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Abstract: 

David Logan Patton 

Investigation and analysis of context dependent mutation rates contribution to synonymous 

codon usage via development of CDMAP 

(Under the direction of Dr. Way Sung) 

 

 Mutations play a pivotal role as a driver of genome evolution in organisms across the tree 

of life. However, site-specific mutation rates appear to have a non-uniform mutation rate and vary 

across the genome. Currently, site-specific variation has not been well characterized or analyzed 

using a uniform treatment. To address the lack of uniform analysis and provide an open-source, 

non-proprietary means of in-depth analysis, we developed the Context Dependent Mutation 

Analysis Pipeline (CDMAP for short). CDMAP is a novel pipeline that provides an automated, 

end-to-end, reproducible pipeline that provides in-depth analysis of genome-wide and replichore 

specific mutation rates and nucleotide triplet usage in bacterial prokaryotes. Additionally, we 

utilize the CDMAP pipeline to investigate patterns influencing genomic nucleotide triplets and 

synonymous codon usage through the lens of genomic GC content and various spatiotemporal 

factors. 
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Chapter 1: Introduction & Background 

 

Overview: 

Understanding the role mutations play is critical, serving a fundamental force in 

evolutionary processes as a primary driver for genetic variation in all organisms. Shedding light 

on the spectrum of spontaneous mutations and factors driving mutation rates allow us to 

understand how organisms evolve and adapt to changing environments. Mutations can vary in size, 

ranging from a point mutation at a single nucleotide to large scale insertion and deletion events 

spanning thousands of kilobases (1-5). Understanding the role of genetic variation within 

organisms gives us clues to understanding mechanisms that shape gene evolution (6). Spontaneous 

mutation events that occur within genes are capable of generating new functionality, which can be 

beneficial or deleterious. In order to understand how mutations, serve a foundational role in 

evolutionary principles, exanimating mutations with respect to numerical, spatial, and 

compositional factors over time can elucidate how genomic patterns drives site specific mutation 

rates. 

 Given the importance of the mutation process in understanding evolutionary processes, 

little is known about the variation in mutation rate across a genome. Prior work has shown that 

mutation rates are not uniform across a genome, which can impact how quickly genes evolve in 

different regions and within different contexts of the genome. One major type of variation in 

mutation rate can arise depending on the localized context of neighboring nucleotides, and these 

context-dependent mutation rates can vary by up to 75-fold depending on its immediate 5’ and 3’ 

neighbor (7). The overall goal of this dissertation is to build an automated, modular, rapid, and 

reproducible framework to generate context-dependent mutation rates across bacterial genomes. 
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Previously to date, there has not been a uniform framework of which to generate and easily 

compare spatiotemporal variation in mutation rates, motivating us to develop CDMAP, the 

Context Dependent Mutation Analysis Package. 

The primary Innovation of CDMAP is that it is a novel pipeline planned to be an open 

source, non-proprietary analysis of context dependent mutations on a per chromosome, per 

replichore basis. In prior studies, research and analysis on genome wide variation in mutation rates 

has been done, however they were done primarily using in-house scripts that cannot be readily 

compared across studies. CDMAP is designed with “First party principles” in mind, meaning that 

we designed our pipeline with the end user in mind. We designed CDMAP to intake required files 

for analysis, with minor user input (such as the organisms name) and then provide a fully 

automated end-to-end analysis. We also designed our pipeline with an emphasis on reproducibility 

in mind, so that when a researcher uses our software to conduct analysis, using the same input files 

and parameters, they should receive the same output every time. One final innovation we built in 

mind with was having a modular framework, so that over time, as research needs demand can 

incrementally implement new features on top of an existing framework to expand breadth and 

depth of analysis over time. This framework will be applied to a wide range of bacteria harboring 

single and multiple chromosomes and will be used to determine whether mutation-rate variation 

across organisms is linked to various evolutionary parameters like genomic GC content and codon 

usage. In order to accomplish these tasks, we outlined below briefly 3 distinct aims that we wish 

to use in order to accomplish these goals. 
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Objectives: 

Our first objective is to develop an automated, rapid, bioinformatics framework to generate 

context-dependent mutation patterns in bacteria. This framework operates with minimal data input 

and can be modified to analyze multiple chromosomes and multiple species. In our second 

objective, we apply the developed algorithms to 20 prokaryotic organisms that have available 

mutation accumulation data. This data contains unbiased estimates of mutation rates from both 

wild-type and mismatch-deficient bacteria. This analysis will also generate statistical comparisons 

of context-dependent mutation rates within (intraspecific) and across (interspecific) species.  In 

our final objective, we will examine the in-depth relationship of context-dependent mutation rates 

and codon usage and investigate whether context dependent mutational patterns exhibit a direct or 

inverse relationship with codon usage. 
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Background: 

Bacterial Replication and Context-Dependent Mutations 

A context-dependent mutation is a mutation that is affected by local sequence context, 

particularly the immediate upstream 5’ and downstream 3’ nucleotide.   To understand the context-

dependent mutation process, we must first understand how mutations arise during replication. In 

most cases, bacteria have circular chromosomes, 

and in rare cases bacteria harbor linearized 

chromosomes similar to eukaryotic organisms (e.g., 

Borrelia burgdorferi (8) ).Often there is only a 

single chromosome but, in some cases, there are 

multiple chromosomes.  Each chromosome is 

replicated from a single origin of replication 

(referred to as the ORI) and replication ends at the 

terminus of replication (TERM).  The ORI is located 

near the replication origin protein DnaA, a highly 

conserved protein that promotes the unwinding of 

DNA so polymerases can attach (9).  From the ORI, 

DNA replication occurs bidirectionally forming two hemispherical segments of chromosomal 

DNA referred to as replichores. Within each replichore, DNA is synthesized on both the leading 

and lagging strand. Replication of the leading strand occurs in a continuous manner in the 5’ to 3’ 

direction, where each nucleotide base is continuously added to the strand until reaching the TERM. 

Meanwhile, the lagging strand begins replication shortly after the leading strand and replicates 

discontinuously by the use of 150-200bp fragments called Okazaki Fragments adding nucleotides 

Figure 1- An example image of replication with 

respect to leading and lagging strands of 

replication. In this example by Mackiewicz 2001, 

replication begins with respect to the ORI and 

replicates bidirectionally, where the left replichore 

replicates 5’ to 3’ and right replichore replicates 3’ 

to 5’ 
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in the 5’ to 3’ direction (10).  These okezaki fragments are then added incrementally on a per 

segment basis starting from the ORI until reaching the TERM. Due to the bidirectionality of 

synthesis away from the ORI (Fig. 1), and the double-stranded nature of DNA, the leading and 

lagging strands are synthesized in reverse.  As a result, the leading strand synthesizes the “top 

strand” of left replichore and the discontinuous lagging strand synthesizes the “top strand” of the 

right replichore.  This is critical to the analysis because all genomes are annotated with respect to 

the “top strand”.   This is critical as the enzymes involved in synthesis of the top strand are 

asymmetrical with respect to each other in each respective replichore.   

Sometimes bacteria have more than one chromosome or plasmids that replicate differently 

from the primary chromosome such as plasmids, megaplasmids, and Chromids. It is unclear how 

context-dependent mutation patterns differ with different mechanisms and timing of replication.  

Plasmids are among the most common extrachromosomal DNA structure harbored by bacteria (10, 

11). These are most commonly found in circular bacterial organisms and are generally small (<5-

10KB) circular genetic elements that have been shown to contain genes that are involved in 

virulence, pathogenicity, and antibiotic or heavy metal resistances (12, 13).  These plasmids can 

move from bacterial cell to cell using horizontal gene transfer it’s not uncommon for a bacterial 

organism to harbor one or more plasmids within its genome (13).  Megaplasmids are an in-between 

step between plasmids and Chromids, ranging in size from tens of kilobases to several hundred 

kilobases in size. Megaplasmids are shown to be a fusion of smaller compatible plasmids, that may 

also contain important genetic elements (12, 13). One such example would be the megaplasmids 

found in Agrobacterium tumefaciens plasmid pAtC58, which harbors a range of adaptations related 

to repair, resistance, and catabolism (12). The final auxiliary genomic structure present in bacterial 

organisms are secondary chromosomes, also referred to as Chromids (14). Chromids are larger 
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than megaplasmids and are speculated to have evolved from non-essential megaplasmids, since 

they harbor a plasmid-like replication origin proteins (14). One critical difference however is that 

over time chromids have come to harbor essential core genes necessary to survival within nature. 

Furthermore, chromids can be broken into ‘primary’ and ‘secondary’ chromids, where primary 

chromids are considered existential to the bacterial organism, while secondary chromids are not 

always necessary for survival (14). 
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Mutations and Repair Mechanisms 

 Mutations play a fundamental role in driving the evolution of genome architecture and can 

be defined as the alteration of one or more nucleotide bases within the genomic sequence of an 

organism (15, 16). This broad classification can be further subdivided into specific types of 

genomic mutations. The simplest type of mutation is called a point mutation and is a mutation at 

a single nucleotide.  This mutation can be either be a base substitution that replaces a single 

nucleotide with another nucleotide, or a single base-pair indel (insertion/deletion), which inserts 

or deletes a single nucleotide. More complex mutations include inversions, where a segment of 

one or more nucleotide bases have their order inverted in a genomic sequence and large-scale 

indels, which involve indels greater than a single nucleotide. 

  

The genome-wide base-substitution rate has been shown to range from 1×10-11 to 1×10-8 

mutations per site per generation (7, 17-23). However, an ever-growing body of work has observed 

that the point mutation rate can be heavily affected by neighboring nucleotides (7).  Sung et al., 

found that site-specific mutation rates greatly vary depending upon the nucleotide, and varying the 

neighboring nucleotide can have a 75-fold impact on mutation rate (24, 25). This effect, coined as 

Repair Pathway Mechanism: Overview: 

Mismatch Repair (MMR) Evolutionarily conserved pathway; repairs 

base mismatches occurring from replication 

or indel loops; contributes 100x to 

replication fidelity. 

Nucleotide Excision Repair Repair pathway responsible for removing 

bulky lesions such as Cyclobutane 

Pyrimidine (CPD) dimers, Photoproducts 

(PP), errors caused by chemotherapeutics. 

Base Excision Repair Corrects abasic, alkyation, deamination, 

and oxidative single base damage. 

Single Stranded Break Repair Corrects unresolved breaks caused by 

replication failure occurring from oxidative 

damage, or defective TOP1 enzyme. 

Table 1- Table of Bacterial Repair Mechanisms 
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Context-dependent Mutations, is a measure of the effect that neighboring nucleotides have on the 

rate of a point mutations. Within the scope of this dissertation, we will be primarily be focused on 

this specific category of mutations at a singular nucleotide base, and the influence of its 

neighboring nucleotides play in modifying the rate at that base.  When discussing how context 

dependent mutations arise within the genome of an organism.  

 Mutations arise through endogenous and exogenous damage. Endogenous mutations 

primarily occur through oxidative and hydrolytic reactions within an organism (26). Exogenous 

mutations occur primarily from external influences such as various forms of radiation, chemical 

agents such as alkylizers, toxins, and environmental stressors such as extreme heat or cold (26).   

Both exogenous and endogenous mutators can produce a wide variety of mutations, from benign 

to lethal mutations, so organisms naturally have developed multiple different repair pathways to 

address these mutations. 

There are several prominent and well characterized repair pathways that directly address 

mutations arising from replication error and mutagenesis. Mutations occurring due to oxidative 

stressors or deamination usually are repaired using the Base Excision (BER) pathway, though this 

pathway is often limited to single base repair, while multi-base mutation or replication errors 

require more robust pathways (26). Damage caused by chemotherapeutics or from UV radiation 

often will use the Nucleotide Excision Repair (NER) pathway to repair these types of errors, which 

specialize in removing bulky lesions that arise from photoproducts and Cyclobutene Pyrimidine 

Dimers (CPD) (26). The last repair mechanism worth mentioning within the scope of this 

dissertation is the Mismatch Repair pathway (MMR). MMR is an evolutionarily conserved post-

replication pathway that contributes upwards of 100-fold to replication fidelity (7, 18, 20, 26).   

These repair mechanisms are highly conserved across organisms, and the absence or the failure of 
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these repair mechanisms can have a significant impact on the replication errors that are not repaired 

at a site.  In addition to wild-type organisms, we will be evaluating context-dependent mutation 

patterns in repair deficient bacteria. These repair mechanisms govern the repair of various types 

of damage. If the absence or mutations affecting these repair pathways can cause significant 

elevations in mutation rate and can lead to fundamental changes in genome architecture and 

accelerate the evolutionary trajectory of features such as new virulence or antibiotic resistance 

mechanisms in bacteria. 
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Mutation Accumulation and the Evolution of Mutation Rate 

 

When investigating the evolution of 

mutation rates across organisms, we must have a 

basic grasp of the major evolutionary forces 

driving the fixation of mutations. The two primary 

mechanisms that drive the fixation of mutations 

are Natural Selection, and Genetic Drift.  Natural 

selection is the classical mechanism associated 

with driving evolutionary change, in which one or 

more alleles increases in frequency, due to its 

ability to improve the fitness (ability to survive 

and reproduce in an environment) (18, 27). Selection operates to remove mutations that are 

deleterious, and a majority of mutations are deleterious. Genetic drift operates irrespective of 

fitness, and mutations are driven to fixation by random chance (18, 27). In order to investigate the 

full distribution of possible mutations, we try to examine organisms that accumulate mutations in 

the absence of natural selection.   (25).     

Figure 2: Genetic Drift versus Selection –As effective 

population size (Ne) increases, that fixation of mutations is 

driven less by genetic drift, and increasingly by natural 

selection. Illustration by Sniegowski & Raynes from Current 

Biology 2013 

 

 
Figure 3: Mutation accumulation and Bottlenecking – Mutation Accumulation occurs by taking a single 

ancestral organism and establishing multiple MA lines, which are repeatedly propagated by selecting a 

single offspring in a new environment repeatedly allowing an unbiased accumulation of mutations. 

Illustration by Baer et al., Nature Reviews: Genetics 2007. 
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 One such method 

commonly employed to 

study mutations in the near 

absence of natural selection 

is a Mutation Accumulation 

(MA) experiment. When 

carrying out an MA 

experiment, a single 

organism is taken and 

repeatedly bottlenecked. 

Bottlenecking takes the 

single offspring of the 

ancestral organism and transfers to a new, identical environment to propagate. The repeated 

process of bottlenecking across an MA experiment minimizes selection, and genetic drift 

ultimately drives the fate of new mutations in a nearly neutral fashion (25). After reaching a 

designated number of generations in the MA experiment, whole-genome sequencing can be used 

on each lineage of a MA to provide a comprehensive picture of where, what type, and how often 

spontaneous mutations occurred (7, 19-21, 25, 28, 29).  

 

Synonymous Codon Usage and Underlying Patterns of Contextual Bias 

 

Understanding the evolutionary role that mutations and their contextual patterns play on 

genomic architecture is fundamental in gaining deeper understanding how mutational adaptation 

affects organisms across the tree of life. One approach is observing and analyzing consequential 

effects at play in a genomic context. One way to accomplish this is by inspection of frequencies in 

Figure 4: Bottlenecking – Illustration of the Bottlenecking process courtesy of the 

Sung Lab. When an organism is bottleneck occurs, the effective population (Ne) 

effectively becomes one. As a result, the fate of mutational fixation is entirely 

determined by genetic drift. 
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which nucleotide triplets occur within coding regions. For every amino acid, including both the 

initiator (START) and terminator (STOP) amino acids, one or more nucleotide triplet encodes a 

given amino acid. These nucleotide triplets are called Codons (30, 31). For a given codon N1N2N3, 

where Ni is any nucleotide at ith position, one or more of these nucleotides contribute to an amino 

acid’s codon degeneracy, i.e., a mutation conferring a synonymous or nonsynonymous change in 

the amino acid expressed (32). Oftentimes, both N1 and N2 are more actively conserved than N3 as 

a mutation in the former positions will induce a nonsynonymous mutation changing the amino acid 

encoded (32-34). This degeneracy in codon usage corresponds to the number of codons encoding 

a particular amino acid. For example, Alanine is a four-fold degenerate amino acid as it is encoded 

in the generalized form GCN3, where the third nucleotide position can be any nucleotide. As 

alluded to in the prior sentence, Four-fold degenerate amino acids illustrate an interesting 

phenomenon, Where all synonymous mutations that encode them are dependent on N3 , while other 

fold degenerate amino acids either require multiple Ni mutations to encode another amino acid, or 

are unable to use a subset of nucleotides in N3 lest encoding a nonsynonymous mutation. 

