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ABSTRACT

LANCE RICE. Better modeling of matching possibilities and uncertainty for offline
visual multiple object tracking. (Under the direction of DR. MIN C. SHIN)

The task of visually tracking multiple objects remains an active field of algorithm de-

velopment even after several decades of research in the computer vision community.

One reason it remains an active research area is that identifying and maintaining

the location of multiple targets in a video recording can be approached from sev-

eral perspectives depending on the application’s needs. Another reason is simply

that the general problem of automated tracking can be very challenging. Moreover,

compared to tracking a single target, multi-target tracking can grow significantly

more complicated. Similar appearances between different objects, crowded scenes,

and inter-object occlusions among a sometimes unknown and fluctuating number of

objects are additional difficulties in multi-object scenarios. Challenges such as these

collectively manifest into three broader design decisions often faced by multiple object

tracking (MOT) algorithms. First is how to handle what one could think of as "easy"

and "hard" regions of a trajectory. The second is how to handle the sheer number of

possible explanations of the data. The third is how do you model certainty. This dis-

sertation aims to better model the uncertainty among possible answers to the tracking

data in offline tracking scenarios (i.e., input is the entire video, not frame-by-frame).

Furthermore, the method does so in a way that utilizes the information within the

"hard to track" regions — information that is typically not used. The way we do this

results in accurate tracking that is better suited for video analysis pipelines that may

need to filter or correct any tracking errors that did occur.



iv

DEDICATION

None of this would be possible without three very important people in my life:

Mary and Andy Rice — my mother and father — and Sarah Alexander.

I appreciate everything you have done for me.



v

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Shin for all of his guidance, wisdom, and support

and during my PhD studies. I would also like to thank the University of North

Carolina at Charlotte’s graduate school for their funding support.



