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ABSTRACT

DONGLIN YANG. Building an Efficient and Scalable Learning System on
Heterogeneous Cluster. (Under the direction of DR. DAZHAO CHENG)

Deep Learning (DL) has been widely applied in both academia and industry. Sys-

tem innovations can continue to squeeze more efficiency out of modern hardware.

Existing systems such as TensorFlow, MXNet, and PyTorch have emerged to assist

researchers in training their models on a large scale. However, obtaining performant

execution for different DL jobs on heterogeneous hardware platforms is notoriously

difficult. We found that current solutions show relatively low scalability and inef-

ficiencies when training neural networks on heterogeneous clusters due to stragglers

and low resource utilization. Furthermore, existing strategies either require significant

engineering efforts in developing hardware-specific optimization methods or result in

suboptimal parallelization performance. This thesis discusses our efforts to build an

efficient and scalable deep learning system when training DL jobs in heterogeneous

environments. The goal of a scalable learning system is to pursue a parallel comput-

ing framework with (1) efficient parameter synchronization approaches, (2) efficient

resource management techniques, (3) scalable data and model parallelism in hetero-

geneous environments.

In this thesis, we implement robust synchronization, efficient resource provision-

ing approaches, asynchronous collective communication operators, which optimize

the popular learning frameworks to achieve efficient and scalable DL training. First,

to avoid the "long-tail effects" for parallel tasks, we design a decentralized, relaxed,

and randomized sampling approach to implement partial AllReduce operation to syn-

chronize DL models. Second, to improve GPU memory utilization, we implement an

efficient GPU memory management scheme for training nonlinear DNNs by adopting

graph analysis and exploiting the layered dependency structures. Third, to train wider
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and deeper Deep Learning Recommendation Models (DLRMs) in heterogeneous en-

vironments, we propose an efficient collective communication operator to support hy-

brid embedding table placements on heterogeneous resources and a more fine-grained

pipeline execution scheme to improve parallel training throughput by overlapping the

communication with computation. We implement the proposed methods in several

open-source learning frameworks and evaluate their performance in physical clusters

with various practical DL benchmarks.
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CHAPTER 1: INTRODUCTION

1.1 Overview of Deep Learning Training in Heterogeneous Cluster

Deep learning (DL) [1] has achieved great success in various domains such as image

classification [2], natural language processing [3], object detection [4], speech recog-

nition [5], etc. Obtaining accurate deep learning models is a computation-intensive

process, which requires large amounts of data and substantial computing capacity.

Previous studies have shown that wider and deeper DNNs can significantly increase

the model performance [6][7]. Recently, nonlinear architectures have been proposed

to further improve the quality of image recognition tasks [8][9]. However, the limited

size of GPU DRAM has been a major bottleneck for researchers to explore deeper

and wider DNNs for better generalization performance. For example, it is reported

that VGG-16 [10], which is composed of 16 computation-intensive convolution layers,

requests a total of 28GB of memory usage for batch size 256 [11]. A representative

nonlinear network, Inception-V4, requests up to 45GB memory to keep the entire

network on the GPU in training [12]. However, the largest GPU memory capacity

offered by the commercial NVIDIA Volta architecture so far is 32GB [13]. The mem-

ory shortage of GPU limits deep learning practitioners to deploy wider and deeper

DNNs. There are many other system challenges for training deep neural networks.

The first part of this thesis focus on memory optimization for nonlinear networks.

Many approaches have been proposed to reduce the GPU memory footprint of DNN

training. However, these solutions have their limitations. For example, most prior

works propose reducing the model size to reduce the memory footprint. However, this

strategy either provides low memory footprint reduction or results in a loss in training

accuracy [14][15]. Firstly, in DNN training, parameter weights only account for a
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small fraction of the total memory footprint. In training, intermediate feature maps

are the primary contributor to the significant increase in memory footprint in DNN

training. These intermediate values should be stored/stashed in the forward pass so

that they can be reused later in the backward pass. Additionally, approaches that

apply lower precision computations for DNN training, mostly in the context of ASICs

and FPGAs, either do not target feature maps (and thus achieve low memory footprint

reduction) or result in reduced training accuracy [16]. Memory compression [17] and

data encoding [18] is another approach to reduce the GPU memory requirement

for training, which, however, introduces high-performance overhead. State-of-the-art

memory footprint reduction approaches for training swap data structures in and out

between host and device memory [19][20]. However, existing swapping approaches

are inefficient in reducing the memory footprint for training.

Inspired by the fact that DNN training follows a series of layer-wise computations,

vDNN [19] and SuperNeurons [20] propose to virtualize the memory usage of deep

neural networks across both GPU and CPU memories. Considering that GPU can

only process one layer at any given time, it is not necessary to overprovision the

memory allocation to accommodate the entire neural network on the GPU. vDNN and

SuperNeurons release or move data structures, particularly the intermediate feature

maps, between CPU and GPU, by exploiting the inter-layer dependencies and reuse

patterns of DNNs. However, those techniques are not well-tuned to address the

dependency and memory variations in nonlinear networks. Firstly, the core idea of

vDNN and SuperNeurons is to offload data of one network layer when it is not required

in the near future and can be released from GPU DRAM, saving space for other layers.

The offloaded data is brought back to the GPU when needed in the backward pass. It

can achieve optimal performance if the communication between CPU and GPU can

be well hidden by computation to utilize the bandwidth. However, we observe that

offloading data structures from the GPU to CPU or prefetching data back to GPU
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from CPU layer by layer brings significant inefficiency. For example, transfer time

can be longer or shorter than the forward computation time across layers so that the

communication can only be partially overlapped with the computation. Usually, the

communication time is much longer than the computation time in Pooling layers. In

contrast, the computation time is usually much longer than the communication time

in convolution layers. Specifically, for nonlinear blocks, where there are join or fork

connections, more benefit can be earned by aggressively advancing the computation in

the forward pass or the prefetching operations in the backward pass. Secondly, none

of the existing work presents an efficient solution to handle the memory fragmentation

problem for nonlinear networks. Different from linear networks, which follow a simple

and fixed execution pattern, causing negligible memory wastage, nonlinear networks

exhibit varied dependencies and dynamic references. As a result, those complex

nonlinear blocks, which has different data size, varied resident duration, and dynamic

reference counts, interleave with layers that have simple dependencies.

The first work demonstrates that the default memory management can lead to

higher fragmentation because the released memory regions cannot be coalesced into a

larger one, resulting in free but usable space. Overall, this work proposes and designs

Dymem [21], a novel approach for training nonlinear networks. Instead of using a

layer-by-layer strategy, Dymem adopts a more greedy asynchronous solution to maxi-

mize the DRAM bandwidth, balancing memory usage and performance improvement.

Furthermore, this project first analyzes the root cause of GPU memory fragmentation

in DNN training. Then, a Group Tensors By Mobility (GTBM) placement policy is

designed to allocate tensors on the proposed unified memory pool based on mobility,

exploiting the dependencies and reuse distances.

The second part of this thesis introduces a new solution to mitigate stragglers for

distributed training. There is a trend to distribute the training process across clusters

to accelerate the training process. Distributed training is an iterative process, which
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adopts the most popular algorithm called mini-batch Stochastic Gradient Descent

(SGD) [22] to compute gradients and update models until convergence. Data paral-

lelism [23][24][25] is one of the most popular approaches to distributing the training

process. In this strategy, different machines in a distributed environment have a

complete copy of the model. The procedure of distributed training is bottlenecked

by the parameters communication. In a cluster environment, two typical approaches

are widely used to synchronize model parameters at the end of each iteration: cen-

tralized [23] and decentralized algorithms [26]. For the centralized approach, nodes

are divided into two categories: Parameter Servers (PS) and workers. PS stores the

model parameters while workers execute the training process in each iteration. In

the decentralized approach, every worker performs the computation and maintains a

copy of the parameters. Recently it has been theoretically proven that decentralized

approaches can outperform centralized ones [26].

In a distributed fashion, the main performance bottleneck comes from the com-

munication hotspot, which is caused by the frequent access to global models. At

the end of each iteration, gradients or parameters are frequently transferred among

workers until the model parameters are fully updated. In PS, all nodes have to com-

municate with central servers, leading to a communication bottleneck. It is reported

that more than 90% of iteration time is required for communication for a wide and

deep neural network model, e.g., VGG16 [27]. This problem has been alleviated with

decentralized algorithms, which implement all-to-all communication logically. This

bandwidth-optimal communication protocol has been shown to outperform central-

ized approaches, especially for neural networks with large models. Moreover, decen-

tralized algorithms can achieve better scalability, which is independent of the number

of workers. In this thesis, we focus on one of the most popular implementations of

decentralized algorithms, Ring AllReduce [28]. The execution of AllReduce follows

the Bulk Synchronous Parallel (BSP) model. In it, parallel processes execute the
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same task at the same iteration, and the generated updates must be synchronized

on parameters when all tasks are finished. The strict global barrier at each itera-

tion ensures the model’s accuracy but makes it vulnerable to "long-tail effects." All

processes have to wait for each other to complete the propagation before the AllRe-

duce operation is triggered. The slowest worker bounds the performance. Recently,

though many studies have been proposed to overcome stragglers in the centralized

fashion [27][29][29][30], it falls short in supporting decentralized approaches.

This work investigates the causes of straggler in terms of computation. Firstly, the

straggler can be caused by the inherent load imbalance. A dynamic neural network

such as LSTM and RNN [31] model sequences of data (e.g., video and sentences).

The computation graph topology depends on input values, whose data samples could

have variable shapes. For example, the recurrent structure of the network leads to

the training overhead being proportional to the length of the input video. Also, the

sentences in the training dataset for a language model [32] have various input lengths,

resulting in an unbalanced workload across different batches. We observe that varying

input lengths result in computation load imbalance, leading to inefficiency during the

synchronization phase. Secondly, the heterogeneity from the system itself can also

cause "long-tail effects." Shared clusters and clouds often exhibit significant hard-

ware and performance heterogeneity due to multi-tenant interference and continuous

machine maintenance [33][29].

Several pieces of research have been proposed to explore the robustness of deep

learning processes [34][35]. In particular, AD-PSGD [34] is the first that proposes to

use randomized communication to reduce the effects of stragglers probabilistically.

In contrast to waiting for all processes, each worker randomly selects one worker to

average parameters between the two. However, this design incurs significant syn-

chronization overhead to ensure atomicity. It also requires manual efforts to avoid

scheduling conflicts[35]. Inspired by the fact that the deep learning training process
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is robust to bounded errors, we propose to relax the global barrier without changing

the communication graph to mitigate the impact from "long-tail effects." This thesis

offers a new solution, called Randomized Non-blocking AllReduce [36], that allows

the AllReduce operations to proceed with the synchronization without waiting for

the completion of all processes’ computation.

The challenge of partial AllReduce lies in when and how to terminate input data

processing. For instance, each process is unaware of the progress of others in the

existing computing platforms. The implementation of Horovod requires when all of

the processes inform gradients’ readiness, and then the synchronization is executed.

In a global view, the critical challenge to achieve a partial AllReduce is deciding the

time to trigger the sync, i.e., determining the number of processes contributing to

their updates. It is a trade-off between system efficiency and algorithm efficiency.

To tackle the challenge, this work adopts the power of two choices load balancing

technique [37] to partial schedule synchronization by probing two random processes

and determining the synchronization time based on the faster one. In a local view,

this work uses two individual threads to execute computation and communication,

through which cross-iteration training is enabled. In a heterogeneous cluster, the

deterministic performance difference between machines can not be neglected. To

utilize the flexibility of the traditional PS to achieve asynchronous updates, this work

combines PS with AllReduce architecture to implement a hierarchical synchronization

protocol. The convergence analysis shows that the error is bounded, and the statistical

properties guarantee the convergence of deep neural network models.

The third part of this thesis introduces a new system design to train wider and

deeper sparse models. Recommendation models are widely used across a variety of

Internet services such as personalized advertisements, entertainment, e-commerce,

and search [38][39][40]. Recommender systems can help companies such as Amazon

and Facebook retain customers by providing tailored suggestions specific to their
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needs. It is reported that the training workloads for deep learning recommendation

models account for more than 50% of the total AI computing cycle at Facebook [41].

Different from classic machine learning models or deep learning models used in nat-

ural language processing (NLP) and computer vision (CV), deep learning models for

recommendation systems uses a bunch of sparse categorical features. Sparse features

have mostly zero values and have extremely high dimensions. For this reason, deep

learning recommendation models are also called sparse models. To achieve better pre-

diction accuracy, models size for recommendation systems grows into multi-terabytes,

and the size of sparse features could be up to millions, even billions, leading to the

fact that it is difficult to host the wide and deep models on a single device. Most of

the existing work choose to place the large embedding table on host memory because

of the larger capacity [42][43]. GPUs attract broad attention as deep learning accel-

erators. However, it is difficult to directly employ GPUs on training sparse models

considering the limited capacity of the device and the large volumes of data trans-

ferred over PCIe. Prior efforts [24] cache the large embedding table on host memory

and update parameters on the device, which still introduces extremely high overhead

on PCIe due to the communication between CPU and GPU. Facebook prototypes

Zion GPU server equipped with 8 GPU accelerator, which provides the high compute

and memory capacity. However, due to the lack of the direct interconnect among

devices when placing the embedding tables on GPUs, the Zion GPU server cannot

achieve the optimal training performance [41]. This paper will further discuss the

challenges of using GPU parameter servers in the heterogeneous cluster and propose

several techniques to achieve system scalability.

PaddlePaddle [44] has investigated the initial design of the hierarchical param-

eter server to combine GPU and CPU to host the large recommendation models.

There are still some key points that could be potentially leveraged for further per-

formance improvement. In PaddlePaddle, Remote Direct Memory Access (RDMA)
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communication protocols are adopted to support direct point-to-point devices com-

munications but do not need to involve CPUs. However, the commonly used library

such as NVIDIA NCCL [45] only provides GPU-GPU communication. A mixed em-

bedding table placement requires CPU-GPU data transfer first, which introduces

overhead on PCIe and causes additional delay. Furthermore, the provided collective

communication primitives are blocking and synchronous, which could cause network

contention and deteriorate the end-to-end performance. Second, due to the expensive

cross-server Alltoall and Allreduce operations, the communication overheads are not

negligible even on servers where GPUs within the server are connected by dedicated

interconnects like NVLink. Pipeline parallelism is an efficient strategy to overlap

inter-node communication with computation. Without a carefully designed scheme,

excessive data transfer can be a dominant performance slowdown. The third chal-

lenge is to place embedding tables on GPUs and CPUs effectively. However, modern

deep learning accelerators have larger device memory capacities. The device mem-

ory is still very precious, considering that the size of embedding features has grown

dramatically from tens of gigabytes to terabytes in the industry recently. How to

partition embedding tables across GPUs and CPUs should be carefully determined.

In this thesis, the major contribution is to design and implement an efficient and

scalable training system for wider and deep neural networks in the heterogeneous clus-

ter. In a nutshell, high-performance components and policies can be implemented to

achieve better training throughput and higher resource utilization. The contribu-

tions of this thesis can be summarized as (1) An efficient GPU memory management

runtime for training nonlinear neural networks to support wider and deeper neural

networks. (2) a scalable and asynchronous AllReduce scheme to mitigate the impact

of stragglers caused by load imbalance. (3) a high-performance collective operator

to support hybrid embedding tables placements and a more fine-grained pipelining

scheme to improve the end-to-end training throughput.



CHAPTER 2: Background and Motivation

2.1 Addressing GPU Memory Shortage for DNNs Training

DNNs typically composes of an input and output layer with multiple hidden layers

in between. Due to the limited GPU memory capacity, efficient memory management

is important to run deeper and wider DNNs on GPU. This section summarizes the

DNN models, current memory management optimization technique and motivates

our work to overcome existing limitations.

2.1.1 DNNs Training on GPUs

DNN training is based on a set of inputs and obtained outputs. The training pro-

cess consists of two phases: forward and backward passes [46][47]. Specifically, the

backward propagation algorithm is to propagate the error and search the gradient

of the loss function that can be applied to adjust the parameters towards improving

accuracy [48]. It consists of four types of data structure in the DNN training: feature

maps, weights, gradients, and workspace. Feature maps are the intermediate results

that are consumed in the following forward or backward layers. Gradient maps are
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Figure 2.1: The breakdown of memory footprint in DNN training for different net-
works (GB).
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Xl = f(Xl-2 + Xl-1)

(a) Forward pass.

DNN
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X
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Y
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Figure 2.2: Forward and backward computation. X, Y , dX and dY are input feature
maps, output feature maps, output gradient maps and input gradient maps respec-
tively.

the intermediate results that are generated in the backward pass and consumed by

the dependent layers. Weight value decides how much influence the input will have

on the output. The workspace is the intra-layer storage to speed up the layer compu-

tation. In particular, the workspace requires additional but temporary GPU DRAM

to achieve better performance of the Convolution algorithm. In the forward pass, the

input feature maps X are fed to the current layer in the forward direction through the

network. Each hidden layer accepts the input data, processes it as per the activation

function, and passes its output to the successive layer. Nonlinear networks contain

one-to-many (fork) and many-to-one (join) inter-layer dependencies. For example,

feature maps X from layer l − 2 and layer l − 1 l are joined as the input for layer l,

as shown in Figure 2.2a. Backward propagation computes the gradient in the weight

space of a feedforward neural network, with respect to a loss function. Typically, in a

backward calculation, a layer requires it stashed input feature maps X, output feature

maps Y , and input gradient maps dY to obtain the output gradient maps dX, which

can be shown in Figure 2.2b. The backward propagation can only be performed when

all of these required data structures are available on GPU.

Traditional Convolution Neural Networks (CNN) typically consists of several ba-

sic building layers, including Convolution (CONV), Pooling (POOL), Activation

(ACT), Softmax, Fully Connected (FC), Batch Normalization (BN), and Dropout

layers. A linear neural network is structured as a sequence of independent and inter-



11

Filter concat

Filter concat

1x1 Conv 1x1 Conv

3x3 Conv

1x1 ConvPooling

3x3 Conv

1x1 Conv 3x3 Conv

l0

l1 l2 l3 l4

l5 l6 l7

l8

l9

Figure 2.3: Schema of Inception-v4 network.

connected instances. Recently, several nonlinear networks, such as Inception V4 [8]

and ResNet [49], have been proposed to improve the state-of-the-art performance of

image classification further. Training the elaborate neural network exhibits signifi-

cant challenges considering the limited GPU memory. To understand the memory

consumption behavior of DNN training, we conduct a study on GeForce GTX TI-

TAN X GPU with six representative CNNs. Figure 2.1 shows the breakdown of the

GPU memory footprint. It can be learned that the GPU memory tends to be mostly

occupied by feature maps. For example, more than 90% of GPU DRAM is required

by Inception V4. Furthermore, it is a waste to reside those feature maps on GPU

memory even though they have future but distant dependencies, especially for the

very deep neural networks. Thus, the intermediate feature maps are the key factors

for optimizing memory usage in DNN training.

