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Abstract

MOHAMMADREZA BAHARANI. An Integrative Algorithm/Architecture
Co-Design Of Deep Spatial and Temporal Separable Convolutional Neural

Networks. (Under the direction of DR. HAMED TABKHI)

In this dissertation, I present my researches on the co-design of algorithms and archi-

tectures for deep spatial and temporal separable convolutional neural networks and

their applications. As a first step, I will present Deep RACE as an application of Deep

Neural Network (DNN) in the real-time reliability monitoring of transistors. Then,

I will introduce DeepDive, a framework for enabling the execution of power-efficient

spatial deep learning models on embedded FPGA. In addition, Agile Temporal Convo-

lutional Network (ATCN) is proposed for fast time series prediction and classification

in resource-constrained embedded systems. Finally, DeepTrack, which is based on

ATCN, is introduced for vehicle trajectory prediction in highways. The significance

of each of them is briefly explained below.

At first, this dissertation describes a novel approach, Deep Learning Reliability

Awareness of Converters at the Edge (Deep RACE), for real-time reliability mod-

eling and prediction of high-frequency MOSFET power electronic converters. Deep

RACE offers a holistic solution that comprises algorithm advances, and full system

integration (from the cloud down to the edge node) to create a near real-time reliab-

ility awareness. On the algorithm side, I propose a deep learning algorithmic solution

based on stacked LSTM for collective reliability training and inference across collective

MOSFET converters based on device resistance changes. Deep RACE also proposes

an integrative edge-to-cloud solution to offer scalable decentralized devices-specific

reliability monitoring, awareness, and modeling. The MOSFET convertors are IoT

devices that have been empowered with edge real-time deep learning processing cap-

abilities. The proposed Deep RACE solution has been prototyped and implemented

through learning from the MOSFET data set provided by NASA. Our experimental
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results show an average miss prediction of 8.9% over five different devices which is a

much higher accuracy compared to well-known classical approaches (Kalman Filter,

and Particle Filter). Deep RACE only requires 26mS processing time and 1.87W

computing power on edge IoT devices.

Then, this dissertation introduces DeepDive, which is a fully-functional, vertical

co-design framework, for power-efficient implementation of Deep Separable Convolu-

tional Neural Networks (DSCNNs) on edge FPGAs. DeepDive’s architecture supports

crucial heterogeneous Compute Units (CUs) to fully support DSCNNs with various

convolutional operators interconnected with structural sparsity. It offers FPGA-aware

training and online quantization combined with modular synthesizable C++ CUs,

customized for DSCNNs. The execution results on Xilinx’s ZCU102 FPGA board,

demonstrate 47.4 and 233.3 FPS/Watt for MobileNet-V2 and a compact version of

EfficientNet, respectively, as two state-of-the-art depthwise separable CNNs. These

comparisons showcase how DeepDive improves FPS/Watt by 2.2× and 1.51× over

Jetson Nano high and low power modes, respectively. It also enhances FPS/Watt by

about 2.27×.

Next, this dissertation presents a scalable deep learning model called ATCN for

high-accurate fast classification and time series prediction in resource-constrained em-

bedded systems. ATCN is primarily designed for mobile embedded systems with per-

formance and memory constraints, such as wearable biomedical devices and real-time

reliability monitoring systems. It makes fundamental improvements over the main-

stream temporal convolutional neural networks, including the incorporation of sep-

arable depth-wise convolution to reduce the computational complexity of the model

and residual connections as time attention machines, to increase the network depth

and accuracy. The result of this configurability is that the ATCN becomes a family of

compact networks with formalized hyperparameters that enable application-specific

adjustments to be made to the model architecture. As part of the present work, three
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ATCN families, namely T0, T1, and T2, are also presented. T0 and T1 are compiled

and executed on the Cortex-M7 microcontroller, and all three models are executed on

the Cortex-A57 processor. An evaluation of the accuracy and execution performance

of the three models against the best-in-class InceptionTime shows that ATCN can not

only improve accuracy but also enable time series classification on microcontrollers

and improve the execution time on legacy microprocessors.

Intelligent transportation systems that have to perform precise trajectory predic-

tion are vital; however, model complexity and memory footprint of these smart sys-

tems are also critical factors as they are generally deployed at the edge. Towards this

end, I will present DeepTrack, a model based on ATCN that has better or comparable

accuracy to existing models, but is smaller and has a lower computational complexity

suitable for embedded systems. In contrast to previous methods, the vehicle dy-

namics are encoded using ATCNs rather than LSTMs, which are synonymous with

time series analysis. According to experimental results, DeepTrack performed better

than state-of-the-art trajectory prediction algorithms not only in terms of average

displacement error but also in terms of MACs and model size as well.



vii

ACKNOWLEDGEMENTS

Throughout this dissertation I had the support of my adviser Dr. Hamed Tabkhi,

who helped me to complete this task. In addition to his positive attitude toward

research, he helped me believe that I could achieve my goals.

My thanks also go to my dissertation committee members, Dr. Andrew Willis, Dr.

Babak Parkhideh, and Dr. Gary Teng.

It’s been an honor to have support from my peers at UNC-Charlotte. There have

been so many amazing people in the course of my daily life that I might not have

been able to name them all. I wish to extend my most sincere thanks to Mehrdad

Biglarbaigian, Ushma Sunil Bharucha, Kaustubh Manohar Mhatre, Steven Furgurson,

Vinit Katariya, and many others in the TeCSAR Lab for unforgettable memories.



viii

DEDICATION

I would like to dedicate this thesis to my lovely wife, Maryam.

Throughout graduate school and life for the past eight years, Maryam has been an

invaluable source of support and encouragement for me. My life would not be the

same without you. I also like to dedicate this work to my parents, Mohammad and

Esmat, whose unwavering love has always been a source of motivation and whose

good examples have inspired me to strive hard for the things that I aspire to achieve.



ix

TABLE OF CONTENTS

LIST OF FIGURES xiii

LIST OF TABLES xvii

LIST OF ABBREVIATIONS xix

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Contributions to the Body of Knowledge 5

Bibliography 7

CHAPTER 2: DEEP RACE 12

2.1. Introduction 12

2.2. Related Work 14

2.2.1. Reliability analysis/prediction in power electronics 15

2.2.2. Precursor identifications in power MOSFET degrada-
tion

15

2.3. Motivation and RNN Background 16

2.3.1. Limitation of Classical Approaches 17

2.3.2. Recurrent Neural Networks 18

2.4. Deep Learning Reliability Awareness of Converters at the Edge
(Deep RACE)

20

2.4.1. Algorithmic Constructs for Device Reliability Model-
ing

20

2.4.2. Proposed IoT Framework 25

2.5. Experimental Results 29

2.5.1. Experimental training of power transistors 29



x

2.5.2. Edge Node Hardware Setup 31

2.5.3. Reliability Modeling and Prediction 31

2.5.4. Power consumption and processing time analysis 35

2.6. Conclusion and Future Work 37

Bibliography 38

CHAPTER 3: DEEPDIVE 43

3.1. Introduction 43

3.2. Related Work 46

3.3. Algorithmic Principles of Deep Separable CNNs 48

3.4. DeepDive: Front-end 52

3.4.1. Batch-Normalization Fusing 52

3.4.2. Online Channel-wise Low-bit Quantization 53

3.5. DeepDive: Back-end 55

3.5.1. Convolutional Operators 55

3.5.2. Network SoC Compiler 60

3.6. Experimental Results 66

3.6.1. Case Study: MobileNet-V2 67

3.6.2. Case Study: EfficientNet 69

3.7. Conclusion 70

Bibliography 72

CHAPTER 4: ATCN 77

4.1. Introduction 77

4.2. Related Works 79



xi

4.3. Background: Temporal Neural Networks 81

4.4. ATCN: Agile Temporal Convolutional Networks 83

4.4.1. Network Structure 83

4.4.2. ATCN hyper-parameters 86

4.4.3. ATCN Model Synthesizer 88

4.4.4. ATCN Families 89

4.5. Experimental Results 90

4.5.1. Dataset 90

4.5.2. Implementation details 94

4.5.3. Algorithmic Comparison 94

4.5.4. Execution Comparison 95

4.5.5. Architectural configuration study 96

4.6. Conclusion 98

Bibliography 100

CHAPTER 5: DEEPTRACK 105

5.1. Introduction 105

5.2. Related Work 106

5.3. DeepTrack 108

5.3.1. Agile Temporal Convolutional Networks (ATCN) 108

5.3.2. Problem formulation 111

5.3.3. Model architecture 112

5.3.4. LSTM decoder 114



xii

5.4. Evaluation 114

5.4.1. Datasets 114

5.4.2. Implementation Details 115

5.4.3. Metric 115

5.4.4. Quantitative Results 115

5.4.5. Qualitative Results 117

5.5. Conclusion and Future Works 118

Bibliography 120

CHAPTER 6: Conclusions 124



xiii

LIST OF FIGURES

FIGURE 2.1: MOSFET ∆Rds(on) Precursor Identifier: The trajectory
Rds(on) for five different MOSFET devices.

17

FIGURE 2.2: Recurrent Neural Networks: The schematic of standard
RNN cell and its unrolling version for four input time sequence

19

FIGURE 2.3: A single LSTM cell: Inside of an LSTM cell consisting of
three gates and the state of the cell is preserved by variable ct.

22

FIGURE 2.4: Batch tensor configuration: Three dimensional batch tensor
with a characterized vector Rk

mt.
23

FIGURE 2.5: The stacked LSTM: An unrolled LSTM cell predicts the
next n samples of ∆Rds(on) based on last sensed data.

25

FIGURE 2.6: The proposed deep LSTM network model: A dense layer
is added to the deep stacked LSTM to map ht to on-line measured
∆Rds(on) at time t.

25

FIGURE 2.7: The Deep RACE Framework: The proposed solution accu-
mulates the knowledge of power transistor degradation model on the
cloud-side by training the LSTM network, while real-time prediction
and inference is accomplished on the edge side.

28

FIGURE 2.8: The scalability of Deep RACE: As new edge is added to
the framework, its extracted ∆Rds(on) is transfered to the cloud to
be used both as training data set (for other devices) and test data
set to prevent over fitting problem.

28

FIGURE 2.9: Experimental Verification: The hardware realization of
Deep RACE including the high-frequency power converter control-
ler, and the SoC-TX2 for edge computation. The supervisory control
is designed for the safety protection.

32

FIGURE 2.10: Experimental results: The resistance variation of given
five power modules, which were predicted by Deep RACE method.

33

FIGURE 2.11: Error distribution: The box-whisker plots of prediction
error for five power modules.

35



xiv

FIGURE 2.12: Aggregated training: The ∆Rds(on) prediction error is
decreased exponentially by increasing the training device per each
batch. This aggrigated training will help the Deep RACE to gener-
alize the different transistor degradation behavior.

36

FIGURE 3.1: DeepDive integrative design flow. 44

FIGURE 3.2: Different convolutional operators. 50

FIGURE 3.3: Inverted Residual Block (IRB) for MobileNet-V2 (a) and Ef-
ficientNet (b), respectively. The illustration of Batch Normalization
and Activation layers repeated after each convolution are ignored.

51

FIGURE 3.4: DeepDive: Front-end. 53

FIGURE 3.5: Per-channel range-based linear quantization. In this depth-
wise convolution example, per each N output channel, a separate
mapping function is created.

54

FIGURE 3.6: DeepDive: Back-end. 56

FIGURE 3.7: Shift and update mechanism of Window and Line Buffer.
1○ Line Buffer is filled with input feature data. 2○ Window Buffer is
convoluted with weights. 3○ The data in window is left shifted. 4○
New data from the line buffer is copied in to the window. 5○ & 6○
Data from the FIFO is then copied into the line buffer and window
buffer. All the Data Movements are pipelined.

56

FIGURE 3.8: Schematic block diagram of depthwise and normal convo-
lution.

57

FIGURE 3.9: Schematic block diagram of pointwise convolution. 59

FIGURE 3.10: System level architecture of DeepDive. 61

FIGURE 3.11: Architecture of QNet Heterogeneous Computing Units for
MobileNet-V2.

62

FIGURE 3.12: Host level scheduling and memory footprint of CUs. 64



xv

FIGURE 3.13: The effect of different computation types on Top1-accuracy
and model size. Based on Fig. 3.13(a), UInt4 has almost accuracy
similar to floating-point, while a notable drop can be observed for
UInt3. Also, Fig. 3.13(b) shows integer quantization causes an ex-
ponential decrease in the model size.

66

FIGURE 3.14: Top1-Network Complexity Pareto front. Design point
(H = 96, α = 1) has similar network complexity while is Top1 accur-
acy is less than (H = 224, α = 0.5).

67

FIGURE 3.15: The Accuracy Density ρ comparison of three networks
from Xilinx Model Zoo, Resnet-18, SqueezeNet, and MobileNet-V2
quantized in 8-bit, and seven configurations compressed by DeepDive
front-end.

69

FIGURE 3.16: EfficientNet mapped to CUs. 70

FIGURE 4.1: Model complexity comparison of three different ATCN fam-
ilies against InceptionTime (IT)

78

FIGURE 4.2: Dilated Causal Convolution. 81

FIGURE 4.3: Structure of Generic TCN. 83

FIGURE 4.4: Structure of ATCN blocks. The non-linearity activation and
batch normalization units after each convolution are not depicted.

84

FIGURE 4.5: The effect of different non-linearity activation function, σ,
and group value on final validation loss.

86

FIGURE 4.6: ATCN model synthesizer and training framework. 88

FIGURE 4.7: Different data augmentation applied on UCR dataset. X is
observed signal and X̂ is the augmented data.

91

FIGURE 4.8: Critical difference diagram shwoing the performance of four
classifier. The diagram depicts the overall average ranking of the
classifiers, where those connected by a thick line show no statistically
significant inconsistencies at p-value 0.05. As a result, T0, T1, T2,
and InceptionTime are not significantly different.

95

FIGURE 4.9: GunPointOldVersusYoung dataset 97

FIGURE 4.10: ArrowHead dataset 98



xvi

FIGURE 5.1: Dilated Causal Convolution. 110

FIGURE 5.2: Structure of Agile Temporal Convolutional Networks
(ATCN).

111

FIGURE 5.3: Overview of the trajectory prediction model. The location
of the neighbors (gray triangles) and car of interest (solid red tri-
angle) is shown at t0 in Vehicle trajectory data (extreme left) block
and Trajectory prediction (extreme right) block. Triangles denot-
ing semi-transparent red in Vehicle trajectory data block, and semi-
transparent blue in Trajectory prediction block represent observed
history paths, and model output respectively. The observed history
paths of neighbours (for past 3 seconds) are used by the model but
not shown in the figure to avoid confusion.

112

FIGURE 5.4: The location of the neighbors (gray triangles) is shown at
t0. Triangles denoting red, green, and blue respectively, represent
observed history paths, ground truth, and model output.

117

FIGURE 5.5: Two cases where the model failed to predict the trajectory
precisely due to unpredictable driver behaviour. Same legend is used
as Fig. 5.4.

118



xvii

LIST OF TABLES

TABLE 2.1: The parameters for LSTM network training 30

TABLE 2.2: Data size and average elapsed time for training 31

TABLE 2.3: Prediction error for the power MOSFET transistors. 32

TABLE 2.4: The comparison of the absolute average error of Deep RACE
with conventional methods

35

TABLE 2.5: Nvidia TX2 Embedded Module Specification 36

TABLE 2.6: TX2 embedded board power consumption. 37

TABLE 3.1: List of symbols 49

TABLE 3.2: Effect of altering α and H for fixed BW = 4 65

TABLE 3.3: Effect of altering α and H for fixed BW = 4 at 200Mhz on
FPS and FPGA Resource Utilization

68

TABLE 3.4: Compressed EfficientNet Algorithmic Specs and FPGA Re-
source Utilization with fixed BW = 4, Frequency = 200 MHz

69

TABLE 4.1: The configuration of three ATCN families 90

TABLE 4.2: FLOPS and number of parameters for T0, T1, T2, and In-
septionTime

90

TABLE 4.3: Description of 70 benchmarks selected from UCR Time Series
Classification Archive 2018

91

TABLE 4.4: Comparison of the average accuracy for seventy benchmarks
from the 2018 UCR time series classification dataset

95

TABLE 4.5: Resource utilization and inference time of two Cortex-M7
and Cortex-A57 platforms

96

TABLE 4.6: Model configuration and accuracy performance of Tβ 96

TABLE 5.1: Configuration of ATCN encoder for ego and neighbors 113

TABLE 5.2: Performance comparison based on NGSIM dataset. RMSE
is calculated in meters.

116



xviii

TABLE 5.3: Model size and number of flops per model 116



xix

LIST OF ABBREVIATIONS

AI Artificial Intelligence.

ALU Arithmetic Logic Unit.

API Applications Programming Interface.

ATCN Agile Temporal Convolutional Network.

AVG Average.

AXI Advanced eXtensible Interface.

BN Batch-Normalization.

BPTT Backpropagation through time.

CNN Convolutional Neural Networks.

CPS Cyber-Physical Systems.

CPU Central Processing Unit.

CU Compute Unit.

DC Dilated Convolutions.

DMA Direct Memory Access.

DP Data-Path.

DSCNN Deep Separable CNN.

DW Depth-wise Convolutional.

EXP EXPansion.

FIFO First-In-First-Out



xx

FMA Fused-Multiply-Add

FPGA Field Programmable Gate Array.

GPU Graphical Processing Unit.

GRU Gated Recurrent Unit.

GTCN Generic Temporal Convolutional Networks.

HLS High-level synthesis.

HPC High Performance Computing.

IRB Inverted Residual Block.

ISA Instruction Set Architecture.

LCB Linear Convolution Block.

LR Learning Rate.

LSTM Long Short-Term Memory.

NC Normal Convolutional.

OpenCL Open Compute Language.

PE Process Elements.

PL Programmable Logic.

PRJ PRoJection.

PS Processing System.

PW Point-wise Convolutional.

RACE Reliability Awareness of Converters at the Edge.



xxi

RCB Regular Convolution Block.

ReLU Rectified Linear Unit.

RNN Recurrent Neural Network.

RTL Register-transfer level

SDK Software Development Kit.

SE Squeeze and Excitation.

SIMD Single Instruction Multiple Data.

SIMT Single Instruction Multiple Thread.

SMMU System Memory Management Unit.

SQ Squeeze and Excitation.

STCB Spectral-Temporal Convolution Block.

TCN Temporal Convolutional Networks.

TTC Time-to-Collision

V2I Vehicle-to-Infrastructure

V2V vehicle-to-vehicle

VIAC Vehicular Interactive Aware Convolution

VTA Versatile Tensor Accelerator.



CHAPTER 1: INTRODUCTION

1.1 Motivation

An edge computing node is a limited-resource hardware device that should meet

the application timing constraints and run at low power. A few examples of edge

computing in the real world are wearable devices[1, 2, 3, 4], smart transportation and

cities [5, 6, 7], monitoring device health and the smart grid [8, 9, 10]. At the same

time, we are also observing the huge success of Machine Learning (ML) algorithms

in this domain, as well as their widespread implementation on the edge. Therefore,

ML algorithms are challenging edge devices further due to their high computational

complexity.

In this thesis, we are addressing the challenges imposed by ML on edge comput-

ing on both algorithm and hardware architectural design. In power electronics, we

proposed Deep RACE [11, 12], an ML solution based on LSTM networks, to model

transistor reliability in real-time in edge devices. After that, we developed a DeepDive

[13] framework for optimizing and accelerating DSCNN on FPGA edges. Agile Tem-

poral Convolutional Network (ATCN) [14] is also then developed as an agile model

for time series analysis for embedded microcontrollers and processors. Lastly, we

developed a lightweight deep learning model based on ATCN for predicting vehicle

trajectory on highways. In reset of this section, we briefly introduced each of these

approaches.