vi

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: BACKGROUND 6

2.1. MOT tracking challenges 7

2.2. Data association and batch-based MOT 9

2.2.1. Head vs. tail endpoints 9

2.2.2. Possible connections set 11

2.2.3. Affinity scoring 12

2.3. Low-level tracklets T0 12

2.4. Ant dataset 13

CHAPTER 3: MODELING POSSIBLE TRAJECTORY PATHS WITH
HYPOTHESIS TREES

15

3.1. Appearance Modeling Siamese Networks 15

3.2. Trajectory Hypothesis Tree 17

3.2.1. Gathering Heatmap Responses 18

3.2.2. Tree Growth 18

3.2.3. Branch management 20

3.2.4. Factoring in Distractions 22

3.3. Post-processing Trees 23

3.4. Related works 23



vii

3.5. Evaluation 25

3.6. Summary 26

CHAPTER 4: DETERMINING POSSIBLE TRACKLET CONNEC-
TIONS AND AFFINITIES WITH BI-DIRECTIONAL HYPOTH-
ESIS FORESTS

28

4.1. Bi-directional hypothesis forests 29

4.2. Tracklet affinity and matching through prediction cycles 31

4.3. Constructing possible connections set 32

4.4. Tracklet affinity as tree similarity 33

4.5. Related Works 35

4.6. Evaluation 36

4.7. Summary 37

CHAPTER 5: ESTIMATING TRACKLET MATCHING MARGINALS 39

5.1. Constructing the tracklet matching factor graph 39

5.2. Sum-product loopy belief message passing 42

5.3. Building the matching solution 44

5.4. Related Works 45

5.5. Evaluation 46

5.5.1. Evaluating metrics 46

5.5.2. Implementation details 47

5.6. Discussion of results 48

5.7. Summary 49



viii

CHAPTER 6: CORRECTING TRACKLET MATCHING ERRORS
WITH ACTIVE SAMPLING OF THE ASSOCIATION GRAPH

53

6.1. Sampling the association graph 54

6.2. Correction procedure 55

6.2.1. Review Creation 56

6.2.2. Review annotation process 56

6.2.3. Key-frame selection schemes 57

6.2.4. Implementation details 65

6.3. Evaluation 65

6.4. Summary 68

CHAPTER 7: CONCLUSION 72

REFERENCES 74



ix

LIST OF TABLES

TABLE 2.1: Ant colony dataset testing and training split 14

TABLE 3.1: Hypothesis tree construction accuracy 25

TABLE 4.1: Comparison of affinity measures for match classification 37

TABLE 4.2: Matching classification comparison using prediction cycles 37

TABLE 4.3: Comparison of approaches for determining possible connec-
tions set

38

TABLE 5.1: Matching comparison with common input 51

TABLE 5.2: Matching comparison with different pipelines 51

TABLE 5.3: Tracking performance over different thresholds on marginals 52

TABLE 6.1: Manual annotation effort over various step sizes 60

TABLE 6.2: Random endpoint graph sampler performance 69

TABLE 6.3: Endpoint density graph sampler performance 69

TABLE 6.4: Endpoint entropy graph sampler performance 69

TABLE 6.5: Static step size key-frame selection scheme performance 70

TABLE 6.6: Dynamic step size key-frame selection scheme performance 70

TABLE 6.7: Dynamic size with dampening selection scheme performance 71

TABLE 6.8: Dynamic size with both dampening and extensions
performance

71



x

LIST OF FIGURES

FIGURE 2.1: Illustration of tracking challenges 8

FIGURE 2.2: Illustration of hard regions of tracking 10

FIGURE 3.1: Example of Siamese network input and output 16

FIGURE 3.2: Illustration of hypothesis tree construction 21

FIGURE 4.1: Illustration of Bi-Forest on a toy example 30

FIGURE 4.2: Illustration of directed and undirected tracklet matching 30

FIGURE 5.1: Tracklet matching factor graph example 43

FIGURE 6.1: Example of typical user annotation process 58

FIGURE 6.2: Proposed process for gathering and applying user
annotations

61

FIGURE 6.3: Illustration comparing different approaches to key-frame
scheduling

62



xi

LIST OF ABBREVIATIONS

Bi-Forest Shorthand for Bi-directional hypothesis forest

HypTree Shorthand for hypothesis tree

LBP An acronym for loopy belief propagation

MOT An acronym for multiple object tracking

Na Shorthand for ”No Answer”

SOT An acronym for single object tracking

Tracklet Term used to describe a trajectory fragment/segment



CHAPTER 1: INTRODUCTION

Currently, multiple object tracking (MOT) algorithms expedite several advanced

methods of video analysis. To fully appreciate the applicability of MOT, it is impor-

tant to realize that MOT algorithms are almost always a means to an end, rarely the

end itself. Another way to state this is that tracking is often a single module within

larger video analysis pipelines. For example, proxemics, which uses tracking to study

how people use the spaces they work and live in [1, 2], personalized smart spaces

[3], robotics [4], autonomous driving [5, 6, 7], traffic monitoring [8, 9], and security

[10, 11].

The field of biology is another area of research that often employs automated

tracking as part of analysis pipelines and could benefit significantly from further

development within MOT. Evidence of this can be seen in the number of automated

tracking software systems published for gathering animal tracking data [12, 13, 14, 15,

16]. For biologists, automatic tracking enables more thorough investigations towards

understanding scenarios like subjects’ response to stimuli [17], division of labor [18],

and collective decision making within biological networks [19]. With this context in

mind, we can think of the procedure for laboratory investigation on biological video

recordings as three interdependent steps [20]: data acquisition, tracking, and analysis.

Correct analysis results thus depend on the reliably gathering accurate representations

from the tracking stage.

Under particular, often very strict, assumptions on the data, one may assert that

tracking will not produce errors that would negatively affect the analysis. If these

assumptions cannot be met, then the risk of errors in the tracking results should be

expected. MOT is a very challenging problem, and without strict assumptions to
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help narrow the range of possibilities, it quickly becomes unwise and impractical to

believe tracking errors will not occur.

This raises the question: what can one do when the data does not fit the assump-

tions required to assert that tracking errors will not occur? One way would be to

find another approach for gathering trajectory data that does not rely so much on

tracking performance. For example, the video could be labeled completely manually

by annotating all targets in the video from scratch. This is a very time-consuming

process, and the methods proposed in this dissertation seek to provide a more effi-

cient alternative. Another answer to this question is to find a way to filter or correct

errors within the tracking results. But, to do so would mean identifying potential

errors in the first place — a task that the tracking algorithm may be well suited for

if formulated correctly.