2.1.2 Nonlinearities in DNNs

For linear networks, data is sequentially propagated in both the forward and back-

ward passes, following a fixed sequential execution pattern. Compared with linear

networks, nonlinear networks have a high degree of dependency variations. To il-

lustrate these, we use a representative nonlinear block from Inception-V4 [8] as an

example, which is shown in Figure 2.3. There are two simple nonlinear connections:

fan and join. In this example, the fan connection creates four branches after layer l0.
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Figure 2.4: Synchronization w/i and w/o barrier.

Each of them has a different number of layers. Each branch has to finish its compu-

tation before it reaches the join connection, i.e., layer l9. Nowadays, a deep nonlinear

network could have hundreds of fan and join connections inside the network, resulting

in a complex network architecture [50]. Note that the GPU can only process a single

layer’s computation at any given time due to such inter-layer data dependencies. In

terms of memory allocation, care should be taken because, in nonlinear networks,

multiple layers consume the output feature maps from a previously processed layer

in a fan connection. For example, the output feature maps from layer l0 can only

be released from GPU memory until layers l1, l2, l3, and l4 have been propagated.

Similarly, in the join connection, all the output feature maps from preceding layers

should reside on the GPU until their final consumer has completed the propagation.

These nonlinear variations complicate runtime resource management, which requires

a more efficient solution.
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2.1.3 Motivation for Efficient GPU Memory Management

2.1.3.1 Memory Offload/Prefetch for DNNs

Several memory-reduction techniques have been proposed to address the problem of

limited GPU resident memory. For example, vDNN [19] and Superneurons [20] choose

to offload selected layers to the preallocated pinned CPU memory and prefetch these

data back to GPU when required. Typically, in the forward pass, the input fea-

ture maps X from the preceding layer can be offloaded to CPU memory if there is

no more dependency, after which these data can be released from the GPU mem-

ory. The runtime uses two independent processes to complete the computation and

communication, which enables the CPU-to-GPU data transfers to overlap with the

computation asynchronously. In the backward pass, for those offloaded layers, the

runtime should bring the feature tensors X back to the GPU DRAM before the

backward dependent layer starts its propagation. The prefetch operation for layer m

can be overlapped with the computation of layer l in the backward pass, where l >

m. Ideally, this design can maximize the performance by hiding the communication

by the computation time. To ensure the safety of parallel streams, they enforce a

synchronization at the end of each layer, which means the communication and com-

putation stream cannot advance each other in both the backward and forward passes,

as shown in Figure 2.4a. However, this design largely depends on the communica-

tion/computation ratio. It works well for the linear network, e.g., VGG-16 [10], which

consists of twelve computation-intensive convolution layers. The offload/prefetch op-

eration can be well hidden because convolution layers require longer computation time

than transfer. This is inefficient, particularly for nonlinear networks. To demonstrate

this, Figure 2.5 presents the communication and computation time for ten layers in

both the forward and backward pass of GoogleNet [8]. From the Figure, f5’s compu-

tation time is much lower compared to offloading time, while the next layer’s forward

computation time is higher than the communication time. If f5’s input is decided to
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Figure 2.5: Computation and communication time for different layers in forward and
backward pass.

be offloaded, then it is not necessary to wait for the offloading of f5 before starting

the next layer’s computation. A more efficient synchronization without a barrier is

shown in Figure 2.4. Similarly, in the backward pass, when the layer b7 is being prop-

agated, the prefetching operation for layer b5 can be initiated after the transfer of

layer l6 is finished. Secondly, the backward pass of each layer requires memory space

for gradients input and output maps besides input and output feature maps com-

pared with forward. Hence, in the forward pass, its peak memory requirement is not

higher than the backward pass if this aggressive strategy is adopted to advance com-

putation. However, care should be taken in the backward pass because aggressively

prefetching data does not always bring the benefit. These observations motivate us

to propose a more efficient memory scheduling strategy to balance memory saving

and performance.

2.1.3.2 GPU memory fragmentation

Training a deep DNN on GPU with limited memory results in frequently caching

and freeing tensors in a training iteration. To avoid the nontrivial allocation and

deallocation overhead from using the native CUDA API, cudaMalloc, and cudaFree,
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…After allocating memory for CONV1, ReLu, CONV2…

| | data=xxx0000, end=xxx40400, size=1024, used
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| | data=xxx40a00, end=xxxc0000, size=6402078208, free

...After deallocating memory for CONV1, ReLu, CONV2…
| | data=xxx0000, end=xxx40400, size=1024, free
| | data=xxx40400, end=xxx40600, size=512, used
| | data=xxx40600, end=xxxc0000, size=6402079232, free
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Figure 2.6: GPU memory allocation process.

GPU memory pool is always adopted as an effective memory optimization tech-

nique [20][19]. It preallocates a continuous chunk of memory as a shared memory

pool and takes over memory management from the operating system. The preallo-

cated memory pool returns a list of allocated but empty addresses. For an allocation

request, the memory pool finds the first node with enough free memory from the

empty list. After that, it updates the available list and the occupied list to track

memory usage. For a deallocation request, the memory pool locates the node in

the allocated list with the hash table, and then the pool puts the node back to the

empty list. The sequences of allocation/free do not affect training but can impact

the amount of fragmentation. For example, memory for the input of the layer to

be prefetched could be allocated before/after allocating space for gradients of the

input of the layer to be propagated in the backward pass. Figure 2.6 demonstrates

the allocation process of CNMeM [51], which is a GPU memory pool developed by

Nvidia. We allocate three tensors on the GPU, which require 512, 512, and 1024MB

GPU memory, respectively. Then tensor t0 and t2 are freed from GPU. From the

log information 2.6a, we can see that coalescing operations can combine available

contiguous regions into a lager page in the same virtual space. However, the released

region for t0 cannot coalesce with the other available regions because they are not in
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Figure 2.7: 400 represents the memory request. (4) represents the reference counts.
White blocks represent free regions, which can be coalesced if they are contiguous
while grey blocks represent occupied regions.

the continuous address, which is illustrated in Figure 2.6b. This buffering and paging

strategies work at the coarse memory granularity, which results in inefficiencies for

nonlinear networks whose data sizes and dependencies vary significantly.

Case study: Figures 2.7 represent two simple examples of linear and nonlinear

networks. In a linear network, all layers have only one reference. If a coming allocation

request for tensor is 400MB, for the linear network, it can serve the request because

the coalesced regions from the released tensors have enough space. However, for the

nonlinear network, though there is 200MB and 300MB empty list, it can not serve the

incoming request because they are distributed at two separate lists. Between these

two fragmented spaces, the allocated tensor resides on the GPU longer than other

tensors because multiple layers have dependencies on it. Fragmentation happens at

the virtual address level. It is not allowed to modify the page tables on the GPU. And

it is also impossible to move data around the GPU with negligible overhead. The best-

fit algorithm requests an additional 400MB memory to satisfy the demand. When

peak memory consumption is close to the GPU memory capacity, this fragmentation

might impact the trainability of networks.

Furthermore, from Figure 2.8, we can learn that the memory usage of CONV, ACT,

BN, and POOL layers can account for more than 90% of total usage. However, it is

not fruitful to offload Dropout, Softmax, and FC layers because they only require less

than 1% of the total memory. These layers require less memory but stay longer until

no more dependency. It requires us to manage the allocation of these tensors carefully.
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Figure 2.8: The fraction of memory usage by various layers for different networks.

Otherwise, it can cause further fragmentation. Based on the above observations, an

efficient tensor placement policy should be proposed while considering both the varied

data sizes and graph dependencies.

2.2 Mitigating Stragglers for Distributed Training

2.2.1 Distributed Deep Learning

In the training stage of deep learning, Stochastic Gradient Descent (SGD) [52] is

adopted to minimize the loss function f(x) over a data set S. In each iteration, pa-

rameters x are updated by x ← x - γ · Oxf(x; ξ), where γ represents learning rate,

and ξ represents a mini-batch of randomly sampled data from S. With the growing

volume of data, it is popular to parallelize the training process in a distributed en-

vironment. Multiple parallelism schemes have been proposed recently to distribute

the training process: data parallelism [28][23], model parallelism [53], hybrid paral-

lelism [54][55] and pipeline parallelism [56][57]. Among them, data parallelism is the

easiest one to be implemented without significant statistical efficiency loss compared

with other approaches. Therefore, many popular deep learning frameworks such as

TensorFlow [58], PyTorch [59] and MXNet [60] support this approach. Our paper

focus on the data parallelism model.
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For the data parallelism model, each node processes the randomly sampled input

data independently and obtains gradients using the backpropagation algorithm [48].

At the end of each iteration, the obtained gradients from each node need to be

gathered around so as to update the global parameter during the synchronization

phase. The updated model will be applied in the next iteration and the distributed

training process keeps this procedure until the model convergences. Synchronization

is an essential part of parallelizing the training process and plays a critical role in

achieving better scalability in a heterogeneous environment.

2.2.2 Existing Synchronization Approaches

Parameter Servers (PS) is a well-known scheme for parallel SGD execution, which

is also called as the centralized algorithm. Parameter Servers and multiple workers are

launched in this typical setting. At each iteration, each independent worker obtains

gradients based on the SGD and sends the data to the central PS. The central PS

will send back the updated model to each work and continue the training process.

However, this simple approach has a significant drawback because all the workers have

to push/pull parameters from the centralized servers, leading to the communication

hotspot. The communication hotspot limits the system scalability. Decentralized

training is proposed to alleviate this issue.

Algorithm 1 The decentralized training process.
Require: A set of workers M; the communication topology G.
1: for worker mi ∈ M do
2: compute the gradient gk,i = Oεk,if(xk,i; ξk,i)
3: average gradients using AllReduce gk ←

∑
i∈Mgk,i

4: update parameters xk+1,i ← xk,i - γk · gk
5: end for

As shown in Algorithm 1, in a decentralized setting, there are no central param-

eter servers. Every worker in this scheme maintains a complete copy of the model

parameters. At the end of an iteration, each node sends the obtained gradients to
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their out-going neighbors according to the communication topology, after which it

applies the obtained gradients to the parameter. Ring All-Reduce [28] is one of the

most popular implementation, which works in a scatter-and-gather way. In this set-

ting, each worker only communicates with its neighboring sender and receiver in a

fixed order during the synchronization phase, forming a logical ring. For a distributed

system with N servers, in each step, the worker sends one portion of 1
N

gradients to

its left neighbor and meanwhile, it accepts another 1
N

gradients from its right neigh-

bor. It then averages the accepted gradients with its local portion, which is called as

Reduce operations. The averaged portion will be transferred to its left neighbor in

the next step during the scatter operations, and meanwhile this worker will accept

another averaged part from its right neighbor. After N − 1 steps, scatter operations

are finished, and every worker owns a complete 1
N

of gradients. Gather operations will

be triggered then, which works similarly, but it does not require Reduce operation.

In each step, each worker replaces its local portion of gradients with the accepted

one from its right neighbor. After N − 1 steps, each worker obtains the whole set

of global gradients. It benefits from contention-free communication compared with

PS strategy by abandoning the many-to-one communication protocol, which achieves

the ideal parallelism within the theoretical upper bound. These procedures guarantee

consistent convergence with the expense of introducing a blocking barrier. Workers

will always have to wait for the slowest one to finish at each iteration. This means

that this distinct communication pattern can only achieve its best performance in

a homogeneous environment. This is a strict requirement, especially in a shared

cloud environment.

To tolerate system heterogeneity, AD-PSGD [34] proposes a random synchroniza-

tion mechanism to enable the point-to-point communication. Instead of synchronizing

with the fixed neighbors specified by the communication topology, a worker performs

an atomic model averaging with the randomly selected neighbor, regardless of whether
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they are in the same iteration or not. Even though the slow workers inevitably have

staler parameters, the effects on the training of the global model can be minimized via

the probabilistic solution. However, this strategy requires additional system overhead

and manual efforts to generate a dynamic communication graph [35].

2.2.3 Challenges and Motivation

2.2.3.1 Case Study

In a shared cluster, major bottlenecks for distributed deep learning training comes

from the straggler problem, which is caused by various heterogeneities. In general,

deterministic heterogeneity is relatively common because a large cluster is always

configured with different hardware and dynamic capacities. Moreover, DL workloads

running in a shared cluster always coexist with other data analytic workloads, which

introduces transient slowdowns. The over-subscription of workloads in a cluster fur-

ther harms the performance of DL training. The strict requirement for AllReduce

operation degrades the system efficiency, slowing down the training progress. System

heterogeneity is common, especially in the cloud environment. The straggler issue

will be more severe on a large scale.

Load imbalance from the application also widely exists in the training of deep

learning models. We use Inception V3 [8] to extract video features for UCF101 [61],

which has 13,320 videos. Figure 2.9a summarizes the distribution of the length of

video frames. The lengths of video range from 29 to 1776, with a mean value of 186

and a standard deviation of 97.7. We run a Long Short-Term Memory (LSTM) [62]

model to demonstrate our observation. We configure the batch size as 32 and train the

model on the GPUs with the same capability. Figures 2.9b illustrates the training time

distribution over the 2,000 sampled batches in two epochs to train a 2,048-wide single-

layer LSTM model on video frame features. Due to the network’s recurrent structure,

the computational overhead is proportional to the number of frames in the input video.

The training time is distributed from 156 ms to 8000 ms, with a mean runtime of 1,219
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Figure 2.9: Inherent load imbalance from training LSTM on UCF101.

ms and a standard deviation of 760 ms. These statistics above show that training

an LSTM model for video classification exhibits an inherent load imbalance. Load

imbalance is common, especially for dynamic neural networks [63]. Since sequences

may have variable length, the cell function is executed for a different number of times

for different sequences. In dynamic neural networks, some dependencies depend on

input data or parameter values, which is dynamically determined, resulting in the

runtime imbalance.

2.2.3.2 Non-Blocking Reduce Synchronization

The decentralized training follows the Bulk Synchronous Parallel (BSP) model, in

which workers synchronize at the end of an iteration, i.e., barrier and proceed after the

model parameters have been fully updated by all workers. However, from the above

observations, we can learn that this synchronous execution lowers hardware efficiency

since fast workers have to wait for stragglers to complete each iteration, wasting com-

puting cycles, which can be illustrated in Figure 2.10a. Bounded staleness [64] is an

important technique to tolerate the temporary slowdown for centralized algorithms,
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Figure 2.10: g1 and g2 represent gradients from iteration t1 and t2, respectively. The
length of the bars represents the training time. Worker C is specified as the initiator.

allowing faster workers to advance to the next iteration within the bounded staleness.

It is easy to implement asynchronous synchronization in a centralized scheme because

each worker communicates with parameter servers directly and computes gradients

independently. However, the distinct communication pattern of the Ring All-Reduce

protocol makes it difficult to enforce such a technique directly. Because current imple-

mentations require that all the results should be within the same iteration to ensure

consistency.

These observations motivate us to propose a Non-Blocking-Reduce mechanism to

synchronize partial results without changing the communication graph. Inspired by

the fact that the training process is robust concerning bounded errors, we propose to

update the gradients without waiting for slower processes to reduce the delay. Instead

of waiting for the slower nodes, the faster worker will Reduce the gradients partially

from available workers. Figure 2.10 shows a simple example in a decentralized setting

with three workers. Worker A, B, and C are at the iteration t1 in the beginning. In

default, when worker A completes the propagation, since the worker B and C are still

in progress, it has to wait for the completion of the other two processes. It is until

the slowest process, i.e., B, finishes the propagation, then the AllReduce is executed.

The default strategy under-utilizes the resource because faster processes keep idle

when waiting for slower processes. In a non-blocking setting, an initiator is randomly
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selected among these three processes. Suppose that C is selected. When process C

finish propagation, the AllReduce operation is enforced, then worker A and C can

advance to a new iteration. During the synchronization phase, worker B contributes

a Null value to maintain the communication graph. In this way, the waiting time

for A is reduced while there is no idle time for C. The overall system efficiency

is improved compared with the default strategy. In the next iteration t2, if both

worker A, B and C have available results, the AllReduce operation will synchronize

the gradient g1 from worker B with g2 from worker A and C though they are in

different versions. Through the Non-Blocking-Reduce mechanism, the strict blocking

barrier can be relaxed, which can reduce the impact of stragglers. In a cluster with

P processes, the probability that any process is specified as the initiator is equal to

1
P
, correspondingly on average, 50% of processes join the collective operation. In

this way, the asynchronous synchronization might lower statistical efficiency than the

synchronous implementation but it can trade statistical efficiency for system efficiency.

However, the above example is too simple and straightforward with only two workers.

In the following sections, we will discuss how to extend the Non-Blocking-Reduce

mechanism to a cluster-wide scale and heterogeneous environments.
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2.3 Training Wider and Deeper Models

2.3.1 Parallel Paradigm of Recommendation Models

Figure 2.11 presents the typical workflow of the recommendation model. Given

a request query for user u and item, the recommendation system follows a two-step

process to predict a preferred item vi, which is selected from a huge database whose

size could be up to hundreds of billions. The first step is called retrieval, which reduces

the size of the candidate pool to hundreds of items by applying the human-defines

rules. The next step is called ranking, which adopts deep learning models to generate

the ranking scores for selected items. The predicted result is the ranking score of a user

action h, (e.g., click, favorite) when the user u clicks on an item ti, which is defined as

p(h|u, ti). To provide an accurate prediction result, DLRMs utilize abundant sparse

data and complicated deep neural network models [65]. Sparse categorical features

are adopted to interpret the interactions between two items, which have mostly zero

values. To efficiently represent sparse features, DLRMs often adopt a technique called

sparse embedding, which transforms the sparse data into a more compact and low-
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dimensional dense format, which is illustrated in Figure 2.12. A sparse data is mostly

represented in the form of one-hot encoding. The transformed data are often called

as the sparse part for the deep learning recommendation models. During the sparse

forward pass, a specific feature ID is coupled with a related embedding table, and

each encoded feature will be used to lookup a distinctive column. The lookup results

are concatenated into a single dense format. The procedure typically requires an

element-wise operation such as sum&pooling operation, and then are combined with

dense continuous features. After that, the newly obtained dense data go through the

rest of dense DNN training to improve model quality. The rest of the dense DNN

models, including the fully-connected and activation layers, are referred to as the

dense part.

The size of the sparse part is extremely large compared with the dense part. To

achieve scalable distributed training, we adopt the model-parallel scheme for the

sparse embedding tables and the data-parallel scheme for the dense parts. Fig-

ures 2.13 outlines the overall workflow of the default synchronous distributed training.

In this work, we follow the design of Zion [66] to employ a decentralized approach

for synchronous training, which mitigates potential network bottlenecks compared

to the central PS design [67]. For the decentralized approach, parameter servers

are colocated with the trainer processes. Specifically, the parameters for the dense

part are replicated among the training processes to follow the data-parallel scheme.

Correspondingly, the parameters for the sparse parts are split and distributed across

multiple processes to implement a model-parallel scheme because the large size of

the embedding table prevents model replication. For the dense part, an AllReduce

operation is executed in the backward pass to synchronize the gradients obtained

from the multi-node process on different mini-batches of the input data. Then, the

partitioned embedding tables require an AlltoAll operation in the forward pass to

distribute results after embedding lookup and in the backward pass to collect the
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Figure 2.13: Distributed training of DLRMs.

gradients for the embedding table updates.