Despite the fact that power electronics systems are vital parts of the energy-

conversion process, it is difficult to monitor their reliability. The problem was that

mathematically formulating and precise understanding of the physical degradation

in high-frequency power converters is notoriously difficult, due to the system soph-
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istication and many unknown non-deterministic variables. To solve this problem, a

wide range of stochastical diagnostic and prognostics techniques have been proposed

to address the reliability issues of a complex system in the design, fabrication, and

maintenance process. Kalman filter and Bayesian calibration are two examples of

classical time series modeling and prediction techniques. However, these approaches

are often bounded to first-order models in isolation and are not able to bring the

collective behavior of many devices with the same underlying physic to create an

accurate algorithmic construct. Therefore, their prediction accuracy is very lim-

ited. Moreover, they have very limited scalability for emerging advanced technologies

[15, 16]. Therefore, based on the advances observed in DNN, I have decided to work

on a transformative solution, which is called Deep learning Reliability Awareness of

Converters at the Edge (Deep RACE) [11] for real-time reliability modeling and as-

sessment of power semiconductor devices embedded into a wide range of smart power

electronics systems. Deep RACE departures from classical learning and statistical

modeling to deep learning based data analytics, combined with full system integ-

ration for scalable real-time reliability modeling and assessment. In this regard, it

leverages the Long Short-Term Memory (LSTM) networks as a branch of Recurrent

Neural Networks (RNN) to aggregate reliability across many power converters with

similar underlying physic. Also, It offers real-time online assessment by selectively

combining the aggregated training model with device-specific behaviors in the field.

In our deployment of DNN solutions [11, 12, 17, 18], on edge platforms, we dis-

covered weak support for accelerating Deep Separable Convolutional Neural Networks

(DSCNN) such as those of the EfficientNet[19] and MobileNet-V2[20] families. Dur-

ing this research, DeepDive [13] was developed, which was used for an agile, power-

efficient execution of DSCNNs on edge FPGAs. DeepDive provides a novel algorith-

m/architecture for efficient execution of DSCNNs, as well as a vertical algorithm

optimization and synthesis on edge FPGAs. This framework aims to identify hetero-
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geneous Compute Units (CUs) that support heterogeneous convolutional operations

of DSCNNs such as group, depthwise, and pointwise convolution. Using the FPGA-

aware training and online quantization, DeepDive receives the network description

model (PyTorch for example) and optimizes the model. This includes algorithm-

specific fusing of batch normalization and convolutional operators, which reduces

the computation by ∼4%, and extremely low-bit per-channel-quantization across all

separable convolution layers. DeepDive relies on the recent advances in High-Level

Synthesis (HLS) and shifts the optimization abstraction to pre-RTL design. There-

fore, it can generate the host CPU code running on ARM cores in the Processing

System (PS) side of SoC for synchronization and scheduling. The host code, bundled

with a scheduler, enables DeepDive to support multiple run-time software stacks such

as Pynq and Linux.

As we were designing the Deep RACE framework, we realized the LSTM networks

suffer from two problems [21]: 1) gradient instability such as vanishing/exploiting

gradients and 2) fewer levels of parallelization due to intercellular dependencies. An-

other factor to be considered is that AI-enabled edge platforms are more expensive

than microcontrollers, which are usually used in edge devices. Therefore, in this

thesis, we proposed ATCN, which is a novel algorithmic solution for real-time deep

learning processing of time series on embedded and edge devices. ATCN presents

a family of agile network architectures, which are constructed by chaining Spectral-

Temporal Convolution Blocks (STCB). STCB improves the depth and accuracy of

the network by utilizing residual connections as time attention machines and uses

separable depthwise convolutions are used to reduce computational complexity. As

part of the present work, three ATCN families, namely T0, T1, and T2, are also

presented and evaluated on different ranges of embedded processors - Cortex-M7 and

Cortex-A57 processor. Our evaluation on 70 benchmarks from the UCR 2018 dataset

[22] indicates that The T0 configuration reduces the MACs and model size by 102.38×
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and 16.84× over InceptionTime (IT) [23], respectively. T1 accuracy is 4.03% better

than T0 and has a 73.59× reduction in MACs and a 14.23× reduction in model size

over IT. Both T0 and T1 can be executed on an ARM Cortex-M7 microcontroller

explained in the experimental section in detail. As a final improvement, T3 reduces

the MACs and model size for 26.07× and 4.4× over IT while increasing accuracy by

0.37%.

In 2019, there were 36,096 fatalities on roadways in the United States [24, 25]. Of

those fatal crashes, NHTSA (2019) estimates that 11.9% of them involved a vehicle

maneuvering in a manner that may be unpredictable to the other drivers (i.e., turn-

ing left or right, stopping or slowing in traffic, merging/changing lanes, or passing

another vehicle). Such crashes at highway speeds, given the short Time-to-Collision

(TTC) and limited distance range, cannot be prevented with vision-based systems

alone [26]. Providing enough time and distance to support effective crash avoidance

via Vehicle-to-Vehicle (V2V) systems must also utilize high-accuracy predictions for

changing vehicle trajectories. With the acquaintance of ATCN, we realized the do-

main of smart transportation can take a considerable benefit of its fast and agile

implantation as most of the vehicle trajectory prediction models are based on LSTM

[27, 28, 29, 30]. Therefore, we proposed DeepTrack [31] as a novel deep learning

model with comparable accuracy to best-in-class trajectory prediction algorithms but

a much smaller model size with lower computational complexity to suit the resource-

crunched embedded edge systems. DeepTrack encodes the vehicle dynamics with the

aid of ATCN instead of well-established LSTM units. Compared to CS-LSTM and

its other variant CS-LSTM (M) [32], DeepTrack reduces prediction error by 9.09%

and 11.56%, respectively, and reduces the number of operations and model size by

about 10.49% and 18.5%, respectively. Concerning CF-LSTM [28], DeepTrack error

raised for 0.87%; however, it can reduce the number of operations and model size by

10.49% and model size by 18.5%.
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1.2 Contributions to the Body of Knowledge

Overall, this dissertation presents four fundamental contributions to the body of

knowledge which are:

• We proposed Deep RACE, which is the first integrative solution for active re-

liability assessment of the high-frequency power converters based on real-time

deep learning analytic. Deep RACE moves beyond mainstream device model-

ing and traditional reliability analysis by combining advanced sensing solutions

with cutting-edge deep learning and edge computing techniques.

• This thesis proposes DeepDive as a novel scalable vertical framework for the

execution of DSCNN on FPGAs. The vertical integration and library-based

operation mapping enable true comprehensive design space exploration on FP-

GAs. To the best of our knowledge, this work is the first scalable solution with

the support of recently introduced EfficientNet DSCNN families.

• We developed ATCN as a family of compound scaling networks that achieve

higher or comparable accuracy over SotA networks with significantly lower com-

putation complexity and model size. We Demonstrated the significant benefits

of ATCN over SotA networks when it comes to execution on embedded IoT

microcontrollers (ARM Cortex M7 and Cortex A57).

• DeepTrack is also developed on the base of ATCN as a novel deep learning model

with comparable accuracy to best-in-class trajectory prediction algorithms but

a much smaller model size with lower computational complexity to suit the

resource-crunched embedded edge systems.

The rest of this thises as follows: Chapter 2 presents DeepRACE as a framework

for transistor reliability modeling with the aid of LSTM. In chapter 3, DeepDive is

presented for hardware acceleration of DSCNN on embedded FPGA. ATCN and its
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family are explained in Chapter 4, while its application in smart transportation as

DeepTrack is explained in Chapter 5. Finally, the conclusion is drawn in Chapter 6.
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CHAPTER 2: DEEP RACE

2.1 Introduction

Power electronics systems are essential components of the energy-conversion pro-

cess. It is expected by 2030, power converters will be used in 80% of applications in

the generation, transmission, distribution, and consumer electronics [1]. Controllable

power semiconductor devices play the most dominant role in the switching power con-

verters. Operating at high current and voltage creates extreme stresses on the power

devices, which often makes them the most susceptible components in the energy con-

version process. Therefore, understanding, modeling and predicting the reliability

models of the power converters are crucial for enabling emerging technologies and

future applications such as electric vehicles, smart grids, and renewable energy.

Mathematically formulating and precise understanding of the physical degradation

in high-frequency power converters is notoriously difficult, due to the system soph-

istication and many unknown non-deterministic variables. To solve this problem, a

wide range of stochastical diagnostic and prognostics techniques have been proposed

to address the reliability issues of a complex system in the design, fabrication, and

maintenance process. The evaluation of these processes is beneficial to enable power

convertors health management systems and resiliency for useful life estimation and

reducing the risk of failures [2, 3]. Kalman filter and Bayesian calibration are two

examples of classical time series modeling and prediction techniques. However, these

approaches are often bounded to first-order models in isolation and are not able to

bring the collective behavior of many devices with the same underlying physic to

create an accurate algorithmic construct. Therefore, their prediction accuracy is very

limited. Moreover, they have very limited scalability for emerging advanced techno-
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logies [4, 5].

Recent advances in deep learning open a new horizon toward smart and autonom-

ous systems. Deep learning offers a scalable data-driven discriminative paradigm to

understand, model and predict the behavior of complex systems by extracting the

deep collective knowledge. With the new wave of the Internet-of-Things (IoT) and

the feasibility of using the internet almost everywhere, there is a big chance for scal-

able device-specific real-time monitoring and analysis by pushing deep learning and

advanced analytic computations from the cloud next to IoT devices (which also called

edge computing) [6, 7]. In particular, the benefits of edge computing are much more

pronounced for real-time reliability modeling and prediction of sophisticated physical

and engineering systems such as power electronic converters.

This research presents a transformative solution, which is called Deep learning Re-

liability Awareness of Converters at the Edge (Deep RACE)1, for real-time reliability

modeling and assessment of power semiconductor devices embedded into a wide range

of smart power electronics systems. Deep RACE departures from classical learning

and statistical modeling to deep learning based data analytics, combined with full

system integration for scalable real-time reliability modeling and assessment. In this

regard, it leverages the Long Short-Term Memory (LSTM) networks as a branch of

Recurrent Neural Networks (RNN) to aggregate reliability across many power con-

verters with similar underlying physic. Also, It offers real-time online assessment by

selectively combining the aggregated training model with device-specific behaviors in

the field.

To guarantee real-time scalable requirements, the Deep RACE presents an integ-

rated cloud-edge platform in which, the cloud is responsible to aggregate different

device reliability by training the LSTM network, while the inference is done at the

edge next to the power devices. The interference at the edge (on-line) provides real-

1The Deep RACE is an open source project and its code is available at
https://github.com/TeCSAR-UNCC/Deep_RACE.

https://github.com/TeCSAR-UNCC/Deep_RACE
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time feedback of the reliability modeling as well as active control and decision making

for device proliferate. We have trained and implemented the proposed Deep RACE

approach for five high-frequency MOSFET power converters. Our results demon-

strate the Deep Race improves the misprediction by 1.98x and 1.77x compared to

Kalman Filter and Particle Filter, respectively.

To the best of the author’s knowledge, Deep RACE is the first integrative solution

for active reliability assessment of the high-frequency power converters based on real-

time deep learning analytic. In this context, this research moves beyond mainstream

device modeling and traditional reliability analysis by combining advanced sensing

solutions with cutting-edge deep learning and edge computing techniques. Although

this chapter primarily focuses on the reliability modeling of high-frequency MOSFETs,

the proposed algorithmic construct and system level solution for real-time reliability

and predictive maintenance can be extended to a wide range of semiconductor devices

and engineering systems used in power conversion and smart energy systems.

The rest of this chapter is organized as the following: Section 2.2 briefly reviews

the previous reliability approaches. Section 2.3 provides background on deep learning

in particular deep RNN. Section 2.4 presents our proposed Deep RACE approach

including LSTM-based machine learning and system-level integration for aggregated

training and real-time inference. Section 2.5 presents the experimental results in-

cluding comparison with existing approaches, and finally Section 2.6 concludes this

article.

2.2 Related Work

This section briefly reviews the previous reliability approaches in power electronics,

and discusses precursor identifier for power MOSFET degradations.



15

2.2.1 Reliability analysis/prediction in power electronics

The reliability approaches in power electronics systems have been developed in four

broad categories: a) component level, b) damage accumulation, c) data analytics, and

d) condition-based predictions. The first approach is not a prognostic-based since

they consider the unit-to-unit difference and not the usage history [8, 9]. The second

method offers more accurate tendency for an individual unit by using the accumula-

tion of stress conditions over the time, although it needs experimental observation for

the modeling [10, 11]. Data analytics focus on big-data mining for prediction based

on the past usage history data and assign a predictive score as opposed to calculating

a time to failure events [12, 13]. Lastly, condition-based prognostic methods rely on

potential mode identifications and finding the root of the failure mechanism based on

the individual behavior units of failure model physics[14, 15].

Several methods have been proposed for mean-life estimations like six sigma, fault

tree analysis, state space, and filtering estimations [16, 17]. Due to increasing the

large volume of data collected from smart devices, using the existing methodologies

have some limitations on extracting the hidden patterns. Therefore, the necessity of

applying deep learning algorithms for real-time system health monitoring is crucial.

Few recent approaches have already demonstrated the significant benefits of deep

learning based reliability monitoring and predictive maintenance in other engineering

disciplines [18, 19, 20].

2.2.2 Precursor identifications in power MOSFET degradation

In the most comprehensive industry survey-based studies, power semiconductor

devices (e.g., MOSFET) are responsible for at least more than 30% of the failures

[21, 22]. The failure mechanisms in power MOSFET can be categorized into two

extrinsic and intrinsic subcategories. The extrinsic failures include the transistor

packaging issues and mainly summarized as a bond-wire lift, die solder detachment,
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and contact migration. Most of these studies verified that the bond-wire lift has a

severe effect on the device failure over time [23, 24].

To evaluate device long-term reliability, the general approach is conducting an ac-

celerated life test under power/thermal cycles, and continuously monitoring variations

in electrical or mechanical parameters. Based on the most acceptable standards for

device qualification in the industry, such as AEC-Q101 [25], and the state-of-the-art

research, Idss, Tj, Vth, Rth, and Rds(on) are the most common parameters for the device

degradation tracking [8, 16, 26, 27]. Idss, which refers to drain current at zero bias,

can be used for early detection of die-level failures, Tj shows the device junction tem-

perature and corresponds to thermal runaway failures, Vth shows the gate threshold

voltage shifting, Rth is the thermal resistance of the device and represents device over-

heating mostly in the package level. Finally, Rds(on) shows the device drain-source

resistance, which represents both device degradation in the die and package level

where inherently shows the device internal loss.

Fig. 2.1 illustrates the changes of Rds(on) over time for five different MOSFET

transistors (IRF520NPbf) extracted from the data set provided by NASA [28]. Al-

though it may seem that these five transistors share a similar degradation pattern

at the first observation, the deterioration pace and detailed behaviors are signific-

antly varied across the devices with similar underlying physics. This is primarily due

to diverse workloads, different environmental conditions, and varying manufacturing

processes. In the next section, we discuss why the classical approaches are infertile

to concurrently model the degradation of these five transistor devices. For the rest of

this chapter, we also consider these five data set to evaluate the performance of our

proposed Deep RACE framework.

2.3 Motivation and RNN Background

In this section we explain the limitation of classical approaches for modeling of

power device degradation. Then, we continue to elaborate more on vanilla RNN
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Figure 2.1: MOSFET ∆Rds(on) Precursor Identifier: The trajectory Rds(on) for five
different MOSFET devices.

and its problem regarding modeling a complex time series data such as MOSFET

∆Rds(on) precursor.

2.3.1 Limitation of Classical Approaches

In the reliability-based prediction methods, the frequency of component failure is

predicted based on a statistical model derived from acquired data in a laboratory en-

vironment or historical component usage if available. In a strict sense, these methods

cannot be considered as prognostic methods due to unique unit-to-unit conditions

and their specific usage history. Alongside, although theoretical approaches such as

physics-of-failure [29] analysis are applied to identify the root of failure and drive the

reliability model, these methods result in significant errors and are not applicable

for unit-to-unit scenarios because of the complexity of power electronics systems and

their operating conditions [16].

The other data-driven approaches, such as Kalman filter [30] and Bayesian calibra-

tion [13, 28], are predictive analytics which mostly focus on identifying the correlation

of the experimental results, and the estimation of unknown variables and parameters.

These techniques require an accurate failure model of a system to estimate the un-
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known mathematical parameters associated with a specific failure test; however, for

new technologies, these methods cannot be effective due to the lack of precise failure

model in the component as well as system level [15]. There is a high demand for solu-

tions that address the algorithmic and system-level challenges for real-time scalable

monitoring, modeling, and estimation of degradation behavior in power electronic

transistors.

2.3.2 Recurrent Neural Networks

In contrast to classical approaches, this article proposes a holistic IoT system for

hybrid condition-based prediction model which assesses the behavior of individual

transistors based on both their usage history as inferred from sensed data and expec-

ted future load profiles. To achieve this, a data-driven model based on deep Recurrent

Neural Network (RNN) is utilized at the edge, i.e. converter, for real-time device-

specific reliability prediction and modeling; while the cloud infrastructure performs

high-level metadata aggregation and analysis across many devices. At the time of

Artificial Intelligence (AI) big-bang, we took advantages of a prominent model of

RNN named LSTM to predict the transistor degradation. In our solution, the sensed

resistance, and environment conditions will be sent to the cloud-side of the proposed

framework to train and update the LSTM network models. Therefore, the models

will be updated based on the current device operating condition.

The RNNs are a branch of neural networks specialized for analyzing and modeling

complex time series. Following deep learning paradigm, RNNs need a fairly large

dataset for training. The are very popular approach for natural language processing

and object tracking over frames sequence. In a formalized RNN, sequence of data

is notated by X = [x1 x2 ... xτ ] where τ is the number of input sequences. Fig.

2.2 formulates an RNN computation node, i.e. neuron, and its unrolling recurrent

computation when τ = 4. A neuron passes the information from the past to the

current time by sharing the information and updating its cell state, c; therefore, this
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sharing process enables RNN to model a behavior of a time sequence. In a standard

RNN cell with given input X, the cell output Z = [z1 z2 ... zτ ] is computed by

Equations 2.1-2.4. In these equations, ζ(·) and ξ(·) are nonlinear activation functions,

Wi is input weight, Wc is the state cell weight, Wo is the output weight, and bi, bo

are biases for input and output values, respectively.

it = Wixt +Wcct−1 + bi, (2.1)

ct = ζ(it), (2.2)

ot = Woct + bo, (2.3)

zt = ξ(ot). (2.4)

Knowing Y = [y1 y2 ... yτ ] as the referenced output, the loss function is defined

by (2.5). In (2.5), L(zt, yt) can be considered as the squared error of a regression

function or cross-entropy for the sake of classification. The ultimate goal of RNN

learning is to minimize the cost function. This goal can be formalized by (2.6), which

minimizes the introduced loss function by altering θ, where θ is a network vector

model which is described as: θ = [Wi Wc Wo bi bo c0].

L(Z, Y ) =
τ

∑

t=1

L(zt, yt), (2.5)

c Cell

x

Cell

x4

Cell

x3

Cell

x2

Cell

x1c0

c2 c3

Unrolling

c1
z4z3z3z3

c4z

Figure 2.2: Recurrent Neural Networks: The schematic of standard RNN cell and its
unrolling version for four input time sequence
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argmin
θ

L(z(θ), Y ). (2.6)

Backpropagation through time (BPTT) is the mainstream approach to extract the

proper weight factors of the RNNs to minimize the cost function across the trained

data [31, 32]. For the vanilla RNN, a major issues associated with BPTT is the

losing of cell sensitivity to the earliest inputs due to the chain of partial derivation.

This phenomena is known as vanishing gradient problem and eventually prevents the

network reaches to the earliest states in deep RNN [33]. More sophisticated versions

of RNN network, such as LSTM cells, are proposed to address the sensitivity lost

problem in the basic RNN networks. Based on that, in the next section, we describe

our proposed reliability model based on the LSTM networks.

