |V |” for all possible contexts, that the agent considers as

pt(av|s, s′′, ad, a′d, a′v) in Eqn. 4.3.

Robustness Against Adversary Deceptions and Adaptations Fig. 4.3 shows

the behavior of our prediction model in the presence of adversary deceptions and

attacker’s characteristic adaptations (e.g., from stealthy to aggressive). The attacker
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(a) Attack Deception (b) Attack Type Adaptation

Figure 4.3: (a) Impact of ignoring attack deceptions, and (b) Benefit of continuous
learning to cope with attacker’s characteristic adaptation. Note# Type 1 means
aggressive attacker, and Type 2 means stealthy attacker.

may leverage Adversarial Machine Learning [123] and executes random actions to de-

ceive the prediction model. In Fig. 4.3a, the attacker executed deceptions during the

interval between 30 to 70, where Mean Error at X-axis shows the average difference

between real and predicted attack vectors for attack parameters β, χ, and τ . Un-

derstandably, error rate spikes during adversary deceptions, but, the model “Without

Deception” (represented by green plot) that avoids training during deception intervals

shows better performance afterward. However, error rate also spikes due to concept

drifts (at time 40 of Fig. 4.3b) because of attacker’s characteristic type adaptations.

In that case, the model (“Stopped at Drift”) which stopped training at drift, per-

formed bad than other that learnt new attack strategy through retraining. This is

because, that model is not learning new attack traits and is still biased to previous

strategy.

To stop or continue training, Horde must understand whether the error is due to

adversary deception or attack characteristic (type) adaptation. However, discrimi-

nating these two events is hard initially. So, Horde consider two models since those

error spikes to a finite window; where only one is trained with new observations.

After the window, the framework stores the model with better performance as the

prediction model and discards the other. Currently, this research keeps the window

size larger to ensure distinguishability, which slightly degrades performance due to
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avoiding non-deceptive points after the deception interval. Moreover, the framework

considers an error as spike if the mean error rate within a specific interval exceeds

pre-defined threshold.

4.2 Agent’s Evolving to Cope With Dynamic Environment

After Understand & Investigate of BRITE loop, the agent enters into Evolve phase.

At this phase, the agent refines system dynamics, determines the optimal discount

factor for the current context, and re-evaluates IDS performance.

4.2.1 Learning System Dynamics

System Dynamics regulate the changes of the link condition due to executed attack

and defense actions, which depend on non-static and correlated factors such as benign

and attack traffic volume, queuing and processing delay, and other links’ congestions.

Hence, at each time, the defense agent learns or refines these parameters based on

previous observations to anticipate defense impact. It is defined by p(s′|s, ad, av) that

specifies the probability of transition from current state s to next state s′ for attack

action av and defense action ad. The Horde agent needs to determine it to compose

state transition matrix, T , as defined in Eqn. 4.1.

Notably, system dynamics learnt by an agent is different than other agent as they

protect different critical links. However, formulating system dynamics are hard for

both the attacker and defender due to (1) complex correlations among these factors,

and (2) lack of comprehensive knowledge on system dynamics in a new domain or after

a domain shift. These challenges exacerbate further due to imperfect and incomplete

observability of critical environmental factors. Hence, Horde applies a model-free

approach using Q-table and gradient descent optimization to refine the knowledge

about system dynamics.

Horde applies Q-table (used for Q-learning [141]) to infer the stochastic behaviors

without formulating complex correlations. Each row of the Q-table represents a dis-
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tinct pair of current state si and next state sj, and each column represents a distinct

pair of defense action ad and attack action av. Importantly, Q-value of the quadrant

indexed with (si, sj) and (ad, av) contains pt(sj|si, ad, av) that defines the expected

probability of transiting from state si to sj for attack av and defense ad at time t.

After observing the consequence of recent defense action ad and attack action av, the

agent updates the relevant Q-value using the following equation:

Qt((sj = s, si = s′′), (ad, av)) = pt(s|s′′, ad, av) =

(1− α)Qt−1((s, s′′), (ad, av)) + αbt(s)bt−1(s′′)q(av) (4.4)

where, s and s′′ are current and previous state respectively, q(av) is the likelihood of av

as immediate past attack action that comes from recently characterized |V ′| (previous

attack distribution), and α is the parameter that weighs the trade-off between past

experience and recent observations.

To optimize α, the agent applies Gradient Descent Optimization [142] on observations

within a window, where loss depends on deviations between observed and predicted

effectiveness (Qt−1). The agent determines the gradient descent ∂j
∂α

using the following

equation:

∂j

∂α
=

2

n

n∑
i=1

∑
(s,s′′,a′v ,t

′)∈E

(z′t(s, s
′′, a′d, a

′
v)−Qt′−1((s, s′′), (a′d, a

′
v))) (4.5)

where, n is the number of time-sequences, E is the set of all possible events concern-

ing all previous state s′′ ∈ S, current state s ∈ S, attack action av ∈ V , and defense

action a′d (certainly executed at time t). Here, zt(s, s′′, ad, av) is the observed effec-

tiveness, Qt′−1((s, s′′), (a′d, a
′
v))) is the predicted effectiveness, and t′ is the previous

time within a finite past horizon.
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The agent determines z′t(s, s′′, ad, av) using the following equation:

z′t(s, s
′′, ad, av) = bt′(s)× bt′−1(s′′)× q(av)

Finally, the agent determines α using the following equation:

α = αold − θ
∂j

∂α

where, θ is the leaning factor. Notably, the agent optimizes α once for the window

interval.

4.2.2 Tuning The Decision-horizon For Optimizing Reward

Discount factor γf (γf ∈ [0, 1)) introduces the future impact of a particular action

as delayed reward that decays with the passage of time [31]. It is one of the critical

decision parameters of Horde agent’s POMDP model. Finding appropriate γf is

essential to optimize policy generation, as a greedy approach without considering

possible future leads to a bad condition. However, overthinking also leads to a non-

optimal solution due to the dynamic environment and deteriorated computational

complexity. Hence, the agent tunes γf to regulate the decision-horizon optimally

based on current environmental condition. For instance, at a flooded state with

an aggressive attacker, there is no option other than taking immediate remediation.