2.3.2 Challenges of Training Sparse Models

Typically, it is preferred to place the training computation jobs for deep neural

networks in devices because GPUs can achieve up to petaflops of floating-point arith-

metic (FP) operations for each GPU. At the same time, the sparse parts are placed on

CPUs because of the large capacity of host memory. The fast development of modern

accelerators equipped with larger device memory makes it possible to move partial

embedding tables to GPUs. The training process can utilize the high memory band-

width (HBM) of GPUs. Table 6.2 presents the features of the advanced NVIDIA

A100 GPU, which has 40GB device memory. In addition, GPUs can deliver high

throughput for larger batches, avoiding the additional CPU-GPU data transfer over

PCIe. There are several challenges when deploying hierarchical embedding placement

on modern hardware. PaddlePaddle supports direct device-to-device communications
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Figure 2.14: The green line represents the direct peer-to-peer GPU communications
using GPUDirect-RDMA. The red line represents the data transfer between CPU and
GPU.

without involving CPUs and host memory for multi-node training using GPUDirect-

RDMA [68]. NVIDIA Collective Communication Library (NCCL) [45] implements

multi-GPU and multi-node communication primitives optimized for NVIDIA GPUs

and Networking. However, the Alltoall routines provided by NCCL cannot promise

the best performance when training sparse models on the heterogeneous cluster. First,

NCCL requires CUDA streams on each device to execute the communication opera-

tion, which occupies the precious compute capabilities. Second, the implementation

of NCCL Alltoall is blocking and synchronous, which might cause network contention

and increase transfer delay. As is shown in Figure 2.14a, though rank 0 has finished

the forward pass for sparse parts earlier than rank 1, it has to wait for the completion

of other ranks, then the Alltoall communication is initiated. This limitation motivates

us to implement a non-blocking communication operator. In addition, the commu-

nication routines provided by NCCL only support on-device data. If the placement

of the embedding table is hybrid, it requires additional data transfer between host

and device, which can be illustrated as the red line in Figured 2.14b. These addi-

tional operations will introduce overhead on PCIe and occupy the memory bandwidth,

increasing the communication delay. Last but not least, as for intra-node commu-

nication, Hybrid embedding placement also introduces non-trivial NUMA overheads
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because maintaining cache coherence across shared memory has a significant overhead.

Notice that NVSwitch provided by DGX-A100 enables full-bandwidth connectivity

between GPUs. It is better to transfer data via high-speed NVLink instead of shared

memory to reduce NUMA overhead further. A resource-efficient and asynchronous

communication operator should be proposed.

Another challenge is high communication overhead during the training. Rapid

increases in GPU compute capacity over time further shifts the bottleneck of training

towards communication for recommendation models. The communication overhead

for some models, computed as the percentage of total time spent on communication,

is as high as nearly 60% due to expensive Alltoall and Allreduce communication [41].

Existing work such as Kraken [43] adopts asynchronous training to obtain higher

training speed, which is hard to ensure good statistical efficiency. Pipeline parallelism

is a general solution that keeps workers well utilized, combining pipelining with intra-

batch parallelism. PipeSGD [69] proposes a pipelined training with a width of two

that combines the best of both synchronous and asynchronous training. In this way,

the expensive Allreduce can be overlapped with the computation. However, besides

Allreduce, there are two more Alltoall operations and input data re-distribution,

which requires a carefully designed scheme to partition the model and schedule the

execution order. Furthermore, heterogeneous GPU-CPU clusters are particularly

well suited to deep learning training because the CPU and GPU machines can work

together to accelerate the training pipeline. We propose to move the I/O bound

data re-distribution tasks to the remote CPU-only cluster after pipelining. In this

way, the overhead on the sparse CPU resources and host memory bandwidth can

be further alleviated. Although pipelining is not a new idea, enabling pipelining for

recommendation model training requires fine-grained tasks scheduling and the insight

of computation separation, which are unique features of Sven.

Last but not least, partitioning the embedding table across GPUs and CPUs is
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Figure 2.15: Access patterns of embedding tables.

another challenge when deploying a hierarchical placement scheme. The key design

principle is that GPUs can take up more responsibilities for the embedding lookup

and embedding update since they have higher memory bandwidth. In the meantime,

we have to consider that the device’s memory capacity is still very limited compared

to hots memory. Therefore, it is important to understand the unique memory ac-

cess patterns of embedding tables. We analyze the access distribution of embedding

tables of Wide&Deep, which is summarized in Figure 2.15. We vary the cached em-

bedding feature counts as 128M and 1024M, respectively. The x-axis of the figure

represents the embedding feature accessed over the training recommendation models,

while the y-axis shows the cumulative hit counts, which is normalized by the total

number of embedding table request during the recommendation model training. It

can be concluded from the results that access patterns to embedding tables follow

the power-law distribution. When we increase the cached page size, the cumulative

hit count is almost over 60%. It can be learned that the majority of embedding

feature usage remains concentrated in a few hot memory regions. This observation

motivates us to place those hot features on GPUs while the remaining CPUs, from

which the forward and backward passes of sparse parts, can befit the high bandwidth

of GPUs. Besides, an efficient entry replacement algorithm is required to ensure that

the memory footprint is slower than the hardware constraint during the long-term

training.



CHAPTER 3: Related Work

3.1 GPU Memory Management Optimization for DNNs

A variety of solutions have been proposed to overcome the GPU DRAM shortage

for training deep neural networks. Lossy encodings have been rigorously studied in the

domain of DNN inference and training. Network pruning techniques [14] are proposed

to reduce the model redundancy so as to reduce the memory consumption. Huffman

encoding [15], quantization [70] and reduced precision [16] are also studied to reduce

the model size (weights). Network compression [17] is another important approach

to reduce the memory usage of DNNs. However, they provide limited opportunities

for memory saving because weights are not a major contributor to the total memory

requirement. Moreover, some of these techniques, e.g., reduced precision, might result

in loss of prediction accuracy if not carefully tuned. Gist [18] investigates approaches

to optimize the memory usage for input feature maps, which are the dominated source

of memory footprint in DNNs training. This work is orthogonal to our approach.

SuperNeurons [20] and Chen et al. [71] introduce a recomputation strategy to trade

computation for memory saving. They consider recomputing the output from selected

layers in the forward again in the backward pass instead of prefetching them from

CPU memory or keeping them on the GPU DRAM. However, it requires high-level

semantics on the computation graph. The overhead from training cannot be negligible

because the largest layers require longest recomputation time. This approach works

well for linear networks but fail to exploit the memory saving opportunities. Yet, this

technique can be applied in conjunction with our work for specific layers, e.g., batch

normalization.

Model parallelism is a straightforward strategy to train deep and large networks.
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DistBelief[22] distributes the network across multiple nodes by partitioning the net-

work so that each node only holds a part of the the network. Tofu [55] enables

the training of very large DNN models by partitioning a dataflow graph of tensors

across multiple GPU devices. However, these techniques require huge intra-network

communications for synchronization. Another approach is to place different layers

on different devices via heuristics [72] or machine learning [73]. However,operator

placement is not suitable for DNNs with a deep stack of layers. Data parallelism

can achieve better performance by adding more GPUs. But the powerful GPU could

suffer from sub-linear scaling because of stragglers and costly network transfer across

workers. An effective and simple approach to reduce the memory requirement for

DNN training is to reduce the minibatch size. However, it slows down the training

process because a smaller batch size could result in GPU underutilization [74].

vDNN [19] also proposes a prefetching and offloading technique to transfer the data

between CPU and GPU memory so as to fit the large networks in the GPU memory.

It tries to overlap communication with computation by asynchronously swapping the

data between CPU and GPU via PCIe. However, it requires a synchronization barrier

between communication and computation for each layer, which is safe but inefficient.

It ignores the benefit from those layers, e.g., POOL and ACT layers, which are cheap

to compute. It is a waste to wait for the slow transfer of PCIe bus. SuperNeurons [20]

also consider memory swapping but restricts to swap only convolution layers. None

of these works take the GPU memory fragmentation into account when allocating the

tensors on GPU. vDNN++ [75] proposes an approximated memory pool to reduce

the GPU memory fragmentation, which is limited to linear neural networks only.

3.2 Asynchronous Distributed DNNs Training

A variety of solutions [21] have been proposed to overcome the straggler problem for

distributed deep learning. Redundant execution [76][77] is commonly used to mitigate

stragglers in the traditional data analytics platform. The main idea is to launch spec-
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ulative execution on multiple machines. Recently, backup worker [29] is proposed

in distributed learning systems to overcome the stragglers problem. However, the

redundant execution introduces non-negligible overhead from data communication.

Firstly, in ring All-Reduce, a more restrictive communication pattern makes it im-

possible to implement these techniques, e.g., backup works. Secondly, the redundant

execution is not fruitful to handle the randomized system heterogeneity and inherent

load imbalance.

Adaptive tuning strategy solves stragglers by matching the amounts of task loads

to their respective capacities in a heterogeneous environment. FlexMap [78] launches

elastic map tasks with dynamic input block sizes, and PIKACHU [79] is proposed to

adjust the reduce task size elastically based on the system heterogeneity. However,

all these works only focus on the traditional BSP scheme. Advanced approaches are

proposed for deep learning systems. For example, R2SP [27] is proposed to tune the

batch size adaptively and FlexPara [80] partitions parameters to provision adaptive

tasks to match the varying capacity. However, these works do not fundamentally

solve the problem because the severe and continuous slowdown of some workers will

eventually drag down other workers and the whole training. In the operating system,

work-stealing is a classical method to achieve load balancing among workers, improv-

ing system-wide performance. The concept of work-stealing is to move workloads

from slower workers to the faster ones, e.g., FlexRR [81]. Skewtune [82] is proposed

to mitigate skewness in the data analytics platform, which waits for idle workers to

steal work from those tasks with the greatest remaining processing time. Considering

the large overhead from communication, these approaches cannot be directly applied

to deep learning systems. Recently, relaxed synchronization is proposed to exhibit

the strict need for synchronization on the BSP model. SSP [25][30] enables processes

to execute the training independently and allows fast workers to advance a bounded

number of iterations ahead of slow workers. A-BSP [83] is proposed to aggressively
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synchronize parameters by applying the partial updates from slower workers. But all

these approaches target on the centralized PS architecture.

Taking advantage of the robustness of deep learning training process, AD-PSGD [34]

is first to explore the fundamental algorithm level solution to allow asynchronous syn-

chronization in a decentralized setting. In AD-PSGD, gradient updates are only sent

to limited (random) neighborhoods using gossip algorithms. However, it requires ex-

tra overhead to perform atomic parameter averaging. Otherwise, it will suffer from

deadlocks issues due to scheduling conflicts. Furthermore, the implementation is lim-

ited to a certain type of AllReduce graph. Similar approaches such as Cutout [84]

and Dropout [85] propose random errors and omissions into the training process to

improve generalization of network models. Hop [33] introduces a generic solution to

overcome heterogeneity for decentralized training protocol, which proposes a queue-

based synchronization mechanism to enable bounded staleness. However, maintaining

a bunch of queues and tokens for each worker in a large cluster incurs communication

overhead and delay. Furthermore, Hop accumulates gradients for faster workers. Due

to the bounded iteration gap, some workers’ severe and continuous slowdown will

eventually drag down other workers and the entire training.

Prague [35] and Eager-SGD [86] are more related to our approach, which proposes

a new communication primitive to allow partial workers to synchronize parameters

quickly. Specifically, Prague offers both static and dynamic group scheduling to con-

struct a new group randomly during the runtime to avoid conflicts. However, this ap-

proach is based on system profiling information, whose decision might not be optimal

for dynamic neural networks such as RNN and LSTM. Moreover, it requires a careful

group scheduling at each iteration to avoid the synchronization conflicts. It also intro-

duces additional system overhead to form the communication graph, which harms the

training throughput. Eager-SGD proposes solo and majority collective communica-

tion to implement an asynchronous decentralized SGD. Solo collective communication
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could sacrifice model accuracy because it advances the synchronization aggressively.

As is illustrated in the evaluation results, the majority cannot ensure the performance

because it does not oversample enough to avoid the slower processes. Furthermore, in

a heterogeneous environment, eager-SGD still suffers from a deterministic slowdown,

which cannot be avoided by the randomized approach.

SGP [87] adopts a gossip algorithm called PushSum for approximate distributed

averaging, which allows for much more loosely coupled communications to achieve effi-

cient distributed training in a high-latency or high-variability environment. SGP does

not use global collective communication primitives. Alternatively, each process only

communicates with its neighbors. However, all the processes need to finish the cur-

rent iteration before going to the next. SGP is robust to communication-constrained

settings. Compared to SGP, our work is robust to load imbalance. RNA can relax

the strict synchronization to tolerate computation straggler because of the feature of

asynchrony. Both eager-SGD and RNA only require O(1) step to globally propagate

the lo-cal update. However, in SGP, each process propagates its local update using

O(logP ) steps. Zero/DeepSpeed [88] presents a set of optimizations to reduce memory

redundancy in distributed training, by partitioning parameter weights, activations,

and optimizer state separately, and it can scale models to 170 billion parameters.

Compared with Zero, RNA is straggler tolerant and is orthogonal to their approach.

3.3 System Innovations for Training Sparse Models

Various system-level innovations have been proposed and implemented to support

larger and deeper neural network models. For example, DeepSpeed [88] proposed to

shard model parameters, gradients, and optimizer parameters among all nodes and

eliminate memory redundancies in data- and model-parallel training while retaining

low communication volume to reduce memory usage. PipeDream [57] automatically

partitions DNN training across workers, combining inter-batch pipelining with intra-

batch parallelism to better overlap computation with communication. FlexFlow [54]
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uses automatic search to discover the efficient parallelization strategies for DNN train-

ing. However, these systems do not specifically target sparse recommendation sys-

tems.

HugeCTR [89] is a high-efficiency GPU framework designed for Click-Through-

Rate (CTR) estimating training provided by NVIDIA, which follows a synchronous

training scheme. HugeCTR partitions the large embedding table across multiple de-

vices to utilize the high memory bandwidth of the device to accelerate the training of

recommendation models. However, HugeCTR is limited by the device memory size

because they have to maintain all sparse features within devices. Sven combines GPU

embedding with CPU embedding and proposes prioritizing hot features to utilize the

high bandwidth of GPUs. Kraken’s is another end-to-end training system [43] that

implements a parameter server that dynamically adjusts the placement of sparse em-

bedding tables. It also proposes an automatic feature admission scheme to ensure

that the memory consumption is under reasonable constraints. However, its imple-

mentation is limited to the CPU. XDL is proposed to handle sparse features with

very high dimensions. XDL [67] employs many techniques such as pipelining, sample

compression, and NUMA binding to achieve higher training throughput of the deep

learning recommendation models. Baidu proposes a hierarchical design [44] which

proposes to use host memory to keep the out-of-device-memory parameter and em-

ploy SSDs to keep the out-of-host-memory neural network parameters for very wide

and deep neural networks. Facebook DLRM [66] co-designs software and hardware

to enable training models with trillions of parameters. On the software side, they

implement a hierarchical memory architecture to host large embedding tables and

leverage reduced precision training to reduce communication volumes. On the hard-

ware side, they designed the ZionEX platform, which is equipped with a dedicated

and high-speed network. Machines are configured with specific network transport and

optimized network topology.



CHAPTER 4: Efficient GPU Memory Management for Nonlinear DNNs

4.1 System Design and Implementation

The design objective of our dynamic memory manager (Dymem) is to automatically

manage the memory usage of DNNs while minimizing the overhead and maximizing

the reduction of memory load. Dymem is a host-side runtime that interfaces with

GPU to dynamically move, allocate, and release tensors. Figure 4.1 shows the overall

system architecture. In this section, we first introduce how to perform graph analysis

to construct a memory-efficient execution flow, particularly for nonlinear networks.

Then, based on the results from the graph constructor, we propose a tensor scheduler

to utilize dependency features to asynchronously offload/prefetch candidates with dif-

ferent variable sizes and resident duration. Lastly, we implement a unified GPU mem-

ory pool and propose a contiguity-conserving placement policy to allocate/deallocate

the scheduled tensors.

Tensor	Scheduler

Incremental space

Directed	Graph	Constructor

tensor

Host

Device

Main space

Figure 4.1: The system architecture of Dymem. Constructor performs graph analy-
sis. Scheduler manages prefetch/offload operations. Allocator handles tensor alloca-
tion/deallocation.
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Algorithm 2 Execution flow for nonlinear blocks.
1: function flowConstruct(int layerId)
2: if layerID == Null then
3: return;
4: end if
5: refcnt++;
6: if layerId.refcnt < prevLayer.refcnt then
7: return;
8: end if
9: execFlow.push(layerId)

10: L = layerId -> get-next();
11: for l ∈ L do
12: flowConstruct(l)
13: end for
14: end function
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(a) Schema of Inception-v4 network.

step: 0
l0 -> {l1, l2, l3, l4}

{ } -> l0 

step: 1
l1 -> {l5}
{l0} -> l1 

step: 2
l5 -> {l9}
{l1} -> l5 

step: 3
l2 -> {l9}
{l0} -> l2 

step: 4
l3 -> {l6}
{l0} -> l3 

step: 5
l6 -> {l9}
{l3} -> l6 

step: 6
l4 -> {l7}
{l0} -> l4 

step: 7
l7 -> {l8}
{l4} -> l7 

step: 8
l8 -> {l9}
{l7} -> l8 

step: 9
l9 -> { }

{l5, l2, l6, l8} -> l9 

(b) Forward pass of Inception-v4.

Figure 4.2: Execution order for Inception-v4 network in the forward pass. li represents
ith layer. l0 → {l1, l2, l3, l4} represents that layer l1, l2, l3, l4 have dependency on
layer l0.

4.1.1 Execution Graph Construction

Given a nonlinear network, we need a memory-efficient approach to set up the

execution order. Since cuDNN [90] implements deep learning primitives at layer

granularity, we use tensors as the basic scheduling unit. For basic networks, during

the forward propagation, the results from layern−1 can be applied as the input for

layern. The computation flow can be regarded as a sequential process. Only when

the preceding layer is finished, then can it initiate the next layer’s computation. This

chain rule is similarly applied in the backward pass but in a reversed order. For
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networks with nonlinear blocks, there are nonlinearities such as one-to-many (fork)

and many-to-one (join) connections. Depth-First-Search (DFS) algorithm is used to

decide the execution sequences for these nonlinear dependencies, which is shown in

Algorithm 2. Whenever there is a fork connection, DFS is applied to explore all the

executable layers until it reaches the join connection in the nonlinear blocks, as shown

in lines 7 to 8. Figure 4.2a shows the schema for Inception-A blocks in the Inception-

v4. The detailed execution order obtained by DFS is demonstrated in Figure 4.2b. In

this example, the Inception block should be propagated in four branches in both the

forward and backward passes. In the forward pass, l0 → {l1, l2, l3, l4} represents that

output feature maps from layer l0 should reside in the GPU memory until layers l1,

l2, l3, l4 are executed because of dependencies. Similarly, during the backward pass,

in the branch l8 → l7 → l4, when l8 is being executed, layer l4 should be prefetched

from CPU memory asynchronously based on DFS. The reason why DFS should be

applied to construct the execution graph lies in two properties: First, DFS requires

less memory space to reach the join connection node in the nonlinear blocks when

exploring the traversal path. For example, the branch l4 → l7 → l8 illustrates simple

dependency, in which the corresponding data for those memory-intensive convolution

layers can be released from GPU memory sequentially. Second, inside those nonlinear

blocks, e.g., residual block and Inception grid, most layers are computation-intensive

Convolution layers. The DFS can serialize the sequences of convolution layers in each

branch, mostly.

