A BEGINNING-TO-END SYSTEM FOR EFFICIENTLY GATHERING
TRACKING DATA ON MULTIPLE TARGETS

by

Lance Andrew Rice

A thesis submitted to the faculty of
The University of North Carolina at Charlotte
in partial fulfillment of the requirements
for the degree of Master of Science in
Computer Science

Charlotte

2016

Approved by:

Dr. Min C. Shin

Dr. Richard Souvenir

Dr. Shaoting Zhang

(©2016
Lance Andrew Rice
ALL RIGHTS RESERVED

i

iii
ABSTRACT

LANCE ANDREW RICE. A beginning-to-end system for efficiently gathering

tracking data on multiple targets. (Under the direction of DR. MIN C. SHIN)
Multi-object tracking in video has the potential for broad applicability, from an-
alyzing division-of-labor within biological networks such as insects, to surveillance
and traffic monitoring. Despite any potential the field of multiple object tracking
holds, it often remains passed over in favor of manual annotation methods due to
difficulties in reliably obtaining accurate results. Existing tools for gathering track-
ing data are either very time consuming, inaccessible due to non-intuitive interfaces,
or simply produce too many tracking failures with no means of correcting them. In
this thesis, we address the multi-object tracking task that is ill served by existing
tracking tools. Specifically, we discuss intuitive means of parameter tuning, training
various subroutines of the tracking algorithm, and correcting tracking failures. To
this end, we developed a new desktop application, ABCTracker, which provides a
sequence of efficient steps the direct the user from beginning (the video) to the end

(accurate tracking information).

TABLE OF CONTENTS

[LIST OF FIGURES

|LIST OF TABLES|

CHAPTER 1: |INTRODUCTION|

1.1. [The Proble

1.2. |A Solution Sketch|

CHAPTER 2: |Background

2.1. |Video Annotation and Tracking Systems|

CHAPTER 3: |SYSTEM DESIGN|

3.1. |Overview of System Architecture|

3.2. |Tracking Algorithml

3.3. |Error Correction|

CHAPTER 4: EVALUATION|

4.1. |Tracking Performance Evaluati0n|

12

CHAPTER 5: [CONCLUSION|

5.1. [Future Work

[REFERENCES|

v

Vil

12

14

16

28

41

41

48

20

50

52

LIST OF FIGURES

FIGURE 1: |Abstract flow diagrams of tracking tools availablel

FIGURE 2: |Flow Diagram for the Proposed System|

FIGURE 3: |System Functionality Influence Diagram|

FIGURE 4: |HOW the user defines the video region to be tracked|

FIGURE 5: |H0W the user defines object enter /exit regions|

FIGURE 6: |H0w the user marks the objects in a frame|

FIGURE T: |Examples of raw and optimized foreground classiﬁcation|

FIGURE 8: [[llustration of the manual operations available for error cor-|

|rectiog|

FIGURE 9: |The correction interface during manual correction mode|

FIGURE 10: |Selecting tracks for performing manual operations|

FIGURE 11:|[[lustration of the two review types available for guided error]|

|correctiog|

FIGURE 12: [How the systems guides the user to correct fragmentation|

|err0rs|

FIGURE 13: |Guided correction example for fragment reviewl

FIGURE 14: |How the systems guides the user to correct ID switch errorsl

FIGURE 15: |Guided correction example for connection reviewl

FIGURE 16: |Example results on one of the termite datasets|

FIGURE 17: [Example results on one of the ant colony datasets that do]
ot allow enter/exit|

FIGURE 18: [Example results on one of the ant colony datasets which|
lallow enter /exit|

12

13

19

19

30

33

33

35

36

37

38

40

44

44

45

FIGURE 19: [Visualization of connection review ordering performance on|
|two additional ant datasets|

FIGURE 20: [Visualization of connection review ordering performance on

|C5 datasetsl

FIGURE 21: [Visualization of connection review ordering performance on|

|06 datasetsl

vi

LIST OF TABLES

TABLE 1: |List of tracking modules in the applications default tracked

TABLE 2: [List of tracking failures the user will need to be able to correct]
|and their descriptions|

TABLE 3: [List of manual correction operations available and what track-|
|ing failures they are intended to address|

TABLE 4: |List of tracking evaluation metrics with brief descriptions|

TABLE 5: [Tracking performance comparison between proposed method|
|and prior work on C5/6 ant dataset|

TABLE 6: [Tracking performance comparison between proposed method|
|and prior work on termite dataset|

TABLE 7:[The results of the user study conducted with ant colony dataset|

|C06 1|

TABLE 8: |Average interaction time breakdown on user studyl

vil

29

31

42

43

43

48

CHAPTER 1: INTRODUCTION

Due to the availability of high quality and inexpensive video cameras, as well as
the convenience of high-powered computers, an increase in demand for automated
object tracking has emerged in several domains. Accurate object tracking serves
as a catalyst for researchers like biologists to understand collective decision mak-
ing and division-of-labor within biological networks such as insects [13] 17, 19, [I§]
and enables various applications in areas like surveillance [4], proxemics [21], and
traffic monitoring [I]. Manually measuring the location and interactions of objects
in these fields is a time-consuming process and can be an inhibiting factor towards
comprehensive analysis. Efforts have been made in recent years to meet such de-
mands through advancements in automated tracking algorithms [24], 20] as well as
software applications such as video annotation tools [22 3], 25] and systems designed
to track multiple objects given varying levels of user input [12), 2, 23]. We examine
the current state of available video annotation and tracking software and discuss
some of the limitations these tools have. A new end-to-end tracking system, ABC-
Tracker, is presented which attempts to address the shortcomings of existing tools

for multi-object tracking.

1.1 The Problem

During a users examination process, the objects within the video will exhibit be-
haviors which the observer will want to understand. For example, imagine a biologist
monitoring the response within an ant colony to some stimulus, such as a new food
source or foreign ants of another species, and is intrigued by an abrupt change in
motion among the colony. This behavior shift will have multiple characteristics — the
shift could trigger rapidly across the colony or gradually spread from the stimulus’
location; portions of the colony could move toward or away from the stimulus at
specific rates; or the colony members may aggregate around particular members in
response — are a few examples, all of which can be quantitatively measured with
frame-by-frame locations for object’s of interest in the scene. The visual apparent-
ness of such characteristics can vary, and the experiment will need to be repeated
multiple times against control groups to generate statistically sound hypothesis mod-
els. The challenge for the biologist then becomes determining an appropriate means
of collecting tracking information for multiple video recordings.

While it may be possible for the biologist to find some source code for an auto-
mated tracking algorithm, any novice to the field of multi-object tracking will soon
discover that simple tracking algorithms fail to handle scenes with even minor levels
object occlusion or similar appearances. More complex algorithms that better handle
complex scenes have many parameters that must be tuned and/or learned models
that must be trained, potentially for each video to be processed. An alternate ap-

proach for the biologist is to use one or more of the video annotation tools available.

3

Some video annotation tools allow the user to define each objects location in all or a
subset of the video frames and apply interpolation for filling gaps. Videos containing
either many objects, objects with erratic/fast motion, or both significantly impacts
the time required to annotate the video. A more detailed overview of available video
annotation tools is discussed in section 2.1l

The option any biologist would be most hopeful will work is to download and apply
an object tracking system. Unfortunately, currently available multi-object tracking

systems suffer from one or more of the following:

1. Was designed for a specific type of object and sometimes hold very particular

assumptions on how the objects move or were recorded.

2. Must have each step of the tracking algorithm defined by the user and in even
more situations requires parameter values of the tracking steps to be directly

defined.