The corresponding frequency in which codons are utilized in fold degenerate amino acids 

is referred to as their Codon Usage Frequency, or Codon Usage for short (30, 31). The frequencies 

in codons are used in each fold degenerate amino acid are often unequally utilized, generating 

biases a given amino acids codon usage, or more succinctly called Codon Usage Bias (CUB). The 

prominence of these biases is influenced by both exogenous and endogenous factors in varying 

intensities (30, 32-40). One immediate factor influencing codon usage would be strand specific 

mutational biases, which relates to the asymmetric nature of replication between the leading and 

lagging strand (30-32). For a given codon on the leading strand 5’- N1N2N3 -3’ would be encoded 

3’- N3cN2cN1c -5’ on the lagging strand, where Nic  represents the ith nucleotides complementary 
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nucleotide base on the lagging strand. In many cases this leads to the resulting translated lagging 

strand codon often will neither encode the same amino acid, or even the same class of fold 

degenerate amino acids. 

 Another endogenous factor that has shown to play a significant role affecting codon usage 

is the presence of genomic GC/AT content (30, 33, 38, 40). Organisms harboring a particular 

enrichment towards either extreme have shown evidence towards specific codons, nucleotides in 

specific positions, or even the strength of selection acting upon a given codon (33, 37). Another 

endogenous factor considered when analyzing patterns arising often in tandem is selection pressure 

acting on the abundance and efficiency of tRNA populations in an organism (30, 37, 40). Prior 

research suggests that selective forces act on tRNA isoacceptors maximizing expression of higher 

accuracy and efficiency is also driven by tertiary factors such as organism growth stage and 

minimizing rejection of incorrect tRNAs (30, 31, 37). Meanwhile, Exogenous factors have shown 

a less uniformly measured effect on amino acid and codon usage. Some factors such as exogenous 

damage from radiation have shown a consistent effect on biases in codon usage, while other forms 

of exogenous damage like nutrient poor environments, retroviruses, PH specificity of environment 

can contribute to differences in usage in specific circumstances (41). 
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Datasets: 

 

 

Mutation accumulation datasets span the prokaryotic kingdom (7, 17-21, 24, 42). The 

organisms analyzed in Table 1 harbor a variety of different genomic architectures, the majority of 

which harbor a single circular chromosome such as Escherichia coli and Bacillus subtilis. In this 

Number Organism Gen. 

Line

s 

Chromosome

s 

Mutation

s 

GC 

Content 

ORI 

(KB) 

1 
Agrobacterium tumefaciens C58 

581

9 
47 2 

233 60.2 2765 

2 
Bacillus subtilis NCIB 3610 

507

7 
50 1 

350 43.65 4170 

3 

Bacillus subtilis NCIB 3610 

(MMR-) 

507

7 
50 1 

5295 43.65 4170 

4 

Burkholderia cenocepacia 

HI2424 

555

4 
47 3 

130 67.28 69 

5 
Caulobacter crescentus NA1000 

428

4 
44 1 

259 67.62 3818 

6 
Colwellia psychrerythraea 34H 

107

8 
84 1 

400 38.95 4903 

7 

Deinococcus radiodurans BAA-

816 

596

1 
43 2 

331 67.55 258 

8 
Escherichia coli K-12 MG1655 

168

2 
46 1 

1623 51.86 3644 

9 

Escherichia coli K-12 MG1655 

(MMR -) 

168

2 
46 1 

231 51.86 3644 

10 

Kineococcus radiotolerans 

SRS30216 

472

4 
44 1 

280 74.4 522 

11 
Lactococcus lactis DSMZ20481 

397

3 
63 1 

813 36.58 1 

12 
Mesoplasma florum L1 

235

1 
28 1 

544 27.14 326 

13 

Mycobacterium smegmatis MC2 

155 

490

0 
49 1 

856 67.7 3609 

14 

Rhodobacter sphaeroides ATCC 

17025 

454

4 
46 1 

107 68.63 2 

15 
Ruegeria pomeryoi DSS-3 

538

6 
47 1 

147 64.71 1 

16 

Staphyloccus aureus ATCC 

25923 

271

6 
83 1 

274 33.74 3 

17 

Staphyloccus epidermis ATCC 

122228 

710

1 
22 1 

294 33.2 2419 

18 
Teredinibacter turnerae T7901 

302

5 
42 1 

779 51.72 4252 

19 
Vibrio fischeri ES114 

518

7 
48 2 

132 39.79 1 

20 
Vibrio fischeri ES114 (MMR -) 

518

7 
48 2 

2909 39.79 1 

Table 2- List of bacterial organisms analyzed with CDMAP 
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scenario, these organisms are the most straightforward to run an analyze. We also analyzed 

wildtype organisms harboring multiple genomic architecture elements outside of a single primary 

chromosome such as Deinococcous radiodurans and Rhodobacter sphaeroides to name a few. In 

the case of these two organisms such as R. Sphaeroides exhibits a primary circular chromosome 

with library of 5 different plasmids that vary from 13kb to over 877kb in size. Meanwhile, D. 

Radiodurans harbors a primary circular chromosome, a secondary chromosome of 400kb, a 177kb 

megaplasmid, and a 45kb plasmid. While these organisms both share similarly sized genomic 

elements, they are categorically different in classification and function.  

Using CDMAP to analyze these organisms may illuminate genome-wide patterns that may 

provide insight into the similarities and differences of genomic architecture composition that 

govern these organisms. Additionally, we analyze several organisms that had MA lines carried out 

that either had MMR- repair knockouts, or in the case of Mesoplasma Florum have no MMR repair 

mechanism present in the entire genome. Analyzing the differences in MMR deficient organisms 

can possibly provide insight into how organisms in the absence of certain repair pathways can 

mitigate excessive elevation in site-specific mutation rates, as well as providing possible insight 

into how novel mechanisms relating to pathogenicity and antibiotic resistance arise in bacterial 

organisms, so we can adjust and adopt new targeting methods in future therapeutics.  
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Prior Work Regarding Context-dependent Mutations 

 

There are many spatiotemporal factors that can influence mutation rate.  First, there is an 

increasing amount of evidence of context-dependent mutation processes. In prior work, MA 

experiments with Mesoplasma florum, Escherichia coli, and Bacillus subtilis revealed context-

dependent mutation rates that different by 75-fold depending on the upstream and downstream 

nucleotides.  Furthermore, it was shown that these mutations arose asymmetrically within each 

replichore (35). This study posited that asymmetrical context dependent mutations were caused by 

the ORI locus orientation with respect to the leading and lagging strand. Furthermore, studies in 

E. coli also revealed asymmetric patterns in replication between the leading and lagging strand, 

which was supported by sharp differences in GC content and nucleotide composition between the 

leading and lagging strand (25). Finally, within the 1000 genomes project for humans, Harris, et. 

al. found a prevalence of the 3mer triplet 5’-TCC-3’ to 5’-TTC-3’ being a central causative factor 

present in human skin cancers (43). Another study investigated how replication asymmetry within 

Vibrio Cholerae developed into the current representative pathogenic strain from a non-pathogenic 

strain (5). In this paper, the authors carried out MA experiments on non-pathogenic WT and MMR 

deficient strains of V. Cholerae, using varied media limited and antibiotic resistance laden 

environments. The primary results of their work found concentrated, elevations in mutation rate at 

the TERM of chromosome 2, and midpoint of chromosome 1. This was due in part to replication 

timing mechanisms that begin replication of the second chromosome after temporarily suspending 

replication in the primary chromosome. Understanding the effect of neighboring nucleotides in 

triplets that may have a predisposition to increased mutational pressures at key points in the 

replication process can possibly shed light into the how novel mutations that arise conveying 

pathogenicity or resistance in bacterial organisms occur. 
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One paper that investigated the role of flanking base composition, and mutation dynamics 

in the maize genome revealed illuminated several findings related to the role sequence context 

plays in driving mutation rates. Originally, they investigated the CpG effect driving mutation rates 

due to being well characterized as a driver of transition rate mutation deamination at methylated 

CpG sites (44). One finding from the paper showed a consistent G+T skew over C and A 

nucleotides, which was in agreement with a recent observation in human genomes (45).When they 

calculated GC and AT mutation rates with respect to immediate 5’ and 3’ flanking nucleotides, 

they found higher GC content across all sites, which couldn’t be accounted for by the CpG effect 

(44). As a result, they investigated the role of cytosine deamination, and found a 2.1x increase in 

transition site mutation compared to other contexts, with the highest transition rates occurring at 

CG > CA and CG > TG sites. When they analyzed context specific sites in the absence of CpG 

sites, and analyzing whether a context was flanked by 0, 1, or 2 A+T nucleotides, they found 

significant differences in Transition / Transversion (Ts:Tv) ratios between sites flanked by 1  or 2 

A+T nucleotides, supporting that flanking bases influence mutation rates. Finally, they compared 

GC > AT and AT > GC mutation rates and found that as regional A+T nucleotide content increases 

in the genome, that transition mutation rates of GC > AT increased, while AT > AT and GC > GC 

mutations remained relatively constant (44). 

In another study done using B. subtilis that investigated the effect of sequence context of 

DNA polymerase error rates both in vitro and in vivo. They conducted MA experiments using WT 

and MMR- using MutSL knockouts. The results found a 60-fold increase in mutation rates, which 

was shown to be similar to rifampin resistant strains, averaging 15.5 generations as opposed to 909 

generations per mutation (11). When investigating site-specific mutation rates, they found a 403-

fold difference in mutation rates between the highest transition rate triplet, 5’-CCG-3’ and the 
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lowest transition rate triplet 5’-AGT-3’after normalization with respect to the leading strand. 

Although transversions were rare in this study, they were able to conclude sequence context highly 

influenced transition mutation rates. In a study examining germline mutation rates in humans, they 

took 36 million singleton variants spanning 3560 whole genome sequences studying extremely 

rare variants (ERVs) showed heterogeneity of mutation rates were dependent on nucleotide 

contexts (46). They found when using ERVs to estimate germline mutation rates according to 

mutation type with respect to context mutations, they found effects of sequence context 3 bases up 

and downstream of the mutation from a given variant site (46). They found these 7mer context 

frames in agreement with prior work, and found several higher mutable 3mer triplets, 5mers, and 

a hypermutable 7mer NTT[A > T]AAA which had a 6-fold higher mutation rate than the generic 

A>T 1mer.  
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Prior Work Regarding Codon Usage 

 

Factors affecting Biases in codon and amino acid usage frequency are multifactorial, with 

most prior work often investigating one or two dimensions that could contribute to fluctuation in 

rates. For example, in one study, the authors chose to look at genome architecture variation 

contributions to CUB in 16 S. aureus phages (47).  The investigators analyzed over 900 protein 

coding genes, filtering out genes with less than 50 codons analyzing the codon usage count relative 

to mutation rate. Analysis of the 16 phages showed AT enrichment at the N3 codon position, and 

self-separating patterns of codon usage in more virulent strains of the phages (47). More 

interestingly, the investigators found a pattern of over representation of 19 codons, with 14 N3 

codons ending in a T, while the other 5 ended in A nucleotide (47). One study focused on the 

analyzing the fitness cost of synonymous variants of the GFP gene in E. coli strains (39). The 

authors found synonymous variation in the GFP conferred significant reduction in cell growth rate 

viability, and upon evolving suppressor strains that could mediate the toxicity of the variant GFP 

gene by mediating mRNA expression levels (39). 

Several studies have investigated the relationship between synonymous codon usage bias 

(SCUB) and radioresistance levels in bacterial organisms (40). The authors found a tandem 

relationship in tRNA gene copy number and CUB, where 9 of the 16 species shared the similar 

tRNA copy numbers for each codon (40). More interestingly, they found that in more radioresistant 

bacteria GC enrichment in the N3 codon position allowing increased thermic stability over AT N3 

codons (40). The authors further speculated this GC enrichment is crucial to prevention of 

exogenous damage from ionizing and UV radiation. Another similar study in Cyanobacterial 

genomes sought to specifically analyze relationships of GC/AT enrichment at N3 nucleotides and 

codon usage patterns (38). The authors noted distinct groupings in relative synonymous codon 
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usage for AT rich and GC enriched organisms, citing nucleotide compositional constraints and 

habitats as drivers in codon usage patterns (38).   

Several authors have attempted to analyze patterns of codon usage from a broader 

perspective. In one such study, authors analyzed 29 prokaryote families and found codon 

optimization relative to tRNA presence and gene expression level (33).  An interesting takeaway 

from their work was fold-specific enrichment of N3 nucleotides in codons, where 2-fold and 3-fold 

degenerate codons were enriched towards C nucleotides, and 4-fold degenerate codons being 

biased towards T nucleotides at N3 nucleotides (33).  Another notable takeaway found was a 

threshold in GC enrichment (approximately 40% GC rich) pointing towards increased selective 

pressure at N3 nucleotides (33). Another cohort of researchers investigated how patterns in codon 

usage vary when examining bacterium in extremophilic environments, where they found a 

combination of lower CUB values in tandem with transcription-based adaptations induced by the 

selective pressures of high acidity, low PH environments  (41). 
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Chapter 2: Development of the CDMAP Pipeline 

 

Introduction 

 

Parsing context-dependent mutation patterns is not an easy task.  First, to analyze both 

upstream and downstream effects, each mutation has to be divided into multiple different 

replichores and categorized into 64 different bins. Second, characterizing the influence of context 

dependent mutations has to be broken down into a per-replichore, per-chromosome basis due to 

the asymmetry of replication from an ORI.  Third, the ORI and TERM points have to be identified 

and mutations have to be reoriented to those points.  Fourth, this process must be agnostic to input 

data and be developed within a uniform reproducible framework.  While individual tools have 

been developed for each of these steps, there has not been an end-to-end automated process to 

easily analyze context-dependent mutation processes. 

With these goals in mind, we began development of CDMAP incrementally, expanding 

features as we verified compatibility and consistency of results in each successive step. The 

assumptions made for the current version of CDMAP assumes that we are analyzing a prokaryotic 

organism, with a single ORI and TERM within a single circular chromosome, chromid, or plasmid. 

With those assumptions in mind, CDMAP takes the required input files and automatically 

partitions both replichores, calculating and recording mutation rates, triplet rates, codon usage, and 

upstream and downstream context dependent mutation influence for a single organism. CDMAP 

conveniently and easily organizes text and image output for postprocess analysis and downstream 

interspecies analysis. Pipeline validation was carried out using prior results from context mutation 

analysis in B. subtilius, E. coli, and M. florum (7). 
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Methods 

 

Data Input 

CDMAP requires several input files. The first file required would be a variant base call 

file, which contains the position of the variant, the original nucleotide, and the variant nucleotide.  

The next file required is the reference FASTA file, which contains the genomic sequence needed 

for mapping the variant nucleotide to the neighboring nucleotides. The final file needed is optional, 

though highly recommended for best results is a fully annotated GBK file from which the ORI and 

TERM positions are identified. In the absence of this GBK file, manual designation of the ORI 

and TERM can be used to execute the program. 