4.1.2 Dependency-aware Offloading and Prefetching

After obtaining the execution graph, Dymem automatically manages the offload

and release operations for tensors so as to effectively improve the overlap ratio between

communication and computation. We employ two separate cudaStreams to transfer

tensors in/out of external memory asynchronously. streamcompute interfaces to the

cuDNN handle and sequences all the computations in the forward and backward



39

Table 4.1: The computation and communication time in residual block (ms).

Layer 1×1 CONV 3×3 CONV Join
Computation 25 76 3

Communication 66 68 ×

pass. streammemory is responsible for the tensor placement, movement, allocation,

and deallocation.

4.1.2.1 Memory Offload

During forward propagation, if layern is available for offloading, Dymem first allo-

cates a pinned memory region in the host via cudaMallocHost(), then streammemory

can asynchronously swap feature maps from this layer via non-blocking memory trans-

fer. When the asynchronous offload is completed, the cudaEvent is register to record

this event. Because the input features for CONV, POOL and ACTV layers are read-

only data structures, we can start the offload operation for these when they are being

performed forward propagation. As for streamcompute, layern’s computation can be

started as soon as layern−1’s computation is completed without waiting the com-

pletion of the offload operation of layern−1. Nonlinear blocks, e.g., Residual blocks,

can benefit from this strategy because of the join operations do not necessarily wait

for the completion of tensors transfer from 1×1 CONV and 3×3 CONV, which is

illustrated from the Table 4.1. streamcompute guarantees the completion of compu-

tation for layern by using the cudaStreamSynchronize() API. When both of these

two events for layern are finished, a shared queue is used to record this tensor. The

release of the tensors chosen for offloading from GPU is done when there is no de-

pendency for these layers in the shared queue. An individual thread is launched to

release the layern from the GPU memory. At the end of the forward propagation,

we synchronize streamcompute and streammemory to make sure that streammemory has

offloaded its feature maps. This safely ensures that all layers chosen to be offloaded
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are offloaded from GPU memory before the start of backward propagation, maximiz-

ing the memory saving and improving the performance greedily. However, there is an

exception that the execution for the next layer has to be blocked if the available mem-

ory is not enough, waiting for the release for completed layers. In general, memory

space is traded for performance in the forward pass.

4.1.2.2 Memory Prefetch

In the backward pass, prefetching the offloaded input feature maps back to GPU

can be overlapped with the computation of backward pass using cudaMemcpyAsync()

as well. After an asynchronous transfer for layern is completed, a cudaEvent is

registered in the streammemory, after which the computation can be started for this

layer. The streamcompute is synchronized with the offload event to guarantee that

the computation can be safely launched with available input feature maps. Similar

to the forward pass, we only synchronize streamcompute and streammemory at the

end of backward propagation before the next iteration. Instead of launching the

prefetch operations in the reverse order simply, we have to consider the execution

order and prefetch latency when searching for the optimal candidate layer. Another

problem is that if the prefetched layerm is too far away from the overlapped layern

, the memory saving benefit will be reduced because the prefetched data be reused

immediately, wasting the GPU memory. Jointly considering the memory saving and

prefetch latency, we propose an efficient searching algorithm to decide the layer to be

prefetched, which is shown in Algorithm 3. Whenever there is a nonlinear block, we

decide the preceding layers based on DFS, which is similar to the forward pass. After

obtaining the layer, we restrict that no more than two Convolution layers residing

in the GPU, as is illustrated in the line 11. This is because Convolution layers are

computation intensive. Prefetching these layers too early will under-utilize the GPU

resources. As long as it is not convolution layer and not available yet in the GPU

memory, it can be chosen as the candidate, as is shown in line 14. This is because
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other layers require shorter computation time compared with Convolution layers.

This feature can gain performance improvement because the prefetch latency can be

well hidden by the computation time.

Algorithm 3 Searching the candidate layer.
1: function searchPrefetchLayer(int layerId)
2: n = 0;
3: if layerId-> type == CONV then
4: n++;
5: end if
6: next = flowConstruct(layerId).pop();
7: while id do
8: if next-> type == CONV && n < 2 then
9: pf.push(id); n++;

10: next-> pf = True;
11: else if next-> of && !(next-> pf) && next-> type != CONV then
12: next-> pf = True;
13: pf.push(next);
14: end if
15: next = flowConstruct(next).pop();
16: end while
17: end function

4.1.3 Contiguity-conserving Memory Management

In this section, we first define tensor mobility based on the varied data size and

dynamic dependencies. Then we propose Group Tensors By Mobility (GTBM) as

the placement policy to classify tensors before allocation. We further implement a

unified memory pool, consisting of main space and incremental space, to host different

tensors so as to achieve lower memory fragmentation.

4.1.3.1 Design Principles

In the operating system, the internal fragmentation is defined as the inability to

satisfy an allocation request because a suitably large contiguous block of memory is

not free even though enough memory may be free overall [91]. The scope of internal

fragmentation not only depends on the layout of free memory nodes but the size of
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the request. Here we define the unusable free space term, Uf . It measures how much

of the available free memory cannot be used to satisfy an allocation:

Uf (j) =
TotalFree−

∑i=n
i=j 2

iki

TotalFree
, (4.1)

in which j is the desired allocation (i.e., the size of the request is 2j), TotalFree

is the number of free memory nodes, 2n is the largest request allocation that can

be satisfied, and ki is the number of free memory nodes of size 2i. A term of 0

implies there is no memory fragmentation. The term tending towards 1 implies high

fragmentation, in which the request cannot be satisfied. Based on the analysis of the

best-fit algorithm in Section 2.1.3.2, the memory fragmentation could increase if the

contiguous and noncontiguous tensors are both allocated to a contiguous portion of

the virtual address. If fragmentation happens, the memory pool has to grow its size

so as to satisfy the demand. In order to decrease Uf during the training, we propose a

contiguity-conserving allocation strategy. The core idea is to provide a soft guarantee

that all of the tensors having the same dependencies or similar lifetime should be

allocated in the same region.

4.1.3.2 Group Tensors By Mobility

Group Tensors By Mobility (GTBM) considers the address space as being split into

three arenas. Tensors are placed such that each arena contains tensors of the same

page mobility type. For our purposes, three mobility types are defined as below:

• Movable tensors are from those layers who have simple dependencies, i.e.,

one reference count. They can be released after the being propagated and the

released space could coalesce with each other soon.

• Temporary tensors are those tensors that are known to exist for a very short

period of time, such as fork connections or tensors waiting to be joined. These
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tensors exist longer than movable tensors and are not supposed to be mixed

with them.

• Reclaimed tensors are tensors from layers that are not selected for offloading.

These tensors require less memory capacity and could be reclaimed after being

propagated.

The placement policy is to group tensors of the same mobility type within an arena

of the matching type. The pseudo-code for the grouping process is summarized in

Algorithm 4. The grouping procedure for Dropout, Softmax, and FC layers are shown

in the line 5, which should be classified as reclaimed tensors. For the nonlinear block

shown in Figure 4.2, in the forward pass, layer l0 has multiple dependencies, which

should be put into the temporary tensors group. But for layers l5, l2, and l6, though

they have only one reference, they should be grouped as the temporary tensors because

their results will not immediately be concatenated, which is illustrated in the line 5.

However, in the backward pass, they should be regarded as movable tensors because

the results from layers l5, l2, and l6 can be consumed immediately. The release

operations will be initiated when the reference number of the currently processing

layers has been decreased to zero. For example, after forward computation of l9 is

finished, the feature maps of layers l5, l2, and l6 can be released from the GPU.

4.1.3.3 Unified Memory Pool

The memory manager is a host-side interface, serving as the GPU back-end. The

memory space is divided into main and incremental areas. Inside the main space,

the allocation can be started from both the low and high-end available addresses.

For the memory operations, we employ the open-source asynchronous memory allo-

cation/release API library provided by Nvidia CNMeM [51]. The allocation starting

from the low end will use the default cnmemMalloc() API, following the default best-

fit heuristic. For the allocation starting from high-end address, we implement a new



44

cnmemHighMalloc() API, pointing the starting address to the high end. For the

incremental space, we use the default cudaMalloc() to request a new GPU memory

outside of the existing pool. Though this procedure will cause initialization over-

head, it is negligible because of the minimal proportion of these layers in the neural

networks.

For movable tensors, Dymem allocates tensor for the subgraph in the memory

pool via cnmemMalloc() from the low-end available address. Since they have a

simple dependency, i.e., one dependent layer, it only resides on the GPU for one step

and then will be offloaded to the CPU memory. In the forward/backward pass, the

released space in the low-end address can always be utilized by the coming layers if

the communication is well hided or the subsequent layers. As for temporary tensors,

Dymem places the coming tensors via cnmemHighMalloc() starting from the high-

end available address. In this scenario, contiguity is conserved in the high-end address

since all of the tensors from this group have noncontiguous usage. Inside the nonlinear

blocks, the tensors that have higher reference counts are always allocated before

the ones with lower references. So the used space can be deallocated in an order

opposite to the allocation, resulting in minimal memory fragmentation. Regarding the

incremental space, which hosts reclaimed tensors, because the backward propagation

follows the reversed order of forward pass, the allocation is from low to high-end while

the deallocation is from the high to low-end, leading to no fragmentation.

The configuration of memory pool size is a trial-and-error process. To ensure

the trainability of networks, Dymem initiates a large enough main space for the

first iteration. Based on the aggregated consumption of memory, Dymem adjusts

the memory pool size by removing the smallest squeeze gap between the low- and

high-end regions in training, i.e., mem_size = (init − squeeze_gap) + β, in which

squeeze_gap = min{highest_avail− lowest_avail}. The β is reserved space in case

of fluctuation. If the training fails, an additional β is provisioned.
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Figure 4.4: Overall GPU memory usage and normalized performance of convolution
layers. The batch size of Inception V4 is 128. The batch size for ResNet with different
depths are 100. Dymem(m) and Dymem(p) represent running Dymem with memory-
optimal and performance-optimal algorithms.
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Algorithm 4 Group Tensors By Mobility.
1: function tensorGroup(int layerId)
2: if layerId -> type == FC || layerId -> type == Softmax || layerId -> type

== Dropout then
3: reclaim ← (layerId);
4: else if layerId -> refcnt > 1 || !(layerId -> get-next()) then
5: temporary ← (layerId);
6: else
7: movable ← (layerId);
8: end if
9: end function

4.2 Methodology

4.2.1 Baselines

We choose vDNN [19] and SuperNeurons [20] as the baselines for performance

comparisons. Regarding memory management, vDNN uses the default Nvidia CN-

MeM [51] library to allocate/deallocate tensors. SuperNeurons adopts a fast heap-

based GPU memory pool utility. The core concept is to divide the preallocated pool

into an allocated list and an empty list. For these two techniques, we implement the

best-fit algorithm as the memory management policy. The execution order for the

nonlinear network is not detailed in vDNN. So we adopt the same construction, DFS,

for vDNN for comparison. We can only release tensors from GPU memory when

there is no further reference in the forward or backward passes. As for the tensor

scheduling policy, we implement the dynamic policy mentioned in the vDNN paper,

which automatically decides the offloading layers employed to balance the trainability

and performance of a DNN at runtime. As for SuperNeurons, we only implement the

liveness analysis and unified tensor management components because recomputation

for specific layers is not considered in our work.
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4.2.2 Optimizing Convolution Algorithm

The speed of CONV layers significantly impacts the training performance. We

implement a dynamic strategy to utilize the availability of the GPU memory pool.

The dynamism can achieve a tradeoff between memory saving and performance gain.

Since the allocation of convolution workspace does not affect the functionality of the

training, so we prioritize the allocation for those required feature maps, gradients

maps, and weights, etc. The runtime will profile the available memory space when

it enters a new layer and increment the amount of GPU memory for workspace in

a fine-grained granularity, i.e., 1MB. The runtime will stop requesting more GPU

memory for workspace if it causes failure in training. Then, the corresponding de-

cision is regarded as the optimal configuration for the current state. The baselines,

vDNN and SuperNeurons, adopt the same dynamic strategy to achieve the balance

between memory saving and performance gain. We also implement the memory-

optimal algorithm as the baseline, in which no extra workspace memory is required

for Convolution layers.

4.2.3 DNN Benchmarks

4.2.3.1 Linear Networks

First, we perform the evaluation compared with vDNN and SuperNeurons on linear

networks, VGG-16 and AlexNet. We use the same training configurations as the

published paper [10][92]. For AlexNet, we configure the batch size as 256. there are 23

forward steps and 23 backward steps. VGG-16 is one of the largest and deepest DNN

architecture, which has 16 CONV and 3 FC layers. It requires substantial memory

capacity for trainability. To ensure the trainability, we configure the batch size as 64

and 128. We evaluate the performance regression of the end-to-end training and the

peak memory consumption for one iteration. Since SuperNeurons requests a fixed

and large enough memory pool, we measure memory usage in terms of aggregated
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memory usage during the runtime.

4.2.3.2 Nonlinear Networks

We further perform the evaluation against vDNN and SuperNeurons on two rep-

resentative nonlinear networks, ResNet [49] and Inception V4 [8]. Specifically, we

implement the basic Residual block, which has two 3×3 convolutional layers with

the same number of output channels. Each convolution layer is followed by a batch

normalization layer and a ReLU activation function. Then, the skip connection joins

the output from two convolution layers with the original input before the final acti-

vation function. We also evaluate the performance using various depths for ResNet,

e.g. ResNet-32, ResNet-50, ResNet-101 and ResNet-152. The difference among these

networks is the number of residual blocks. Since vDNN does not report the evaluation

results for ResNet, we follow the implementation from Torch [59] to implement the

memory management policy because it is adopted as the baseline for vDNN. For all

of the above benchmarks, we use the image dataset CIFAR-10 [93].

4.3 Evaluation

Our experimental evaluation is performed on GeForce GTX TITAN X with 12

GB GPU memory. The machine has 3.4 GHz Intel i7-3770 CPU (20 cores) and 32

GB CPU memory. The GPU communicates with CPU via a PCIe switch, which

has 16GB/sec data transfer bandwidth. The machine is installed with Ubuntu-16.04,

CUDA 9.0, CuDNN 7.0, and g++ 5.4.0.

4.3.1 Reduction on GPU memory usage

Figure 4.4a summaries the aggregated memory usage among Dymem, vDNN, and

SuperNeurons for different DNNs. Because all of these three approaches apply a layer-

wise memory allocation policy, the GPU memory usage during forward/backward

pass will fluctuate depending on the tensors chosen for offloading/prefetching. So

we use the aggregated memory to represent the maximum allocated GPU memory
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for one entire iteration, which is the minimum requirement to enable the trainability

of the networks. From the results of VGG-16 and AlexNet, we can see that there

is no difference between these three strategies. For such linear networks, layers are

propagated sequentially. Dymem falls back to the same best-fit algorithm, which

is adopted by SuperNeurons and vDNN as well. For VGG-16, because convolution

layers dominate the training process, leading to no difference between vDNN and Su-

perNeurons. Dymem even requires nearly 250MB more memory capacity than vDNN

for AlexNet. Because Dymem aggressively prefetches more layer’s data structure than

vDNN, trading the memory space for performance improvement, which is detailed in

Section 4.3.2. For nonlinear networks, ResNet-50, ResNet-101 and ResNet-152 vary

their network depths by changing the combinations of for-loop residual blocks. We

can see that when the depth of ResNet is increased, memory consumption is not

linearly increased. The performance of Dymem shows considerable scalability for dif-

ferent depths of networks compared with vDNN and SuperNeurons. Specifically, for

Inception V4, the maximum memory footprint is reduced from 3650MB to 2527MB,

resulting in 31% memory saving compared with vDNN. SuperNeurons shows better

performance than vDNN to handle the tensor scheduling for Inception V4, whose

inception branches are much more complex than ResNet. However, Dymem can still

achieve 28% memory saving compared with SuperNeurons by minimizing the GPU

memory fragmentation caused by the simple best-fit policy.

Figure 4.4b reports the performance of the convolution algorithms of Dymem and

vDNN. The performance of convolution algorithms can better represent the average

utilization of the GPU DRAM during the runtime. For comparison, we implement

Dymen with both memory-optimal algorithm and the performance-optimal convolu-

tion algorithm as the baseline, in which performance-optimal algorithm is configured

to supply with enough memory to run the fastest convolution algorithms. To demon-

strate the impact of stressed memory capacity, we especially study VGG-16 running
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with 256 batch sizes. Since is impossible to train VGG-16 with this configuration

on GeForce GTX TITAN X, we employ the layer-by-layer strategy to ensure train-

ability. The training time that occurred in all convolution layers is accumulated

to represent the overall performance because the memory capacity only affects the

convolutional performance. As shown in the figure, we can see that the memory-

optimal algorithm could result in nearly 60% performance loss on average compared

with the performance-optimal algorithms. It is normal because no extra memory

space is sacrificed for performance, closing the gap between the memory-optimal and

performance-optimal configurations. Both Dymem and vDNN achieve well balanc-

ing between memory usage and the overall performance. From the results, we can

see that Dymem and vDNN reach an average of 95% and 97% throughput of the

performance-optimal. However, when the batch size of VGG-16 is configured to 256,

the average throughput is decreased to 84% running in the vDNN. The performance

is worse running in Dymem, which is 72% of the performance-optimal setting. Be-

cause Dymem prioritizes functionality over performance. For VGG-16, especially in

the backward pass, Dymem prefetch more Convolution layers following Pooling layers

than vDNN, resulting in less available GPU DRAM for workspace allocation. The

minor performance loss from the algorithm could be made up of the benefit from the

overlapping between computation and communication, as illustrated in Section 4.3.2.

4.3.2 End-to-end throughput evaluation

Figures 4.5 present the end-to-end training throughput comparison of Dymem to

vDNN and SuperNeurons. The training throughput is measured by the number of

processed images per second. We vary the batch sizes for different DNNs and compare

the corresponding throughput. For linear networks, VGG-16, and AlexNet, there is

not much performance improvement over vDNN and SuperNeurons. Because these

networks are composed of simple and sequential layers. For example, VGG-16 con-

sists of 16 convolution layers, which are computation-intensive. The computation
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(a) VGG-16.
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(b) AlexNet.
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(c) ResNet-50.
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(d) ResNet-101.
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(e) ResNet-152.
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(f) Inception-V4.

Figure 4.5: End-to-end evaluation on throughput of different DNN models.