2.4 Deep Learning Reliability Awareness of Converters at the Edge (Deep RACE)

This section presents Deep RACE as an integrative framework of online real-time

reliability awareness and modeling for power electronic devices. Deep RACE has two

major aspects: (1) algorithmic principles for modeling the device reliability, and (2)

system-level integration for real-time scalable reliability assessment. On the algorithm

side, Deep RACE uses one of the major derivatives of RNN, called LSTM for aggreg-

ated training and device specific inference. On the system side, Deep RACE proposes

an IoT-based edge-cloud computation platform which pushes the proposed LSTM-

based reliability inference next to the individual power converters. In the following,

we provide an in-depth explanation of both aspects.

2.4.1 Algorithmic Constructs for Device Reliability Modeling

In this part, we first introduce the basics of LSTM cells for reliability modeling of

power devices, and we continue to present our proposed reliability modeling network

constructed out of the basic LSTM cells.
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2.4.1.1 Long Short-Term Memory Cells

For reliability modeling of power electronic converters, we propose using LSTM

cells. In a nutshell, different deep neural networks recognize the patterns in two

forms of spatial and temporal pattern depending on their structure. As an instance,

Convolutional Neural Networks (CNN) are engineered in a form that they can dis-

tinguish spatial pattern, e.g. a dog or a face, existed in a picture. In the other hand,

sequence data such as natural language data and time series, e.g. stock index have a

temporal pattern that should be processed during a sequence of time. For our case,

since we try to model ∆Rds(on) data and it is intrinsically a time series, we leverage

LSTM cells as the prominent version of RNN. The benefits of LSTM cells are in us-

ing the guided gates for selectivity remembering both short and long-term behaviors

across many time series. The LSTM uses a subset of the cyclical node inside its cell

known as “memory” in order to calculate the output based on the current input and

its past status [34]. The LSTM selective memory sensitivity at large scale offers a

systematic approach for reliability modeling of power electronic devices.

The LSTM cell contains three vectorized sigmoid (σ) functions, which each indi-

vidual function operates as a gate and controls the flow of information passing through

the cell — the input, output, and forget gates. Fig. 2.3 presents the internal struc-

ture of an LSTM cell. Each gate maps its input to S = {si|si ∈ [0, 1]}, where zero is

a closed gate and one means the gate is open. Moreover, the cell state (memory) is

preserved by C as a candidate. The information of new candidates, which should be

stored in the cell state, represented as c̃.

it = σ(Wivt + bi), (2.7)

ft = σ(Wfvt + bf ), (2.8)

ot = σ(Wovt + bo), (2.9)
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Figure 2.3: A single LSTM cell: Inside of an LSTM cell consisting of three gates and
the state of the cell is preserved by variable ct.

c̃t = tanh(Wcvt + bc), (2.10)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (2.11)

ht = ot ⊙ tanh(ct). (2.12)

With respect to LSTM cell visualization in Fig. 2.3, Equations 2.7-2.12 for-

mulates the correlation between input and output per LSTM cell. In the equa-

tions, vt = [xt ht−1], ⊙ is Hadamard or element-wise matrix product, and θ =

[Wi Wo Wf Wc bi bo bf bc c0] is the network model that should be trained.

The input gate (2.7) decides what portion of current input with which degree should

be stored in cell memory, while forget gate (2.8) chooses which portion of memory

should be erased. In the other hand, new information, c̃, will be mined by (2.10), and

the cell memory will be updated by (2.11). Moreover, the output gate (2.9) decides

which part of cell memory should affect the LSTM output at time t, and finally the

LSTM output value is calculated in (2.12).

2.4.1.2 LSTM-Based Device Training Network

LSTM-based neural network needs to be designed to properly reflect ∆Rds(on) propaga-

tion with enough depth to capture complex power convertors behaviors, and thus
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learning deep behavioral patterns across many devices. A deep LSTM network should

have sufficient depth to build up the progressive pattern recognition of sequential data

in both coarse and fine grain directions.

As it mentioned in Section 2.2.2, we consider the trajectory resistance of drain-

source of power MOSFET during ON time (i.e. ∆Rds(on)) as the precursor of device

failure degradation. As ∆Rds(on) is intrinsically a time series, we design the model by

using deep LSTM network, where the training is developed by aggregating data from

different devices having the same technology. A batch of samples is created for each

training iteration. Therefore, for predicting the next n samples of ∆Rds(on) based on

the provided last input sequence (τ), the batch should consist of ∆Rds(on) with the

size of (τ+n). Fig. 2.4 presents the batch tensor configuration per each iteration. The

dimension of vector Rk
mt is characterized based on the input size shown by k, where

m is the available devices for training, and t is the sequence. In order to prevent any

sort of biases in training the LSTM, we selected randomly a vector sequence with the

size of (τ + n) from the ∆Rds(on) samples per each device. Increasing the number of

devices, (m), per each batch helps the network to generalize the modeling of complex

degradation properly, which results in higher accuracy of the predicted trajectory.

For designing of deep LSTM network, we need to also consider number of hidden

layers. The number of hidden layer is the dimension of vectors generated in equations

Rk
11 · · · Rk

1τ · · · Rk
1(n+τ)

Rk
2(n+τ)

...

Rk
m(n+τ)

R1
11 · · · R1

1τ · · · R1
1(n+τ)

R1
21 · · · R1

2τ · · · R1
2(n+τ)

...
. . .

...
. . .

...

R1
m1 · · · R1

mτ · · · R1
m(n+τ)

k = κ

k = 1

Figure 2.4: Batch tensor configuration: Three dimensional batch tensor with a char-
acterized vector Rk

mt.
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(2.7)-(2.12). The vector size can be changed by altering the weights and biases tensor

shape defined in equations (2.7)-(2.10). Increasing the hidden layer is interpreted as

increasing the “memory” size of the LSTM and its capacity to learn existing complex

pattern in a signal.

At the same time, building a very deep LSTM network is not a viable solution

due to lack of large data-set to trained all LSTM cells once at the same time. The

BPTT often failed to train a large flat LSTMs network without any patriarchy. As

the result, the alternative solution is stacking multiple LSTM networks (which called

Stacked LSTM) to create more complex and deeper network with offering hierarchical

modular layers over a very deep flat network. In our proposed network, we suggest

developing a stacked LSTM to generalize the behavior complexity of power electronics

convertor without the need for a very large data-set. As the result, number of stacked

layers is the other parameter to increase the complexity of the LSTM network. Here,

by stacking the cell up together in a way the ht of one cell is used as an input to its

top adjacent cells. Fig. 2.5 shows an architecture of the deep LSTM network with

the stacked layer size of ℓ.

Since the output vector ht ∈ [−1, 1], we need to de-normalize the deep LSTM

network output to actual system measurement. Therefore, a dense layer is added to

the output of stacked LSTM to map ht to the predicted ∆Rds(on) at the time t as

shown in Fig. 2.6. Based on modified deep LSTM structure, the network models are

described as: θλ = [Wλi
Wλo

Wλf
Wλc

bλi
bλo

bλf
bλc

cλ0
], 1 ≤ λ ≤ ℓ, and

θd = [Wd bd], where ℓ is the stacked layer size. Each LSTM cell will be trained at the

cloud, and network model will be transferred to the edge next to the transistor device

for real-time prediction. Acquiring proper values for the LSTM network parameters

can be done by exploring the design space in regard to system constraints (e.g., system

accuracy, processing time, and power consumption) [35].
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Figure 2.5: The stacked LSTM: An unrolled LSTM cell predicts the next n samples
of ∆Rds(on) based on last sensed data.

+××xt
Deep Stacked 

LSTM

ht

Wd

bd

zt

Figure 2.6: The proposed deep LSTM network model: A dense layer is added to the
deep stacked LSTM to map ht to on-line measured ∆Rds(on) at time t.

2.4.2 Proposed IoT Framework

In this subsection, we explained the system integration to realize the proposed

LSTM reliability modeling constructs through an IoT-based cloud-edge platform.

2.4.2.1 Data training and batch aggregation on the cloud

One key aspect of Deep RACE is an integrative cloud-edge system for scalable real-

time reliability monitoring, assessment, and prediction. Fig. 2.7 shows the system

architecture of Deep RACE based on the cloud-edge solution - training on the cloud
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Algorithm 1 Training the deep LSTM network
Input: Xtraining, Ytraining, Xtest, Ytest, τ,m, n, ℓ, k, ǫ, eth, itmax

Output: θλ; 1 ≤ λ ≤ ℓ, θd ⊲ Network models
1: computation_graph← LSTM(hidden_layer, ℓ)
2: error ←∞ ⊲ Initialize the test error
3: min_error ←∞ ⊲ Saves the minimum error test
4: ← 0
5: init_rand(θλ for λ in [1...ℓ]) ⊲ Initialize LSTM network models from truncated

normal distributions
6: init_rand(θd)
7: while ( ≤ itmax) or (error ≥ eth) do
8: Xbatch, Ybatch ← generate_data(Xtraining, Ytraining, m, n, τ , k)
9: ∆Rds(on)← inference(computation_graph,Xbatch, [θλ for λ in [1...ℓ]], θd) ⊲

Predicted ∆Rds(on) for training
10: errortraining ← L(∆Rds(on), Ybatch)
11: [θλ for λ in [1...ℓ]], θd ← optimizer(computation_graph, errortraining, [θλ for

λ in [1...ℓ]], θd) ⊲ Updating the net. models
12: xtest, ytest ← generate_data(Xtest, Ytest, m, n, τ , k)
13: ∆Rds(on)← inference(computation_graph, xtest, [θλ for λ in [1...ℓ]], θd) ⊲

Predicted ∆Rds(on) for test
14: error ← L(∆Rds(on), Ytest)
15: if (min_error > error) then
16: min_error ← error
17: save(θλ for λ in [1...ℓ], θd) ⊲ Save the network model with lowest error
18: end if
19: ← + 1
20: end while

and real-time sensing and inference for reliability monitoring and health assessment

on the edge nodes. The cloud is the centralized computing node for data aggregation

and training of proposed LSTM algorithm across many power electronic transistors

with similar underlying physics. The cloud stores the initial sampled dataset (e.g.,

voltage, current, and device temperature) collected from devices under stress test

for initial training. At the same time, it continuously receives new information and

sample data from running devices for improving the accuracy of reliability modeling

and prediction. The edge nodes are IoT devices which use local computing power to

perform the real-time reliability monitoring, and prediction (deep learning inference).

The edge nodes rely on the pre-trained models that have created during the training



27

phase on the cloud.

In this context, the edge nodes and cloud continuously interact and exchange in-

formation. The Edge nodes, while performing real-time reliability assessment, collect

and update the cloud with the properties of the transistors for future training. The

cloud also updates edge nodes with new reliability models (LSTM models) to increase

the confidence interval of the prediction, and estimate the remaining useful life of the

devices. To increase the confidence interval of the power MOSFET devices and the

system operation, a predefined threshold ∆Rt can be defined based on system re-

quirement. Once the error of predicted device resistance ∆Rds(on) is greater than the

∆Rt, the network models will be automatically updated through training the network

on the cloud server.

Algorithm 1 describes the training procedure on the cloud side. The computaion_graph

is the deep LSTM network structure. At first, the network models are initialized

from a truncated normal distribution. Xbatch, Ybatch are generated based on the

input size, input sequence, output sequence, and the number of devices. Next,

computation_graph predicts the ∆Rds(on) according to its current network mod-

els and generated training batch. The models will be updated through the back-

propagating error from the output of computaion_graph to its inputs.

During training phase of our proposed LSTM algorithm, and in general deep learn-

ing models, one major source of error would be over-fitting. In order to prevent the

over-fitting problem, we have created a test batch (xtest, ytest) to predict ∆Rds(on) of

the test device based on the updated network model. Next, the test batch error will

be compared against the previous error values and if it has the minimum value, the

network model will be saved.

2.4.2.2 Real-time edge analysis

The edge converter has its own local controller equipped with an embedded SoC

for the purpose of predicting the power transistor degradation. The µ-controller unit
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Figure 2.7: The Deep RACE Framework: The proposed solution accumulates the
knowledge of power transistor degradation model on the cloud-side by training the
LSTM network, while real-time prediction and inference is accomplished on the edge
side.
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Figure 2.8: The scalability of Deep RACE: As new edge is added to the framework,
its extracted ∆Rds(on) is transfered to the cloud to be used both as training data set
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is responsible of modulating the gate signals for the power converter control, and

continuous monitoring of the voltage, current, and temperature of power converters.

The sampled data also will be transferred to the cloud , which performs the reliability

analysis (training phase) for each edge node. The SoC of the edge runs inference

section of the deep LSTM, equations (2.7)-(2.12), and estimates the trajectory device

resistance, ∆Rds(on), based on the received trained network models from the cloud.

Based on the predicted ∆Rds(on) , controller can leverage load-sharing [36] method

through the system level control in modular converters or cascaded architectures

in many applications such as distribution generation systems, data centers, and the

electric vehicles in order to decrease the degradation pace until the appropriate action

is taken.

Fig. 2.8 visualizes the scalability of Deep RACE when a new edge is added to

the framework. At first, the edge node sends the voltage, current, and temperature

samples to the cloud-side. The samples will be used for two purposes: (1) as training

sets for the other nodes, and (2) as test sets in order to prevent over-fitting phe-

nomenon during training process of the LSTM network. Then, network models will

be sent back to the edge for the purpose of ∆Rds(on) prediction. As more new devices

added to the framework, the prediction error will be decreased as we demonstrated

in the next section.

2.5 Experimental Results

The performance of proposed real-time reliability analysis was examined for train-

ing the data and applying the Deep RACE. This section describes the testing scen-

arios, the hardware setup, and the experimental results.

2.5.1 Experimental training of power transistors

On the cloud server, we used Intel Xeon CPU E5-2640 to train the deep LSTM

network, where we initially modeled Si-power MOSFETs. The experimental data
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sets for both training and testing of the power MOSFET (IRF520NPbf) are provided

from NASA dataset [28]. The Deep RACE predicts a new transistor degradation

behavior based on the trained system without any prior knowledge in advance. In

our experiment, the Deep RACE is trained to estimate the next 104 samples. For

the application with higher window resolutions (i.e. higher output sequence), the

network input sequence should also be increased to minimize the prediction error.

Table 2.1 summarizes the deep LSTM network parameters. Based on the network

configuration, we have also measured the training time on the cloud server. Table 2.2

summarizes the training time on the cloud side.

We used Google TensorFlow framework to implement our stacked LSTM network

model. Each LSTM cell is instantiated by calling tensorflow.contrib.rnn.LSTMCell

function where the number of “hidden layer" is passed as an argument to this function.

In the next step, an array consists of LSTMCell with the size of “stacked layer" is gen-

erated. Then, the array will be passed to the tensorflow.contrib.rnn.MultiRNNCell

function to create the stacked LSTM network. The network unrolling is accom-

plished through tensorflow.nn.dynamic_rnn function. We defined Mean Square

Error (MSE) (2.13) as an objective loss function, and used tf.train.AdamOptimizer

method to minimize the function:

MSE =
1

n

n
∑

i=1

(yi − zi(θ))
2, (2.13)

Table 2.1: The parameters for LSTM network training

Item Parameter Description Value
1 k Input size 1
2 τ Input sequence 21
3 eth Error threshold 5× 10−5

4 n Output sequence 104
5 itmax Maximum iterations 1000
6 ǫ Number of hidden layer 64
7 ℓ Number of stacked layer 4
8 m Number of device for training 4
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where zi(θ) is the predicted output trajectory from the Deep RACE, and yi is the

actual measurement of the device resistance.

2.5.2 Edge Node Hardware Setup

We also developed a low-power edge computing system for real-time monitoring

and reliability assessment. The edge computing node is based on nVidia TX2 board

as the state-of-art embedded SoC with GPU compute units for edge device. As we

explained, the inference part of Deep RACE is implemented on the edge, since the

cloud is responsible for aggregated training of the proposed structure.

Fig. 2.9 shows the prototype of Deep RACE hardware realization at the edge. In

this system, µ-controller controls the power converter, and the voltage, and current of

the power semiconductor are captured and then transfered to the TX2 board for edge

analysis. For the safety purpose, the automated supervisory control is designed for

data collection from the switching converter and also protects the system operation

if the power conversion deviates more than 5%.

2.5.3 Reliability Modeling and Prediction

We created five different scenarios per each device in order to evaluate the scalability

and robustness of Deep RACE. As an example, the trajectory resistance for Dev#5

is predicted based on learning degradation model from Dev#1 to Dev#4. Then,

recursively we reinitialized all network models from truncated normal distribution

again, and we substituted the other devices to predict a new unknown transistor

resistance variations from scratch. Therefore, the Deep RACE is challenged to predict

Table 2.2: Data size and average elapsed time for training

Item Description Value
1 Training size/Iteration m× k(τ + n) = 500
2 CPU Cores 32

3 GPUs
nVidia Tesla P100, and

nVidia TITAN V
4 Elapsed time 596 Seconds
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Figure 2.9: Experimental Verification: The hardware realization of Deep RACE in-
cluding the high-frequency power converter controller, and the SoC-TX2 for edge
computation. The supervisory control is designed for the safety protection.

a completely new and unknown device based on aggregating knowledge from other

power devices at each scenario. We verified the system characteristics from acquired

experimental results in two forms of MSE and error distribution. Table 2.3 shows

prediction MSE of the selected devices. While the training process is performed in

the cloud, we evaluated the prediction of the device resistance variation at the edge.

Fig. 2.10 illustrates the Deep RACE prediction performance for defined five scen-

arios and clarifies the scalability of the proposed algorithm. Although the apparatus

behavior of each power device degradation looks similar, the microscopic observation

of the transistors is different within the same time horizon. For an instance, the

trained network for Dev#4 is expecting an exponential increment in the region of

∆Rds(on) > 0.02Ω based on aggregated training from Dev#1 to Dev#3, and Dev#5.

This error can be further minimized through a new learning phase on the cloud.

Table 2.3: Prediction error for the power MOSFET transistors.

Devices #1 #2 #3 #4 #5
log(MSE) -13.61 -13.05 -13.95 -13.36 -12.94
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Figure 2.10: Experimental results: The resistance variation of given five power mod-
ules, which were predicted by Deep RACE method.
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We also extracted the error distribution for five predicted devices by using:

Errordiff = (yi − zi(θ)), (2.14)

where zi(θ) is the predicted output trajectory from the Deep RACE, and yi is the

actual measurement of the device resistance (∆Rds(on) in our model). Fig. 2.11 depicts

that the average maximum error caused by Deep RACE method is less than 0.9%.

We extended our experiment to analyze the effect of training aggregation and

scalability of multiple device data on accuracy of ∆Rds(on) prediction. In this case, we

increased the number of devices per each batch during the training phase. Fig. 2.12

shows that MSE decreases with an exponential rate by increasing the number of

devices in training batch. For each training set, we ran 1000 Monte-Carlo test for

∆Rds(on) predictiopn of three different devices, and then the average of whole test

sets is picked. These results indicate that our proposed approach can improve the

prediction accuracy exponentially by increasing the edge node and power transistors

through the life time of the system by accumulating knowledge about different device

degradation during its usage, which demonstrates the scalability of our approach.

The region of ∆Rds(on) < 0.02Ω has linear behavior, therefore, the classical ap-

proaches (such as Kalman Filter, and Particle Filter) can predict the health state

with higher accuracy; however, the prediction error increases after that for these

methods. Since it is very crucial to detect the MOSFET resistance variation when

∆Rds(on) ≈ 0.05Ω, we calculated the average of error at the detection point(=∆R5%)

for these methods by using (2.15):

Error∆R5%
=

100

m

m
∑

i=1

|∆Rds(on)mt
5%
− (0.05)mt5% |

(0.05)mt5%

, (2.15)

where m is the number of devices, ∆Rds(on) is predicted value, and t5% is the time
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Figure 2.11: Error distribution: The box-whisker plots of prediction error for five
power modules.

when the first sensed value is 0.05Ω. The Error∆R5%
results are summarized in

Table 2.4. Our experiments indicate that the Deep RACE reduces the miss-prediction

error at 0.05Ω by about 1.98x, 1.77x compared to Kalman Filter and Particle Filter,

respectively.