This leads us to another question: how would a tracking algorithm identify po-

tential errors in the results? One idea would be to look for abnormalities in the

tracking results. Unfortunately, this assumes that some characteristic of the error

would be able to be classified as abnormal. A better way would be to model possible

explanations of the data (including the case that you missed a possible explanation),

compare the favorability of each, and from this derive some measure of uncertainty.

Furthermore, one can imagine how having the set of possible explanations in mind

could be beneficial when requesting information to settle the uncertainty (e.g., user

interaction). If we are going to identify potential errors in the tracking results auto-

matically, we are essentially identifying uncertainty among possible explanations of

the data.

As we’ve previously established, the situation involves a prerecorded video, and

the information needed is accurate trajectory data. Cases such as these are well

suited for what we will refer to as batch approaches to MOT. By batch, we mean the

video is processed as a whole (i.e., not online/real-time, where frames are provided
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sequentially). This aspect of the situation is noteworthy for two reasons: 1) it is an

essential aspect concerning the scope of this work, but more so in terms of motivations,

2) if we wish to model uncertainty among possibilities, then the way the video is

processed dictates the possibilities we can consider. Batch approaches are better

suited for modeling possibilities across the entirety of a video simply because the

input is the entire video.

Lastly, we should note that some portions of the video’s trajectories are more

difficult than others. This results in what we’ll call ”hard-to-track” and ”easy-to-

track” regions. Characteristics of the "easy-to-track" regions are high confidence

detections and virtually no ambiguity as to whether or not two detections belong to

a common target. We’ll expand upon this more later in the dissertation. Still, the

important thing to consider here is that the number of possibilities expands primarily

due to the "hard-to-track" portions of the trajectories (depicted as the striped-red

zones in Figure-2.2).

To summarize the points made up to this point that motivates this work — there

are situations where individuals have collected video data and wish to use tracking

to enable further analysis. Still, the data does not meet the requirements to assume

tracking will be reliable for analysis. In this situation, it would be beneficial if the

tracker could aid with identifying potential errors. For a tracker to do this, it will

need to model and compare the possible explanations of the data such that some

measure of uncertainty is available.

This dissertation ultimately proposes several contributions specific to multi-object

tracking (MOT) but first outlines a single object tracking (SOT) approach. The pro-

posed SOT approach models possible routes a target could have taken within the

”hard-to-track” regions (depicted as the striped-red zones in Figure-2.2) by repre-

senting the hypothetical routes as branches in a tree-like data structure. These SOT

trackers, which we refer to as hypothesis trees, are grown in a bi-directional fashion to
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create a forest of trajectory possibilities. We then use this forest of hypothesis trees,

which we’ll refer to as a Bi-forest, to assist with constructing and scoring elements of

the tracklet (i.e., trajectory-fragmented) matching graph. Additionally, we propose

an approach that converts the tracklet matching graph into a probabilistic tracklet

matching factor graph. The tracker can then estimate matching marginals and, in

turn, use the estimated marginals to assemble a matching solution. Finally, we pro-

pose a procedure to more efficiently identify and correct tracklet matching errors.

The proposed work leverages the estimated matching marginals and the Bi-forest to

reduce correction time. In summary, the primary contributions of this dissertation

are:

• Hypothesis forests for capturing the spatial and temporal extent of possible

paths a target has taken, as well as the relative potential among these paths.

These structures aid with tracking in several ways. Uses a modified Siamese net-

work for appearance modeling during difficult regions within the MOT setting

(i.e., we expect objects with similar appearances to be nearby the target).

• An approach for constructing the tracklet matching graph which determines

both the set of possible connections and their affinity scores using bi-directional

hypothesis forests. Additionally, a prediction-based matching procedure that

does not require an optimization procedure for constructing a matching solution

is presented.

• A method for converting tracklet matching graph into a factor graph which

can be used together with a loopy-belief propagation (LBP) message passing

approach to estimate matching marginals and construct greedy matching solu-

tion.

• A correction procedure that reduces user correction time by utilizing matching

marginals and possible paths within the hypothesis forests.
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Relevant background information concerning MOT, evaluation, and datasets is

provided in Chapter-2. The procedure for growing SOT hypothesis trees is given in

Chapter-3. The construction of Bi-forests, as well as details on how tracklet matching

information is extracted from them, is presented in Chapter-4. The method for esti-

mating matching marginals and constructing a greedy solution is detailed in Chapter-

5. The proposed correction procedure is given in Chapter-6. Finally, conclusions and

future works are discussed in Chapter-7.