 

Data Dependencies 

In terms of the actual pipeline, several package dependencies are required to run the 

CDMAP pipeline for single organism analysis and visualization. The first package used during 

analysis is the SeqINR, a bioinformatics toolkit that allows easy manipulation and partitioning of 

the reference FASTA file, along with containing other needed dependencies (48).One such 

dependency is OriLoc, a tool that was developed to determine replication origins in prokaryotic 

organisms using DNA skew, which helps identify nucleotide usage asymmetries to determine the 

ORI and term position using the GBK file (8). Another bioinformatics toolkit used in analysis is 

BiocManager, which is a collection of various bioinformatics analysis tools allowing easy 

manipulation of data objects at various stages of processing data. In BiocManager we use two 

specific packages to aid with analysis at different steps throughout the pipeline: pracma and 

genbankr. Pracma stands for ‘practical math’ and is itself a collection of different numerical 

analysis methods that we are implemented on the back end for partitioning data objects at various 
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stages, and aids in developing backend objects for downstream visualization. Genbankr is a tool 

primarily used for parsing and manipulation of genbank files into data objects within R to easily 

extract and coerce features from as needed. The last major dependency used in our pipeline is 

Lattice, a lightweight data visualization package that enables us to generate high quality visual 

heatmaps without excessive data transformation steps (49). 

 

Replication ORI and TERM Determination, Replichore Partitioning 

 

In prior studies, results have 

shown asymmetrical context-specific 

mutation patterns with respect to the 

ORI and TERM, therefore accurate 

determination of the replication origin 

is a critical first step in our analysis (4, 

7, 11, 18-21, 42, 43, 50). In previous 

work, replication origin was 

approximated based on the location of 

the replication origin protein DnaA or 

using the midpoint of the sequence. 

However, the true starting point of 

replication may vary by several hundred bases to several thousand Kb from the start position of 

DnaA (29).To provide the currently most accurate estimate of ORI and TERM position, we used 

the OriLoc R package to determine ORI based on nucleotide skew (8, 48). 

Single organism analysis in CDMAP was carried out using MA datasets from prokaryotic 

organisms (4, 7, 11, 24, 36), most of which harbored a single chromosome. Some of the 

Figure 5: Visual depiction of the oriloc, where a DNA walk is 

performed then transformed into a combined skew vs position in 

KB. The Supremum, or maximum skew position of the dataset, and 

the infimum, or the minimum skew position, make up the ORI and 

term respectively. 
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prokaryotes harbored secondary genomic elements such as secondary chromosomes, chromids or 

plasmids. Some of the bacterial organisms we analyzed included both wildtype and MMR- strains. 

Having a large breadth of different prokaryotes along the tree of life allowed us to compare and 

contrast context-dependent mutation patterns across varying levels of replication and repair 

fidelity, nucleotide base composition, and genome sizes, allowing us to generate a comprehensive 

picture context mutation influence on context-dependent mutations. 

 

Nucleotide Frequency Determination and Codon Usage 

 

GWTC process

i = 0 i = N

ATG CTA ATT CTTGAC TAG……

TTT TGT TCT TAT

TGT TGG TCG TAG - 1

TTC TGC TCC TAC

TTA TGA TCA TAA

GTT GGT GCT GAT

GTG GGG GCG GGA

GTC GGC GCC GAC - 1

GTA GGA GCA GAA

CTT CGT CCT - 1 CAT

CTG CGG CCG CAG

CTC CGC CCC CCC

CTA - 1 CGA CCA CAA

ATT -1 AGT ACT AAT

ATG - 1 AGG ACG AAG

ATC AGC ACC AAC

ATA AGA ACA AAA
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After each replichore has been partitioned and oriented with respect to the ORI and TERM, 

nucleotide triplet counts (both coding and non-coding) and codon usage within coding regions are 

generated. The observed counts for nucleotide usage and codon usage are done on a chromosome 

wide (Genome Wide Triplet Count, or GWTC) and a replichore specific basis (Replichore Wide 

Triplet Count, or RWTC) respectively. For coding regions, additional upstream and downstream 

nucleotides are captured for each codon in order to evaluate the context specific mutation patterns 

on codon usage bias.  

 Given the methodical construction taken in partitioning both the variant base call mutations 

and reference sequence into their respective replichores, we can examine resulting output in a 

variety of ways. By default, CDMAP analyzes a given chromosome bidirectionally beginning at 

Codon Usage Analysis 

i = 0 Nth Nucleotide

ATG CTA ATT CTTGAC TAG
………………
…..

Coding Region Non-Coding

ATG CCT ATC CTTGGC
………………
…..

Non-Coding

Upstream Codon 

Usage
3mer Codon 

Usage

A Upstream

T Upstream

C Upstream

G Upstream

T Downstream

G Downstream

C Downstream

 A Downstream

Downstream 

Codon Usage

Coding Region

Figure 6: GWTC and Codon Usage pipeline representation.  The genome wide triplet count is performed by sequentially 

calculating for each triplet in the sequence and storing them in 16x4 matrix.. In a similar manner to GWTC, codon usage 

for triplets, upstream, and downstream calculations are performed by sequentially analyzing each triplet in the FASTA 

sequence contained in coding regions. In upstream and downstream calculations there is an additional step determining 

which upstream and downstream matrix to be stored in dependent of the upstream and downstream nucleotide. 
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the ORI to TERM, however due to the flexibility of the existing framework, the end user can easily 

analyze site-specific mutation rates solely with respect to leading strand (also referred to as 

clockwise chromosome orientation) or the lagging strand (also referred to as counterclockwise 

chromosome orientation) if the user desires. A visual representation of this can be seen in figure 

7. 

 

Site Specific Mutation Frequency & Rate Analysis 

 

CDMAP parses each subset of base-substitutions in each replichores for the position and 

the type of base substitution that occurred, then extracts the neighboring nucleotide information 

from the reference FASTA file. In order to calculate mutation rates and analyze individual contexts 

of each nucleotide triplet site (K), the triplet count for each nucleotide triplet site in each replichore 

and for each chromosome was calculated using the following formula: 

 

𝐾𝑔𝑒𝑛𝑜𝑚𝑒 =  
𝑀𝑇𝑟𝑖𝑝𝑙𝑒𝑡

𝐺𝑊𝑇𝐶𝑇𝑟𝑖𝑝𝑙𝑒𝑡
    𝐾𝑟𝑒𝑝𝑙𝑖𝑐ℎ𝑜𝑟𝑒 =  

𝑀𝑇𝑟𝑖𝑝𝑙𝑒𝑡

𝑅𝑊𝑇𝐶𝑇𝑟𝑖𝑝𝑙𝑒𝑡
, for Left, Right Replichore  

 

 

Where 𝐾𝑔𝑒𝑛𝑜𝑚𝑒 and 𝐾𝑟𝑒𝑝𝑙𝑖𝑐ℎ𝑜𝑟𝑒 represent the mutation ratio for each nucleotide triplet site 

on a chromosome or replichore wide scale, 𝑀𝑐𝑜𝑑𝑜𝑛 represents the number of observed base 

substitutions for a given nucleotide triplet site triplet, and 𝐺𝑊𝑇𝐶𝑐𝑜𝑑𝑜𝑛 and 𝑅𝑊𝑇𝐶𝑐𝑜𝑑𝑜𝑛 represent 

the genome wide triplet count and the replichore wide triplet count on a given replichore at a given 

nucleotide triplet site. To calculate the base substitution mutation rate, which forms the baseline 

rate for the majority of analysis, we used the following equation for chromosome and replichore 

specific mutation rates: 

 

  𝑈𝑏𝑠 =  
𝑀𝑡𝑟𝑖𝑝𝑙𝑒𝑡

(𝐺𝑊𝑇𝐶𝑡𝑟𝑖𝑝𝑙𝑒𝑡)(𝐺)(𝑁)
       𝑅𝑏𝑠 =  

𝑀𝑐𝑜𝑑𝑜𝑛

(𝑅𝑊𝑇𝐶𝑇𝑟𝑖𝑝𝑙𝑒𝑡)(𝐺)(𝑁)
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Where 𝑈𝑏𝑠 represents the chromosome and 𝑅𝑏𝑠 represents the replichore specific base substitution 

rates for a given nucleotide triplet site for each generation. 𝑀𝑐𝑜𝑑𝑜𝑛, 𝐺𝑊𝑇𝐶𝑐𝑜𝑑𝑜𝑛, and 𝑅𝑊𝑇𝐶𝑐𝑜𝑑𝑜𝑛, 

are the same as above, and N represents the number of MA lines, and G represents the number of 

generations occurred for a given organisms MA study. 

 

 Once all observations about codon usage, nucleotide triplet frequency, and mutation rate 

calculation have been completed, CDMAP prepares all output for end user analysis. As a 

convenience for the user, CDMAP dynamically generates output repositories and subdirectories 

for each organism as results are generated, and then outputs them into the proper subdirectories 

for the ease of navigation. By default, all output datasets generated by CDMAP are generated both 

as output visualizations by lattice for immediate graphical interpretation, and as text files so 

Figure 7:  Illustration of Clockwise and Counterclockwise Chromosome Orientation. The Clockwise chromosome 

corresponds to the normal top strand analysis where the look at replication 5’>3’ with respect to the origin of 

replication. The Counterclockwise chromosome looks at the Lagging strand replication from 3’>5’ to compare local 

sequence context variation on the leading and lagging strand. 
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visualization or post processing may be carried out by the end user if they so desire (such as 

commonly used graphing programs (examples: ggplot or tableau). 

 

 

 

 

Visualization and Benchmarking 

 

 

 

 

 

 

Complex patterns within large-scale data sets are often easier to identify using visualization 

tools. Relevant information about triplet frequency, variant distribution, and genome-wide and 

replichore-specific mutation rates are passed through Lattice and correlation between input files 

can be automatically formatted (Figure 8 and 10) (49). Throughout the process, CDMAP collects 

and outputs both CSV format spreadsheets and heatmaps in dynamically generated output 

directories that are categorized for easy navigation and downstream analyses.  

Figure 8- CDMAP Single Organism Analysis (SOA) output of Bacillus subtilis mismatch repair deficient 

MA lines. Context-dependent mutation rates shown for left replichore and right replichore. Each row 

repesents a triplet N[X->Y]N with N as the left and right neighboring nucleotide and X and Y repesenting the 

reference nucleotide and mutation respectively. 
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CDMAP was benchmarked against 17 mutation accumulation datasets in prokaryotic 

organisms (7, 18-21, 24, 36, 42), which harbor a variety of different genomic architectural features. 

The majority of MA studies contain organisms with a singular, circular chromosome such as 

Escherichia coli, while others may have multiple genomic elements such as chromids and plasmids 

(Table S1), or may be deficient in repair enzymes such as mismatch repair. An example of 

replichore-specific output automatically generated using Lattice during the execution of CDMAP 

is shown in Figure 8. CDMAP can be installed and run on a standard laptop or desktop, with an 

approximate runtime of 90 minutes for an average size bacterial genome (~5mb), and benchmarked 

data for MA lines has been uploaded to CDVIS. CDMAP/CDVIS serves as a foundational 

framework for analysis of context-dependent mutations and spatiotemporal variation in mutation 

rate across multiple of organisms. 

 

Discussion 

 

 There are several potential issues and concerns regarding the input, output, and 

development of software. Currently, in Aim 1, CDMAP was developed to handle a single 

prokaryotic circular chromosome with a singular ORI and TERM. In future work, plans to expand 

CDMAP to analyze different genomic features and genomic architecture.  For example, archaea 

and eukaryotes have multiple ORI points and the distance between ORI points would have to be 

accounted for in the analysis.  One solution would be to develop a pre-processing mechanism that 

would allow us to find an ‘optimal’ replication origin point to act as an anchor for genome wide 

analysis in organisms with multiple ORIs. Additionally, in light of recent events, we would also 

like to consider adding functionality for analysis of viral organisms as well. Understanding the 

genome-wide patterns influencing factors such as how the context-dependent mutation process 

affects the evolution of viruses such as Covid-19 or other future threats may prove invaluable for 
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understanding and development of targeted therapeutics in the future. While early work on 

development has been promising on expansion of this feature, additional modular features 

incorporating phylogenetic methods would warrant additional consideration as well. 

 Another issue of CDMAP is that it relies on the quality of the input data.  Experimental 

errors, sequencing errors, and statistical power in detecting mutations are all upstream issues that 

may influence the output data.  An example would be extraction from an overgrown colony on an 

agar plate, whether due to user choice, or due to overgrowth from incorrect incubation times 

leading to selection operating within MA line. Another possible upstream problem could arise 

from an inadequate number of generations carried out in the MA experiment, leading to lack of 

accumulated mutations due to premature sequencing and termination of the experiment. Problems 

may also occur upstream due to sequencing errors due to lack of coverage depth leading inaccurate 

identification mutations.  While analysis and mutation calling in MA data are generally straight 

forward due to high sequencing coverage, CDMAP may have more issues identifying context-

dependent mutation patterns in lower-covered datasets or data from natural populations.  
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Chapter 3: Multi-Organism Analysis of Context Dependent Mutation Rates Across a 

Diverse Array of Bacterium 

 

Introduction 

After establishing a solid framework to analyze the role of genome-wide patterns and the 

effect on site specific context mutation rates, we wanted to develop a framework to analyze and 

compare genome-wide patterns across a large breadth of bacterial organisms in a reproducible 

manner. Understanding whether these patterns are local to a given organism due to unique 

mechanistic properties they exhibit in replication and repair machinery, or the observed pattern are 

clade-specific, kingdom-specific, or even are a fundamental rule driving context specific mutation 

rates across all organisms. With this philosophical approach in mind, we wanted to build a 

similarly modular, flexible framework to allow the end user to easily carry out a one-to-many 

Figure 9: CDMAP interspecies analysis. During a one-to-many interspecies analysis, CDMAP 

sequentially takes each organism and compares it to every other organism within the repository of 

analyzed organisms using Pearson’s correlation coefficient. This analysis can be done carried out 

using a variety of lenticular parameter such as Ne, Chromosome size, and GC content. 

Organism 2Organism 1

Organism 3

Organism 4

Organism 5

Organism 6

Organism ...

Organism N

Correlation 1-2

Correlation 1-3
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analyses for a collection of bacterial organisms (and later on other prokaryotes and eventually 

eukaryotes). The interspecies analysis framework is built with a similar philosophy that we 

adopted when developing the Single organism pipeline, where a user may analyze relationships 

under varying parameters among a collection of organisms.  
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Methods 

Required Input 

CDMAP was developed in later versions with the flexibility of interspecies analysis in 

mind, so prior to the user running any steps of the analysis, CDMAP dynamically creates a 

repository of requisite information needed downstream for this portion of analysis and 

conveniently stores it for later use.  By default, genome-wide and replichore-specific output 

datasets of every organism ran by the end user are stored for interspecies analysis. When the user 

runs the multi-organism analysis pipeline, CDMAP makes compares organisms on a chromosome-

wide, replichore specific basis, including analysis based on leading or lagging strand orientation 

and includes analysis of upstream and downstream nucleotide effects.  Upon initialization of the 

multi-organism analysis portion of the pipeline, CDMAP dynamically generates the genomic GC 

content % for each organism from the provided reference FASTA files piped to the repository 

from the single organism analysis pipeline. 
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Data Generation Methodology and Sample Output 

After the context-dependent mutation patterns for each organism have been dynamically 

loaded into memory, CDMAP performs a one-to-many correlation analyses sequentially with each 

organism using Pearson’s correlation coefficient. Genome-wide and replichore-specific 

comparisons are performed.  Once correlation patterns are generated across all possible 

combination of organisms, CDMAP then orients the relationship coefficients of each organism 

Figure 10 - CDMAP One-To-Many Correlation Analysis. For each organism in the single organism output 

repository, CDMAP conducts a one-to-many analysis generating a Pearson’s product moment correlation value 

with respect to all possible combination of organisms. Next, each comparison is oriented with respect to 

genomic GC content, from the most GC rich (bottom left) to AT rich (top right). In this figure, an example of a 

one-to-many analysis with respect to the chromosome has been conducted. 
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according to GC content and then records the genome-wide, replichore-specific, upstream and 

downstream interspecies correlations, p-values, and test statistics in both high quality 

visualizations using lattice, and as text output for external post processing or visualization if the 

user so desires using another visualization software of their choosing. 
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As Shown in figure 10, we have 

taken a subset of organisms that have had 

the single organism analysis conducted 

using CDMAP and ran an all against all 

correlation of each organism’s primary 

chromosome with respect to GC content. 