Table 2.4: The comparison of the absolute average error of Deep RACE with conven-
tional methods

Method
Kalman
Filter
[30]

Particle
Filter
[28]

Deep RACE

Miss-prediction
Error 17.75% 15.85% 8.93%

2.5.4 Power consumption and processing time analysis

We also evaluated the power consumption and delay of the inference part of the

network on embedded TX2 board. Table 2.5 summarizes the specification of embed-

ded SoC. Since the TX2 has an embedded GPU, We considers two different scenarios

to analyze the performance of Deep RACE. At first scenario, we set the tensorflow

configuration to device_count = {’GPU’: 0}, where no computation carried out at

the embedded GPU, and in the second approach we made it ON. For the matrix size
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Figure 2.12: Aggregated training: The ∆Rds(on) prediction error is decreased expo-
nentially by increasing the training device per each batch. This aggrigated training
will help the Deep RACE to generalize the different transistor degradation behavior.

of 125 (input sequence + output sequence), it was observed that the CPU processed

3.2x faster than GPU for one device prediction. This performance degradation is

because of data copying between CPU and GPU memory region – Note the DDR

power consumption is higher for ’GPU’: 1 scenario. In the other word, the amount

of data is not enough for GPU to overlap the delay between data computation and

movement. Increasing the number of devices that should be predicted per each edge

node or increasing the prediction window resolution (output sequence) improves the

performance for GPU since it carries out more computation than CPU per each data

set. Table 2.6 summarizes the delay and power dissipation for two different cases.

Table 2.5: Nvidia TX2 Embedded Module Specification

CPU GPU DDR
Quad Cortex-A57

@ 2GHz +
Dual Denver2 @ 2GHz

256-core
Pascal

@ 1300MHz

8GB LPDDR4
@ 1866MHz
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Table 2.6: TX2 embedded board power consumption.

GPU: OFF (0) GPU: ON (1)
Module CPU DDR CPU+DDR GPU DDR GPU+DDR
Power
(W) 1.07 0.80 1.87 0.166 0.90 1.06

Delay
(ms) 26 85

2.6 Conclusion and Future Work

This chapter proposed a new solution as a collection of deep learning, edge, and

cloud computing technologies to enable real-time high accuracy reliability modeling

of high-frequency MOSFETs power converter devices. The proposed deep learning

algorithm is based on LSTM algorithmic constructs for accumulating the degradation

knowledge of different power MOSFET devices on the cloud server, and real-time in-

ference at the edge. For the experimented results, we developed an entire integrated

system of Deep RACE, including an embedded system system-on-chip implementa-

tion on nVidia SoC-TX2. The results demonstrated the real-time convergence of the

system with about 8.9% miss prediction, with 26ms processing time.

In a broader perspective, the proposed research will have a fundamental contri-

bution in the engineering of semiconductor devices and information processing by

bringing recent advances in deep learning and edge computing for real-time predict-

ive maintenance of emerging semiconductor devices. In this context, Deep RACE

sets to move beyond mainstream device modeling and traditional reliability analysis

(i.e. Weibull distributions, mean-time-to-failure, etc.) and looking to more applic-

able and accurate analytical tools through introducing advanced sensing solutions

and combining it with cutting-edge deep learning techniques.
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CHAPTER 3: DEEPDIVE

3.1 Introduction

The astonishing growth in deep learning algorithms, particularly, Convolutional

Neural Networks (CNNs), has enabled many exciting applications in visual analytics.

We have observed a recent shift towards Domain-Specific Architectures (DSA), e.g.,

Systolic Arrays, CGRAs, Tensor Cores, to cope with the significant computation de-

mand raised by deep learning paradigms [1, 2, 3, 4, 5, 6, 7]. These emerging DSAs

often transform convolutional operations into dense linear algebraic operations across

the channels and kernels. This maximizes parallelism and compute resource utiliz-

ation, as well as minimizes data movements, by increasing data re-usability. They

are typically designed to be a generic, one-size-fits-all architecture that allows hard-

ware reuse between different layer operations. As a result, they execute the target

CNN layer-by-layer sequentially. A notable example is the recently introduced Versat-

ile Tensor Accelerator (VTA) [7], which is an open, generic, and customizable deep

learning accelerator with a complete TVM-based compiler stack, targeted for edge

FPGAs. Another such accelerator design presented by [8] introduces a configurable

architecture, pipelined, and timing controlled design with fixed hardware solution

specially designed for MobileNet.

Deep Separable CNNs (DSCNNs) [9, 10, 11, 12, 13, 14] have emerged as an innovat-

ive algorithmic solutions to achieve higher accuracy with relatively lower parameters

and operations. State-of-the-art separable CNNs, e.g., MobileNet family [12, 14] and

EfficientNet [13], offer modular networks with structural sparsity over various convo-

lutional operators — group, depthwise, and pointwise convolution. DSCNNs often

result in relatively higher computational sparsity, more data-dependent layer-to-layer
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communication, and less data reuse potential over their predecessor networks, such as

ResNet [15] or VGG [16]. At the same time, the modular design, combined with the

structural sparsity of DSCNNs, allows the designer to systematically trade between

algorithmic accuracy, and computational demand, via tunable knobs that vary the

sparsity of the network, e.g., varying degree of width multiplication in MobileNet-V2.

The structural sparsity of DSCNNs makes existing DSAs, e.g., VTA or Tensor

Cores, less suitable for efficient execution of DSCNNs, as the current DSAs have been

often designed for dense operations with highly regular data access and high data re-

use. At the same time, current DSAs are often optimized for a single design point in

isolation, which limits their efficiency when running DSCNNs. For instance, they con-

vert sparse convolutions to dense matrices (e.g., depthwise to group-convolution trans-

form), which leads to higher computational overhead than the original DSCNNs, while

delivering the same accuracy. As an example, VTA had to make a specialized version

of MobileNet, which they call MobileNetG, to remove depthwise separable convolu-

tion and make it running efficiently on systolic array implemented on FPGAs. FPGA
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implementation introduced in [8] has massive data movements as a result of their

configurable data path design which results in high latency. Also such type of fixed

architectures adopted in [8, 17, 18, 19] makes it difficult to achieve scalability to

support modern DSCNNs, e.g. EfficientNet.

This chapter proposes a fully functional framework called DeepDive for an agile,

power-efficient execution of DSCNNs on edge FPGAs. DeepDive offers a novel archi-

tecture for efficient execution of DSCNNs, combined with a vertical algorithm/archi-

tecture optimization and synthesis on edge FPGAs. The framework is designed to

identify key heterogeneous Compute Units (CUs), to fully support DSCNNs with het-

erogeneous convolutional operations, such as group, depthwise, and pointwise convo-

lution. Fig. 3.1 abstracts DeepDive design flow. At the front-end, DeepDive receives

the network description model (e.g., PyTorch), and optimizes the model based on

the FPGA-aware training and online quantization. This includes algorithm-specific

fusing of batch normalization and convolutional operators, which reduces the compu-

tation by ~4%, and extremely low-bit per-channel-quantization across all separable

convolution layers. The output of the front-end will be QNet, which contains all

of the meta-data regarding the FPGA-aware trained as well as quantized network

model. At the back-end, DeepDive relies on the recent advances in High-Level Syn-

thesis (HLS) and shifts the optimization abstraction to pre-RTL design. The Network

SoC Compiler creates a customized memory path and synthesizable model of the en-

tire hardware accelerator for Programmable Logic (PL) based on pre-designed CUs

and provided convolution operators. It also generates the host CPU code running on

ARM cores located in the Processing System (PS) side of SoC for synchronization and

scheduling. The host code, bundled with a scheduler, enables the DeepDive back-end

system to support multiple run-time software stacks such as Pynq and Linux. The

key contributions are:

• The structure and the flexibility of DeepDive enables an agile framework to sup-
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port the fast-growing and up-coming DSCNNs. To the best of our knowledge,

this work is the first scalable solution with the support of recently introduced

EfficientNet DSCNN families.

• It proposes a novel scalable vertical framework for the execution of DSCNN on

FPGAs. The vertical integration and library-based operation mapping enables

true comprehensive design space exploration on FPGAs.

The rest of this article is organized as the following: Section 3.3 discuss the

algorithmic properties of DSCNNs and further motivates DeepDive. Section 3.4

presents DeepDive’s front-end, focusing on FPGA-aware training and online quantiz-

ation. Section 3.5 details DeepDive’s back-end architecture and design flow. Section

3.6 presents DeepDive’s execution results on Xilinx’s ZCU102 FPGA and compar-

ison against state-of-the-art solutions. Section 3.2 reviews the related work. Finally,

Section 5.5 concludes this chapter.

3.2 Related Work

Modern CNN accelerators can be divided into two main categories: single compute

engine [1, 2, 3, 4, 5, 6], and multiple streaming compute engines [3, 20, 21, 22, 23, 24].

Single compute-engine accelerators are typically a systolic array of processing ele-

ments (PEs) that execute the target CNN layer-by-layer sequentially. They have a

versatile solution to support different CNNs with the cost of some execution defi-

ciencies. In contrast, streaming architectures consist of multiple dedicated hardware

blocks, customized for the target CNN’s layers running in producer/consumer fash-

ion. While achieving relatively higher efficiency, they have less scalability to support

different networks [25, 26].

Many recent frameworks have proposed a vertical design flow from algorithm to

the hardware [1, 3, 7, 20, 22]. However, the primary focus is on optimizing classical

CNNs with dense operation with regular memory access, such as YOLO and ResNet
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network family. One notable example of single-engine architecture is DNNWeaver

[1]. It offers customizable, hand-optimized RTL templates capable of shrinking or

expanding the architecture based on the target CNN workload and target device

hardware constraints. The templates support common CNN layer operations such

as standard convolution, pooling, and batch normalization. However, the design-

flow is not autonomous as it requires the user to define the network topology and

layer structure. Wei et al. [5] designed a novel 2D systolic array that localizes data

shifting to between neighboring PEs. This removes the need for multiplexers and

simplifies the routing complexity, allowing for higher throughput. They also employ

a custom C-based front-end, which, similar to [1], requires user interaction to define

the nested convolutional loop using custom pragmas in C++. The custom front-

end makes it more challenging to integrate with existing high-level DNN libraries

(PyTorch, TensorFlow, Caffe, etc). VTA is another recently introduced approach,

which presents a versatile hardware solution to support different dense CNNs. VTA

enjoys the generality by adapting instruction-based scheduling and flexible systolic

array. However, this generality leads to more power dissipation. Another aspect that

should be considered is that solutions based on versatile systolic arrays intrinsically

do not support depthwise convolutions due to introduced sparsity in these types

of convolutions; thus, users need to convert the depthwise convolutions to group-

convolution to execute a DSCNN on designs similar to VTA. All these succumb to

more power dissipation and memory transactions, which lead to having an inefficient

hardware solution for DSCNNs.

The design proposed in [27] presents a framework to minimize the complexity and

the model size of dense CNN by mapping normal convolution to depthwise separable

convolution. Similarly, TuRF [28] replaces standard convolution layers with depth-

wise separable convolution and applies layer fusion to enhance the performance of

dense networks. The design presented by [17] is another hardware accelerator based on
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matrix multiplication and customized adder-tree to support MobileNet-V2. However,

their fixed design platform is not scalable to support fast-growing and forthcoming

DSCNNs. A parallel acceleration scheme proposed in [8], demonstrates computing re-

usability with design reconfigurability. However, the accelerator suffers from massive

data movements due to frequent reads and writebacks to the DDR because of the lack

of fused layer execution. Moreover, the design-flow is not autonomous and requires

the user to define the layer structure. A MobileNet-V2 based hardware accelerator

on FP32 computation is presented in [18]. DPU [19] is another solution to support

MobileNet-V2 based on an optimized RTL hardware model with a dedicated oper-

ator for depthwise; however, it cannot be considered as a versatile solution to support

DSCNNs due to lake of support for swish activation function and pointwise mul-

tiplication. To the best of our knowledge, none of the above approaches present a

fully vertical framework to implement the-state-of-the-art DSCNN architectures, e.g.,

EfficientNet family.

3.3 Algorithmic Principles of Deep Separable CNNs

DSCNNs [9, 12, 13, 14] have emerged as a new paradigm to achieve higher accur-

acy with relatively fewer parameters and operations over the classical CNNs. The

efficiency of DSCNNs stems from their structural sparsity, combined with a modular

configurable network topology, that can be scaled up or down, depending on desired

accuracy and corresponding computational overhead. In this section, we define the

basic principles and structural properties of DSCNN. For ease of access, we summar-

ized the symbols that appeared in this chapter and their description in Table 3.1.

These symbols will be used throughout this chapter.

Fig. 3.2(a) shows normal convolution filters with the shape of M × N × K × K;

thus, the computational cost of normal convolution is C = H ×W ×K2 × N ×M .

Group-convolution, shown in Fig. 3.2(b), minimizes the computation cost of a con-

volution operator by grouping its channel in G receptions, reducing computation to
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Table 3.1: List of symbols

Item Parameter Description
1 N Input channel size
2 M Output channel size
3 K Kernel size
4 H Height of input feature
5 W Width of input feature
6 G Group size
7 BW Bit-width
8 α Width multiplier
9 k Number of classes

C/G, where M = f ·G | f ∈ N. Depthwise convolution[14, 29] is an extreme case of

group-convolution, where G = N, f = 1. In this case, each filter is applied to each

input channel individually based on Fig. 3.2(c), and in contrast to the normal convo-

lution, there is no reduction (summation) across channels. Pointwise convolution is

another type of operator which minimizes the computation by not capturing spatial

dependencies within a frame pixels by setting the kernel size to 1× 1.

As mentioned earlier, depthwise convolution minimizes computation by removing

reduction along the input channels; thus, it is not able to capture the channel-wise

information. In the same fashion, pointwise convolution reduces the computation

complexity by removing spatial filtering, while it has a full reduction in channel

depth. Depthwise separable convolution, used in MobileNet-V1 [14], is an integrated

operator composed of a depthwise convolution, followed by pointwise convolution,

in order to capture information in both spatial and channel domains, respectively.

However, there is still information loss as features move along the network depth and

are embedded into lower-dimensional space. MobileNet-V2 [12] introduced inverted

residual connections to its previous network, further reducing both multiply-add oper-

ations, and model size, without sacrificing the network accuracy. The idea of residual

connections was inspired by the ResNet [15] architecture to minimize information

loss and speed up the training phase. Fig. 3.3 shows the structure of the Inverted

Residual Block (IRB). IRB consists of a pointwise (expansion) convolution, followed
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by a depthwise convolution, followed by another pointwise (projection) convolution,

to embed the features in a lower dimension. The MobileNet-V2 can control IRB layer

input channel width, i.e., N , by altering the α, which changes N to α×N . The α = 1

is the baseline model. Selecting α < 1 can reduces the computational complexity and

the model size quadratically by roughly α2. We have examined the effect of this knobs

and image input size on the final hardware performance and its accuracy in Section

2.5.

Another recently introduced example is EfficientNet, which further optimizes the

IRB by adding Squeeze and Excitation (SE) blocks. Fig. 3.3(b) presents the Efficient-

Net IRB with SE block. The SE block consists of a squeeze operation that captures

the global spatial features, followed by an excitation operation that uses a gating

function to allow important features to be captured while ignoring the rest. Tradi-

tionally, the normal sigmoid is used as the gating function for the SE block, but is

replaced with the hard sigmoid to further reduce computation complexity. The hard

sigmoid is a non-smooth approximation of the sigmoid function and is described as:

ReLU6(x+ 3)

6
, (3.1)
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ReLU6(x) =











x, if 0 ≤ x ≤ 6

0, otherwise
(3.2)

The design principles of DSCNNs result in relatively higher computational sparsity

due to heterogeneous computing operators that cannot share hardware resources.

Depthwise convolution accumulates only across the spatial axis and needs only K×K

fused-multiply-add (FMA) operations since its weight shape is [M, 1, K,K]. Since

versatile systolic arrays are often designed to support both spatial and channel ac-

cumulation, they perform more FMA operations. They map depthwise to matrix

multiplication problem by kernel zero-padding and reshaping appropriately; however,

the cost of memory real estate, and the redundant computation demand, are not

affordable for resource-constrained hardware platforms.

In next, we introduce DeepDive as a fully vertical and versatile solution to support

sparse operators introduced in DSCNNs. As case studies, we selected MobileNet-

V2 and EfficientNet as two examples of DSCNNs, and we thoroughly elaborate their

implementation with the aid of DeepDive in section 3.6.1 and 3.6.2, respectively.
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3.4 DeepDive: Front-end

This section describes the front-end of DeepDive, which brings hardware-awareness

into training DSCNNs. Fig. 3.4 illustrates the main components of the front-end and

their corresponding output. The procedure starts by feeding a pre-trained floating-

point network into the DeepDive. The Batch-Norm Fusing merges the batch normal-

ization operator into the convolution in order to remove any floating-point operations

in the final hardware solution. Next, Online Channel-wise Low-Bit Quantization

quantizes while training the fused network at extremely low-bit resolutions (e.g., 3-6

bit) across all channels within separable layers. Then, the trained network will be

calibrated by extracting the minimum and maximum values across all channels per

layer of the network. The Post-Trained Model Quantization then uses these acquired

ranges to fuse the activation layer, i.e., ReLU6, into the convolution operator. The

outcome, QNet, consists of only convolution operators that have had their output set

to the minimum and maximum quantized value automatically—when they are less

than 0 and greater than 6, respectively. In the following, we explain the details of two

important aspects of front-end: (1) Batch-Norm Fusing, and (2) Online Channel-wise

Low-Bit Quantization.

3.4.1 Batch-Normalization Fusing

Batch-Normalization (BN) [30] is a linear operator, generally seen following a con-

volution layer, in order to normalize the output of the convolution. BN improves the

training speed and stability of the network. The BN function is defined by Eq. 3.3:

x
∧

= γ
xj − µ√
σ2 + ǫ

+ ξ, (3.3)

where γ is BN weight, ξ is its bias, and µ, and σ are mean and variance of training

batch calculated during the training, respectively. ǫ is a small constant defined to

prevent division by zero. Both γ and β are trainable parameters. For networks where
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Figure 3.4: DeepDive: Front-end.

its convolution operators are always followed by BN, DeepDive online training fuses

these two consecutive layers together by applying following equations:

v
∧

= (σ2 + ǫ)
−1

2 , (3.4)

ω
∧

conv = ωconv × diag(γ · v∧), (3.5)

B
∧

conv = Bconv + (ξ − (γ · µ · v∧)), (3.6)

where ωconv and Bconv are trained weights and biases of convolution operator, respect-

ively. After BN fusion, the network model is ready for quantize-aware training.

3.4.2 Online Channel-wise Low-bit Quantization

Quantization is a well-known approach to compress the network model size, and

speed up the computation, by mapping number representations from floating-point

single precision (FP32) to integer representation. Due to the malleability of FPGA

fabrics, designers can greatly reduce the integer bit-width, while minimizing the intro-

duced quantization error, by training the network for the new representation. Deep-

Dive applies the Range-Based Linear quantization to compress the network weights

and biases. Let’s define T = {x | x ∈ R}, such that T is the floating-point pre-trained

network model. Function h : T → Q will map and scale T to Q, where Q is
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quantized integer representation set. Eq. 3.7 defines function h:

x = S(xq +mzp) | xq,mzp ∈ Q, (3.7)

where S ∈ R, is the scaling factor, xq is the quantized value, and mzp is the zero-point

defined to make the right-hand side of Eq. 3.7 equal zero when xfp = 0. Based on

the range of xq, two methods of Asymmetric Representation and Symmetric Repres-

entation are defined. In asymmetric mode the minx = min(x) is mapped to 0, while

maxx = max(x) is 2BW −1, while BW is the bit-width. In contrast, symmetric maps

both [minx, maxx] to [−(2BW−1), 2BW−1− 1]. MobileNet-V2 uses ReLU6 as its non-

linearity function — its output is always positive and less than 6. Therefore, we opted

for the asymmetric method, since the negative range of the symmetric representation

is not useful, and we are not able to benefit from the full range of representation;

thus, it will have an impact on the output accuracy of each activation layer.