3. Difficult to install without sufficient technical background.

4. Interface design is unintuitive and lacks helpful features like contextually aware

guidance or even in-app instructions.

5. Produces results containing tracking failures with either no means of correcting
them, very specific assumptions in correction design (e.g. distinct markings for

every object), or requires additional parameters to be defined.

The ability to correct tracking failures is rather important as failures hinder the

reliability of information gathered on the objects. For example, ID switches (i.e.

4

when a track covering one object switches to a different object later in the video)
will incorrectly represent the movement patterns, behavior, and interactions of two
separate objects as all coming from a single target.

This problem illustration is not unique, and analogous ones could be drawn from
different fields of investigation that could benefit from reliable tracking. Each of

which would face similar difficulties with the tools available for obtaining them.
1.2 A Solution Sketch

Developing a general purpose system that can produce accurate tracking results
efficiently with respect to user time and effort depends on how the system gathers
information from the user to adjust the tracking algorithms, the tracking algorithms
used to produce the tracking output and the mechanisms available for correcting any
tracking failures. We believe a solution would need to facilitate the following when

addressing the problem described above:

e Intuitive Means of Algorithm Tuning
Of the several varieties of automated tracking algorithms, many are formulated
as a pipeline consisting of a sequence of subroutines (e.g. pre-processing im-
ages, detection, low-level association, filtering, etc...). FEach subroutine has a
set of parameters that impact not only its performance but also the perfor-
mance any subroutines that follow. The system should allow someone with no
technical knowledge of the how the tracking algorithm works to tune all sub-
routines. In our design, we formulate parameter tuning and model training as

a series of simple questions; the user does not need to define the arrangement

5

of subroutines or the value of parameters directly (e.g. ForegroundThreshold

= 0.9). Details on the proposed approach to parameter tuning are presented

in section B.2.

e Generalized Tracking Algorithm
The selection of subroutines withing a tracking pipeline affects several things,
including: how and what parameters are tuned by the user, the tracking accu-
racy of the algorithm, and the expected frequency of each tracking error type in
the output. Knowing that one error type is more difficult to locate and correct
than another should guide the tracking algorithm design towards reducing the
overall user effort during correction. Details of the proposed tracking algorithm

are discussed in section [3.2]

e Error Localization and Correction Features
The ability to correct failures made by the tracking algorithm is paramount be-
cause error free results being produced by general purpose tracking algorithms
is currently unrealistic. The system should allow the user to make nearly any
correction possible and provide features for efficiently locating tracking failures.

In our design, we provide two modes of correction:

1. A sandbox mode which allows the user to visualize the current state of
the corrected tracking results in several ways and provides operations for

correcting every possible tracking failure.

2. A guided correction mode which automatically finds potential errors and

presents solutions as multiple choice questions.

Details of the guided correction mode and the correction operations available

are discussed in section 3.3

CHAPTER 2: BACKGROUND

The history of automatically detecting and maintaining an object’s location within
a sequence of images is a surprisingly long one, spanning nearly three decades. During
this time, the problem has become well studied among the computer vision commu-
nity and accumulated a vast amount of literature. Here we provide only a very brief
overview of the topic.

Initial efforts towards automated object tracking focused mainly on sequential, re-
cursive algorithms which estimate the current location of a target using information
from earlier frames. Particle filtering based tracking is one example and formulates
the problem as a sequential Monte Carlo sampling from a proposal distribution.
Samples from the proposal distribution, signifying the particles, are weighted based
on a number factors (e.g. motion smoothness, appearance modeling) and collec-
tively represent the estimated current state of the target object. Early particle filter
approaches had moderate success in the case of single object tracking but are vulner-
able to drifting failures in long video sequences or scenes with multiple interacting
objects. A detailed survey of particle filter tracking methods is presented in [16].

The counterpart to sequential, recursive tracking algorithms is batch approaches.
Batch algorithms, sometimes called global data association or tracking-by-detection

based methods, express object tracking as an optimization problem over longer in-

8

tervals of time. Global inference on association probabilities between detection re-
sponses in multiple frames is incrementally performed to assemble object trajectory
fragments (tracklets). Batch approaches have the benefit of improved robustness
against drifting, the possibility of recovering from tracking failures, and have shown
to perform well in multi-target situations where there is no need for a real-time
solution.

Compared to tracking a single target, multi-target tracking is significantly more
complicated. Similar appearances between different objects, crowded scenes, and
inter-object occlusions among a sometimes unknown and/or fluctuating number of

objects are all additional difficulties in multi-object scenarios.
2.1 Video Annotation and Tracking Systems

The Vatic system (Video Annotation Tool from Irvine California) [22] is related
to this work in several ways. Vatic was originally developed to enable its users to
annotate tracking locations for multiple objects in a video (as illustrated in figure .
It has an intuitive and simple interface design that allows creating, removing and
updating object annotations at frame level accuracy. Once an object is initialized
and had two or more locations defined in separate frames, linear interpolation is used
by the system to fill in the gaps. This simple approach is much more efficient for the
user than labeling frame-by-frame. Simple attributes for the defined objects can also
be specified. Additionally, the Vatic system features crowd-sourcing the annotation
work through Amazon Mechanical Turk as well as ways of comparing annotation

results.

Results

(a) Manual annotation

Track Results

(b) Fully-automated

Video

User 6

Annotates

Results

Video

User 6

Corrects

(c) Semi-automated

Video Track

V= S

Prioritize
Eg
= Results

=
User a

Corrects

Video Track

W= & =

(e) The proposed system

Figure 1: Abstract flow diagrams representing the different types of tools available
for collecting tracking information. (a) Manual annotation systems [22, 25], (b)
fully-automated tracking systems [3, [12], (c¢) semi-automated systems [23], 15]. (d)
Automated Tracking Systems with post-tracking user correction [2] [14], and (e) the
proposed automated tracking system.

10

The Vatic project allows for extensions to the system, one of which attempts to
incorporate semi-automated tracking and active learning while interacting with the
user. The tracking extension builds appearance models for each object using an
SVM classifier with HOG features from user-annotated frames. Visual tracking is
performed using the trained appearance models to interpolated missing information
between user annotated frames. Active learning determines query frames to be an-
notated by the user by estimating expected label change on the predicted object
trajectories [23]. A slight deterrent of Vatic comes from the fact that it was designed
to be deployed as a web service and getting it to run on the desktop (or the web) is a
bit involved without technical experience. Similar to the Vatic system is LabelMeV-
ideo [25], which differs slightly by allowing for any polygon-shaped object annotation
where Vatic only supports bounding boxes without orientation control.

A recent development called AntCounter [3] was designed to track leaf cutter
ants in a scene for the primary purpose of counting the ants as they move in two
opposing directions along a single trail. The system uses a simple tracking algorithm
which matches nearest foreground blobs that are less than 10 pixels apart between
frames. The system is sensitive to the size of the ants within the image, suggesting
image scaling to get the tracker working appropriately, and states that it is designed
specifically for tracking leaf cutter ants moving in two opposing directions.

Developers of SwissTrack [12] sought to design not only an interface for aiding in
tuning parameters of tracking algorithms but also provide a flexible suite of tools

for imaging, interfacing with the application, and defining new trackers. Through

11

built-in and community contributed tracking subroutines, which they call compo-
nents, users can either create or combine existing components in an attempt to fit
their tracking needs. Components within the SwissTrack application require tuning,
possibly on a per video basis for some components and must be performed by defin-
ing values for each parameter directly. In this work, we also modularize tracking
subroutines for a more flexible and reusable means of defining trackers but seek to
abstract direct parameter tuning as easy to understand questions.

