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ABSTRACT

WEI RANG. Optimizing Performance of In-memory Computing with Hybrid Memory
System. (Under the direction of DR. DAZHAO CHENG)

The development of in-memory technologies has fueled the emerging of in-memory com-

puting systems. Simultaneously, with novel memory technologies such as high-bandwidth

memory (HBM) and non-volatile memory (NVM), hybrid memory systems are expected

to be more commonly used in Cloud Computing platforms, which opens a new field about

memory management in both academia and industry communities. Memory capacity is

always a critical bottleneck for any applications running in Cloud Computing platforms.

Data explosion is also posing an unprecedented requirement for computing capacity to

handle the ever-growing data volume, velocity, variety, and veracity. Thus, in-memory

computing systems are increasingly looking inward at huge caches of under-processed or

trash-away data as resources to be mined. The key purpose of managing data in any mem-

ory system is to keep more useful data with high memory utilization without compromising

applications’ performance, especially for machine and deep learning applications running

in clouds. However, there are numerous challenges in realizing the above goal, includ-

ing sharing memory among applications, managing cached data, data migration on hybrid

memory systems, and control strategy for a unified hybrid memory pool. In this context,

we concentrate on developing an efficient hybrid memory system and memory management

strategies for in-memory computing on Cloud Computing platforms.

To achieve this, we propose to develop a hybrid memory system that includes fast and

relatively slow memory hardware and memory management strategies for applications run-

ning in cloud environments based on optimization formulations, feedback control, and ma-

chine/deep learning methods. In order to realize a runtime system that automatically opti-

mizes data management on hybrid memory, we will (1) propose a new shared in-memory

cache layer among parallel executors that are co-hosted on the same computing node, which
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aims to improve the overall hit rate of data blocks by caching and evicting these blocks uni-

formly across multiple executors; (2) develop a middleware layer built on top of existing

deep learning frameworks that streamlines the support and implementation of online learn-

ing applications; (3) design a unified in-memory computing architecture with efficient data

sharing and communication strategy to optimize data migration and placement, memory

allocation and recycle for machine learning applications. The problem of management of

share cache memory including memory allocation and recycle will be defined as online

optimization problems and solved with feedback control and machine learning algorithms

in terms of memory utilization. To improve the utilization rate of memory for in-memory

computing, we will (1) design an algorithm to predict the possibility of a cache data block

to be referenced again and follows it to prevent blocks with longer re-reference distance

from occupying the limited cache space too long time; (2) design a novel model updat-

ing strategy that builds training data samples in terms of contributions from different data

life stages in model training, and considers the training cost consumed in model updating

so that a better training model of describing data tendency in dynamic environments can

be achieved; (3) design a memory management strategy for the hybrid memory system to

automatically optimize data migration among different memory layers to achieve similar

performance compares to the case of pure fast memory systems with a relatively limited

capacity of memory size. We will implement these methods on top of some existing Cloud

Computing platforms that aims to maximize memory utilization, holding more applications

and less requirement for fast memory hardware. We will also implement experiments with

the proposed technologies on a testbed of the local cluster environment and evaluate their

performance with typical benchmark applications.
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CHAPTER 1: INTRODUCTION

Memory plays a pivotal role in many popular distributed in-memory computing frame-

works, such as Spark [1], Storm [2]. In such systems, frequent I/O operations can be signif-

icantly reduced so that application performance would be sped up by orders of magnitude

via caching input and intermediate data into a specific memory space. To ensure proper

memory utilization, a well-designed management strategy is essential and important for

these in-memory computing frameworks, especially with increasing memory resources in

cluster nodes (e.g., Precision and PowerEdge series of Dell servers [3] in Figure 1.1(a)).

Accordingly, many memory allocation strategies [4] have been adopted in data-parallel

frameworks. For example, a huge amount of memory is preferred for a single executor

on Apache Spark cluster in order to cache more intermediate data. In-memory computa-

tion is a significant feature of Spark platform so that computation efficiency could be fur-

ther improved by avoiding frequent I/O operations between memory space and local disk.

However, a large memory space assignment always increases Garbage Collections (GC)

overhead for the JVM based in-memory computing framework, i.e., Spark. Our prelimi-

nary study in Figure 1.1(b) shows the number of GC times raise nearly 3X when memory
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Figure 1.1: Memory size and GC frequency.
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size is increased from 8GB to 14GB. Given the fact that the execution process has to be

paused when it is suffering from GC operations, setting a large memory space for individ-

ual executors is not always beneficial and should be avoided. It indicates a larger memory

may not always guarantee a better performance due to frequent GC operations.

Another alternative solution is increasing the parallelism of task execution in such sys-

tems. It may deploy multiple executors on the same machine so that each of them will

be allocated with a relatively smaller memory space. Although smaller memory may not

cache as much data as larger ones do, this method can effectively decrease GC times, which

has been widely applied in many systems [5] [6]. Such deployment of multiple executors

also makes parallel granularity higher than the model of a single executor, which indeed

accelerates the processing speed. However, the challenge is to design a fine-grained alloca-

tion policy as the input data sets of each executor is not identical. Furthermore, the memory

demand in different computing stages of a process varies a lot over time. These two factors

result in memory utilization imbalance among executors (i.e., tasks). Thus, we aim to fill in

this gap by caching and managing intermediate data across multiple executors to improve

and balance memory utilization.

With the popularity of in-memory computing and big data, Deep Learning (DL) has

played an essential role in many practical domains, such as pattern recognition, recom-

mendation system and data mining. Most DL applications are running in the environments

where input datasets are dynamic streaming and data changing patterns are unexpected. For

example, both speed and even syntax of people’s speaking tone keep changing in conversa-

tions, user interests always shift in watching movies, climate data are frequently changing

in weather forecasting. When facing these phenomena, also known as concept drift [7],

predicting models based on static data becomes inaccurate and obsolete very soon, causing

failures in future predictions.

Recently, there are a couple of approaches to tackle concept drift problems, among which

a typical one is online learning [8]. It realizes continuously model updating with dynamic
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data streams. Over the past decade, various online learning algorithms have been designed,

e.g., Linear discriminant analysis [9] for pattern recognition, matrix factorization for rec-

ommendation system [10] and Bayesian inference for streaming data analytics [11]. With

these algorithms, many issues on concept drift are solved and a range of applications are

also developed in the industrial area. For example, Google [12] and Facebook [13] adopt

online learning in predicting advertisement clicks. Netflix [14] uses a similar method in

movie recommendation to its subscribers as well. However, the successful adoption of

online learning is far less elegant since most online DL applications aim to improve the

prediction accuracy with the sacrifice of code simplicity and easy-to-use interfaces. Fur-

thermore, more hardware is expected to run such bloated systems, which significantly in-

crease the system budget. Many popular DL frameworks, such as Coooolll [15] Tensor-

flowOnSpark [16] never explicitly support for running online applications, and even less

in model updating strategies. Currently, to achieve online learning purposes, users have to

develop specific training loops to manually update models via a few basic strategies, such

as continual and periodic updating approaches.

In order to increase memory capacity, hold more features for training DL models and de-

crease data migration between system memory and computing units, Hybrid Memory Sys-

tem (HMS) provides a promising solution to these issues. Within the HMS, different mem-

ory hardware components manufactured with various specifications are included to build

the main memory and across all the computing units. Simultaneously, with novel memory

technologies such as non-volatile memory, low-latency memory and high-bandwidth mem-

ory, hybrid memory systems are very promising in both academia and industry. A typical

HMS usually includes multiple kinds of memory hardware with various features such as

capacity, bandwidth and latency, which in turn raises the problem of data migration and

storage. DL applications are always programmed with multiple execution phases and each

running with unique working sets, which requires deliberate data management between

various memory components to achieve better performance. The ideal case should be that
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placing hot/frequent-accessed data into the fasted memory with lower latency and higher

bandwidth, while other data is stored into other memory components.

Existing systems combine different memories in terms of capacity, latency, cost, band-

width, and persistence to build a comprehensive hybrid memory system. The emerging of

non-volatile memory (NVM) technologies attracts researchers propose more topics on hy-

brid memory systems. A representative usage of the NVM is to configure it as the extension

part of the traditional DRAM [17] [18]. Many data placement and migration strategies

have been proposed [19], [20], [21], [22], [23] to improve the overall performance

of hybrid memory systems aiming to eliminate the huge performance differences between

DRAM and NVM. To optimize a hybrid memory system for a better performance, one

of the widely adopted solution is to place hot data in the DRAM until that space is full,

the next operation is migrating unnecessary data into NVM so that the saved space can be

used to host new hot data. As an application runs, its data would be assessed and migrated

to achieve a better performance in terms of execution time. For the software-controlled

hybrid memory systems, data access collection and migration requires effective software

mechanisms and efficient strategies to determine data placement and migration [24] [25]

[26].

Use Hybrid Memory System to reduce the size of fast memory component has been well

studied in the a couple of works. Facebook adopts SSDs as a cache disk to reduce the mem-

ory footprint of databases [27]. Similarly, Bandana proposes a persistence memory system

with SSDs to hold DL training models with system memory serving as a small cache [28].

SuperNeurons [29], moDNN [30] and vDNN [31] develop use heuristics methods to tackle

data management in hybrid memory system between the CPU and GPU, which aim to

overcome the limited memory capacity of GPUs. Some existing data management meth-

ods [32] [22] [33] adopt a sample-based approach to collect memory access patterns to de-

crease profiling cost. However, flash based SSDs systems [27] [28] use a software managed

memory cache to overcome the poor performance caused by block-level management strat-
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egy on NVM SSDs, while the data migration strategies [29] [30] [31] between GPU and

CPU are problem specific heuristics that are less flexible and universal. To optimize data

migration among different memory layers to obtain similar performance to the pure fast

memory systems with a relatively smaller capacity in memory size, a lightweight system

that automatically profiles and manages data with a fine granularity is necessary. Further-

more, this system should bridge the performance gaps among hybrid memory components,

avoids unnecessary data migration and prefetches data into the right memory component

when it is required.

A modern cluster running with hybrid memory systems are built from several nodes, each

containing one or more computing units e.g., CPU, GPU, FPGA, a local DRAM and NVM,

and remote DRAM and NVM [34]. To freely access all the memories across the whole clus-

ter, Non-Uniform Memory Access time (NUMA) is a widely used solution. Accessing data

hosted in local DRAM is much faster than that on the remote DRAM controlled by other

nodes. This issue becomes more complicated in the hybrid memory systems due to these

inherent performance differences in DRAM and NVM. Since NVM has a higher latency

than DRAM, [35], hybrid memory system suffers more performance loss with the NUMA-

based solutions which just evenly place data on DRAM and NVM. The traditional NUMA

adopts the memory management strategy that evenly places data on DRAM and NVM to

decrease the communication cost among nodes and improve memory access locality. This

method is not much effective in the hybrid memory system with the fact that the accessing

latency of visiting local NVM is much more higher than accessing the remote DRAM. Be-

sides, the huge gap of accessing latency among DRAM and NVM plays a significant role

in the total application performance. The traditional NUMA memory management strategy

may even decrease the performance of applications in hybrid memory systems [36].

DNN has been dramatically successful over the past decade across many academic and

industrial domains, including recommendation systems [37], real-time strategic game con-

trol [38], computer vision [39], and image synthesis [40]. In order to speed up the training
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process of DNN, in-memory computing is introduced. However, the demands for higher

model qualities come with more training data and larger model sizes, which result in larger

memory footprints. For example, the latest models for language translation possess hun-

dreds of thousands of parameters [41], which demand hundreds of GB memory space to

hold the whole training network. The recommendation system developed by Facebook [42]

includes orders of magnitude more model parameters than the traditional neural networks,

which means tremendous memory space is demanded to guarantee the system’s normal

running.

To host the large DNN models and ensure a smooth training process, HMS profiles the

memory access pattern of DNN training, bridges the performance gaps caused by different

memory components and eliminate the adverse impact from data migrations. However,

memory management becomes more complicated with taking the memory size and data

scalability into consideration. In HMS, the fast memory size tends to be much smaller than

the slow ones due to its high price. The average retail price of the DDR4 SDRAM (widely

used as fast memory) increases by 2.3 times from 2016 to 2020 [43], motivating researchers

to find an efficient memory management strategy for HMS. Moreover, data migrations

between the fast and slow memories can be detrimental to the application performance due

to the current training process has to suspend until the requested data is moved into the fast

memory. Ideally, the data that is frequently accessed by DNN should be placed in the fast

memory to ensure wider bandwidth and lower latency. In contrast, other less-used data is

stored in the slow memory, which guarantees a better training performance and decreases

data migrations.

Moreover, deep learning and big data applications are two hottest trends in the rapidly

growing digital world [44] and has been dramatically successful over the past decade across

many academic and industrial domains. To accelerate the training and predicting speed of

these applications, in-memory computing is introduced. However, the requests for more

accurate model come with larger memory footprints which is over the size of most DRAM.
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Thus hybrid memory systems become a workable solution to this issue. Running deep

learning and big data applications in hybrid memory systems further amplifies the asym-

metric memory access latencies between DRAM and NVM, which demands a smart mem-

ory management strategy. Considering that the computation graph and data access pattern

of deep learning and big data applications can be profiled at runtime, the overlapping of

computation and data migration is possible. According to the profiled information, more

data is to timely and proactively place in DRAM while some unnecessary data is moved to

NVM.

In this thesis, the main research contributions are summarized as follows: (1) design

an algorithm to predict the possibility of a cache data block to be referenced again and

follows it to prevent blocks with longer re-reference distance from occupying the limited

cache space too long time; (2) design a novel model updating strategy that builds training

data samples in terms of contributions from different data life stages in model training, and

considers the training cost consumed in model updating so that a better training model of

describing data tendency in dynamic environments can be achieved; (3) design a memory

management strategy for the hybrid memory system to automatically optimize data migra-

tion among different memory layers to obtain similar performance compare to the pure fast

memory systems with a relatively limited capacity of memory size. We implement these

methods on top of some existing Cloud Computing platforms that aims to maximize mem-

ory utilization, holding more applications and less requirement for fast memory hardware.

We also implement experiments with the proposed technologies on a testbed of the local

cluster environment and evaluate their performance with typical benchmark applications.



CHAPTER 2: BACKGROUND AND MOTIVATION

We discuss the main motivations for Hybrid Memory System in cloud computing and

our research focus in detail.

2.1 Applying Shared Memory among In-memory Computing Executors

Apache Spark is a popular in-memory computing platform with data encapsulated as

an easy-to-use memory abstraction named Resilient Distributed Datasets (RDDs) [1]. A

Spark cluster typically includes a master node and several slave nodes. Executors are

launched as JAVA processes on the worker nodes to execute assigned tasks. Each executor

is allocated with specific on-heap memory space which is divided into many functional

regions such as execution, storage and shuffle for RDDs operations. Meanwhile, a propor-

tion of memory is allocated to executor as off-heap memory for caching blocks from on-

heap memory. The state-of-the-art memory management strategy (i.e., Unified Memory

Management) eliminates the existing boundary separating execution and storage memory

regions in on-heap and off-heap memory space. Under this strategy, execution and storage

memory could borrow some space from each other side as long as it is free. Unified mem-

ory management indeed helps increase memory utilization in both on and off heap space to

a certain extent, but some issues still exist. If an executor is allocated with a huge amount

of memory, especially for off-heap memory, too many GC activities would occur and de-

crease the performance of running tasks. The off-heap memory of individual executors is

isolated so far in vanilla Spark and apparently inefficient given the fact that these memory

demands of different executors vary a lot. Moreover, imbalanced memory utilizations and

various requests of cached data in off-heap memory space make further harmful effects to

system overall performance.
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Figure 2.1: Imbalanced real-time memory utilization between two executors running the
same workloads.

To quantify memory utilization with multiple executors under various heap sizes and

their respective impacts on performance, an empirical study was conducted by using work-

loads from HiBench [45], a comprehensive benchmark suite. Spark-on-YARN mode is

applied in order to flexibly configure executor numbers, CPU cores and memory sizes

when running different workloads. We use Spark version 2.2 and Hadoop version 2.8.0

in the experiments. The default Least Recent Used (LRU) eviction policy is adapted for

cache management. The cluster consists of 9 nodes, each of which has Intel Xeon(R) CPU

E5-2630v4@2.20GHz x 20 and 64GB DDR4 RAM. All the nodes are interconnected via a

1000 Mb/s Ethernet. Each experiment was repeated for 5 times, and reported based on an

average observation result.

2.1.1 Imbalanced Memory Utilization

Figure 2.1 depicts the memory usage traces of Kmeans, SV D and PankRage under

Case #2, especially imbalanced memory utilization reflected by gaps between trace lines.

In this case, we launch two executors evenly to share the assigned hardware resource (each

executor is allocated with 4 cores and 4GB memory). Figure 2.1(a) shows the memory

usages of two executors for Kmeans fluctuate over time and dynamically exist gaps be-

tween them. In the case of SV D, the memory demand increases very fast right after the

workload starts running and then stays in a relatively stable memory usage status. The rea-

son is SV D’s CPU-bound property requires less amount of memory storing data but more

CPU resource. Moreover, we find there are consistent gaps between the two executors after
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Table 2.1: Resource Configurations

Case #Executor #Core Memory Total Resource
#1 1 8 8 GB 8 Cores & 8 GB
#2 2 4 4 GB 8 Cores & 8 GB
#3 4 2 2 GB 8 Cores & 8 GB
#4 8 1 1 GB 8 Cores & 8 GB

20th seconds. The above observations demonstrate that (1) memory demands are dynamic

over time; (2) memory usages between the two executors are imbalanced (shown as gaps

between two lines). In particular, Figure2.1(c) shows PankRage has a couple of peaks and

valleys due to the suffering of GCs. These collapses between different executors result in

low utilization and are detrimental to workload performance.

2.1.2 Impact of Parallelism

In our experiment, 8 CPU cores and 8GB memory were configured as the total available

resource on each slave node to simulate a mainstream configuration.

As shown in Table 2.1, we set up 4 resource allocation cases. Taking Case #2 as an

example, 2 executors were deployed on the same node with 4-Core and 4GB memory

allocated to each executor. We ran three different workloads under each case individually,

then the overall job runtime including garbage collection (GC) and computing time was

recorded respectively.
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Figure 2.2: Impact of parallelism in terms of job runtime.

Figure 2.2 shows the runtimes of workloads (Kmeans, SV D and PageRank) under

different resource allocation cases, i.e., with different execution parallelism. The results

demonstrate the number of executors indeed has a significant influence on application per-
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formance. On one hand, allocating all resource to only one executor cannot guarantee the

best performance compared to the model of running multiple executors. On the other hand,

too many executors also may hurt the overall job runtime. For example, the results of SV D

and PageRank under Case #4 cannot achieve significant performance improvement. Fig-

ure 2.2 shows the best performance is achieved in Case #3, #2 and #3 for Kmeans, SV D

and PageRank, respectively. It demonstrates deploying two more executors brings a better

performance gain than running a single executor in our case study. Thus, running multiple

executors on a single slave node is necessary and beneficial, especially when the memory

size of individual machines keeps growing recently.

2.2 Implementing Online Learning on Deep Learning Frameworks

2.2.1 Offline vs. Online Deep Learning

For many DL applications, the training stage is performed in an offline mode with batch

data streams, which refers to an input dataset S = {s1, s2, s3,...} with sample si = {x, y}

consisting of an instance x and a target label y. The purpose of the training stage is to find

a proper parameter θ for a model to predict a label y for each instance x correctly. Deep

learning algorithms iteratively update θ over training samples, in an offline or online man-

ner, depending on whether the whole training dataset is available or not. In online DL,

there are new training samples available over time, so the model is updated according to

such samples. Specifically, an online learning algorithm updates its parameter θ by θ =

f (θi, si) when a new sample si is available, where f is an optimization function adopted

in the algorithm. For offline learning, the parameter is updated with the entire batch S

(containing a set of samples) of training dataset and the model is trained by iteratively ap-

plying an optimization function f ’ to all samples. That is, at the iteration of the training

stage, the learning algorithm updates its parameter by θ = f ’(θk, S). Comparing these two

learning strategies, it is evident that online learning is more lightweight and responses more

promptly than offline learning as online mechanism only incorporates one data sample a

time. This prominent feature makes online learning more efficient in dynamic environ-
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ments where the data source keeps changing over time, in which the trained model has

to be frequently updated to accurately describe the trend of input data. In the following

subsection, we demonstrate this benefit and possible weakness with case studies.

2.2.2 Case Study

We study two popular online DL applications, i.e., pattern recognition and classification

prediction, which are based on Convolutional Neural Network (CNN) [46] and Deep Neu-

ral Network (DNN) [47] respectively. For pattern recognition, we adopt an MNIST [48]

database to evaluate its performance on recognizing people’s handwriting while using a

1GB dataset of user clicking activities to check efficiency in classification prediction.

To run these two applications, we adopt a testbed consists of 15 nodes, each of which has

Intel Xeon(R) CPU E5-2630v4@2.20GHz x 20 and 64GB DDR3 RAM, running Ubuntu

16.04 LTS operating system with kernel version 4.0, Scala 2.10.0, and Hadoop YARN 2.8.0

for cluster management. One node serves as the master, and all the other 14 nodes serve as

slaves. These nodes are connected with Gigabit Ethernet. We run these two applications on

TensorflowOnSpark [16]. We use the built-in example of TensorflowOnSpark to evaluate

performance over MNIST database. Another DNN study goes to classification prediction.

This system decides what type of ads should be displayed to different users by predicting

the probability of user click. We choose real-world traffic logs provided by Criteo [49] as

the input data to evaluate performance. In the case study, we first train a base model using

a small portion of the database and periodically update the model with dynamic input data.