Whereas, at a normal state with many tracroute packets, the agent has to think about

near future. However, the tuned optimal γ∗f must not induce too much complexity to

ensure defense planning withing bounded time.

Model Properties: To determine optimal discount factor for current context,

the agent trains a discount factor prediction model that is updated based on recent

observations, once in a episode (consisting of 40 time-sequences). One of the crit-

ical factor for deciding discount factor is the attack behavior, because the optimal
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Figure 4.4: Training of the Discount Factor RNN model with new observations and
offline experiments.

decision-horizon depends on whether the attacker is aggressive with high attack flows

or stealthy with comparatively lower attack flows. Hence, this prediction model uses

characterized (|V ′|) (identified last attack action), and predicted |V | (expected next

attack action) as two of the features. Besides, the current link condition is essential

to understand optimal discount factor. For example, the agent must weigh immediate

payoffs highly when the attacker is aggressive at a flooded state. Hence, this predic-

tion model considers current belief bt′ (during past time t′) as another feature. The

last feature of the model is discount factor γf , and the label of the prediction model

is the reward. Therefore, the model is trained to predict probable reward that may

be achieved considering a particular discount factor at current link condition against

the current attack behavior.

Training the Model: Let assume, the agent wants to update the prediction

model at time t′ which is one episode later of time t′′ (i.e., last time of prediction

model update). Based on all observations from t′′ to t, the agent creates datarows,

where Reward is the mean reward accumulated from t′′ to t′. As shown in Fig. 4.4,

offline experiments (optional) can also be conducted to enrich the data, where a simu-

lated environment will emulate the real-world traffic distribution. It is observed that
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Figure 4.5: Determining the optimal Discount Factor (γ∗f ) for the current context.

such emulated offline experiments improve the performance of the prediction model.

As these observations and experimental results are sequential, Horde leverages LSTM

RNN with Rectified Linear Unit (ReLU) activation function [143] as the prediction

model. In order to find the appropriate prediction model, multiple models are de-

veloped considering different combinations of traffic properties as features. These

experiments reveal that adding more over considered features (i.e., |V ′|, |V |, bt) does

not improve the performance, instead degrades the balance between overfitting and

underfitting. One of the requirement of decision making is that the discount fac-

tor should not impose more required time than maximum tolerable time. However,

computational time is not considered into feature set, because all previous decision-

making was bounded by the maximum tolerable time.

Predicting Optimal Discount Factor: The objective of the prediction model is

to predict the probable reward for a particular discount factor at the current context.

As shown in Fig. 4.5, for various discount factors, the RNN model predicts the

probable reward for the current feature set. This approach predict rewards for a

finite set of discount factors ranging between 0.2 and 0.95. The discount factor with

the maximum reward is chosen as the optimal discount factor for the next episode.

Experimental Results: Fig. 4.6a and Fig. 4.6b compare reward achieved by
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(a) Env. 1 (b) Env. 2 (More Dynamic)

Figure 4.6: Reward Achieved by Predicting Discount Factor.

Horde’s prediction approach with approaches adopting state discount factor. The

progression of maximum reward (green plot) and minimum reward (red plot) are

plotted by running offline experiments for numerous static discount factors along-

side Horde’s prediction approach. The plot Predicted Discount Factor shows aver-

age reward achieved by Horde’s approach within a period. For instance, the bar at

episode 40 at Fig. 4.6a specifies that the reward achieved within episode 40-60 is

approximately 80% of maximum reward with 15% positive deviation and 7% nega-

tive deviation. It is observed from these experiments that no single discount factor

always achieves maximum or minimum rewards, and optimal discount factor depends

on both link behavior and attack behavior (more oscillations in Fig. 4.6b). Appar-

ently, Horde’s approach moves toward maximum rewards with more training with

observations.

4.2.3 Refining IDS Error Rate:

IDS error rate specifies the deviation of IDS risk scores from ideal scores (i.e., 1 for

attack bot and 0 for benign source). The Horde agent calculates IDS error rate to

quantify the defense payoffs required for composing reward matrix of POMDP model.

Due to dynamic network and attack behavior, Horde’s manager periodically refines

IDS error rate to cope with probable IDS inaccuracies. Horde considers two types

of IDS error rates: (1) error regarding false positive, δp, that defines the deviation
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of expected false positive (based on IDS risk scores) from actual false positive rate

(based on ground truth), and (2) error regarding false negative, δn, that defines the

deviation of expected false negative from actual false negative rate. Though describing

approaches to refine IDS error rate is not in the scope, this paper hints out some

approaches for obtaining ground truth regarding attack and benign sources.

– Dropping benign traffic incurs negative user feedback, whereas, no feedback is

received for dropping attack traffic.

– Sources that do not respect TCP congestion control can be considered malicious

[60]. Therefore, sources that do not follow maximum traffic rate despite being re-

stricted by agents’ traffic limiting are considered to be malicious.

– Probe flows imitating the behavior in benign traffic profiles can be send to assess

δp during uncongested condition.

– For direct I-DDoS traffic, destinations may send puzzles (e.g., captcha) assuming

bots cannot solve puzzles [144].

– For a sample of traffic, Horde can perform time-series or deep behavioral analysis

(available commercially) on flow behaviors in offline, to label benign and attack flow.

Based on feedback of these approaches, Horde can determine the expected IDS error

rate to address IDS uncertainties in defense consequences quantification. The agent

determines the IDS error rate regarding false positive δp and IDS error rate regarding

false negative rate δn, using the following equation:

δp =
1

n

√∑
i∈XB

x2
i

δn =
1

m

√∑
i∈XA

(xi − fi)2
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where, XB is the set of benign sources, and n is the number of benign sources. XA

is the set of attack sources, and m is the number of attack sources. Notably, both

XA and XB are determined based on feedback.

4.3 Implementation & Evaluations

This section givens a short overview of Horde’s implementation that is developed

as a proof-of-concept to evaluate Horde. This section also describes the experiment

setup and performance of Horde’s agent for varying scenarios.