Another tracking system that requires directly tuning parameters is CTrax [2].
CTrax is intended for automatically tracking multiple walking flies. In addition to
tracking, the system provides a collection of Matlab toolboxes for social behavior
detection and correcting tracking failures (the FixErrors GUI). After the user tunes
the parameters for tracking and allows it to run, they then must define additional
parameters in the FixErrors tool for assisting the user in locating tracking failures.
Similar to this work, we provide a set of correction operations (e.g. add, remove,
join) and assist in failure localization but do not require any parameters to be tuned

during correction.

CHAPTER 3: SYSTEM DESIGN

The ABCTracker application is the result of several prototype iterations. Testing
and feedback were provided by fellow lab members, biologists, and biology students
at each stage of development. This incremental feedback was crucial for maintaining

appropriate design heuristics towards:

1. Simplicity: of interface interactions and tuning algorithm parameters.

2. Efficiency: concerning user time spent interacting with the application.

3. Accuracy: the user should be able to reach their desired levels of accuracy with

the features supplied by the application.

Tune g
Parameters ‘ Run Tracking Correct Errors
Vid Track Prioritize
ideo .9 rac o
. Question () =
[=
(4 .» Answering - - ‘ ED
User
Corrects

Figure 2: This abstract flow diagram outlines our approach for collecting tracking
data on multiple targets within an input video. First, a small set of simple questions
is asked of the user. These answers are used to tune many parameters of the tracking
algorithm; this automatic tuning takes place during the initial step of the tracking
phase. After applying the tuned tracker to the video, the user is directed to the error
correction phase. To reduce the user’s overall time interacting with the system we
define two interaction phases with an extended period in between that allows the
tracker to be automatically tuned and applied to the video.

13

In forging a solution to the problem presented in section [1.1| one must consider
that the three fundamental functions of an end-to-end multi-object tracking system:
tuning, tracking, and correcting are very interdependent from both the perspective
of user effort as well as overall tracking performance (figure [3). Parameter tuning by
the user must be as simple and efficient as possible but also gather a proper amount
of information for the tracker to perform well, which in turn reduces user effort
during correction. Additionally, the tracker should exploit the fact that particular
tracking failures are more challenging and time-consuming to find and correct than
other failure types. The extent of these interdependencies amplified the importance

of incremental prototyping and guided a majority of the design decisions.

How simple and effective How the tracker performs
the user can tune affects both the types
parameters affects and amount of errors

tracking performance the user will correct

o {C
Parameter Tracking Error <
ing .t v -
] O
Tuning | ' | 9015 Correction
How the tracker is Difficulty and efficiency
designed affects what differences between error
information the user will types affect how the tracker
need to supply should be designed

Figure 3: An illustration of the three primary functions of the tracking system and
the influences (arrows) they have on one another.

14
3.1 Overview of System Architecture

At the highest level of abstraction, the system is divided into two subsystems: the
backend and the frontend. The backend is written primarily in Matlab and acts as
a local server to the desktop application, receiving and processing frontend requests.
The frontend, written in Java, serves as a client to the backend, handles presenting
the desktop interface and sends processed user inputs as requests to the backend.
Local TCP ports facilitate communication between the backend and frontend. Large
portions of information (e.g. an entire set of tracking results) and data possibly
needing to be accessed at a later date are stored as JSON files on the user’s hard
drive.

Application of the tracking algorithm to a video sequence is handled entirely by
the backend. Because a majority of current tracking algorithms are composed of a
series of tracking subroutines, we model trackers as a set of tracking “modules” that
collectively represent the subroutines of a tracking algorithm. Modeling trackers in
this way enable greater flexibility and encourages separation between properties of
the object tracks and operations to perform on them. Three types of modules are

defined:

1. Detection modules: compute object detections in video frames

2. Association modules: generate object trajectories

3. Miscellaneous modules: subroutines that do not pertain to either of the prior

module types (e.g. pre-processing or filtering subroutines, a data structure(s)

15

building subroutine, ...)

Each module within a tracker has a corresponding set of parameters which are au-
tomatically tuned by the user input processing module (miscellaneous module type)
that is present in every tracker’s module set definition. As new tracking modules
are implemented, they can easily be incorporated into existing tracking pipelines or
form entirely new trackers with little or no effect on the backend or interface.

A tracking algorithm as we have defined above cannot perform its purpose with-
out additional information, specifically what video to track, user inputs for tuning
module parameters and storage location definitions for tracking progress made and
the current state of the tracking results. Such information is defined in what we call
a tracking "process”. Throughout the remainder of the thesis we will refer to a ” pro-
cess” as a user named and initiated data structure that contains: what tracker will be
used (i.e. module set), the video to track, the current state of progress made towards
final results (e.g. initialized, awaiting tracking, awaiting correction, complete), and
all user inputs to questions and corrections made through the application’s interface.

Currently, all modules implemented in the systems can be effectively tuned by
the user answering three simple questions. Section concentrates on the applica-
tion’s primary tracking algorithm, the “default” tracker which is the most generalized
tracking algorithm within the system and achieves the highest tracking performance
given no additional information outside the user’s input (i.e. no offline trained mod-
els). The final functional requirement of the system is correcting tracking failures

which are discussed in section 3.3

16
3.2 Tracking Algorithm

Most of the tracking parameters are automatically tuned based on the user’s an-
swer to one of the three questions asked during initialization of a tracking process, the
“where are the objects in this frame” question. The user’s answer to this produces
individual foreground masks for every object within a set of at least two frames. We
will frequently refer to these individual object foreground masks as object marks or
user marks. Here we present details the “default” tracking algorithm’s module set
used in the application as well as how to automatically tune the modules parameters
with the user’s process initialization answers. Table [1| shows the modules within the

“default” tracker and a brief summary of their purpose.

17

Table 1: List of tracking modules in the application’s default tracker along with a
brief statement of each modules purpose.

Module Name Type | Summary

Input Processing Misc. | Processes user input to questions to train object

detector and tune most modules that follow.

HOG Detector Det. Detects objects in video frames

Detection Statistics | Misc. | Estimates detector performance with frame ob-

jects marked by the user.

Tunnels Builder Misc. | Constructs occlusion foreground tunnels.

Still Obj. Tracking | Assoc. | Locates and tracks non-moving objects.

Tunnel Association | Assoc. | Uses detection responses and OST structure to

build initial set of tracklets

Confidence Scoring | Misc. | Trains a detection confidence scoring function

with low-level tracklets.

FP Filtering Misc. | Remove tracklets likely to be False Positive.

MCMC Matching Assoc. | Associates tracklets using forward and backward

MCMC tracking convergence.

3.2.1 User Input Processing for Tuning Tracking Algorithm

Three questions are presented after the user creates a new tracking process. The
first question allows the user to constrain the tracking algorithm to a sub-region of

the video frames. Reducing the tracking area within the video allows for efficiency

Figure 4: How the user defines the video region to be tracked. The left image shows
a portion of the region perimeter defined and the right shows all perimeter points
defined. The perimeter is filled for the user to double check it is correct.

improvements during detection and building occlusion foreground tunnels. The sec-
ond question asks if the objects can enter and exit the scene and if so, where are
the regions in which this can happen. Both of these questions can be answered very
quickly (30 seconds apiece or less), and have a minor impact on the entire tracking
process. The third question asks the user to mark every object in a select number
of frames. This question is critical for tuning the tracking modules’ parameters,
tracking objects that do not move, and improves user efficiency during correction by
ensuring objects are least covered in these select frames. The set of frames selected
for user marking always contain the initial and ending frames of the video.
Additional video frames are evenly sampled for user marking until at least a total
of four frames have been marked and at least 30 object marks have been defined.
Most modules use information from the object marks in some way (size information
primarily), but we defer minor uses to sections describing the remaining modules.
Given the set of user object marks, the initial input processing module creates a

background image for foreground estimation, optimizes morphological operations for

19

Figure 5: How the user defines object enter/exit regions. Clicking and dragging the
mouse creates a new enter/exit region; multiple regions may be defined.