Then the performance differences in training time is compared between offline and online

learning approaches. We finally evaluate how online learning improves model quality with

continually generated data.

Training Time: Figure 2.3 (a) and (b) compare the training time achieved by online and

offline training for CNN and DNN workloads respectively. In particular, we update the

training model every 2 minutes in both online and offline manners. At each monitoring

point, the offline method would retrain the model from scratch over all available data while



13

	0
	10
	20
	30
	40
	50
	60

2 4 6 8 10

Ru
nt
im

e	
(s
)

Elapsed	Time	(min)

Online Offline

(a) CNN Training time

	0

	15

	30

	45

	60

10 20 30 40 50

Ru
nt
im

e	
(s
)

Elapsed	Time	(min)

Online Offline

(b) DNN Training time

	40

	50

	60

	70

	80

	2 	4 	6 	8 	10

Pe
rp
le
xi
ty

Elapsed	Time	(min)

Offline
Online

(c) CNN Model quality

	0

	0.3

	0.6

	0.9

	10 	20 	30 	40 	50

Ac
cu
ra
cy

Elapsed	Time	(min)

Offline
Online

(d) DNN Model quality

Figure 2.3: The comparison of training time and model quality achieved by offline learning
and online learning.

the online mechanism only takes in the new arrival data. These processing logics result in

the orders of magnitude difference between the two methods. It is evident that the online

training is significantly faster than the offline training. The reason behind is that offline

training takes orders of magnitude longer time to retrain the model in an offline manner by

incorporating all historical data. In contrast, online training only uses new arrival data and

does not need to wait for the moment that all data are available.

Model Quality: Figure 2.3(c) and (d) display how the incorporation of new arrival data

improves the model quality. In Figure 2.3(c), we adopt a popular metric named perplex-

ity [50] (lower is better) to measure the model quality of CNN application. We measure

the training model quality every 2 minutes in offline and online manners respectively. With

more data fed into the model, both perplexities decrease, which means a better model qual-

ity. Figure 2.3(c) shows the overall perplexities of offline and online trainings are very close

while online manner is not as stable as offline training. We then compare the model per-

formance of online and offline training in overall prediction accuracy. This generally used

metric quantifies the overall prediction performance of a classification algorithm (larger is

better). Figure 2.3(d) shows that the model quality by offline training increases with more

data get incorporated, and its quality trend to be stable. The model quality by online train-

ing outperforms offline training at the time points 10 and 40 while it is worse than offline

training during other time periods. The reason is that only using new arrival data in the

online learning approach cannot guarantee stable model quality compared to the offline

learning approach. Although such naive data update strategy contributes to speed up the



14

data training process, it may discard many data samples with vital information to improve

the model quality.

2.3 Scalable Data Management on Hybrid Memory System

In this section, we first provide a basic knowledge on the training/learning process of

typical DNN models, and then a case study is offered to drive the motivation of this section.

2.3.1 Graph Based DNN Training

DNN’s training stage often contains an optimizer and a backward propagation algorithm.

A typical DNN model usually contains a couple of layers, which is comprised of a set of

neurons. Each neuron of every layer conducts a non-linear function based on the neurons’

outputs from the preceding layer, using a set of weights [51]. Training DNN models often

include many iterative steps, which involve a set of training data objects input into DNN.

Training DNN with deep learning frameworks e.g., TensorFlow [52] implements DNN as

a computation graph with a set of nodes or vertex, which represent some computational

kernel. Each kernel is defined with a couple of attributes e.g., the number of inputs and

outputs, computation complexity, and computation time. Data dependencies and control

between kernels are expressed as directed edges of computation graphs. Edges representing

data dependencies are assigned with a tensor that takes contiguous fixed memory space

size. Moreover, the computation graph is static and repeated in the whole training process.

These features make profiling the memory access pattern of data objects possible and then

optimize data migration in terms of the static DNN computation graph.

There are mainly three steps involving in data management on Hybrid Memory System

(HMS): (1) memory access profiling, which is responsible for collecting memory access in-

formation for data objects or memory pages (2) decisions for data migration, which follows

performance optimized models or cache management algorithms to determine the suitable

data objects or pages to migrate to achieve better performance, and (3) data migration,

which includes data placement and data movement with the purpose of decreasing data
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migration cost.

Figure 2.4: A sample of computation graph.

Figure 2.4 depicts a typical example of computation graph configured with 6 kernels

and 5 tensors. Nodes in the computation graph represent computation kernels while edges

means tensors consumed by kernels. Nodes are denoted with 0 or more inputs or outputs.

The inputs or outputs of each kernel are also tensors. Every tensor is displayed by its

producer kernel, all its consumer, and also its last consumer. When the last consumer

finish its computation, the memory of this tensor can be freed to other coming tensors. For

example, tensor t2 is produced by kernel k2 and it is consumed by kernels k4, k6. The

memory space occupied by t2 cannot be released until k6 finished its computation, which

means k6 is actually the last consumer of t2.

In this thesis, we concentrate on the case that the computation graph describing a static

DNN training iteration. That is, there is no data dependencies in the computation graph and

its static graph structure is known at compile time. Moreover, the total sizes of intermediate

data is known with the compiling process. In this case, we can predict and record the

memory access behavior of each tensor and migrate it into the corresponding memory

component to achieve better performance.

2.3.2 Case Study

We characterize and analyze the memory access pattern on DNN, and adopt the obser-

vations to motivate our work. We adopt Persistent Memory Block Driver (PMBD) [53] to

simulate the slow memory. PMBD is a PCIe NVM device simulation based on DRAM.
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200ns delay for the read/write operation and 19GB/s bandwidth are set up to simulate slow

memory media. We use the DRAM as the fast memory, which is configured with 34GB/s

bandwidth and 90ns latency.

We adopt the ResNet50 V2 workload to analyze data objects (tensor) and their access

patterns. Only one training step is used for profiling this information. ResNet50 V2 is

fed with the CIFAR-10 data set with 64 layers and 128 batch size within a forward and

backward pass. Besides, in this case study, we only use the regular DRAM which means

there is no fast or slow memory included. A data object is alive from the moment that it

is allocated into the memory until its memory space is freed. Base on the concept of alive,

we define the liveness of a data object as in how many layers the data object is alive.
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Figure 2.5: Distribution of liveness of data objects and data sizes from ResNet50 V2.
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Figure 2.6: Distribution of memory access at the layer distance level.

Memory Access Pattern: Figure 2.5 displays the distribution pattern of data objects’

liveness and the ratio of data sizes. In this case, we regard the data object with size smaller

than 4KB as small data object while the remaining objects as the large data object. Y-axis
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Figure 2.7: (a) shows the iteration performance of ResNet50 V2 with a batch size of 128.
(b) plots normalized performance to all I/O committed in fast memory.

denotes how many layers (liveness) a data object can survive in the model training step,

the last label ">64" means that these data objects crosses more than one full training step.

Figure 2.5 shows that more than 90% of data objects cannot live more than one layer, which

means their liveness are shorter than a layer. Moreover, within those data objects, 97% of

their size is smaller than 4KB (small data objects). In this paper, we define the data object

whose liveness is shorter than a layer as short-lived data object and the data objects can

survive more than one layer as long-lived data object. By hosting short-lived data in fast

memory space, we can decrease unnecessary data migrations, increase memory utilization

and improve DNN training performance.

Figure 2.6 depicts the distributions of memory access at the layer distance level. The

figure also displays a huge amount of data objects are accessed in the first 24 layers. Among

those data objects, nearly 80% of them are accessed in Layer 9-24. Those are the frequently

used data objects that should be placed in the fast memory. In contrast, some data objects

are less accessed. For example, in the layer range [57, 64], there is almost no data access

occurred. The uneven distribution of data objects and their unbalanced access pattern in

DNN provide opportunities for data management.

Impact of Different Memory: We conduct a further case study on the performance of

ResNet50 V2 with 128 batch size under different memory settings. PMBD [53] simulates a

slow memory while DRAM serves as the fast memory. Three memory settings are config-
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ured: all slow memory, hybrid memory and all fast memory. We set up 10GB in slow-only

and fast-only memory cases, 2GB fast memory and 8GB slow memory in the hybrid case.

Figure 2.7(a) shows the training performance for three different memory settings: the

slow-only memory, the fast-only memory and the hybrid memory running with NUMA [54].

The Slow bar displays that simply replacing fast memory with slow memory cause poor ap-

plication performance (about 3x slowdown) in training steps. The Hybrid bar shows that

some specific optimized data management for hybrid memory is necessary, providing only

a limited improvement over the Slow case. The Fast case brings the best performance with

almost 3x and 1.5x speedup compared with Slow and Hybrid cases respectively, but the

cost is more expensive than the first two settings. Thus, a hybrid memory system equipped

with a smart data management strategy could reduce the performance gap between slow

and fast memory.

The read/write speed of memory has affections on the performance of kernels with their

inputs and outputs hosted in slow or fast memory hardware. We analyze the performance

behavior with a single CONV kernel from ResNet50 V2. Figure 2.7(b) demonstrates the

execution/computation time of this kernel with its inputs (upper label) and outputs (lower

label) saved into Slow and Fast memory hardware. We notice that with the inputs to this

CONV kernel are hosted in the Slow memory and its outputs are saved in the Fast mem-

ory, its performance is very similar to the case when both inputs and outputs are in Fast

memory. But in the case when the outputs are saved in Slow memory, the kernel suffers a

performance loss dramatically with over 2x slower. This behavior inspires us to consider

the I/O latency differences when deciding where to place a data object to get an optimal

runtime with a fast memory size constraint.

2.4 Memory Management Strategy on Unified Hybrid Memory System

Modern hybrid memory systems are usually configured with the traditional DRAM and

non-volatile memory (NVM) [54] hardware. Non-Uniform Memory Access (NUMA) is

the architecture adopted to manage data saved into these hybrid memory systems. Com-
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pared with DRAM, NVM brings higher storage capacity and lower power cost at the ex-

pense of slower access speed and lower memory bandwidth. The commercial NVM, such

as Intel Optane DC Persistence Memory [35], provides a max of 6.6 GB/s read bandwidth

and 2.3 GB/s write bandwidth. Its maximum read latency is 346 ns, about 3 times higher

than DRAM. Specifically, the bandwidth of randomly writing operation in NVM is around

30 times slower than that in DRAM. Based on those I/O differences, we use Persistent

Memory Block Driver (PMBD) [53] to simulate the performance features of NVM via

splitting part of the DRAM, which offers a flexible settings in memory hardware specifica-

tions.

2.4.1 Case Study

We characterize the issues of using NUMA memory management strategy in hybrid

memory system running on our local cluster, which has four nodes equipped with Intel

Xeon(R) CPU E5-2630v4@2.20GHz x 20 and 64GB DDR4 DRAM. According to the

NVM features discussed above, the read and write latencies of NVM are configured to be

3X and 8X of the DRAM, and the bandwidth of NVM is limited to be one half of the

DRAM. In this case, there are basically four kinds of memories in the hybrid memory

system: local DRAM, remote DRAM, local NVM, and remote NVM.

We select Terasort [55] and ResNet152 [56] as the typical workloads from big data pro-

cessing and deep learning applications, respectively. The Terasort illustrates uniform mem-

ory access pattern on all data, while ResNet runs on with different data access behaviors in

terms of varied access frequency. We adopt Intel Memory Latency Checker (MCL) [57] to

quantify the communication cost among nodes. We compare two NUMA memory manage-

ment strategies: (1) The default NUMA interleaving policy, which evenly distribute data

pages on DRAM and NVM. (2) Manually set the size ratio of NVM-to-DRAM to be 1:4,

resulting in more data is to be hosted in DRAM. Both of the policies follows DRAM serves

first policy, which means NUMA preferentially places data on DRAM when there is still

some free space available, and then places data on NVM. Besides, the automatic NUMA
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balancing (anb) policy is also included to further describe NUMA performance in hybrid

memory systems.
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Figure 2.8: The execution time of two selected workloads with four different data place-
ment strategies, all the results are normalized to the case that only allocates data in DRAM.

Workloads Execution Time: Figure 2.8 shows the execution time of Terasort and

ResNet152 using NUMA (the default page interleaving data placement strategy), NUMA

with the automatic NUMA balancing (anb) policy, the case of configuring the ratio of

NVM-to-DRAM to be 1:4, and the case of NVM-to-DRAM (with the ratio of 1:4) with

the automatic NUMA balancing (anb) policy. To provide a direct comparison, all the re-

sults are normalized to the case that only allocates data in DRAM. Figure 2.8 shows that

the NUMA cases usually fails to achieve the best/optical application performance in the

hybrid memory system, no matter it is configured with the automatic NUMA balancing

(anb) policy or not. The policy NVM-to-DRAM ratio as 1:4 brings a better execution time

compared with the NUMA strategy for both Terasort and ResNet152. However, the case of

NVM-to-DRAM by a ratio of 1:4 with the anb policy performs a little bit worse than the

pure NVM-to-DRAM case due to the bandwidth gap between DRAM and NVM, which

takes more time in data migration. Overall, the default data placement strategy in NUMA

that evenly places data on DRAM and NVM may hurt the performance of application in

hybrid memory systems.

Data Locality: Figure 2.9 shows the tendencies of data localities in DRAM of Terasort

and ResNet152. We select a 25-second time window when the workloads start to run.

Data localities fluctuate a lot with application running on, Terasort displays a relatively

stable tendency due to its uniform data access pattern while ResNet152 has more peaks and
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Figure 2.9: The tendencies of data localities in DRAM with different data placement strate-
gies, all the data is from a 25 seconds time window when the workloads start to run.

valleys with different hot data paged in and out. But the average data locality of ResNet152

is higher than Terasort. The anb policy can improve data locality by dynamically migrating

data to the node that the workload is running. We can also observe that the anb policy

indeed help increase the data locality both in NUMA and NVM-to-DRAM cases. However,

higher data locality may not guarantee better application performance. When compares

Figure 2.8 and Figure 2.9, it is obvious that the cases with the anb policy do not bring

the best execution time no matter the anb policy is configured with NUMA or NVM-to-

DRAM. In the case NVM-to-DRAM with the anb policy, its execution time is much longer

than the pure NVM-to-DRAM strategy. Because the anb policy wrongly migration data

from DRAM to NVM, which has a slower bandwidth and higher access latency.
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Communication Cost: We analyze the total communication cost among different mem-

ory media from ResNet152. The total communication cost consists of inter-nodes cost and

intra-nodes cost measured by Intel Memory Latency Checker (MCL) [57]. Figure 2.10

illustrates the total communication cost from NUMA with the anb policy and hot-data mi-

gration strategy in five stages divided by ResNet152’s whole runtime. We choose the case

of NVM-to-DRAM with a ratio of 1:4 as the baseline and all the results in Figure 2.10

is normalized to it. We notice that both NUMA with the anb policy and hot-data migra-

tion strategy migrate a huge amount of data form DRAM and NVM, and thus bring a lot

of performance loss with failing to use the DRAM’s higher bandwidth. The tradition anb

policy migrates data among different memory media following the mostly recently access

strategy. But the inherent performance gaps between DRAM and NVM make the anb pol-

icy less efficient and bring more communication cost. The hot-data migration policy uses

a pre-defined threshold to migrate data, which could bring a better communication cost in

some stages. But the hot-data migration policy does not consider the overall bandwidth

utilization and the hybrid memory system equipped with DRAM and NVM makes it less

useful.
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Figure 2.11: The bandwidth utilizations of ResNet152 using NUMA with anb and hot-page
migration, all normalized to the case with the ratio NVM-to-DRAM set to be 1:4.

Bandwidth Utilization: Figure 2.11 shows the bandwidth utilization of ResNet152 in

ten running stages divided by execution time using NUMA with the anb policy and hot-

data migration policy, all the results are normalized to the case of NVM-to-DRAM. We

find that both the anb and hot-page migration policies have a good bandwidth utilizations

at the first three stages. But their performances vary a lot with workload running. The
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anb policy shows a less efficient bandwidth utilization due to it merely tried to evenly

place data on NVM and DRAN. Moreover, the anb policy brings more data migration

from DRAM to NVM, which is actually moving data from memory with high-bandwidth

to low-bandwidth, and thus fails to take advantages of the high bandwidth of DRAM. The

hot-data migration strategy improves the utilization of memory bandwidth after Stage 3 and

then its utilization drops in the Stages of 7 and 10. The reason is that the hot-data migration

strategy fails to consider the memory bandwidth utilization when performs data migrations.

The data distributions in hybrid memory system is more complicate with different memory

bandwidth, we should design a smart data placement and migration policy to achieve higher

memory access performance.

2.5 Challenges

We discuss several challenges encountered in optimizing performance of in-memory

computing with Hybrid Memory System.

2.5.1 Memory Management on Shared Cache Memory

These observations from Section 2.1 show the impacts of running multiple Spark ex-

ecutors on a single machine: (1) The memory utilization discrepancies among executros

inspire us to propose a more efficient cache management policy among multiple executors

without losing performance as well as ensuring efficient memory utilization; (2) Deploying

multiple executors indeed speed up the performance of application in some cases, but it

cannot always bring performance imprivement e.g., SVD’s performance illustrated bu Fig-

ure 2.2. In the cases that multiple executors achieve positive effects, how to build the shared

cache memory, how much memory each executor should share and how to reallocate the

shared memory space among executors are the key points that need our attention.

Specifically, we need propose a new shared in-Memory cache layer among these parallel

executors which are co-hosted on the same slave machine in Apache Spark. It aims to

improve the overall hit rate of data blocks by caching and evicting these blocks uniformly
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across multiple executors. The critical insight of this layer is to develop a novel eviction

strategy to efficiently manage the shared cache space across executors to maximize overall

cache hit rate as well as application performance. The new eviction policy can predict

how far a data block will be referred again and consider all cached blocks to choose the

ones that have little possibilities shortly. By leveraging global data referring information,

the data management strategy is capable of evicts=ing less possibly used data and making

more free space for requested data blocks.

2.5.2 Online Learning Implementation on Deep Learning Frameworks

The case study in Section 2.2 has demonstrated the benefits and shortcomings of online

DL with dynamic batch data streams. Although online training defeats offline manner in

terms of training time, the model quality brought with online training is not always as stable

as offline approach. Thus, a trade-off is necessary to achieve the accurate model quality and

the low training cost simultaneously. Indeed, the data contributes diversely to the model

quality in model updating stage. Given the fact that the model updating must be performed

in an online manner and without prior knowledge of future data, there is an imperative need

to develop a strategy to combine and update data based on its real contribution to the model

quality of online DL applications in dynamic environments.
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Figure 2.12: Duplicated data occurrence in a time window.

Figure 2.12 illustrates the percentage of data samples with duplicates during the model

updating process. It is evident that the duplicated data take a relatively high percentage

in the training dataset. Such behavior inspires us to take data occurrence into consider-

ation when updating the training model. Ideally, we should decrease the latency of data
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incorporation with delicate combined data samples and obtain a model with high quality

at low training cost. In light of the above issues, our prime goal is to develop a system

that friendly supports online learning applications without much coding modifications and

hardware resources. To be exact, we plan to introduce an easy-to-use middleware solution

based on existing DL frameworks to streamline the support and implementation of stream-

based workloads. Moreover, an efficient model updating strategy is necessary to determine

how and when to perform model updating for DL applications considering data life stages

and training costs.

2.5.3 Memory Management on Hybrid Memory System

The case study in Section 2.3 has demonstrated the uneven distribution of short-lived

and long-lived data objects and the unbalance access pattern across DNN training layers.

Besides, the read/write speed asymmetry from the fast and slow memory results in large im-

plications on kernel’s performance, especially when a kernel places its outputs in the slow

memory. Given that the DNN computation graph is static and its memory access pattern is

stable, we can profile each tensor’s data behavior to build a scalable memory management

strategy for HMS, which is smart in controlling data placements and migrations. In the

ideal case, short-lived data objects are to placed in the fast memory while long-lived ones

in the slow memory. Specifically, the input data location should be considered because it

has a huge effect on DNN training performance.

2.5.4 Memory Management on Unified Hybrid Memory System

From Section 2.4, we can observe that the traditional NUMA memory management strat-

egy and its widely used anb policy are not efficient in hybrid memory systems. The case

study has demonstrated the higher application execution time and communication cost, and

lower memory bandwidth utilization. Besides, the fluctuant data localities make data mi-

gration more complicate. Given that a hybrid memory system is usually equipped with

different memory media with various features in bandwidth, access latency, and capacity.
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The above observations motivate us to propose a smart data management mechanism to

achieve better performance for applications deployed in hybrid memory systems.

2.6 Objectives and Contributions

In this thesis, we will design and implement novel memory management strategies in

shared cache memory and hybrid memory system to optimize in-memory computing per-

formance. The objectives and expected contributions of our research are as follows:

1. Shared Memory Cache Layer for Multiple Executors: We design a shared memory

cache space, i.e., iMlayer, which is deployed between on-heap memory and local disk, to

cache and manage intermediate data across multiple executors so that I/O operations can

be decreased. A fuzzy model is adopted to decide memory donation from each executor to

iMCache, the shared cache memory, and implement a novel cache eviction policy named

Next Re-reference Distance (NRD) which aims to improve the overall hit rate of data blocks

by caching and evicting these blocks uniformly across multiple executors.

2. Model Updating Strategy for Online Deep Learning: We tackle these challenges

in Section 2.2 with iDlaLayer, a thin middleware layer prototype atop DL frameworks

(e.g., TensorflowOnSpark) that facilitates stream-based online learning applications. We

introduce a concept named data life cycle, with which streaming data is divided into various

life stages in terms of how much contributions it made to model updating. We also propose

a novel data life aware updating strategy (DLA), which relies on combined data sample and

considers training cost when deciding whether to perform a model updating action.