DeepDive can quantize a network model per output channel, or per convolu-

tion layer. Per layer approach defines h function per whole convolution layer, while

per-channel quantization defines hj | j = 0, · · · ,M − 1 per each output channel for

a convolution operator. For instance, Fig. 3.5 shows the per-channel quantization

approach for a depthwise convolution.

After the network is trained and quantized based on the user-provided config-

uration, the validation set is used again for the network model calibration. The
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Figure 3.5: Per-channel range-based linear quantization. In this depthwise convolu-
tion example, per each N output channel, a separate mapping function is created.
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calibration data will be used to make the trained network ready for post-training

quantization. In this step, based on the acquired min-max, and the type of quantiza-

tion, the scaling S and mzp will be recalculated again to re-evaluate hj, which results

in hpq
j : [0, 6]→ [0, 2BW − 1]. By applying this approach, DeepDive fuses the ReLU6

activation to the convolution operator.

3.5 DeepDive: Back-end

DeepDive’s back-end offers a novel micro-architectural approach, and design flow,

customized for efficient execution of DSCNNs on edge FPGAs. Fig. 3.6 presents the

DeepDive back-end design flow. The heart of DeepDive’s back-end is the Network

SoC Compiler. It receives the design properties from DeepDive’s front-end and gen-

erates a full design of the system for both hardware (as synthesizable C++ models

mapped to FPGAs fabric), software codes, and system configurations. To generate

the optimized hardware for DSCNNs, the Network SoC Compiler uses pre-designed

highly-optimized RTL micro-architectural blocks or synthesizable C++ model for

depthwise, pointwise, and normal convolution operators. In simple words, the Net-

work SoC Compiler generates a network graph containing the network layout and

data dependencies. It then creates key heterogeneous CUs, called QNet Accelerators,

with respect to DeepDive’s system architecture.

In the following, at first, we describe micro-architectural details of convolutional

operators, and then we discuss the details of the Network SoC compiler and system

architecture.

3.5.1 Convolutional Operators

Since DeepDive is specially designed for DSCNNs, it naturally supports all convo-

lutional operations, namely, normal convolution, depthwise convolution, and point-

wise convolution. Each convolution operator buffers minimum job data size, which is

necessary to start the computation, with the assumption that the network parameters
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necessary for computing are transferred to internal memory, and that the intermediate

feature maps are streamed in and out. These operators are pipelined and parallelized

in a way that is ideal for both memory-bound and compute-bound operations. The

heart of a convolutional operator is a reconfigurable Direct Convolution core with dif-

ferent degrees of parallelism. The amount of parallelism defines the utilization, and

parallel read/write ports required by the scratchpad or local buffers. This flexibility

allows the Network SoC Compiler to manage the resources efficiently by tweaking
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The data in window is left shifted. 4○ New data from the line buffer is copied in to
the window. 5○ & 6○ Data from the FIFO is then copied into the line buffer and
window buffer. All the Data Movements are pipelined.
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the parallelism knobs to achieve the best performance (will be further discussed in

section 3.5.2). Next, we elaborate on each operator from the design standpoint. In

addition, we formulate the amount of parallelism per each convolutional operator.
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Figure 3.8: Schematic block diagram of depthwise and normal convolution.

3.5.1.1 Depthwise Convolution

The Depthwise convolution uses a 3D line buffer and 3D window to perform direct

convolution. The input feature is streamed into a line buffer and then copied into a

window buffer with parallel read access, as shown in Fig. 3.7. Once the computation

is finished, the data in the computation core will be flushed and reloaded with the new

one from the line buffer. The hardware design ensures the data movement involved in

this process is fully pipelined, and the initiation interval is limited to a single cycle.

Computation starts as soon as the required amount of data is streamed from the main

memory. For the current design, the max achievable parallelism is limited to the K

and N .

Fig. 3.8 presents the micro-architecture of depthwise and normal convolution oper-
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ators. As depicted in Fig. 3.8, the selected input is read in streaming fashion into the

3D line buffer and then copied into the sliding window. The weights are burst read

into the weight scratch pad. The Sliding Window and the Weight scratchpad have

multiple read ports. Every channel of the input is processed by the direct convolution

compute core. The direct convolution compute core has a parallel multiplier, and a

pipelined adder tree, together which carryout the MAC operation, followed by the

Approximator and Clip unit. This unit truncates, or rounds, the results and then

clips them to [0, 2BW − 1] based on the quantization parameters extracted at the

front-end for this operator. Therefore, this unit also acts as the ReLU6 activation

layer defined in MobileNet-V2 or EfficientNet. The depthwise convolution is more

sparse, and has the least amount of data reuse. The maximum parallel operations

are calculated as the following:

ParallelOps = Kdw
max ×Kdw

max ×Ndw
max, (3.8)

In Eq. 3.8, Kdw
max, and Ndw

max are the maximum kernel size and maximum input-channel

across all the depthwise convolutions in the network, respectively.

3.5.1.2 Normal Convolution

The DSCNN has one normal convolution, and it is the first operator to embed

patterns from both spatial and channel dimensions from the given input image. Since

the next layer after normal convolution is depthwise, it is essential to generate output

pixels column-wise (spatial dimension) so the depthwise can start the job immedi-

ately. Therefore, we improve the parallelism level by having a dedicated adder tree

located after the direct convolution kernel for the input channel reduction. The block

diagram of normal convolution is, also shown in Fig. 3.8. The parallelism in normal
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convolution is across kernel size and input channels — described in the following:

ParallelOps = Knc
max ×Knc

max ×Nnc
max, (3.9)

where Nnc
MaxSize is the maximum input channel size, and Knc

max is the maximum kernel

size, assigned from all normal convolution. Normal convolution has slightly more data

movements compared to the depthwise convolution due to the pipelined adder tree

implemented at the end of direct convolution core.
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Figure 3.9: Schematic block diagram of pointwise convolution.

3.5.1.3 Pointwise Convolution

Due to the dense operation of pointwise, the design of this operator can be similar to

the design of a general matrix multiplication, which is well suited for the systolic array.

With maximum data reuse, this operator can leverage maximum parallelism. It has

both fewer algorithmic, and fewer data movement complexity, which makes it best fit

for a high amount of parallelism. Fig. 3.9 shows the structure of pointwise convolution

operator. The required input is directly read into the input scratchpad from the read

buffer. The weights are burst read into the weight scratchpad. The input buffer and
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the weight scratchpad have multiple read ports for parallel data access. The single-

cycle parallel multiplier and the adder tree take advantage of the multiple ports to

perform the MAC operations in parallel fashion. The amount of parallelism for our

design is across the input channels.

ParallelOps = NPWtype

max , (3.10)

where N
PWtype
max is the maximum input channel size across all the specific type (eg.

projection or expansion pointwise in the MobileNet-V2) of pointwise convolutions

mapped to specific compute unit.

3.5.2 Network SoC Compiler

The Network SoC Compiler observes the network graph, the targeted hardware

device, and existing pre-designed synthesizable C++ IPs for convolution, and then

translates the network graph by grouping the convolutional operators into customized

QNet CUs with respect to system architecture. It tweaks the hardware architectural

knobs to maximize parallelism, fusing as many convolutional operators as possible to

reduce the number of shared memory transactions, and increase the overlap between

computation and memory latency. Based on the repetitive pattern, it wraps the

convolution operators in four different heterogeneous CUs: 1○ The Head CU gener-

ally consists of normal convolution followed by a special case of IRB which is only

called once; 2○ The Body CU invokes IRB since it has maximum repetitions based

on the DSCNNs architectures; 3○ The Tail CU usually consists of pointwise convo-

lution followed by Average Pooling to embed the features and make them ready in

respect of size and shape for the classifier; 4○ Finally, the mapping of Tail CU output

to k−classes is accomplished by Classifier CU.

Below, we describe the details of Network SoC Synthesizer including, system archi-

tecture, memory organization, Heterogeneous QNet CUs, host code scheduling and
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CUs management.
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Figure 3.10: System level architecture of DeepDive.

3.5.2.1 DeepDive System Architecture

As emphasized before, the convolutional operators of DSCNNs demonstrate a re-

petitive structural behavior wherein some either appear once, or they are repeated

across the entire network. Depending on the recurrence of the convolutional oper-

ators, they are mapped to the Head, Body, Tail, and Classifier CU. Fig. 3.10 shows

the system architecture of DeepDive Hardware Accelerator. Each CU has its own

dedicated Direct Memory Access (DMA), and its parameters, such as array point-

ers, N , M , and H, can be configured at runtime via the control bus (e.g., AXI

Lite Bus). After configuration, each CU can transfer the input/output features map

and weights tensors via streaming channels (e.g., AXI HP Interface) through System

Memory Management Unit (SMMU). The composition of CU is parameterized by the

buffer shapes, data type widths, and the computation core, which are a few of the

architectural knobs provided while designing the hardware accelerator. This makes

our design scalable and reconfigurable for DSCNNs. We will discuss our hardware

knobs and each CU’s internal composition in detail after we explain the memory

transactions and management. The CUs are scheduled and pipelined to increase the

concurrency.

3.5.2.2 Memory Organization

Each CU has its own dedicated buffer and scratchpad to handle its memory re-

quirements. The memory layout of the on-chip buffers are designed to satisfy the

data access pattern required by the convolutional operators, in order to minimize
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Figure 3.11: Architecture of QNet Heterogeneous Computing Units for MobileNet-
V2.

the pipeline depth implemented in the computation core. The memory transactions

in the CUs can be categorized into two groups: 1○ memory to memory transaction,

where data is burst read from DDR memory to PL memory, and 2○ memory to

stream transaction, where data is streamed via DMA to or from PL memory. As an

example, Fig. 3.11(a) demonstrates the memory transactions for Head CU targeted

for MobileNet-V2. Convolutional network parameters like weights, quantization para-

meters, and biases are burst read from DDR to PL buffers. The input/output feature

maps are streamed from DDR to PL. Apart from memory transactions of input/out-

put features between DDR and PL, the inter-CU data transfers within its operators

also occurs in streaming fashion, where intermediate feature map data is streamed

in-between different convolutional layers. Stream FIFO offers two main advantages,

memory and computation latency overlap and data movement reduction between

DDR and PL.
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3.5.2.3 QNet Heterogeneous CUs

In this subsection, we will explain the heterogeneous CUs, and the available ar-

chitecture knobs that can be tweaked based on hardware and performance con-

straints. As mentioned earlier, Network SoC Compiler creates four unique CUs

for each DSCNNs. The CUs are completely parameterizable, and customizable, for

scalability and flexibility. Following section describes each CU in detail. We also

provide illustrative figures for the example of MobileNet-V2.

Head CU: DSCNNs tend to start with a particular pattern, which comprises

of a fixed set of layers that are not recurrent in any other part of the network.

As explained in the section 3.5.2.2, the Head CU has its own dedicated internal

memory for buffers. The data transactions occur in memory-to-memory mode and

the intermediate data streams between convolutional layers within the head CU. As

an example, Fig. 3.11(a) demonstrates the Head CU for MobileNet-V2 model, which

is composed of normal convolution followed by depthwise and pointwise convolution,

all fused by FIFO stream. This CU is scheduled once during the course of any DSCNN

implementation. After running the head of CU, the repeatable pattern will be merged

and mapped to the Body CU explained in the next part.

Body CU: The Body CU is the most important CU within DeepDive’s system

architecture. It is responsible for executing majority of DSCNNs blocks iteratively.

As an example, the IRB, which is the most repetitive block of MobileNet-V2, is en-

tirely mapped to the Body CU. The IRB consists of pointwise (expansion), depthwise,

and pointwise (projection) layers, all running concurrently in a fused fashion within

the Body CU. Fig. 3.11(b) shows the structure of this CU for MobileNet-V2. Upon

examining the network graph of DSCNNs, we see that occasionally, the IRB needs to

perform residual connections. Depending upon the network graph, DeepDive facil-

itates residual connections implementation within or outside the PL targeted device

resources. The Body CU is parameterized so as to support both memory-bound IRBs,
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which ideally are earlier blocks of DSCNNs, and compute-bound IRBs, which tend

to be later blocks of DSCNNs. Therefore, the network SoC compiler configures the

Body CU with maximum buffer size needed by memory-bound IRBs, and maximum

level of parallelism to meet the demand imposed by compute-bound IRBs. At the

same time, the Body CU supports convolution operations with variable stride over

different IRBs. These features increase the framework inclusiveness by supporting

multiple IRB scenarios within the same DSCNN.

Tail CU: The Tail CU consists of the last layers of DSCNNs. The task of this CU

is to make the embedded feature size ready for the dense layer implemented in the

Classifier CU. Fig. 3.11(c) represents the structure of Tail CU in MobileNet-V2. This

CU is comprised of a single pointwise convolution operator, followed by an average

pool. As intermediate feature maps are streamed from layer to layer in a channel-wise

fashion, the reshape block reorders the memory layout of the feature map in a column-

wise mode. Therefore, the average pooling can accumulate the input on-the-fly and

stream out.
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Figure 3.12: Host level scheduling and memory footprint of CUs.

Classifier CU: The last Compute Unit is the Classifier CU, which concludes the

DSCNN implementation. Fig. 3.11(d) represents the MobileNet-V2 Classifier CU.
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Table 3.2: Effect of altering α and H for fixed BW = 4
α 1 0.75 0.5 0.35

H 224 192 160 128 96 224 192 160 128 96 224 192 160 128 96 224 192 160 128 96
Params(Mb) 13.31 13.31 13.31 13.31 13.31 10.01 10.01 10.01 10.01 10.01 7.48 7.48 7.48 7.48 7.48 6.37 6.37 6.37 6.37 6.37
#Ops(M) 313.621 230.755 160.638 103.269 58.649 220.326 162.212 113.038 72.805 41.513 104.164 76.868 53.772 34.875 20.177 64.835 47.973 33.706 22.033 12.953
Top1(%) 69.07 67.256 65.78 62.3 56.036 66.404 64.364 59.928 53.112 43.002 59.502 57.452 52.608 45.316 34.88 54.43 51.214 46.59 39.328 27.2

Similar to others, this CU is parameterized such that the parallelism across the com-

puting core can be adjusted based on the available hardware resources. Classifier CU

comprises compute-bound operations and has a similar configuration to the point-

wise convolutional operators.

3.5.2.4 Host Code Scheduling and CUs Management

Finally, the Network Soc Compiler also manages the host-level scheduling of CUs.

Fig. 3.12 visualizes the CUs scheduling and their memory footprints on shared memory.

The host or PS initializes the DDR with network models and quantization paramet-

ers. The DeepDive back-end generates the memory layout so that the network data

region is shared between PL and PS. Therefore at each CU invocation, the PS only

passes the data pointer, and the PL fetches the data based on the provided pointer

rather than copying the data to its region. This memory layout will remove the

necessity of copying data between the PL and PS memory region. The host starts

scheduling procedure by configuring the Head CU with appropriate memory pointer

addresses, offsets, network parameters, and network configuration, i.e., M , N , H,

which are compiled into network configuration header files. When Head CU com-

pletes execution, it writes back the data in feature tensors and interrupts the host

CPU. Following the same trend, the host will schedule the Body CUs for j times,

where j is the number of Body CU invocations calculated based on CU’s mapping.

Host CPU then schedules the Tail CU, which executes the compute-bound operations

quickly. And finally, the last call is to the Classifier CU, which will update the content

of feature tensor needed by the softmax layer to calculate the confidence. Host CPU

creates a sequential yet fused scheduling and management of CUs for DSCNNs.
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3.6 Experimental Results

We have chosen the Xilinx Zynq UltraScale+ MPSoC ZCU102 evaluation board,

which has XCZU9EG chip, to demonstrate the capabilities of DeepDive. The ARM

processors host Ubuntu 16.04, running at 1.2GHz; the OS can program the FPGA

fabric at runtime. We also use Vivado HLS 2018.3 to synthesize the network models

compiled by DeepDive. The FPS and power consumption reported for DeepDive

are based on QNet accelerator running at 200MHz. We targeted MobileNet-V2 and

EfficientNet networks as two cases of DSCNNs. The Top-1 accuracy reported in this

section is based on training and evaluating the network on the ImageNet dataset.

Since the input image has a square shape, we reported only H as input feature size.

Later, we elaborate the design exploration and implementation of each one of these

networks as a case study.
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Figure 3.13: The effect of different computation types on Top1-accuracy and model
size. Based on Fig. 3.13(a), UInt4 has almost accuracy similar to floating-point,
while a notable drop can be observed for UInt3. Also, Fig. 3.13(b) shows integer
quantization causes an exponential decrease in the model size.
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3.6.1 Case Study: MobileNet-V2

The procedure starts from a PyTorch model of MobileNet-V2, pre-trained on Im-

ageNet. At DeepDive’s front-end, we configured the FPGA-aware training for differ-

ent BW based on the channel-wise asymmetric ranged linear quantization. Fig. 3.13

shows the Top-1 accuracy for MobileNet-V2 when its α = 0.75 and H = 160. As

can be seen, DeepDive maintains accuracy with respect to FP32 by reducing the BW

to 8 for first normal convolution, and 4 for the rest of the layers, respectively. The

per layer-specific quantization compresses the model size with a ratio of 8, with 4.4%

degradation in Top1 accuracy. The results demonstrate a dramatic drop in accuracy

for BW = 3. For the rest of this case study, BW = 4, as it achieves competitive

accuracy with considerably smaller model size.

3.6.1.1 Design Exploration

The front-end is configured to re-train, quantize, and calibrate the network for

different α and H values. Table 3.2 summarizes the model size, operation numbers

and Top1 accuracy per each design point. Based on Table 3.2, we observe that model

size is only effected by α, while the number of operation number is a function of both

α and H. Top1 accuracy is also a function of both H and α; however, it is not a
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linear relationship. For instance, design point (H = 224, α = 0.75) has better Top1

accuracy compared to design point (H = 160, α = 1) while its model size is 33% less

than the latter one. Therefore, we introduce the network complexity as the product

of the network model size and network operation number to consider both of them.

Table 3.3: Effect of altering α and H for fixed BW = 4 at 200Mhz on FPS and FPGA
Resource Utilization
α 0.75 0.5 0.35

H 224 192 160 128 96 224 192 160 128 96 224 192 160 128 96
FPS 11 14 18 22 28 16 19 25 30 37 20 25 31 40 51
Power(W) 3.25 3.10 3.03 2.93 2.88 2.97 2.83 2.86 2.84 2.83 2.97 2.78 2.76 2.72 2.70
DSP(%) 57 57 58 57 57 37 37 37 37 37 24 24 24 24 24
LUTs(%) 75 74 76 74 74 71 70 70 70 70 68 67 67 67 67
BRAM(%) 96 96 97 92 90 92 91 89 88 87 84 84 82 81 80

Fig. 3.14 depicts the Top1-Network Complexity Pareto front. The network com-

plexity helps the front-end to measure the final hardware complexity at a higher level

of abstraction. We annotate the starting point of each α in this figure and one non-

Pareto point for the sake of comparison. Here, we observed that the design point

(H = 96, α = 1) has approximately the same network complexity with respect to

(H = 224, α = 0.5), while its Top1 accuracy is almost 4% less than top achievable

accuracy.