4.3.1 Implementation

For Traffic limiting, Horde enforces traffic policing that drops any excessive traffic

of a source surpassing its maximum allowed rate [145]. CISCO routers maintain

Committed Access Rate (CAR) based on properties such as incoming interface, IP

precedence or access list [146]. For Traffic diversion, researchers show the feasibility

of traffic rerouting using the current traffic engineering techniques without making

any infrastructural change [74, 147, 148], or using SDN-based techniques [60, 73,

71]. This research leverages Policy Based Routing (PBR) to reroute traffic through

alternative links [149]. PBR enabled routers can route traffic not only based on

destination address but also based on source address or port, protocol, and others. We

assume that inter-Horde communications regarding spare bandwidth happen through

establishing tunnels using techniques such as MPLS tunneling, Secure Shell (SSH)

tunneling, or Secure Socket Tunneling. Horde may also use these tunnels to forward

its traffic to other Hordes for traffic rerouting. The framework is developed using

Python 3.6.8, and all RNN models are developed using Keras (version 2.2.4) [150]

and TensorFlow (version 1.14.0) [151]. zmdp is used to solve the POMDP model

with HSVI [152].
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4.3.2 Experiment Setup

Horde’s performance is evaluated regarding the minimization of benign traffic drop.

As all benign traffic have same value and Horde’s collaboration model ensures no

wastage of spare bandwidth, all agents’ decision-optimization emerge optimal defense

composition for the whole network. Therefore, feasibility and effectiveness of Horde

can be assessed based on the performance of individual agents. I confront several

challenges to design insightful experiments regarding how to (1) generate rational and

adaptive attack strategies, (2) integrate changes in IDS performance due to diversified

attack behaviors, and (3) design botnet realistically?

The attack decision model of this dissertation considers weight of aggressiveness wv

and stealthiness ws that are tuned to generate various attack characteristic types (e.g.,

stealthy). In these experiments, Type-i adversary strategy type is more aggressive

(wv(i) > wv(j)) and less stealthy (ws(i) < ws(j)) than Type-j if i < j. Various

IDS performance regarding actual false positive and negative rate are considered,

whose detection accuracy is reactive attack behavior. This research leverages many

real-world dataset to design attack bots with properties similar to the real-world

scenarios.

Hence, the agent’s performance is empirically evaluated in protecting its link against

varying attack distinguishability, IDS accuracy, and SB. Notably, internet topologies

affect agent’s defense optimization through SB that varies for different topologies.

Hence, experiments with varying SB also assess the agent’s performance for varying

topologies. To conduct experiments, a discrete events simulator is designed with en-

tities for benign users and malicious bots. All experiments are simulated using Dell

Alienware machine with 16-core 3GHz Intel Core i7-5960X processor, 64GB RAM,

and three 4GB NVIDIA GM200 graphics cards. The following paragraphs describe

setup of parameters of our experiments:
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1. Bot Properties: Each bot has following properties: IP address, traffic type

(e.g., TCP, UDP), AS number (ASN), generated traffic amount, limited traffic ratio

(uncertain) at immediate past, duration, and time of its last use. This research does

not concern IP spoofing assuming that there are advanced techniques to detect IP

spoofing. To assign IP address of botnet, this dissertation uses Mirai-scanner data

feed [153] that provides ideal distribution for modeling large-scale DDoS attacks [154].

It also uses IP address lookup to assign ASN, that provides IP’s locations, ASN, ISP,

and time zone [155].

This dissertation leverages available DDoS dataset attacks [156, 157, 158, 159] to

emulate real-world DDoS scenarios. These datasets are used to assign initial traffic

and flow rate, maximum duration for continuous flow sending, and bots’ appearance.

These datasets are used to send attack flows rationally from appropriate botset. The

bot receives the command from the attack engine to generate flows at a specific rate

(zero if not used). While satisfying all properties, the attacker decreases traffic rate

of a bots based on its limited traffic ratio, whereas, he increases its traffic rate if at

least 60% of its traffic transmits without any obstruction.

2. Attacker’s Decision Making: The assumption about the attacker is that he

observes the consequences of his previous action to decide the next action. Algorithm

8 describes the decision-making approach, where the attacker determines minimum

required stealthiness rs and aggressiveness rv based on probabilistic inference on link

utilization and filtered traffic ratio of previously used botset. The chosen attack

action for current time t maximizes his goal based on wv and ws while satisfying rs

and rv. The Objective column of Table 3.2 represents the qualitative stealthiness and

aggressiveness of attack actions.

There are two type of adaptations: (1) attack characteristic adaptation, where

the attacker changes his type (e.g., from Type-1 to Type-2), and (2) attack action

adaptation, where the attacker picks different action for same scenario. He leverages
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UCB1 policy [131] to explore comparatively less-executed actions despite satisfying

rs and rv for attack action adaptations. Though the prediction model is pre-trained

with numerous attack strategies for various wv and ws, different wv and ws are used to

send attack traffic during evaluation to assess the performance against unseen attack

strategies.

Algorithm 7: Attack Strategy
Input : Bot Fail Rate lb, Delayed Response Rate db, Weight Stealthiness ws,

Weight Aggressiveness wv.
1 attackerBelief qV = [0,0,0]
2 qV [0] = (1− lb)db #0 defines Success
3 qV [1] = lb(1− db) #1 defines Failure
4 qV [2] = 1− sum(qV ) #2 for Minor Success
5 Normalize qV
6 rs = re = 0
7 hb = 1

rs
#Bot Failed Threshold

8 for i in range(maxStealthiness) do
9 if lb ≤ hb then

10 rs+ = 1
11 hb+ = 1

rs

12 hd = 1
rv

#Delayed Response Threshold
13 for i in range(maxAggresiveness) do
14 if db ≤ hd then
15 rv+ = 1
16 hd+ = 1

rv

17 # candA is the set of candiate action list
18 candA = [at for at in attack space V if at.Y ≥ rs or at.E ≥ rv]
19 cAt = maxImpact = None
20 for at in candA do

21 impact = r(at|qV )(wsat.Y + wat.E)+
√

2lnn
nat

22 if attack is None or maxImpact > impact then
23 cAt = at, maxImpact = impact

24 return cAt

In Alg. 8, lb defines the ratio of bots that could not transmit a minimum traffic

(e.g., blocked, limited), and db defines the ratio of packet responses that arrived late

(i.e., dependent on link utilization). Based on these properties, he computes belief at

line 1-5. At line 8-11, he determines the required stealthiness rs of next attack action,
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and he determines required aggressiveness (attack volume expansion) re at line 12-16.