3. Data Management on Hybrid Memory System for Deep Leaning: We design and

implement a middleware that automatically determines the optimal data migration strat-

egy and exploits domain knowledge on DNN to decide data migrations between the fast

and slow memories in hybrid memory system. To achieve a better performance in data

migrations for DNN training, we introduce a reference distance and location based data

management strategy (ReDL) that treats short-lived and long-lived data objects with Idle

and Dynamic migration methods, respectively.
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4. Unified Hybrid Memory System for In-memory Computing: We propose a unified

memory system across the cluster named UniRedl, which automatically optimizes data mi-

gration in hybrid memory system based on data access pattern and computation graph of

applications. UniRedl adopts the primary/replica mode on a cluster to abstract all the mem-

ory into a uniform space address. To achieve a better performance for big data and deep

learning applications, we introduce a novel memory management strategy that considers

data location, memory capacity&utilization and computation graph.



CHAPTER 3: RELATED WORK

3.1 Memory Management for In-memory Computing

Memory management is a well-studied research topic while application’s performance

has been widely improved by various memory strategies [58] [59]. These systems refer to

either change workload scheduling or apply different heuristics on platform management.

In [60], the memory model is assumed to be a small cache. Memory access activities of

given applications are categories into various phases. From such memory accesses break-

down, the system-level evaluations are made among any two consecutive commands. Al-

though this approach offers a good insight into the benefits of in memory computing in

the system level, it fails to consider the situation of hierarchical memory and data local-

ity. As an alternative, the work done by [61] takes multi-level caches into consideration.

Furthermore, this work also studies data locality in order to determine whether it is worthy

to transfer some computation to the memory unit. However, this work assumes that the

users have enough knowledge on the application, and can manually decide which parts of

application could deployed in memory computing.

Although Spark job performance can be improved by increasing execution parallelism,

this strategy may introduce additional overheads by GC and I/O operations. Thus, many

works focus on optimizing the deployment model of multiple executors/JVMs in Spark.

Emerging JVM technologies such as heap ballooning [62] and dynamic heap sizing [63]

provide mechanisms to release committed memory from the virtual heap space. Tachyon

[64] provides an in-memory distributed caching layer to cache intermediate data across

different frameworks. The key idea is using distributed shared memory layer to store data

blocks. Similarly, Tungsten [65] proposes a method to change memory management of

JVM from on-heap to off-heap space. However, it is difficult to decide how much memory
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should be allocated to each executor and which data blocks are supposed to be evicted if

any memory tension occurs. In contrast, iMlayer aims to build the same-functional shared

memory layer for the local executors on the same slave machine, which offers a convenient

way to manage cached data without a centralized server for saving and synchronizing data

location information.

Moirai [66] focuses on cloud resource allocation with performance isolation in terms

of requests per time window while Ginseng [67] is for memory pricing and auctioning

cloud platforms. These works only focus on pricing memory resource for applications

that have a specific shared cache memory server running on VMs. In contrast, iMlayer

enables multiple executors to share a dedicated cache space and ensures a higher hit rate

via a novel cache eviction policy, i.e., NRD. Moreover, our work focuses on managing the

local memory resource on each slave machine, which is more scalable for most distributed

systems.

3.2 Implementation Methods to Online Deep Learning

Various deep learning frameworks are available to provide proper support for popular

neural network algorithms, such as TensorFlow [52], Coooolll [15]. These platforms offer

fully functional libraries and APIs for DL algorithms. Recently, a new trend in deep learn-

ing is to realize distributed learning with a parameter server model. BigDL [68] allows

end-users to build deep learning applications using a single unified data pipeline and the

whole pipeline directly run on top of some existing deep learning systems in a distributed

fashion. Geeps [69] is another framework that implements deep learning with large vol-

umes of data on distributed GPUs, it incorporates and extends the parameter server training

model. However, most of them perform well in offline training models while never explic-

itly supporting online updating strategies. Instead, users have to design customized training

loops to manually realize online learning via continual or periodic approach, which is in-

efficient and cumbersome. iDlaLayer is orthogonal to these systems and complemental to

them with supporting and implementing online DL applications.
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Data streaming systems have been widely studied and increasingly used in real-world

commercial solutions rather than pure academics. Differential Dataflow [70] is designed to

process large volumes of streaming data efficiently and to respond to arbitrary changes in

the input collection quickly. Naiad [71] automatically incrementalizes dataflow computa-

tions and is capable of building low-latency data-parallel iterative computation. However,

Differential Dataflow [70] and Naiad [71] mainly focus on quickly react on larges input

data and respond to any changes inside the data in the context of a declarative data-parallel

dataflow language, and cannot respond to online learning cases that processing the same

computation with different data sample in each iteration. Spark Streaming [72] allows users

seamlessly intermix streaming, batch and interactive queries. SECRET [73] is a descrip-

tive model that enables users to analyze the behavior of systems and understand the results

of window-based queries for a broad range of heterogeneous SPEs [73]. MillWheel [74]

provides a programming model with a notion of logical time, good scalability and fault

tolerance, making it simple to write time-based aggregations. iDlaLayer is an online learn-

ing system for stream-based workloads in dynamic environments. Similar to studies [75]

[73] on latency and throughput in processing streaming data, our algorithms can help such

systems achieve a balance between processing cost and latency.

Recently, many works focus on exploring deep learning model updating strategies. For

example, a recent report [7] provides a thorough survey on concept drift in the scenarios of

online learning with streaming data. Incremental&Decremental SVM [76] and Weighted-

SVM [77] resort to re-engineer existing learning algorithms by developing incremental ver-

sions of the basic SVM and adjusting the training data sample weights in an SVM-specific

manner, respectively. InferLine [78] is designed to provision and manage deep learning in-

ference pipelines for latency-sensitive applications with cost-efficient feature. It consists of

two principal components that operate at time scales orders of magnitude apart to configure

the system for near-optimal performance. Velox [79] proposes a model updating strategy

with combing online learning and statistical techniques. DLA is complementary to these
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works, and could potentially be applied in a system like Velox to support online learning,

improve training model quality by continually incorporating streaming data and strike a

balance between model quality and training cost.

3.3 Data Management Policies on Hybrid Memory System

Many works [80] [81] [82] have been proposed to build heterogeneous main mem-

ory system. Specifically, with the emerging technology Intel Optane DC, several recent

works [35] [83] [84] explore the combination of Intel Optane DC and traditional DDR to

build a hybrid memory system. [35] explores the specifications, features, and performance

of Intel Optane DC persistence memory. It also studies Intel Optane’s capabilities in serv-

ing as main memory device, persistent storage, and byte-addressable memory device to

applications running in user-space. [83]shows the importance of NUMA-aware memory

allocation at the application level and avoiding kernel overheads for Optane PMM as poor

applications of both concepts are more expensive on Optane PMM than on DRAM. [84]

explores into using Optane persistence memory on virtual machines to demonstrate that

the needed size of DRAM is very small. The combination of DRAM and high bandwidth

memory (HBM) in Intel Knights Landing platform is discussed in [81]. The basic ideal of

these works is to achieve a high application performance with introducing fast memory as

much as possible.

Use page as the basic unit for data management is proposed in [22] [18] [85] [21]. These

work prefer to profile memory access behaviors to decide where a page should be place.

Thermostat [22] only profiles the access information on 0.5% of the total memory pages

instead profiling all pages. Because the whole page profiling could result in a 4x perfor-

mance slowdown. Similarly, Heteroos [18] tracks and collects information of hot pages by

setting and resetting PTE, which brings a very high overhead due to it triggers too many

context switches and data transfer operations. Limiting the amount of pages to profile is

a possible solution to reduce overhead. For example, [85] and [21] introduce a specific

hardware to periodically collect the access information on main memory. [85] and [21] are
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kind of lightweight, but they can incorrectly calculate the total times of memory accesses

on short-lived data objects due to the default performance loss in sampling.

Implementing transparent unified memory access between CPUs and GPUs has also

been well studied in the past works. vDNN [31] proposed a heterogeneous memory system

between CPUs and GPUs by leveraging the structure of the training computation graph

used by DNN is static and follows a sold patter. Moreover, the intermediate tensors gen-

erated in the earlier computation step may not be used until some later computations are

performed.SuperNeurons [29] introduces a dynamic GPU memory scheduling runtime to

enable the network training far beyond the GPU DRAM capacity and a cost awareness

algorithm in applying re-computation of forward pass layers in the backward pass in train-

ing DNN models to reduce memory. moDNN [30] adopts the idea of data offloading and

prefetching which proposes a novel sub-batch size selection method which cooperates with

data transfer scheduling to further reduce memory usage without impacting the accuracy

and ensures the memory usage tightly fits the memory budget.

3.4 Memory Management Strategies on Unified Hybrid Memory System

An extensive study on data management strategy in NUMA-based systems has been pro-

posed, such as HMvisor [19], Nap [20], HiMUMA [36] and Carrefour [34]. HMvisor [19]

is designed for dynamic hybrid memory management for virtual machines. It proposes a

lightweight page migration strategy by decoupling page hotness tracking from page migra-

tion. HMvisor [19] also propose a memory resource trading policy to adjust the capacity of

DRAM and NVM for each VM, with the monetary cost unchanged. Nap [20] implements

a black-box approach to convert concurrent persistent memory indexes into NUMA-aware

counterparts. It introduces a NUMA-aware layer (NAL) on the top of existing concurrent

PM indexes, and steers accesses to hot items to this layer to tackle skewed data access prob-

lems. HiMUMA [36] is specifically develpoed for data management in NUMA-bases sys-

tems. It proposes hybrid memory management strategy based on data hotness. HiMUMA

also optimizes the balancing algorithm used in NUMA with consideration the bandwidth
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differences so as to guarantee a higher memory bandwidth utilization. Carrefour [34] in-

troduces a hardware-based memory management to reduce traffic congestions in NUMA

systems. Those previous work focus on memory management strategy for universal work-

loads running in NUMA systems. However, in a NUMA-based system equipped with hy-

brid memory hardwares, the heterogenous memory characteristics in access and latency is

further amplified, especially when deep learning applications are running on it. UniRedl is

designed to manage data migration for big data and deep learning applications. We propose

a data access pattern and computation graph awareness strategy, and memory bandwidth

utilization-based algorithm to maximize the application performance.

There are also some works explore page placement strategies in hybrid memory sys-

tems BMPM [86], OIM [21], Thermostat [22], HeteroOS [18]. BMPM [86] proposes

bandwidth-aware memory placement and migration policies to solve the problem caused

by the bandwidth difference of the memory nodes in a heterogeneous memory system. But

its solution is still based on the traditional automatic NUMA balancing algorithm, which

may not be efficient for big data and deep learning applications. OIM [21] propose a

page placement similar to a widely used page replacement strategy used by Linux. It im-

proves page migration performance by launching a couple of threaded to migrate the single

pages and concurrent migration to handle multiple pages. However, adopting this strategy

to determine the page migration for deep learning applications with various data access

pattern can be slow and has no clues on the global view. Thermostat [22] proposes an

application-transparent huge-page-aware mechanism to place pages in a dual-technology

hybrid memory system. It uses an online page classification mechanism to classify both

4KB and 2MB pages as hot or cold while incurring no observable performance overhead

across several representative cloud applications. HeteroOS [18] proposes an application-

transparent OS-level solution for managing memory heterogeneity in virtualized system. It

extracts rich OS-level information about applicationsâ memory usage to place data in the

suitable memory to avoid page migrations. However, this memory management strategy
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is not mainly designed for NUMA-based systems, and fails to achieve the optimal perfor-

mance improvement. UniRedl exploits the inherent feature differences in hybrid memories

and the specific computation characteristics in deep learning applications to improve the

efficiency of using hybrid memories and the performance of applications.

As discussed in Section 1, implementing Hybrid Memory System for In-memory com-

puting involving multiple objectives and challenges. There is a significant body of work

in this area that propose various solutions with promising performance improvement, but

there are critical limitations on the effectiveness and efficiency of existing techniques, as

discussed in Section 2. We develop a hybrid memory system that includes fast and rela-

tively slow memory hardware and memory management strategies for applications running

in cloud environments based on optimization formulations, feedback control, and deep

learning methods.



CHAPTER 4: A SHARED MEMORY CACHE LAYER ACROSS MULTIPLE

EXECUTORS IN APACHE SPARK

4.1 iMlayer System Design

Unlike the default memory management strategy in Apache Spark, iMlayer allows mul-

tiple executors on a single node to share a specific off-heap memory space with each other.

It aims to improve the hit rate of intermediate data blocks by caching and evicting data uni-

formly across multiple executors on the same hosting machine. The key insight of iMlayer

is to develop a new eviction strategy applied in the proposed shared cache memory space.

Although there are many different eviction strategies [87] [88] on cache management, they

cannot guarantee a good performance while multiple executors are co hosted on slave ma-

chines in Apache Spark. To achieve memory hit rate, we propose a metric named Next

Re-reference Distance (NRD) to predict how far a data block will be referred again, and

this value gets updated once a referring request coming. When memory tensions occur in

cache space, there are some cached data blocks to be evicted to make free space for upcom-

ing data. Under this situation, iMlayer would take all cached blocks into consideration to

choose the ones that have little possibilities in re-referred (whose NRD is bigger) to ensure

a higher hit rate.

Figure 4.1 shows the overall architecture of iMlayer, which consists of three major com-

ponents, i.e., iMCache, iManager and iMonitor.

• iMCache is a cache memory space donated from individual executors and replaces

the isolated off-heap memory region exclusive to each executor in vanilla Spark ar-

chitecture. It is responsible for recording the reference information of every data

block, i.e., NRD, which denotes blocks’ re-referring possibilities in the future. Then
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Figure 4.1: System architecture of iMlayer.

NRD is used to decide which block should be evicted when the memory tension

occurs.

• iManager is responsible for managing the data blocks cached in iMCache with a

unified caching and evicting operation. By leveraging global data referring infor-

mation, it evicts less possibly used data and makes more free space for the coming

blocks in order to guarantee higher overall hit rate.

• iMonitor is running on each executor and responsible to maintain the block infor-

mation belongs to individual executor, e.g., owner’s executorID, storage location and

reference statistics. It periodically reports the data block’s location in iMCache to

the original BlockManager.

4.2 Memory Management in iMlayer

4.2.1 Memory sharing policy in iMCache

Figure 4.2 depicts that iMlayer integrates these isolated executors via sharing the off-

heap memory spaces from multiple executors. By default, each Spark executor is allocated

with exclusive on-heap and off-heap memory space respectively. LRU policy is applied

to manage the data eviction in isolation. When multiple executors (e.g., Executor #1 and
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#2 in Figure 4.2) are deployed on a single node, the computational behaviors of different

executors may not be identical so that the data access demand can vary a lot over time.

For example, the left two graphs show data reference tendency, where x-axis represents

timeline and y-axis depicts dynamic data block access rates. In this case, such isolated

memory management of individual executors could not always provide a good performance

due to its individual management strategy.

Figure 4.2: Memory sharing among multiple executors.

To tackle this problem, we separate the original on-heap and off-heap memory space,

and then combine off-heap memory segments from different executors together as a unified

cache space (i.e., iMCache as shown in Figure 4.2), so that executors can share iMCache

with each other. Then iMCache has to employ an efficient cache management policy to

guarantee the flexibility of memory usage with multiple executors. Intuitively, we apply

the default LRU strategy in the shared iMCache, which is denoted as S-LRU strategy.

I-LRU (i.e., default Isolated LRU) is used to distinguish with the LRU policy used in on-

heap memory without shared off-heap memory space. Figure 4.3(a) provides the system

performance comparison between I-LRU and S-LRU approaches while running Kmeans

workload. It is obvious that S-LRU outperforms I-LRU 30% on average in terms of data

hit rate. However, we also find naive S-LRU cannot always perform well at runtime, such

as the period between 12 to 14 seconds. The above observation confirms the potential

benefits of sharing off-heap memory among executors, and motivates us to develop a more

efficient cache management strategy. However, there are significant major challenges when

applying iMCache: (1) how to efficiently allocate shared cache memory among multiple

executors? (2) when memory tension occurs in this region, how to select data blocks to be
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Figure 4.3: Figure (a) shows the comparison between I-LRU (Isolated LRU) and S-LRU
(Shared LRU) eviction policy. Figure (b) shows the runtime impact with different shared
off-heap memory sizes.

evicted?

4.2.2 Memory allocation of iMCache

There are various works [89] [90] on elaborating cache size configuration to tackle some

of the above problems. However, these existing methods are not flexible and applicable on

Apache Spark due to the unique in-memory computing characteristic [1]. Thus, we conduct

a case study to investigate the sensitive cache size setting while sharing off-heap memory.

Figure 4.3(b) depicts the job runtime achieved under different shared off-heap memory

size configurations with two executors deployment model. It is obvious that the runtime

decreases with the growth of the off-heap memory at the beginning stage, and the best

performance comes with 256MB configuration. However, the performance dropped when

memory size is over 256MB, reason behind this phenomenon laid on the fact that larger

memory comes with more GC activities [91] leading to a longer runtime. This observation

demonstrates a reasonable amount of shared memory can benefit the application perfor-

mance while oversharing memory may incur performance degradation. Given this fact we

focus on designing an efficient memory sharing policy to build iMCache as follows.

yi(t) = Ri(r(t), em, s(t), ξ(t)).

This formula describes the relationship between input variables and output variable. The

input variables are as following: r(t) is the total memory allocation, em represents the

number of executors deployed on a single node, the memory size of each executor should
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denote is expressed as s(t) and the regression vector is ξ(t). The output yi(t) is the average

task completion time for each job. As many Spark applications have predictable structure

in terms of computation and communication, iMlayer predicts the s(t) for a specific job

based on monitoring the similar job’s previous runs [92]. Here, the regression vector ξ(t)

contains a series of lagged outputs and inputs from the previous sample intervals, which is

expressed as

ξ(t) = [(y(t− 1), y(t− 2), ..., y(t− ny)),

(r(t), r(t− 1), ..., r(t− nr))]T .

where ny and nr represent the number of lagged values for outputs and inputs. Let ρ

denotes the number of elements in ξ(t), so we can have

ρ = ny + nr.

R is the rule-based fuzzy model that consists of Takagi-Sugeno rules [93]. Ri, a rule of

R which means a relation between application’s allocated memory and its running time.

Moreover it can be represented as

Ri: IF ξ1(t) is Ωi,1, ξ2(t) is Ωi,2,..., and ξρ(t) is Ωi,ρ

r(t) is Ωi,ρ+1 and ei is Ωi,ρ+2, s(t) is Ωi,ρ+3,

THEN yi(t) = ζiξ(t) + ηir(t) + ωiei + δis(t) + θi.

In this formula, Ωi is the antecedent variables of the ith fuzzy rule, which is consisted of

Ωi,1, Ωi,2, ..., Ωi,ρ+1, Ωi,ρ+2, and Ωi,ρ+3. The value of parameters ζi, ηi, ωi, δi and offset

θi are calculated by offline training based on application’s running logs. Furthermore,

each fuzzy rule describes a nonlinear relationship between the shared memory size and the

corresponding task completion time for a specific workload.

To obtain the above model, some necessary parameters, i.e., y(t), r(t), em, s(t) are first

parsed from the workload’s historical logs. A pattern model is built (as shown in Line

3-6 in Algorithm 1) to describe the relationship among those parameters following the
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Algorithm 1 Cache Donation
Input: app_type, app_log
Output: iMCache: memory size in terms of s(t)

1: // Building Fuzzy Model
2: function CALOPTMEM(app_type, app_log)
3: // Abstract parameters y(t), r(t), em, s(t)
4: mem_para = parse(app_log)
5: //Build Fuzzy model
6: Ri = bldfuzzy(mem_para)
7: // Get s(t) of each executor running specific workload based on relation model R
8: s(t) = getSharedMem(app_type, R)
9: set iMCache according to s(t)

10: set cache_mem = allocMem(s(t))
11: end function

proposed fuzzy model. In particular, different workloads may follow various patterns so

that we use R to maintain all possible relation models. When a workload is deployed, our

architecture decides the memory size that each executor should denote based on its type

and performance model. After getting the parameter s(t) for each executor, the size of

iMCache is determined, which is shown by Line 4-10 in Algorithm 1.

4.2.3 Eviction Policy in iManager

Given the fact that the memory reference behaviors of Spark applications vary dra-

matically by different stages, jobs and applications, the naive cache eviction policy (i.e.,

LRU) may not guarantee a good and stable performance. As the shared cache memory

space is typically much larger than the default exclusive memory of each executor, we pro-

pose a new eviction policy based on next re-reference distance, which concept is adopted

in [58] [59].

1. Next Re-reference Distance (NRD): We first introduce a metric, i.e., Next Re-reference

Distance (NRD), to predict the possibility of a cache data block to be referenced again.

Moreover, M-bit per cache block is used to denote one of its 2M possible Next Re-reference

Distance. NRD of each data block cached in iMCache dynamically gets updated once

a block reference operation is requested. An NRD of zero implies that a cache block is
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predicted to be re-referenced in the near future while NRD of saturation (i.e., 2m-1) means

that a cache block is supposed to be re-referenced in a longer future. Quantitatively, data

blocks with small NRDs are supposed to be re-referenced sooner than blocks with larger

NRDs.