Figure 6: How the user marks the objects in a frame. Three clicks (showing the
first two on the left) define the area occupied by the object. The right image shows
the results of a user marking all objects in the frame. Note that overlapping marks
remain separable.

refining the foreground estimation, and trains a new object detector. Foreground
pixels are initially estimated using background subtraction where the background
image is calculated using the set of frames with objects marked by the user. Since
object foreground pixels are known in these select frames, using these frames only

allows for determining an appropriate difference threshold as well as pixel locations

20

(a) (b) (d)

Figure 7: An example of (a) the input image, (b) union of user marks in the frame,
(¢) the raw foreground classification using background subtraction, and (d) the fore-
ground results after morphological operations optimized by particle swarm have been
applied.

likely to contain the non-moving object. Because initial foreground estimation can
contain varying levels of noise and produce overly connected foreground blobs, we use
particle swarm optimization of morphological operations for refinement. Parameters
to be optimized are (ordered as how they are applied): an initial threshold value for
the minimum area a foreground blobs must have, the number of times to perform the
majority operation (sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood
are 1s; otherwise sets the pixel to 0), the size of the structured element for performing
morphological closing (dilation followed by erosion), and again the minimum area
threshold on the foreground blobs resulting from the previous operations. The loss
function of the particle swarm is formulated as a weighted average of the number of
correct, over-segmented, under-segmented, and incorrect foreground pixels.

User markings are used to generate positive and negative examples for training
a new object detector. Negative examples are created using background locations
and patches centered between nearby user marks from the same frame. We use a

linear SVM for classification with HOG features taken from the example patches.

21

The HOG features [5] use a block size of eight and nine orientation bins.
3.2.2 Object Detection

The detection module produces location, size and orientation information of de-
tection responses in each frame. First, foreground estimation and refinement are
applied to a given frame. Foreground blobs that meet the minimum and maximum
area threshold (as defined by the user object marks during initial input processing)
are given to the previously trained detector. Using the foreground blobs as region
proposals reduces the computation time as well as the frequency of false positive
detections. Positive responses from the detection module are then handed off to
the feature extractor to have any features needed by following tracking modules

extracted.
3.2.3 Occlusion Foreground Tunnels

The occlusion foreground tunnels building module is responsible for constructing
foreground “tunnels” that span spatially and temporally over the video sequence. We
follow the occlusion tunnel approach of [7] which aimed to improve the data associ-
ation process between pairs of tracklets by reducing the set of possible associations.
The foreground tunnels are represented as a directed acyclic graph (DAG) F = (V, E)
where V' = {vy,...,v,} denotes the set of nodes (or vertices) and E = {ey,...,e,}
denotes the set of edges. Given the set of foreground blobs at each frame, each
foreground blob consisting of of pixels, p;, at frame ¢; are represented as a node,
v; = {pi,t;}, in F. Spatial and temporal proximity of the foreground blobs is con-

sidered for defining edges between nodes. Two nodes v;, v; are connected by an edge

22

if 0 <t; —t; <nand p; Np; #0. We follow [7] and set the temporal threshold to
be n = 2. Finally, transitive reduction is performed on F' to remove any transitive
edges (as n > 1).

The result of this module is a DAG where nodes represent foreground blobs and
edges between nodes signify overlap among blobs between two consecutive frames.
As previously stated, the intended purpose of occlusion foreground tunnels was for
reducing the set of possible associations during tracklet association. In our proposed
method we deviate from how [7] utilized the occlusion tunnels DAG and instead use
it as part of an alternate form of tracklet building (association of detection responses)

that requires less parameter tuning than previous methods. Details of how on this

are provided in section [3.2.4]

3.2.4 Initial Tracklet Building

Two modules are responsible for constructing the initial set of tracklets. First,
still object tracking followed association of frame detections. For tracking of still
objects, we follow the same procedure as described in [6]. For each of the user
marks (except ones within the final frame during the forward pass), we sequentially
extract and compare SURF features between consecutive frames at the same location.
If no motion is found between the two frames, then still tracking on the object
continues. Still object tracking the target stops once the euclidean distance between
the SURF features exceeds a threshold (empirically determined and predefined as
73). Tracking repeats the search during a backward pass in time for each user

mark (excluding marks in the initial frame). To reduce the computational load, we

23

bypass the tracklet building step (Section 2) by linking all the regions of the same
non-moving ant into a tracklet. We compare the distance between tracks produced
from still object tracking against frame detections and detections closer than some
threshold (determined based on user marks) are removed.

After still object tracking has been performed, the remaining task for the building
the initial set of tracklets is to establish associations between detection responses.
A common approach to conservatively associating detections used in several works
including [9, 6], [14] is to derive an association score on a small set of features (e.g.
similarly between RGB histograms and/or size, expected displacement, ...). A dual
threshold technique can be employed to ensure that only the most certain associations
are made between pairs of detections. This approach requires developing relevant
features, means of combining them into a single score, and determining suitable val-
ues for thresholds — all of which can changes significantly depending on type/density
of the objects and recording conditions. Additionally, the associated tracks tend to
be quite short, often failing to make connections in trivial situations. We develop an
alternative approach which can accurately generate longer detection associations and
does not require defining motion/appearance features, learning function parameters
for scoring associations, or determining threshold values on the association scores.

The detection association module requires the occlusion foreground tunnels F' =
(V, E)) outlined in section and the set of frame detection responses D produced
by the detection module. First, detections d, € [gathered frame ¢; are mapped

to foreground blobs in v; € V by determining if the centroid of the detection d,

24

falls within the boundaries of blob v;. For every v; € V we calculate its indegree,
deg~(v;) (number of inbound edges), and outdegree, deg™ (v;) (number of outbound
edges). The set of one-to-one nodes V = {v; € V | deg™(v;) = 1 & deg™(v;) = 1}
partitions the graph F' into tunnel “lanes” (segments of foreground tunnel that do
neither merge nor split). The number of blobs with a detection mapped to them vs.
not is calculated for each lane (i.e. partition formed by V), and lanes containing a
majority of their blobs mapped are converted to tracklets. Blobs with no mapped
detection but are part of a majority mapped lane are assigned interpolated values.
Additionally, the module will check if any tracklets existed before the module was
run (still object tracklets in this case). If tracklets do exist and contain a detection
falling within any one of a lane’s blobs, then that lane will not be converted to a
tracklet. All detections not used to for building tracklets from the majority-mapped
lanes are discarded.

The results from both the detection association module and the still object tracking

module form the initial set of tracklets 7°.
3.2.5 Detection Confidence Scoring and False Positive Removal

We train the learned classification model used by the detection module with a
rather small number of examples (four frames worth of positive object examples in
most cases), and the classification method was kept simple (linear SVM) in light of
this. Although the number of false positive detections is reduced by using the refined
foreground blobs as proposal regions, false detections still occur due to substantial

inter-object occlusions and background debris. To further minimise the number of

25

false positive tracks, we use the current set of tracklets to train a detection confidence
scoring function for filtering tracklets likely to be false positive.