52

time is always longer than the transfer. The propagation computation dominates

the total delay. As a result, there is no much performance benefit by removing the

layer-by-layer synchronization barriers. In some cases, for linear networks, we can see

that SuperNeurons perform better than Dymem and vDNN. Because SuperNeurons

only offloads convolution layers, avoiding the communication overhead. However, for

both linear and nonlinear networks, when the batch sizes are increased, SuperNeu-

rons cannot train these networks because of the limited memory availability. For

nonlinear networks, the results consistently demonstrate the leading throughput on

ResNet-50, ResNet-101, ResNet-152, and Inception V4. The largest throughput im-

provement comes from ResNet-50, running with batch size 100, which achieves up

to 42% compared with vDNN. The performance largely results from the improved

communication/computation ratio. This is because Dymem could better utilize the

overlap of communication and computation among layers. We can also observe that

the throughput has slowly deteriorated by increasing batch size. This is because GPU

memory can only accommodate less network layer with wider networks, resulting in

the decreased communication/computation ratio. Less layer overlapping requires the

growing communications in more frequent tensor swapping between CPU and GPU.

Then, the runtime has to constantly offload the current layer before proceeding to

the next one.

4.3.3 Efficiency of dependency-aware swapping

Figure 4.6 plots the breakdown of the normalized execution time of two repre-

sentative nonlinear networks, Inception V4 and Resnet-32. These two networks are

training on Dymem and vDNN with the memory-optimal configuration to avoid the

impact from the speedup of Convolution. Specifically, the time is decomposed into the

overlapped time, the non-overlapped communication time, and the non-overlapped

computation time. In this experiment, the baseline only uses one stream, which re-

stricts that the computation and offload/prefetch in both the forward and backward
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Figure 4.6: Execution time decomposed into the overlapped time, the non-overlapped
communication time, and the non-overlapped computation time in two networks.

passes are executed sequentially. We also configure the memory-optimal algorithm for

these three experiments, so as to avoid the impact of the dynamics in the convolution

layers. As shown in the figures, the overlapped time in the baseline is zero since the

communication and the computation are performed sequentially. The layer by layer

strategy adopted by vDNN can overlap the communication with the computation

to some extent by 18% and 12% for Inception V4 and ResNet, respectively. The

overlapped time in Dymem is longer than that in the vDNN, showing that a more

aggressive batching strategy is more effective in terms of performance. As a result,

compared with the baseline, Dymem can achieve nearly up to 46% reduction on the

execution time.

4.3.4 Efficiency of the contiguity-conserving policy

To study the efficiency of the proposed tensors placement policy, we analyze the

step-by-step memory usage of ResNet-32 in one iteration running with GTBM and the

default best-fit algorithms, which is shown in Figure 4.7. Here, the "used" memory

includes the allocated and the free but unusable memory nodes. For vDNN, the

"used" memory counts the memory nodes from the lowest allocated address to the

highest available address in the memory pool. For Dymem, it additionally counts
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Figure 4.7: The moving average memory usage of ResNet-32 in one iteration.

the used memory nodes from the high-end in the main space and the incremental

space. In this experiment, we run ResNet-32 without batch normalization under the

batch size of 100. Specifically, it consists of 15 residual blocks. In each residual block,

there is one join and one fork connections. Between these two connections, there are

two branches, including shortcut and residual connections. The residual connection

is composed of two Convolution and one Activation layers. After the join connection,

the result will be fed into one Activation layer. One iteration requires 190 steps in

the forward and backward passes. From the result, we observe vDNN requests more

GPU memory at the end of each residual block, i.e., the join connection. Though

the occupied memory nodes have been released, the fragmented but unfit memory

nodes cause a waste of resources. Compared with vDNN, the unifies memory pool

can reduce the fragmented nodes by reorganizing the placement. The peak memory

usage occurs in the first residual block in the backward pass, which requires nearly

2500MB GPU memory for vDNN. But for Dymem, the peak memory requirement is

1854MB. The proposed unified memory pool can reduce memory fragmentation.

4.3.5 Sensitivity analysis of the approximation

To quantify the effect of different β, we configure β varying from 100 to 500MB

and run ResNet-101. We initiate a large enough memory pool, i.e., 10G (another
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Table 4.2: The failure rate of training with different parameter configurations.

Memory size (MB) 100 300 500
Training failure (%) 5 0.9 0

2GB for incremental space), for the first iteration. Then we approximate the suitable

memory pool size based on the profiled data and β. If the training fails, the current

iteration is restarted and assigned with additional β memory space. We obtain the

average failure rate, which is shown in Table 4.2. Since the DNN training remains the

same execution sequences, mostly, the approximated pool size is sufficient to serve

the memory request. In this experiment, we can see that the optimal configuration

should be 300MB, considering the memory-saving and network trainability. The

limitation of this profiling-based method is that it requires additional memory and

CPU capacities. For different networks with different parameters, the approximation

should be repeated to find out the suitable configuration.

4.4 Summary

With the deep neural networks going wider and deeper, there is a need to effectively

schedule GPU memory for DNN training to overcome the insufficient capacity. This

work focus on memory management for the training of nonlinear DNNs. I propose

the runtime to adopt the layer-wise graph analysis and dependency-aware memory

offloading/prefetching strategy to improve the throughput of DNN training. Further-

more, I design a Group Tensors By Mobility (GTBM) placement policy to allocate

tensors on the proposed unified memory pool for data structures with varied data

sizes and dynamic dependencies, so as to reduce the GPU memory fragmentation

in the training. Compared with the state-of-art vDNN, for linear networks, there is

no much performance difference. For nonlinear networks, our proposed solution can

achieve memory saving for Inception V4 by up to 31%. The proposed dependency-

aware approach can improve the end-to-end training throughput for ResNet-50 by up
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to 42%. The experiments also show that Dymem can achieve better scalability for

nonlinear networks with various network depths. Currently, the proposed solution

only supports GPU memory optimization for neural networks with a static dataflow

graph and a fixed shape of the input, i.e., DNN.



CHAPTER 5: Mitigating Stragglers in the Decentralized Training

5.1 Design of Randomized Non-blocking AllReduce

Traditional synchronous operations in the decentralized training such as AllRe-

duce require a central scheduler to maintain a complete view of all processes. The

synchronization operations can only be initiated after the slowest process finishes

its computation. In this section, we introduce Randomized Non-blocking AllReduce

(RNA), which takes a radically different approach: all processes operate in parallel,

and the central scheduler does not maintain any progress state about training. The

central scheduler relies on instantaneous progress information acquired from worker

machines to initiate a synchronization. When the synchronization is triggered, RNA

adopts weighted averaging to local accumulated results and dynamic scaling to the

global aggregation to apply the obtained gradients.

5.1.1 Randomized Partial Collectives

The key to avoiding the "long-tail effects" for Ring AllReduce enforce partial col-

lective operations, which force the slow processes to execute the synchronization.

The main difference between the bulk synchronous parallel collective communica-

tion and the partial collective communication is when synchronization is triggered.

For bulk synchronous parallel, the AllReduce is executed when all workers inform

the central scheduler that they are ready to reduce the obtained gradients, e.g.,

NEGOTIATE_ALLREDUCE in Horovod. In this scenario, even a single delayed

process affects the job’s training time. In contrast to the synchronous mode, in MPI,

there is a wait-free operation, which is called partial collective communication [94].

It forces the slow processes to execute the collective communication as soon as there
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is one process executing it. This process, called the initiator, is in charge of enforcing

the others to join the collective communication. In partial collective communication,

an external activation is allowed to enforce a process to execute the synchronization

before it reaches the internal activation. The time when the synchronization should

be initiated is a trade-off between system and algorithm efficiency. A simple and

straightforward strategy is to select an initiator among processes randomly. When a

process is elected as the initiator, if it has gradients ready to be reduced, an exter-

nal activation is broadcast to all the other processes to join the collective operation,

regardless of they have finished the propagation or not.

Ideally, random selection can guarantee that at least half of the processes on av-

erage can take part in the collective operation and contribute their gradients. For a

cluster with N nodes, the probability that any process is selected as the synchroniza-

tion initiator is 1
N
. Correspondingly, half of the processes on average have gradients

ready for AllReduce before the selected initiator sends out the external activation.

However, for a workload with a long tail distribution, e.g., as is illustrated in previous

section, stragglers still have a high probability of slowing down the synchronization.

Specifically, the expected waiting time is 1
1−ρ , when there is workload in the queueing

system [95], in which ρ represents the computational load.

5.1.2 Per-process Sampling

Inspired by the power of two choices load balancing techniques [37], RNA imple-

ments a power of two choices technique to improve the purely random selection of

initiator of AllReduce. It provides low expected waiting time using a stateless, ran-

domized approach. More precisely, For a fixed time T , using q choices, i.e., two

here, the waiting time in an initially empty system over T is upper bounded by∑∞
i=1 ρ

qi−q
q−1 −O(1), which improves the expected waiting time exponentially compared

to the random strategy. The term O(1) is obtained in an initially empty system over

the first T units, which may depend on T . The central scheduler randomly selects
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Figure 5.1: Non-blocking AllReduce: white bars represent computation processes,
while grey bars represent communication processes. xt represents the parameters
being used for training, and g0t represents the gradient from processes w0 at time t.

two processes among the machines and sends a probe to each, where a probe is a

lightweight RPC. The selected processes can only reply to the probe when they have

ready gradients. As long as one of them responds to the central scheduler, the AllRe-

duce operation is initiated. The probe is attached to the iteration identification to

avoid the scheduling conflict. When the faster one is replied, another probe is ex-

pired. For example, if processes pi and pj are selected and finish propagation for the

current iteration at the same time, they both reply to the probe. There are two cases:

1) response from pi has been accepted, the probe for this iteration for pj is expired;

2) no response has been accepted, faster pi is accepted and, the probe identification

is updated to the next iteration. Two-probe sampling can reduce the response time

effectively compared with randomized approach. An additional number of probes

cannot improve the performance but harm the performance because of the system

overhead from sampling and messaging, which is detailed in Section 5.6.4.

5.1.3 Non-blocking AllReduce

Algorithm 5 Non-blocking AllReduce.
Require: A set of workers M; the communication topology G.
1: for worker mi ∈ M do
2: compute the gradient gk,i = Oεk,if(xk,i; ξk,i)
3: obtain the weight for gradients W = 1∑

wk,i

4: average gradients using Non-blocking AllReduce gk ← W ·
∑

i∈Mgk,i
5: update parameters xk+1,i ← xk,i - γk · gk
6: end for
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The straightforward implementation of Ring AllReduce incurs high inefficiency

when stragglers appear. The goal of RNA is to propose a communication primitive

that can balance the efficiency between the system and algorithm. When the collective

operation is initiated, the synchronization procedure involves updating the weights

of contribution from each process. We use wk,i = 1 to indicate that the process k at

iteration i has gradients to be applied, otherwise, wk,i = 0. Then the weight for each

process is W = 1∑
wk,i

. Algorithm 5 illustrates the procedure of RNA. Specifically,

according to the Linear Scaling Rule [74], RNA dynamically adjusts learning rate

γk =
∑
wk,i · γ at each iteration. All other hyper-parameters (weight decay,etc.) are

kept unchanged. The implementation of RNA can still leverage the benefit from Ring

AllReduce that it can update the weights among processes in O(M) time because it

does not change the communication graph. RNA still follows the generalization of

the conventional Ring AllReduce in deep learning training among all processes.

Figure 5.1 summarizes the working examples of RNA. RNA employs two threads

to execute computation and communication. In our implementation, computation

is done by GPU, while gradients synchronization is by CPU, i.e., MPI. In these

examples, we assume that the process w0 is always selected as the initiator. At

iteration t, suppose that w1 is slower than w0 and w1 has no available gradients when

w0 completes propagation. w1 initiates the AllReduce without waiting for w1. Since

w1 contributes a gnull gradient at this time, RNA adjusts the weight W and updates

parameters correspondingly. At iteration t+1, when w0 triggers AllReduce operation

since w1 catches up with w0 and has two gradients gt+1,1 and gt+2,1 available on the

communication thread, the accumulated gradients are locally reduced and participate

in the collective operations then. We should notice that gt+2,1 is updated using the

new parameters xt+1 while the gradients gt+1 uses stale parameter xt. At iteration

t + 2, w1 is faster than the initiator. It does not wait for the completion of w0

and continue the next iteration. When the initiator w0 is ready, then AllReduce is
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Figure 5.2: Hierarchical synchronization scheme: mi represents the i-th worker.

performed to update the parameters using g0t+2 and g1t+2.

While in some extreme situations, the staleness might be more than two. RNA

implements a weighted averaging to reduce the accumulated locally. For work i at

iteration k, the locally reduced gradient is g′ =
∑

[t−(k−τ)+1]·gt∑
[t−(k−τ)+1]

, in which gt is the

gradients obtained at iteration t and τ is the largest iteration gap among accumu-

lated results. The weight of an update is linearly associated with its iteration. If

some slower processes fall behind others severely, RNA follows the design of bounded

staleness [64] to overwrite the stale data and only keep results within the bound.

5.2 Hierarchical Synchronization in Heterogeneous Cluster

The objective of RNA is to leverage the randomized initiator to avoid the "long-tail

effects." However, when this implementation is extended to a large and heterogeneous

environment, the deterministic heterogeneity from hardware cannot be negligible.

The mechanisms proposed so far are mainly effective in a homogeneous execution

environment but do not help with slowdown situations. Slow workers who always

fall behind others can enlarge the iteration gaps among workers gradually, resulting

in lower accuracy. The best solution is to allow asynchronous synchronization. To

achieve that, we combine the decentralized design with the traditional PS implemen-

tation, which can be illustrated in Figure 5.2. The hierarchical AllReduce first groups

M machines into N groups, and uses three phases to do update parameters: firstly,
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each group executes AllReduce operation and updates parameter among the assigned

machines in this group following the basic design of RNA. This procedure follows the

basic randomized Non-blocking AllReduce; secondly, the averaged gradients among

each group is applied to update models using parameter server. The updated pa-

rameters from each group is pushed to a central PS from the selected initiator to be

averaged, the results are then pulled back to the initiator worker; thirdly, the selected

initiator in each iteration executes a broadcast operation within the group to propa-

gate the final result to every process. In this mode, each group can be regarded as a

"node" in the traditional PS. In a large scale, it is easy to implement asynchronous

synchronization because each group communicates with parameter servers directly

and computes gradients independently.

Whether the hierarchical synchronization should be used or not, it depends on

both the system performance and application behaviors. To determine whether to

choose one or more AllReduce groups, we test a simple condition of ζ > υ, where ζ

denotes the difference of the time between the fastest task and the slowest one, and

υ is the average time of one iteration of all processes. If ζ > υ, we use a two-group

configuration. During the group configuration, processes are ranked according to the

processing time. The processes with processing time larger than υ are regarded as a

slower worker. Faster workers are defined in a similar way. Faster and slower workers

are partitioned into two subsets. The partition-and-group procedures are recursively

performed in each subset until ζ ≤ υ is satisfied inside the group.

It is worth noting that the proposed hierarchical synchronization is different from

hierarchical AllReduce [96], which is mathematically equivalent to All-Reduce among

all workers with acceleration brought by the hierarchical architecture. For RNA,

workers end up with different weights after the synchronization for a different group.

Compared with the default Ring AllReduce, the deterministic slowdown is avoided,

making each group homogeneous. Compared with the traditional PS, the number of
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Table 5.1: Notation.

||x||c the lc norm of vector x
Eξ(·) the expectation of variable ξ
xk the model parameter at k-th iteration
ξ the sampled data from input
f(·) the target function for optimizing
g(·) the gradient function
τij the iteration gap between i, j-th machines
L the Lipschitzian constant
σ2 the bounded variance
K the total number of iterations
B the parameter weights
x∗ the optimal parameters
η staled iteration bound

workers that communicate with a central server is reduced from M to N , in which

M � N . As a result, the asynchronous synchronization among groups with varied

capacities can mitigate network contention.

5.3 Convergence Analysis

We next theoretically analyze the convergence rate of RNA. Important notation

is summarized in Table5.1. Based on the weighted average gradients, we make the

following assumptions for analysis.

Assumption 1. For widely used stochastic gradient algorithms:

• (Unbiased Gradient):The stochastic gradient g(x; ξ) is unbiased: Eξ[g(x; ξ)] =

∇f(x).

• (Bounded Variance): The bounded variance of stochastic gradient can be

obtained as: Eξ(||g(x; ξ)−∇f(x)||2) ≤ σ2, ∀x.

• (Lipschitzian Gradient): The gradient function ∇f(·) is Lipschitzian, that

is to say ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x,∀y.
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Assumption 2. Bounded delay: the delay for updating the gradient value among

all machines is bounded, which means max τij ≤ η.

Convergence bound: AllReduce spreads the reduced gradients. With the Non-

Blocking Reduce mechanism, fast machines use the staled gradient values from slow

ones to update its parameters, while slow machines will utilize gradients from future

iterations results obtained from faster ones. We uniformly represent the mixed-version

gradients for these two conditions as G
(
xk+τkj , ξk+τkj

)
, where τkj is the iteration gap

to the j-th machine. The positive τkj represents gradients from the fast worker and,

the negative one is from a slow one. Based on two assumptions above, we obtain the

following convergence bound:

Theorem 1. The step length sequence {γk}k=1,...,K in algorithm satisfies

K∑
k=1

(
γ2k

(
L

2
+ L2Bη

η∑
κ=1

γk+κ

)
− γk

2B

)
≤ 0. (5.1)

We have the following convergence rate for the training:

K∑
k=1

γkE‖∇f(xk)‖2 ≤
2 (f(x1)− f(x∗))

B

+
K∑
k=1

(
γ2kL+ 2L2Bγk

k−1∑
j=k−T

γ2j

)
σ2. (5.2)

The convergence rate is bounded, which satisfies the same convergence properties as

the asynchronous parameter server approach [97].

Independent staleness: With the guarantee of the convergence bound, we further

analyze that the convergence rate is independent of the staled parameters η after a

sufficient number of iterations. We let the step length γk as a constant value, and we

can obtain the corollary:
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Theorem 2. The delay parameter η is bounded by:

4BL(f(x1)− f(x∗))
σ2

(η + 1)2 ≤ K. (5.3)

We set the step length γk to be a constant γ:

γ =

√
f(x1)− f(x∗)

BLKσ2
. (5.4)

after substituting the upper bound:

γL+ 2L2Bγ2η ≤ 1

2B(η + 1)
+

η

2B(η + 1)2
(5.5)

=
2η + 1

2B(η + 1)2
=

1

2B
2η + 1

(η + 1)2
(5.6)

≤ 1

2B
(5.7)

According to theorem 1, we set the step length γk to be a constant γ. Then we can

obtain the following convergence rate:

K∑
k=1

γE‖∇f(xk)‖2 ≤
2 (f(x1)− f(x∗))

M
+

K∑
k=1

(
γ2L+ 2L2Mγ

k−1∑
j=k−T

γ2

)
σ2

(5.8)

which is equivalent to:

1

K

K∑
k=1

E‖∇f(xk)‖2 ≤ 4

√
(f(x1)− f(x∗))Lσ2

BK
. (5.9)

Discussion According to the Theorem 2, we can find that when the K is large

enough, 4BL(f(x1)−f(x∗))
σ2 (η + 1)2 is greater than O(η2). We make the following con-

clusion regarding the bound. First, because we analyze non-convex objectives, for a
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given sequence of learning rates, the algorithm will converge to a point of negligible

gradient. Convergence can be achieved by this algorithm asymptotically. Second, The

convergence rate can be achieved by O( 1√
BK ). The maximum delay and the number

of "missing" gradients per iteration can be minimized. It can be concluded that the

convergence rate is guaranteed while it requires the additional performance cost of

synchronization with the slower convergence. Since the communication cost is also

independent of nodes according to the analysis in [26], our optimization techniques

can achieve bandwidth-optimal performance with partial synchronization, which will

be further empirically confirmed by evaluations in Section 5.6.