CHAPTER 2: BACKGROUND

It is helpful to introduce two broad dividing lines in terms of approaches when

discussing visual tracking. The first division is sequential vs batch methods — the

distinction between the two concerns how observations are gathered from the input

video. By observation, we mean anything gathered from the image concerning the

targets of interest, like image patch samples or detection responses. Sequential meth-

ods are designed to process a small window of observations, often frame-by-frame, and

sequentially slide the observation window across the video to construct trajectories.

Batch methods utilize a large window, often all video frames, and typically express

object tracking as a combinatorial optimization problem to build trajectories. Sequen-

tial methods are usually shooting for real-time processing speeds, and batch methods

tend to be more accurate given they have more available to work with, but that’s

not always the case. The second division is straightforward and concerns whether

the method is a single object tracker (SOT) or a multi-object tracker (MOT). This

dissertation focuses mostly on MOT approaches with a few exceptions in chapter-3.

Several surveys exist for SOT trackers, including SOT trackers priors to the deep

learning wave [21] and more recent surveys [22, 23, 24]. After discussing the broad

set of challenges related to tracking, we then shift attention to data association-based

MOT (section-2.2) and the essential elements within it that formulate the tracking

problem. Section 2.3 describes input to the proposed method (i.e., detections and

low-level tracklets), and section- details the ant colony dataset used during evalua-

tions.
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2.1 MOT tracking challenges

A tracker has to be prepared for several categories of challenging dynamics when

determining or comparing possible explanations of the data. Even further difficulties

can be faced when these categories co-exist in particular ways. Here, we partition

the challenges into four categories: object dynamics, recording dynamics, situational

factors, and computational constraints. Object dynamics refers to the characteristics

of the targets in the scene and how these characteristics possibly change over time.

Appearance is an example of object dynamics, including differentiating objects by

appearance alone and the degree of visual change in an object’s appearance over

time (independent of other challenges, like occlusion). Motion is another example of

object dynamics and concerns the movement patterns of an object. Motion patterns

can range from predictable (e.g., smooth movement, like pedestrians) to abrupt (e.g.,

flight paths of fruit flies).

Situational factors include the video background and the density of objects in the

scene. A few challenges can result from the scene’s background that causes distrac-

tions or confusion when trying to locate a target. The background is a critical factor

for several prior works because they heavily rely on accurate foreground estimation

(i.e., pixels containing a target of interest) [25, 26, 16]. Occlusions and object density

are two closely related examples of situational factors. Density impacts occlusions,

but the activities the objects are exhibiting, and the specifics of the scene can also

affect the degree of occlusions. Roughly speaking, occlusions can be inter-object (e.g.,

object occludes object), object-to-scene (e.g., walks behind a wall), or scene-to-object

(e.g., garage door shuts, visually blocking object).

There are several challenges related to recording dynamics. Things such as camera

perspective, camera movement, and imaging quality (e.g., frames per second and res-

olution) can negatively affect tracking performance if assumptions made by the track-

ing method are not met. The primary assumption in this work concerning recording
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Figure 2.1: An illustration of tracking challenges with specific examples on the ant
colony dataset. All of the examples, except for [e], have some degree of occlusion
ranging from mild [b] to severe [a,c,d]. We can also see an example of nearby objects
with similar appearances [f-1] and a case where we cannot assume distinct appearances
[b]. Background clutter [c, e] can cause false-positive detections (Note that [e-2] is not
an ant, [e-1] is an ant). Some videos have uncommon interactions between objects;
for example, [d-1] highlights one ant carrying a dead ant. Other challenges include
large pose variations [b-1], appearance variations (object in [c-1] has paint marks that
are not visible due to the object being upside down while crawling on the underside
of plexiglass cover), and difficult lighting ([d] has dark areas within the cluster while
also having lights reflecting from plexiglass cover).
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dynamics is that the camera is static. Finally, computational constraints are another

concern of tracking methods. The challenges we just outlined, together with the fact

a video contains a great deal of structured information by itself, amount to many

possible explanations to deal with noisy, missing, or misleading information. This

large set of possibilities only adds to the computational burden already felt by batch

MOT methods that wish to use more advanced models of appearance and motion.