Detected locations from all tracklets present in every nth [[] frame of the video are
collected as positive training examples. From these frames, we also collect several
sets of negative training examples. Each tracklet’s detected location in the frame
has a small amount of random noise added to the X and Y position as well as the
angle. The amount of noise is randomly selected for both the X and Y positions and
bounded between one-fifth and one-half the minimum dimension of the average user
mark size. Noise added to the angle is bounded between 10 and 40. The direction of
the noise is also random. We gather additional negative examples from tracklets near
to one another. Specifically, tracklets closer than the average width of the user marks
have an image patch that is centered and aligned along the line segment between
the centroid of the two detections. The final set of negative examples is randomly
sampled the from background regions of the video frame. We use HOG features with
a block size roughly equal to one-fourth the minimum size dimension of the average
user mark size. Because of the noise likely to be present in the training set due to
false positive tracks, a Random Forest classifier is selected as the learning model and
300 decision trees are grown with the unbalanced dataset.

To filter false positives we first use the Random Forest classifier to assign a con-

fidence score to every detection within a tracklet. A detection score is the average

'We use only a subset of the frames because of the increase in memory requirements with respect
to video length and number of objects. Furthermore, consecutive frames produce nearly identical
examples. We determine the number of frames that need to be skipped as what would roughly
provide 5000 positive training examples (if possible) given the video length and the average number
of user marks per annotated frame.

26

classification of the decision trees and ranges between 0 and 1. We calculate the
mean detection confidence of each tracklet and ones with mean confidence less than

0.5 are removed. An exception is made for tracks that cover any user object marks.
3.2.6 Tracklet Association with MCMC Convergence

Given the set of tracklets formed by tunnel detection association and the still
object tracking module, the goal of the current module is to make any appropriate
connections remaining between the tracklets. Iterative matching based on conver-
gence agreement from both forward and backward particle filtering is used to solve
the data association problem on the incomplete tracklets. For both forward and
backward tracking, we follow the MCMC particle filtering based approach of [§].
The method proposed in [§] improves upon [I0] regarding tracking accuracy by in-
corporating global maximization of foreground for reducing the possibility of drafting
failures and also regarding efficiency by using a variable proposal distribution among
the targets (i.e. samples employed in Markov chain are not evenly distributed among
the targets). They base their variable proposal distribution on estimated object mo-
tion.

Let 7° = {T;} be the set of tracklets which will be associated over a sequence
of matching stages and F = {F;} be the set of foreground pixels in each frame.
Each stage of matching n uses the previous tracklet set 77! to produce the set of
further associated tracklets 7. We define the Markov chain length (i.e. particles
or iterations) to be 200 for all matching stages. During stage n of matching we first

remove all foreground pixels within each F; € F which are covered by a tracklet T; €

27

7"~ Doing so exploits the foreground maximization criteria of [8] and assists each
matching stage in making more difficult tracklet associations than the one before.
The pixels covered by tracklet T; € 7" ! in a frame ¢ are calculated as the square
region of size p centered at the (x,y) position of T; in frame t. We set p to be the
average maximum dimension of the user marks. Forward tracking is performed from
the tail position of each tracklet ending before the last frame of the video. The joint
state X' contains the estimated position of all objects meeting this criterion. At
each frame ¢ during tracking we compute the distance d(i, j) between the predicted
object states within & for tracklet 7; and each tracklet 7} which begins in frame ¢. A
tracklet T; being tracked which has a distances d(i, j) < ¢ is said to have converged to
tracklet 7} in the forward pass and MCMC tracking on 7; is terminated (i.e. particles
will no longer consider T;). In our experiments, we define the threshold § to be the
average minimum dimension of the user marks. We repeat the same procedure in
the backward direction for tracklets who begin later than the initial frame of the
video. After the forward and backward passes, the stage is complete and tracklets
with unique and agreeing convergence in both directions are associated.

Matching could continue until to no further connections are made between the
stages, although we found that ID switches are much more likely to occur during
the final few stages if one uses such a stopping criteria. Additionally, each stage
is computationally expensive, and the number of connections made during the final
stages is few. Because ID switch errors are more costly to correct than fragment errors

during user correction, we set the system to stop further matching stages when ten or

28

fewer tracklet associations are established in a single stage. This policy produces an
acceptable reduction in fragments without the risk of incurring numerous ID switch

errors.
3.3 Error Correction

The design goals for the correction portion of the application were: total control —
enable the user to make any correction they see necessary, and efficiency — promote
efficiency in terms user time and effort. We provide two correction modes withing
the application which roughly address each of the two design goals. The first mode,
manual mode, displays all of the tracklets within the video, allowing the user to
locate any errors and directly invoke correction operations to fix them. Tracking
failures produced by the system fall into one of six categories (listed in table [2]).
These failure types represent the complete set of correction operations needed by
the manual correction mode to satisfy the total control requirement. Section [3.3.1
discusses implementation details for the set of manual operations. The second of the
two modes provided is Guided mode. Before the user begins the correction phase,
the backend inspects the results produced by the tracker to locate potential errors.
Specifically, possible fragment and ID switch errors are determined and captured as
“reviews” to be presented to the user in prioritized order. Section [3.3.2| provides

details on developing guided correction reviews.

29

Table 2: List of tracking failures the user will need to be able to correct and their
descriptions.

Tracking Failure Description

Fragment Tracking fails to associate multiple tracks covering a sin-

gle object. Tracks could be temporally separated or over-

lapping (leap frog).

ID Switch Tracking makes an incorrect association causing one
track to cover one object at some point in the video and

a different object later.

Missed Object (FN) | An object is never covered by a track at any point in the

video.

False Track (FP) A track never covers an object in the video, or does but

less appropriately than other track.

Off target Some portion of a track does not accurately represent
the state of the object it covers (location, orientation, or

size)

Incomplete coverage | Either the beginning or ending portions of an object vis-

ible in the video is not covered by a track.

Each manual operation made or guided review answered through the application
frontend is converted to an API request and delivered to the backend. Processing

time varies for different requests and forcing the user to wait for each operation

30

to be completed by the backend would be detrimental to overall time spent during
correction. We include a backlog queue of correction requests invoked and design
the backend to maintain the integrity of all backlogged requests as it processes the
queue. After each correction request is applied, the backend informs the frontend
of changes made to the current state of the tracking results and also provides the

updated set of unanswered guided correction reviews.
3.3.1 Manual Correction Operations

In order to provide full flexibility for correcting tracking failures the system in-
cludes five manual correction operations (listed in Table [3)) that enable correcting
any possible error in the tracking results. Each of the manual correction operations

has a corresponding API command available to the frontend.

Results Overview

Join Tracks:
Adjust Track: Joins/connects together two Break Track:
seperate tracks, resulting in one
Adjust the position, size, track afterwards. Breaks the selected tra_ck at
and length of an existing (roughly) the current time
track. point in the video. The
selected track then
. becomes two seperate
\ /i tracks.
‘Remove Track: Add Track:

Allows for defining a

Removes the selected track. completely new track.

Figure 8: Illustration of the manual operations available for error correction. This is
one of several help dialogs provided to the user within the application.

31

Table 3: List of manual correction operations available and what tracking failures
they are intended to address (see table .

Manual
Description Failures Addressed
Operation
Join Connects, or merges if temporally overlay- | Fragments
ing, two separate tracks
Break Separates a single track into two tracks, | ID Switches
roughly around the defined frame
Add Create a new track Missed Object (FN)
Remove Deletes a track entirely False Track (FP)
Adjust Redefines any combination of location, ori- | Incomplete coverage
entation, size and duration properties of a | & off target
track

The join command accepts two unique ID values of the tracklets involved in the
join. First, a check is made to determine whether the two tracks temporally overlap
one another. In the case of no temporal overlap, the two tracks are associated to form
a single tracklet. Two situations can arise in the case of temporal overlap between
the tracks. To determine the best way of merging the overlap between the tracks, we
take advantage of the fact that the system keeps a record of every association made
within a tracklet and stores this information in the tracklet’s connections property.