At line 18, he creates candidate attack set candA whose stealthiness (Y +ni) is greater

or equal to rs or aggressiveness (E + nj) is greater or equal to rv. Notably, at.Y and

at.E defines the attack stealthiness and expansion respectively for a particular attack

action at.

In line 20-23, the attacker chooses the action cAt that maximizes his current ob-

jective. In line 21, r(at|qV ) is the achieved reward by at previously when his belief

was qV . The first term in the line defines the expected reward of at based on previous

experience (Exploitation), whereas the second term (
√

2ln(n)
nat

) gives weight to unex-

plored actions (Exploration) with the guarantee of logarithmic regret [131]. Here, n

is the number of executed attack actions, and nat is the number of times when at was

chosen. Finally, this algorithm returns the optimal attack action for current time.

3. Traffic Flow Generation The bandwidth B of considered critical link is 6GB.

At any time, the aggregated benign traffic amount is 0.8B with deviation 10%, and

attack traffic amount is maxAV (ranges between 1B and 2.5B) with deviation 20%

at the link of the considered agent. The number of benign sources is approximately

10k-100K, and the number of malicious bots varies from 200K-600K.

4. Considering Various IDS Performance Parameters: To analyze the ro-

bustness of Horde’s decision-optimization, four different IDS types of Table 4.1 are

considered, where High Risk Score column represents the ratio of Attack Flows (or

bots) having risk score greater than 0.65, and Low Risk Score column represents the

ratio of Benign Flows (or benign users) with score less than 0.35. To distribute risk

scores among newly appeared botset (not seen for a certain time), this dissertation

applies power-law distribution that satisfies its associated High and Low Risk Score

(%) properties.

The risk score of a bot increases with the increase of its traffic rate, flow rate, flow
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Table 4.1: Different IDS Risk Score Distribution

Distribution
Type

Attack Flows Benign Flows
False

Negative
High

Risk Score (%)
False

Positive
Low

Risk Score (%)
High Accuracy IDS Low 60-80 Low 70
High Fall-out IDS Low 60-80 High 30
High Miss Rate IDS High 30-50 Low 70
Low Accuracy IDS High 30-50 High 30

duration, and frequent reappearance. Moreover, IDS increases risk scores of those

bots that show strong correlations with traffic diversion (descrined in Section 3.6).

Besides, IDS is more suspicious about those bots who come from specific AS that

previously accommodated known attack bots. This is due to the fact that most bots

of Mirai and Conficker came from a small set of ASes, while 97% of ASes had less

than 50 attack bots [74]. To update IDS error rate, we assume that 50% benign users

send negative feedback for interruptions/delays in their services due to dropping their

traffic, whereas, deep analysis reveals 50% attack bots.

5. Evaluation Metrics: Effectiveness is assessed based on Packet Loss Protection

Benefits G and False Discovery Rate F t
P . Here, G quantifies the minimization of

benign traffic drop due to our framework, and F t
p quantifies the benign traffic ratio

out of T tL that the defense action ad drops at a time t.

G =
T lB
T lB
, F t

p =
T ltB
TLt

(4.6)

where, T lB and T lB are total (considering all time) benign traffic dropWith andWithout

framework respectively, and T ltB is the dropped benign traffic by limit function lt of

ad at t. The performance is also assessed by the ratio of Benign Traffic Diversion

and Drop out of total benign traffic.

4.3.3 Performance Analysis

This section describes the agent’s effectiveness in maximizing benign traffic serv-

ing and its feasibility in real-time optimizations. Besides, it analyzes the agent’s
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(a) High Accuracy IDS (b) High Fall-out IDS

(c) High Miss Rate IDS (d) Low Accuracy IDS

Figure 4.7: Analysis of Packet Loss Protection Benefit

capability in learning the environment incrementally based on observations.

1. Analysis of Packet Loss Protection benefits: Fig. 4.7 illustrates the Loss

Protection Benefit G (Eqn. 4.6) with respect to the maximum attack volumemaxAV (x-

axis). The performance is best with high accuracy IDS (in Fig. 4.7a) and worst with

low accuracy IDS (in Fig. 4.7d). The agent performs 3 times better with high accu-

racy IDS than with low accuracy IDS. Moreover, with high accuracy IDS, the agent

drops more than 80% attack traffic. Interestingly, benefit for high fall-out IDS in Fig.

4.7b is higher than benefit for high miss rate IDS in Fig. 4.7c, because the agent

executes more traffic diversion for high fall-out IDS to minimize benign traffic drop.

Notably, in all cases, benefit is significantly increasing with the increase of maxAV .

As per Fig. 4.7a, aggressive attackers induces more benign packet loss against high

accuracy IDS due to higher attack volume as bots of attackers who impose more

weight on stealthiness still get detected. Whereas, attack stealthiness induces more

loss against high fall-out IDS (Fig. 4.7b) and high miss rate IDS (Fig. 4.7c). For high

fall-out IDS, the maximum gain difference between most aggressive and most stealthy

attacker is 10. Interestingly, against low accuracy IDS (Fig. 4.7d), the attacker with
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(a) High Accuracy IDS (b) High Fall-out IDS

(c) High Miss Rate IDS (d) Low Accuracy IDS

Figure 4.8: Analysis on Benign Traffic Drop By Traffic Limiting. Note# Text with
arrow represents the mean traffic rate. For example, 1.89%(1) is the mean false
discovery rate of adversary Type 1 for first 320 time-sequences.

balanced attack aggressiveness and stealthiness (Type 2 and Type 3 ) causes serious

disruptions. This is because such balanced attacks increase attack flow distributions

at lower risk scores, that induces more benign traffic drop despite restrictive traffic

limitings.