5.4 Implementation Details

RNA is implemented using C++11 and Python on top of Horovod. We implement

the key functionality of partial AllReduce in the package controller, which serves as

the coordinator to initiate and perform the AllReduce to average gradients among

processes. Controller resides in the root node in the cluster, which serves as a

centralized mechanism to decide the time to execute the decentralized AllReduce.

A plugin is developed for TensorFlow to enable the cross-iteration feature. As for

the hierarchical synchronization, we follow PS-lite [98] to implement asynchronous

communication, which provides flexible and high-performance operations such as zero-

copy push and pull.

Controller. We implement partial AllReduce using MPI only now because RNA

separates communication from computation so as to avoid the resource contention for

GPU, removing barriers from communication. In default, the controller records the

count of received tensors at each iteration. Only if it is equal to the number of partic-

ipated processes, then the synchronization is initiated. Then AllReduce is performed

by Open MPI to synchronize the obtained gradients. RNA selects one process as the

initiator based on the randomized algorithm for each iteration. When the initiator has

tensors ready for reduction, the AllReduce is performed by the background MPI. As
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for other processes, RNA will sum the gradients locally if there are multiple available

tensors, which are from different iterations. As for stragglers, each process allocates

a null gradient, i.e., null tensor in TensorFlow, as the input by default, whose size

and shapes are exactly identical to each other among processes. After each AllReduce

operation, the input gradients are overwritten by a null gradient so as to avoid using

outdated gradients. When the AllReduce is completed, RNA returns a callback with

the iterationID via EnqueueTensorAllreduce. The iterationID records the step of

synchronization. Also, the returned output gradients overwrite the previous results

on each worker. Note that all of the above input and output gradients are cached on

the CPU memory. NCCL [45] can be applied to synchronize gradients among remote

GPUs, which requires additional GPU memory buffer among GPUs to cache input

and output gradients individually.

TensorFlow plugin. In default, Horovod wraps TensorFlow optimizer in Dis-

tributedOptimizer, which is an opt-in graph optimization module. It supports al-

tering runtime behavior of graph execution, such as instrumenting OpKernel imple-

mentation, adding and removing data, or control dependencies of graph nodes. The

TensorFlow plugin goes through the data-flow graph to obtain gradients before its

execution at each iteration. To enable cross-iteration training, we create two Tensor-

Flow ops. The WriteOp caches the obtained gradient on the CPU memory. If there

is a null tensor, it will be replaced by the new input. If there are input tensor waiting

for reduction, it will be accumulated. To avoid being block by the default allreduce(),

a new kernel, i.e., ReadOp, is created. It first checks if there is a new output tensor

available, according to the iterationID. If yes, the new gradients are copied into

the GPU memory to replace the local gradients via PCIe. Otherwise, local gradients

are used to fit the deep learning model. If RNA with hierarchical synchronization,

the get_weight() will write the parameters to CPU buffers after apply_gradient() is

finished. Then the updated tensors are pulled back. RNA overrides the set_weight()
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API that is inherited from Tensorflow optimizer to use the averaged gradients from

CPU to continue training. With these two new kernels, the computation of Tensor-

Flow does not necessarily wait for the completion of the communication.

Hierarchical synchronization. A parameter server (PS) is a logically separate

device that stores global parameters and provides a key-value interface to workers.

Generally, PS approach has the following phases: (1) each worker computes the gra-

dients using its local sampled data and sends them to PS (push); (2) central server

aggregates the gradients across workers and updates its parameters (update); (3)

Workers synchronize parameters with PS (pull). Following the logic of ps-lite, a

notify_ready value is returned from the callback by get_weight(). The PS only

executes the parameter summation, i.e., model averaging, which require additional

CPU resources. Fortunately, modern CPU are good at summation operation due to

the highly optimized AVX instructions [99]. The additional computation on the CPU

will not be the bottleneck. Then PSPushPull() is called to perform a push and

pull operation on the output tensors sequentially. Only the selected initiator serves

as the "node" and triggers the PSPushPull() operation. We applied the default

wait() API to lock the variables on each worker. After the gradients are aggregated

and being updated at the central server, the updated parameters will be pulled back

to the initiator. The pulled back parameters are written to the CPU buffer. RNA

notifies MPI to broadcast the new tensors among the group via broadcast() to over-

write the output tensor with the same iterationID, and then the parameters are

unlocked. The set_weight() API in TensorFlow uses the updated parameters for

propagation. The hierarchical synchronization is executed asynchronously across all

processes periodically. We leave the frequency tuning as our future work.
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Table 5.2: The configuration of hardwares.

Processor GPU Model Num.
Intel 3.2GHz Xeon E5-2667 v3 2 × Nvidia Tesla K80 GPUs 4
Intel 2.60GHz Xeon Silver 4112 8 × NVIDIA GTX-1080Ti 2
Intel 3.2GHz Xeon Bronze 3104 2 × Nvidia GTX-2080Ti 4

5.5 Evaluation Setup

5.5.1 Testbed Setup

We use a local cluster to evaluate the performance of the proposed RNA model and

implemented mechanism. Table 5.2 lists the hardware configurations of the machines

in the cluster. These machines are connected with EDR Infiniband. All nodes in this

cluster run Ubuntu Server 16.04 with MPI 4.0.1, Python 3.7, CUDA 10.1, cuDNN

7.6.0, gcc 8.1.0, g++ 8.1.0, TensorFlow 2.1.

As for the dynamic system heterogeneity, we follow the experiment setting as

Hop [33] to inject delays to simulate the system heterogeneity. Each worker is slowed

down randomly in each iteration, where n is the number of workers.

5.5.2 Deep learning models and datasets

To evaluate the performance of RNA and compare it with other works, we train

three kinds of neural network models on real datasets, including image classification,

machine translation, and video processing.

5.5.2.1 image classification

ResNet50 is a convolutional neural network that is 50 layers deep used for image

classification. We train ResNet50 [49] model over ImageNet dataset [100], which

contains 1,281,167 images to be classified into 1,000 classes. The model contains

25,559,081 parameters. Momentum optimizer is used with momentum = 0.9 and

weight_decay = 5 ∗ 10−5. The initial learning rate is 0.125 and decays to its 0.1× on
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epochs 30, 60, 80. The batch size is 128.

VGG16 [10] is a communication-intensive network with thirteen convolution layers

of a 3×3 filter with a stride 1. It is a pretty large network, and it has more than 138

million parameters. We train VGG16 on dataset CIFAR-10 [93], whose evaluation

setup is batch size: 128, learning rate: 0.1, momentum: 0.9, weight decay: 10−4.

5.5.2.2 machine translation

Transformers [32] are developed to solve the problem of neural machine translation,

which transforms an input sequence to an output sequence. We train Transformer on

WMT17 dataset [101], which is an English to German translation dataset. The initial

learning rate is set to be 2.0. The model has 61,362,176 trainable parameters. While

training the model, we use the varying input length. The samples in the training

dataset typically consist of sentences in various lengths. Thus the computation over-

head varies with the length of the input and output sentences, leading to unbalance

training time.

5.5.2.3 video processing

RNN [102] is a class of artificial neural networks where connections between nodes

form a directed graph along a temporal sequence. LSTM is a kind of recurrent neural

networks that are intimately related to input sequences and lists. We train a single,

4096-wide LSTM layer, followed by a 1024 Dense layer, with some dropout in between

on UCF101 [61]. The model has 34,663,525 parameters. UCF101 has 13,320 videos

from 101 action categories, which gives the largest diversity in terms of actions and

with the presence of large variations in camera motion, object appearance, etc. We

also use the varying input length to train the model, which is linearly associated with

the length of videos. The input batch size is 128.
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5.5.3 Approaches and Performance Metrics

We compare the performance of RNA with three other synchronization models:

Horovod [28], AD-PSGD [34], and eager-SGD [86]. Horovod is selected as the state-

of-the-art baseline, which significantly outperforms many other implementations of

All-Reduce. To achieve better performance, NCCL is configured to achieve better

AllReduce speed. The Tensor Fusion is also enabled for better network utilization.

Tensor Fusion can reduce the overhead when performing AllReduce operations on

gradients by avoiding frequent initialization. AD-PSGD is implemented in Tensor-

Flow by randomly selecting communication neighbors. It uses grpc to communicate

parameters between nodes. eager-SGD proposes solo and majority collective com-

munication to implement partial AllReduce. Since in a heterogeneous environment,

it happens that few processes are always faster than the others. The solo collective

communication may negatively impact the convergence because of the staled update

from slower processes. So we only implement the majority collective communication

as the baseline.

We use the time it takes for the model to achieve the target loss as the metric of

performance. We also measure the number of iterations and averaged per-iteration

time to analyze the effect of our optimizations. We further use the validation dataset

to validate the accuracy of the obtained models. As for Transformers, we conduct

fixed-time experiments to compare the throughput of a different solution.

5.6 Experimental Evaluation

5.6.1 Training speedup and convergence

We evaluate the training speed of ResNet50, VGG16, and LSTM with different

system configurations. Because ResNet50 and VGG16 are balanced workloads af-

ter being preprocessed, we introduce system delay randomly, which ranges from 0

to 50ms, on each process. To evaluate the performance of the hierarchical synchro-
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Figure 5.3: Training speedup by RNA compared to Horovod, eager-SGD, and AD-
PSGD. "M" represents the mixed heterogeneity. "H" means that RNA is configured
with hierarchical synchronization.

nization mechanism, we simulate a cluster with mixed heterogeneity by dividing the

machines into two groups, A and B. For group B, higher system delay is injected,

which ranges from 50 to 100ms randomly. Based on the design principle of hierarchi-

cal synchronization, two ring communication graphs are formed, and one central PS

is created to coordinate the parameter synchronization. We train these three models

on corresponding datasets. The goal of training is to minimize the loss value. We use

Keras EarlyStopping to check whether the loss is no longer decreasing at the end of

every epoch. The patience is set to ten, i.e., the training process is terminated if the

loss cannot be decreased within ten iterations.

From Figure 5.3, it can be learned that RNA outperforms eager-SGD for ResNet50,

VGG16, and LSTM. Compared with the state-of-the-art Horovod, RNA can achieve

training speedup for ResNet50, VGG16, and LSTM by 1.7×, 1.4×, and 1.6×. The

performance improvement demonstrates that the randomized per-process approach

can mitigate the impact of dynamic heterogeneity probabilistically. Specifically, when

training ResNet50 in a cluster with a higher degree of heterogeneity, the training

speedup brought by eager-SGD and RNA with hierarchical synchronization are de-
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Table 5.3: The final training accuracy for different neural networks. ResNet and VGG
represent ResNet50 and VGG16, respectively.

approaches neural networks
ResNet ResNet(H) VGG VGG(H) LSTM

Horovod 78% 79% 93.4% 93.2% 88.2%
eager-SGD 76.2% 75.8% 92.8% 92.2% 87.5%
AD-PSGD 70.8% 68% 86.8% 87.6% 78.8%

RNA 78.2% 77.8% 92.6% 92.4% 87.8%

creased, which are from 1.3× to 1.1× and from 1.7× to 1.5×, respectively. However,

the RNA with hierarchical synchronization shows stable performance improvement,

which is 1.8× and 1.4× for ResNet50 and VGG16, respectively. It demonstrates

the probabilistic approach cannot handle the deterministic slowdown, i.e., group B’s

machines are slower than A by 50ms on average at each iteration. The hierarchical

synchronization mechanism can avoid mixed heterogeneity. It can also be noticed

that the performance of AD-PSGD is higher than RNA for VGG-16. It is because

VGG16 has a larger neural network, which makes the communication a dominat-

ing factor. Specifically, RNA requires extra memory copy between CPU and GPU.

However, from Table 5.3, we can see that AD-PSGD achieves the lowest accuracy

compared with the other three approaches when the training is terminated. Horovod,

eager-SGD, and RNA can achieve high accuracy.

Specifically, the convergence curve for LSTM using different approaches is shown in

Figure 5.4. Though AD-PSGD reaches the stopping criteria for training earlier than

Horovod, i.e., shorter execution time, it sacrifices the model accuracy. Compared with

Horovod, RNA lowers the training time from 8,200 ms to 5200ms, leading to nearly

1.6× speedup. Eager-SGD can achieve similar accuracy with Horovod and RNA, but

its throughput is lower than RNA, resulting in longer execution time. Overall, RNA

can both speed up the training process and guarantee good model accuracy.
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Figure 5.4: Convergence curve in terms of loss value and training accuracy for LSTM.
Each point is collected at the end of one epoch.

Table 5.4: The validation accuracy for different neural networks.

models approaches # of iterations top-1 acc. top-5 acc.

ResNet50

Horovod 42200 76.2% 93.2%
eager-SGD 49800 74.8 91.2%
AD-PSGD 38800 68.8 88.6%

RNA 52400 75.9% 92.6%

VGG16

Horovod 1080 92.5% -
eager-SGD 1360 91.8% -
AD-PSGD 880 82.8% -

RNA 1420 92.2% -

LSTM

Horovod 8120 68.2% 94.8%
eager-SGD 9600 66.8% 94.6%
AD-PSGD 7800 60.6% 90.1%

RNA 9660 66.5% 95.2%
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5.6.2 Validation on models

We further test the accuracy of the obtained ResNet50, VGG16 and LSTM mod-

els, which are summarized in Table 5.4. From the number of executed iterations,

we can see that the state-of-the-art Horovod is bottlenecked by the throughput be-

cause of dynamic system heterogeneity or inherent imbalance. Although AD-PSGD

requires fewer iterations to converge to minimize the loss value, the execution time of

each iteration is severely affected by the synchronization overhead. And AD-PSGD

achieves the lowest validation accuracy compared with other approaches. For LSTM

and ResNet50, RNA takes advantage of asynchronous execution to allow more it-

eration in a fixed duration, leading to higher throughput. RNA can achieve higher

training throughput than Eager-SGD because it can efficiently reduce the response

time at each iteration. Both eager-SGD and RNA can obtain higher model accuracy

than AD-PSGD. From these results, we can learn that RNA has significant conver-

gence speed improvement compared with the state-of-the-art approach, AllReduce in

Horovod. While compared with AD-PSGD, higher model accuracy is guaranteed.

5.6.3 Throughput comparison

To evaluate the throughput, we train Transformers in both homogeneous and het-

erogeneous clusters. The homogeneous cluster has two nodes configured with eight

NVIDIA GeForce GTX-1080Ti for each. In the homogeneous environment, the high

variance of the input sentence length incurs imbalance training time among processes.

In the heterogeneous environment, we inject the additional dynamic slowdown to eval-

uate heterogeneity tolerance. In the experiment, we set the batch size to 4,096 tokens.

The per-iteration speedup, and the overall speedup is shown in Figure 5.5. Horovod is

selected as the baseline since it strictly follows the BSP model. The per-iteration time

is the training time required for each iteration, which is averaged from one epoch.

The overall speedup is the convergence time over the baseline. From Figure 5.5a,
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Figure 5.5: Per-Iteration Speedup and Overall Speedup comparison among Horovod,
Eager-SGD, AD-PSGD and RNA in both homogeneous and heterogeneous environ-
ment.
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Figure 5.6: Throughput comparison among different approaches with Transformer.

we can see that RNA achieve the highest per-iteration speedup over Horovod, which

is nearly 2.6× in a homogeneous environment, while eager-SGD and AD-PSGD can

accomplish that by 1.9× and 1.4×, respectively. The reduction in the per iteration

time results in less waiting time between iterations.More tokens have been processed

by RNA within a fixed time duration compared with other approaches, leading to

higher throughput. To obtain the same loss value of 2.0, RNA achieves 2.2× the

overall speedup over Horovod on the execution time, as is illustrated in Figure 5.5b,

while eager-SGD and AD-PSGD achieve that by 1.4× and 1.2×, respectively. In a

heterogeneous environment, as is shown in Figure 5.5c and 5.5d, eager-SGD suffers

from the random slowdown, whose per-iteration speedup drops from 1.9× to 1.3×.

However, both AD-PSGD and RNA can achieve stable speedup, which is 1.6× and

2.3×, respectively, in terms of overall speedup. Combined with these two results,

we can learn that RNA achieves a better balance between statistical efficiency and

system efficiency. It requires more iterations while ignoring the staled contribution

to gain significant speedup in per iteration time, leading to overall execution time

speedup.

We further evaluate the scalability of RNA with other approaches on Transformers

by varying the number of GPU processes. From Figure 5.6 shows that RNA and
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Figure 5.7: Effect of number of choices on response time. Whiskers depict 5-th and
95-th percentiles; boxes depict median, 25-th, and-75th percentiles.

eager-SGD almost achieve the highest and similar throughput on a 4-processes scale.

With the increased number of processes, both the AD-PSGD and RNA achieves

higher throughput than Horovod and eager-SGD. When the number of processes

is increased, RNA performs better scalability than Eager-SGD and Horovod. AD-

PSGD also shows superior performance in terms of scalability. In particular, we

notice when the number of processes is increased to 32, AD-PSGD is has a little

higher throughput than RNA. Because Transformer networks mostly consist of tensor

contractions implemented as batched matrix products. As a result, Transformer

requires more straightforward computation compared with the computation-intensive

Convolution and causes dominated communication overhead due to the significant

number of parameters, leaving less space for optimization. However, compared with

AD-PSGD, we notice that RNA can reach 24 on BLEU score while AD-PSGD can

only obtain 22. This result shows that RNA can ensure higher accuracy compared

with AD-PSGD. In terms of throughput, RAN can achieve better scalability compared

with eager-SGD. These results show that the relaxed synchronization in RNA does

not sacrifice high accuracy compared to state-of-the-art solutions while ensuing the

training throughput.
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Table 5.5: The transmission cost in RNA.

DL application ResNet50 LSTM VGG16 Transformers
Extra cost 6.2% 3.8% 23% 18%

5.6.4 Sensitivity analysis

The number of choices to approximate the behavior of the system could affect

performance [37]. We design a microbenchmark to evaluate the performance of the

per-process sampling approach. The simulated cluster has 100 nodes. We simulate

the unbalanced workload by injecting tasks to each process with randomized skewness,

which ranges from 10 to 50ms. At each iteration, we randomly select a number of

processes as the probes. When the fastest one among probes finishes execution, the

computation proceeds to the next round. We run the synthetic workload for 100

iterations and obtain the response time for each iteration, which is shown in the

Figure 5.7. The figure demonstrates that using one more oversampling probe could

significantly improve performance compared to selecting initiator randomly, which

reduces median response time by more than 2.4× compared to random sampling

from 28ms to 12ms on average. Furthermore, the deviation of execution time for

each iteration is smaller than using random selection, i.e., choice of one. The figure

also demonstrates an interesting observation: a low probe ratio negatively impacts

performance because it does not oversample enough to find a faster process. However,

additional oversampling does not improve performance due to increased messaging.