The connections between the two tracks are compared to determine if a leap-frog has

32

occurred. Leap-frog connections result when three or more tracklets are correctly
connected (technically) but skip an intermediate tracklet. Leap-frogs typically occur
from suboptimal manual joins by the user or errors made by the system in an attempt
to filter possible answers for guided fragment reviews. If a leap-frog has occurred,
then the overlapping region of the tracks are merged by replacing interpolated gap
portions with the location values of the intermediate tracklet that was leaped over.
The remaining cases of joins involving tracklets with temporal overlap are handled
by determining the longer of the two tracks and using its locations values as the
merge result of the overlapping region. The result of the join operation is a single
tracklet that is assigned the ID of the tracklet that starts first (i.e. closer to the
initial frame of the video). All requests in the backlog involving a track ID of either
of the two tracklets joined are updated to the appropriate ID resulting from the join.
All guided reviews have their possible answers and priority values updated.

The break operation accept a tracklet ID and a frame number. Information related
to connections made to form the tracklets are abstracted from the user and because
of inaccuracies related to the frontend video player some inference must be made to
determine what section of the tracklet should be broken. Again, we use the stored
connection information of the tracklet. First, nearby connections are located by
searching for connections made within the tracklet that are within 30 frames of the
defined frame. If two or more connections are near, then the nearby connection
starting soonest and the nearby connection ending latest are broken. The region

between the two broken connections is discarded (along with any reviews associated).

33

Figure 9: This shows the correction interface while performing manual corrections.

Figure 10: Demonstrates how the user can highlight individual tracks. Right clicking
the track presents all operations that can be performed.

34

If there is only one nearby connection, then it is broken. In the remaining case, no
nearby connections, we force a break on the tracklet that spans 30 frames centered
about the defined frame. The result of the break operation is a single tracklet split
into two tracks where the latter portion of the broken tracklet is assigned a new
ID. Any guided reviews particular to the latter portion of the unbroken tracklet are
transferred. Similar to join operation, the system must update backlogged operations
to maintain their integrity, and all guided reviews must have their possible answers
and priority values updated.

Adjustment operations accept a tracklet ID, a set of one or more frame numbers,
and location/orientation values for each of the specified frames. An optional size
parameter can also be provided. First, the frame number are checked to determine
if they span beyond the current span of the defined tracklet. If so, the tracklet is
expanded to ensure it covers the defined frames. Next, location/orientation provided
are assigned to the tracklet. Any guided fragment review associated with the adjusted
tracklets is updated to reflect any changes in the starting/ending frame of the track.
The add operation is nearly identical to the adjustment operation except no ID is
specified and results in an entirely new tracklet.

The final manual operation available is the remove command. It accepts only
one input value, the ID of the track to remove. After removal of the track, any
guided reviews pertaining to the removed track are flagged as invalid, and backlogged
operations are updated to maintain their integrity by also flagging them as invalid if

they involve the removed tracklet.

35
3.3.2 Tracklet Reviews for Guided User Correction

The primary purpose of guided correction reviews is to accelerate the rate of
locating and correcting tracking failures for the user. We present two types of guided
reviews for achieving such, which we will refer to as fragment reviews, and connection
reviews.

Fragments are typically the most common type of error in many tracking algo-
rithms. A very simple search heuristic, tracklets shorter than the length of the video,
can detect errors concerning pairs of tracklets that should have been connected with
%100 recall and to some level of precision depending on the frequency of objects
entering and exiting the scene. To correct tracklet fragments, we need to know the

proper association that the tracker failed to establish. After performing tracking,

(: N : .
Fragment Review: Connection Review:
The application will locate any tracks that are likely The application will locate connections made during
to be fragmented and guide you through finding tracking that are possibly incorrect and simply ask
an appropriate connection to correct the fragment. you to confirm if the connection was correct.
3
R
N
\ J
\, Y.

Figure 11: Illustration of the two review types available for guided error correction.
This is one of several help dialogs provided to the user within the application.

36

How to:

A choiceis
correct
— Click the correct

choice and select:
“Connect to this”

You will be shown a track

to follow, begin by pressing _ _ _)
“Start” or clicking the video. ¥
This will start the video and
then show you a set of
possible choices. —
\) " No correct
choices

Press “Continue”
below the video
for more choices

o J/

Figure 12: How the systems guides the user to correct fragmentation errors through
fragment reviews. The tracklet likely to be fragmented is focused prior to the user
initiating the review. Possible answers are then presented through video playback.

we take the set of resulting tracklets and determine which tracks do not span the
entire duration of the video. A fragment review is created for each of these to be
presented to the user. Because of how these reviews are displayed to the user for
answering, the number of possible answers (i.e. tracklets which could be associated
with the fragment) becomes a significant factor in how long each fragment review will
take to answer. The higher the number of possible answers, the more frequently the
application will need to halt and allow the user to answer. We reduce the number
of possible answers by using information contained in the OsT structure. Similar
to how Fasciano et al. uses OsT for filtering possible associations during tracklet
matching, we do the same for filtering answers available to the user.

ID Switches (IDS) can be difficult to locate automatically as well as for the user

without watching the video playback of the tracking results several times. Though

37

Fragment Review

Figure 13: Guided correction example for fragment review. The top image show
the beginning state of the review and after starting the review a set of answers are
presented as in the bottom image.

38

How to:
Indicate the
connection
Remains was correct by

on target clicking the

option:

You'll be shown a track
to follow, begin by pressing Indicate the
“Start”. The the video will play connection
A . was incorrect by

for a short duration and ask if clicking the

the track remained on the Moves from option:

same object during the period. target

®

Figure 14: How the systems guides the user to correct ID switch errors through
connection reviews. The tracklet containing a connection likely to be IDS is focused
prior to the user initiating the review. The video plays for a moment to show the
connection made and then allows the user to answer if the connection was appropri-
ate.

such errors can happen during any association module, primarily occur after detec-
tion association. Because the detection confidence scoring function was specifically
trained to give low scores to patches located between tracklets, we use this as a
means of detecting tracks that switch from one object to another (thus some detec-
tion patches should between the objects). For each connection, we use the detection
confidence scoring function to calculate the mean confidence among frames within
the connection.

Each connection made has a connection review created for it and the set of connec-
tion reviews are ranked based on their mean confidence score. Although connection
reviews can be processed quickly by the user (less than four seconds apiece usually),

it would be too time-consuming to review all connections made during tracking. We

39

create a pool of connection reviews that will be examined by the user and increase
its size as incorrect connections are pointed out. The initial size of the pool is set
to be roughly 3% of the total number of connections made during matching and is
populated based on the mean confidence score assigned to the connection reviews
as previously discussed. For each connection review answered as incorrect, the pool
is expanded to include an additional 1% of the total connections made. When the
pool has been exhausted, the system suggests to the user to continue finding any

remaining IDS through manual corrections.

40

Figure 15: Guided correction example for connection review. The top image show
the beginning state of the review. After starting the review the video plays to show
the connection made and then allows to the user to answer (bottom image).