3.6.1.2 Accuracy Density

In order to illustrates the performance of DeepDive front-end, we introduce Accur-

acy Density (ρ) as follows:

ρ =
Top1

Params×Ops
. (3.11)

where Params is in Mbit, and the number of operations (Ops) is in Giga. The

ResNet-18, SqueezeNet, and MobileNet-V2 models, depicted in Fig. 3.15, are selected

from Xilinx Model Zoo 1, quantized in 8-bit. We considered networks with accuracy

higher than 60% with the exception of SqueezeNet, and compared the accuracy dens-

ity of the Xilinx models against the DeepDive compressed model. ResNet-18 as an

1https://github.com/Xilinx/AI-Model-Zoo
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example of a classical model with an accuracy of 66.94% has the lowest density in

respect to other models. Although the baseline 8-bit quantized MobileNet-V2 with

the precision of 63.54% has the smallest model size and the number of operations

concerning ResNet-18; however, it is outperformed by DeepDive model configura-

tion (H = 224, α = 1) as its accuracy is 5.53% better than Xilinx MobileNet-V2

while reducing the model size with the aim of extreme 4-bit quantization. The

(H = 160, α = 1), and (H = 192, α = 0.75) configurations have almost 1% bet-

ter accuracy than the Xilinx MobileNet-V2, while improving ρ by 4.11× and 5.35×,

respectively.
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Figure 3.15: The Accuracy Density ρ comparison of three networks from Xilinx Model
Zoo, Resnet-18, SqueezeNet, and MobileNet-V2 quantized in 8-bit, and seven config-
urations compressed by DeepDive front-end.

3.6.2 Case Study: EfficientNet

Table 3.4: Compressed EfficientNet Algorithmic Specs and FPGA Resource Utiliza-
tion with fixed BW = 4, Frequency = 200 MHz

Algorithmic Parameters Hardware Parameters

H Parameters (Mb) #Ops (M) Top1 (%) FPS DSP (%) LUTs (%) BRAM (%)

128 7.81 4.914 55.02 35 90 80 68

The baseline EfficientNet model was intentionally designed to be larger than Mobile-

Net-V2. While this might be ideal for state-of-the-art accuracy, it was not suitable

for low-power embedded devices. Taking advantage of the compound model scaling
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factors introduced in [13], we were able to compress the model using smaller α, net-

work depth, and H, to achieve a model size capable of running on edge devices. The

algorithmic details and hardware resource utilization of this model can be seen in

Table 3.4.
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Figure 3.16: EfficientNet mapped to CUs.

Mapping: EfficientNet is structurally different as compared to MobileNet-V2.

Fig. 3.16 shows the mapping of EfficientNet to the CUs. The squeeze and excita-

tion convolutional operators are represented as PW-SQ and PW-EX, respectively.

DeepDive takes advantage of EfficientNet architecture by fusing more convolutional

operators together. EfficientNet comparatively has a larger body than the MobileNet-

V2, with six layers fused. This mapping helps in achieving better performance by

reducing more memory transactions by invoking the Body CU only nine times. For

the case of EfficientNet, we excluded the classifier from mapping and also comparison.

3.7 Conclusion

This chapter introduced DeepDive, as a fully functional framework for an agile,

power-efficient execution of DSCNNs on edge FPGAs. DeepDive offers a vertical

algorithm/architecture optimization, starting from the network description model

down to full system synthesis and implementation. At the front-end, DeepDive per-

forms high-level optimization such as BN fusing, and Online channel-wise low-Bit

quantization at extremely low-bit resolutions to bring FPGA-awareness when train-

ing DSCNNs. At the back-end, Network SoC Compiler receives the design properties

from DeepDive’s front-end and generates a full design of the system for both hardware
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model and software host codes. To generate the optimized hardware for DSCNNs,

the Network SoC Compiler uses pre-designed micro-architectural blocks for depthwise,

pointwise, and normal convolution operators. For the results, we have synthesized,

executed, and validated two state-of-the-art DSCNNs, MobileNet-V2 and Efficient-

Net on Xilinx’s ZCU102 FPGA board. The execution results demonstrated 47.4 and

233.3 FPS/Watt for MobileNet-V2 and a compact version of EfficientNet, respect-

ively. These comparisons showcased how DeepDive improved FPS/Watt by 2.2× and

1.51× over Jetson Nano high and low power modes, respectively. It also enhances

FPS/Watt about 2.27× and 37.25× over two other FPGA implementations.

As future work, we plan to improve the back-end of DeepDive to support cloud-

based FPGAs such as Alveo family. We plan to extend support for multiple instances

of Body CU to improve both latency and throughput. Each body could have a dif-

ferent level of parallelization based on the knobs introduced in Section 3.5.1. The

host would also map the IRB layers to the body CUs based on the required computa-

tion power. Various Body CUs with varying degrees of parallelization could improve

DeepDive without power and hardware resource compromises.
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CHAPTER 4: ATCN

4.1 Introduction

The astonishing growth in deep learning algorithms has changed how embedded

and cyber-physical systems (CPS) process the surrounding environment and has sig-

nificantly improved the overall CPS performance on delivering their assigned tasks.

For instance, the deep learning algorithms and architectures have powered the em-

bedded systems in visual sensing applications such as pedestrian and object tracking

[1, 2], action detection [3, 4]. Another dimension of deep learning, which has recently

emerged in the edge, is time series analysis and forecasting. Healthcare [5, 6, 7],

device health monitoring [8, 9, 10], machine translation [11, 12] are some examples of

deep learning use in time sequence analysis.

For most deep learning practitioners, recurrent networks and especially two elab-

orated models, namely, LSTM [13] and GRU [14], are synonymous with time series

analysis due to its notable success in sequence modeling problems such as machine

translation, language processing, and device health monitoring. These models inter-

polate the output based on the current and temporal information, which is learned

and captured in the hidden states and propagated through the time from one cell to

the next adjacent cell. The propagation chain of hidden state causes two significant

issues [15]: 1) gradient instability such as vanishing/exploiting gradients and 2) fewer

levels of parallelization due to existing dependencies across the cells.

Temporal Convolutional Networks (TCN) was first proposed based on an adapt-

ation of WaveNet [16] and Time-Delay Neural Network [17]. It orchestrates dilated

convolutions in Encoder-Decoder architecture to have a unified framework for action

segmentation. Later, Bai et al. [18] designed a Generic TCN (GTCN) architecture for
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Figure 4.1: Model complexity comparison of three different ATCN families against
InceptionTime (IT)

sequence modeling, which outperforms LSTM on time-series and sequence modeling

tasks. However, the GTCN suffers from two main drawbacks: 1) the size of dilation

increases exponentially by the layer, which prevents the designer from increasing the

depth of the network, 2) it uses two standard convolutions per each layer, which is

computationally expensive for resource-constrained embedded systems. Inception-

Time (IT) [19] is another off-the-shelf CNN to classify time series based on CNN,

representing a scalable, accurate solution; however, execution on a microcontroller is

entirely out of reach of InceptionTime.

This chapter proposes a novel extension of TCN called ATCN for light-weight

processing of time series on embedded and edge devices. We introduced Spectral-

Temporal Convolution Block (STCB) to decrease the number of MAC operations and

the model size of TCN to make it applicable for embedded devices while maintaining

a comparable or better accuracy over IT. Various configurations of these three blocks

can be combined to form different ATCN families that can each meet various design

constraints. FIG. 4.1 illustrates the capacities and scalability of three different ATCN

families on accuracy and model complexity trade-off over 70 benchmarks from the

UCR 2018 dataset [20] against IT. The T0 configuration reduces the MACs and
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model size by 102.38× and 16.84× over IT, respectively. T1 performance is 4.03%

better than T0 and has a 73.59× reduction in MACs, and a 14.23× reduction in model

size over IT. Both T0 and T1 can be executed on an ARM Cortex-M7 microcontroller

explained in the experimental section in detail. As a final improvement, T3 reduces

the MACs and model size for 26.07× and 4.4× over IT while increasing accuracy by

0.37%.

Overall, the key contributions of this chapter are:

• Proposing ATCN, which achieves higher or comparable accuracy over state-of-

the-art models with significantly lower computation complexity for embedded

devices.

• Creating a network template supported by automated design flow for scalable

generation and training different configurations of ATCN concerning the com-

plexity of problem and latency requirements.

The rest of this article is organized as the following: Section 4.2 briefly discusses

the use of time-series analysis in embedded and CPS. Section 4.3 provides background

on generic TCN and its architecture. In section 4.4, we elaborate on the Temporal-

Spectral block, the ATCN architecture, and its hyperparameters. Section 4.5 presents

the experimental results including comparison with existing approaches, and finally

Section 4.6 concludes this article.

4.2 Related Works

Traditional convolutional neural networks are used in computer vision applications

due to their success in capturing the spatial features within a two-dimensional frame.

Recently, research has shown that specialized CNNs can recognize patterns in data

history to predict future observations. This gives researchers interested in time-series

forecasting options to choose from over RNNs, which have been regarded in the

community as the established DNN for time-series predictions. In one such case,
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Dilated Convolutions (DC) have been shown to achieve state-of-the-art accuracy in

sequence tasks. In the first use of DC, WaveNet [21] was designed to synthesize raw

audio waveform, and it outperforms the LSTM. Later, Lea et al. [22] proposed TCN,

a unified network based on WaveNet DC, for video-based action segmentation. In the

same trend, the gated DC was used for the sequence to sequence learning [23]. The

proposed approach beats deep LSTM in both execution time and accuracy.

GTCN [15] is a generic architecture designed for sequence modeling. The design

of GTCN was based on two main principles: 1) there shouldn’t be any information

leakage from future to past, 2) the network should be able to receive any arbitrary

input length similar to RNN. Since the main fundamental component of GTCN is

based on variable-length DC, it brought higher parallelization and flexible receptive

field in comparison to RNN. Also, since the gradient flow of GTCN is different from

the temporal path of RNN, it is more resistant to the problem of gradient instability.

Recent researches have taken advantage of GTCN benefits or similar architectures

in their works. In the work of [24], a modified version of GTCN with depth-wise

convolution has been used to enhance the speech in time-domain. The DeepGLO [25]

is another work that used a global matrix factorization model regularized by a TCN

to find global and local temporal in high dimensional time series.

InceptionTime is an ensemble of CNN blocks called Inception Module and proposed

as a solution for the Time Series Classification (TSC) problem. The network archi-

tecture was constructed based on the Inception-v4 [26] structure, and it employed a

larger kernel size to beat enormous and complex models such as the HIVE-COTE

[27]. Nonetheless, it is still exceedingly heavy for the microcontroller with limited

resources, such as ARM Cortex-M series, or even legacy embedded ARM Cortex-A

series CPUs.

The chapter proposes ATCN for embedded and resource-constrained hardware to

address time-series domain problems, which is on par with InceptionTime in terms
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of accuracy performance. We have put our claim on test in Section 4.5 by comparing

ATCN against InceptionTime over 70 benchmarks from UCR time-series datasets.

Additionally, we have reported the execution profile of the Cortex-M7 and Cortex-

A57 when running ATCN families. We have shown that ATCN improves or maintains

the overall system accuracy for these three cases while minimizing computational

complexity and model size. In the next section, we study the structure of DC in-

depth to prepare the ground for introducing ATCN in Section 4.4.

4.3 Background: Temporal Neural Networks

GTCNs are designed around two basic principles: 1) the convolutional operations

are causal, i.e., predictions are made based only on current and past information; 2)

the network receives an input sequence of arbitrary length and maps it to an output

sequence of the same length [15]. Based on principle number 2, in order to map the

final output to an arbitrary size, the output of the last DC output can be connected to

a linear layer. This adds flexibility by allowing a final output length to be independent

of the input length. The naive causal convolutions, which have a dilation rate of 1,

are inherently inefficient as their sequence history scales with size linear to the depth

of the network.

x0 x1 x2 ... ... ... xt-3 xt-2 xt-1

h0 ht-1

Input

Hidden Layer

Dilation = 1

Hidden Layer

Dilation = 2

Output

Dilation = 4
h1h1 h2h2 ...... ...... ...... ht-3ht-3 ht-2ht-2

Figure 4.2: Dilated Causal Convolution.
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The solution here incorporates dilated convolutions to exponentially scale the re-

ceptive field, as shown in Fig. 5.1. The first convolution with dilation rate d=1 maps

the input vector X = [x1, x2, · · · , xt−1] to the higher dimension. Then, GTCN in-

creases the d for the next convulsions exponentially to increase the receptive field.

The minimum output sequence length, before mapping to the linear layer, can be

determined by calculating its receptive field: [28]:

rf = 1 +
L
∑

l=1

[k(l)− 1]× d(l), (4.1)

where l ∈ {1, 2, 3, ..., L} is the layers, k is the kernel size, and d(l) is the dilation rate

at layer l. This means that as the depth of the network increase, so does the receptive

field. The dilated convolution of F on element s of a sequence X is given as:

F (s) = (X ∗d f)(s) =
k−1
∑

i=0

f(i) · xs−d·i, (4.2)

where X ∈ Rn is a 1-D input sequence, ∗d is dilated convolution operator, f :

{0, ..., k−1} ∈ R is a kernel of size k and d is the dilation rate [15, 28]. For applications

requiring a very large rf , it is also essential to provide stability in the later layers

subject to the vanishing gradient problem. A popular technique in traditional CNN

architectures, the residual block [29], provides a “highway” free of any gated functions,

allowing information to flow from the early layers to the last layers unhindered.

These connections can be seen in the final GTCN architecture shown in Fig. 4.3.

The GTCN consists of L hidden layer and an optional linear layer to map the input

size i to arbitrary output size. Each hidden layer has two regular dilated convolution

and two ReLU activation function. There can also be an upsampling unit, such as

point-wise convolution, in the first hidden layer of GTCN to map 1-D input sequence

to a higher dimension to guarantee the element-wise addition receives tensor of the

same dimension.
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The design of GTCN suffers from two problems: 1) exponential growth of dilation

size, 2) the existence of two regular convolutions per layer. The exponential growth

of dilation size and requirement of having the same length for both input and output

of dilated convolution force the network designers to have excessive padding at the

higher layers. Also, the implementation of two convolutions blocks per layer makes

the GTCN costly for CPS. In the next section, we address the problems mentioned

above by introducing ATCN architecture.

4.4 ATCN: Agile Temporal Convolutional Networks

In this section, we introduce the architecture of ATCN. At first, we discuss the

essential components, and then we elaborate on the hyper-parameters, and in the

end, we present the ATCN architecture and its model builder.

4.4.1 Network Structure

The ATCN architecture can be created by chaining STCBs and altering their con-

figurations. Each STCB is composed of a pointwise (expansion), a group, and a

pointwise (projection) convolution. We visualized the STCB in Fig. 4.4(a). The Max

Pooling layers are optional. It lets architects downsample temporal information to
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minimize computational complexity while embedding that information in higher or

lower dimensions. The extreme case of STCB is when the group size and its input

channel size are equal. In this case, the group-convolution is set to a depthwise, and

the ATCN network synthesizer will remove the maximum pooling and add a skip-line

between element-wise addition and the STCB input. The final architecture of ATCN

is shouwn in 4.4(c). The ATCN is a mirrored residual dilated convelutional neural

network. It starts with mapping the n-dimnetion input, which is generally 1D for

the time series, to higher dimention at firt layer. Then it encodes the data to lower

dimention. At encoder parts, the data will be decoded to higher dimmnetion again.

Based on the final application, the output of decoder can be used for regression or

classification problems. In the rest, we discuss the details of STCB and the network

hyper-parameters.
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Figure 4.4: Structure of ATCN blocks. The non-linearity activation and batch nor-
malization units after each convolution are not depicted.



85

4.4.1.1 ATCN Structure

The first layer of ATCN is standard convolution with an optional MaxPooling for

downsampling the input. A padding unit is also added before standard convolution

and expansion convolution in STCB to ensure that the input and output tensors of

the block have the same size to satisfy principle number 2 of GTCN. The 2p zeros

are added symmetrically is added by padding unit, where p is given by:

p = ⌈(o− 1)× s+ (k − 1)× (d− 1)− i+ k

2
⌉, (4.3)

where o is the output size, i is the input size, s is the stride, k is the kernel, and d is the

dilation. After each convlution, 1D batch normalization and a non-linear activation

function is also added. In this research, we used Swish as activation function:

Swish(X) = X ⊙ Sigmoid(X), (4.4)

where ⊙ is Hadamrd or elemnt-wise multiplication. Fig. 4.5(a) depicts the perform-

ance of different activation functions on MNIST validation loss.

The STCB consists of expansion, followed by a group and another projection con-

volution. The task of expansion convolution is to map input channel size, cin, to

higher or same dimension, cexpout , where cexpout = α × cin, α ≥ 1. On the contrary, point-

wise projection embeds and maps the feature extracted from the group conolution

to the block output size, cout. For the case of depthwise convolution, we set group,

which manages the connection between input and output, to cexpout . For this case, the

convolution weigh shape changes from (cout, cin, k) to (cout, 1, k), where k is the ker-

nel size. We designed the network synthesizer so that if cin = cout, the skip line is

automatically created from input to the elementwise addition. Then, the input will

be added to the residual output from the pointwise projection. The residual connec-
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tion helps the designers increase the network’s depth without being worried about

the vanishing gradient problem. The model synthesizer considers group convolution

rather than depthwise for the case that MaxPooling is selected. The reason for do-

ing so is based on this observation that for downsampling the input, which has an

activated max-pooling unit, group convolution helps to better map temporal inform-

ation to a higher dimension without drastically increasing computation complexity

and the model size. The only constraint imposed by group convolution is that its

output channel size, cgcout, should be divisible by cexpout . The two extreme G-CNN cases

are when group = cgcin and group = 1. In the former case, the group convolution is a

depthwise convolution, and in the latter, it is a standard convolution. Formally, the

weight shape for group convolution is (cout,
cin

group
, k). We depict the effect of altering

the group values in Fig. 4.5(b) for MNIST digit classification. As we can see, reducing

the group value increases the network capacity to minimize the validation loss.
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(a) Effect of different non-linearity activation
function on validation loss.
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(b) Dilated Causal Convolution.

Figure 4.5: The effect of different non-linearity activation function, σ, and group
value on final validation loss.

4.4.2 ATCN hyper-parameters

For designing the ATCN network architecture, three knobs should be altered based

on the problem complexity (sequence classification, prediction, or segmentation), the
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input size, the network models, and computational cost trade-off. In the rest, we fully

elaborate on each of them.

4.4.2.1 Dilation rate

For a fixed input size, if we increase the number of layers, based on the GTCN ar-

chitecture guideline, we need to increase the dilation rate exponentially. This decision

will help the network have a higher receptive field; however, based on principle num-

ber 2, we need to pad the features excessively to have the same input and output size.

This unnecessary padding results in 1) more computation and 2) CNN performance

degradation. We observed linear growth for dilation would help the network with

more than six layers to have better feature representation. Although the dilation

rate can be defined as a function of layer number, we increased it after each block

with activated downsampling in the experimental results. This decision helps design

a deep ATCN for the cases where input size, i, is small.

4.4.2.2 Kernel size

It is recommended that the kernel size, k, is large enough to encompass enough

feature context based on the problem complexity. However, based on Eq. 5.5, it

is a good practice to decrease the kernel size for higher layers to ensure p is not

growing exponentially. By contrast, if we increase the dilation rate, based on Eq.

5.2, the kernel size can be reduced without concern for the receptive field. Embedded

devices gain two crucial advantages from this decision: it reduces 1) the computational

complexity and 2) the model size.

4.4.2.3 Number of layers

Similar to the dilation rate, if we need to increase the network’s depth to increase

its capacity, it is recommended to gradually decrease kernel size and have a linear

growth for dilation. We can alter both after each block with downsampling units.

This decision helps the final structure to have enough receptive field to cover feature
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Figure 4.6: ATCN model synthesizer and training framework.

context without increasing the MAC operations and model sizes.

4.4.3 ATCN Model Synthesizer

We depict the inputs of ATCN Model Synthesizer and the framework for its train-

ing in Fig. 4.6. The ATCN Model Synthesizer receives Input Channels, Kernel Sizes,

Dilation Rates, Input Ratios, and finally, the first Input Channel Size to design the

ATCN network architecture. In the rest, we explain each of the ATCN Model Syn-

thesizer inputs in detail.

cout per Layer : It is a vector of size L, where L is the number of layers (blocks).

The clout defined in Cout = [c1out, c
2
out, ..., c

L
out], decides the output channel for layer l.