The key role of NRD is to prevent blocks with longer re-reference distance from oc-

cupying the limited cache space too long time. Without any historical or external block

reference information, NRD of each block is calculated by statical prediction. Since al-

ways assigning a 0 or 2m NRD to newly inserted data block could not guarantee robustness

across all block reference sequence. If the newly inserted data block is assigned with a

0 NRD, its re-reference distance will be updated so frequently that NRD fails to describe

the real re-reference sequence. Oppositely, set newly data block’s NRD to be 2m causing

longer cache occupation. So we assign the NRD of newly inserted data block to be 2m-1,

which value could guarantee the freshness of data blocks in cache. Additionally, always as-

signing 2m-1 instead if 2m brings more time to learn and improve the re-reference distance

prediction.

Figure 4.4: NRD based data structure of an RDD block.

An eviction strategy in terms of NRD is implemented in iMCache. Figure 4.4 depicts

an example of the data structure of an NRD based RDD. Each RDD contains several data

blocks. A data block is highlighted to illustrate its components. For each data block shown

in this example, it mainly has two parts: Meta-data is used to describe attributes of data

block while Data contains the real contents of each block. In particular, the shadowed

section belongs to the meta-data part is a 2-bit (M=2) marker. We use this section to denote
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four (22 = 4) possible situations of NRD (0, 1, 2 and 3). As is mentioned above, the NRD of

each newly inserted data block is set to be 3, which is denoted as 11 in the marker section

of Meta-data part. Its metric gets decreased if this block is just re-referred. When cache

space is full, data blocks with large NRD (3 in this example) is the victim to be evicted

while blocks whose NRD being 0 are highly kept in the cache space.

Figure 4.5: Behavior of LRU and NRD in reference sequence.

Figure 4.5 provides an intuitive behavior comparison between our proposed NRD policy

and the default LRU method in the case of shared cache. In this example, we deployed two

executors on a machine. To distinguish individual blocks belong to each executor, we use

white blocks to represent Executor #1’s and shadowed ones are for Executor # 2. Besides,

the shared cache memory size among executors is set to be 4. So M=2 bits is used to repre-

sent the predicted re-reference distance for each block. Besides, this metric is denoted by

the subscript outside each block in the right part of Figure 4.5. We use the following mixed

block reference sequence from two executors to illustrate cache replacement behavior in

shared cache space: {α1, α2, α2, α1, β1, β2, γ1, γ2, α1, α2, ...}.

The left column represents the behavior of LRU while our policy’s behavior is provided

in the right column. At the very beginning, two policies display a similar performance that

both of them bring more missing than hitting references. However, as reference moving
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on, NRD policy outperforms the default LRU by more hitting references. We observe

that NRD gets 4 cache hits and outperforms the original LRU with only 2 cache hits. The

example shows that our policy provides a better hitting performance by correctly predicting

a shorter next re-reference distance for the most possible re-used cache blocks and a longer

next re-reference distance for blocks that would not soon be referred again. In this case,

the hit rate is significantly increased by NRD compared with the default LRU policy.

2. Eviction Strategy: Next Re-reference Distance (NRD) replacement policy is a modi-

fied LRU eviction strategy. It uses NRD to predict a cached block should be kept or evicted

when the next block reference request comes. The primary goal of NRD is to prevent blocks

with a shorter re-reference distance from being evicted. Without any external re-reference

information, NRD statically predicts each block’s re-reference distance. To make eviction

more robust, NRD always inserts new blocks with a longer re-reference distance. 2M -1 is

applied to denote a longer re-reference distance. The intuition behind always assuming a

longer re-reference distance on cache insertion is to prevent cache blocks with re-reference

in the future from polluting the cache.

Algorithm 2 Block Eviction
Input: cache_mem, refer_sequence
Output: Blocks get evicted

1: function EVICTBLOCK(cache_mem, refer_sequence)
2: for (block b in refer_sequence) do
3: if (b got hit in cache_mem)
4: set r of block b to ‘0’ //r is NRD
5: else search 1st block with r = 2M − 1 & update
6: if (found this block)
7: new block cached & set its r = 2M − 2
8: else increase all blocks’ r by 1 & repeat Line 6
9: end for

10: CacheMonitor.updateInfo(evictedBlocks)
11: end function

Algorithm 2 shows the procedure of NRD eviction policy. Two parameters are used

as the inputs for EVICTBLOCK: cache_mem is the iMCache space shared among ex-

ecutors and refer_sequence maintains a mixed block reference sequence from all execu-
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tors. When reference sequence (refer_sequence) is not empty and new data referring

request aNRDes, the algorithm first checks if the demanded data block is already cached in

cache_mem. If so, its NRD is set to be 0 (a shorter interval), which denotes this block is

just referred and has a high possibility to be re-referred in the near future.

In the case of cache miss, a victim block is supposed to be selected by finding the first

block to be re-referenced in the distant future. This victim block will be evicted to make

space for the coming block. We define the block whose NRD is 2M − 1 as the victim.

The list parameter evictedBlocks who maintains information on evicted blocks is updated

by adding the victim’s information into it. This strategy breaks ties by always starting

the victim search from a fixed location. There are possibilities that victim selection failed

as a block with a long distant re-reference distance can not be found. In this case, our

method updates NRDs of all cached blocks in cache_mem by incrementing 1 and repeats

the search until a block with a distant re-reference distance is found (Line 6-8). Then the

information maintain in evictedBlocks is updated. Finally, the information maintained

by evictedBlocks is sent to iMonitor component (Line 10), whose duty is maintaining

blocks’ basic information to help Block Manager locate demanded blocks rapidly and

timely. EVICTBLOCK would not be invoked when there is no block request coming or

memory tension occurs.

4.3 iMlayer Implementation

Figure 4.6: Workflow comparison between iMlayer and vanilla Spark.

iMlayer is implemented with three major modules, i.e., iMCache, iManager and iMon-
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itor, which are written in Java on top of Spark 2.2. Figure 4.6 shows the comparison of

data interactive workflow between iMlayer and vanilla Spark. In Spark, the default work-

flow mainly consists of three parts: Executor, On-heap Memory and Local Disk. When

Spark application begins to run in an executor, the on-heap memory space designated to

this executor is empty. As the computation moving on, new data blocks would be cached in

this space. As shown by solid rectangles and lines, we added iMCache between executor’s

on-heap memory and local disk. To uniformly manage the cached data block, we disable

functionalities of StorageMemory region in on-heap by configuring its size to be 0. So

the intermediate data generated by all executors would be cached in iMCache. Caching and

evicting operations in iMCache are executed by iManager under the control of iMonitor.

iMCache uses a process allocate_mem to initialize sharing layer where cached blocks

are uniformly managed. rec_refer_info is the function to record cached blocks refer-

ence information and which executor it belongs to. Referring information gets updated

once any reference request submitted. When an executor finished its job, free_cache

is called to release iMCache space it took. By this operation, free space is available

to cache blocks for other running executor sharing this memory layer. iManager is re-

sponsible for managing data blocks cached in iMCache. To implement this function,

two core operations are applied in this component: CACHE and EVICT. CACHE oper-

ation handles the request of storing blocks evicted from executor’s on-heap memory space.

A list parameter refer_sequence is adapted to maintain the mixed reference requests

from all executors. EVICT is used to decide which blocks cached in iMCahce should

be evicted when memory tension occurred. Our proposed eviction policy NRD is used

in EVICT. The function EvictBlock implements key operations of EVICT by choosing

blocks with higher NRD and updates blocks information in evcitedBlocks. Furthermore,

when evicted blocks were successfully placed into local disk, their location information

is then maintained by disk_addr function. iMonitor maintains the block information be-

tween BlockManager and iManager. When any CACHE or EVICT operations executed,
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the monitor process keeps the updated information in meta-data section and conveys to

BlockManager via updateInfo function. If executor fails to find the requested block

in its on-heap memory, it will ask BlockManager whether those blocks existed in iM-

Cache with function read_imcache. If this block gets hit, memory address in iMCache

will be provided and then corresponding blocks would be fetched directly. However, when

those blocks are not cached, iManager then tries to search them on the local disk by calling

function search_disk.

4.4 Evaluation

4.4.1 Experiment Setup

The evaluation testbed consists of 9 nodes, each of which has Intel Xeon(R) CPU E5-

2630v4@2.20GHz x 20 and 64GB DDR4 RAM, running Ubuntu 16.04 LTS operating

system with kernel version 4.0, Scala 2.10.0, and Hadoop YARN 2.8.0 for cluster man-

agement. One node serves as the master, and all the other 8 nodes serve as slaves. These

nodes are connected with Gigabit Ethernet. We apply the default resources management

policy and Fair Scheduler strategy to control resources (CPU & memory) allocation and

job scheduling. To test our prototype, we use three workloads from the HiBench big data

benchmarking suite [45]. We run each workload 5 times to get an average performance so

that accuracy could be guaranteed. We compare our method with the following two repre-

sentative approaches. (1) I-LRU (Isolated Least Recently Used): the default management

policy adopted by Spark, and merely evicting blocks based on the last time they are refer-

enced. (2) S-LRU (Shared Least Recently Used): we introduce the iMCache and use LRU

in this shared memory space. In contrast, our proposed eviction policy (i.e., NRD) that

takes NRD into consideration when managing cached blocks. Unless otherwise noted, all

experiments were conducted on resource allocation of Case #2: two executors are deployed

on the same worker node, each executor is allocated with 4 CPU cores and 4GB exclusive

memory.
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Figure 4.7: Hit rate traces under the three eviction policies with different workloads.

4.4.2 Improvement on Block Hit Rate

Figure 4.7 depicts the hit rate variation tendency within a typical time period (0s-40s) at

runtime. The results show that hit rates from different architectures keep increasing at the

beginning stage due to more requested data blocks cached in memory. However, hit rate

decreases occasionally in later stages when the cache memory space is full and cache miss

occurs. In this case, the eviction policy should evict several unnecessary blocks in order

to load required ones, which explain the rise of hit rate in each curve. Figure 4.7 further

demonstrates that iMlayer outperforms vanilla Spark by achieving higher hit rate and de-

creasing fluctuations in workloads’ tendency. Hit rate changes of Kmeans and PageRank

(plotted in Figure 4.7(a) and (c) respectively) are more obvious than SVD’s changes (shown

in Figure 4.7(b)).
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Figure 4.8: Average hit rates in different cases.

Figure 4.8 compares the average hit rates achieved by different cases. iMlayer with NRD

obtains average 45%, 16% and 27% improvements respectively on these workloads com-

pared to the vanilla Spark with default LRU. The results also demonstrate that iMlayer with

LRU achieves 19%, 5% and 6% enhancements compared to the vanilla Spark architecture.
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A shared cache layer can effectively improve cached blocks hit rate by caching and evict-

ing blocks uniformly, as it takes all executors’ demands into consideration when evicting

cached blocks. Moreover, the hit rate improvements of Kmeans and PageRank from iM-

layer are more obvious than SVD. Reason behind this phenomenon is the fact that SVD is

a CPU-bound workload and the benefit of memory utilization improvement is limited. In

most cases, the assigned memory space is sufficient to cache SVD’s demanded data blocks.

4.4.3 Improvement on Reference Locality
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Figure 4.9: Data reference locality.

Data Locality indicates how much valid or useful data are preserved in cache space.

With higher data locality percentages, frequency of data movement in cache is decreased.

Figure 4.9 investigates performance on data locality with four cases. Comparing the whole

results, iMlayer outperforms vanilla from the view of architecture and NRD defeats LRU

in the point of eviction policy. iMlayer with NRD obtains the best performance by bringing

62%, 8% and 38% improvements compared to vanilla Spark with LRU for Kmeans, SVD

and PageRank respectively. NRD alone still obtains about 16%, 13% in average data local-

ity when comparing Spark/I-LRU v.s. Spark/NRD and iMlayer/S-LRU v.s. iMlayer/NRD.

Data locality percentages in Kmeans and PageRank increases obviously with the iMlayer

(a larger shared cache space) or NRD policy (more accurate prediction in block preserv-

ing). However, the performance of SVD’s is relatively stable under the different four cases

because the reference behavior of SVD does not change too much and the allocated cache

space is large enough to preserve data blocks it demands.
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Figure 4.10: Performance impacts under different eviction policies, number of executors
and iMCache sizes.

4.4.4 Improvement on Job Runtime

Figure 4.10(a) shows job runtimes of three chosen workloads under various cases. In

general, our work deployed with NRD achieves the best performance by obtaining 47%,

43% and 38% improvements compared to vanilla Spark with LRU for all above workloads.

Particularly, vanilla Spark deployed with NRD outperforms it adopts LRU (Spark/I-LRU)

with about 43%, 32% and 33% improvements respectively. It demonstrates that NRD evic-

tion policy can dramatically improve the job level performance by efficiently managing the

data blocks in limited memory space. When applying naive LRU policy in iMCache, it

(i.e., S-LRU) outperforms vanilla Spark with LRU about 16%, 23% and 9% in job run-

time. It further demonstrates the memory sharing policy can effectively improve job level

performance by uniformly managing blocks.

Figure 4.10(b) depicts various job runtimes under the iMlayer with different numbers

of executors deployed on each slave node. The experimental results show Kmeans and

PageRank benefit more than SVD when increasing the number of executors from 1 to

8. Figure 4.10(b) also illustrates that more executors may not always bring better perfor-

mance. The best performance of Kmeans and Pagerank are achieved with 4 and 6 executors

respectively. However, SVD’s performance does not change too much under the different

numbers of executors because the cache behavior of SVD (a CPU-bound workload) is rel-

atively stable and does not need too much memory interactions.

Figure 4.10(c) investigates the performance impact of iMlayer with various iMcache
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sizes. In this experiment, we setup 8 cases with various iMCache sizes range from 4GB to

32GB. Moreover, NRD is adopted for cache management. In Figure 4.10(c), three work-

loads display similar performance behaviors in terms of the cache size impact. When iM-

cache size is small (e.g., 4GB, 8GB and 12GB), workloads’ runtime is longer because small

memory size could not cache enough data blocks so that more frequent I/O operations oc-

curred between memory and local disk. In particular, note that these job runtimes start to

drop down if the shared memory sizes are over provisioned because of the fact that too

large memory size may lead more GC operations.

4.4.5 Overhead Analysis
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Figure 4.11: Memory overhead of vanilla Spark and iMlayer.

To analyze the overhead of iMlayer, we conduct experiments to measure the memory

space consumptions in the eviction policy process while applying different approaches,

i.e., vanilla Spark with LRU, iMlayer with LRU and iMlayer with NRD, respectively. All

these relevant processes are running on java virtual machine. We assign 4GB memory

resource to each executor, which follows the practice experiences by existing works [89].

Figure 4.11 demonstrates that the memory overheads caused by different eviction processes

are far more less than typical executor’s memory sizes (i.e., 1GB to 24GB [89]). The over-

heads of eviction processes deployed in iMlayer are a little higher than vanilla Spark with

LRU. The reason is that more information about performance metrics have to be main-

tained for the shared cache management and NRD needs an extra memory space to record

NRD of each data block. In particular, the average memory overheads caused by iMlayer

with LRU and NRD are about 10% and 20% more than vanilla Spark with LRU respec-
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tively, which are negligible to the whole system-level memory resource. Considering the

performance improvement achieved by iMlayer, such memory overhead is an acceptable

trade-off between space and time consumption.



CHAPTER 5: DATA LIFE AWARE MODEL UPDATING STRATEGY FOR

STREAM-BASED ONLINE DEEP LEARNING

5.1 iDlaLayer Architecture Overview

We present iDlaLayer, a thin middleware layer between applications and backend deep

learning frameworks that realizes efficient online model updating.

Figure 5.1: Architecture of iDlaLayer.

Figure 5.1 provides an overview of iDlaLayer architecture. The critical contribution

relies on a novel Data Life Aware model updating strategy (DLA) to online learning appli-

cations. DLA is capable of building better training data samples in terms of contribution

made by data from different life stages and determining the right time to perform model

updating with a lower training cost. More details on updating strategy and data life cy-

cle would be discussed below. iDlaLayer mainly consists of two components as shown in

Figure 5.1: Model Controller and Data Controller.

• Model Controller has two functional parts. The training profiler logs and profiles

the training time for each application. We use linear regression approach [94] [95]

to predict time consumed to train a model based on the size of sample data. The
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prediction result is then used as an estimation of future arrival data. The updating

controller is responsible for deciding when to perform model updating and take the

role of communicating with the data management component. Besides, it is the

module where we implement DLA.

• Data Controller maintains and builds training data samples in terms of life stages.

This component communicates with the updating controller to evaluate the contribu-

tion each data made to model updating and then use such information as an index

determining data life stage among Newborn, Mature, Preserve and Discard. More-

over, the training data sample is built in this component based on the contributions to

model updating made by data from various life stages.

For centralized deployment, all applications interact with iDlaLayer through a client

exclusive to each other. The applications are also associated with backend frameworks,

e.g., TensorflowOnSpark, to implement their training logics. iDlaLayer communicates

with backend for model training and sample data management through RPC connection.

This architecture design implements a versatility feature while scalability and efficiency

are achieved with only one iDlaLayer thread deployed in backend frameworks.

For distributed deployment (including a master node and several slave nodes), we deploy

iDlaLayer in the master node, which is responsible for data management, and communi-

cate with all slaves to perform model training. When iDlaLayer is used to manage multiple

applications, the application-specific information maintained by model controller and data

controller, e.g., the mount of arrival data, last model update time, data life stages, etc. are

necessary. A possible solution to organize this information is to launch an exclusive iD-

laLayer thread for each application and manage information individually. However, multi-

ple threads always bring too much context switches overhead. To release system pressure,

we only deploy a single iDlaLayer thread in the master node to maintain the information of

all applications and allow each application to communicate with iDlaLayer asynchronously.
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5.2 Data Controller

5.2.1 Data Life Cycle

Before describing the general training workflow, we first introduce a concept named

Data Life Cycle. The data life cycle is a sequence of stages that a data sample goes

through from its initial generation to its eventual discarded at the end of its life. In this

paper, we mainly divide the data cycle of data into four stages: Newborn, Mature, Preserve

and Discard according to its performance in updating model quality.

• Newborn: In this stage, data arrivals from various sources such as users, databases

and previous processing stage. Typically, data staying in this stage is ready for being

incorporated for model training and this waiting time may vary a lot due to the current

model updating strategy.

• Mature: Sample data gets its turn to be absorbed by the current model training

process in this stage. The contribution to improve the training model is supposed to

be evaluated, which is used to decide whether this data should be preserved for future

usage or be abandoned directly.

• Preserve: The data contributes a lot in improving model training and is preserved for

future usage. Given the fact that online learning has no knowledge of future coming

data, preserving some data samples is helpful in training a more accurate model and

saving model training time.

• Discard: This is the last stage, in which the data is discarded because it cannot make

any contributions to model updating. Meanwhile, other data samples with better

performance may be available. Keep discarding and updating the preserved data

could benefit model updating that lives up to the changing environments.

Figure 5.2 depicts an example of a general dataflow in iDlaLayer. From left to right, it is

a timeline following the application’s running. Two trainings are introduced to demonstrate
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Figure 5.2: Dataflow in iDlaLayer.

the online learning loop. Some data samples (illustrated as "Data" in Figure 5.2) are used

to train the model for each batch. When training model finished, an updated model is

built and the training data is labeled as "Used Data" samples because life stages of data it

includes have changed. We denote this procedure as Data Classification and illustrated in

Figure 5.2. Any individual data in Discard stage is marked with the "X" symbol, which

means this data is supposed to be replaced by new arrival data in the next training data

sample. During the training model with data samples, some new data also arrived and are

ready to be incorporated for subsequent training. iDlaLayer then merges new data into

"Used Data" samples by abandoning data in Discard stage according to a combination

strategy. And then a new data sample is built by Data Selection procedure.

Moreover, our architecture is capable of deciding a better time of triggering model up-

dating in terms of training cost. After obtaining those information, another model training

starts, which is displayed as Batch 2 in Figure 5.2. Given the fact that numbers of arrival

data vary in different training batch, we just directly incorporate all the new data into data

samples to train model aiming to guarantee the freshness of data sample and the quality of

the updated model. More details about data combination and model updating strategies are

discussed in the next section.

5.2.2 Data Classification

Considering data are always generating and flooding into the application, it is difficult to

evaluate the performance of training data. We introduce the metric Data Contribution to di-
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rectly measure how much each data made to the quality of the training model. Specifically,

Data Contribution is evaluated by the loss value from the training model with batched in-

put data. Then we further divide the training data into different life stages in terms of their

contribution to model qualities. The built-in evaluation method model.evaluate() provided

by TensorFlow is adopted to assess the contribution of each data as well as the quality of

the training model. Since we use the same training data to train and evaluate models, it is

inevitable to bring some deviations to data contribution. To tackle this problem, we also

consider data occurrence when estimating data contribution.

After obtaining data contribution, we adopt the Fuzzy Model to guarantee a better life

stage division for different applications. In the fuzzy model, we use multiple inputs and

single output (MISO) to evaluate the contribution each data made. It is based on the rela-

tionship investigation of data occurrence, model quality and application types. The fuzzy

model is often used to capture the complex relationship between resource allocation and

a job’s fine-grained execution progress [96]. Given the periodic and repeatable feature of

online learning applications, we design a fuzzy model based on historical running logs. We

formulate a fuzzy model:

qi(t) = Ri(f(t), c, s(t), ξ(t)).

In this formula, the input variables are as following: f(t) is the occurrence frequency of

data, c represents the contribution of each data, the data stage is expressed as s(t) and the

regression vector is ξ(t). The output qi(t) is the quality of training model. As many online

learning applications have a predictable structure in terms of computation, our architecture

predicts the c for a specific application based on monitoring its similar previous runs. Here,

the regression vector ξ(t) contains a series of lagged outputs and inputs fof the prior sample

batches, which is expressed as

ξ(t) = [(q(t− 1), q(t− 2), ..., q(t− ny)),

(f(t), f(t− 1), ..., f(t− nr))]T .
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where nq and nf represent the number of lagged values for outputs and inputs. Let ρ

denotes the number of elements in ξ(t), so we can have

ρ = nq + nf .