2. Analysis on False Discovery Rate: Fig. 4.10 illustrates the progression of

False Discovery Rate F t
p (Eqn. 4.6) with time. Initially, F t

p is always high due

to picking wrong actions because of insufficient domain-knowledge, but it reduces

exponentially with time due to agent’s learning. The learning is faster with high

accuracy IDS (in Fig. 4.8a) that takes 40 time-sequences to reduce F t
p by 75%, but

worst with low accuracy IDS (in Fig. 4.8d) that takes 120 time-sequences to reduce

60%. For high accuracy IDS, the agent struggles only against aggressive attackers. For

high fall-out IDS (in Fig. 4.8b), the agent reduces traffic limiting due to significant

negative feedback. For high miss rate IDS (in Fig. 4.8c), the agent observes that

only dropping from higher risk scores consequently brings more attack traffic due to

allowing many attack bots, and starts emphasizing on timid limiting to restrict traffic
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(a) High Fall-out IDS (b) High Fall-out IDS

(c) High Miss Rate IDS (d) High Miss Rate IDS

Figure 4.9: Analysis on Serving Benign Traffic

from comparatively lower ranges cautiously. However, in all cases, F t
p reduces at least

50% within 50 time-sequences, that proves the effectiveness of agent’s active learning.

3. Analysis on Benign Traffic Serving: According to Fig. 4.9a, attack stealth-

iness worsens the condition of high fall-out IDS as attack traffic starts mixing more

with benign traffic that have comparatively higher scores. It compels the agent to

enhance traffic diversion to minimize negative feedback of benign users. Interestingly,

for Type 4 attacker (super stealthy), benign traffic diversion is less than other stealthy

attackers (Type 2 and 3 ), because diverted traffic contains too many attack traffic

due to attack indistinguishability. For the same reason, benign traffic diversion for

high miss Rate IDS (Fig. 4.9c) is also comparatively lower. For such IDS, benign

traffic diversion for aggressive attacker is high due to better detectability. In both

cases, the maximum benign traffic drop is less than 5% while the minimum is 1.5%.

4. Loss Analysis: Fig. 4.9 compares the loss of our defense framework with loss

during “No Defense” (Loss Without Framework), which shows the maximization of

availability of legitimate services by this framework. Firstly, it is apparent from the

figure that the benefit of using this framework regarding loss reduction is quadratic
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(a) High Accuracy IDS (b) High Fall-out IDS
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Figure 4.10: Analysis on Benign Traffic Drop By Traffic Limiting. Note# Text with
arrow represents the mean traffic rate. For example, 1.89%(1) is the mean false
discovery rate of adversary Type 1 for first 320 time-sequences.

with the increase of attack volume. In Fig. 4.10a, the loss is almost constant despite

the attack volume increase, which shows that enhanced attack volume cannot dete-

riorate the network condition against High Accuracy IDS. However, for High Recall

IDS (in Fig. 4.10b), the defender had to reroute more traffic from higher risk score

ranges due to enhanced attack volume and higher false positive rate. In contrast, for

High Specificity IDS in Fig. 4.10c, higher loss of benign traffic drop occurs because

of more traffic limiting while keeping benign traffic diversion same. Additionally, in

such cases, the defender increased rerouting of attack traffic due to misidentifying

these as benign traffic. Unsurprisingly, for Low Accuracy IDS in Fig. 4.10d, benign

traffic drop and attack traffic diversion increased due to misidentification. In all cases

except high accuracy IDS, stealthy attackers with balanced attack volume (“Type 2”

and “Type 3”) induces more loss.

5. Defense Reports:

Table 4.2 contains the summary of consequences of executed defense planning. The
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Table 4.2: Defense Reports

Dataset Source Benign Traffic Attack Traffic
Divert Ratio (%) Drop Ratio (%) Divert Ratio (%) Drop Ratio (%)

CICDDoS2019 (1) 59 5 9.4 67.65
CICDDoS2019 (2) 60.5 3.6 8.75 71

CTU-13 (4) 57 7.5 8.4 73
CTU-13 (10,11) 61 3.1 8.9 70.75

(a) Scalability Analysis (b) Performance Comparison

Figure 4.11: (a) Required time where the red line represents the mean time and
box size represents deviations, (b) Benign Drop Reduction due to having Attack
Prediction Model.

attack traffic drop ratio is approximately 70%, whereas benign traffic drop is near to

5%. Due to the higher false positive rate, the agent reroutes traffic from comparatively

higher risk score ranges, that induces attack traffic diversion. Overall, our agent is

effective against the considered real-world DDoS attacks.

6. Scalability Analysis: Fig. 4.11a shows boxplots of time required from Under-

stand to Policy Generation. This plot is illustrated considering all experiments of

evaluation, and POMDP policy generation generally requires majority of time. Ac-

cording to these experiments, the mean required time is less than 4.5 seconds and

independent on attack volume, which shows the feasibility of Horde as real-time de-

fense planner.

4.3.4 Performance Analysis of Attack Prediction Model

This section describes the importance of attack prediction by comparing the per-

formance of Horde with the approach that considers static attack behavior. It also

shows the performance of attack prediction model in learning attack strategies in
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presence of attack deceptions and attacker’s strategical adaptations.

1. Benefits of Attack Prediction: Fig. 4.11b illustrates the performance compar-

ison in minimizing benign traffic drop when without attack prediction (dotted lines)

with Horde’s approach with prediction model (solid line). Evidently, attack predic-

tion always minimizes benign traffic drop, and its benefits become more vivid with

attack volume increase. The deviation between drop ratios increases approximately

from 15% to 30% for attack volume increase from 1.3B to 2.5B. Because, picking

action without predicting the attack reaction cannot be effective enough to avoid

conditions that induce significant benign traffic drop. Whereas, prediction helps the

agent to infer imminent attack intensity. This experiment also exhibits that aggres-

sive attackers cause more benign traffic drop due to IDS inaccuracies when without

prediction.