In this visualization, columns are ranked 

from AT rich (top) to GC- rich (bottom) 

and rows are oriented GC rich (left) to 

AT-rich (right). The 1:1 organism 

comparison is color coordinated relative 

to its Pearson’s coefficient, as indicated by 

the heatmap legend. In figure 10, the 

upper rightmost portion of the graph 

shows the 1:1 comparisons of all 

organisms harboring the most AT rich 

chromosome, which displays an increase 

in correlation among site-specific 

Organism Name Abbreviation 
2letter 

code 

Agrobacterium 

tumefaciens C58 
A. tumefaciens At 

Bacillus subtilis 3610 B. subtilis Bs 

Burkholderia 

cenocepacia HI2424 
B. cenocepacia Bc 

Caulobacter 

Crescentus NA1000 
C. Crescentus Cc 

Colweillia 

psychrerythraea 34H 

C. 

psychrerythraea 
Cp 

Deinococcus 

radiodurans R1 
D. radiodurans Dr 

Escherichia coli K12 

MG1655 
E. coli Ec 

Kineococcus 

radiotolerans 

SRS30216 

K. radiotolerans Kr 

Lactococcus lactis 

DSMZ20481 
L. lactis Ll 

Mesoplasma florum 

L1 
M. florum Mf 

Mycobacterium 

Smegmatis MC2 155 
M. Smegmatis Ms 

Rhodobacter 

sphaeroides ATCC 

17025 

R. sphaeroides Rs 

Rugeria Pomeryoi 

DSS3 
R. Pomeryoi Rp 

Staphyloccus aureus 

ATCC 25923 
S. aureus Sa 

Staphyloccus 

epidermidis ATCC 

12228 

S. epidermidis Se 

Teredinibacter 

turnerae T7901 
T. turnerae Tt 

Vibrio fischeri ES114 V. fischeri Vf 

Table 3- Name, Abbreviation and 2 letter codes of bacterial organisms 

analyzed with CDMAP 
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mutation rates in comparison to the correlation coefficients of GC rich organism site-specific 

mutation rates. 
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Results 

 

Discussion Order of Results 

 

Given the breadth and depth of analysis conducted using CDMAP’s multi organism 

analysis pipeline, discussion of results will be structured in the following manner: First we will be 

looking at the one-to-many analysis of organisms with respect to their genomic NXN triplets, with 

respect to their primary chromosome and each replichore, where N represents neighbor nucleotides 

held constant, while X represents a nucleotide N mutating to another nucleotide. Next, we will 

discuss the analysis of genomic triplets NXN, and the influence of context mutation rate patterns 

given an upstream nucleotide Y, i.e. YNXN with respect each chromosome and replichore. Finally, 

in a similar manner we will discuss analysis of NXN genomic triplets, and the influence of context 

mutation rate patterns given a downstream nucleotide Y, i.e., NXNY. 
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Across a spectrum of prokaryotic organisms, do we see patterns in genomic triplets NXN 

corresponding to GC content % across organisms? 

 

 The first area of investigation we wanted to explore was to determine if patterns existed 

baseline with genomic NXN, where X is a point mutation occurring in a nucleotide triplet on a 

per-chromosome, per replichore basis. We first examined whether correlations of context mutation 

rate patterns would be influenced being on the forward 5’ to 3’ versus being on the reverse 3’ to 

5’ strand of replication. We found no evidence of asymmetry on a chromosome wide or replichore 

specific basis in context mutation rate pattern correlations. Additionally, there were no discernable 

differences in patterns between the left and right replichore on the forward 5’ to 3’ or reverse 3’ to 

5’ strand of replication for genomic NXN triplets. Correlations only appear to be diluted upon 

examination of NXN replichore. However, it should be noted that L. lactis maintains the strongest 

positively correlated mutation rates regardless of strand orientation or replichore. 

Figure 11 - One-to-Many Analysis of Bacterial organisms. Context dependent mutation rates for each organism were 

correlated using Pearson's product moment correlation with each cell representing an individual correlation. Each 

matrix from left to right represents: Left Replichore NXN triplet Correlation, Chromosome NXN correlation, Right 

Replichore NXN Correlation. 
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Next, we investigated the relationships among the most GC rich organisms and whether 

organisms exhibited any correlation in context mutation rate patterns. Generally speaking, 

organisms oriented on the GC rich end of the dataset exhibited no correlation to being moderately 

negative correlated context mutation rate patterns with one exception. In the case of C. crescentus, 

we found moderately strong correlations with both D. radiodurans (r = .4651, p = 0.000107) and 

R. pomeryoi (r = .4651, p = 0.000129). Upon examination of C. crescentus with respect to each 

organism, it appears the primary N[A]N nucleotide is the primary driver of mutational correlation 

between each organism. In the relationship C. crescentus to R. pomeryoi, the strongest 

relationships are driven particularly by T[A]T, T[A]G, and T[A]C context mutations, while the 

relationship between C. crescentus and D. radiodurans appears to be driven by A[A]C, C[A]C, 

G[A]C, and G[T]C context mutations. It is interesting to note that in both instances of mutational 

correlation, that we see unique anchoring nucleotides (a left neighbor nucleotide T in the former, 

and right C neighbor nucleotide in the latter) appearing to be the singular relationship between all 

highly mutable sites in each contextual dinucleotide scenario. 

After examination of GC rich organisms, we turned our attention to AT rich organisms, as 

the most AT rich organisms presented a pronounced set of correlations in context mutation rate 

patterns amongst each other. Each positively correlated AT rich organism correlation highlighted 

in blue from figure 11 exhibited a moderately to nearly strongly correlated Pearson’s r value, and 

was statistically significant as shown in table 5. 
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Figure 13 - Chromosome Site Specific Context Dependent mutation Rates of the Most AT 

rich Organisms within the CDMAP one- to many analysis. Mutation rates were scaled to 

1E-8 

Figure 12- Chromosome Context Dependent Mutation Rates in GC rich Organisms: site 

specific mutation rates for C. crescentus, D. radiodurans, and R.Pomeryoi. 
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AT-Rich Correlations    

Organism 1 Organism 2 Pearson's R P-Value 

L. lactis S. aureus 0.688433765 3.24E-10 

L. lactis M. florum 0.665113872 2.04E-09 

L. lactis S. epidermidis 0.588309108 3.18E-07 

M. florum S. epidermidis 0.56726887 1.02E-06 

S. Aureus S. epidermidis 0.453536056 0.0001674 

V. fischeri S. aureus 0.573151491 7.43E-07 

V. fischeri M. florum 0.44627313 0.0002189 

Table 4 – Pearson’s correlation coefficients and p-values for each positively correlated AT rich 

organism (chromosome) from Figure 11 above. 

Figure 14 - Genome Wide Triplet counts for all 64 NXN genomic triplets within the chromosome. 
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 Immediately upon inspection of the context dependent mutation rates of AT rich 

organisms in figure 13, it was evident the lion’s share of mutations occurred with respect to N[G]N 

and N[C]N, which was not wholly unexpected given the genomic AT content of these organisms. 

Interestingly enough, N[G]N and N[C]N context dependent mutation rates, and N[T]N and N[A]N 

appeared visually inverse from one another. The second majorly pronounced visual comparison 

was the relative activity of which may serve as the driver of correlation among each organism’s 

context mutation rates were the 4-fold amino acids Threonine (Thr) and Alanine (Ala), and the 6-

fold amino acid of Arginine (Arg). 

 For the 6-fold amino acid Arg, we found Arg genomic triplets to be highly mutable 3 of 

the 4 most AT-rich organisms as shown in figure 14. C[G]N sites, in particular C[G]C and C[G]G 

were found exhibiting the hottest areas of mutation for Arg while A[G]A maintained the lowest 

mutation rate for Arg sites. Meanwhile for 4-fold amino acids, Ala genomic triplets stood out the 

most among 4-fold amino acids, particularly for S. aureus. Further examinations showed G[C]N 

mutation rates were active amongst all AT rich organisms. In the instance of Thr genomic triplets 

we found A[C]A and A[C]G triplets to be the most mutationally active triplets, while A[C]T 

appeared to have the least mutable Thr Triplet. 
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 Across a spectrum of prokaryotic organisms, do we see downstream patterns in genomic 

triplets NXNY corresponding to GC content % across organisms? 
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Figure 15 - NXN[Y] CDMAP one-to-many downstream analysis of genomic triplets with respect to the chromosome 

and each replichore. Each Matrix represents the chromosomal or replichore-specific analysis of context dependent 

mutation rates of genomic NXN triplets with respect to a downstream nucleotide Y (indicated by the label on the 

matrix).  Each cell represents the Pearson's product moment correlation between the 64 context dependent rates of 

two Bacterial organisms similar to the genomic NXN correlation in Figure N. 
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When examining the downstream NXNY correlations of bacterial organisms, where Y 

represents a downstream nucleotide, followed a similar process to analysis in prior sections in 

terms of identifying relationships between organisms. In terms of potential asymmetry between 

the 5’ to 3’ forward strand and 3’ to 5’ reverse strand of replication, no asymmetry in correlations 

were found with respect to the chromosome or either replichore. Overall analysis of NXNY 

genomic triplet downstream overall yielded very sparse positively correlated context dependent 

mutation rates, and quite often yielded moderately negative correlations for most organisms when 

compared against the spectrum of other bacterial organisms with a few notable exceptions on the 

GC rich end of the spectrum. 

Upon inspection of downstream NXN[G] correlations in figure 15, we see three distinctly 

positive correlations in context dependent mutation rates among a sea of negatively correlated 

mutation rates: E. coli and R. pomeryoi, K. radiotolerans and C. crescentus and A. tumefaciens 

with M. smegmatis. For each relationship denoted on the downstream chromosome, we can easily 

track the strength of the correlation back to it’s given replichore in the following table: 

NXN[G] 

Positive 

Correlatio

ns        

Organism 

1 Organism 2 

Chr 

Pearson's 

R 

Chr 

P-

Valu

e 

Left 

Pearson's 

R  
Left P- 

Value 

Right 

Pearson's 

R 
Right P-

Value 

E. coli 
R. 

pomeryoi 
0.90455783

3 
1.23E

-24 0.93049213 
7.59E-

06 

-

0.07365986

2 
0.56295940

7 

C. 

crescentus 

K. 

radiotolera

ns 
0.93399839

3 
2.08E

-29 
0.82478671

2 
5.40E-

17 
0.93897666

9 1.97E-30 
A. 

tumefacien

s 
M. 

smegmatis 
0.81195319

2 
3.94E

-16 
0.81955012

4 
1.24E-

16 
0.72060455

1 1.90E-11 
Table 6- Table of NXNY Strongly correlated GC rich organisms. For each organism, the replichore specific and 

chromosome Pearson’s product moment correlation and p-value are listed, showcasing the contribution of each 

replichores context mutation rate patterns contribute to the corresponding chromosomal relationship. 
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 In table 6 we see the breakdown of each relationship with respect to the chromosome, and 

the individual replichore. We observe a unique scenario where each possibility driving context 

mutation rate patterns occurs: E. coli and R. pomeryoi is entirely driven by relationships occurring 

in the left replichore, A. tumefaciens and M. smegmatis’s contextual patterns being driven more 

so by the left replichore (though there is still a strong relationship in the right replichore) and K. 

radiotolerans and C. crescentus’s relationship strength nearly mirrors itself between replichores. 

The other peculiar behavior occurred in the most AT rich organisms, appearing to be 

sensitive to the downstream nucleotide Y that succeeds the genomic NXN triplet. For example, in 

the downstream chromosome NXN[A], L. lactis appears to preserve some degree of mutational 

relationship with other AT rich organisms, meanwhile if we change Y to NXN[T] not only does 

L. lactis’s relationships invert to a negative correlation, we also see the most AT rich organism, 

M. florum, ceases to share any relationship with the other most AT rich organisms. Despite the 

apparent sensitivity NXNY context mutation rate patterns, we are still able to discern the root 

replichore where those relationships originated, such as the correlation between S. aureus and L. 

lactis in NXN[A] appears to originate from the right replichore. Meanwhile when examining 

individual replichores, we see several correlations occurring with respect to specific nucleotides 

Y (NXN[A] – Right and NXN[T] - left) that appear to show correlations in context mutation rates, 

that appear to vanish when scaling up to their respective NXNY chromosome correlation. This 

negation may be explained by the strong dissimilarity in the opposing replichore that gives the 

appearance at the chromosome level that a given relationship exists. 
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Across a spectrum of prokaryotic organisms, do we see upstream patterns in genomic 

triplets YNXN corresponding to GC content % across organisms? 
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Figure 16 – [Y]NXN CDMAP one-to-many upstream analysis of genomic triplets with respect to the chromosome 

and each replichore. Each matrix represents the chromosomal or replichore-specific analysis of context dependent 

mutation rates of genomic NXN triplets with respect to an upstream nucleotide Y (indicated by the label on the 

matrix).  Each cell represents the Pearson's product moment correlation between the 64 context dependent rates of 

two Bacterial organisms similarly to the genomic NXN correlation in Figure 11.  
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Our final area of examination was to determine given an upstream nucleotide composition 

YNXN where Y is upstream nucleotide of a genomic triplet NXN. We conducted our analysis in 

a similar manner to prior sections in terms of how we approached chromosomes and replichores. 

Similarly, both the analysis of NXN and NXNY downstream correlations, we found no discernable 

difference in relationships of context dependent mutation rates between the 5’ to 3’ forward and 

the 3’ to 5’ reverse strands of replication both with respect to the chromosome and their 

corresponding replichores. However, as seen in figure 16 there are distinctly pronounced effects 

on correlations with respect to given chromosome and its corresponding replichores. 

To begin our dissection of the multitude of fluctuations of influence on YNXN genomic 

triplets, we decided to observe how Y influenced NXN genomic triplets on a chromosome wide 

level. When observing the [A]NXN triplets, for the most part with a few small, noteworthy 

relationships, we largely see patterns that align with base NXN genomic triplets. In terms of 

uniform patterns observed, we see that both C. psychrerythraea and B. subtilis exhibit moderate to 

strong negative correlations with most organisms. In terms of observed positive correlations of 

context dependent mutation rates we observe several interesting moderate to strong relationships 

as listed in table 7 below: 

  



 51 

 

The primary observations that seem to be prevalent is there appears to be a polarization 

effect occurring with the relationships of more “GC neutral” (meaning they are neither biased 

towards the middle, rather than the AT or GC rich end of the spectrum) begin to correlate with 

more AT rich organisms, such as A. tumefaciens and T. turnerae. In the case of A. tumefaciens 

showed a pronounced uptick in positively correlated context mutation rates between multiple AT 

rich organisms. While T. turnerae appeared to show increased patterns in context mutation rates 

towards both S. aureus and L. lactis, T. turnerae also showed an increase in context mutation rate 

patterns with D. radiodurans, which is more GC rich organism. In terms of shifts in context 

mutation rate patterns in NXN[A] GC rich organisms, we observed some rather interesting patterns 

of note. The first of which was a rather strong positive relationship in correlation between K. 

radiotolerans and C. crescentus (r = .72, p = 1.14E-11). Additionally, despite D. radiodurans being 

a more GC rich organism within the dataset, we observed increases in context mutation rate 

patterns with both L. lactis and V. fischeri, both of which are more oriented on the AT rich end of 

the organisms in the dataset. 