R is the rule-based fuzzy model that consists of Takagi-Sugeno rules [93]. Ri, a rule of

R, which means a relation between data life stage and model quality. Moreover, it can be

represented as

Ri: IF ξ1(t) is Ωi,1, ξ2(t) is Ωi,2,..., and ξρ(t) is Ωi,ρ

r(t) is Ωi,ρ+1 and ei is Ωi,ρ+2, s(t) is Ωi,ρ+3,

THEN qi(t) = ζiξ(t) + ηif(t) + ωici + δis(t) + θi.

In this formula, Ωi is the antecedent variables of the ith fuzzy rule, which is consisted of

Ωi,1, Ωi,2, ..., Ωi,ρ+1, Ωi,ρ+2, and Ωi,ρ+3. The value of parameters ζi, ηi, ωi, δi and offset θi

are calculated by previous training loop based on the application’s running logs.

5.2.3 Data Selection

With the concept of data life stage, we formulate how to combine training data samples

at each batch. The formulation of the data selection strategy is as follows. Let m data

samples arrive in a sequence, which follows a time sequence a1, a2,..., am. Let’s assume

the i-th update begins at time ti and takes pi time to finish, so that Ii contains the data

arrived after the (i-1)-th update starts and before the i-th:

Ii = {k | ti−1 ≤ ak < ti}.

At first, as datasets arrived at the system, we define that all of them are in newborn stage.

Let Ni denote a set of newborn data samples. Similarly, Mi, Pi and Di represent Mature,

Preserve and Discard, respectively. We use Ii to indicate a collection of data samples to be

incorporated by the i-th update. Ii consists of data comes from Ni, Mi, Pi and Di, which

is expressed as:

Ii = αNi + βMi + γPi + δDi. (5.2.3.1)
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Here α, β, γ and δ represent percentages of data from each life stage. We need to optimize

parameters’ combination to guarantee that Ii contributes more in model updating.

So, the cumulative time cost, denoted Li, is computed as:

Li =
∑

k∈Ii ti + pi − ak, (5.2.3.2)

s.t. Ii ∈ {I}, ti, pi > 0,ak ∈ Ii,

where I is the available data sample set. Summing up Li from all updates, we can get the

data incorporation time cost with well-combined data samples to model updating:
∑

i Li.

5.3 Model Controller

5.3.1 Training Profiler

We declare another metric Training Cost to measure the cost spent in training model.

Training Profiler is responsible for profiling this metric and serving this information to

decide model updating times. Training cost is unavoidable when updating models, which

is directly measured by the machine-time in public from commercial or cloud providers. To

simplify the scenario, we assume that the training is finished on a single physical machine

in the following discussions. Therefore, the training cost of each model updating is equal

to its training time pi.

Based on our observations in the case studies, the training cost is in proportion to the

amount of data that the training is performed. To be more exact, the training cost follows a

linear regression model against the data mount, which can be expressed as:

pi = f(Ii) = λIi + ε, (5.3.1.1)

where λ and ε are parameters required by the linear regression model, which can be ob-

tained or determined by historical model updating activities. To measure the cost Training

cost is unavoidable when updating models, which is directly measured by the machine-time

in public from commercial or cloud providers. To simplify the scenario, we assume that the

training is finished on a single physical machine in the following discussions. Therefore,

the training cost of each model updating is equal to its training time pi.
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5.3.2 Updating Controller

The controller determines when to perform model updating considering training cost

and data life stages. The above metrics alone could not guarantee good model quality

and low training cost, a well-designed model updating strategy is indispensable for our

architecture. In this section, we propose a model updating strategy deployed in Updating

Controller based on data from different life stages.

Data Life Aware Strategy: The goal of iDlaLayer is to find a model updating strategy

that could maximize data contribution in terms of data life cycle and lower training cost

when handling dynamic data streams. In particular, we implement DLA to guarantee ac-

curate model training with considering various contributions offered in different data life

stages and determine when to perform the model updating operation. We formulate the

objective function with a knob parameter w, which means the training cost for each data

sample. It expects the data incorporation latency to be decreased by w. In this problem,

latency Li and processing cost pi are unified and should be optimized simultaneously, and

it can be expressed as:

minti(
∑

i Li + wpi).

The first subgoal of the strategy is to build better training data samples Ii in terms of the

contributions they would make to the model quality. Then the data incorporation latency Li

is calculated following Equation 5.2.3.2. To simplify the problem, we calculate the suitable

Ii with a greedy historical algorithm, and then with it to minimize the data incorporation

latency Li. Finally, the problem can be transferred as:

minti(
∑

i(
∑

k∈Ii ti + pi − ak) + wpi), (5.3.2.1)

s.t. Ii ∈ {I}, ak ∈ Ii, w, pi > 0.

The second subgoal is to find good updating decisions ti, i.e., the model updating time

point, which comes with a higher data contribution without knowing future data arrival.
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Model updating could be performed at any time point as long as new data arrives. For

any single random data sample, it is straightforward to calculate a suitable updating time ti

with traversing all possible solutions. However, the consumptions to obtain all combined

streaming data samples’ updating time points is enormous, whose worst case is checking

all potential solutions. Thus, Equation 5.3.2.1 is an NP-hard combinatorial optimization

problem. We adopt a competitive analysis method (which has been widely applied by

previous studies [97] [98]) to solve the problem in this work.

Algorithm 3 Data Life Aware Strategy
Input: a1, a2,..., an: arrival time of untrained data

α, β, γ and δ: parameters of data combination
λ and ε: parameters in runtime model
w: weight in minimization objective

Output: ti: the suitable update decisions
1: function CALCONTRI(i) //
2: ai = αNi + βMi + γPi + δDi

3: return updated ai and α, β, γ and δ
4: end function
5: Step 2 Cal Training Cost
6: function CALLAT(i, j) //
7: p = λ (j - i + 1) + ε // Estimate Rumtime
8: e = p + a [j] // End Time of Training
9: return

∑j
k=i e− a [k]

10: end function
11: Step 3 Make Update Decision
12: function CALUPDATE

13: l = CalLat(1, n)
14: for all k ∈ {2, ..., n− 1} do //
15: l’ = CalLat(1, k) + CalLat(k+1, n)
16: if l - l’ > wε then // Estimate regret
17: Get and output ti
18: end function

Online Learning Algorithm: Algorithm 3 depicts the main procedure of DLA, mainly

including Build Data Sample, Calculate Training Cost and Make Update Decision. (1)

Data sample is combined at the beginning of model updating according to Equation 5.2.3.1.

Function CalContri() (Line 1-4) builds combined data sample based on contributions made

by data from different life stages. Contribution here is measured by the model quality with
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historical data samples to ensure better data combinations for upcoming updating. Besides,

this function is responsible to update life stage of each data after new data arrives or an

updating finished. (2) When data samples are ready to be incorporated, DLA enters Step

2 by committing CalLat (Line 6-10) to calculate training cost of data based on Equation

5.2.3.2. Training cost consists of time spent in incorporation and processing with combined

data sample, respectively. DLA is designed to provide faster data incorporation at a lower

training cost. (3) Based on data samples and training cost, decision on whether and when

to perform a model update is made with function CalUpdate (Line 12-18) in Step 3, which

is the key procedure to solve objective function. Then update decisions ti as shown in

Equation 5.3.2.1 are transmitted to backend frameworks to commit model updating.

5.4 Workflow and Implementation of iDlaLayer

Figure 5.3: Detailed Training Workflow of iDlaLayer.

5.4.1 Workflow

Combing the concepts described above, Figure 5.3 depicts the detailed workflow of our

proposed architecture. Three training model stages are included: Batch0, Batch1 and

Batch2. Specifically, we adopt white, yellow, blue and red to denote data block in New-

born, Mature, Preserve and Discard stages respectively. Data samples containing several

data blocks are used to train the model. Batch0 is the first model training with the data

sample a0 that includes 5 Newborn data blocks (illustrated with white blocks). Since data

blocks contribute variously to model quality, their data life stages are different when model

training finished, which is shown by different colored blocks in a′
0. Step 1© demonstrates
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data life changes between a0 and a′
0. Comparing a0 and a′

0, red data blocks in Discard stage

are replaced with new arrival data blocks and turns into a′
i−1: 1 Mature, 2 Preserve and 2

Discard blocks. During the procedure of the model training with data sample a0, some new

data also arrived at the same time. If the current training finished and its training metrics

are profiled, a new data sample a1 (containing 2 Newborn, 1 Mature and 2 Preserve data

blocks) for next training procedure Batch1 is supposed to be built (illustrated by Step 2©).

Reason behind this operation is that red blocks would contribute less for the coming model

training, getting rid of those blocks brings more space and opportunities to new arrival data.

Step 3© describes updating decision which is responsible for determining when to perform

next training in terms of training cost. The next model training Batch1 is triggered with

newly built a data sample and model from the previous training procedure. Furthermore,

several performance metrics such as training cost, data contribution and "knob" parame-

ter are profiled in Step 4©. Similarly, Batch1 trains model and prepares data sample a2

for next training stage Batch2. This training loop would continue until no more new data

arrives or no improvement in model quality.

5.4.2 Implementation

We implement iDlaLayer with Java on top of TensorflowOnSpark. Figure 5.4 shows

the workflow of iDlaLayer. (1) When a new data sample arrives, an application contacts

its exclusive client process running in Model Controller to communicate with iDlaLayer

and then data information is sent to Data Controller component. (2) Data Classification

maintains the information of this dataset by setting and updating its life stage, and Updat-

ing Controller decides whether to make model updating. (3) Once the updating decision is

made, iDlaLayer informs the backend framework–TensorflowOnSpark to perform model

training. (4) Meanwhile, Data Selection is ready to send combined data samples to Tensor-

flowOnSpark. (5) After the backend framework finishing retraining model with new data

samples, it notifies Model Controller’s Training Profiler module to update the training

time profile for that application. Then Updating Controller evaluates contributions the data



63

samples have made as well as updates data’s life stage. The updated model can finally be

shipped to model serving systems for further inference requests.

Figure 5.4: The training workflow of iDlaLayer.

iDlaLayer uses a process allocate_mem to initialize memory space for maintaining data.

A function named serve_app is launched in Model Controller component to handle train-

ing data samples for each application. When new data arrives, this process transfers data

to Data Controller component by calling reciv_data function running in it. devi_data is

responsible to decide and update data’s life stages based on its contribution to model up-

dating. Based on the proposed Fuzzy Model, we experimentally determine the data life

stage ranges regarding to the distribution of each data’s contribution to the model quality.

We implement DLA in Updating Controller module determining when to perform model

updating. It follows the process we describe in Algorithm 1. Once an updating decision is

made by launch_update in Updating Controller, building training data sample procedure

starts to work by invoking build_sample. It is a lightweight process with quick response

and prompt processing features to guarantee a solid service to backend systems. Simulta-

neously, the backend also gets updating notification and begins to fetch data sample from

Data Controller component. After backend finishing model updating with new data, it re-

calls log_profile function in Training Profiler to update the training time cost by application

and the contributions new data has made. Meanwhile, devi_data is informed by log_profile

to update data life stages it maintains.
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Table 5.1: Experiment Applications

Application Algorithm Dataset Input
Pattern Recognition CNN MNIST 11.6MB
Classification Prediction DNN Criteo 1GB
Recommendation System PageRank wikipedia 243 MB

5.5 Evaluation

5.5.1 Experiment Setup

The evaluation testbed consists of 15 nodes, each of which has Intel Xeon(R) CPU E5-

2630v4@2.20GHz x 20 and 64GB DDR3 RAM, running Ubuntu 16.04 LTS operating

system with kernel version 4.0, Scala 2.10.0, and Hadoop YARN 2.8.0 for cluster manage-

ment. One node serves as the master, and all the other 14 nodes serve as slaves. These

nodes are connected with Gigabit Ethernet.

We select three representative applications: the pattern recognition with MNIST dataset [48],

the classification prediction based on Criteo [49] and the recommendation system with

PageRank. Table 5.1 shows the detailed attributes of the applications we used in experi-

ments. In our implementation-based experiments, we set up the scenario in which data are

continuously generated and fed into the system. Each sample data has a timestamp in the

trace so that they roughly follow the behavior of real-world data. The performance evalua-

tion mainly focuses on (i) training cost, (ii) ratio of data life stages, (iii) model quality, and

(iv) overhead.

5.5.2 Effectiveness on Ratio of Data Life Cycle

Figure 5.5 depicts data ratios of different life stages on five randomly time points from

the three applications, i.e., MNIST, Criteo and PageRank. We use stacked histogram to

denote the ratio of data life stages. Four patterned columns represent the four data life

stages we defined above. At each time point, it is obvious that ratios of data life stages vary

a lot since the solution to our objective function on finding better data combination ratios

changes over time. There are a few conditions that a data life stage does not show up in
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Figure 5.5: Ratio of data life stages on randomly chosen time points from MNIST, Criteo
and PageRank.

the combinations e.g., the time point 1 of MNIST (Figure 5.5(a)) and the time point 4 in

PageRank (Figure 5.5(c)). These cases illustrate the data in Discard stage makes no con-

tributions to improving model performance so that they are not included in combined data

samples. Figure 5.5 also displays that these combinations of data samples keep changing

at runtime and each application shows unique behavior in terms of combined data samples.

An effective ratio at a time point may not be valuable for the others. iDlaLayer is capable

of building training data samples with data from different life stages in terms of how much

contribution they could make to model updating.
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Figure 5.6: Dynamic data contributions over time.

We further monitor dynamic data life cycle changes at runtime. Figure 5.6 depicts traces

of three data samples from PageRank. y-axis represents four ranges illustrated by data

life stages (D=Discard, N=Newborn, M=Mature and P=Preserve) while x-axis is a ran-

domly selected time window. In the experiments, we use life stages to describe contribu-

tion changes of data sample instead of how much contributions they have made to model

quality. Experimental results show each data sample traverses four different stages during

the whole life cycle. Moreover, there are tendency variances among data samples over
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Figure 5.7: (a) displays data incorporation latency of DLA normalized by Optimal. (b)
shows elapsed time from Periodic and iDlaLayer.

time, which is displayed by curves fluctuations. Even at the same time point, life stages of

different data samples vary dramatically, such as at time point 12, Data 1 just arrives and

is allocated in Newborn stage, Data 2 is at the end of its life cycle and Data 3 contributes

a lot and is in the Mature stage. Based on these observations, DLA combines training data

samples in a real-time and dynamic manner based on life stages of data, which guarantees

the overall data contribution to model quality is high and maintains more valuable data for

future model updating while getting rid of dirty data.

5.5.3 Effectiveness on Training Cost Reduction

To illustrate performance differences in training cost, we compare our proposed solution

with Optimal strategy. We conduct real trace-based simulations to demonstrate the perfor-

mance difference in latency. Given the fact that the optimal training follows a linear pattern

to the size of data samples, we run this experiment on 200, 400 and 600 data samples ran-

domly selected from the datasets. Figure 5.7(a) depicts the data incorporation latency cost

of our method, which is normalized by Optimal offline training strategy. By checking the

results from those three applications, we observe that DLA also follows a linear relation-

ship to the size of data sample. Moreover, our method performs very closely to Optimal

offline training strategy in latency (which is about 1.32x on average).

We then compare Periodic updating and iDlaLayer deployed on a psychical cluster with

15 nodes. Figure 5.7(b) plots the performance (elapsed time in incorporating data) of Pe-
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riodic and iDlaLayer. The improvements incurred by iDlaLayer are 11.3%, 28.2% and

15.2% for MNIST, Criteo and PageRank respectively. Criteo benefits more than the other

two applications. The reason is iDlaLayer could maintain data based on its life stages with

more useful data combined into data samples and Criteo demands more duplicated data

in model training. The figure shows that PageRank requires more time in training model

while our method still decreases its total cost.

5.5.4 Effectiveness on Model Quality
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Figure 5.8: Quality of MNIST.

Model quality ultimately decides how well a prediction could be achieved. Specifi-

cally, we choose MNIST application and compare its quality between continuous (cont)

and iDlaLayer architectures. Model quality is measured by perplexity as we discussed in

Section 2.2. Figure 5.8 presents the result of a 10-minutes time window, where each dot

represents the end of one model updating procedure. Overall, the perplexity of cont and iD-

laLayer drops with the incorporation of new data. iDlaLayer’s perplexity drops more than

cont as it uses more beneficial data samples in model updating. Besides, it has fewer data

points in the dotline comparing with cont because some retraining instances are abandoned

and merged into others. Consequently, every model updating procedure in iDlaLayer cov-

ers more data and brings a better quality, which is about 5% improvement, as shown in

Figure 5.8.
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Figure 5.9: The training speed and the memory consumption of Vanilla TensorflowOnSpark
and iDlaLayer.

5.5.5 Overhead

To analyze the overhead of iDlaLayer, we use the vanilla TensorflowOnSpark as a base-

line and conduct experiments to measure (i) training speed, which measures how many

samples the system could process per second and (ii) memory consumption, which scales

how much memory resource it takes to realize the retraining strategy. Figure 5.9(a) depicts

the training speed comparison between the vanilla TensorflowOnSpark and iDlaLayer. iD-

laLayer results in 1.8%, 3.5% and 0.7% slowdown on MNIST, Criteo and PageRank re-

spectively. We can explain those slowdowns with DLA’s strategies on combined data sam-

ples and model updating decisions, which take a short time before the training procedure

begins. Overall, slowdown in training speed, which is 2% on average, does not signifi-

cantly affect applications’ performances. Instead, iDlaLayer decreases more time spent in

finishing the whole applications. Figure 5.9(b) shows memory consumption of the vanilla

TensorflowOnSpark and iDlaLayer. For all three applications, iDlaLayer consumes 28.7%,

20.8% and 42.1% more memory resource in running MNIST, Criteo and PageRank re-

spectively. The average memory overhead introduced is about 30.5% (23 MB), which is

negligible to the whole system-level memory resource. Considering the performance im-

provement achieved by DLA, such memory overhead is an acceptable trade-off between

space and time consumption.



CHAPTER 6: REFERENCE DISTANCE AND LOCATION BASED DATA

MANAGEMENT ON HYBRID MEMORY SYSTEM FOR DEEP LEANING

6.1 ReDL Architecture Overview

In this section, we propose a runtime system that implements ReDL, a thin middleware

layer between applications and backend deep learning frameworks.

Figure 6.1: Architecture Overview.

An overview of the proposed architecture is shown in Figure 6.1. The key contribution

relies on a novel reference distance and location based data management strategy (ReDL)

on hybrid memory system for DNN applications. RedL can place data objects (tensors)

into fast or slow memory and migrating data objects among them based on the liveness of

data objects. More details on data management strategy would be discussed below. As

Figure 6.1 shows, our proposed architecture mainly consists of three components: Kernel

Controller, Data Objective Controller, and Memory Controller.

Kernel Controller has two functional modules. The Kernel Profiling collects memory



70

access information of each kernel, records the related data objects (tensors), calculate the

kernel’s execution time in each layer, and decides the liveness of the kernel. The profiling

process only needs one training step to obtain the information and then update the profile

information in Profile Cache. The Profile Cache is a software cache reserved to record

profiled kernels. Since profiling of some DNN models may take longer time in training

and DNNs computation graph usually includes a lot of identical kernels, Profile Cache is

necessary. Besides, by reserving a specific profiling cache, the profiling step for any DNN

model only needs to be conducted one time.

Data Objective Controller is driven by the profiling information and implements the

ReDL method we proposed. Short-lived data objects are processed by Idle Migration while

long-lived ones are managed by Dynamic Migration, respectively. The short-lived data

object is placed into the fast memory with a contiguous free space by Idle Migration, and

some of them will be freed when the space is in a tension status. This method decreases

some unnecessary data movement caused by the short liveness of data objects. We adopt a

Dynamic migration strategy for long-lived data objects, which is to migrate data among the

fast and slow memory periodically. In a migration period, the Dynamic Migration module

prepares the requested data objects for the next coming period based on the static DNN

computation graph. To handle the case that requested data objects are not timely migrated

in the fast memory, we propose Direct Slow Memory Access (DSMA), which breaks the

barrier between computing units and slow memory by allowing computing units to directly

access data objects in the slow memory.

Memory Controller consists of two modules. The Fast Memory manages data placed in

fast memory while the Slow Memory maintains data objects in slow memory space. Be-

sides, Fast Memory and Slow Memory communicate with each other to finish data migration

between them. Data Objective Controller sends out all the data management information

with a periodical heartbeat connection protocol. ReDL controls data migrations among fast

and slow memories overlap DNN application execution, such that the application perfor-
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mance is not affected.

6.2 Kernel Profiling

Kernel Profiling inspects the DNN computation graph to extract the types and computa-

tion orders of kernels in the computation graph, the producer(s) and consumer(s) of each

kernel, and the data objects (tensors) it involves. It collects the profiling information of

the kernel and tensor, such as its liveness, accessing time, and execution time by changing

its inputs and outputs in fast and slow memories. Since the chosen location of input and

output tensor location is tentative, it might take a couple of training steps to decide the best

execution time of each kernel. We use the Profiling Cache to record the profiled kernels so

that the profiling step for any DNN graphs only needs to be conducted once.

We need to minimize the overall execution time of DNN computation graph with limited

memory size. In the static DNN computation graph, computation kernels are executed

sequentially. Therefore, there is not data object movement during the training step. We

formulate the objective function as:

min
∑

k∈κ,t∈τ ρk,t

s.t.