2. Performance of Attack Prediction Model: Fig. 4.12 shows the performance

of our attack prediction in the cases of adversary deceptions and attack type adapta-

tions; where, the attacker executes deceptive actions during the Deception interval,

and changes his characteristic type (e.g., from aggressive to stealthy) at (near) the

point of Drift (Fig. 4.12c). As in Fig. 4.12a, error rate becomes less than 10% within

140 time sequences for Type 1 and 5 before deception 1, whereas it is less than

15% for other attack types. After the deception interval, errors reduce exponentially

(approximately 64%), that shows robustness of our model. Interestingly, after each

deception interval at Fig. 4.12a and 4.12c, error is high during the next interval with

no deception due to not exactly determining the real deception window.

In Fig. 4.12c, all attackers adapt their characteristic types at Drift (t = 240);

where, for instance, Type (1,5) specifies that the attacker becomes Type 5 from Type

1. Notably, error growth rate is less than 1.3 times for Type (3,1), whereas it is more

than 4 times for other attack adaptation types. Interestingly, the model of Type (5,3)

performs better for initial type but performs worst for the later, which means that
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(a)

(b) (c)

Figure 4.12: Performance of Attack Prediction Model. (a) Two Deception Intervals,
(b) No Deception and No Attack Characteristics Type Adaptation, and One Decep-
tion and Attack Characteristics Type Adaptation (Drift).

the model is still biased to initial adversary behavior. However, error rates gradually

reduce with new attack observations in all cases, that shows the capability of learning

new strategy incrementally.

4.3.5 Sensitivity Analysis of Agent’s Decision-making

This section describes how the attacker and Horde’s agent react to the changes of

link condition and opponent’s behaviors.

1. Game Between Agent and Attacker:

In Fig. 4.13, X-axis shows the defense actions sequentially; where, for instance,

0.33x specifies that the considered action reroutes 33% traffic and drops 67% of traffic

by Timid limiting out of TM (mitigated traffic). Here, x, c, and b represent timid,

aggressive, and traditional limiting respectively, and the color of the shape (botset

adjustment) is black when bonet adjust rate χ=None, blue when χ=0, green when

χ=2, or red when χ=2. At a specific time, the y-coordinate of a shape represents
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(a) High Miss Rate IDS (b) High Fall-out IDS
Figure 4.13: Analysis of Defense and Attack Game.
Shape (Botset Adjustment): Box for Unchanged, Circle for Expanded, Diamond for
Changed Bot Distribution;
Triangle/Arrow (Traffic Rate Adjustment): Right for Unchanged, Down for De-
creased, Up for Increased.

the utilization of the queue considering capacity 1.5B. An emergent outcome of

this analysis is that the attacker has to enhance botset (higher cost) to maintain

high utilization while lowering traffic rate, and he has to change bot distribution or

enhance botset (higher cost) to evade traffic filtering while increasing traffic rate.

That also proves our phenomena that the attacker cannot achieve high impact, high

stealthiness, and low cost simultaneously. Also, it is observed that too much traffic

diversion motivates the attacker to enhance traffic rates, which causes exponential

rise in attack traffic arrival. Hence, the agent with high fall-out IDS (at Fig. 4.13a)

comparatively confronts more attack traffic due to high diversion. Interestingly, for

high miss rate IDS, the attacker hardly increases his traffic rate to exploit the weakness

(higher false negative) of IDS; instead, he enhances botset to increase attack volume.

Moreover, for high fall-out IDS, the agent hardly leverages timid limiting unlike the

other case, to minimize the risk of dropping benign traffic.

2. Impact of Rerouting Cost: Fig. 4.14a and 4.14b show impacts on benign

traffic diversion and drop respectively for increasing per GB traffic rerouting cost. For

aggressive Type 1 attacker, benign traffic diversion reduces 50% while drop increases

8%, for 50% cost increase. However, against Type 2, traffic diversion reduces only

25% while the drop increases from 3% to 9%. Moreover, the situation is worst (7%
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(a) Diverted Benign Traffic (b) Dropped Benign Traffic

Figure 4.14: Sensitivity to Rerouting Cost.

(a) Loss on Availability (b) Benign Traffic Drop

Figure 4.15: Sensitivity to Max. Diversion Limit.

reduction) against Type 3 attacker with balanced aggressiveness and stealthiness due

to high attack density at lower risk scores. Hence, the decrease of diversion due to

increased cost becomes slow with the increase of stealthiness. Notably, the growth

rate of benign traffic drop depends on decrease rate of diversion.

3. Impact of Max Diversion Limit: Fig. 4.15a and 4.15b show impacts on benign

traffic diversion and drop respectively with respect to Max. Diversion Percentage MD

that depends on overall conditions of all network links. Unsurprisingly, for aggressive

Type 1 attacker, the impact is less significant due to. higher attack detection accuracy.

For stealthy Type 2 attacker, the packet drop growth rate is 75% for 50% decrease

of MD from the point 0.6 (y-axis). For stealthier Type 3 attacker, the drop growth

rate is less than of Type 2 attacker due to less attack traffic. Hence, stealthy attacker

with non-compromised attack volume exploits the restriction on rerouting more, but

such attack approach incurs huge attack cost.



143

4.4 Summary

This chapter focuses to develop models and methods to be integrated into Horde

to enable agents’ autonomous evolvement to cope with environmental changes. This

chapter introduces new approaches to advance the state-of-the-art of autonomous

decision-making in a dynamic cyber environment against adaptive and deceptive at-

tackers. The presented approach of learning attack strategy incrementally not only

detects attack adaptations but also shows robustness against attack deceptions. Ac-

cording to the evaluation, the attack prediction model shows impressive accuracy in

understanding attack strategy, and detecting attacker’s strategical adaptations and

deceptions. The evaluation shows that predicting the next attack behavior using

attack prediction model reduces benign traffic drop rate by at least twice, which

empirically proves the benefit of integrating attack behavior into the decision-loop.

It steers the agent’s decision-making towards adversary-aware decision-optimization

that significantly minimize the loss of dropping and delaying benign traffic serving

while maximizing the attack traffic drop.

This chapter presents an incremental approach of refining/learning system dy-

namics. It aids an agent to learn the network behavior in a new domain or refine

knowledge on network dynamics in the event of domain shift or other sensitive net-

work events such as physical link/sensor failures, enhanced benign traffic, and others.

this chapter presents an approach to predict the optimal discount factor based on

current contexts. In average, defense execution considering predicted discount factor

achieves more rewards than any static discount factor. The evaluation shows that

this model converges towards the optimal context-aware discount factor within few

time-sequences despite being in a new domain with limited or no existing knowledge.