[A]NXN GC- Correlations    
Organism 1 Organism 2 Pearson's R P-Value 
A. Tumefaciens L. lactis 0.532215602 6.00E-06 
A. Tumefaciens M. florum 0.514329703 0.0086554 
A. Tumefaciens S. aureus 0.41436633 0.0006641 
C. crescentus K. radiotolerans 0.725943762 1.14E-11 
D. Radiodurans L. lactis 0.658014886 3.46E-09 
D. Radiodurans V. fischeri 0.437153993 0.000304 
E. coli R. pomeryoi 0.594550373 2.22E-07 
T. turnerae S. aureus 0.580021383 5.09E-07 
T. turnerae L. lactis 0.563767419 1.23E-06 
T. turnerae D. Radiodurans 0.444390678 0.0002345 
V. fischeri S. aureus 0.564494938 7.94E-06 
V. fischeri T. turnerae 0.476290152 6.94E-05 

Table 6 - Table of Pearson’s product moment correlations and p-value for [A]NXN correlations of context dependent 

mutation rates between organisms.  
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Next, we observed the influence of how an upstream C nucleotide influences context 

dependent mutation rates among bacterial organisms. The immediate takeaway is a moderate to 

strong polarization of patterns of context dependent mutation rates with respect to genomic GC 

content towards the most AT and GC rich organisms on both a chromosome wide and replichore 

specific level. In the table 8 below outlines sites exhibiting moderate to major correlations in 

context dependent mutation rate patterns: 
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When examining the one-to-many analysis of [C]NXN correlations, it appears that the 

dataset polarized down almost directly down the middle, and either favored in either correlating 

towards more AT rich organisms, or more GC rich organisms. In table 8 we can several patterns 

among context dependent mutation rate relationship polarization. In the case of AT rich Organisms 

when a C is aligned upstream of a given genomic Triplet, A. tumefaciens and B. Subtilis context 

mutation patterns have moderate to strongly correlated relationships with AT rich organisms. 

Though L. Lactis is an AT rich organism, when C is upstream, its context mutation patterns exhibit 

[C]NXN 

Correlations - Chromosome    

Organism 1 Organism 2 AT/GC/Neutral/Outlier Pearson's R P-Value 

A. Tumefaciens S. epidermidis AT 0.779065679 3.44E-14 
A. Tumefaciens L. lactis AT 0.757543934 4.32E-13 
A. Tumefaciens M. florum AT 0.644261427 9.25E-09 
B. cenocepacia R. sphaeroides GC 0.692866961 0.012968576 
B. cenocepacia C. crescentus GC 0.680125959 0.023297534 
B. Subtilis L. lactis AT 0.652491734 5.16E-09 

B. Subtilis 
C. 

psychrerythraea AT 0.649026876 6.61E-09 
C. crescentus R. sphaeroides GC 0.7966761 3.48E-15 
D. radiodurans K. radiotolerans GC 0.840575486 3.71E-18 
E. coli K. radiotolerans GC 0.764332054 2.00E-13 
E. coli D. radiodurans GC 0.715360029 3.10E-11 
E. coli R. pomeryoi Neutral 0.730406045 7.40E-12 
L. lactis S. epidermidis AT 0.919961737 6.66E-27 
L. lactis M. florum AT 0.674291464 1.01E-09 
R. pomeryoi K. radiotolerans GC 0.833370515 1.30E-17 
R. pomeryoi D. radiodurans GC 0.803273758 1.39E-15 
S. epidermidis M. florum AT 0.652155216 5.29E-09 
T. turnerae L. lactis AT 0.641824553 1.10E-08 
T. turnerae V. fischeri AT 0.596759352 1.95E-07 
T. turnerae S. aureus AT 0.577533575 5.84E-07 
T. turnerae D. radiodurans GC 0.618045278 5.29E-08 
T. turnerae R. sphaeroides GC 0.58207357 4.54E-07 
T. turnerae B. subtilis Neutral 0.572509326 7.70E-07 

Table 7 - Table of Pearson’s product moment correlations and p-value for [C]NXN correlations of context dependent 

mutation rates between organisms. Organisms are categorized with respect to polarizing to the AT rich, GC rich, 

Neutral (meaning it correlated neither with an AT rich or GC rich oriented organism), or Outlier (meaning an AT 

rich organism correlated with a GC rich organism). 
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moderate to strongly correlated relationships with other AT rich organisms. In the case of GC rich 

organisms, when a C is aligned upstream of a genomic triplet, Both B. cenocepacia and E. coli’s 

mutation rate patterns appear to gravitate towards more GC rich organisms. Meanwhile, GC rich 

organisms such as R. pomeryoi, C. crescentus and D. Radiodurans context mutation patterns 

demonstrate an increasingly correlated relationship with other GC rich organisms.  

Upon further analysis of [C]NXN with respect to each individual replichore, we found even 

more profound intensifications of the previously mentioned polarization effect. When examining 

GC rich organisms, we see apparent and pronounced intensifications of relationships for the GC 

rich end of the spectrum in both replichores. In the Right replichore, with the sole exception of M. 

smegmatis, exhibit strongly correlated patterns in all of the most GC rich organisms, and this 

intensification can even be seen in more GC neutral organisms such as A. tumefaciens, and T. 

turnerae. Meanwhile in the Left replichore, there is an apparent, albeit less uniform intensification 

of patterns in context mutation rates in GC rich organisms. It appears the polarization effect of E. 

coli to more GC rich organisms appears to originate exclusively from the left replichore given its 

lack of correlation to other GC rich organisms in the right replichore. It is interesting to note that 

while E. coli exhibits a strong positive correlation with M. smegmatis in the right replichore, and 

a moderately positive correlation in the left replichore, any semblance of a positive correlation 

vanishes at the chromosome level.  

On the other end of the Spectrum with AT rich organisms, we found that correlations 

among the most AT rich organisms followed similar patterns, albeit with minor differences in L. 

lactis’s relationships. upon examination of each given replichore and chromosome, [C]NXN 

mutation rates of L. lactis and S. epidermidis are strongly correlated with respect to both the 

chromosome and individual replichores. Meanwhile with respect to L. lactis and S. aureus, we see 
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a dilution effect, where in the left replichore we observe a weak to moderate correlation, but when 

paired with the right replichore (which exhibits no correlation between them) we see any  

relationship between said organisms on a chromosome level. 

 

[G]NXN 

Chromosome     

Organism 1 Organism 2 AT/GC/Neutral/Outlier Pearson's R P-Value 

A. tumefaciens S. epidermidis AT 0.614891967 6.46E-08 
A. tumefaciens L. lactis AT 0.660624581 2.85E-09 
A. tumefaciens M. smegmatis GC 0.637223046 1.50E-08 
A. tumefaciens T. turnerae Neutral 0.700255204 1.19E-10 

B. cenocepacia M. smegmatis GC 0.61559293 6.18E-08 
B. cenocepacia E. coli Neutral 0.628944582 1.98E-07 
B. cenocepacia T. turnerae Neutral 0.705606837 7.48E-11 
B. subtilis M. smegmatis GC 0.653535587 4.79E-09 
C. 

psychrerythraea S. aureus AT 0.709577112 5.25E-11 
D. radiodurans M. smegmatis GC 0.684374083 4.52E-10 

E. coli 
C. 

psychrerythraea AT 0.645139557 8.70E-09 
E. coli S. aureus AT 0.723137027 1.50E-11 

E. coli C. crescentus GC 0.613479774 1.27E-09 

E. coli M. smegmatis GC 0.676568197 4.73E-10 

E. coli B. subtilis Neutral 0.647399307 7.42E-09 
K. radiotolerans L. lactis Outlier 0.723901113 1.39E-11 
L. lactis S. aureus AT 0.617924758 5.33E-08 
L. lactis S. epidermidis AT 0.62310525 3.83E-08 

R. pomeryoi C. crescentus GC 0.625546599 3.27E-08 
R. pomeryoi B. subtilis Neutral 0.618021106 5.30E-08 
R. sphaeroides L. lactis Outlier 0.796109118 3.76E-15 
S. aureus S. epidermidis AT 0.75079876 9.05E-13 

S. aureus M. smegmatis Outlier 0.779366923 3.31E-14 
S. epidermidis M. smegmatis Outlier 0.809587866 5.59E-16 
T. turnerae V. fischeri AT 0.613144792 7.21E-08 
T. turnerae L. lactis AT 0.632602701 2.05E-08 

T. turnerae S. epidermidis AT 0.760604533 3.06E-13 
T. turnerae S. aureus AT 0.789052715 9.63E-15 
T. turnerae D. radiodurans GC 0.612920411 7.31E-08 
T. turnerae M. smegmatis GC 0.844754493 1.74E-18 

T. turnerae B. subtilis Neutral 0.724117512 1.36E-11 
T. turnerae E. coli Neutral 0.798571453 1.13E-06 
V. fischeri S. aureus AT 0.64573657 8.34E-09 
V. fischeri L. lactis AT 0.668662124 1.56E-09 

Table 8 - Table of Pearson’s product moment correlations and p-value for [G]NXN correlations of context dependent 

mutation rates between organisms. Organisms are categorized with respect to polarizing to the AT rich, GC rich, 

Neutral (meaning it correlated neither with an AT rich or GC rich oriented organism), or Outlier (meaning an AT rich 

organism correlated with a GC rich organism). 
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When we shift gears and examine [G]NXN upstream nucleotide triplets, we similarly see 

a general trend of increased mutational relationships with GC neutral organisms orienting towards 

either GC rich or AT rich organisms. However, we see the introduction of outliers on both the GC 

and AT rich end of the spectrum in the form of L. lactis and M. smegmatis both generating strongly 

correlated statistically significant relationships with multiple organisms opposite of their position 

on the genomic GC content spectrum (as shown in table 9).  

 On the chromosome level we can see patterns in context dependent mutation rates aligning 

with specific AT and GC rich organisms. The majority of strongly correlated, significant, GC rich 

[G]NXN context mutation rate patterns seemed to anchor themselves to M. smegmatis, while AT 

rich [G]NXN context patterns seem to be distributed between L. lactis, S. aureus, and S. 

epidermidis. When looking at how GC neutral organisms oriented themselves with respect to GC 

and AT rich organisms, A. Tumefaciens and T. turnerae context mutation rate patterns appeared 

biased towards AT rich organisms, while E. coli appeared to balance itself between both AT and 

GC rich organisms. However, it should be noted that all 3 GC neutral organisms did exhibit 

patterns across the genomic GC content spectrum.   

After chromosomal analysis, we dissected context dependent mutation rate patterns on a 

per replichore basis and found a distinct discretization effect existing on each replichores. When 

we analyze patterns on the right replichore, on a surface level we clearly see strong patterns of 

context dependent mutation rates across the board irrespective of GC content, however we see 

several distinct patterns emerge. First off, AT rich organisms clearly, are exhibiting strong positive 

correlations across the board irrespective of GC content. The second clear relationship we see is 

that GC neutral organisms are exhibiting moderate to strong correlations with other GC neutral 

organisms. Finally, and most interestingly, we see GC rich organisms seem to have correlations 
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amongst other GC rich organisms, but in a much sparser density than AT rich or GC neutral 

organisms.  

When we turn our analysis to the left replichore we appear to observe a nearly full inversion 

of context mutation rate patterns. Where we previously saw sparsely populated patterns of context 

mutation rates, we now see patterns reminiscent of [C]NXN GC rich correlations, albeit to a 

slightly less intense degree. When observing GC neutral organisms, we see for the most part 

similar patterns of context dependent mutation, albeit slightly less intense than observed in the 

right replichore. Most interestingly we find [G]NXN context dependent mutation rates of AT right 

organisms which were strongly correlated in the right replichore experience little to no positively 

correlated mutation rates in the left replichore. Most interestingly when referenced back to the 

chromosome level context mutation rate patterns, the only patterns that remain visible are among 

the GC neutral organisms, while the replichore specific AT rich mutation rate patterns appear to 

be greatly reduced in strength, while GC rich mutations are diluted to the point of no longer 

showing any visible signs on a chromosome wide level. 
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[T]NXN 

Correlations     
Organism 1 Organism 2 AT/GC/Outlier Pearson's R P-Value 
A. tumefaciens S. epidermidis AT 0.679523957 6.68E-10 

A. tumefaciens S. aureus AT 0.729180612 8.35E-12 

A. tumefaciens L. lactis AT 0.660891466 2.80E-09 

A. tumefaciens V. fischeri AT 0.589230149 3.02E-07 

A. tumefaciens R. sphaeroides GC 0.617858707 5.36E-08 

A. tumefaciens M. smegmatis GC 0.668753093 1.55E-09 

B. cenocepacia R. sphaeroides GC 0.666277934 1.87E-09 

B. cenocepacia A. tumefaciens GC 0.666246452 1.87E-09 

B. cenocepacia S. epidermidis Outlier 0.634635352 1.79E-08 

B. cenocepacia S. aureus Outlier 0.739866997 2.86E-12 

B. cenocepacia L. lactis Outlier 0.75919044 3.59E-13 

C. crescentus R. pomeryoi GC 0.587395287 3.36E-07 

C. crescentus B. cenocepacia GC 0.752495537 7.53E-13 

C. crescentus S. epidermidis Outlier 0.602885024 1.35E-07 

C. crescentus S. aureus Outlier 0.622159933 4.07E-08 

C. crescentus L. lactis Outlier 0.615346776 6.28E-08 

D. radiodurans T. turnerae GC 0.610708545 8.38E-08 

D. radiodurans S. aureus Outlier 0.669038842 1.51E-09 

D. radiodurans L. lactis Outlier 0.687266727 3.57E-10 

E. coli S. epidermidis AT 0.592618877 7.89E-08 

L. lactis S. epidermidis AT 0.68851052 3.22E-10 

L. lactis S. aureus AT 0.871679248 7.21E-21 

L. lactis 

K. 

radiotolerans Outlier 0.764955745 1.86E-13 

L. lactis M. smegmatis Outlier 0.621225717 4.32E-08 

R. pomeryoi E. coli GC 0.735046865 1.24E-16 

R. pomeryoi S. epidermidis Outlier 0.582086351 4.53E-07 

S. aureus 

K. 

radiotolerans Outlier 0.607750299 1.01E-07 

S. aureus R. sphaeroides Outlier 0.62239791 4.01E-08 

S. aureus M. smegmatis Outlier 0.59342886 2.37E-07 

S. epidermidis S. aureus AT 0.7857174 1.48E-14 

S. epidermidis M. florum AT 0.611014624 8.23E-08 

S. epidermidis R. sphaeroides Outlier 0.634229251 1.84E-08 

T. turnerae M. florum AT 0.599564079 1.65E-07 

T. turnerae S. epidermidis AT 0.630781196 2.31E-08 

T. turnerae S. aureus AT 0.707306238 6.43E-11 

T. turnerae L. lactis AT 0.771998105 8.13E-14 

T. turnerae 

K. 

radiotolerans GC 0.660565957 2.86E-09 

T. turnerae M. smegmatis GC 0.745283206 1.63E-12 

V. fischeri S. epidermidis AT 0.72652052 1.08E-11 

V. fischeri S. aureus AT 0.733892369 5.24E-12 

V. fischeri L. lactis AT 0.602554427 1.38E-07 

V. fischeri R. sphaeroides Outlier 0.653175518 4.92E-09 
Table 9 - Table of Pearson’s product moment correlations and p-value for [T]NXN correlations of context 

dependent mutation rates between organisms. Organisms are categorized with respect to polarizing to the AT 

rich, GC rich, Neutral (meaning it correlated neither with an AT rich or GC rich oriented organism), or 

Outlier (meaning an AT rich organism correlated with a GC rich organism). 
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Our final upstream effect analyzed was the influence of T upstream nucleotides on [T]NXN 

triplets with respect to the chromosome and each corresponding replichore. We see a clear pattern 

of context mutation rates among organisms across the spectrum of Genomic GC content to polarize 

towards the AT rich end of the spectrum, specifically with respect to L. lactis, S. aureus, and S. 

epidermidis. Among these three organisms, all organisms exhibit a moderate to strongly correlated 

pattern of context mutation rates, except for B. subtilis and C. psychrerythraea with one or more 

these AT rich organisms. Among GC neutral organisms, we saw nearly all of their context 

dependent mutation rate patterns bias towards AT rich organisms, with the exception of B. subtilis, 

which exhibited no strong correlations across the [T]NXN organism dataset as shown in table 11: 

 

 

 

 

 

 

 

 

It is interesting to note that though S. aureus, S. epidermidis, and L. lactis exhibited increased 

patterns of context mutation rates, also at the same time appeared to demonstrate a diminished 

strength in patterns of context mutation rates with most AT rich organism in the dataset, M. florum.  