As illustrated in Section 5.3, the convergence rate trade-off more synchronization

costs to gain overall execution time speedup. With this observation, to reduce the

response time at each iteration efficiently, we use a probe ratio of 2 to implement our

per-sampling approach.
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5.6.5 System overhead

Compared with Horovod, to achieve asynchronous training, RNA firstly aggregates

obtained gradients locally by writing the data from GPU to CPU memory. After

the AllReduce operation, RNA needs to read the reduced results from CPU memory,

which incurs extra transmission cost (i.e., overhead) because of the memory copy. Ta-

ble 5.5 measures the transmission cost percentage in the execution time of three jobs

using RNA. The transmission time for ResNet50, LSTM, VGG16 and Transformers

accounts for the execution for one iteration for 6.2%, 3.8%, 23%, and 18%, respec-

tively. We can see that the overhead for VGG16 and Transformers is more significant

than that for the other jobs since these two have a larger number of parameters. Over-

all, the cost is much smaller compared to the performance improvement by RNA. But

the transmission overhead is bottlenecked by the bandwidth of PCIe between CPU

and GPU. And this communication overhead does not increase if we scale out the

cluster because the transmission is executed locally. Overall, the additional trans-

fer overhead is much smaller compared to the performance improvement brought by

RNA. For neural networks with a larger model, we can optimize the performance by

layer-wise overlapping between GPU and CPU.

5.7 Summary

This work discusses and tackles the challenging straggler problem caused by imbal-

anced training load in the Ring All-Reduce protocol. The imbalance can be from the

dynamic system heterogeneity itself or inherent workload. I propose a new synchro-

nization mechanism, RNA, to implement a straggler-tolerant and BSP-compatible

AllReduce to improve distributed deep learning performance. The key idea is that

RNA allows partial processes to synchronize their gradients without waiting for slower

ones. RNA can address performance issues in AllReduce using probabilistic approach,

including the straggler problem caused by dynamic system heterogeneity and asym-
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metric workloads incurred by imbalance input data. Comprehensive evaluations have

been performed with various DL applications in different environments while provid-

ing convergence proof for the asynchronous gradient descent algorithm. Experiment

results on three representative deep learning applications, including image classifi-

cation, machine translation, and video processing, show the proposed solution can

achieve 1.8× speedup over the state-of-the-art implementation, i.e., Horovod, and

1.3× speedup over AD-PSGD.



CHAPTER 6: Communication-efficient System for Training Sparse Models

6.1 System Design Principles

To pursue system scalability, high training throughput as well as good model qual-

ity, three design principles are proposed and implemented to build an efficient dis-

tributed training system for large-scale recommendation systems on the heterogeneous

cluster:

6.1.0.1 Hybrid communication with asynchrony

Sven proposes Alltoall operator to support hybrid embedding table placements,

including GPU-GPU, CPU-GPU, and GPU-CPU communication patterns.

6.1.0.2 Inter-batch pipeline execution

Sven introduces inter-batch pipelining to intra-batch parallelism to improve parallel

training throughput further.

6.1.0.3 Efficient embedding placement and real-time update

Sven implements a static embedding table partitioning strategy to place embedding

tables considering both the resource capacity and access pattern.

6.1.1 Hybrid communication with asynchrony

To achieve high bandwidth and low latency over PCIe and network across processes,

we introduce an asynchronous Alltoall operator for the embedding lookup results,

which utilizes GPUDirect RDMA [68] as long as the destination address is on the

GPU and RDMA while the destination is on the CPU. The overall workflow of Alltoall

is illustrated in Figure 6.1.

To support hybrid embedding placement, an asynchronous Alltoall routine is pro-
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(a) scatter-based Alltoall.

Figure 6.1: The design of alltoall API. Red lines represent the data transfer between
processes, while the blue line represents the memory copy.

posed. Inspired by the design of Horovod [28], during the initialization phase, Sven

starts a listening thread on each training process, which is responsible for send-

ing/receiving tensors. Whenever there is a communication request, the listening

thread will start the Alltoall operation, composed of n point-to-point direct com-

munications. In this way, we trade the cheap CPU resources for saving the expensive

CUDA compute capabilities. The underlying communication is handled by the UCX

library [103], which has a broad range of optimizations for achieving low-software

overheads in the communication path and allows near native-level performance. Note

that a well-known terminology that is typically used in the context of networking is

memory "registration" [103]. Specifically, the UCX library registers the memory so

that it can be assessed directly by the hardware. Then the network stack associated

with an application context can typically send and receive data from the mapped

memory without CPU intervention. After memory registration, the memory handle

includes all information required to access the memory locally using UCP routines.

Correspondingly, a remote registration handle provides information that is necessary

for remote memory access. To register memory, at the initialization stage, Sven uses

the ucp_mem_map() API provided by the UCX to "register" the GPU memory ad-

dress that is being used by the training framework, which, in our case, is returned by

the V isitAlloc() API in Tensorflow.

NCCL Alltoall operator is blocking and synchronous, forcing each process to wait

for other ranks to arrive before effectively posting the NCCL operation on the given
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stream. The synchronous implementation is simple and safe, which, however, could

be the performance bottleneck at a large scale. Imagine that in a distributed setting

with thousands of processes, in which all ranks finish calculation at the different

timestamps but have to wait for the slowest one and execute the communication

simultaneously. To overcome these, an asynchronous scatter−based Alltoall operator

is proposed. As is shown in Figure 6.1a, if one process finishes the forward pass, it

will scatter the tensor to all the participated processes immediately, including itself.

Since some slower processes might not arrive at the communication stage at this point,

additional memory is required to save the received data temporarily. Once the slower

processes arrive at the communication stage, cudaMemcpy is needed to copy the

received data to the destination address for the running application. In a distributed

environment consisting of n trainers, the Alltoall process is composed of n independent

scatter operations, each of which is initiated once the embedding lookup results or

parameter updates are ready. When all the data splits are received for each rank, a

DoneCallback status is returned, indicating that Alltoall for the current iteration is

completed. In this way, asynchrony is achieved, resulting in lower transfer latency.

However, it doubles the usage of memory and uses additional memory bandwidth. We

observe that the total transfer size for AlltoAll operations typically ranges from 100s

to 300s MB, while each individual data size of up to 300s of KB. This message size is

not the overhead for modern accelerators while it is sensitive to interconnect latency.

As for the memory bandwidth, we further propose kernel fusion for the upstream

operations to alleviate the bottleneck, which will be detailed in the next section.

To support hybrid embedding placement, three communication paths are required.

GPU-GPU is required for GPU embedding, while CPU-GPU and GPU-CPU are

required for CPU embedding in the forward and backward pass, respectively. The

InfiniBand transports provided by the UCX can achieve optimal performance us-

ing RDMA for inter-node communication. To avoid additional data transfer over
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Figure 6.2: Sequential and four-stage pipeline execution model. SFP and SBP repre-
sent forward and backward pass for sparse parts, respectively. FP and BP represent
forward and backward pass for dense parts. Opt represents optimizer update. Blocks
in green represent Alltoall communication after forward pass, and blocks in blue repre-
sent Alltoall communication after backward pass. Block in the dark is to re-distribute
embedding feature data. Dashed arrows represent data dependencies. t represents
the time interval.

PCIe, GPU-Direct RDMA is used in the GPU-GPU path, and RDMA is used in

the GPU-CPU and CPU-GPU cases when the data is transferred over the network

to the remote process. However, specific optimization is needed for the CPU-GPU

and GPU-CPU paths for intra-node communication. As for the CPU-GPU path,

cudaMemcpyHostToDevice is required to copy the data from host memory to de-

vice memory. Then the data is sent to the destination process via NVLink. The

data transfer over PCIe only accounts for a small fraction because it only happens in

the intra-node phase, which causes minimal overhead over PCIe. But the fast feed

offered by NVLink benefits the communication process. For those GPUs which have

no NVLink interconnect, the data is transferred across processes via shared memory

and then over PCIe. The procedure for GPU-CPU traverses the same devices, but it

is in the reverse order.
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6.1.2 Inter-batch pipeline execution

Sven introduces inter-batch pipelining execution to improve training throughput

further. Note that using a single computing device, either GPU or CPU, in the system

does not provide pipelining opportunities during the training process. Sven proposes

to pipeline data movement for multiple mini-batches, in which way communication

can be overlapped with computation, improving resource utilization. Also, these

divided stages incur cross-minibatch dependencies that our asynchronous pipeline

needs to handle. This section will first detail the execution model of the default

training process and propose the interleaving between neighboring iterations on each

device. Second, we provide an analytical model for the pipelining execution and point

out the potential system overhead incurred. Lastly, we introduce how Sven bounds

the statistical staleness in an asynchronous setting. For simplicity, we only illustrate

the process on GPU, which is primarily similar to CPU.

The default execution model of one iteration training is illustrated in Figure 6.2a,

which runs local iterations on workers sequentially. Note that each device will only

handle computation for a single layer at any given time because of the graph depen-

dencies of the neural network. One training iteration can be characterized into two

main operations: computation and communication. The total runtime of the default

synchronous training can be easily summarized as:

ttotal = N × (tall2all + tSFP + tfall2all + tFP

+tBP + tallreduce + topt + tball2all + tSBP ),
(6.1)

where N denotes the total number of training iterations, and t represents the time

taken by each stage. Synchronous training depends on the summation of execu-

tion time taken by all stages, which leads to long end-to-end training time. Also,

the sequential execution model causes resource under-utilization since the machine

remains idle during the communication stages, for example, the Alltoall and Allre-
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duce operations. Inter-batch pipeline execution injects more mini-batches to relax

the iteration dependency. To keep the pipeline full and thus achieve high hardware

efficiency, Pipedream [57] and GPipe [56] inject sufficient mini-batches in an epoch

into the pipeline as long as there is an available resource. However, this approach

could not be directly applied to recommendation models since they require several

communication-intensive global synchronizations.

A four-stage pipeline execution is proposed to enable interleaving between neigh-

boring iterations while maintaining globally synchronized communication, as is shown

in Figure 6.2b. The reason why Sven divides the procedures into four stages instead

of other numbers is that there are four main communication operations, including

input re-distribution, two Alltoall operations for sparse parts, and AllReduce for the

dense part. The first stage, which is represented as a blue bar in the Figure, happens

when the updates from dense optimizer for iteration t are being distributed across all

processes via Alltoall. The forward pass on the sparse parts for the future iteration

t + 1 is scheduled in parallel with t Alltoall to reduce execution bubbles. Since the

sparse forward can be finished earlier than the Alltoall. The forward pass for the

dense part using the stashing data from iteration t − 1 is injected, fully overlapping

the communication. In the second stage, which is represented as a green bar, since

the results from embedding lookup for the iteration t+1 are ready, the corresponding

Alltoall can be executed in parallel with the backward pass for iteration t− 1, using

the stashing gradients from the upstream. Then, it comes to the third stage, which is

represented as the red bar in the Figure. The third stage, i.e., Allreduce, will average

gradients for dense layers among all processes using the results from the backward

pass at iteration t − 1. In the meantime, Sven starts the embedding table update

for iteration t since the required input is ready in the earlier stage. As a result,

the timing model for distributed training is resource bound, either communication or
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computation bound, which can be formulated as:

ttotal = N × (max(tSFP + tFP , tfall2all) +max(tBP ,

tball2all) +max(tallreduce, tSBP ) + topt).
(6.2)

The overall execution time is reduced compared to the default execution. To ensure

correctness, Sven implements a queue-based coordination scheme to support pipelin-

ing. Each stage, either computation or communication, maintains a queue based on

FIFO policy. The capacity of the queue is two. For example, when the backward

pass is finished, it enqueues output tensor for the downstream stage, AllReduce. The

AllReduce also consumes its cache tensor based on the FIFO policy. In this way, it

is guaranteed that the upper bound of staleness is under control, which is three.

As for the input re-distribution, the traditional training process requires Alltoall

communication for the embedding table because the input data are pulled from the

remote database in streaming batches [66], which is shown as the dark Alltoall block

in Figure 6.2. Because the volumes of indices are related to the values of the lengths,

the pattern of communication requires an AlltoAll operation to distribute the value

lengths followed by an AlltoAll operation for input table indices. We believe the over-

head from data re-distribution can be further optimized. Note that in heterogeneous

GPU-CPU clusters, the GPU is responsible for the compute-intensive training task,

and the CPU machines are in charge of reading and preprocessing training data into

batches that the GPU can quickly use ideally with as little idle time as possible. It

can be noticed that the input batch data only has downstream consumers. With

pipeline execution, the data preprocessing is partitioned as an independent stage.

The I/O bound data tasks, e.g., training data reading and input batch sharding, are

moved to the CPU-only cluster. The processed results are transferred to the training

cluster via RPC and saved in the host memory or disk. As for GPU embedding, the

data transfer from host memory to device memory is required, which, however, can
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be executed in parallel with the other communication operations. In this way, the

Alltoall operations for input batch data are no longer needed in the training cluster,

resulting in the reduction of end-to-end training time and resource contention. This

stage can always be parallel with other stages, which is represented as the yellow bar

in Figure 6.2b.

, However, some operations during the forward or backward passes, such as embed-

ding lookup, pooling, etc., are memory-bound operations. The memory bandwidth

issue will be more severe when pipelining computation with communication. To alle-

viate this issue, we further adopt kernel fusion to optimize these operators to reduce

the global memory access and data loading/storing operations. For example, instead

of launching a sequence of individual embedding lookup kernels for each embedding

table, Sven fuses these sequential embedding lookups operations into a single CUDA

kernel, improving parallelism and memory bandwidth utilization. Besides batching

multiple embedding tables together, the backward pass is fused with the optimizer

operator for the sparse part to further reduce the memory requirements and avoid

additional memory access.

We further investigate the generated memory overhead after introducing the pipelin-

ing scheme. For the default procedure, since the execution is sequential. It only re-

quires one replica of the intermediate data during the training. The minimum required

memory space for each stage is max(mcomm, mcomp), in which mcomm and mcomp rep-

resent the memory requirement for communication and computation for one specific

stage, respectively. Sven adopts the queue-based coordination scheme to schedule

the training stages. For each stage, it acts as the "producer" for the downstream

tasks and the "consumer" for the upstream tasks. For any time interval, there can

only be one computation and communication task being executed in parallel. Gen-

erally, we can transfer intermediate data from device memory to external resources

such as host memory and then prefetch the data back when needed to reduce the
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Figure 6.3: Two different embedding table sharding schemes.

required memory space [19]. The minimum required memory space with pipelining is

formulated as 2× (mcomm +mcomp). The pipelining scheme makes precious memory

more stringent, especially the device memory, which motivates us to propose a more

efficient embedding table placement scheme.

6.1.3 Efficient embedding table placement

When it comes to embedding table placement, there are several challenges needed

to be addressed. How to shard a group of embedding tables? How to decide the

placement of sharded embedding table? How to control memory usage during long-

term training? Sven proposes several strategies to tackle these challenges.

There are three popular embedding table sharding schemes: table-based, row-

based, and column-based sharding. Table-wise sharding is simple but unable to handle

embedding tables with large sizes. Row-wise sharding scheme partitions embedding

table according to rows, as is shown in Figure 6.3a. A table-wise sharding scheme can

process larger embedding tables and achieve better load balance than the table-wise

one. However, it introduces high Alltoall communication overhead during the forward

pass because partial results must be gathered and scattered to all other processes.
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Column-based sharding scheme splits the embedding table based on the dimension

of the embedding table, and each process handles smaller embedding dimensions, as

is shown in Figure 6.3b. This sharding scheme achieves more fine-grained partition-

ing. The traditional training framework introduces an additional payload since it

requires additional Alltoall to duplicate the input indices of the partitioned tabled

across processes. However, this issue can be alleviated with the pipelined execution

in Sven. The sharding process is executed in the remote CPU-only cluster, avoiding

the expensive Alltoall operations in the training cluster.

How to place the embedding table is another challenge. Device memory has high

memory bandwidth but limited capacity, while host memory has lower memory band-

width but higher capacity. Access patterns to embedding tables follow the power-law

distribution. Based on this observation, we propose that the relatively small col-

lection of hot pages suggests moderate effectiveness of static partitioning strategies,

where hot pages can be stored in expensive but high-performance device memory. We

extend the embedding table to include meta-information such as the access frequency

of each item in the embedding table. With this information, we further implement

a static partitioning technique that partitions embedding tables such that frequently

accessed embeddings are placed on the device memory. In contrast, infrequently used

embeddings are placed on the host memory. The availability of hardware resources

decides the ratio α between CPU and GPU placement. Specifically, α = mG

mG+mH

denotes the top α frequently accessed embedding features are placement on device

memory, in which mG and mH represents the capacity configured for storing embed-

ding tables on device and host memory, respectively. We believe this strategy is a

viable solution since there exist relatively few highly accessed embeddings.

To control memory usage during long-term training, and entry replacement algo-

rithm to maintain active features during the training process is required since the

memory capacity is limited. Traditional memory cache such as LRU can maximize
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the cache hit ratio. LRU discards the least recently used items first. Inspired by the

design of subsampling techniques [104], Sven updates the importance weight for each

embedding feature during the training:

wt+1
s = (1− β)wts + β(p ∗ k + n ∗ l), (6.3)

in which β is the decay factor, k and l is the importance factor for positive and neg-

ative sample, respectively. p and n are the number of positive and negative samples,

respectively. Different weights are assigned to positive and negative examples because

positive examples (clicks) are relatively rare, while simple statistical calculations in-

dicate that clicks are relatively more valuable in learning recommendation models.

With this, Sven can score each embedding feature and decide the sequence of feature

to be evicted if it reaches the memory limit.

6.2 Methodology and Implementation

6.2.1 Implementation

Sven is implemented on top of TensorFlow to utilize the system benefit and latest

features from the community of TensorFlow. It can also be easily extended to other

Frameworks such as PyTorch and MXNet by developing specific extensions. The

plugin is implemented as the extended operator of Tensorflow. which is composed

of low-level, high-performance C++ APIs. The Alltoall operator uses ucx [103] as

the backend to implement GPUDirect-RDMA enabled send/receive. For each training

process, an individual UCX context is created to handle communication. The pipeline

execution divides execution into four stages. Sven introduces four new queue-based

operators, which consume the tasks from the upstream stage and produce tasks for the

downstream stage with a capacity of two. The newly introduced TensorFlow plugin

implements function hooks and proxies for variables to schedule worker’s execution

patterns, which is composed of multiple high-level Python APIs. The embedding
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Table 6.1: Datasets for evaluation.

datasets feature IDs samples parameters
Criteo Ad 33M 45M 0.5B
Avazu CTR 49M 40M 0.8B
MovieLens 0.3M 25M 2M

placement is a profiling-based mechanism, which consists of two stages. It first runs

multiple training iterations and records the feature access information for each feature

index, which is called the warm-up stage. During the steady stage, the most accessed

features are prioritized to be distributed across GPUs based on a column-wise shard-

ing scheme.