Figure-2.1 illustrates several of the challenges outlined in this section with examples

taken from ant colony datasets.

2.2 Data association and batch-based MOT

Roughly speaking, the typical approach to batch-based MOT approaches is to

gather detections within the video frames, determine some set of connections between

the detections that should be considered, calculate affinity measures, and solve for

the final trajectories. With this perspective, detections form the groundwork for

later stages of inference. Trackers will possibly need to deal with some amount of

missing, noisy, or false detections. Missing and noisy detections are usually due to

the ”hard-to-track” regions of the video. Detections can be gathered in several ways,

but the trend in the recent past has been to employ deep learning-based detection

approaches [27]. From here, detections are associated to form tracklets (fragments of

a trajectory), possibly over multiple stages [28, 29, 26, 16]. We wish to highlight the

key elements here: determining the set of possible connections, calculating affinities,

and solving the matching problem. But, before we discuss these three elements of

the tracklet matching problem, we should point out two terms that can cause some

confusion if not well defined.

2.2.1 Head vs. tail endpoints

Here we introduce terms relied on throughout the dissertation. Since batch ap-

proaches consider all, or large portions of the video, we often need to discuss something
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Figure 2.2: Illustration of hard regions of tracking when using a sequential or batch
approach.

that has two ”endpoints” which define a temporal region. The two most predominant

examples within this document are the two endpoints of a tracklet or a connection.

We will refer to the head and tail endpoints as the endpoint that occurs earlier or

later, respectfully. For example, if we assume some tracklet begins in frame one and

ends in frame 10, then the head end of the tracklet would be the endpoint occurring

at frame 1. With connections, we will be discussing the head and tail tracklets where

the head tracklet of a connection is the tracklet that occurs earlier. Another way to

look at it is that a connection head is always the tail of some tracklet and a connection

tail is always the head of some tracklet. Keep in mind that we will sometimes refer

to these endpoints in a compound manner because of the surrounding context (e.g.,

the tail endpoint of the connection’s head tracklet).
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2.2.2 Possible connections set

A critical step in batch-based MOT is determining which connections should be

considered. If detections were perfect, meaning no detection information is missing,

we could consider detections between adjacent frames. Unfortunately, detections will

be missing to some degree within the ”hard” regions of a trajectory. As such, a tracker

is going to have to consider connection gap sizes larger than one. This concept of

defining possible connections in terms of a maximum gap size is frequently used in

MOT literature [29, 26, 28]. As the maximum connection gap size grows, so does

the set of possible connections. This can cause an excessive number of connections,

given that each possible connection will have to be scored before determining the

matching solution. Several works follow a procedure like [29] and attempt to address

these issues by performing matching over several stages. Here, each stage of matching

considers connection gaps larger than the last stage. The difficulty with this approach

is that affinity scores are largely relative, meaning there are times when it is hard

to tell if a connection is correct without considering the other possible explanations.

Furthermore, if a connection made in the previous stage is incorrect, then a ”chain-

reaction”-like situation can occur because correct explanations in later stages won’t

be considered.

Another means of determining possible connections is by using motion information.

The simplest version, which is also used in sequential methods that account for missing

information, is to define a gating region. Here, some maximum motion threshold,

often simple displacement, defines a spatial radius of what should be considered.

More often than not, this mechanism is used together with the maximum gap size

approach mentioned. Thus, the shortcoming previously mentioned associated with

using a gap size threshold still remain.

In this work, we propose an exploration-like approach such that sequential track-

ers, run both forward and backward from tracklet endpoints, are used to define what
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should be considered in the possible connections. The process uses a gating mecha-

nism within the SOT trackers but avoids thresholding connections based on a single

predefined maximum gap size. In a way, this results in a dynamically defined max-

imum gap size, determined independently for each matching situation (i.e., tracklet

endpoint). Furthermore, this allows us to measure how likely the correct connection

is not represented (details in chapter-4).

2.2.3 Affinity scoring

Some measure of appropriateness is needed to determine a matching solution from

the set of possible connections. This is often referred to as tracklet affinity or the

association score. There are several methods proposed in the MOT literature for

calculating tracklet affinities. Most prior works on estimating tracklet affinities rely

on information that can be gathered from the ”easy-to-track” regions. This includes

appearance similarity measures (e.g., ReID [30]) and motion predictions (e.g.,motion

smoothness [26] or advanced methods using learned models [31, 32]).