 When we further compartmentalize our analysis with respect to the individual replichores, 

we see more discretized patterns in mutation rates between organisms. Starting with the Left 

replichore, we see the concentration between more GC rich organisms largely concentrated here. 

We see strong positive correlations between K radiotolerans and C. crescentus, D. radiodurans, 

and B. cenocepacia, along with strong positive correlations between the latter three amongst each 

other. Also, towards the GC end of the spectrum, we see that R. pomeryoi exhibits strong negative 

correlations with both B. cenocepacia, and D. radiodurans. Meanwhile if we shift our focus 

Organism # of GC biased rate patterns # of AT biased rate patterns 
A. tumefaciens 2 4 
B. subtilis 0 0 
E. coli 1 1 
R. pomeryoi 0 2 
T. turnerae 2 4 

Table 10 - [T]NXN frequency of GC neutral organisms correlating with a more AT rich or GC rich organism 
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towards the AT rich end of the left replichore, we see a strongly positive correlated amongst the 

most AT rich organisms, particularly in the case of L. lactis with other AT rich organisms. While 

we also see AT rich organisms correlating across the GC content spectrum in the left replichore, 

it appears to be more interspersed than the uniform behavior observed in the right replichore. 

 When we shift our focus to the right replichore, we see marked similarity and differences 

to between the corresponding left replichore. In terms of the most AT rich organisms, we still see 

multiple strong positive correlations in context mutation rates amongst them, albeit not quite as 

uniform with L. lactis. However, what we do see is increase patterns of context mutation rates 

amongst both GC neutral and AT biased organisms. When observing patterns of mutation rates 

amongst GC neutral organisms, we see that the only positively correlated context mutation rate 

pattern appears to be E. coli with R. pomeryoi (though this relationship appears to exist on both 

replichores). When analyzing the GC Rich end of organisms, the only strongly positive correlated 

pattern of mutation rates existed between R. sphaeroides and B. cenocepacia, while other patterns 

between mutation rates on seen on the left were did not appear to carry over to the right replichore. 

The most interesting observation however appeared to be with K. radiotolerans exhibiting near 

uniformly strong negative correlations in patterns of context dependent mutation rates with both 

GC rich organisms and GC neutral organisms except for M. smegmatis, which had no correlation, 

and T. turnerae, which exhibited a moderately correlated positive relationship. 
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Discussion 

GC & AT Rich Genomic NXN Triplets 

For the correlation in mutation rates among GC rich organisms, one possible explanation for 

this relationship could be explained due to the fact of the environmental diversity that C. crescentus 

can be found in. Given both C. crescentus and R. pomeryoi may can both be found in sea water 

environments may explain their relationship in mutational patterns(51, 52). Meanwhile given D. 

radiodurans extremophile adaptations for surviving Ionizing radiation may have some overlap with 

C. crescentus’s oligotrophic adaptations in nutritionally limited environments (51, 53). 

Additionally, there were no discernable differences in patterns between the left and right replichore 

on the forward 5’ to 3’ or reverse 3’ to 5’ strand of replication for genomic NXN triplets. 

Correlations only appear to be diluted upon examination of NXN replichore. However, it should 

be noted that L. lactis maintains the strongest positively correlated mutation rates regardless of 

strand orientation or replichore. 

For the correlation in mutation rates amongst AT rich organisms, we found pronounced activity 

in Arg, Ala, and Thr amino acids. In Arg, we found that, C[G]X triplets, in particular C[G]C and 

C[G]G exhibited some of the highest context dependent mutation rates among Arg genomic 

triplets. Upon comparison of Mutation rates to GWTC, we found that in general, C[G]C and C[G]G 

triplets were the least encoded triplets, meanwhile A[G]A was found to be the most highly encoded 

NXN Arg triplet, which also corresponded with the lowest mutation rate among Arg sites. One 

may argue based on this interpretation that C[G]X Arg triplets are not favored for encoding 

genomic Arg amino acids in favor of the less mutable A[G]A triplet in AT rich organisms. 

In 4-fold amino acid sites, Threonine exhibited highly mutable A[C]A and A[C]G triplets, 

however held some interesting insights when comparing A[C]X genomic triplet usage. When 
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comparing context mutation rates and GWTC between AT rich organisms, despite A[C]A being 

highly mutable, it was also highly encoded for as a Thr triplet. Meanwhile in the case of the other 

highly mutable triplet A[C]G, was found to have the lowest genomic triplet usage of A[C]X sites 

on average. In a similar manner to Threonine, when examining Alanine, we found G[C]A and 

G[C]G to be the most highly mutable G[C]X triplets. Upon an identical method of comparison 

used in Thr, we found despite G[C]A being highly mutable, it was one of the most highly encoded 

Ala NXN genomic triplets, and similarly G[C]G was the lowest encoded NXN genomic Ala triplet 

on average. Based on these observations, one may infer the following: “In a AT rich organism 

given the option to encode a given purine A or G to express a genomic Thr or Ala amino acid AT 

rich organisms appear to prefer to encode using an A purine for a right neighbor nucleotide.” 

 

NXNY Downstream Triplets 

After examining NXN genomic triplets, we wanted to examine the contribution of upstream 

and downstream effects a nucleotide Y would influence patterns of context mutation rates between 

prokaryotic organisms across the genomic GC spectrum. Generally, we found sparse positively 

correlated relationships amongst organisms with a few notable exceptions. When looking at GC 

rich organisms, we found 3 distinctly strong relationships between K. radiotolerans and C. 

crescentus, A. tumefaciens and M. smegmatis, and E. coli and R. pomeryoi. For each of these 

relationships, we saw both symmetric and asymmetric contributions for the left and right 

replichore responsible for influencing the relationship between their patterns of context dependent 

mutation rates. When turning our attention to AT rich organisms, we found noticeable sensitivity 

to the downstream Y nucleotide among AT rich organisms. We observed that by simply changing 

which nucleotide Y sat downstream positively correlated mutation rates would invert negatively 
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or even vanish entirely. When retracing patterns from the chromosome level to the individual 

replichores, we saw that though on some NXNY replichores positively correlated relationships 

may exist, the corresponding replichore paired with it may exhibit an equal or stronger negative 

relationship, thereby negating any trace of a positive relationship at the chromosome level. 

 

Downstream YNXN Triplets 

 The final portion of the analysis we investigated the influence of a given upstream 

nucleotide Y on genomic NXN triplets with respect to the individual chromosome and its 

corresponding replichores. The general trend we found with YNXN genomic triplets was a 

polarization in patterns of context dependent mutation rates biased towards more AT or GC rich 

organisms, and these patterns were observed in varying and degrees of intensity with respect to a 

given nucleotide Y with respect to the chromosome and the replichore. On a chromosome wide 

level, we found that if Y is a G or C upstream nucleotide, we observed that patterns of context 

dependent mutation rates between organisms will polarize towards AT/GC rich organisms, where 

A. tumefaciens and B. subtilis tend to exhibit correlations towards AT rich organisms more often, 

and T. turnerae and E. coli tend to correlate more frequently with GC rich organisms. Meanwhile, 

if T is an upstream nucleotide, organisms across the genomic GC content range tend to exhibit 

increased positive correlations in context dependent mutation rate patterns with AT rich organisms, 

specifically with respect to L. lactis, S. epidermidis, and S. aureus. Moreover, we can infer a pattern 

of replichore specific bias in relationships of context dependent mutation rates between organisms. 

Patterns biasing towards GC rich organisms appear to generally prefer the composition of CNXN 

for each replichore, but in in other YNXN configurations tend to favor the left replichore. 
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Meanwhile patterns biasing towards AT rich organisms appear to favor TNXN generally, but for 

other YNXN configurations bias tend to favor the right replichore. 

When analyzing YNXN patterns with respect to the individual replichores, The ANXN 

upstream nucleotide context mutation rates appeared to exhibit minimal influence overall with 

respect to both the right and left replichore. When observing CNXN upstream context mutation 

rates with respect to the left and right, we see that patterns are more biased towards GC rich 

organisms on both the left and right replichore, with the right replichore showing particularly 

pronounced strong positive correlations amongst the most GC rich organisms. Meanwhile patterns 

biased with respect to AT rich organisms appears to be mor evenly distributed between each 

replichore. GNXN upstream context dependent mutation rates show a bias in patterns of context 

mutation rates in more GC rich organisms, while the right replichore tended to favor increased 

patterns in context mutation rates among AT rich organisms. GNXN GC neutral patterns of context 

mutation rates appeared to be for the most part replichore agnostic. Finally, in the case of TNXN 

upstream context mutation rates, more concentrated for AT and GC biased context mutation rate 

patterns were exhibited in the left replichore, while in the right replichore we saw correlations 

biasing AT rich organisms more broadly across the genomic GC spectrum, while we saw a 

noticeable diminish in GC rich biased patterns, and even a trend towards negatively correlated 

context mutation rate patterns across the genomic GC spectrum with K. radiotolerans. 
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Chapter 4: Analysis of Synonymous Codon Triplet Usage and Mutation Rate Relationships 

Across a Diverse Array of Bacterium 

 

Introduction 

The final major area of analysis we decided to explore was designed to be an extension of 

our work in aim 2. In the previous chapter, we discovered pronounced and distinct patterns 

between the relationships of genomic NXN triplets and mutation rates. These patterns were found 

to have sensitivity with respect to the strand of replication encoded upon, concentration of genomic 

GC content, and spatially with respect to a given replichore. We wanted to further expand our 

analysis to the subclass of genomic triplets responsible for synonymous codon usage in four-fold 

degenerate amino acids. We are specifically interested in four-fold degenerate codon usage sites, 

due to the fact the third nucleotide position in a codon triplet regardless of nucleotide will still 

encode the same amino acid (30). Ideally, the properties should extend to this class of triplets as 

well, however we cannot assume this to be the case. 

 In this chapter, we will take a similar systematic approach to analyzing, dissecting and 

interpretation of the potential observed patterns in codon usage and mutation rate.  First off, we 

will need to determine if any pattern between codon usage and mutation rates exists, irrespective 

of any prior parameters at the most surface level. Next, we will delve further by looking at similar 

parameters previously affecting genomic triplet usage, like GC content and the native strand of 

replication a codon is observed on. If these patterns or other novel patterns corresponding to 

nucleotide composition in gene coding regions exist, they may exhibit similarly pronounced and 

distinct relationships affecting synonymous codon usage in an organism relative to the context 

dependent mutation rate for a given triplet. These patterns may have consequential effects from a 

biological perspective, i.e., an organism utilizing a specific 4-fold amino acid triplet with a higher 



 66 

mutation rate may gain the genomic instability needed relative to its given neighbor nucleotides to 

induce a nonsynonymous mutation in subsequent generations to gain new adaptations affecting 

the overall fitness of the organism (such as a new mechanism for pathogenicity, or antibiotic 

resistance in bacterial prokaryotes). Based on our prior observations seen in Aim 2 with mutation 

rates and genomic triplets, we hypothesize that organisms ideally have an inverse relationship with 

their synonymous codon usage relative to their mutation rate, i.e., the higher observed count of a 

given synonymous codon triplet, its corresponding context dependent mutation rate will decrease. 

 

Methods 

Required Input and Tools 

To conduct the requisite analysis needed in this chapter, a few required files, packages and 

software were necessary to accomplish this task. The input files needed are all generated from 

CDMAP’s Single Organism Analysis (SOA) pipeline, which with minimal concatenation 

processing of the files can accomplish our analyses. The resulting concatenated input table 

contains the relevant codon usage, mutation rate, and genomic triplet information for ease of 

visualization and downstream analysis. To establish whether if any relationship exists between 

codon usage exists between codon usage and mutation rates, we will accomplish this using 

Pearson’s product moment correlation. We will assume that codon usage is independent of each 

other and will analyze each organism with respect to all four-fold degenerate amino acid sites on 

both the forward and reverse strand of replication, then similarly we will conduct this analysis in 

the same manner with respect to each four-fold degenerate amino acid. This will be conducted 

using stripped down versions of the CDMAP Multi-Organism Analysis (MOA) pipeline to 

streamline calculation relative to the number of sites. 



 67 

For the next part of our analysis, we will determine if synonymous codon usage exhibits a 

dependent relationship to mutation rate, and the factors that contribute to how sensitive the 

dependency between usage and rates are affected if they exist via regression analysis. Similarly, 

like above and in aim 2, we will first examine all four-fold degenerate codon triplets among all 

organisms exhibits a relationship with respect to the forward or reverse strand of replication. Next, 

we will subdivide our analysis to 4-fold synonymous codon triplets with respect to the native strand 

of replication to determine if patterns are influenced by GC content, and if those patterns vary 

based on the strand of replication. We opted to visualize these regressions easily within the Tableau 

data visualization software, however there are any number of other software packages easily 

capable of accomplishing this task. 
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Analysis Methodology 

To analyze patterns of codon usage in our diverse bacterial dataset, we had to determine 

the best approach that provides a uniform analytical treatment. At the most surface level when 

analyzing with respect to the chromosome, we realized that unlike analysis of NXN genomic 

triplets, directionality must be considered when we analyze synonymous codon usage. As outlined 

in table 12 we can clearly see that translation of a set codon triplets for an amino acid do not 

translate one-to-one between strands of replication. 

In the case of amino 

acid encoding, no four-fold 

degenerate set of codon 

triplets encoding a given 

amino acid on the 5’-NNN-3’ 

forward strand will encode 

the same amino acid. 

Meanwhile, even translation 

of a set of codon triplets 

rarely yields the 

complementary set will all 

translate into the same class 

of fold degenerate codon 

triplets. Ergo, to preserve as 

much biological information 

as possible, we opted to 

Table 11- 4-fold degenerate codon triplets in their 5-NNN-3' configuration, and 

their respective 3'-NNN-5' codon triplet on the reverse strand of replication, 

along with the respective amino acid and fold change 

Amino Acid 5'-NNN-3' 3'-NNN-5' Fold/AA Change 

Valine GTA TAC 2 fold - Tyr 

  GTC GAC 2 fold - Asp 

  GTG CAC 2 fold - His 

  GTT AAC 2 fold - Asn 

Threonine ACA TGT 2 fold - Cys 

  ACC GGT 4 fold - Gly 

  ACG CGT 4 fold - Arg 

  ACT AGT 6 fold- Ser 

Alanine GCA TGA 3 fold- STOP 

  GCC GGC 4 fold - Gly 

  GCG CGC 4 fold - Arg 

  GCT AGC 6 fold - Ser 

Glycine GGA TCC 6 fold - Ser 

  GGC GCC 4 fold - Ala 

  GGG CCC 4 fold - Pro 

  GGT ACC 4 fold - Thr 

Arginine CGA TCG 4 fold - Ser 

  CGC GCG 4 fold - Ala 

  CGG CCG 4 fold - Pro 

  CGT ACG 4 fold - Pro 
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separate codon usage with respect to their native strand of replication. Given the potential loss of 

information that could be introduced by attempting to translate codon usage between strands of 

replication, we opted at least for the scope of the dissertation to analyze synonymous codon 

mutation rates with respect to the chromosome, and each native strand of replication we identified 

gene coding regions.  