Both approaches of learning system dynamics and predicting discount factor based on

recent observations improves an agent’s decision-making in minimizing benign traffic
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dropping with the passage of time. Apparently, it proves that integrating these learn-

ing models not only makes Horde applicable in a new domain without pre-knowledge

but also maintains Horde’s efficacy despite the domain shift or critical network events.

Moreover, as per evaluation, refining IDS error rate aids Horde’s agents to adapt its

decision-making autonomously according to the current environment.

This chapter creates ample scope for future research. Though RNN based online

attack learning approach have showed impressive potentials, it still struggles in deal-

ing with uncertainties of previously identified attack actions. This is not a rare case

when the agent finds previously identified attack action has non-trivial deviation from

the ground-truth. This may be interesting to explore how to provide such corrected

data/observations to the model to refine. This research only analyzes the robustness

of prediction model against random attack actions as deceptive actions that generally

deviate far from adopted attack strategy. However, sophisticated attackers might

poison the learning in slower way with hardly noticeable deviation. Though it is

not easy to execute such slow poisoning in a complex and dynamic cyber network,

chances cannot be negated completely. Hence, in future, I plan to assess the perfor-

mance of prediction model against sophisticated but realistic attack deceptions. The

plan also includes determining optimal deception intervals to minimize deviations in

predictions. One limitation of Horde is that it does not address the likelihood of

delayed feedback which is not unusual considering user-perspective, network over-

head of sending puzzles, or computational overhead of deep flow behavioral analysis.

Though this research assumes timely arrival of feedback, one of the future extension

will be understanding and integrating uncertainties regarding delayed feedback into

decision-optimization.



CHAPTER 5: Conclusion

This dissertation focuses on the problems of optimizing cybersecurity portfolio and

I-DDoS defense strategy dynamically. To address these challenges, it aims to satisfy

three research objectives: (1) maximizing expected Return on Investment (RoI) by

selecting optimal set of countermeasures, (2) developing distributed framework to

optimize decision-making against I-DDoS attacks in real-time, and (3) developing

methodologies to learn I-DDoS attack strategy and enable defense evolving in an

online manner to ensure dynamic defense optimization. These objectives are discussed

with details in previous chapters (Chapter 2-4). This section provides summary on

contributions and finding of these chapters followed by limitations and future tasks.

The second chapter presents an automated tool, CyberARM, that selects an opti-

mal set of security countermeasures to compose a cost-effective and resilient cyber-

security portfolio for an enterprise. This chapter extends and customizes the Cyber

Defense Matrix (CDM) to increase the explainability of computed cybersecurity port-

folio regarding defense mechanisms. Alongside the mapping from Critical Security

Controls (CSC) to threat actions, CDM aids to satisfy fine-grained defense require-

ments. One of the contribution of this chapter is developing probabilistic models

for prioritizing threat surface considering correlations among threat, threat actions,

and vulnerabilities. Experiments on VERIS Community Database [160] reveal that

these models can predict the likelihood of exerting particular threat actions using past

threat incident reports with tolerable variance. CyberARM composes a cybersecurity

portfolio that defends the prioritized threat surface effectively while satisfying budget,

resiliency, and other business and mission oriented requirements. It formalizes the
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problem of optimizing risk mitigation as Constraints Satisfiability Problems (CSPs),

where all requirements are considered as SMT constraints.

To enhance the scalability, this chapter presents two heuristic approaches: model

reduction, and model decomposition, that significantly prune the search space while

still approximating the solution very close to the optimal solution. The evaluation

results show that CyberARM can generate a correct-by-construction risk mitigation

plan for a large enterprise with 15,000 assets and diversified requirements within 10

minutes. According to these experiments, the computational complexity of Cyber-

ARM is largely dependent on budget deficiency (i.e., difference between given and

required budget) and risk tolerance margin (i.e., difference between minimum achiev-

able risk and affordable risk). The evaluation also discusses the sensitivity and per-

formance of the tool considering various sizes of asset lists and requirements. It shows

that increased number of strict requirements hardens the problem more compared to

increased number of assets. The discussed use case study shows the applicability and

robustness of the tool in presence of noise in given inputs.

The third chapter presents a distributed multi-agent framework, Horde, that applies

Reinforcement Learning (RL) based decision model to enact real-time defense opti-

mization against multi-strategy and adaptive I-DDoS attacks. This chapter presents

a hybrid approach of model-free and model-based RL learning. While Horde learns

all environment system parameters without explicit models or formulations, it de-

signs the environment with a particular model solvable with dynamic POMDP plan-

ning. This framework autonomously composes an optimal ratio of traffic filtering (i.e.,

dropping suspicious traffic) and diversion (i.e., rerouting through alternative links),

in order to maximize benign traffic service while also maximizing attack traffic drop.

With this decision model, an agents enables adaptive defense planning considering

current condition of network link, traffic distribution across risk scores, and attack

behavior. According to experiments in evaluation, the agent’s learning of system
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parameters based on observations and user-feedback accelerates the convergence of

defense planning towards optimal solutions. This chapter also presents a BRITE loop

describing five capabilities that must be integrated into decision process to develop an

autonomous agent. Using the BRITE loop, this chapter discusses how agents ensure

real-time defense optimization against I-DDoS attacks in a stochastic environment.

All agents’ defense plans orchestrate to compose a global optimal defense plan that

aggregatedly maximizes the benign traffic serving.

The fourth chapter describes methodologies to integrate the Evolve capability into

an agent’s decision-process to cope with changes of dynamic environment and attack

behavior. This chapter presents an online approach of training Recurrent Neural Net-

work (RNN) model to learn the adversary behavior based on observations, in order

to predict the imminent attack behavior required for both proactive and reactive de-

fense strategies. Importantly, Horde learns new and adaptive attack behavior without

being explicitly trained, that enables the agent’s decision model to perform strategic

reasoning against any attacker. According to experiments, this prediction model can

not only detect sophisticated attack strategies impressively but can also differentiate

the events of attack adaptations and deceptions. Besides, as per evaluation, this pre-

diction model improves the performance of Horde significantly. This chapter presents

a scalable online approach that can learn the sophisticated network behavior without

requiring explicit formulations or deep-domain data.