6.2.2 Neural recommendation models and datasets

Further evaluation is performed with various public datasets to validate the perfor-

mance of Sven. The Criteo Ad training dataset consists of a portion of Criteo’s traffic

over 24 days. Avazu CTR contains ten days of click-through data used to predict

whether a mobile ad will be clicked. MovieLens is a movie rating dataset. Table 6.1

summarizes the characteristics of different datasets. We evaluate three different neu-

ral recommendation models, including Wide&Deep, DeepFM, and DCN with Sven

and Tensorflow on different datasets. Wide&Deep [105] is proposed to combine wide

and deep models so that wide linear models can utilize the interactions relationships

among sparse features, while deep neural networks can generalize to previously unseen

feature interactions. DeepFM [106] is a Factorization-Machine-based recommenda-

tion model for CTR prediction, which trains a deep component and FM component

jointly. DCN [107] is proposed to handle a large set of sparse and dense features and

learn explicit cross features together with traditional deep representations.
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Table 6.2: Hardware details of DGX-A100.

Accelerators 8 NVIDIA A100
Accelerator memory (%) 40GB
System memory (%) 2TB

CPU (%) 2 socket CPU
Interconnect (%) 4X Infiniband 200 Gbps

6.2.3 Evaluation setup

Table 6.2 summarizes the hardware configurations for each physical node. Specifi-

cally, each host is configured with dual-socket AMD EPYC 7742 64-Core Processors

and 8 NVIDIA A100 GPUs with fully connected using NvSwitch and 4 Infiniband

NICs to support direct RDMA among devices from different nodes. We use HugeCTR

as the baseline to evaluate the performance and scalability of the proposed Sven.

The CPU-only cluster consists of 28 nodes, each of which has Intel Xeon(R) CPU

E5-2630v4@2.20GHz x 20 and 64GB DDR3 RAM. These nodes are connected with

Ethernet.

6.3 Evaluation

6.3.1 End-to-end training

We evaluate the end-to-end performance of Sven in terms of scalability, throughput,

and model quality. The input batch size is configured as 1024 for the best accuracy.

TensorFlow [58] is used as the baseline because it follows the Parameter-server design.

We follow [44] to configure the parameter server and enable the hierarchical storage

for embedding tables. TensorFlow enables asynchronous parallel training, which will

not enforce synchronization among processes after each iteration’s update. We vary

the number of nodes from 1 to 16. The input batch size is set to the same, while

the size of embedding tables on each node is reduced when adjusting the number

of nodes. However, the embedding tables are model-parallel, and each rank process
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Figure 6.4: Training throughput scaling for different models between Sven and Ten-
sorFlow.

Table 6.3: Training throughput (QPS).

framework DeepFM W&D DCN
TensorFlow 5.76M 2.49M 1.93M

Sven 2.80M 1.14M 1.08M

a global mini-batch for its local table. To evaluate the performance with a smaller

number of nodes, we shrink the embedding table cardinality and hash the input to

be under the threshold. Since the modified embedding table negatively impacts the

performance characteristics, we only study the scaling performance when varying the

number of nodes. We compare the end-to-end training throughput and model quality

at the 16-node scale.

Figures 6.4 report the scaling factor for both TensorFlow and Sven. The scaling

factor [108] is defined as:

scaling_factor = Tn
nT1

, (6.4)

in which the training speed with n workers is Tn. The ideal performance for n nodes

should be n × T1, which assumes no communication overhead occurred. When in-

creasing the number of processes, the gaps between the ideal and actual performance

become larger. It can be learned that when the number of devices is increased to 128,

the scaling factor is around 82% for DeepFM and DCN. But the scaling factor drops

to around 68% for Wide&Deep. The achievable scaling factor for Sven is bottlenecked
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Figure 6.5: Model quality improvement achieved by Sven for different neural networks
with different datasets.

by AlltoAll operations for the sparse parts, which introduces critical system overheads

for both forward and backward passes. With Wide&Deep, increasing the number of

processes leads to lower scaling efficiency because higher Alltoall costs occur for syn-

chronizing the large and wide embedding table. Compared to TensorFlow, which

can only achieve as high as 33% scaling efficiency at a 16-node scale, Sven shows its

advantages on the training scalability. Tables 6.3 also record the obtained training

throughput in terms of query per second (QPS). For the communication-intensive

Wide&Deep, Sven is able to achieve 2.49M QPS, which is a 2X speedup compared to

TensorFlow.

We also compare the model quality using Sven and TensorFlow regarding the area

under the curve (AUC). From Figure 6.5, it can be learned that Sven outperforms

TensorFlow by 0.32% to 2.4% in terms of AUC. The improvement of Sven mainly

comes from the bounded staleness. Compared to TensorFlow, which does not need any

synchronization across stages, Sven combines synchronous and asynchronous training

via pipelining execution with the best effort to put the staleness under control.

6.3.2 Efficiency of communication

To further analyze the performance breakdown, we perform the evaluation on the

efficiency of the implemented Alltoall operator with NVIDIA NCCL Alltoall [45] and
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Figure 6.6: Normalized speedup compared to NCCL and MPI.

MPI_IAlltoall [109]. MPI_IAlltoall is the non-blocking version of MPI_Alltoall,

which provides the non-blocking primitives that are used to achieve communication

and computation overlap. We evaluate the 8-nodes scale and use fixed input data to

avoid the potential data preprocessing impact. We run the same number of training

iterations for each experiment and compare the latency to obtain the normalized

speedup. We perform an evaluation on two kinds of embedding schemes, including

GPU embedding and mixed embedding, in which GPU embedding does not require

data transfer over PCIe compared to mixed embedding.

We first monitor the RDMA network throughput for all of these experiments. For

both NCCL and Sven, the peak network throughput can be as high as 180Gbps and

176Gbps per network interface card (NIC), which achieves 90% and 88% network

utilization, respectively. These data state that the proposed Alltoall operator can

fully utilize network bandwidth as NVIDIA NCCL. From Figure 6.6, for GPU-only

embedding, it can be learned that Sven can achieve speedup over NCCL by 1.1× and

1.08× for W&D and DCN, respectively. Both Sven and NCCL Alltoall can fully uti-

lize network bandwidth, but Sven achieves lower latency. The significant performance

benefit is from the asynchronous feature of the Sven Alltoall operator. Compared to

MPI_IAlltoall, Sven achieves similar performance in terms of latency, which illus-

trates that Sven can maximize the overlap of communication and computation using
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GPU-Direct RDMA. We analyze the execution logs and notice that the arrival times

of the communication stage are quite different among processes. The asynchrony of

the Sven Alltoall operator results in fewer bubbles on the execution timeline compared

to NCCL.

In the scenario of mixed embedding, where both GPU and CPU embedding are

enabled, it can be learned that Sven can achieve speedup over NCCL by 1.19× and

1.12× for W&D and DCN, respectively. The highest performance brought by Sven

can be nearly 20% in terms of communication. As we have mentioned, for both

GPU and mixed embedding, the network bandwidth is fully utilized with the help

of GPU-Direct RDMA. However, the performance of the NCCL Alltoall operator is

further decreased when involving CPU embedding. This is because NCCL Alltoall

only supports input data located on the device memory. When TensorFlow detects

that the input is on the host memory, it will automatically invoke the memory copy

operation from host to device, introducing additional overhead over PCIe and increas-

ing end-to-end delay. The performance improvement for DeepFM is not significant

because the communication is not the bottleneck, whose input data size is around

100MB. Compared to MPI_IAlltoall, Sven can achieve nearly 8% 10% performance

improvement. The improvement is higher than only GPU embedding placement since

it still requires memory copy between host and device via PCIe at the destination

side. Also, the overlap potential hugely degrades as the message goes larger and the

scale goes higher because of the limited number of outstanding tags [110]. For the

above, it can be concluded that the proposed communication components are more

efficient in terms of resources usage and transfer delay.

6.3.3 Efficiency of pipelining

We further perform evaluations on the proposed pipeline scheme. The evalu-

ated schemes include no-pipeline, 1-stage, and 4-stage pipelines. Specifically, the

no-pipeline scheme represents that all the pipelining functionalities are disabled, in
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Figure 6.7: Normalized speedup comparisons between different pipeline schemes.

which the execution follows the sequential order. As for 1-stage, the input streaming

stage on Kafka [111] is partitioned and moved to the CPU-only cluster. Because the

input batch data has only one downstream "consumer," it can distribute the pre-

processed data to a specific process based on the feature index and cache them in

the queue as long as there is enough compute and memory capacity. Compared to

the no-pipeline scheme, the Alltoall operation for input re-distribution is no longer

needed for the training cluster. The 4-stage pipelining scheme enables all the pro-

posed functionalities. The batch size is configured to 1024 for these experiments.

Figure 6.7 demonstrates that a 1-stage pipeline can bring nearly 11%, 21%, and

16% reduction on the training latency for DeepFM, W&D, and DCN, respectively.

Hiding the long data fetch latency with the actual model training by a multi-threaded

data reader is a typical solution, which has been employed by other framework [89].

However, it still requires an additional Alltoall operation to distribute the collected

data records to the multiple GPUs, introducing overhead over network and I/O,

especially when the CPU embedding is enabled. Sven pipelines the data preprocessing

and utilizes cheap CPU-only machines to further speed up the end-to-end training.

4-stage pipeline improves the training speedup further compared to the no-pipeline

scheme, which is 1.4×, 1.7× and 1.5× for DeepFM, W&D, and DCN, respectively.
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Figure 6.8: The accuracy loss with varying batch size on W&D.

The brought performance improvement shows the advantage of the 4-stage pipeline,

in which the communication time spent on AllReduce and Alltoall is overlapped

with computation. The results also illustrate that the pipelining scheme benefits the

communication-intensive application most, e.g., the Wide&Deep model.

We also study the impact of pipelining on the model quality because it introduces

bounded staleness during the training. We vary the input batch size for training

Wide&Deep and record the final training accuracy loss, which is presented in Fig-

ure 6.8. Model loss regression over 0.1% might not be considered tolerable for rec-

ommendation models, which requires very well-calibrated predictions [41]. In this

experiment, we use synchronous training as the baseline. The accuracy gap com-

pared with the synchronous scheme increase with the batch size. After introducing

the pipelining scheme, each stage use delayed update from previous iterations. More

delayed data is involved when the batch size is increased. To best trade-off the perfor-

mance and model quality, the optimal batch size should be configured as 1024, whose

accuracy loss is about 0.11%. There is further exploration for better model quality

using hyper-parameter tuning, which is left as future work.

6.3.4 Efficiency of embedding placement

In this section, we evaluate the efficiency of the proposed placement strategy. We

compare the hot-based embedding feature placement to a random placement ap-

proach. As for random placement, we randomly select α = mG

mG+mH
faction of the

total length of embedding features and store them on the device memory. We com-
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Table 6.4: Training throughput on one rank (mini-batch/s).

approaches DeepFM W&D DCN
hot-based 44 18.6 14.8
random 36 15.8 12.2

pare the training throughput (number of processed mini-batch per second) between

these two strategies.

Table 6.4 shows that the proposed hot-based embedding feature placement can

improve the training from 36 to 44 mini-batch/s for DeepFM. These results further

verify that the access pattern for embedding features follows the power-law distri-

bution. The hot-based placement strategy can benefit the training process in two

aspects: first, the memory-bound operations such as embedding lookup, pooling,

etc., can utilize high bandwidth memory of GPU since hot-spot data is on the device;

second, the amount of data transfer over PCIe is reduced from these memory-bound

operations.

6.4 Summary

This work optimizes the design for distributed sparse model training on the hetero-

geneous cluster. First, I design a new collective communication operator to support

hybrid embedding table placements on heterogeneous resources. Furthermore, I pro-

pose a more fine-grained pipeline execution scheme to further improve parallel training

throughput by overlapping the communication with computation and implementing

an efficient partition approach to place embedding tables. Extensive experiments on

different datasets with various models show that Sven can achieve as high as 2×

end-to-end training speedup compared to TensorFlow.



CHAPTER 7: Conclusions and Future Works

7.1 Conclusions

Deep neural networks (DNNs) have been widely applied in the field of artificial

intelligence, e.g., natural language processing, computer vision, etc. There is a trend

to move the deep learning training process to the heterogeneous cluster, which ex-

hibits many unique and complicated challenges. First, as the networks go wider and

deeper, the limited GPU memory becomes a significant bottleneck, restricting the

size of networks to be trained. In the training of DNNs, the intermediate layer out-

puts are the major contributors to the memory footprint. Offloading and prefetching

feature maps is one of the crucial techniques to overcome the GPU memory shortage

by utilizing the CPU DRAM as an external buffer for the GPU. However, the layer-

by-layer asynchronous approach cannot be effectively applied to the overlap between

communication and computation, particularly for nonlinear networks. Furthermore,

the default memory management policy could cause high GPU memory fragmenta-

tion for the networks with complex nonlinearities. Based on these observations, we

adopt an efficient graph analysis and exploit the layered dependency structures to

improve the overlap ratio. Second, decentralized algorithms, e.g., AllReduce, have

been widely applied as the synchronization strategy for data-parallel distributed deep

learning due to their superior performance over centralized ones. The synchronous

Stochastic Gradient Descent (SGD) approach guarantees accuracy for various deep

learning models, but its performance suffers from stragglers, i.e., "long-tail effects."

The straggler can be caused by the inherent load imbalance from workloads or sys-

tem heterogeneity. Despite existing optimizations to support centralized algorithms

against stragglers, little effort has been explored in decentralized training algorithms.
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Third, recommendation models are widely used in industries to help companies re-

tain customers by providing tailored suggestions specific to their needs. However, it

is difficult to directly employ GPUs on training sparse models because of the limited

device memory and the large volumes of data transferred over PCIe and network in a

multi-node setting. Data-parallel and model parallel schemes are combined to train

the highly sparse models to overcome the memory shortage issue. Previous research in

training sparse models primarily focuses on either CPU-only embedding or GPU-only

embedding, thus missing the opportunities to explore more potential designs that can

achieve better training throughput and lower end-to-end latency.

To support training wider and deeper neural networks on GPUs with limited device

memory, a new GPU memory management runtime is proposed. This work adopts an

efficient graph analysis and exploits the layered dependency structures to improve the

overlap ratio. To achieve minimal memory fragmentation, we design a Group Tensors

By Mobility (GTBM) placement policy to allocate tensors on the proposed unified

memory pool for data structures with varied data sizes and dynamic dependencies.

We implement and evaluate our system, Dymem, on several linear and nonlinear

networks. Compared with vDNN and SuperNeurons, our proposed approach can

achieve memory cost reduction by up to 31%. The dependency-aware strategy can

improve the end-to-end throughput for nonlinear networks by up to 42%.

To mitigate the straggler problem caused by load imbalance when training DNNs

in the heterogeneous cluster, this thesis proposes and implements a Randomized Non-

blocking AllReduce (RNA) protocol. To avoid "long-tail effects" brought by the strict

barrier in the AllReduce, this work proposes a decentralized, relaxed, and randomized

sampling approach to implement partial AllReduce operation. To handle heterogene-

ity at a large scale, this work combines the traditional Parameter Servers (PS) with

AllReduce to implement a hierarchical synchronization mechanism. This work the-

oretically demonstrates the convergence analysis and details the system implemen-
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tation. The experiment results on representative deep learning models show nearly

1.8× speedup over the state-of-the-art Horovod and 1.3× speedup over AD-PSGD on

a heterogeneous cluster.

Last but not least, this thesis introduces Sven, the optimized design for distributed

sparse model training on the heterogeneous cluster. First, this work designs a new

collective communication operator to support hybrid embedding table placements

on heterogeneous resources. Furthermore, this work proposes a more fine-grained

pipeline execution scheme to improve parallel training throughput by overlapping the

communication with computation and implementing an efficient partition approach

to place embedding tables. Extensive experiments on different datasets with various

models show the advantages of Sven in achieving higher training throughput while

maintaining model quality.

7.2 Future Work

There are still many interesting open directions that we can continue to explore in

the future. I will further expand my domain-specific knowledge and devote my efforts

to improving the efficiency of machine learning applications and the utilization of

hardware, including CPUs and GPUs. In a nutshell, I will better understand the

behavior of different neural networks and utilize my skills to build a scalable software

system for deep learning applications at a larger scale. I believe the future machine

learning systems will incorporate the following elements: automated system-level

optimization; higher degrees of hardware specialization to scale system capabilities;

system and algorithm co-design for practical machine learning. I highlight my future

research focus as follows:

7.2.1 Joint Optimization for Deep Learning Training

Most of the existing DL schedulers are agnostic to the throughput scalability of

DL jobs. For example, users have to specify the number of required resources when
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the job is submitted, which will be fixed during the training process. Preemption or

opportunistic allocation allows dynamically growing or shrinking allocated resources

for a running job, which is agnostic to the statistical efficiency. Furthermore, resource-

adaptive scheduling automatically adjusts the number of allocated resources based on

the feedback of the training process, for example, the speedup that can be achieved if

more resources are allocated. Those schedulers try to optimize the resource allocation

to minimize the job completion time. None of these works consider the statistical

efficiency of DL training. In this work, I plan to jointly optimize the system and

algorithm configuration to achieve higher training performance. The problem is much

more complicated because we have to consider both the algorithm and system factors,

such as the resource allocation, the learning rate and also the batch size configured

for each specific deep learning job. Firstly, it requires a new term, "goodput" to

measure the performance metric, which includes both the hardware efficiency and

model quality. Secondly, based on the goodput, it is expected that there should

be a new scheduling architecture that jointly optimizes resource allocation in terms

of cluster and the model configuration such as learning rate and batch size for each

specific neural network model. I expect that the proposed solution can not only reduce

the training cost for wider and deeper models but can ensure the model quality. I

hold the belief that my past experiences in system optimization and domain-specific

knowledge in deep learning will assist me in achieving this goal.

7.2.2 Auto Parallelism for Heterogeneous Deep Learning Accelerators

Currently, there are two popular approaches to parallelize DL jobs: data-parallel

and model-parallel approaches. Under data parallelism, a mini-batch is split up into

smaller-sized batches and is replicated across multiple devices. After the forward and

backward pass, the gradients are accumulated and being updated using some variant

of Stochastic Gradient Descent. Model parallelism partitions the neural networks

into multiple subgraphs and distributes these subgraphs across various different de-



106

vices. How to parallelize the training process affects the overall performance since it

will introduce different communication patterns between the devices. In the future, I

will explore more systematic methods of determining the optimal tensor splitting and

operator partitioning among heterogeneous hardware devices. The expected solution

will be composed of several key innovations. Firstly, given a DNN model and device

configuration, it requires a cost model to estimate the execution and communication

cost. The mode should include the inherent factors such as the execution time, mem-

ory consumption, and environmental factors such as the resource availability resource

cost. Secondly, I will propose a flexible and efficient auto-parallel system responsible

for searching the optimal parallelization strategy and automatically generating the

low-level execution graph based on the configuration. My experience of system design

and domain-specific knowledge in deep learning can aid the exploration of efficient

and scalable system optimization to achieve training deep learning applications at a

larger scale and apply these techniques to state-of-the-art neural networks.

7.3 Publications

1. Donglin Yang, Dazhao Cheng, Wei Rang. "Mitigating Stragglers in the De-
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2. Donglin Yang, Dazhao Cheng. "Efficient gpu memory management for nonlin-
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3. Donglin Yang, Wei Rang, Dazhao Cheng, Yu Wang, Jiannan Tian, and Ding-
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