∑
t∈τ f(t,k) +

∑
t∈τ s(t,k) ≥ τ (1)∑

t∈τ f(t,k) ≤ FS (2)∑
t∈τ s(t,k) ≤ SS (3)

where k is a kernel in the set of all kernels in a computation graph and ρk is the expected

execution of kernel k. τ is the collection of all tensors for a kernel k and t is a tensor in τ .

ρk highly depends on the selection of locations to host input and output tensors for kernel

k. The location of the related inputs and outputs is important due to the dependencies

among kernels. As shown in Figure 2.3(b), the optimal case is inputs are placed in the

slow memory and outputs in the fast memory. The main constraints are on the amount of

memory used by the computation graph. Constraints (1) denotes the total memory usage in
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the fast and slow memory is no smaller than the total size of tensors for a kernel. Constraints

(2) and (3) represent the memory space used in the fast and slow memory, respectively.

To solve the objective function, we use the linear and integer programming theory [99],

which uses the profiling information to automatically optimize the placed locations of data

objects with memory size as the constraints.

6.3 Idle Migration

Idle Migration manages short-lived data hosted in the fast memory aiming to guarantee

a smooth training process by decreasing unnecessary suspense for data fetching. During

the DNN model training steps, the short-lived data is not accessed too frequently when

compared with the long-lived data object. However, Figure 2.9 shows a huge number

of short-lived data objects across the full DNN training step, which indeed has a non-

negligible impact on the training performance.

6.3.1 Managing Data Objects

A continuous space is allocated in the fast memory to host data objects with short live-

ness. This memory space is reserved for data with shorter liveness and some newly mi-

grated long-lived data objects. All the short-lived data objects in the fast memory are not

considered for migration when a memory tension occurs because their quantity is large.

The migration of short-lived data in other memory can take a lot of time and detrimental

to the training process. However, long-lived data objects are supposed to be migrated to

the slow memory if there is no enough space in the fast memory because these data objects

have a higher probability of being accessed again within the training steps. The continuous

fast memory space is assigned by the memory controller at the very beginning of every

migration period to host data objects for this current training iteration. With this operation,

ReDL ensures that there is enough space to hose short-live data objects. The access in-

formation of data objects is also collected during the migration period to achieve efficient

memory utilization and better application performance.
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When a new short-lived data object is required, ReDL first checks the free size of the fast

memory. If there is enough size to hold the data objects, it is directly placed. If not, some

short-lived data objects are selected as the victims to be freed, and then the migration of

new data objects is processed. The selection of victims is based on the liveness. Short-lived

data objects with shorter liveness are chosen. By doing this, the side-effects on application

performance is lighten. At the end of the current migration period, ReDL updates the metric

information such as liveness, accessing times for data objects and free space size, memory

utilization, and data locality for the fast memory used in the next migration period.

Algorithm 4 Idle Migration
Input: profiling_info, fast_mem_size, migration_seq
Output: data_info, mem_info

1: function ALLOCFASTMEM(fast_mem_size)
2: if free_size > fast_mem_size
3: mem_pts = fastMalloc(fast_mem_size)
4: free_size = free_size - fast_mem_size
5: return mem_pts
6: end function
7: function PARSEPROF(profiling_info)
8: data_info = parseInfo(profiling_info)
9: return data_info

10: end function
11: function FASTDOCTRL(mem_pts, data_info)
12: //New Data Paged in
13: if mem_pts is empty or enough space
14: mem_pts = placeData(data_info)
15: else freeVictimData()
16: return mem_pts, data_info
17: end function
18: function UPDATEINFO(profiling_info)
19: profiling_info = updateInfo(mem_pts,data_info)
20: return profiling_info
21: end function

6.3.2 Data Movement Implementation

Algorithm 4 depicts the main procedure of Idle Migration, mainly including AllocFast-

Mem, ParseProf, FastDOCtrl, and UpdateInfo functions. (1) The fast memory is allocated



74

at the beginning of each data migration period. Function AllocFastMem (Line 1-6) fin-

ishes smoothly applying for a continuous space from the fast memory if the available space

satisfies the requested memory size and updates the size of free fast memory. (2) Then

ParseProf function parses the profiles of data objects generated by profiling modules. In

this step, the basic accessing information of each data object (tensor) is abstracted, such as

liveness, execution time, input (producer), and output (consumer). According to the parsed

information, the short-lived data objects are preferentially placed in the just allocated fast

memory space. ParseProf (Line 7-10) also handles the migrations of the long-lived data

objects from the slow memory. (3) When a new data object request arrives and is not in the

fast memory, data migration is triggered. FastDOCtrl (Line 11-17) first checks whether the

fast memory space is empty or there is enough space for the new data object. If the check-

ing result is true, this data object is directly placed in fast memory. Otherwise, FastDOCtrl

traverses all the live data objects in the fast memory to find victims that are supposed to be

freed. Victims are the data objects with much shorter liveness and on longer accessed in

the current migration period. (4) The UpdateInfo (Line 18-21) function updates the metric

information of the fast memory size and data objects. And this information helps make

data management decisions in the next migration period.

The idle migration policy above tackles the issue of migrating short-lived data objects

back to the slow memory space if they are no longer requested. Idle Migration decreases

unnecessary data migrations, which result in performance loss and waste memory band-

width. It is a huge waste of the fast memory space if short-lived data objects keep oc-

cupying the limited valuable fast memory space. Furthermore, deciding the migrations

of short-lived data objects is time-consuming but cannot always guarantee accuracy since

collecting memory accessing information takes time, and calculating the total number of

memory access for data objects may be wrong. Idle Migration overcomes the limitations

with the DNN domain knowledge and all the essential information for making migrations

has been obtained in the profiling process.
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6.4 Dynamic Migration

Dynamic Migration controls migrations of long-lived data objects in the slow memory.

It uses the scalable migration period to decide the amount of long-lived data objects placed

in the slow memory and the frequency of data movements between fast and slow memories.

Besides, Dynamic Migration supports directly accessing the slow memory for the case that

requested data is not timely migrated in the fast memory. The critical operation in Dynamic

Migration is determining an optimal migration period size that brings the best DNN training

performance. In ReDL, a training step is equally divided into many migration periods to

guarantee a flexible control on long-lived data objects migrations. We use the layers in

the static DNN computation graph as the metrology to define the migration period. The

layer-based migration period usually ensures the completion of kernel operation at the end

of each period because no operations are running across layers. The static DNN graph

structure is fixed at the compiling step, which provides the probability to find the optimal

layer-based migration period. Besides, every layer has its own associated computation

sequence which would display a unique memory access behavior. Our proposed layer-

based migration period leverages the memory access pattern obtained in the profiling step

to lead data migrations.

6.4.1 Determining Migration Periods

Figure 6.2 depicts a general example of a layer-based data migration period. In this

example, two randomly consecutive migration periods, t1, t2, are displayed.

Data objects migration for period t2 is triggered at the beginning of the t1, aiming to

migrate most requested shored-lived data objects to the fast memory and long-lived ones

in the slow memory before the second period starts. This operation occurs during the

whole period so that data migration overlaps with DNN training and the overhead of data

migration is further neutralized. Given the fact that the size of fast memory space is limited,

memory tension is inevitable, which is shown as "Trigger migrations when memory tension



76

Figure 6.2: Layer-based data migration period.

occurs" in Figure 6.2. When this case happens, some unused short-lived data objects are

first freed, and then the long-lived ones that are not accessed in the current period are

migrated back to the slow memory. Such a strategy is applied to save the fast memory

space as much as possible. At the end of migration period t1, another data object migration

is triggered for the period after t2. A similar operation is conducted until the training phase

is finished.

Determining an optimal migration period is a dilemma. If the migration period is too

large, the amount of data objects to migrate can exceed the free memory space, especially

for the fast memory. If we adopt a small migration period, then the possible execution

time to overlap with DNN training is shorten. So the migration period should not be too

short; otherwise, the migrations of data objects to the right memory space cannot be timely

finished before the next migration period begins. A trade-off is to make between large and

small migration periods.

To tackle this problem, we formulate the objective function as follows:

min
∑

l∈γ Ll(I)

where γ is the collection of all layers l from DNN computation graph, Ll is the expected

execution time of layer l, and I is the optimal migration period for the DNN. The target is to

minimize the total execution time of the whole computation graph with the limited memory

space. Note that Ll depends on the memory size and data objects migration period.
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For Ll, we can express it as:

Ll(I) = pl(I) +ml(I) (6.4.1.1)

where pl(I) is the computation time and ml(I) is data objects migration time. To find the

optimal migration period I, we find that pl(I) and ml(I) have positive correlations with the

migration period I. The large the migration period is, the longer time takes by pl(I) and

ml(I). Equation (6.4.1.1) is subject to the following constraints:
pl(I) 6 S − F (I) (1)

ml(I) > pl(I)/BW (2)

where S is the total fast memory size, F is the total fast memory space reserved by the

short-lived data objects, and BW is the migration speed determined by bandwidth between

the fast and slow memories. F denotes the function of a migration period I. In our method,

we assume that each migration period has its specific F. According to the profiling results,

F is relatively stable. S is a constant, so S − F (I) is close to constant. pl(I) and ml(I) are

also monotonically increasing functions of I. Hence, constraints (1) and (2) build the upper

and lower limitations in determining the migration periods.

Although Equation (6.4.1.1) and its constraints reveal the inherent trade-off among large

and small migration periods, it still needs a dedicated algorithm to find the optimal migra-

tion period. In ReDL, we adopt an iterated greedy algorithm [100] [101] to determine the

optimal period at runtime. When the profiling step is finished, we start with the migration

period of the median of the total layers and then test if this period satisfies the constraints.

If the test result is positive, the optimal migration period is determined. Otherwise, we will

first repeat this process with a new migration period by adding 1 layer to the current period

size. And then test the case by deducting 1 layer from the median number of total layers.

During this optimizing round, three training iterations are included. In the next round, the

algorithm tests the migration periods by adding or deducting 2 to the median number. A

similar round is repeated until the optimal migration period is found. We measure the per-
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formance from different migration periods and select the one with the best performance

in the following training procedures. We must ensure that data placement within any op-

timizing round is the same in order to obtain accurate comparison results. The same data

placement is easily guaranteed due to the repetitive and predictive execution behavior in

DNN model training. It might take a couple of rounds to determine the optimal migration

period and result in some performance loss, but the total overhead is not large because this

case does not often happen and performance loss is compensated in the remaining training

steps.

Figure 6.3: Direct Slow Memory Access (DSMA).

6.4.2 Direct Slow Memory Access

Another case to consider is the optimal migration period fails to fit some of the compu-

tation phases, because there is no enough time for migrating requested data objects from

the slow memory to the fast memory before the upcoming period starts. To tackle this

problem, we propose Direct Slow Memory Access (DSMA), which breaks the barrier be-

tween computing units and slow memory by allowing computing units to directly access

data objects in the slow memory. Figure 6.3 shows a simple dataflow of DSMA. In the

regular dataflow, data objects in the fast memory are directly accessed by computing units

such as CPU, GPU, and FPGA to execute DNN model training. Data objects saved in the

slow memory are first migrated in the fast memory and then computing units can use them.

With DSMA, computing units can directly access data objects in the slow memory without

first migration in the fast memory. Application performance from DSMA cannot compete
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with the regular access mode, but DSMA does not occur frequently and its adverse impacts

are negligible.

Algorithm 5 Dynamic Migration
Input: profiling_info, fast_mem_size, migration_seq
Output: data_info, mem_info

1: function ALLOCSLOWMEM(fast_mem_size)
2: if free_size > fast_mem_size
3: mem_pts = fastMalloc(fast_mem_size)
4: free_size = free_size - fast_mem_size
5: return mem_pts
6: end function
7: function PARSEPROF(profiling_info)
8: data_info = parseInfo(profiling_info)
9: return data_info

10: end function
11: function FINDOPTPERID(data_info)
12: opt_period = findPerid(data_info)
13: return opt_period
14: end function
15: function SLOWDOCTRL(opt_period, mem_pts, data_info)
16: if mem_pts is empty or enough space
17: mem_pts = placeData(data_info)
18: else freeVictimData()
19: return mem_pts, data_info
20: //Data Migrated to fast memory
21: if opt_period is valid
22: mem_pts = migrateData(data_info)
23: else accessSlowMem(mem_pts)
24: end function
25: function UPDATEINFO(profiling_info)
26: profiling_info = updateInfo(mem_pts,data_info)
27: return profiling_info
28: end function

Algorithm 5 depicts the main modules of Dynamic Migration. The functionalities Alloc-

SlowMem, ParseProf (Line 7-10) and UpdateInfo (Line 25-28) are similar to Idle Migra-

tion. SlowDOCtrl (Line 15-24) manages the long-lived data objects. The newly coming

long-lived data is placed in slow memory. The migration operation to the fast memory

happens only when it is during a valid migration period and there is enough free space in
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the fast memory. We implement our proposed iterated greedy algorithm in FindOptPerid

(Line 11-14), aiming to find the optimal migration period. As discussed in the above con-

text, determining the optimal migration period might take a couple of rounds and cause

some performance loss. We implement Direct Slow Memory Access (DSMA) in accessS-

lowMem function (Line 23) in SlowDOCtrl to handle the case that data migration to the

fast memory cannot be finished due to the migration period does not fit to some layers.

With DSMA, the training step still continues by directly accessing long-lived data objects

in slow memory and does not need to migrate date from the fast memory. Overall, Al-

gorithm 5 does not bring large overhead because these special cases do not happen often.

Hence a huge number of training steps or testing rounds to determine the optimal migration

period is not too needed.

In ReDL, since the long-lived data objects are placed in the slow memory and their total

size is usually much larger than the short-lived ones, the size of this memory is allocated

tens of GB to host data objects for the whole DNN model training steps.

6.5 Implementation

Figure 6.4: An Example of Workflow with ReDL

Figure 6.4 illustrates the detailed workflow of our work. In this example, we include

three data migration periods: t1, t2 and, t3. The profiling process is performed before t1

begins. Step (1) Data objects (in this paper, data object and tensor represent the same item),

six kernels in this figure {k1, k2, k3, ..., k6}, for training DNN model and the corresponding

static computation graph are fed into Kernel Controller, which profiles the basic metric
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information of each kernel such as its execution time, liveness, input (producer) and output

(consumer), and access records of its related data objects. Meanwhile, Kernel Controller

searches Profile Cache to check if any kernel’s profiling information has been profiled

in the prior training iteration. If the search returns a positive result, the existed profiling

information is used; otherwise, a new profiling record is written into this cache. Step (2)

Then the first data migration period t1 starts with Data Objective Controller. As Figure 6.4

shows, k1, k3 are short-lived data objects and allocated in the fast memory space by Idle

Migration and long-lived kernels k2, k5, k6 are placed in the slow memory with Dynamic

Migration. As the current training iteration executes, the data object requirements for the

next iteration might change. Step (3) The application enters data migration period t2, which

is overlapping with the application execution. k6 is migrated from the slow memory to the

fast memory. This migration should be made timely before k6 is needed by the next training

iteration. In t2, the data migration mainly occurs between different memory hardware, and

no new data objects are placed in the fast or slow memory. Step (4) In t3, k4 is newly

migrated in the slow memory based on data requirements analyzed from the computation

graph. k1 is freed because it finishes all its lifetime and no other kernels need it. A special

case is that the required data object k5 is not timely migrated in the fast memory. In this

particular case, the application continues executing by directly accessing k5 from the slow

memory. Accessing the slow memory is relatively slower than the fast memory, but it is

still a memory-access operation and faster than migrating the needed data objects from the

local disk.

6.6 Evaluation

6.6.1 Experiment Setup

We study the performance of ReDL on a single machine, which has Intel Xeon(R) CPU

E5-2630v4@2.20GHz x 20 and 64GB DDR4 RAM. Table 6.1 shows the testbed environ-

ment in our experiments. Persistent Memory Block Driver (PMBD) [53] simulates a slow

memory while DRAM serves as the fast memory so that a hybrid memory system is built.
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Table 6.1: Overview of Experimental Environment

CPU Intel Xeon(R) CPU E5-2630v4
DRAM 64 GB DDR4
Fast Memory Bandwidth: 36 GB/s Latency: 90ns
Slow Memory Bandwidth: 18 GB/s Latency: 200ns

Table 6.2: Summary of selective benchmarks.

Benchmark Dataset Batch size Model size
ResNet50 V2 CIFAR-10 128 98 MB

LSTM PTB 20 106 MB
VGG 19 CIFAR-10 64 549 MB

Inception V3 MNIST 64 92 MB

We compare the performance of ReDL with NUMA [54] and OS-Integrated Multi-level

memory management system(OIM) [21]. In NUMA [54], when new memory is allocated,

it will occur in the fast memory if free space is available; otherwise, it will only occur in the

slower memory node. OIM improves page migration performance by launching 4 threads

for paralleling page copy and 8 threads for concurrently conducting page migration, and

it also optimizes the location of page every five seconds [21]. Unless specified otherwise,

all the experiments are conducted on a pure CPU platform and the total size of the fast

memory is configured to be 20% of the peak memory consumption of each DNN model.

We will leave the CPU and GPU computation in the future work.

We select four popular DNN workloads to benchmark our work. Table 6.2 illustrates

some selective workloads and their parameters. TensorFlow [52] is used to implement

ReDL and test its performance with these four workloads: ResNet50 V2 [102], LSTM [56],

VGG 19 [21], and Inception V3 [103]. Each workload is run until its execution time in a

migration period is stable. Given that these workloads do not have data dependent relations,

their performance will be relatively stable with the first couple of computation iterations

finished. For Tensorflow, we set its inter-op parallelism and intra-op parallelism to be 20

so that this is in consist to the physical cores in our testbed, so that all the experiments are

conducted on the CPU with one thread per physical core. The performances of our work
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Figure 6.5: Training throughputs from FastMem, ReDL, OIM, NUMA and SlowMem

are mainly evaluated in (i) training throughput, (ii) training speedup, (iii) data locality, and

(iv) overhead and scalability.

6.6.2 Training Throughput

Figure 6.5 depicts the performance of DNN model training throughputs. We compare

ReDL with the following cases: FastMem (fast memory only system), OIM, NUMA and

SlowMem (slow memory only system). The size of fast memory is configured to be 20%

of each workload’s peak memory consumption. The figures show that the performance dif-

ferences between ReDL and all the fast memory cases are not very obvious. The maximum

difference is 9.6% from ResNet50 V2 while the minimum is 3.9% from VGG 19. Overall,

ReDL has an average 6.9% performance improvement. ReDL averagely outperforms OIM

with 8.4% (up to 11% in Inception V3) and better than NUMA by 20% on average (up to

34% in ResNet50 V2). The improvements are bought with the fact that ReDL optimizes

data migrations between fast and slow memory in tensors and conducts migrations only

within migration periods. ReDL also has an average 20% increase compared with NUMA.

We further compare the number of data migrations in ReDL, OIM and NUMA. Table 6.3

shows the number of page migration with four workloads. We use the page as the unit to



84

Table 6.3: Migrated pages in one training iteration.

ResNet LSTM VGG Inception
ReDL 2391343 399635 6132049 354013
OIM 2173450 401527 5904241 352702
NUMA 1971243 312307 3973926 250971
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Figure 6.6: Training speedup normalized to NUMA under different ratios between fast and
slow memory.

count migration because OIM and NUMA use it to conduct data migrations. ReDL has an

average of 3.5% and 36% more migrations compared with OIM and NUMA, respectively.

Frequently data migrations allow ReDL to make the best use of fast memory so that better

application performance is achieved. Besides, those migrations are overlapped with DNN

training steps which further increase the performance

6.6.3 Training Speedup

Figure 6.6 shows the speedup achieved by ReDL normalized to training with NUMA.

The x-axis denotes the ratio of slow to fast memory used to train the four workloads. In

this experiment, we apply 40GB from the system memory and use PMBD [53] to simulate

it as the fast and slow memories following different ratios above. We notice that NUMA’s

performance is poor compared with OIM and ReDL in all ratios: 8:1, 4:1, and 1:1. With
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more memory space is allocated as fast memory, performance improvements by NUMA

are not so dramatic. This is because NUMA first allocates data objects in the fast memory

without considering the computation sequence until the fast memory is full. Besides, in

NUMA, the long-live data objects are placed in the fast memory resulting in more data mi-

grations. OIM tackles this issue via whole page migration and parallel migration strategy,

but its performance improvement is not as good as ReDL. ReDL has better performance

under any memory ratios because it is aware of the liveness of data objects and based on

them to optimize data migration between fast and slow memory.

In Figure 6.6, VGG 19 is an exception because it have an extremely large second con-

volution layer, which demands more memory space to host its related data objects. When

the fast memory is small (i.e., in the cases with ratios 8:1 and 4:1), some of the data objects

must be placed in the slow memory, incurring a performance loss. When there is enough

fast memory, we note a huge performance improvement, as it is illustrated in the figure, the

performance jumps high from the 4:1 ratio to the 1:1 ratio.

6.6.4 Data Locality

Figure 6.7 illustrates the data localities from NUMA, OIM and ReDL. In this experiment,

we define data locality as the percentage of requested data objects in the fast memory.

Higher data locality implies fewer data migrations and, in turn, reflects the efficiency of

data management strategy. In Figure 6.7, we monitor the workloads’ activities until their

performance is stable, which is reflected by a relatively smooth line. We can observe that

the stable time for each workload differs due to the differences in their computation graphs.

Furthermore, a couple of peaks and valleys in each line, which display locality fluctuations.