CHAPTER 4: EVALUATION

In this chapter we examine the performance of both specific parts of the ABC-
Tracker system as well as how the application performs as an end-to-end system. The
next few sections evaluate two critical areas of the system individually, specifically
tracking performance and ordering of connection reviews for locating ID switch fail-
ures during guided user correction, on several challenging datasets. We then present
the results of a user study conducted to determine user efficiency and effectiveness

towards collecting accurate tracking data on a video.
4.1 Tracking Performance Evaluation

First, we assess the performance of the application’s “default” tracker as described
in section and compare it with the work of [7]. We perform tracking evaluation
with a total of nine 5,000 frame video recordings of biological objects. Seven record-
ings consist of 30 to 50 ants of which four videos have a small number of the objects
entering and exiting the scene. Some of the ants within these videos have been
painted to assist in identification. Two videos are of 22 unmarked Macrotermes
Michaelseni termites confined to a circular dish captured at 15 frames per second.
Ground truth was gathered for each video for assessment of tracking performance.
We use the same evaluation metrics as used by [I11, 9 [6]. Table {4 lists the metrics

and their meanings.

42

Table 4: List of tracking evaluation metrics used for comparing performance of track-
ing algorithms.

Metric Name Description

Fragment (Frag) When a ground truth trajectory is interrupted by

tracking results. (Failure to associate)

ID switch (IDS) When an object track changes its matched ground

truth identity. (Incorrect association)

Mostly Tracked (MT) Ground truth trajectory tracked for more than 80%

of video.

Partially Tracked (PT) Ground truth trajectory tracked between 20% and

80% of the video.

Mostly Lost (ML) Ground truth trajectory tracked for less than 20%.

Recall (Rec) Percentage of ground truth locations covered by a

track (sometimes called APTA).

The method compared against [7] follows a tracking-by-detection approach and
utilizes the foreground occlusion sub-tunnels for filtering incorrect connections dur-
ing iterative stages of tracklet association. A HybridBoost tracklet affinity scoring
function [9] is trained offline for each stage of matching. Offline learning is also per-
formed for training the object detector. Parameter values for all tracking subroutines
in [7] and features used by the tracklet affinity scoring function (particularly motion

features) are manually tuned. Additionally, location values for all objects within

43

Table 5: The average tracking performance comparison on four 5,000 frame videos
from the C5/6 ant dataset between the method of [7] and the proposed method.

C5/6 Ant Colony Dataset
| Method [Frag IDS MT PT ML |

Fasciano [7] || 44.8 6.8 18.5 153 7.8
Proposed 15.8 4.0 11.0 25.0 5.5

Table 6: The average tracking performance comparison on two 5,000 frame videos
from the BR termite dataset between the method of [7] and the proposed method.

Termite Dataset

| Method [Frag IDS MT PT ML |

Fasciano [7] 32 12 195 25 0
Proposed 42.5 1 155 55 1

the initial and ending frames of each video tested are supplied for still object detec-
tion. Our proposed method only requires user answers to the questions asked during
initialization of a tracking process as described in [3.2] Table [shows the average
results of evaluation on the ant colony datasets and [6] shows the average results on

the termite datasets.

44

Figure 16: Example results on one of the termite datasets.

Figure 17: Example results on one of the ant colony datasets that do not allow
enter /exit.

45

Figure 18: Example results on one of the ant colony datasets which allow enter /exit.
Specifically, this is the C61 dataset from the C5/6 ant colonly dataset collection.

4.1.1 Evaluation of IDS Review Ordering

As previously discussed, ID switch errors are usually the most difficult tracking
failures to locate and can cause significant representation mistakes in the tracking
information gathered. Here we evaluate the system’s ability to rank connection
reviews (as described in section so the user can quickly identify incorrect
associations made during tracking. We use the same set of videos to evaluate the
ranking performance as were used for evaluating tracking accuracy in section
Tracking is first performed for each video given user initialization question answers;
then connection reviews are generated based on associations made by the tracker
between pairs of tracklets. After ranking connection reviews as described in section
[3:3:2] the ground truth is used to determine incorrect tracklet associations made by

the system. Figures and [21] show the number connection reviews that would

46

need to be reviewed to locate a particular percentage of the ID switches incurred. In
each plot the vertical red line represents where the system would suggest that the

user discontinues reviewing connections in guided correction mode.

o
@
T

% IDS Found

0 1 1 1 Il L | I 1 L 1 L | 1 1 1 1 Il 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 <700 750 800 850 900 950
Number of Connection Reviews

(a) Ant Colony Dataset - 1 (Treatment2162)

1 T T T T T T T T T

% IDS Found
[=]
IS
T

| I | 1 | | 1 | | 1 | | 1 | I 1 | I
o 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Number of Connection Reviews

(b) Ant Colony Dataset - 2 (Baseline281)

Figure 19: Visualization of performance for ordering connection reviews. The vertical
red line represents the number of reviews that the user will be shown given an initial
pool size of 3% and 1% pool increase for each incorrect connect flagged. Note that
we have not shown ordering results for the DSC-0003 ant dataset as no IDS occurred.

47

1 T T T T T T T T T T T
0.8} -
=
5
2 06 -
w
@
S pal 4
=
0z} -
0 1 1 I 1 1 1 I I 1 1 1 I 1 I 1
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Number of Connection Reviews
(a) Ant Colony Dataset - 3 (C51)
1 T T T T T T T T T T T
0.8} -
-
E]
3 06 -
w
@
S o4} -
=
0z} -
0 I 1 1 1 1 1 1 1 I 1 1
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Number of Connection Reviews

(b) Ant Colony Dataset - 4 (C52)

Figure 20: Visualization of performance for ordering connection reviews. The vertical
red line represents the number of reviews that the user will be shown given an initial
pool size of 3% and 1% pool increase for each incorrect connect flagged.

T T T T T T T T T T T T T T
08 4
=
Soe- -
=
o
%]
(=1
= 04 -
a2
0.2 —
o I I 1 I | 1 | I 1 I I I I | 1 | I L
o 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
Number of Connection Reviews
(a) Ant Colony Dataset - 5 (C61)
1 T T T T T T T T T
08 —
-
S o6} -
=]
[
w
(=]
= 04l 1
=
02 -
o | 1 | 1 I 1 I 1 I 1 I 1
o 50 100 150 200 250 300 350 400 450 500 550 600

Number of Connection Reviews

(b) Ant Colony Dataset - 6 (C62)

Figure 21: Visualization of performance for ordering connection reviews. The vertical
red line represents the number of reviews that the user will be shown given an initial
pool size of 3% and 1% pool increase for each incorrect connect flagged.

48

Table 7: The Results of the user study conducted with ant colony dataset C061 using
(a) system design described by [14] and (b) the proposed system. Note that the the
work of Nguyen et al. performed gap filling after user corrections but the proposed
system does not. This explains the difference in recall values reported between the
two approaches as gap filling has a significant impact on recall.

User Study Stage within Frg | IDS | Rec | User Time
Nguyen et al. [14] (min)
Tracking Results 43.0 | 15.0 | 0.41 n/a

Expert User Corrected 4.3 | 3.3] 0.97 18.8
(a)
User Study Stage within Frg | IDS | Rec | User Time

Proposed System (min)
Tracking Results 12.0 | 1.0 | 0.66 10.95
Expert User Corrected 1.5 | 0.0 | 0.68 10.69

(b)

4.2 User Study

Here we evaluate the proposed system as a whole by means of a user study. To
compare our system with the prior work of Nguyen et al. [14] the study was conducted
on a 5000 frame video of 33 Temnothorax Rugatulus ants recorded at 30 frames per
second. A sample image from the dataset is shown in Figure I8 Ground truth
for this video was used to measure the accuracy of the tracking results and user
corrections.

The study consisted of two participants who were asked to: create a new tracking
process for the video, answer the initial set of questions as outlined in section [3.2.1]
run tracking, and afterward perform corrections. We compare the results of the user
study on our system against the work of Nguyen et al. [14] in table [T} Because the
work of [I4] used offline trained models and parameter values tuned by an expert

specifically to the input video (i.e. participants of their study did not perform pa-

49

Table 8: Average interaction time breakdown for users of the proposed system.