For regression analysis, concatenated output files generated from CDMAP and were 

uploaded into the tableau environment. Log-log plots were then generated for each set of codon 

triplets that encode each 4-fold degenerate amino acid and the associated regression and p-value 

Figure 17 - Simplified Workflow diagram of CDMAP downstream analysis. Steps outlined in green were 

automated downstream analysis steps outlined and discussed in Aim 2. Downstream analysis carried out in Aim 

3 was carried out utilizing output and methods outlined in pink. 
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was generated for both the forward and reverse strand of replication. Based on evidence in genomic 

NXN triplets, we condensed our scope of analysis to the most AT and GC rich organisms.  

 

Results 

Discussion Order of Results 

 As we alluded to in the prior sections, we shall be approaching our results in the following 

manner: First, we shall analyze whether any relationship between codon usage and mutation rate 

exists, independent of each other, then analyze the strand of replication’s contribution to the 

sensitivity of these effects. Next, we shall determine whether codon usage exhibits a dependency 

on mutation rate for their relationship, and whether other independent factors such as replication 

strand, and genomic GC content effect the sensitivity of this relationship. 

 

Do four-fold degenerate amino acids exhibit a relationship between codon usage and 

mutation rate and the factors effecting the strength of their relationship? 

 

 

Table 12 – Pearson’s product moment correlation of each organism with respect to the 5’ to 3’ forward (+) strand of 

replication and the 3’ to 5’ reverse (-) strand of replication. Each entry in the table is colored whether we observe a 

positively correlated (yellow) or negatively correlated (red) relationship between codon usage and mutation rate. For 

each observed positive or negatively correlated relationship, statistically significant (p < 0.05) relationships are 

highlighted in green. 
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 We wanted to determine first if any relationship between codon usage and mutation rate 

existed on one or both strands of replication with respect to all four-fold degenerate codon triplets. 

Immediately, we saw most organisms exhibited some form of correlation between codon usage 

and mutation rate. The exceptions to this were L. lactis, M. florum, R. sphaeroides, and B. subtilis 

on either strand of replication. The next interesting observation we found was though we observed 

an abundance of organisms that though they demonstrated weak to moderately strong correlations, 

we found that most either exhibit basically no statistical significance (such as the case of C. 

crescentus (+) and B. subtilis (-) or were borderline not statistically significant (as in the case of S. 

aureus and S. epidermidis on both strands of replication). Of the 24 sites exhibiting some form of 

positively or negatively correlated relationship between their codon usage and mutation rates in 

our dataset of organisms, only 11 (45%) of those sites on either strand of replication were shown 

to be statistically significant.  

 Of the 11 Statistically significant correlated sites, 6 (54%) of them belong to organisms 

that are more biased GC rich end of the spectrum. Of those sites, just over half of GC biased 

organisms exhibited a moderate to a moderately strong, statistically significant inverse relationship 

between their codon usage and mutation rate. Meanwhile, we notice that both T. turnerae and M. 

smegmatis, organisms that favor more GC rich genomes, are the only organisms that exhibit a 

positive correlation on not only one, but both strands of replication within the entire dataset. For 

each strand of replication, we notice that they exhibit a moderate positively correlated relationship 

their usage and rates, except for M. smegmatis (-), which also corresponded to a non-statistically 

significant correlation. These datapoints lead us to the viewpoint that there is a demonstrable 

relationship occurring between codon usage and mutation rate, and in GC biased organisms, appear 
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to share moderately correlated relationships, while AT rich organisms on average appear to more 

uncommonly share a relationship under the assumption that their usage and rates are independent 

of one another. 

 Next, we decided to peer deeper and see if we could tease out the source of these rather 

strong correlations and the contribution each amino acid was playing for each organism as shown 

in table 13. 

When dissecting each organism’s relationship with respect to the individual amino acid 

relative to their native replication strand, we observe several interesting patterns. The first 

immediate observation is that in the forward strand of replication, only two individual amino acids 

Table 13 – Pearson’s product moment correlation of each organism with respect to each four-fold degenerate amino acid. 

Each organism specific four-fold degenerate site was separated into their respective 5’ to 3’ forward (+) strand of replication 

and the 3’ to 5’ reverse (-) strand of replication. Each entry in the table is colored whether we observe a positively correlated 

(yellow) or negatively correlated (red) relationship between codon usage and mutation rate. For each observed positive or 

negatively correlated relationship, statistically significant (p < 0.05) relationships are highlighted in green. 
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among all organisms (R. Pomeryoi – Alanine, and S. epidermidis – Valine) exhibited statistically 

significant direct correlations, due in part to both having a Pearson’s r > 0.95. After combing over 

the regression analysis, we wanted to delve into potential patterns occurring on between four-fold 

degenerate codon usage and mutation rates on a per amino acid basis, to discern any deeper level 

of insight into pre-existing patterns observed. We decided to correlate codon triplet usage and site-

specific mutation rates on a per amino acid basis for all four-fold degenerate organisms within our 

database using Pearson’s product moment correlation. In table 14 we find very interesting case, 

where in the other previously statistically significant organisms on the forward strand of replication 

do not exhibit an individual relationship between codon usage and mutation rate that is statistically 

significant. However, what is prevalent amongst them all are amino acids on their respective 

forward strand of replication are polarized either in the direct or inversely related relationships that 

are moderate or strongly correlated, rarely exhibiting no correlation.  

 Meanwhile, on the reverse strand of replication, though we see the largely ubiquitous 

correlation between mutation rate and codon usage like in the forward strand, we see a larger 

smattering of those sites observed to be statistically significant.  Of the 6 statistically significant 

correlations in usage and rates, we found that two-thirds of these relationships belonged to GC rich 

organisms, while the other two sites were contained within one AT rich organism (S. epidermidis, 

Proline and Valine). Like the forward strand, we also see all statistically significant sites harboring 

a Pearson’s r > 0.95, while the remainder of non-statistically significant correlations exhibited a 

similar behavior of moderate to strongly correlated relationships skewed either directly or 

inversely.  Given the observations with respect to each strand of replication and individual amino 

acid, there appears to be evidence supporting a clear relationship between codon usage, however 

it appears they are merely not independent of each other. Therefore, we find it necessary to 
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investigate the relationship between codon usage and mutation rate where codon usage is 

dependent upon the site-specific context mutation rates and vice versa for a given organism. 
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For four-fold degenerate amino acids, do we see a dependent relationship of codon usage 

given its context dependent mutation rate with respect to a given strand of replication? 

 

 

 

 

 

 

  

  

    
(+) Regression 

Coefficient (+) P-Value (-) Regression Coefficient (-) P-Value 

0.232326 < 0.0001 0.166383 < 0.0001 

Table 15 - Regression Coefficients and statistical significance of all four-fold codon triplet families with respect 

to the forward (+) and reverse (-) strand of replication. 

Figure 18 – Linear regression of All organism four-fold degenerate codon triplets among all 

organisms within the Bacterial dataset analyzed by CDMAP. Each relationship between codon usage 

and mutation rate on the forward (+) strand of replication (left figure) and the reverse (-) strand of 

replication (right figure). 
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After our initial investigation of any relationship between codon usage and mutation rates 

as factors independent of each other, we saw evidence pointing towards a relationship on a per 

organism, per individual synonymous four-fold amino acid basis. In the following sections, we are 

investigating whether codon triplet usage for four-fold degenerate sites harbors a dependent 

relationship with their respective site-specific context dependent mutation rates. Similar to our 

previous avenues of analysis, we approached this question in the same level-by-level method of 

dissection. First as illustrated in figure 18 and table 14 we can see the log transformed regression 

of codon usage and mutation rate for each strand of replication. At the broadest level of analysis, 

we can observe some evidence lending credence to codon usage dependency on mutation rate with 

respect to the forward strand. Although we see weak regression for the forward strand, and 

borderline no relationship for reverse strand of replication.  
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Under normal circumstances, one may argue the merit of further dissection and 

interpretation of results. However, as we saw both in the second aim, and earlier in our analysis 

that both patterns of both genomic triplet and codon triplet usage may be obfuscated or seemingly 

 Figure 19 - Codon usage versus Mutation rate regressions for all four-fold degenerate amino acids. Each 

amino acid has been broken down into the corresponding forward (+, top figure) or reverse (-, bottom figure) 

strand of replication.  
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vanish when observing from a given scope, and four-fold degenerate codon triplets harbor a highly 

varied nucleotide triplet composition. Given the generic shape of our regression datapoints in both 

the forward and reverse strand of replication, the possibility exists these underlying patterns being 

present, and merely necessitated delving deeper into the data. Therefore, in order to tease out 

possible relationships, we subdivided our dataset on each strand of replication into their respective 

four-fold degenerate amino acid representations as shown in figure 19 and their corresponding 

coefficients provided in table 16: 

  

 

 

 

 

 

 

Upon partitioning organism’s codon triplets in the dataset with respect to their individual 

amino acid, we immediately notice an emergence of an inverse relationship of codon usage being 

dependent upon mutation rate. When observing four-fold degenerate codon triplets on the forward 

strand, we can clearly see evidence of this relationship in usage and rates particularly in Alanine, 

Proline, and Glycine. Each of these four-fold sites harbors a weak (or moderate in the case of 

Glycine) relationship showing clear statistical significance, while Threonine and Valine do not 

show signs of a pronounced relationship. On the 3’ to 5’ reverse strand of replication we observe 

a more subtle representations of patterns in codon usage and mutation rate observed on the forward 

strand.  

     
Amino 

Acid 

(+) Regression 

Coefficient 

(+) P-

Value 

(-) Regression 

Coefficient 

(-) P-

Value 

Alanine 0.271956 < 0.0001 0.338428 < 0.0001 

Glycine 0.416689 < 0.0001 0.182795 0.0004741 

Proline 0.382659 < 0.0001 0.254959 < 0.0001 

Threonine 0.117489 0.0068478 0.12425 0.0066526 

Valine 0.097819 0.0189299 0.0041097 0.62354 

Table 15 - Regression coefficients and P-value of four-fold degenerate amino acids for all organisms in 

Figure 19. Each amino acids codon usage and mutation rate were regressed with respect to the individual 

forward (+) and reverse (-) strand of replication. 
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There are several notable observations when comparing differences in patterns between 

replication strands. First off, we note a substantial drop in relationship in both Glycine and Proline, 

where Glycine was observed to be the strongest relationship on the forward strand of replication, 

now shows little to no relationship on the reverse strand of replication. Meanwhile, in the case of 

Proline where we observed previously a borderline moderately strong relationship between usage 

and rates, has dropped to a solidly weakly expressed relationship between usage and rates. 

Interestingly enough, Alanine represented the strongest relationship between codon usage in 

mutation rate on the reverse strand, mainly due in part to having a similarly expressed relationship 

in usage and rates seen on the forward and reverse strand. Similar to the forward strand of 

replication, both Threonine and Valine expressed little to no relationship in patterns codon usage 

and mutation rate. 

When comparing individual amino acid relationships back to the comparisons of all sites 

with respect to a given strand of replication, we can observe an interesting phenomenon occurring 

with respect to each individual strand of replication. On the forward strand of replication, we see 

a loose clustering occurs roughly around the point of (-9.5,4) which corresponds to roughly a 

mutation rate of 3.16 × 10−9  and a codon usage count of approximately 10,000. Meanwhile, on 

the reverse strand of replication we observe a similar loose clustering around (-7.75, 3.75) which 

corresponds to a mutation rate of 3.16 × 10−8  and a codon usage count of approximately 5,623, 

a nearly two-fold drop in codon usage within one order of magnitude difference in mutation rate. 

This clustering event may serve as another signpost in support of the inverse relationship between 

codon usage and mutation rate. However, other factors such as genomic GC content may be 

playing a subtle, albeit obfuscated contribution to patterns of codon usage and context mutation 

rates, which we shall explore in the next section. 
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Are patterns of codon usage and mutation rate being influenced with respect to a given 

concentration of genomic GC content? 

 

 

  

Organisms 

(+) Regression 

Coefficient 

(+) P-

Value 

(-) Regression 

Coefficient 

(-) P-

Value 

AT Rich 0.565279 < 0.0001 0.313148 < 0.0001 

GC Rich 0.0009908 0.767079 0.0008295 0.785214 

Figure 20 – Linear regression of All AT rich (left column) and GC rich (right column) four-fold degenerate 

codon triplets among all organisms within the Bacterial dataset analyzed by CDMAP. Each relationship is 

represented relative to the forward strand (top row) and reverse strand (bottom row) of replication. 

Table 17- Regression coefficients and statistical significance of AT and GC rich 

regressions of codon usage and mutation rate with respect to the forward (+) and reverse 

(-) strand of replication. 
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Figure 21 - Codon usage versus Mutation rate regressions for all four-fold degenerate 

amino acids for the most AT rich organisms on the forward strand of replication with 

respect to their individual amino acid. 

Figure 22 - Codon usage versus Mutation rate regressions for all four-fold degenerate 

amino acids for the most AT rich organisms on the reverse strand of replication with 

respect to their individual amino acid. 
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In our previous section, we investigated the possible relationship of codon triplet usage 

being dependent upon their corresponding site-specific context dependent mutation rate. When 

sub-partitioning our usage and rates with respect to their native strand of replication, and further 

down to a per amino acid basis we found varying levels evidence supporting a dependent 

relationship with respect to each strand of replication. These patterns were partially obscured at 

the organism level but became more prevalent when observed on a per amino acid basis. In aim 2, 

we found relationships between genomic NXN triplets and mutation rate that gravitated to either 

the genomic GC or AT rich biased end of our dataset. Additionally, we saw these patterns 

obfuscated when observing patterns at higher order scope, only teased out when delving deeper 

with respect to each organism. In this section we investigate codon triplet usage’s dependent 

relationship in the most AT and GC rich organisms in our dataset, using a similar methodology to 

prior sections. Immediately upon inspection of AT rich and GC rich organisms on the forward and 

reverse strand of replication we can observe stark contrasting differences in their relationships. AT 

rich organisms on both strands of replication demonstrate a clear, statistically significant 

relationship showcasing their codon triplet usage being dependent upon their site-specific context 

dependent mutation rates. The main distinction between replication strands of AT rich organisms 

mainly boils down to the strength, where we observe a moderately expressed ( 𝑟2 =

0.565279, 𝑝 < 0.0001) on the forward strand, while on the reverse strand we observe a weakly 

expressed ( 𝑟2 = 0.313148, 𝑝 < 0.0001) relationship their usage and rates. Meanwhile, when we 

shift our focus to GC rich organisms, we observe nearly no relationship on either strand of 

replication ( 𝑟2 < 0.001, 𝑝 > 0.75). This result is of particular interest, given when analyzing 

correlation relationships for our collection of organisms, the majority of statistically significant 

correlations were found to be in GC Biased organisms. Given the stark contrasts between AT and 



 83 

GC rich organism’s patterns between their codon usage and mutation rate, and similar to previous 

sections we decided to further tease out the root of these patterns my observing these contributions 

on a per-amino acid basis. 