For this research, the values in vector Cout are descending-ascending (Auto-Encoder

architecture) to code the feature to lower dimension to extract temporal correlation

and then maps to a higher dimension to represent extracted features for final stages.

Kernel Size: The vector K, K = [k1, k2, ..., kL] | kl ∈ N, defines the kernel sizes

for each layer. Based on the discussion of Section. 4.4.2.2, it is suited to decrease the

k to minimize both model size and required computational complexity.

Dilation Rates : The vector D, where D = [d1, d2, ..., dL] | dl ∈ N, defines the
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dilation rates per each layer. On the contrary to K, it is necessary to increase d to

achieve a higher or same receptive field at deeper levels.

Input Size Ratios: The R = [r1, r2, ..., rL] | 0 < rl ≤ 1, defines the input ratios. For

the value of rl < 1, l > 1, the ATCN Model Synthesizer configures the STCB block

with max-pooling unit. For the case of l = 1, r < 1, the max-pooling will be added

after standard convolution; otherwise, the input and out of standard convolution will

have the same size. For this research, the rl can only be defined as 1
2

or 1. For other

ratios, the synthesizer can be modified to change the stride of max-pooling to satisfy

the targeted ratio.

4.4.4 ATCN Families

We introduce three ATCN families by assigning values to the C, K, D, and R

for UCR time series classification. Table 4.1 summarizes the configuration of T0, T1,

and T2 as three canidates. Table 4.2 also compares their average FLOPS and number

of model parameters of candidates and InceptionTime based on seventy benchmarks

from the 2018 UCR time series classification, which are explained in detail in Section

4.5. We assign the output channels, Cout, in descending-ascending format to encode

features to lower dimensions, then decode them to higher dimensions to represent

them for the final dense layers and classifier. We have reduced the kernel size K

due to the increased dilation rate, D. As a result, MACs and model parameters are

reduced without compromising receptive field size. The T0 configuration reduces the

MACs and model size by 102.38× and 16.84× over IT, respectively. T1 has also

73.59× reduction in MACs, and a 14.23× reduction in model size over IT. Finally,

T2 reduces the MACs and model size for 26.07× and 4.4× over IT. The algorithmic

accuracy of these models and training methods of these models are explained in 4.5.
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Table 4.1: The configuration of three ATCN families

Models
Configurations

Cout D K R

T0 [32, 16, 16, 8, 8, 16, 16, 32] [1, 2, 2, 4, 4, 6, 6, 8] [32, 16, 16, 8, 8, 4, 4, 2] [1
2
, 1, 1, 1, 1, 1, 1, 1]

T1 [32, 16, 16, 8, 8, 16, 16, 32] [1, 2, 2, 4, 4, 6, 6, 8] [64, 32, 32, 16, 16, 8, 8, 4] [1
2
, 1, 1, 1, 1, 1, 1, 1]

T2 [64, 32, 32, 16, 16, 32, 32, 64] [1, 2, 2, 4, 4, 6, 6, 8] [64, 32, 32, 16, 16, 8, 8, 4] [1
2
, 1, 1, 1, 1, 1, 1, 1]

Table 4.2: FLOPS and number of parameters for T0, T1, T2, and InseptionTime

Metric
Models

T0 T1 T3 InceptionTime

FLOPs 2,377,840 3,329,008 9,457,376 240,430,566
Params# 24,816 29,424 95,456 422,498

4.5 Experimental Results

In this section, we demonstrate the capabilities of three different ATCN families by

applying them to problems of UCR time series classification. T0 and T1 are compiled

and utilized on ARM Cortex-M7 microcontroller series, and T2 is executed on ARM

Cortex-A57. A report on RAM utilization, flash usage, and inference time is also

provided.

4.5.1 Dataset

The experiments were conducted on 70 benchmarks publicly available from UCR

Time Series Classification 2018, which vary in time length, number of classes, dataset

type, sample size, and sample size. Table 1 summarizes the details of the benchmarks.

4.5.1.1 Data augmentation

For benchmarks whose training size is small, such as ECGFiveDays, we applied

four types of data augmentation: jittering, magnitude warping [30], window warping

[31], and scaling. In Fig. 4.7, each approach is shown in relation to the observed

signal, X.
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Figure 4.7: Different data augmentation applied on UCR dataset. X is observed
signal and X̂ is the augmented data.

Table 4.3: Description of 70 benchmarks selected from UCR

Time Series Classification Archive 2018

ID Type Name Train Test Class Length

1 ECG ECGFiveDays 23 861 2 136

2 Sensor Plane 105 105 7 144

3 Simulated TwoPatterns 1000 4000 4 128

4 Sensor Trace 100 100 4 275

5 Power PowerCons 180 180 2 144

6 Spectro Coffee 28 28 2 286

7 Simulated BME 30 150 3 128

8 Motion GunPointMaleVersusFemale 135 316 2 150

9 Motion GunPointOldVersusYoung 136 315 2 150

Continued on next page
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Table 4.3 – Continued from previous page

ID Type Name Train Test Class Length

10 EPG InsectEPGRegularTrain 62 249 3 601

11 Sensor Wafer 1000 6164 2 152

12 Simulated SyntheticControl 300 300 6 60

13 Sensor FreezerRegularTrain 150 2850 2 301

14 Traffic Chinatown 20 343 2 24

15 Simulated ShapeletSim 20 180 2 500

16 Motion GunPointAgeSpan 135 316 2 150

17 ECG TwoLeadECG 23 1139 2 82

18 Motion GunPoint 50 150 2 150

19 Simulated UMD 36 144 3 150

20 Sensor DodgerLoopWeekend 20 138 2 288

21 Device HouseTwenty 40 119 2 2000

22 Motion ToeSegmentation2 36 130 2 343

23 Sensor ItalyPowerDemand 67 1029 2 24

24 Simulated CBF 30 900 3 128

25 Image Symbols 25 995 6 398

26 Sensor FordA 3601 1320 2 500

27 Image Fish 175 175 7 463

28 Image DiatomSizeReduction 16 306 4 345

29 ECG ECG5000 500 4500 5 140

30 ECG ECG200 100 100 2 96

31 Motion ToeSegmentation1 40 228 2 277

32 Spectro Strawberry 613 370 2 235

33 Sensor SonyAIBORobotSurface1 20 601 2 70

34 Sensor FreezerSmallTrain 28 2850 2 301

Continued on next page
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Table 4.3 – Continued from previous page

ID Type Name Train Test Class Length

35 Image MixedShapesRegularTrain 500 2425 5 1024

36 Sensor DodgerLoopGame 20 138 2 288

37 Spectrum SemgHandGenderCh2 300 600 2 1500

38 Image BirdChicken 20 20 2 512

39 Sensor SonyAIBORobotSurface2 27 953 2 65

40 Sensor Lightning2 60 61 2 637

41 Image ProximalPhalanxOutlineCorrect 600 291 2 80

42 Image ProximalPhalanxOutlineAgeGroup 400 205 3 80

43 Device LargeKitchenAppliances 375 375 3 720

44 Sensor Car 60 60 4 577

45 Sensor MoteStrain 20 1252 2 84

46 Sensor FordB 3636 810 2 500

47 Image ArrowHead 36 175 3 251

48 Image BeetleFly 20 20 2 512

49 Image ProximalPhalanxTW 400 205 6 80

50 Device SmallKitchenAppliances 375 375 3 720

51 Image FaceAll 560 1690 14 131

52 Motion UWaveGestureLibraryX 896 3582 8 315

53 Spectrum SemgHandSubjectCh2 450 450 5 1500

54 Image DistalPhalanxOutlineAgeGroup 400 139 3 80

55 Sensor Earthquakes 322 139 2 512

56 Motion WormsTwoClass 181 77 2 900

57 Sensor Lightning7 70 73 7 319

58 Spectro Ham 109 105 2 431

59 Image DistalPhalanxTW 400 139 6 80

Continued on next page
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Table 4.3 – Continued from previous page

ID Type Name Train Test Class Length

60 Motion UWaveGestureLibraryZ 896 3582 8 315

61 Device Computers 250 250 2 720

62 Device ElectricDevices 8926 7711 7 96

63 Motion UWaveGestureLibraryY 896 3582 8 315

64 Sensor InsectWingbeatSound 220 1980 11 256

65 Image MiddlePhalanxOutlineAgeGroup 400 154 3 80

66 Image Herring 64 64 2 512

67 Image MiddlePhalanxTW 399 154 6 80

68 EOG EOGVerticalSignal 362 362 12 1250

69 Sensor DodgerLoopDay 78 80 7 288

70 Device RefrigerationDevices 375 375 3 720

4.5.2 Implementation details

The models are implemented in PyTorch and trained on a Nvidia Tesla V100 GPU

using the ADAM optimizer with a Learning Rate (LR) of 0.001, a gradient clip of

0.25, and a weight decay of 0.001. We also reduce the LR by the factor of 0.1 when

the validation loss stagnates for eight epochs. In the case of datasets with two classes,

Binary Cross-Entropy (BCE) loss function is used, and Cross-Entropy is used for all

other datasets.

4.5.3 Algorithmic Comparison

Table 4.4 compares the algorithmic performance of three ATCN families to that of

InceptionTime. A comparison of Tables 4.4 and 4.2 shows that T1 has an increase in

performance of 4.03% over T0 and has a reduction of 73.59× in MACs and a decrease

in model size of 14.23 times over IT. In addition to reducing MACs and model sizes
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by 26.07 times and 4.4 times over IT, the T2 also boosts accuracy by 0.37 percent.

Table 4.4: Comparison of the average accuracy for seventy benchmarks from the 2018
UCR time series classification dataset

Metric
Models

T0 T1 T2 InceptionTime

Average Accuracy 83.69% 85.73% 86.65% 86.28%

In accordance with Demvsar’s recommendation [32], the Friedman test is practiced

and the results shows that the four classifiers are not statistically different from each

other. In Fig. 4.8, we show the critical difference diagram of discussed classifiers.

The connected classifiers by a thick line indicate that they do not have a significant

difference stattically at the p-value of 0.05; however, InceptionTime is undoubtedly

plagued by higher computational complexity in respect to ATCN families.

1234

T0
T1 InceptionTimes

T2

Accuracy

Figure 4.8: Critical difference diagram shwoing the performance of four classifier. The
diagram depicts the overall average ranking of the classifiers, where those connected
by a thick line show no statistically significant inconsistencies at p-value 0.05. As a
result, T0, T1, T2, and InceptionTime are not significantly different.

4.5.4 Execution Comparison

In order to evaluate the performance of models on embedded devices, we selected

STM32F746ZGT6, which has Cortex-M7 running at 216 MHz with 320 KB of RAM

and 1 MB of flash memory as a microcontroller, and Cortex-A57 running at 1.43

GHz as an embedded microprocessor. We compared the execution performance and

hardware utilization of all four classifiers in Table 4.5. The results are extracted by

running model trained on Coffee benchmark. Compared to the T1 configuration,

the T0 can reduce both RAM and flash utilization by 7.5% and 1.47%, respectively,
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while improving inference time by 21.42%. Due to their higher RAM requirements,

T2 and InceptionTime could not be compiled. In next, we ran the all four ONNX

models on A57 processor for the batch size of one. Based on the comparison between

the ATCNs and InseptionTime, the ATCN families are faster by 7.49×, 5.87×, and

2.93×, respectively.

Table 4.5: Resource utilization and inference time of two Cortex-M7 and Cortex-A57
platforms

Parameters
Models

T0 T1 T2 InceptionTime

M7 RAM utilization 48.89% 56.39% - -
M7 flash utilization 14.13% 15.89% - -
M7 inference time 165 mS 210 mS - -
A57 inference time 2.81 mS 3.58 mS 7.16 mS 21.05 mS

4.5.5 Architectural configuration study

During our study of the effects of kernel size, we developed a new configuration

called Tβ. Table 4.6 summarizes the Tβ network configuration, FLOPs, the number

of parameters, and its average accuracy. It can be seen that Tβ has the same Cout,

D, and R as T2, but the kernel size per block has been halved. Despite a greater

model complexity than T1, both FLOPs and model size, the results show that T1 is

still more accurate than Tβ. As an aid to understanding this behavior, we depict the

inputs and Class Activation Mapping (CAM) of two benchmarks in Fig. 4.9 and Fig.

4.10. When the model correctly classified the input signal, CAMs are calculated by

multiplying the input of global average pooling by the weight matrices of the correct

class index.

Table 4.6: Model configuration and accuracy performance of Tβ

Model
Parameters

Cout D K R FLOPs Params# Average Accuracy

Tβ [64, 32, 32, 16, 16, 32, 32, 64] [1, 2, 2, 4, 4, 6, 6, 8] [32, 16, 16, 8, 8, 4, 4, 2] [1
2
, 1, 1, 1, 1, 1, 1, 1] 7,303,136 86,240 84.94%

The activation heatmaps for class 0, shown in Fig. 4.9 , have the lowest value

around the input signal magnitude. Consequently, for class 0, the probability of
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Figure 4.9: GunPointOldVersusYoung dataset

output approaches zero. However, we can observe the activation heatmaps for class

1 have the highest value around the signal magnitude, which leads to the output

probability being one. For multiclass classification problems depicted in Fig. 4.10, we

can see models activate based on the perceived nuances of signal shapes. For instance,

the T0 model, Fig. 4.10(a) ∼ Fig. 4.10(a), classifies the input as class 0 based on the

form observed in sequence ∼10 to ∼80, as class 1 based on unique transition observed

in the middle of the sequence, and as class 2 based on the curve recognized in ∼70 to

∼150. In respect to Tβ, this model shows a coarse-grained transition, note sequence

∼20 to ∼60 in Fig. 4.9(h) and ∼150 to ∼240 in Fig. 4.10(j). This indicates that

Tβ has a lower receptive field compared to T1 and T2, both of which have the same

kernel size. As a result of the higher receptive field of T1, the model is able to predict

the classes more precisely, although it has less model complexity in both forms of

FLOPS and the number of parameters.
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Figure 4.10: ArrowHead dataset

4.6 Conclusion

ATCN is proposed here for lightweight real-time processing of time-series on em-

bedded and edge devices. In order to reduce the number of MAC operations and

model size, we introduced STCB as a main computational block. STCB blocks are

able to be sequenced in a variety of configurations to build scalable ATCNs. We also

presented a framework, called ATCN Model Synthesizer, to build different ATCN

models. The result of ATCN Model Synthesizer is a family of compact networks with

formalized hyper-parameters that allow the model architecture to be configurable and

adjusted based on the application requirements. Through the use of model synthes-

izer and ATCN reconfigurability, we have developed three agile models, T0, T1, and

T2, two of which can be executed on ARM Cortex-M7 microcontrollers. The exper-

imental results over 2018 UCR time classification benchmarks indicate that the T0

configuration can reduce the MACs and model size by 102.38× and 16.84× over In-

ceptionTime, respectively. T1 performance is 4.03% better than T0 and has a 73.59×

reduction in MACs, and a 14.23× reduction in model size over InceptionTime. Both
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T0 and T1 can be executed on an ARM Cortex-M7 microcontroller explained in the

experimental section in detail. As a final improvement, T3 reduces the MACs and

model size for 26.07× and 4.4× over IT while increasing accuracy by 0.37%.
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CHAPTER 5: DEEPTRACK

5.1 Introduction

With the advent of high-speed communication systems and unprecedented im-

provements in trajectory predicting, we are closer to implementing a fully connected

(vehicle-to-vehicle (V2V) and Vehicle-to-Infrastructure (V2I)) and fully-aware trans-

portation system than ever before. The increasing push towards autonomous driving

and thrust for designing the best in class crash-avoidance systems at the edge has

resulted in developing trajectory forecasting algorithms with better than 90% ac-

curacy for up to 5 seconds in the future. The use of such high accuracy models in

safety-critical systems for crash avoidance and accident prediction can result in pre-

cise Time-to-Collision (TTC) prediction, which can prove instrumental in avoiding

accident-related injuries and saving many lives.

In 2019, there were 36,096 fatalities on roadways in the United States [1, 2]. Of

those fatal crashes, NHTSA (2019) estimates that 11.9% of them involved a vehicle

maneuvering in a manner that may be unpredictable to the other drivers (i.e., turning

left or right, stopping or slowing in traffic, merging/changing lanes, or passing another

vehicle). Such crashes at highway speeds, given the short TTC and limited distance

range, cannot be prevented with vision-based systems alone [3]. Providing enough

time and distance to support effective crash avoidance via V2V systems must also

utilize high-accuracy predictions for changing vehicle trajectories.

Predicting multiple possible trajectories for an active subject in the scene [4, 5] is a

common practice. These trajectories are ranked based on the probability distribution

of the prediction model, which may not be helpful in a real-time scenario. Hence, a

deep learning algorithm for vehicle trajectory forecasting in a real-time safety-critical
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application must provide a single trajectory with high precision. It is imperative to

consider the interactions of the surrounding automobiles [4, 6] to successfully predict

the accurate path of a moving vehicle in a highly dynamic environment. However,

designing a real-time system at the edge for predicting safety-critical situations, the

size and complexity of the model must also be considered. Smaller size and lower com-

plexity result in faster predictions which can prove to be crucial in accident avoidance.

This article proposes DeepTrack as a novel deep learning model with comparable

accuracy to best-in-class trajectory prediction algorithms but a much smaller model

size with lower computational complexity to suit the resource-crunched embedded

edge systems. DeepTrack encodes the vehicle dynamics with the aid of Agile Temporal

Convolutional Networks (ATCN) instead of well-established LSTM units. ATCN,

with its depthwise convolution as its backbone, can shrink the complexity of models

and boost gradient flow for a more generalized trained model compared to LSTM-

based solutions. Compared to CS-LSTM and its other variant CS-LSTM (M) [5],

DeepTrack reduces prediction error by 9.09% and 11.56%, respectively, and reduces

the number of operations and model size by about 10.49% and 18.5%, respectively.

Concerning CF-LSTM [7], DeepTrack error raised for 0.87%; however, it can reduce

the number of operations and model size by 10.49% and model size by 18.5%.

This article is organized as follows: Section 5.2 reviews the literature. Section

5.3 presents DeepTrack and introduces ATCN as an alternative to LSTMs used as

dynamic encoders of vehicle trajectories to reduce model complexity. On both the

accuracy and complexity of DeepTrack’s model, we compare the results to those of

state-of-the-art solutions in Section 5.4. Finally, the chapter concludes in Section 5.5.

5.2 Related Work

Vehicle trajectory prediction networks are classified into three types, Physical-

based, Maneuver-based, and Interaction-aware models [8]. The physical-based mod-

els are designed using the laws of physics, maneuver-based models consider the driver
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intentions, and interaction-aware models take surrounding vehicles and their inter-

actions into account for motion and path prediction. Although interaction-aware

models predict with a better understanding of the surrounding, they were not very

popular until recently. Most of the interaction conscious networks used to be Dy-

namic Bayesian [9, 10] or prototype trajectory models [11]. However, several models

have been introduced more recently, taking advantage of surrounding information

for trajectory prediction. Many architectures use Long short-term memory (LSTM)

neural networks [12, 13, 14] to capture the information of the neighboring vehicles.

In the famous work by Deo et al. [4], the encoded information for each vehicle is

condensed into a single tensor. Convolutional and max-pooling layers follow it to

avoid generalization and failure to address complicated scenarios. This information is

concatenated with LSTM encoding of the target vehicle and passed to a Maneuver-

based LSTM decoder that forecasts multiple trajectories based on maneuver classes

discussed in [4].

In [15], Mercat et al. also use LSTM based encoder-decoder architecture but avoid

using predefined maneuver classes. It has self-attention layers in the middle that

accept the encoded information of each vehicle for specific time instances. This helps

in generating a fixed-sized input even when the number of vehicles in the scene might

change. The middle layer produces an attention matrix based on the features extrac-

ted from the encoder. Finally, the decoder predicts path probabilities for each vehicle

in the scene. The performance of LSTM based model in [15] is better than most of

the best in class trajectory predicting algorithms. However, graph neural networks

(GNN) with unique learning ability and have been able to produce higher accuracy

results when applied to path prediction [7, 16].