This dissertation proposes to estimate two forms of tracklet affinity. The first form

of affinity is less conventional and uses predictions from forward and backward SOT

trackers to develop a binary form of affinity (similar to [16]). This binary form of

affinity is used to identify agreement between independent trackers such that the

matching solution can be determined without an optimization step. The second form

of affinity is more traditional in that it can be used within an optimization procedure.

Here, we use a similarity measure between forward and backward SOT trackers to

calculate affinity (details in chapter-4).

2.3 Low-level tracklets T0

This section outlines input to the proposed tracklet matching process and our as-

sumptions on the input. Specifically, input to the matching process is what we refer

to as low-level tracklets T0. These are short trajectory segments created by making
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confident connections between consecutive frames of detections. The approach we

use for building these tracklets follows [16] and can be summarized by the following.

First, a user defines the location of all targets in three video frames, specifically the

first, last, and middle frames. The procedure for defining these locations is what [16]

calls user-marking. A simple to perform procedure of three clicks, together with a

brush size, allows the user to define the location and spatial extent of a target quickly.

These marks supply everything needed to tune all parameters related to foreground

estimation, particle swarm optimization of the foreground, detection model train-

ing, and general size information on the targets. The foreground is estimated using

background subtraction (again, assumes static camera) and particle swarm optimiza-

tion. Foreground blobs that meet particular size requirements in each video frame are

classified using a support vector machine. The foreground is also used to construct

occlusion tunnels [26]. The foreground tunnels allow the system to stitch detections

into short tracklets confidently. The process allows us to reliably assume no detec-

tions belonging to separate targets are connected. Furthermore, by using a two-stage

detection classification procedure, we are able to assume false-positive detections are

rare. While the precision of this process for both detecting and stitching is very high,

recall suffers. Concerning stitching, this means trajectories are often very fragmented.

To reiterate, we have the following assumptions on the low-level tracklets: 1) false-

positive detections are rare, meaning a high rate of false negatives is common, and

2) tracklet stitching will not mismatch detections from different targets, meaning

trajectories are often very fragmented. These assumptions result in a matching situ-

ation where the tracker will need to fill in missing information rather than filter noisy

detections and false positives.

2.4 Ant dataset

We use a challenging ant colony dataset throughout this dissertation for evaluating

the proposed method. This dataset is well suited because it is a real-world use
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Table 2.1: Ant colony dataset testing and training split. Ground truth time represents
the amount of time it would take to watch each target in each of the videos from
beginning to end. Ground truth time factors in video frame rate (Recording frame
rate differs for each video — ranges from 25 to 60 frames per second).

Num.
Videos

Video
Time

Total
Video

Frames

Ground
Truth

Tracks

Ground
Truth
Points

Ground
Truth
Time

Train set 12 33m 50s 55,887 540 2,376,132 24h 41m 52s
Test set 5 10m 34s 21,508 209 941,366 7h 29m 9s
Total 17 44m 24s 77,395 749 3,317,498 32h 11m 1s

case of the motivations made in the introduction– biologists captured these videos

to analyze complex behavior in colonies of ants. Furthermore, ant colonies have

several challenges that are not typically found in MOT benchmark datasets [33],

which focus on pedestrian tracking. For one, the appearances of the ants within

the dataset are very similar, and in some cases, practically identical. Secondly, the

motion patterns of ants are much less predictable than tracking scenarios such as

pedestrians [26]. A noteworthy consequence of these challenges is that typical affinity

measures are less reliable. The reason is that these affinity measures almost entirely

rely on discriminative features gathered from ’easy’ to track regions. If appearance

is assumed to be very similar, then features such as ReID are less effective. If the

motion is difficult to predict, simple measures such as motion smoothness will also be

less effective, especially over larger gap sizes. A few examples of the ant dataset are

shown in figure-2.1.