The fourth chapter addresses the dilemma of short-term goals (i.e., small discount

factor) and long term goals (i.e., large discount factor) through training a RNN model

incrementally on previous observations. This RNN model predicts the optimal dis-

count factor based on current link condition and attack behavior. In summary, despite

having limited or no knowledge, Horde can learn the behavior of the environment,

and can evolve according to changes of environment, as well as attack behavior. This

chapter also presents several experiments assessing the performance of Horde against
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diversified attack strategies considering different IDS inaccuracies. According to our

experiment results, Horde can minimize benign traffic drop significantly against large-

scale infrastructural attacks, and recovers from bad states within few time sequences.

Moreover, Horde shows robustness in cases of unanticipated network or attack dy-

namics and attack deceptions. Additionally, this framework ensures scalability for

real-time defense optimization through its distributed architecture and context-aware

decision approximations. Besides, it is easily deployable without requiring any com-

plex static or human configurations, that also ensures its applicability despite of

domain shifts.

Limitations & Future Tasks: Though this dissertation addresses many key

challenges related to optimizing cybersecurity portfolio and I-DDoS defense planning,

it has limitations that I plan to solve in future extensions.

1. Though CyberARM addresses missing data of threat actions and vulnerabilities,

these metrics do not consider critical factors such as attack sophistication, topological

complexities, and others. Besides, there is likelihood that vulnerability scanning

reports may fail to report vulnerabilities with high severity scores. In future, I will

try to make threat prioritization metrics robust to missing data by leveraging attack

graph that may provide hints of missing threat action/vulnerabilities.

2. One of the limitation of the work is that it cannot explicitly defend zero-day

attacks. CyberARM selects the set of cybersecurity countermeasures by correlating

threat actions and vulnerabilities. It assumes that either it knows threat actions that

will exploit zero-day vulnerabilities, or the vulnerability exploitable by new attack

approach can be found in vulnerability scanning reports. However, it cannot address

the issue if the attacker exploits a new vulnerability with an approach that is not in

previous threat incident reports. In future, I plan to extend CyberARM to address

such cases of zero-day attacks, which will definitely attract more CISOs to explore
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the tool.

3. One of the assumption of Horde is that it assigns risk score for each of the incoming

flows at upstream points. However, it may struggle to handle such massive flows that

can be gigabytes in volume at real-time. Hence, in future, I will try to develop a

heuristic approach that will analyze only samples of flows instead of scrutinizing each

of the flow.

4. Horde assumes that it receives feedback on benign and attack flows to refine IDS

inaccuracies. However, in reality, it may come several days later. Therefore, one of

the extension of the dissertation is to find a rational approach to incorporate the

likelihood of delayed feedback into decision-making.

5. Horde assumes a sliding window with static size to distinguish between attack

deceptions (i.e., random action execution) and strategical attack types adaptions (i.e.,

from aggressive to stealthy). However, the evaluation shows that the performance of

the attack prediction model degrades due to considering large window size than the

original deception window. Because, it ignores non-deceptive actions. One of the

future goal is to determine the deception window dynamically.

6. Despite the distributed architecture, the scalability of Horde still struggles with the

expansion of defense space. However, defense cost regarding benign traffic drop or de-

lay can be further minimized by introducing more fine-grained defense compositions.

Therefore, I plan to leverage sampling algorithm such as Monte Carlo Approximation

to enhance scalability.
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APPENDIX A: Background Knowledge

A.1 Algorithm For Attacker’s Decision-Making

Algorithm 8: Attack Strategy
Input : Bot Fail Rate lb, Delayed Response Rate db, Weight Stealthiness ws,

Weight Aggressiveness wv.
1 attackerBelief qV = [0,0,0]
2 qV [0] = (1− lb)db #0 defines Success
3 qV [1] = lb(1− db) #1 defines Failure
4 qV [2] = 1− sum(qV ) #2 for Minor Success
5 Normalize qV
6 rs = re = 0
7 hb = 1

rs
#Bot Failed Threshold

8 for i in range(maxStealthiness) do
9 if lb ≤ hb then

10 rs+ = 1
11 hb+ = 1

rs

12 hd = 1
rv

#Delayed Response Threshold
13 for i in range(maxAggresiveness) do
14 if db ≤ hd then
15 rv+ = 1
16 hd+ = 1

rv

17 # candA is the set of candiate action list
18 candA = [at for at in attack space V if at.Y ≥ rs or at.E ≥ rv]
19 cAt = maxImpact = None
20 for at in candA do

21 impact = r(at|qV )(wsat.Y + wat.E)+
√

2lnn
nat

22 if attack is None or maxImpact > impact then
23 cAt = at, maxImpact = impact

24 return cAt

In Alg. 8, lb defines the ratio of bots that could not transmit a minimum traffic

(e.g., blocked, limited), and db defines the ratio of packet responses that arrived late

(i.e., dependent on link utilization). Based on these properties, he computes belief at

line 1-5. At line 8-11, he determines the required stealthiness rs of next attack action,

and he determines required aggressiveness (attack volume expansion) re at line 12-16.

At line 18, he creates candidate attack set candA whose stealthiness (Y +ni) is greater
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or equal to rs or aggressiveness (E + nj) is greater or equal to rv. Notably, at.Y and

at.E defines the attack stealthiness and expansion respectively for a particular attack

action at.

In line 20-23, the attacker chooses the action cAt that maximizes his current ob-

jective. In line 21, r(at|qV ) is the achieved reward by at previously when his belief

was qV . The first term in the line defines the expected reward of at based on previous

experience (Exploitation), whereas the second term (
√

2ln(n)
nat

) gives weight to unex-

plored actions (Exploration) with the guarantee of logarithmic regret [131]. Here, n

is the number of executed attack actions, and nat is the number of times when at was

chosen. Finally, this algorithm returns the optimal attack action for current time.