The work by Xie. et al. [7] proposes a GNN [17] based teacher-student model that

predicts higher accuracy trajectories than the previous models. The teacher model

accepts frame-wise graph input built to reflect the positions of all the agents in the
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input frame. It also uses Graph Convolutional network-based encoder-decoder for

generative learning and Gaussian mixture model for congestion pattern generation.

The student model uses LSTM based encoder-decoder for trajectory prediction and

matches the congestion pattern of the teacher model to improve the accuracy of

prediction.

The improving error rates for deep learning algorithms predicting vehicle trajectory

are routinely focused on in most published research. We have successfully attained

error rates comparable to state-of-the-art algorithms with lower model complexity

and smaller model size. We use ATCN based novel encoder to grasp the positions of

the vehicles in the scene for the past three seconds as compared to LSTM encoders

in modern models [7, 15]. The output of encoders is used to condense the details of

vehicular interaction in the past using 2D convolution. This information is passed to

the LSTM Trajectory predictor that predicts a vicinity-aware trajectory for the target

vehicle for five seconds in the future. We used US Highway 101 [18], and Interstate

80 Freeway [19] datasets provided by the Federal Highway Administration (FHWA)

under Next Generation Simulation (NGSIM) program for training and validating the

model.

5.3 DeepTrack

We first briefly explain ATCN in this section, and then we formulate the problem

and explain the DeepTrack model.

5.3.1 Agile Temporal Convolutional Networks (ATCN)

Traditional Convolutional Neural Networks (CNN) are used in computer vision

applications due to their success in capturing the spatial features within a two-

dimensional frame. Recently, research has shown that specialized CNNs are cap-

able of recognizing patterns in data history in order to predict future observations.

This gives researchers interested in time-series forecasting options to choose from over
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RNNs, which have been regarded in the community as the established DNN for time-

series predictions. In one such case, TCN have been shown to achieve state of the art

accuracy in sequence tasks, i.e. polyphonic music modeling, word and character-level

language modeling, and audio synthesis [20, 21, 22, 23, 24]. TCNs are designed around

two basic principles: 1) the convolutional operations are causal, i.e., predictions are

made based only on current and past information; 2) the network receives an input

sequence of arbitrary length and maps it to an output sequence of the same length

[24]. Currently, these simple causal convolutions have a dilation rate of 1, but other

researchers incorporate dilated convolutions, shown in Fig. 5.1, to scale the receptive

field exponentially. The dilated convolution of F on element s of a sequence X is

given as:

F (s) = (x ∗d f)(s) =
k−1
∑

i=0

f(i) · xs−d·i, (5.1)

where X ∈ Rn is a 1-D input sequence, ∗d is dilated convolution operator, f :

{0, ..., k − 1} ∈ R is a kernel of size k and d is the dilation rate [24]. Also receptive

filed of a dilated convolution can be calculated by:

rf = 1 +
L
∑

j=1

[k(l)− 1]× d(l), (5.2)

where j ∈ {1, 2, 3, ..., L} is the layers, k is the kernel size, and d(j) is the dilation

rate at layer j. This means that as the depth of the network increase, so does the

receptive field.

Inspired by TCN, we propose ATCN to reduce model complexity and memory

footprint. Fig. 5.2 shows the structure of ATCN. The model shown in Fig. 5.2 has

three hidden layers indicated by H. The hidden layers have a padding block to extend

input feature to ensure that the input and output of the convolution have the same

length to satisfy principle number 2. In H0, we use the normal convolution operator,
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Figure 5.1: Dilated Causal Convolution.

but in the subsequent layers (H1-H2), we remove the standard convolution and use

pointwise (PW), depthwise (DW), and then another pointwise to reduce the model

size and number of operations. In this research, we also added a Batch Normalization

(BN) layer after each convolution to speed up and stabilize the model training. There

is also a Swish as an activation function after each BN. To our best of the knowledge,

this is the first time a vehicle trajectory model based on ATCN is presented. In the

section 5.4, we show off the effect of ATCN network on the performance of DeepTrack

both on accuracy and model complexity.
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Figure 5.2: Structure of Agile Temporal Convolutional Networks (ATCN).

5.3.2 Problem formulation

The input of DeepTrack is define as:

X =
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, (5.3)

where lti = 〈xt
i, y

t
i〉 is the position of vehicle i at time t, and N is the number of

vehicles. A car of interest is designated by the index e in X. The shape of X is

shown in Fig. 5.2. To make fair comparisons, we construct X for vehicle e similarly

to what Deo et al. explained in [4]. In a similar way, the output can be defined as

follows:

Ŷ =
[

lt1 , lt2 , · · · , ltf
]

. (5.4)
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Figure 5.3: Overview of the trajectory prediction model. The location of the neigh-
bors (gray triangles) and car of interest (solid red triangle) is shown at t0 in Vehicle
trajectory data (extreme left) block and Trajectory prediction (extreme right) block.
Triangles denoting semi-transparent red in Vehicle trajectory data block, and semi-
transparent blue in Trajectory prediction block represent observed history paths, and
model output respectively. The observed history paths of neighbours (for past 3
seconds) are used by the model but not shown in the figure to avoid confusion.

5.3.3 Model architecture

An illustration of the DeepTrack model can be found in Fig. 5.3. The model

consists ATCN encoder, Vehicular Interactive Aware Convolution (VIAC), and LSTM

trajectory encoder. In the next section, we explain the structure of each component.

5.3.3.1 ATCN encoder

ATCN encoders embed vehicles’ path histories, both neighbors and ego vehicle, into

higher dimensions in order to capture their past trajectory. As opposed to previous

works [4, 7], ATCN does not require dense layers to embed input features as needed

for the LSTM encoder. ATCN convolutional operators capture and map the sequence

of lt by applying K = [2, k] as a kernel, where k ∈ R|k ≤ h. As a result, DeepTrack

has less model complexity, and better gradients flow from output to input during

optimization.

DeepTrack uses two different ATCN encoders. There is one ATCN shared by all

neighbors, shown by the shaded box in Fig. 5.3, which maps their dynamics to higher
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dimensions so that the VIAC can comprehend their interdependencies. As illustrated

by the red box in Fig. 5.3, the other ATCN maps only the ego dynamics.

Since we have a padding unit in each ATCN to make sure the input and ouput of

standard and depthwise convolution will be same, the 2p zeros are added symmetric-

ally, where p is given by:

p = ⌈(o− 1)× s+ (k − 1)× (d− 1)− i+ k

2
⌉, (5.5)

where o is the output size, i is the input size, s is the stride, k is the kernel, and d

is the dilation. According to Eq. 5.5, if we increase the kernel size or dilation, more

zeros should be padded to the input. The addition of excessive zeros to the input has

two main disadvantages: 1○ it degrades the model’s performance due to redundant

zeros, and 2○ it increases the model computational complexity. As a result, we set the

dilation rate and kernel size to 1, 2, respectively. In Table 5.1, both ATCN encoders

have three hidden layers; however, the output dimensions differ.

Table 5.1: Configuration of ATCN encoder for ego and neighbors

ATCN Encoder

Configurations
(H0, H1, H2)

Output feature dimensions Dilation rate Kernel size

Neigbours [16, 32, 64] [1, 1, 1] [2, 2, 2]
Ego [8, 16, 32] [1, 1, 1] [2, 2, 2]

5.3.3.2 VIAC

An analysis of the interaction between the ego and its surrounding neighbors is

necessary to predict the future trajectory of the vehicle of interest. Despite being

able to capture individual behavior, the ATCN encoder is unable to comprehend the

entire scene. Social pooling [25] proposes a solution by pooling encoded data around

a specific target. The task is accomplished by defining a spatially correlated grid

f × g × N in respect to the car of interest. Similar to the work of [4], we set f and

g to 13 and 3, respectively. Fig.5.3 shows the structure of the grid for the shape of
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3x3, which masked the ATCN encoded output.

DeepTrack comprehends the interdependencies of the vehicle by applying convolu-

tions to embeds information. The neighborhood dynamics are encoded and mapped

to the lower dimension using the two-layer convolution and a pooling unit. The dense

layer also remaps the ATCN encoder output of ego to have the same feature size so

that it can be concatenated with the result of VIAC.

5.3.4 LSTM decoder

In the final stage, the LSTM decoder receives the concatenated ego dynamics and

neighbors’ interdependencies to predict the future trajectory of the car of interest,

Ŷ . We have not used ATCN as the final stage because the ATCN is the only cable

to map the temporal information to a higher output channel. Similar to what is

accomplished by the ATCN encoder at the first stage. Due to the mapping of all

features to higher output channel dimensions, LSTM still needs to map and decode

the output of the VIAC and ego ATCN encoders to the final output prediction.

5.4 Evaluation

5.4.1 Datasets

The performance of our model has been evaluated using NGSIM I-80 and US-101,

two well-known, widely available vehicle trajectory datasets. A sampling rate of 10

Hz is used for sampling the trajectory of the vehicle over a period of 45 minutes. Each

dataset includes three segments of 15 minutes long of mild, moderate, and congested

traffic.

Similarly to [4], we divided the dataset into three parts: training, validation, and

testing. This chapter reports the results of analyzing the test sets. Based on the

work of [4], each trajectory is also segmented into 8 seconds, where the first three

seconds are used as a path that was observed, and the model will predict the fol-

lowing five seconds. To reduce the complexity of the LSTM encoder, previous works
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downsampled each second by two [4, 7, 15]. While we are not limited to this fact,

we also downsampled the inputs to have a fair comparison. In Fig. 5.4(a)-5.5, the

location of the neighbors (gray triangles) are shown at t0. Triangles denoting red,

green, and blue respectively, represent observed history paths, ground truth, and

model output.

5.4.2 Implementation Details

The model is implemented in PyTorch and trained on an Nvidia Tesla V100 GPU

using the ADAM optimizer with a Learning Rate (LR) of 0.001 with a gradient clip

of 10. Additionally, the LR is reduced by an additional factor of 0.1 if the validation

loss remains stagnant for two epochs. The total number of epochs was set to 10.

5.4.3 Metric

To provide a fair comparison to other works, we used an error metric called Root

Mean Square Error (RMSE) to assess the overall performance of the system. The

RMSE at time t is given by:

RMSEt =

√

√

√

√

1

N

N
∑

i=1

(Y t
i − Ŷ t

i )
2
, (5.6)

where Y is the ground truth, Ŷ is predicted output, and N is number of samples. We

also use the Average Displacement Error (ADE) to compare the average RMSE over

5 seconds.

5.4.4 Quantitative Results

A comparison of DeepTrack against off-the-shelf algorithms on the NGSIM dataset

was conducted for the purpose of providing a comprehensive comparison. The results

are listed in Table 5.2. Compared to CS-LSTM and its other variant CS-LSTM (M),

DeepTrack can reduce ADE by 9.09% and 11.56%, respectively. It is due to the fact

that our ATCN has higher gradient stability that it is better able to generalize solu-
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tions. However, both CF-LSTM and SAAMP outperformed the DeepTrack for 0.87%

and 4.21%. SAAMP’s attention mechanism allows it to gain a better understanding

of certain interactions, thereby improving the overall RMSE.

Considering that the final model will be deployed on the vehicle, model complexity

is another important metric that previous researchers have overlooked. Therefore,

we analyzed and compared the model complexity as measured by the number of

Multiply-Accumulate (MAC) operations and the size of the model parameters for

three approaches in Table 5.3. Since the source code for SAAMP was not available

publicly, we could not compare its model complexity with DeepTrack. The smal-

ler model size means a lower memory footprint on the final hardware. Low MACs

also translates into better execution performance on the same hardware. As we can

see, DeepTrack is able to improve the MACs and size of the model by 11.47% and

19.22%, respectively, over CF-LSTM. In addition to improving ADE over CS-LSTM,

DeepTrack also improved MACs by 10.49% and model size by 18.5%.

Table 5.2: Performance comparison based on NGSIM dataset. RMSE is calculated
in meters.

Model
RMSE (m)

ADE
1 sec 2 sec 3 sec 4 sec 5 sec

CS-LSTM [4] 0.61 1.27 2.09 3.1 4.37 2.29
CS-LSTM (M) [4] 0.62 1.29 2.13 3.2 4.52 2.35
CF-LSTM [7] 0.51 1.13 1.88 2.81 3.98 2.06
SAAMP [15] 0.55 1.1 1.78 2.73 3.82 2.00
DeepTrack 0.43 1.12 1.91 2.87 4.07 2.08

Table 5.3: Model size and number of flops per model

Parameters
Models

CF-LSTM [7] CS-LSTM [4] DeepTrack

MACs 2,064,282 2,045,938 1,667,425
Parameters 193,941 191,829 171,703
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Figure 5.4: The location of the neighbors (gray triangles) is shown at t0. Triangles
denoting red, green, and blue respectively, represent observed history paths, ground
truth, and model output.

5.4.5 Qualitative Results

The model predicted output for four scenarios is shown as an aid to understanding

the model behaviour: 1○ congested traffic (Fig. 5.4(a)), 2○ lane-keeping (Fig. 5.4(b)),

3○ maneuvering and passing a car from left lane (Fig. 5.4(c)), 3○ maneuvering and

passing a car from right lane (Fig. 5.4(d)), and 4○ cases where the model failed to

predict the trajectory precisely (Fig. 5.5). The three types of the path shown in

red, green, and blue triangles represent path history, ground truth, and predicted

trajectory for the designated vehicle. The location of the neighbors (gray triangles)

is also shown at t0. For the sake of simplicity, we didn’t show the neighbors history

path.

The comparison of Fig. 5.4(a) and Fig.5.4(b) shows that the model can accurately

estimate the velocity of the interest car based on the ego history. The model correctly

predicted that vehicles would travel less distance as a result of congested traffic. The
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Figure 5.5: Two cases where the model failed to predict the trajectory precisely due
to unpredictable driver behaviour. Same legend is used as Fig. 5.4.

vehicle in the lane-keeping scenario travels farther, and DeepTrack has interfered with

the same behavior. Figures 5.4(c) and 5.4(c) illustrate how DeepTrack performs when

a car of interest passes its front vehicle from either the left or the right lane. Fig. 5.5

shows the scenarios in which DeepTrack was not able to predict the trajectories due

to uncertainty in driver behavior. In the congested scenario (Fig. 5.5(a)), although

the driver slowly drove his car until t0, the vehicle stopped for the entire next five

seconds, while the model predicts it would come close to the front car. An alternative

scenario (Fig. 5.5(b)) involves the vehicle being steered into the right lane. The

model predicted that the vehicle would keep the lane and accelerate for the next five

seconds; however, the driver has decided to change the lane another time. In this

case, the model did not capture this behaviour since the maneuver occurred during

the prediction horizon.

5.5 Conclusion and Future Works

DeepTrack is an agile deep learning model with comparable accuracy to best-in-

class trajectory prediction algorithms but with much smaller model size and lower

computational complexity suitable for embedded edge systems. The vehicle dynam-

ics are encoded using ATCN instead of LSTM units in DeepTrack. ATCN utilizes

depthwise convolution, thereby reducing the complexity of models both in terms of

size and operations when compared with LSTMs. Our experimental results indic-
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ate that DeepTrack reduces prediction error by 9.09% and 11.56%, respectively, and

reduces the number of operations and model size by about 10.49% and 18.5%, re-

spectively, to CS-LSTM. With similar ADE to CF-LSTM, DeepTrack can also reduce

the number of operations and model size by 10.49% and model size by 18.5%.

We plan to work on two aspects as future works: First, we believe tagging geolo-

gical meta information will improve the performance of DeepTrack on multiple lanes

changing. If the vehicle is near an exit, it is more likely to change lanes repeatedly.

Secondly, both CF-LSTM and CS-LSTM downsampled the input history to reduce

the LSTM complexity and have better training performance. Due to DeepTrack’s

replacement of LSTM with ATCN, we have no bounds anymore, so we can take

advantage of a larger sample size to improve DeepTrack’s performance.
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CHAPTER 6: Conclusions

In this research, we presented Deep RACE, DeepDive, ATCN, DeepTrack. The

Deep RACE solution is a new integrated deep learning-based solution for the active

evaluation of high-frequency power converter reliability. Deep RACE moves bey-

ond mainstream device modeling and traditional reliability analysis by combining

advanced sensing solutions with cutting-edge deep learning and edge computing tech-

niques. DeepDive is also demonstrated as a novel scalable vertical framework for the

execution of DSCNN on FPGAs. The vertical integration and library-based opera-

tion mapping enable true comprehensive design space exploration on FPGAs. ATCN

networks also achieve higher or comparable accuracy than best-of-class networks with

significantly lower computational complexity and model size. We Demonstrated the

significant benefits of ATCN over state-of-the-art networks when it comes to execution

on embedded IoT microcontrollers (ARM Cortex M7 and Cortex A57). DeepTrack

uses ATCN as a basis for a deep learning algorithm that has comparable accuracy to

best-in-class algorithms, but with smaller model size and a lower computational com-

plexity to suit resource-constrained embedded edge systems. In the rest, we conclude

the effect of each of the aforementioned methods.

Deep RACE was proposed as a new solution on top of the collection of deep learn-

ing, edge, and cloud computing technologies to enable real-time high accuracy reliab-

ility modeling of high-frequency MOSFETs power converter devices. The proposed

deep learning algorithm is based on LSTM algorithmic constructs for accumulating

the degradation knowledge of different power MOSFET devices on the cloud server,

and real-time inference at the edge. For the experimented results, we developed an

entire integrated system of Deep RACE, including an embedded system system-on-
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chip implementation on Nvidia SoC-TX2. The results demonstrated the real-time

convergence of the system with about 8.9% miss prediction, with 26ms processing

time. Deep RACE reduces the miss-prediction error at 0.05Ω by about 1.98x, 1.77x

compared to Kalman Filter and Particle Filter, respectively.

Later, we introduced DeepDive, as a fully functional framework for an agile, power-

efficient execution of DSCNNs on edge FPGAs. The front-end of DeepDive enables

algorithmic optimization such as extreme low-bit online quantization, BN, and activ-

ation function fusing. At the back-end, Network SoC Compiler relies on the operators

provided in libraries and DeepDive’s front-end to generate a complete system design

for both hardware model and software host codes. The execution results demonstrated

47.4 and 233.3 FPS/Watt for MobileNet-V2 and a compact version of EfficientNet,

respectively.

A model for time-series analysis on edge, named ATCN, is proposed in response

to the problems observed for LSTM networks during Deep RACE research. With

the help of STCB, ATCN reduces the number of MAC operations and model size.

Scalable ATCNs are built by reconfiguring STCB blocks. We have developed three

agile models, T0, T1, and T2, two of which can be executed on ARM Cortex-M7

microcontrollers with the help of ATCN reconfigurability. The experimental results

over 2018 UCR time classification benchmarks indicate that the T0 configuration

can reduce the MACs and model size by 102.38× and 16.84× over InceptionTime,

respectively. T1 performance is 4.03% better than T0 and has a 73.59× reduction in

MACs, and a 14.23× reduction in model size over InceptionTime. Both T0 and T1

can be executed on an ARM Cortex-M7 microcontroller explained in the experimental

section in detail. As a final improvement, T3 reduces the MACs and model size for

26.07× and 4.4× over IT while increasing accuracy by 0.37%.

ATCN enabled DeepTrack to deliver an agile deep learning model with comparable

accuracy to best-in-class trajectory prediction algorithms but with a much smaller
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model size and lower computational complexity suitable for embedded edge systems.

Instead of a well-established LSTM network, we use ATCN networks to encode vehicle

dynamics. Our experimental results indicate that DeepTrack reduces prediction error

by 9.09% and 11.56%, respectively, and reduces the number of operations and model

size by about 10.49% and 18.5%, respectively, to CS-LSTM. With similar ADE to

CF-LSTM, DeepTrack can also reduce the number of operations and model size by

10.49% and model size by 18.5%.
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