The valleys between any two consecutive peaks illustrate data migration. Note that our

proposed work, ReDL is always above NUMA and OIM with an average of 19% and

11% improvements, respectively. ReDL also delays the occurrence times and frequency of

valleys because it can timely migrate data objects in the fast memory. There is an outlier

in the experimental results of VGG with NUMA; a spike occurs around the time points
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Figure 6.7: Data localities from NUMA, OIM and ReDL.

20. We can explain this exception with its special large convolution layer, which demands

more memory while the memory management policy in NUMA is not so efficient.

6.6.5 Overhead and Scalability

To analyze the overhead of ReDL, we use NUMA as the baseline and conduct exper-

iments to measure peak memory consumption in NUMA, OIM and ReDL, which scales

how much memory resource it takes to conduct DNN model training. Figure 6.8(a) shows

the memory cost of four workloads running on in NUMA, OIM and ReDL. Overall, ReDL

consumes 6% and 3% more memory compared with NUMA, OIM. This is because ReDL

needs some extra memory to conduct profiling and optimizing steps. For workload Incep-

tion V3, its peak memory consumption is relatively stable in all platforms. Because the

model size of Inception is small and its computation graph is simple so that the memory re-

quirement is not large. The average memory overhead introduced is about 5% (about 3GB),

which is negligible to the whole system-level memory (64GB in our testbed). Considering

the performance improvement achieved by ReDL, such memory overhead is an acceptable

trade-off between space and time consumption.

Figure 6.8(b) shows the peak fast memory consumption and the fast memory size for
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Figure 6.8: Memory Overhead and Scalability of ReDL.

different ResNets. We use four different ResNets with different computation layers to il-

lustrate ReDL’s scalability. Figure 4.6(b) shows that with more layers added to ResNet, its

peak memory consumption increases from 5.8G (ResNet 32) to 36GB (ResNet 152) and

the fast memory size increases from 1.1GB to 7.35GB. In total, when increasing ResNet’s

layer from 32 to 152, the fast memory size rises slower than the peak memory. This be-

havior demonstrates the scalability in saving fast memory size and memory management

effectiveness by using ReDL.



CHAPTER 7: UNIFIED HYBRID MEMORY SYSTEM FOR IN-MEMORY

COMPUTING WITH DEEP LEARNING

7.1 Architecture Overview

In this section, we propose and implement UniRedl, a unified hybrid memory system

based on NUMA running between applications and the backend deep learning frameworks.

Figure 7.1: Architecture Overview of UniRedl.

Figure 7.1 depicts an overview of our proposed architecture. UniRedl adopts a pri-

mary/replica mode, one node runs the primary UniRedl process while other nodes are de-

ployed with replica UniRedl processes. In UniRedl, the DRAM and NVM are abstracted

as a unified memory layer. All the data placement and migration information is saved into

the primary UniRedl node and then synchronized to the replica UniRedl nodes. Moreover,

when deep learning applications are launched, their computation graphs as well as data ac-

cess patterns are first profiled. This information is also distributed among all nodes so that

the requested data can be proactively and timely moved to the right node where the applica-

tion is running. As Figure 2.4 shows, our proposed UniRedl architecture mainly consists of
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four components: Profile Controller, Data Controller, Communicator, and Memory Con-

troller.

Profile Controller is designed to profile the computation graph and data access pattern

of deep learning application, get the uniform data access demands of big data workloads.

Two functional models are included in this components: App Profiler and Profile Cache.

The App Profile builds the computation graph, collects memory access pattern of each

kernel in computation graph, records access time of each data, and calculate the execution

time of each kernel for deep learning applications. Moreover, it also collects the uniform

data access behaviors of big data applications. The profiling step is simple and only takes

one training loop and then updates all the information into the Profile Cache module. The

Profile Cache is a preserved cache to keep profiled information on applications. Since

profiling step may be time-consuming, the Profile Cache is necessary especially with the

facts that deep learning applications typically have many static computation graphs and big

data workloads usually contain uniform data access patterns. Besides, the contents of cache

is periodically shared and synchronized across all the UniRedl nodes with RPC protocol.

Data Controller is driven by the Profile Controller component and implements the smart

NUMA-based hybrid memory management strategy we proposed. Hot data and frequent-

accessed data are managed by Unified Idle Migration module while the other normal data

is controlled by Unified Dynamic Migration module. Both of the migration modules di-

rectly interact with the Unified Hybrid Memory via the interfaces provided by the Memory

Controller component. Moreover, some metric for memory management such as data ac-

cess information, memory usage, and memory bandwidth utilization are updated by the

two migration modules and notify the hybrid memory layer when memory tension occurs.

The smart NUMA-based memory management strategy take the above metrics into consid-

eration when launches data placement and migration among the hybrid memory layer. We

also introduce proactively data migration and direct memory access mechanisms to Data

Controller among nodes to handle the case that some data is not timely migrated to the
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right place.

Communicator takes the communication role among all UniRedl nodes. Each node is

deployed a Communicator component to transmit and synchronize data and control infor-

mation. When the Profile Controller running in the primary UniRedl node finishes profiling

step and flushes all the information into its Profile Cache, the local Communication com-

ponent is invoked to synchronize the content of cache to other replica UniRedl nodes. Sim-

ilarly, once some changes occur in replica nodes such as data locality, application deployed

location, local memory usage, and memory bandwidth utilization, the updated informa-

tion will be collected by the Data Controller component and then sent back the primary

node. Thus the remaining replica nodes are notified by the primary node to launch syn-

chronizations. The communiations managed by the Communication component are built

with periodical RPCs which guarantee stable connections and latest cache information.

Memory Controller abstracts the DRAM and NVM as a unified hybrid memory, which

is shared among all the UniRedl nodes. It offers a huge memory space to each node and

unified storage management. This component also provides some general interfaces e.g.,

memory allocation, data migration, direct data access, and memory utilization to the mod-

ules in Data Controller. When a memory tension or memory allocation request is initiated

by the UniRedl node, the Memory Controller can receive the massage and response the

request via migrating some unnecessary data from DRAM to NVM or allocate new mem-

ory space. This operation is committed in background and try not to affect the running of

any applications so as to bring not harm to performance. Beside, the data placement and

migration among DRAM and NVM overlap the computation process to further relief the

side effects of waiting for requested data. The new location of data will be sent back to

Data Controller when data migration is done, which make sure the information across all

the UniRedl nodes are up to data.
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7.2 Memory Allocation Strategy

The memory allocation strategy aims to improve the performance of deep learning and

big data applications in hybrid memory system. Considering the inherent features in DRAM

and NVM, the different accessing latencies of the DRAM and NVM are much higher than

the overhead of NUMA-based hybrid memory systems. A smart data placement and mi-

gration strategy is necessary. Since we design a profiling module to determine the initial

location of data as well as data access pattern, the smart memory allocation strategy can

bring a lower memory access latency with higher bandwidth utilization both in DRAM and

NVM. UniRedl provides a new memory allocation strategy named HiLowAlloc. Specifi-

cally, HiLowAlloc can minimize the average memory access latency while maximum the

bandwidth utilization in DRAM and NVM simultaneously. The UniRedl provides some

interfaces to implement the HiLowAlloc memory allocation strategy. The applications does

not need do too many changes to the original source code with just a couple line to invoke

the new interfaces.

The execution time of applications running in the hybrid memory system are basically

determined by migrating data from the memory layer to computing units [23]. In our case,

we assume that the execution time of an application is mainly decided by the total memory

access overhead in the hybrid memory layer. Given that the DRAM and NVM memory

are managed with a logical address space, the problem of optimizing execution time is

converted to finding an optimal ratio between DRAM and NVM.

We define the total memory access latency on DRAM and NVM as Ldram and Lnvm, the

total data transferring time from DRAM and NVM to computing units as Bdram and Bnvm,

so the objective function is formulated as follows:

max(Ldram

Lnvm
, Bdram

Bnvm
) (7.2.1)

Let Ndram and Nnvm represent the total access times of DRAM and NVM, respectively.

T rdram denotes the read latency on DRAM. We only consider the read latency from DRAM
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because most of the data transfer between the DRAM and computing units is referring to

read data from DRAM. T rnvm and Twnvm express the asymmetric write and read latency on

NVM. We also demote the possibilities of write and read operations on NVM are p and

q, respectively. Besides, the numbers of data hosted on DRAN and NVM are Ndram and

Nnvm. So the total memory access latency on DRAM can be expressed as:

Ldram = Ndram ∗ T rdram (7.2.2)

And the total memory access latency on NVM is:

Lnvm = Ndram ∗ (p ∗ T rdram + q ∗ Twdram) (7.2.3)

Considering that UniRedl can profile the computation graph and data access pattern

in deep learning applications and collect the uniform data access behaviors in big data

workloads, the necessary data is supposed to place on the right node where the associated

application is deployed. In this case some of inter-node communication and data transfer

cost is saved. As a result, the ratio of DRAM and NVM determines the execution time of

applications. Moreover, the total number of data placed on DRAM and NVM are equal,

which means Ndram = Nnvm. According to Equation 7.2.2, 7.2.3, we can formulate the

ratio of DRAM and NVM as:

Ldram

Lnvm
=

T r
dram

p∗T r
dram+q∗Tw

dram
(7.2.4)

Similarly, the total data transferring time from DRAM and NVM to computing units as

Bdram and Bnvm can be expressed as

Bdram

Bnvm
=

T r
dram

p∗T r
dram+q∗Tw

dram
(7.2.5)

Based on Equation 7.2.1, we take the large ratio between Ldram

Lnvm
and Bdram

Bnvm
as the opti-

mal ratio to guarantee the minimum application execution time with lower memory access

latency and higher memory bandwidth utilization.

In hybrid memory system, both DRAM and NVM are abstracted as a union and unified

in a logical memory address, but the hardwares of DRAM and NVM are still installed on
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each physical node. The capacity of local memory is still limited. Although each node can

direct access the memory of the other, the latency is higher compared with accessing data

saved into the local memory. To tackle this problem, HiLowAlloc also the capacity of local

memory and communication cost among nodes into account when doing data placement.

UniRedl profiles the computation graph and data access pattern of deep learning and big

data applications, respectively. Computation are committed sequentially in the static com-

putation graph and data access behavior in the big data application is uniform. Therefore,

there is not data migration in the training step. We can formulate the objective function as:

min
∑

s∈ε,m∈κ ρs,m (7.2.6)

s.t.



∑
m∈κ f(s,m) +

∑
m∈κ s(s,m) ≥ κ (1)∑

m∈κ f(s,m) ≤ DS (2)∑
m∈κ s(s,m) ≤ NS (3)∑
m∈κ(DS) c(s,m) ≤

∑
m∈κ(NS) c(s,m)(4)

where s is a stage in the application and ρs,m is the expected execution time of stage s

under the data access behavior m. ε and κ denote the full application stage set and mem-

ory access pattern, respectively. Note that ρs,m is highly determined by the location of

data placement. More data placed into the DRAM brings better execution time while the

data transfer between DRAM and NVM may hurt the performance. Therefore, one of the

possible solution is placing data requested by the next computation stage and overlapping

data transfer with current computation following the Constraints (1)(2)(3)(4). Constraint

(1) denotes the total memory usage in DRAM and NVM is no smaller than the total size

of local memory. Constraints (2) and (3) represent the memory space used in DRAM and

NVM memory, respectively. Constraints (4) denotes the communication cost among local

and remote DRAM is less than local DRAM and local NVM.

To solve the objective function Equation (7.2.6), we adopt the linear and integer pro-

gramming theory [99], which uses the profiling information to automatically optimize data
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placement with memory size and data transfer cost as the constraints.

In UniRedl, the HiLowAlloc memory allocation strategy is mainly divided into four

steps. (1) The primary UniRedl node profiles the data access pattern, computation graph,

and application deployment location of applications. All the profiled information is saved

in the profile cache and then synchronized to the replica UniRedl ndoes when the profiling

step is done. (2) The ratio of DRAM and NVM is calculated based on the above equa-

tions and profiling information following the HiLowAlloc memory allocation strategy. If

the available DRAM space in a node is not enough to hold the requested data, partial of

data is to be placed into the NVM instead. Data migrations occur with application runs on,

when some data is paged out from the DRAM, the requested data is proactively moved into

DRAM from NVM to save time spent in waiting for the required data. (3) The target replica

UniRedl nodes are selected based on the ratio obtained in Step 2, which offer adequate free

memory space and the minimum inter-node communication cost. These node also guar-

antee a lower intra-node communication cost by less data migrations between DRAM and

NVM, especially when the application is running. (4) The data is to be placed on DRAM

and NVM on the selected nodes based on the optimized results from Equation (7.2.6). If

there is not enough free space in DRAM on a node, its pre-assigned NVM will hold the

data. If the whole hybrid memory layer is full, UniRedl swaps data into the local hard disk

to reclaim the space in memory.

Algorithm 6 depicts the main procedure of the HiLowAlloc, mainly including ProfileApp,

CalDNratio, ChooseNode, and placeData functions. The four functions correspond to the

four steps we mentioned above. ProfileApp (Line 1-6) in the primary UniRedl node profiles

all the data and computation graph information and synchronizes to the replica UniRedl

nodes. Then CalDNratio (Line 7-14) is invoked to calculate the optimal DRAM-to-NVM

ratio based on Equation 7.2.1. According to the ratio, some potential target node is selected

via function ChooseNode (Line 15-18). And then the last step in HiLowAlloc is called with

data is finally placed on the rightly selected nodes, which is implemented by the place-
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Algorithm 6 HiLowAlloc Memory Allocation
Input: app_id, mem_addr, node_id
Output: data_info, mem_info

1: function PROFILEAPP(app_id)
2: if app_id is DL app
3: data_info, graph_info = profile(app_id)
4: else data_info = profile(app_id)
5: return data_info, graph_info and upDate Profile Cache
6: end function
7: function CALDNRATIO(data_info, graph_info)
8: latency_ratio = calLatency(data_info)
9: bandwidth_ratio = calBandwidth(data_info)

10: if latency_ratio > bandwidth_ratio
11: opt_ratio = latency_ratio
12: else opt_ratio = bandwidth_ratio
13: return opt_ratio
14: end function
15: function CHOOSENODE(opt_ratio, node_id)
16: if checkNode(opt_ratio, node_id) is TRUE
17: return node_id
18: end function
19: function PLACEDATA(opt_ratio, node_id)
20: if mem_addr in DRAM is empty or enough space
21: mem_addr = placeData(opt_ratio)
22: else placeData(memnvmaddr)
23: if all is full, freeVictimData()
24: return mem_addr, data_info
25: end function
26: function UPDATEINFO(data_info)
27: return data_info = updateInfo(mem_addr,data_info)
28: end function

Data function ((Line 22). The HiLowAlloc memory allocation strategy tackles the issue of

placing data in a hybrid memory system. According to the profiling information, the re-

quired data can be placed into the right node where application is running, which improves

the data locality as well. HiLowAlloc avoids high inter-node communication cost between

DRAM and NVM by proactively migrating more requested data into DRAM and efficiently

overlapping data transfer with computation. Intra-node communication cost is decreased

with the mechanism that places data as close as possivbe to computing unit. Besides,
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lower memory access latency and higher bandwidth utilization is achieved with the opti-

mal DRAM-to-NVM ratio. The application execution time is reduced with higher memory

utilization and less communication cost. When a data placement request is successfully

committed, updateInfo (Line 26-28) is invoked to send all the updated information to the

primary node.

7.3 Data Migration

We design two data migration strategies in UniRedl: Unified Idle Migration and Unified

Dynamic Migration to manage hybrid memory. Specifically, Unified Idle Migration aims

to manage data placed in DRAM while UnifiedDynamic Migration manages data saved in

NVM. In this section, we present the details on how each migration strategy work. All the

details are abstracted as interfaces to the applications running in hybrid memory system,

which makes DRAM and NVM as a unified memory and easy to use.

7.3.1 Unified Idle Migration

Unified Idle Migration manages hot and frequent access data in DRAM aiming to guar-

antee a smooth application process by reducing unnecessary suspense caused by data miss-

ing. During the profiling step, the frequently accessed data is labeled as hot data along

with the computation stages request it. A continuous memory space is allocated in DRAM

to host hot data. This space is reserved for hot data and frequent access data. The data

placed in DRAM is used to guarantee a better application execution time and it will not

be easily migrated out if memory tension occurred in DRAM. When a data is requested

and its not in the DRAM, replica UniRedl first check its profile cache to locate the data. If

the data is in DRAM of other node, the primary UniRedl node approves the direct access

request to the target data in other node and send a copy of this data to the local replica

node. If the demanded data is in NVM, no matter it is in the local or remote NVM, the data

is transferred to the DRAM where application is running. To save the communication and

transfer cost, the data migration between DRAM and NVM are committed in advance with
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the guidance of computation graph. Meanwhile, the data access information and mem-

ory utilization (such as available capacity, bandwidth utilization, data locality) is collected

during application running in order to keep the information saved in profile cache is up to

date.

Algorithm 7 Unified Idle Migration
Input: data_info, mem_addr, app_id, node_id
Output: data_info, mem_info

1: function ALLOCDRAMMEM(mem_addr)
2: if free_size > getDramSize(mem_addr)
3: mem_info = DramMalloc(mem_addr)
4: free_size – –
5: return mem_info
6: end function
7: function PARSEPROF(data_info)
8: graph_info = parseInfo(data_info)
9: return graph_info

10: end function
11: function DRAMPLACEMENT(mem_addr, data_info, graph_info)
12: if mem_addr is empty or enough space
13: mem_addr = placeData(data_info)
14: else freeVictimData()
15: return mem_addr, data_info
16: end function
17: function DRAMMIGRATION(mem_addr, data_info, graph_info)
18: if data_info is in remote DRAM
19: mem_addr = migrateData(data_info, node_id)
20: if data_info is in local NVM
21: mem_addr = migrateData(data_info)
22: if data_info is in remote NVM
23: mem_addr = migrateData(data_info, node_id)
24: return mem_addr, data_info
25: end function
26: function UPDATEINFO(data_info, mem_addr)
27: return data_info = updateInfo(mem_addr,data_info)
28: end function

Algorithm 7 depicts the main procedures of Unified Idle Migration, mainly including,

AllocDramMem, ParseProf, DramPlacement, DramMigration, and UpdateInfo functions.

(1) Some DRAM space is allocated when the application starts to run. AllocDramMem
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(Line 1-6) finishes the application for a continuous memory space in DRAM if the free

space satisfies the requested memory size. (2) Then the ParseProf (Line 7-10) function

parses the profiling files and obtains the data access information and computation graph.

Based in the profiles, UniRedl determines which node to place the data, which memory

media to hold the data and which data to prefetch in the next stage. (3) When a new

data request arrives and it is not loaded in the DRAM, DramPlacement (Line 11-16) is

invoked. If the DRAM is empty or it has enough free space to host the new data, then

data placement is committed. Otherwise, some victim data is selected and then moved

out. The victim is the data would not be accessed in the current application running period

based on the computation graph. (4) Data migration is operated with DramMigration (Line

17-25). To avoid the memory hit missing occurs, which the demanded data is not found

in local DRAM(We define the node where application is running as local node and others

as remote node, DRAM and NVM also follow this rule), UniRedl first search the profile

cache to check if the requested data is in the DRAM of other node. If so, the primary

UniRedl approves the direct memory access among replica nodes. Meanwhile, a copy of

this data is sent to the local node. If the requested data is saved into the local NVM in

the node where application is running, the data is to be migrated to DRAM. We introduce

this mechanism that the priority of using the remote DRAM is higher than using the local

NVM, because the latency of access from local NVM is much higher than the one from

remote DRAM. There is another case that the requested data is saved in the remote NVM.

UniRedl adopts the direct copy strategy to transfer the requested data from remote NVM

to local DRAM. Besides, UniRedl tries to commit data migration in a proactive way that

overlaps with the current computation process so that the running of application will not be

interrupted. (5) The UpdateInfo (Line 26-38) function updates the metric information of

the data and memory. And this information helps make data management decisions in the

next computation period.
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7.3.2 Unified Dynamic Migration

Unified Dynamic Migration controls data migrations in NVM. It uses the scalable migra-

tion window to determine the amount of data to be placed into NVM. The critical procedure

in Unified Dynamic Migration strategy is find the optimal migration window that brings

better application execution time with less suspense caused by memory missing hits. In

UniRedl, the application running step is divided into a couple of migration windows. Since

the deep learning applications have a stable computation graph and runs on with layer-by-

layer, we use the layers as the metrology to decide the migration windows. Besides, the big

data applications have the uniform data access patterns, which makes the layer-based mi-

gration window division applicable. The layer-based migration window mechanism usually

guarantee the completion of each stage in applications.

The basic concern of Unified Dynamic Migration is timely migrating requested data to

the computation in the next migration window from NVM to DRAM at the end of each

migration windows. Given that the computation is to be finished at the end of migration

window and the demanded data for the coming computing can be loaded from profile cache,

proactively locate the data and transfer it into the right DRAM is possible. During the data

migration procedure, memory tension may occur in DRAM because of limited capacity. To

handle this issue, Unified Dynamic Migration migrates the data that has not been accessed

back to NVM in order to save the DRAM space. At the beginning of migration window, all

the requested data is already in DRAM to guarantee a smooth computation stage. Compu-

tation and data migration are overlapped in each migration window, which ensures better

application execution time and higher memory utilization.

Another case to consider is the migration window may fail to satisfy some of the com-

putation phases due to there is not enough time to finish migrating the requested data from

NVM to DRAM before the upcoming window begins. To solve this problem, we intro-

duce direct NVM access strategy, which breaks the barrier between computing units and

NVM by allowing computing units to directly access data placed in NVM. In the regular
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scenario, computing units such as CPU, GPU, and FPGA directly access the data saved

in NVM. Data saved in NVM is first migrated in DRAM and then computing units can

use them. With direct NVM access, computing units can directly access data in NVM by

skipping the intervene of DRAM. Application performance from direct NVM access can-

not compete with the DRAM access mode, but it does not occur frequently and its adverse

impacts are negligible.