Time in | Time in | Number of Time/ Number of Time/
Manual | Guided | Connection | Connection | Fragment Fragment
Mode Mode Reviews Review Reviews Review

(min) (min) (sec) (sec)
| 354 | 716 | 39 | 355 | 11 | 2646 |

rameter tuning or any other form of tracker modifications) there is no value to report
for user time spent obtaining raw tracking output. Again, we point out that such an
approach does not generalize as well as our system.

From table 7| we can see that the total time spent by the user for our system was
roughly 22 minutes. This total time is only slightly more (about 4 minutes) than the
time users spent performing corrections using the compared method and includes
the period for tuning the tracking algorithm. Additionally, there were fewer errors
overall produced by users of our system resulting in an 87.5% reduction in fragment
errors over the prior work and all IDS errors corrected. Table [§] provides a detailed
breakdown of time spent by users during the study. A majority of user time was
spent within guided correction mode, and individual reviews took on average 3.55
seconds and 26.46 seconds for connection and fragment reviews respectively. These
experimental results demonstrate that the proposed system can effectively allow users
to tune tracking parameters, obtain raw tracking results and correction errors within

the results.

CHAPTER 5: CONCLUSION

We have proposed a new end-to-end system for tracking multiple objects in a
video sequence. We discuss the current state of software tools available for collecting
tracking information and their limitations. The proposed system can tune parameters
of the tracking algorithm given user answers to a set of simple questions. Tracking
performance of algorithms used by the system showed on average improvement in
ID switches and comparable performance regarding fragments when evaluated on
several challenging datasets. As discussed, the reduction in ID switch frequency
has a significant impact on user correction time. During the guided portion of user
correction within the application, we show that roughly 90% of ID switches occurring
in the tracking results can be automatically located and corrected in an efficient
manner and only requires the user to review less than 7% of the connections made
during tracking. Additionally, results of a user study show that users can correct
100% of the IDS failures and 88% of the fragment errors made by the tracking

algorithm in approximately 10 minutes.
5.1 Future Work

Improved to the ABCTracker system are actively being made with feedback from
its users. Luckily the system has many design features in place to accommodate

new advances in automated tracking through its modular subroutine representation.

51

Specific directions for future work include improving the guided correction mode by
incorporating new review types for correcting portions of tracks containing poor or
uncertain localizations. Guided correction mode could be refining by leveraging fur-
ther how tracking-by-detection methods operate for ordering guided reviews. Offline
models could be trained for specific types of objects or recording conditions and
based on user marks (i.e. image patches of the target objects) applied when appro-
priate. Additionally, foreground classification should be enhanced to handle complex

scenarios such as heavy debris and recordings made with moving cameras.

1]

2]

[10]

[11]

52
REFERENCES

S. Aslani and H. Mahdavi-Nasab. Optical flow based moving object detection
and tracking for traffic surveillance. International Journal of Electrical, FElec-
tronics, Communication, Energy Science and Engineering, 7(9):789-793, 2013.

il

K. Branson, A. A. Robie, J. Bender, P. Perona, and M. H. Dickinson. High-
throughput ethomics in large groups of drosophila. Nature methods, 6(6):451—

457, 2009. [} [} [IT]

S. Bustamante and A. R. Amarillo-Suarez. Antcounter software: Counting leaf-
cutting ants was never so precise, fast and easy. Journal of Insect Behavior,

29(3):262-272, 2016. [1}, [9]

M. Cristani, R. Raghavendra, A. Del Bue, and V. Murino. Human behavior
analysis in video surveillance: A social signal processing perspective. Neuro-
computing, 100:86-97, 2013. [I]

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 886-893. IEEE, 2005.

T. Fasciano, A. Dornhaus, and M. C. Shin. Ant tracking with occlusion tunnels.
In IEEE Winter Conference on Applications of Computer Vision, pages 947—

952. IEEE, 2014. 22} 23]

T. Fasciano, A. Dornhausy, and M. C. Shin. Multiple insect tracking with
occlusion sub-tunnels. In 2015 IEEE Winter Conference on Applications of
Computer Vision, pages 634-641. IEEE, 2015. 21} 2] [41], 42} 43|

M. Fletcher, A. Dornhaus, and M. C. Shin. Multiple ant tracking with global
foreground maximization and variable target proposal distribution. In Applica-
tions of Computer Vision (WACV), 2011 IEEE Workshop on, pages 570-576,

Jan 2011. [26] 27]

C. Huang, B. Wu, and R. Nevatia. Robust object tracking by hierarchical
association of detection responses. In Furopean Conference on Computer Vision,

pages 788-801. Springer, 2008. [23] 41}

Z. Khan, T. Balch, and F. Dellaert. Mcmc-based particle filtering for tracking
a variable number of interacting targets. IFEE transactions on pattern analysis
and machine intelligence, 27(11):1805-1819, 2005.

Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hybridboosted multi-
target tracker for crowded scene. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 2953-2960. IEEE, 2009.

[12]

[15]

[16]

[17]

[24]

93

T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, and A. Martinoli.
Swistrack - a flexible open source tracking software for multi-agent systems. In
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4004-4010, Sept 2008. [1], O}

D. P. Mersch, A. Crespi, and L. Keller. Tracking individuals shows spatial
fidelity is a key regulator of ant social organization. Science, 340(6136):1090—
1093, 2013. [1]

H. Nguyen, T. Fasciano, D. Charbonneau, A. Dornhaus, and M. C. Shin. Data
association based ant tracking with interactive error correction. In IEEE Winter
Conference on Applications of Computer Vision, pages 941-946. IEEE, 2014. 9]

23} B8

C. Poff, H. Nguyen, T. Kang, and M. C. Shin. Efficient tracking of ants in long
video with gpu and interaction. In Applications of Computer Vision (WACYV),
2012 IEEE Workshop on, pages 57-62, Jan 2012. [J]

G. M. Rao and C. Satyanarayana. Visual object target tracking using particle
filter: a survey. International Journal of Image, Graphics and Signal Processing,
5(6):1250, 2013.

N. Razin, J.-P. Eckmann, and O. Feinerman. Desert ants achieve reliable re-
cruitment across noisy interactions. Journal of The Royal Society Interface,

10(82), 2013.

J. Saragosti and D. J. Kronauer. Animal behavior: The truman show for ants.

Current Biology, 23(13):R568 — R570, 2013.
T. D. Seeley. Honeybee democracy. Princeton Univ. Press, 2010.

A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,
and M. Shah. Visual tracking: An experimental survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(7):1442-1468, July 2014.

D. Surie, B. Baydan, and H. Lindgren. Proxemics awareness in kitchen as-a-pal:
Tracking objects and human in perspective. In Intelligent Environments (IE),
2013 9th International Conference on, pages 157-164, July 2013.

C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scaling up crowdsourced
video annotation. International Journal of Computer Vision, pages 1-21, 2012.

10.1007/511263-012-0564-1. [1}, [§] [9

C. Vondrick and D. Ramanan. Video annotation and tracking with active learn-
ing. In Advances in Neural Information Processing Systems, pages 28-36, 2011.

[0 B 1

A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm computing
surveys (CSUR), 38(4):13, 2006.

o4

[25] J. Yuen, B. Russell, C. Liu, and A. Torralba. Labelme video: Building a video
database with human annotations. In 2009 IEEE 12th International Conference
on Computer Vision, pages 1451-1458. IEEE, 2009. [1} [9