 

 

 

 

When we separate out AT rich organism’s four-fold degenerate patterns of codon usage 

and mutation rate into their individual amino acids in figures 21 & 22 we see a further distinction 

of patterns as outlined in table 18. When examining the forward strand of replication, we see 

clearly represented, statistically significant moderate to moderate-strong relationships between 

each amino acids pattern of codon usage and mutation rates. Meanwhile on the reverse strand of 

replication, we see similarly to other patterns observed in previous sections more tempered version 

of weak to moderate strength relationships compared to the forward strand of replication. These 

patterns observed with respect to the individual strand of replication were expected and agree with 

our larger surface level analysis of patterns of codon triplets and mutation rates. However, upon 

closer inspection, we see subtle nuances in the pattern strength on an individual amino acid basis. 

We observe that the patterns in usage and rates for Alanine codon triplets were largely independent 

of replication orientation, while we saw larger variances in other four-fold degenerate amino acids. 

We notice that for Threonine, Valine, and Glycine which all harbor moderate-strong regression 

coefficients on the forward strand of replication, seemingly invert from the three strongest 

relationships between codon usage and mutation rates, to the three weakest relationships. This 

  AT Rich   
Amino 

Acid 

(+) Regression 

Coefficient 

(+) P-

Value 

(-) Regression 

Coefficient 

(-) P-

Value 

Alanine 0.54287 0.0002111 0.489676 0.0008524 

Glycine 0.676732 < 0.0001 0.293385 0.020247 

Proline 0.613534 0.0002 0.479153 0.0020755 

Threonine 0.632271 < 0.0001 0.340288 0.0069366 

Valine 0.699635 < 0.0001 0.238034 0.0469474 

Table 18 - Regression coefficients and P-value of four-fold degenerate amino acids for AT rich 

organisms in Figure 21 & 22. Each amino acids codon usage and mutation rate were regressed with 

respect to the individual forward (+)  

and reverse (-) strand of replication 
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could suggest these four-fold degenerate amino acids are more highly subject to influences from 

replication machinery (direct continuous replication versus Okazaki fragments.) 

  

Figure 24 - Codon usage versus Mutation rate regressions for all four-fold degenerate amino acids for the most GC 

rich organisms on the reverse strand of replication with respect to their individual amino acid. 

Figure 23- Codon usage versus Mutation rate regressions for all four-fold degenerate amino acids for the most GC 

rich organisms on the forward strand of replication with respect to their individual amino acid. 
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When we shift the scope of our analysis over to the GC rich end of organisms, a very 

different picture arises when analyzing codon usage and mutation rate relationships shown by 

figures 23 & 24 and table 19. On the whole, we observe very disparate relationships relative to AT  

rich organisms, but even among individual amino acids. On the whole, we found weak 

to no relationship between codon usage and mutation rate with respect to either strand of 

replication. The most interesting and stable of these relationships observed appeared to be 

Threonine on both strands of replication, where it held a nearly identical regression and statistical 

significance. We found interestingly enough a positively expressed, albeit weak relationship on 

the reverse strand of replication, which aligns with earlier observations in prior sections of GC 

biased organisms exhibiting statistically significant correlations on the reverse strand of 

replication, and also harboring multiple positive strongly correlated relationships in both proline 

and glycine. Additionally, a biological basis for this positive relationship could be due in part to 

the large GC nucleotide bias in Glycine (GGX) and Proline (CCX) that may contribute to this 

phenomenon. 

 In summary, from our observations above, upon subdividing our dataset into the most AT 

and GC rich organisms, we observe distinct patterns with respect to codon usage and mutation 

 

Table 18 - Regression coefficients and P-value of four-fold degenerate amino acids for GC rich organisms 

in Figure 23 & 24. Each amino acids codon usage and mutation rate were regressed with respect to the 

individual forward (+) and reverse (-) strand of replication. 

     
Amino 

Acid 

(+) Regression 

Coefficient 

(+) P-

Value 

(-) Regression 

Coefficient (-) P-Value 

Alanine 0.0525285 0.331052 0.005129 0.764143 

Glycine 0.0007193 0.910635 0.249078 0.0250796 

Proline 0.0228611 0.524569 0.282188 0.0192616 

Threonine 0.344439 0.0132618 0.329457 0.0252533 

Valine 0.0352854 0.502597 0.0310703 0.49857 
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rates on each respective strand. We have observed that given a direction of replication, said 

relationship tends to appear more often the forward 5’ to 3’ replication strand, if this relationship 

also appears on the 3’ to 5’ strand of replication, it often appears in a reduced capacity, and even 

rarely to an equal degree of intensity. When observing differences between the most AT rich and 

GC rich organisms, we observed a clear moderate to moderately strong inverse relationships 

between in codon usage and mutation rate in the most AT rich organisms. Meanwhile, when we 

look at the most GC rich organisms, we see mixed weak relationships, or often no relationships 

between the usage and rates. Our evidence leads us to take the viewpoint that patterns of codon 

usage and mutation rates are influenced by genomic GC content, and demonstrate a strong case 

for an inverse relationship between codon usage and mutation rate.  
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Discussion 

In our final research aim, we sought to demonstrate possible relationships between 

synonymous codon triplet usage and mutation rates across our set of bacterial organisms. This 

investigation was motivated by patterns established in our prior aim of research when investigating 

patterns in genomic NXN triplets and site-specific context dependent mutation rates. The interest 

in analyzing four-fold degenerate codon triplets was due to their unique nucleotide triplet 

architecture NNX, where any change in X induces a synonymous amino acid mutation. We opted 

to apply a similar methodology used in Aim 2, where we analyzed codon usage patterns on an 

organism wide level, then with respect to factors such as their native strand of replication and 

genomic GC content. In order to preserve as much biological information as possible, we took a 

conservative approach and only analyzed four-fold degenerate codon triplet usage relative to its 

native strand of replication. This was due in part that fold-degenerate information cannot easily be 

preserved within the same amino acid encoded, let alone the same fold degenerate class of amino 

acid.  

When approaching our analysis, we made no prior assumptions about the nature of the 

relationship that codon usage and site-specific context dependent usage rates shared, if any. 

Therefore, we opted to use Pearson’s product moment correlation for each organism’s codon triplet 

usage, and their respective site-specific context dependent mutation rates. Upon analysis we found 

a near ubiquitous inverse correlation between codon usage and mutation rate, though we saw just 

under half of these organism specific sites exhibit statistical significance. Of these strand specific 

organism wide sites, the majority of them were found to be GC biased with the majority of those 

sites residing on the reverse strand of replication, while roughly equal representations of AT rich, 

GC rich, and neutral organisms were found in equal measure on the forward strand of replication. 
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We then separated our Pearson’s correlation analysis down to individual amino acid basis, where 

we interestingly found statistically significant patterns appear and vanish in nearly equal measures. 

When analyzing sites on a per amino acid basis, the majority of strongly correlated statistically 

significant sites belonged to GC biased organisms, with all significant AT rich amino acid 

correlations belonging to S. epidermidis. Outside of the statistically significant sites, we observed 

a near ubiquitous polarization of positively and negatively correlated patterns of codon usage rates 

and context dependent mutation rates. We determined that if a significant relationship between 

codon usage and mutation rates exists, it was possible there are other obfuscating factors that may 

be concealing the nature of their relationship. We progressed to the notion of the possibility of 

codon usage having dependent relationship given its mutation rate and decided to investigate this 

possibility via regression analysis. 

When we analyzed all organisms with respect to their native strand of replication and 

observed a teaser of evidence on the forward strand of replication, while we saw little evidence 

supporting a dependent relationship on the reverse strand of replication. However, in prior aims 

figured it would be necessary to descend and sub-partition organisms further to tease out these 

possible patterns. So, in our next step, we separated our regression analysis into each organisms 

four-fold amino acid specific regression. Upon doing so we revealed patterns lending towards an 

inverse relationship between codon usage and mutation rate, more directly in the forward strand 

of replication, and to a reduced effect in the reverse strand of replication. We then pondered if, 

similarly to genomic triplet and mutation rate patterns that genomic GC content could affect the 

sensitivity of these patterns. 

We followed through on this notion by taking codon triplet usage and context dependent 

mutation rates and analyzing the most AT and GC rich organisms with respect to their native strand 
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of replication. Upon doing so we found clear, distinct contributions from organismal GC/AT 

content affecting the dependent relationship between codon triplet usage and their respective 

mutation rates. In the most AT rich organisms, we observed inverse relationships between usage 

and rates on each strand of replication, and similarly to previous avenues of analysis found this 

relationship was more pronounced on the forward strand of replication versus the reverse strand 

of replication. When turning our focus to GC rich organisms, we puzzlingly found essentially no 

evidence in GC rich organisms codon usage rates being dependent on their respective mutation 

rates. For our final level of analysis, we opted to observe how these patterns in GC and AT rich 

organisms interacted on a per amino-acid basis. 

 When Analyzing AT rich organisms on a per amino acid basis, we only found a 

confirmation and intensification of regression relationships observed on the organism specific 

level. Each amino acid demonstrated some form of inverse relationship in their codon usage 

patterns and mutation rates, with subtle and nuanced differences between the forward and reverse 

strand of replication. When Analyzing GC rich organisms on a per amino acid basis, we found 

mixed and inconsistent patterns between codon usage and mutation rate, where the only notable 

patterns existed within Threonine on both strands, and Glycine and Proline on the reverse strand 

of replication. These analyses from a myriad of viewpoints lead us to the following conclusion: 

“We observe an inverse relationship  between codon usage and mutation rate, whereas codon usage 

increases at four-fold degenerate amino acids, their corresponding mutation rate decreases. 

Additionally, genomic AT content exhibits a fundamental role influencing and intensifying this 

relationship on the forward strand of replication.” 
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Chapter 5: Conclusions and Future Work 

Conclusions 

In this dissertation thesis, we began by wanting to address the problem of providing a 

consistent, reproducible method of analysis for context dependent mutation rates. Prior literature 

had shown that genetic variation in organisms across the tree of life is non-uniform, and 

understanding the fundamental factors shaping this primary evolutionary force can play a pivotal 

role in applications such as conferring novel adaptations within an organism, to shaping 

predictions in antibiotic resistance or virulence in pathogenic organisms. To this date, we have not 

observed a standard, benchmarkable method was not widely available or accessible that could be 

a reliable baseline for analysis of mutation rate analysis. As a result, CDMAP was developed to 

address the research need for an open source, reproducible software package that can be modularly 

built upon as research demands warranted. We accomplished our goals during development by 

create a streamlined platform of analysis where a user with minimal input required a consistent 

method of mutation rate analysis that provided an extensive breadth and depth of different scopes 

to analyze a given organisms context dependent mutation rates at all possible nucleotide triplet 

combinations. 

Our next objective in this dissertation work was to build upon the framework of analyzing 

mutational patterns to develop a methodology to reliably analyze a dynamically scaled collection 

of organisms to observe whether we could discern possible overarching patterns influencing their 

behavior. Therefore, we developed the CDMAP-MOA pipeline to directly interface with the 

CDMAP-SOA pipeline to provide an all-by-all comparison of organisms analyzed by a given end 

user. We analyzed a total of 17 wildtype organisms, 3 of which additionally included MMR- 

mutational variants. We found in general that AT-rich organisms harbored significant relationships 
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in context dependent mutation rates amongst each other. Meanwhile, we found more generally 

factors such as replichore specificity, or specific upstream and downstream nucleotides showed a 

significant influence on the strength of relationships observed between the various organisms 

within the collection. 

In our final analysis, we further expanded our biological analysis to understand the possible 

factors influencing contextual mutation patterns in prokaryotes by analyzing synonymous codon 

usage at four-fold degenerate amino acid sites. Additional considerations had to be made in this 

step due to the directionality of replication playing a fundamental factor in the preservation of 

biological information, therefore analysis was further separated into forward and reverse strands 

of replication. Then in a similar manner to our previous objective, methodically dissected the 

relationship between four-fold synonymous codon usage and mutation rates. We found strong 

evidence for an inverse relationship between codon usage an mutation rates, which appeared 

particularly prevalent in AT rich organisms, suggesting genomic AT exerts a direct influence upon 

this phenomenon. 
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Future Work 

The relationship of Context dependent mutation rates and Ne 

 

At this current juncture, there are two interesting paths forward for continuation of the work 

outlined in this dissertation work. The first direction would be a further investigation into the role 

effective population size plays influencing the behavior of context dependent mutation rates. We 

currently hypothesize that the effective population size of an organism is a limiting factor for 

Figure 25 – Effective population versus Mutation rate regressions for all four-fold degenerate amino acids for the 

most GC rich organisms on the reverse strand of replication with respect to their individual amino acid. 
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regulation of genome wide contextual patterns. The motivation for this hypothesis comes from the 

relationship arises from earlier when discussing the power of selection and drift with respect to 

Ne. When using mutation accumulation to examine the range of spontaneous mutations occurring 

in an organism, we do this with the notion of limiting selective forces acting upon an organism by 

effectively making Ne = 1 (18, 24, 35). As a result, if selective forces are capable of purifying 

deleterious genomic patterns from a given population, then conversely if Ne is limited, then 

selective forces may be unable to select for repair pathways and mechanisms capable of removing 

damaging contextual patterns.   

As of this writing, the investigation is ongoing, with our focus primarily on improving the 

number of samples that we have effective population size data. Though we have a limited dataset 

from which to draw observations from, it is interesting to note among the organisms analyzed 

using CDMAP in figure 24 that we have reliable Ne data for, we can there is a clearly defined 

significant inverse relationship between context dependent mutation rates and Ne exhibited. One 

possibility for this is AT rich organisms harbor a lower Ne tend to have a higher mutation rate than 

GC rich organisms, suggesting the repair mechanisms that mutation rates become stronger 

proportionally to Ne. However, increasing the number of organisms analyzed via CDMAP both 

among prokaryotes, and to eukaryotes and archaea along with reliable effective population 

estimation would be necessary to draw any definitive conclusions between this relationship, and 

the scope of its reach across the tree of life. 
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The Spatiotemporal Relationship of Context Dependent Mutation Rates and Replication 

Distance From The ORI and TERM 

 

Our second possible direction to expand upon this dissertation work would be our 

understanding of how spatiotemporal forces affect replication fidelity in prokaryotic organisms, 

investigation of replication in early replication regions (closer to the ORI) and late replication 

regions (closer to the TERM) differ in site-specific mutation rates. Prior unpublished work has 

shown mutation rate elevation in late replicating regions of A. tumefaciens, driven by excess G/C 

to A/T transition mutations, leading to several biological consequence (54). One observation from 

these results could lead to an increased drive in mutational burden in the absence of selection, 

causing an overall reduction in fitness within the organism. Another possible consequence could 

involve possible genomic architecture rearrangements within the chromosome by moving larger, 

Figure 26 - CDMAP Quartile Analysis. In order to extend analysis to investigate late replication region within 

organisms, replichores previously constructed by CDMAP in existing steps would be used to create hemispherical 

partitions representing the early and late replication regions within a given organism.  
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essential genes to either earlier in the replication process on the chromosome, or onto secondary 

chromosomes and chromids in the case of multi-chromosomal organisms. 

 The process for tackling analysis of late replication analysis in CDMAP would 

ideally be fairly straightforward. Since the pipeline already creates hemispherical partitions for 

chromosome wide, and replichore-specific analyses with respect to the ORI, then extending our 

framework into a quartile-based partition and constructing and constructing an early (H_early) and 

late (H_late) replication hemisphere for analysis as shown in figure 25. Afterwards, downstream 

steps would merely need to be modified to incorporate H_early and H_late into the pre-existing 

framework of analysis. As a result, we would be able to investigate genome-wide and replichore 

specific contextual patterns across a wide variety of prokaryotic organisms in both early and late 

replication regions and expand the scope of our investigation within our current framework. While 

being straightforward, we would need to devote a non-trivial amount of time to ensure a new 

fundamental feature of analysis in CDMAP would meet the same quality standards held previously 

to CDMAP-SOA and CDMAP-MOA. 
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