Determining an optimal migration window is a difficult and dilemma. If the adopted

migration window is too large, then the total number of data objects to be migrated may be

even larger than the free DRAM space. If the migration window is too small, the possible

execution time to overlap with computation is shorten. Besides, the requested data for the

coming computation may not be timely migrated to the right place before the next migration

window begins. To tackle this problem, we adopt the iterated greedy algorithm [100] to find

the optimal migration window at runtime.

Based on the profiled data access pattern and computation graph, we start with the mi-

gration window of the median of the total computation layers/stages and then test if this

windows size brings better application execution time and higher memory utilization. If the

test returns a positive result, the optimal migration window is determined. Otherwise, we

will first repeat this process with a new migration window by adding 1 layer to the current

size. And then test the case by deducting 1 layer from the median number of total lay-

ers. Three basic training iterations are covered in one optimizing round. The next round is

committed with the case that the migration windows are added or deducted 2 to the median

number. The similar round is repeated until the optimal migration window is determined.

We collect the application performance from different migration windows and select the

best one as the migration window for the coming computation. Given the fact that the deep

learning applications perform repetitive execution and the big data applications have uni-

form data access pattern, data placement and migration in any optimizing round is the same

in order to guarantee the correctness of comparison results. Although it may take a couple
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of rounds to determine the optimal migration window and bring some performance loss,

the total overhead is not large because this case does not often happen and performance

loss is compensated in the remaining computations.

Algorithm 8 Unified Dynamic Migration
Input: data_info, mem_addr, app_id, node_id
Output: data_info, mem_info

1: function ALLOCNVMMEM(mem_addr)
2: if free_size > getDramSize(mem_addr)
3: mem_info = NvmMalloc(mem_addr)
4: free_size – –
5: return mem_info
6: end function
7: function PARSEPROF(data_info)
8: graph_info = parseInfo(data_info)
9: return graph_info

10: end function
11: function FINDOPTWINDOW(data_info, graph_info)
12: opt_period = findPerid(data_info, graph_info)
13: return opt_period
14: end function
15: function NVMMIGRATION(opt_period, mem_addr, data_info)
16: if mem_addr is empty or enough space
17: mem_addr = placeData(data_info)
18: else freeVictimData()
19: return mem_addr, data_info
20: //Data Migrated to DRAM
21: if opt_period is valid
22: mem_addr = migrateData(data_info)
23: else dirctAccessNvm(mem_pts)
24: end function
25: function UPDATEINFO(data_info, mem_addr)
26: data_info = updateInfo(mem_addr,data_info)
27: return data_info
28: end function

Algorithm 8 depicts the main procedures of Unified Dynamic Migration. AllocNvmMem,

ParseProf, FindOptWindow, NvmMigration, and UpdateInfo. (1) AllocNvmMem (Line 1-

6) implements the space allocation in NVM when applications starts to run. A continuous

NVM memory space is also necessary to reduce the overhead in locating data. (2) The
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ParseProf (Line 7-10) function parses the profiling files and obtains the data access in-

formation and computation graph. According to the profiling information, UniRedl then

determines the node to place data. (3) We implement the proposed iterated greedy algo-

rithm in FindOptWindow (Line 11-14), aiming to find the optimal migration windows. This

procedure is actually a part of application execution so that it will not affect the processing

of the application. As discussed in the above context, determining the optimal migration

window might take a couple of rounds and cause some performance loss, but this loss can

be made up in the coming computation by reducing data migration and increasing mem-

ory utilization. (4) NvmMigration (Line 15-24) implements data migration. When a data

migration request arrive to NvmMigration, the current replica UniRedl node first checks

if it is a local or remote data migration request. For the local migration request, Nvm-

Migration ensues the demanded data is migrated to DRAM within the current migration

window. For the remote request, the replica UniRedl node first contact the primary node

for approval. Once received the approval, the replica node releases the demanded data and

then transfer to the destination node. When there is no free space in NVM, NvmMigration

migrates some data based on the access information and computation graph to the local

disk. Besides, We implement direct NVM access in accessSlowMem function (Line 23)

in NvmMigration to handle the case that data migration to DRAM cannot be finished due

to the migration period does not fit to some computations. With direct NVM access, the

computation continues by directly accessing data saved in NVM and does not need to wait

for the completion of data migration to DRAM. (5) The UpdateInfo (Line 25-28) function

updates the metric information of the data and memory. And this information helps make

data management decisions in the next computation period.

In UniRedl, all the data are uniformly managed with idle migration and dynamic mi-

gration in the hybrid memory system. The idle migration policy tackles the issue of host-

ing hot data in DRAM even if it is no longer accessed. Unified Idle Migration decreases

unnecessary data migrations between DRAM and NVM, and thus improves application



103

performance and memory bandwidth. The idle migration policy controls data migrations

to DRAM, and offers direct NVM access to remote node. Idle migration and dynamic

migration together bring better application execution time, memory utilization and lower

communication cost.

7.3.3 Data Migration Workflow

Figure 7.2 depicts an example of the data access workflow in UniRedl in a logical view.

Three UniRedl nodes are included: one primary node and two replica nodes.

Figure 7.2: Logical workflow of data access in UniRedl.

In Figure 7.2, we assume that all the profiling information has been synchronized and up

to data. Replica UniRedl Node 1 is the node where the application is running. The solid

and dotted arrow lines represent direct DRAM data access and proactively data transfer

from local/remote NVM to DRAM. The hollow arrow denotes the control information

such as, profiling information, data access request, and memory utilization, among nodes.

In Figure 7.2, each node has its local DRAM and NVM, but all the memory media is

logically connected and uniformly managed by UniRedl. The physically separated mode

make it easy to describe the workflow and interactions among nodes. We define the node

where application is running as local node and others as remote node, DRAM and NVM

also follow this rule.

In Figure 7.2, the data for application running in replica UniRedl Node 1 is placed in

both DRAM and NVM memory according to the profiling information by primary UniRedl
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node. The application directly load demanded data from its local DRAM. When memory

missing occurs, replica UniRedl Node 1 first check its profile cache to locate the location

of demanded data. There are four possible locations: (1) If the data is saved in DRAM of a

remote node, as the replica UniRedl Node 2 listed in this figure, Node 1 then sends a remote

direct DRAM data access to primary UniRedl node. Once the primary node approves this

access remote, it will notify Node 1 and 2. And then Node 2 starts the remote direct DRAM

data access and a copy of this data is sent to Node 1 simultaneously. The purpose of data

copy is to ensure the next request on this data is accessed in local DRAM. This operation is

done by idle migration policy. (2) If the data is found in the local NVM of Node 1, he data

is to be migrated to the local DRAM. This procedure is committed with dynamic migration

strategy. We adopt this mechanism that the priority of using remote DRAM is higher than

using local NVM, because the latency of access from local NVM is higher than the one

from remote DRAM. (3) If the data is in a remote NVM, as showed in Figure 7.2, the data

Node 1 requests is saved in the primary mode. Node 2 will send a remote direct NVM

data access to the primary node. With the approval message from primary node, Node 2

can access the data saved in the NVM of primary node. (4) If the data is not found in any

DRAM or NVM of any node, it is saved in a local disk. In this case, dynamic migration

strategy locates and transfers the requested data to the DRAM of Node 1. Moreover, all

the data migrations are committed in the optimal migration window, in which migrations

overlap with computations so that the applications does not need to suspend.

7.4 Evaluation

7.4.1 Experiment Setup

We study the performance of UniRedl on a 4-node cluster, which has Intel Xeon(R) CPU

E5-2630v4@2.20GHz x 20 and 64GB DDR4 DRAM. All the nodes are connected with

1Gb ethernet network adapters. We use Persistent Memory Block Driver (PMBD) [53] to

simulate hybrid DRAM and NVM on NUMA-based system. Specifically, 16GB DRAM of

each node is configured to emulate NVM. We configure the read/write latencies of NVM
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Table 7.1: Summary of selective benchmarks.

Benchmark Dataset Batch size Model size
Terasort TeraGen N/A N/A
Kmeans GaitData N/A N/A
ResNet 152 CIFAR-10 128 232 MB
VGG 19 CIFAR-10 64 539 MB

to be 3X and 8X of the DRAM, respectively. And the bandwidth of NVM is limited to

be half the DRAM’s bandwidth. These configurations are very close to the specifications

of commercial Intel Optane DC Persistence Memory [35]. The nodes run Ubuntu 16.04

LTS operating system with kernel version 4.0, Spark 2.6 and TensorFlow 2.0. We adopt

Intel Memory Latency Checker (MCL) [57] to quantify the communication overhead of

inter/intra-nodes and memory utilization.

We select five workloads to benchmark our work. Terasort [55], Kmeans [104] are two

typical big data applications while ResNet152 [56], and VGG 19 [105] are deep learning

workloads. To evaluate the performance of workloads, we run big data and deep learning

applications on Spark and TensorFlow, respectively. For deep learning applications, we

set its inter-op parallelism and intra-op parallelism to be 20 to ensure this parameter is

consistent to the physical cores in our testbed, so that all the experiments are conducted

on the CPU with one thread running on each physical core. All workloads run until their

execution time in a migration window is stable. Since all the workloads have no data

dependent relations and their data access patterns are predictable, the performance will

tend to be stable after a round of computation iterations. A brief summary of the workloads

is illustrated in Table 7.1. Unless specified otherwise, all the experiments are conducted on

a pure CPU platform. We will leave the CPU and GPU mixed computations in future work.

We use the traditional NUMA management and NUMA with the automatic NUMA bal-

ancing (anb) [54] as the baselines. We also compare the performance of UniRedl with

BMPM [86] and OS-Integrated Multi-level memory management system (OIM) [21]. The

performances of our work are mainly evaluated in (i) execution time, (ii) data locality, (iii)
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Figure 7.3: Execution time from NUMA, NUMA with anb, BMPM, OIM and UniRedl

bandwidth utilization, and (iv) overhead.

7.4.2 Execution Time

Figure 7.3 shows the execution time of workloads with different data management strate-

gies in the hybrid memory system, all the experimental results are normalized to the base-

line traditional NUMA. The figures depict that UniRedl brings the most performance im-

provement of 33.2% on average when compare to the traditional NUMA . Because the

default memory management strategy adopted in traditional NUMA is preferentially plac-

ing data on DRAM and then DVM without considering the asymmetrical bandwidth. OIM

has fluctuating impacts on the performance improvement due to it implements data mi-

gration in the unit of page by launching 4 threads for paralleling page copy and 8 threads

for concurrently migrating pages between DRAM and NVM, which may not efficient for

some latency-sensitive workloads, such as Kmeans and ResNet152. In contrast, UniRedl

reduces the overall execution time of these workloads by 26.1% and 18.5%, respectively.

BMPM adopts a memory bandwidth-awareness page management strategy, and it achieves

an average 17.6% performance improvement over the traditional NUMA. The performance

improvement that brought by BMPM on ResNet152 is not so obvious. We can explain that

the ResNet152 is a latency-sensitive workload and BMPM does not take this part into
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Figure 7.4: The tendencies of Data Locality in DRAM from NUMA, NUMA with anb,
BMPM, OIM and UniRedl

consideration when committing data management while UniRedl is specially designed for

latency-sensitive workloads. VGG 19 obtains the most improvement in execution time by

36%, 31.8% from UniRedl and NUMA-anb. The improvement from OIM is not so huge

with about 0.4% due to the coarse page management policy. Overall, our proposed method

UniRedl averagely improves application performance by 33.2%, 20.6%, 19.0%, and 17.5%

compared to the traditional NUMA, NUMA with anb, BMPM, and OIM, respectively.

7.4.3 Data Locality

We also evaluate data locality in DRAM of the five data management strategies. We

define the percentage of successful data access in DRAM as data locality. A higher data

locality rate means less data migrations between DRAM and NVM, and then reflects the

efficiency of data management strategy. Figure 7.4 shows the tendencies of data locality

within a limited time window, which reflects a 25-second behavior when the workloads

start to run. We can observe that all the data placement strategies demonstrate fluctuations

in data locality and will come to a relatively stable status. Furthermore, each fluctuation

displays a data migration operation within a migration window. The valleys between any

two consecutive peaks illustrate data migration. UniRedl achieves 52.0% , 34.3%, 30.6%,
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Figure 7.5: Bandwidth Utilization from NUMA, NUMA with anb, BMPM, OIM and
UniRedl

22.1% on average over NUMA, NUMA with anb, BMPM, OIM, respectively. UniRedl also

delays and decreases the occurrence of valleys by wisely and proactively committing data

migration according to the profiled data access pattern and computation graph. OIM brings

a little performance improvement in Terasort with about 0.05% over the traditional NUMA

due to its coarse granularity management unit in data migration. For the VGG 19 workload,

UniRedl offers the overall data locality with 59.8%, while other data management strategies

bring performance less than 50%. There is an outlier in the experimental curve of VGG

with the traditional NUMA; a valley appears around the time point 15. This exception

is caused by a large convolution layer , which demands more memory while the default

memory management policy of NUMA is not so efficient.

7.4.4 Bandwidth Utilization

Figure 7.5 depicts comparisons on total memory bandwidth utilizations in DRAM and

NVM. UniRedl achieves 22.2%, 12.4%, 11.4%, 8.8% by average improvements in to-

tal bandwidth utilization over NUMA, NUMA with anb, BMPM, and OIM, respectively.

The traditional NUMA management strategy performs better in deep learning applications

(ResNet152 and VGG 19) than big data applications (Terasort and Kmeans), because the
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uniform data access pattern fails to take full advantages of the lower latency characteris-

tic of DRAM. UniRedl brings a higher bandwidth utilization except Kmeans. In contrast,

the NUMA-anb and OIM provide a better performance. The reason is that the dataset for

Kmeans requests more migrations between DRAM and NVM, which introduces smaller

data migration windows and less overlaps with computation procedures. The balance strat-

egy adopted by NUMA-anb evenly distributes data in DRAM and NVM, which in return

decrease migrations. The multi-threads strategy used by OIM can place more requested

data in DRAM, and thus its performance is close to UniRedl. VGG 19 has a extremely

large second convolution layer, which demands more memory space to host its related data

objects, the higher bandwidth utilization comes from UniRedl with up to 19% improvement

in DRAM. UniRedl only brings 21.6% memory bandwidth utilization in NVM. Given that

the size of demanded data is limited, a higher DRAM utilization demonstrates more data

is hosted in DRAM which results in less data in NVM. Moreover, this behavior reveals

the efficiency of UniRedl in data migration in terms of profiled data access pattern and

computation graph. BMPM uses a bandwidth awareness data placement strategy.

7.4.5 Overhead

To analyze the overhead of UniRedl, we conduct experiments to measure average peak

memory consumption in NUMA, NUMA with anb, BMPM, OIM and UniRedl in the sys-

tem level, which scales how much memory resource it takes to conduct data management.

In Figure 7.6(a), NUMA follows the classic recently access policy to conduct data migra-

tion while BMPM only moves the demanded data between DRAM and NVM. They only

introduce 0.12 GB, 0.18 GB, and 0.3 GB memory overhead. UniRedl and OIM all use pro-

filed data access information to determine data migration, and profiling step also consumes

some memory, thus they increase memory overhead to 1.25 GB and 2.02 GB. The overall

average memory overhead introduced by UniRedl is about 8.4% (about 1GB), which is

negligible to the whole system-level memory (64GB in our testbed).

We also evaluate the overhead in runtime, which is the percentage in the total application
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Figure 7.6: Overhead comparison in memory size and runtime from NUMA, NUMA with
anb, BMPM, OIM and UniRedl

runtime. Figure 7.6(b) shows the NUMA strategies leads less runtime overhead with 6%

and 7%, respectively. BMPM brings 10% more overhead in runtime because its bandwidth

awareness migration policy demands some processing cycles. OIM brings 16% runtime

overhead by deploying multiple threads to conduct data migration. UniRedl consumes

10% and 6% more runtime overhead compared with OIM, BMPM due to it needs some

extra time to finish profiling and optimizing steps. However, the overhead from runtime

could be counteracted by the performance improvement obtained with accessing more data

from DRAM and decreasing data migrations in hybrid memory system.



CHAPTER 8: CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this document, we present the state of the art of works in memory management for

In-memory Computing with Hybrid Memory System (HMS). We have followed the ad-

dressed challenges to design shared memory and hybrid memory systems while maintain-

ing memory utilization efficiency and reducing unnecessary data migration of underlying

shared in-memory computing frameworks. To tackle imbalanced memory utilization issues

among multiple Spark executors, we propose and develop iMlayer, a shared memory cache

space, which is deployed between on-heap memory and local disk, to cache and manage

intermediate data across multiple executors so that I/O operations can be decreased. We

further implement online learning on some existing frameworks by proposing iDlaLayer.

To obtain a better DNN model quality with less training cost, we introduce a novel data

life aware updating strategy (DLA), which relies on combined data sample and consid-

ers training cost when deciding whether to perform a model updating action. To tackle

the data migration problem on HMS for DNN applications, we propose a runtime system

for HMS that automatically determines the optimal data migration window and exploits

domain knowledge on DNN to decide data migrations between the fast and slow mem-

ories in HMS. To achieve a better performance in data migrations for DNN training, we

introduce a reference distance and location based data management strategy (ReDL) that

treats short-lived and long-lived data objects with Idle and Dynamic migration methods,

respectively. Using ReDL, conducting DNN model trainings on HMS with a smaller fase

memory space can achieve the performance close to the pure fast memory system. We

further extend ReDL to a cluster level with developing UniRedl, a unified memory system

across the whole cluster, which automatically optimizes data migration between DRAM
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and NVM based on data access pattern and computation graph of applications. To obtain

a better application performance, we provides a new memory allocation strategy named

HiLowAlloc. We also design two data migration strategies in UniRedl: Unified Idle Mi-

gration and Unified Dynamic Migration to manage hybrid memory. Specifically, Unified

Idle Migration aims to manage data placed in DRAM while Unified Dynamic Migration

manages data saved in NVM. Furthermore, we conduct extensive evaluations of the pro-

posed works and techniques through implementations and simulations on a testbed of local

cluster. The preliminary results of evaluation are very promising.

8.2 Future Work

Our research mainly focus on memory management strategy in-memory computing with

hybrid memory system. The emerging of new memory technologies has attracted more

interesting research topics, such as near data processing (NDP), processing in memory

(PIM), disaggregated computing. Our future work will be launched as follows:

(1) Unify the memory management over CPU and GPU. Most of the current hybrid

memory systems are mainly designed for CPU computation and has less performance im-

provement for GPU-centric computation. ZeRO-Infinity [106] breaks the GPU memory

limitation by leveraging GPU, CPU and NVM memory to host more parameter for deep

learning applications. But it still needs the assistance of CPU to finish data migration. We

plan to move further by designing a hybrid memory system that provides direct memory

access to all the computation units attached to it. Besides, this work will exploit the possi-

bility in efficient memory management on hybrid memory system without introducing new

hardwares.

(2) Exploit disaggregated computing systems. A typical use of NVM in the cluster level

is aggregating shareable memory space across all the nodes in the format of hybrid shared

memory pool, for example Hotpot [107]. However, this work need a global awareness

of the memory address and more time to maintain this universal memory pool. A new

trend of using NVM is totally contrary to the shareable memory. This solution distributes
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NVM in multiple nodes and shared by applications running in the cluster. Disaggregated

NVM systems equips NVM in a few nodes with less computation abilities, which serve

as a stroage-like node to the computation nodes. This solution can guarantee less network

bandwidth by only conducting data migration among specific nodes. However, this topic is

still in the primary stage and need more work in software and hardware support.

(3) Include new hardware on in-memory computing. Near data processing (NDP) and

processing in memory (PIM) can significantly reduce the overhead from data movement

especially for machine learning algorithms such as deep neural network (DNN) and con-

volutional neural network (CNN). Some products have adopted partial of PIM, such as

Google’s Tensor Processing Unit (TPU), Intel Xeon Phi Knights Landing series CPU, and

NVIDIA tesla V100 GPU, andBut there still is no real commercial products on real NDP

or PIM. In our future work, we plan to start with some simulations about PIM and then

launch the solid experiments on real PIM hardware.

(4) Build a NVM optimizer for traditional applications. The NVM technologies have

been widely promoted in big data applications, such as machine learning, computer vision,

recommendation systems, and K-V store. But most of those frameworks are developed fol-

lowing the traditional DRAM and disk memory architecture, which is not efficient in hybrid

memory systems. We plan to design a middleware layer running between the applications

and computing frameworks to automatically optimize the original memory management

strategies in applications, so that the new characteristics (data persistence, fast bandwidth,

huge capacity) brought by hybrid memory system can be fully leveraged.

8.3 Publications

1. Wei Rang, Donglin Yang, Dazhao Cheng. "Unified Hybrid Memory System for

Scalable Deep Learning Applications" under peer review.

2. Wei Rang, Donglin Yang, Zhimin Li, and Dazhao Cheng, "Scalable Data Manage-

ment on Hybrid Memory System for Deep Neural Network Applications" IEEE In-
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3. Wei Rang, Donglin Yang, Dazhao Cheng. "A Shared Memory Cache Layer across

Multiple Executors in Apache Spark" IEEE International Conference on Big Data
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4. Wei Rang, Donglin Yang, Dazhao Cheng, Kun Suo, Wei Chen. "Data Life Aware

Model Updating Strategy for Stream-based Online Deep Learning" IEEE Interna-
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