CHAPTER 3: MODELING POSSIBLE TRAJECTORY PATHS WITH

HYPOTHESIS TREES

This chapter presents a procedure for growing a tree-like data structure that mod-

els possible paths a target may have taken in video recording. While the process

described in this chapter results in a single object tracker, the end goal is to apply

it within a multiple object tracking setting — particularly the "hard-to-track" re-

gions of a trajectory. We assume that "hard-to-track" regions will likely have several

challenges, including heavy occlusions, appearance changes, abrupt motion, and dis-

tracting appearance similarities. The key concept is to leverage continuity of image

information to capture debatable trajectory hypotheses and their relative feasibility

when uncertainty is encountered. We first detail a Siamese network architecture for

modeling target appearance and then outline the method for constructing hypothesis

trees.

3.1 Appearance Modeling Siamese Networks

Siamese networks have seen a lot of attention in recent years within several areas

of computer science research due to their ability to calculate similarities among sets

of data [34, 35]. In this work, we use a fully convolutional Siamese neural network

to calculate appearance similarity heatmaps. These appearance heatmaps, together

with a simple displacement motion model, are the sources of information from which

we determine continuity and uncertainty. Our Siamese network architecture follows

an approach is similar to [36], which uses a three-part structural design including

the network backbone, neck, and head. Note that [36] proposes and region proposal

approach. For this research, we are interested in the classification heatmap output and
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Figure 3.1: Example of Siamese network template, search instance, output. Here
we show the template patch that has been rotated to a vertical alignment and sides
masked using average color in patch (left), search instance with target of interest
highlighted in red (middle), and output heatmap with target of interest highlighted
in red (right). Notice that while many of the object responses are suppressed in
the output heatmap, the highest response is not the target of interest but rather an
isolated object with similar paint markings. Cases such as these motivate the need
to consider distractions while tracking.

do not include the region proposal portions of [36]. Our backbone uses a Resnet34

[37], with reduced stride amounts (from 32 to 8), and center feature cropping on

template features to reduce computation during the correlation (head module) step.

The neck of our network compresses the feature dimension of both the template and

instance from 256 to 64. The classification head of the network uses a depth-wise

cross-correlation model [36].

As previously stated, this process will ultimately use this within a multiple object

tracking setting. We’ll need to consider three factors in an MOT setting, which are

often less frequently seen in single object tracking datasets. First, we should expect

objects similar in appearance to be nearby the target of interest. The second factor is

that a square patch around a target will likely have distractions (e.g., parts of other

targets). The third factor is that the orientation of the target can change over time.

This last factor is more predominant in biological tracking datasets but certainly

possible in any dataset. To deal with these, we propose several techniques to help

the network during training and testing. We use a larger size ratio between template
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and instance during training. We use a 5:1 size ratio between template and instance

as opposed to a 2:1 ratio in [36, 38]. This allows the network to be exposed to many

targets with similar appearances during training. To deal with ambiguities in the

template, we ensure that the alignment of the target is vertical and mask the sides.

This means that the network sees the target in a vertical alignment (although, could

be either of the 180-degree orientations), and any potential visual distractions outside

the target’s rectangular extent are minimized.

An example is shown in figure-3.2. We modify the total weight of negative labels

when calculating the binary cross-entropy, specifically to be half the total weight of

the positive labels. This is because the network is seeing more negative examples

in each training instance. For data augmentation, we follow the findings of [36] and

perform random translations to prevent any center bias during prediction. Instance

patches are randomly translated such that the target location is anywhere within ±72

pixels from the center of the patch.

Selecting the right strategy for sampling during training can have a significant

impact when learning a Siamese network [36]. We use a simple density measure when

selecting the template and instance frame. We calculate this density as the number

of objects within a certain radius of the target. We define this radius as two times the

largest dimension of a target, specified by the ground truth. Densities are normalized

for a target, and frames with lower density are more likely to be selected as templates,

while higher densities are more likely to be used as search instances.

3.2 Trajectory Hypothesis Tree

The process of constructing the hypothesis tree involves three steps. We gather

responses from the classification heatmap, then grow tree state with nearby responses

and perform branch management. We repeat these steps until the stopping condition

has been reached.
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3.2.1 Gathering Heatmap Responses

The initial location of the target is provided as input and serves as the template

location for appearance scoring with the Siamese network. At some later frame t,

the location(s) of the target in frame t− 1 are used to determine the search instance

area. The size of the search area is based on the set of hypothesized locations in t-1

and an estimation of maximum movement. Here, we assume the maximum motion

is provided as input. Later chapters will determine maximum motion automatically.

The classification heatmap is computed given the template and search instance. The

heatmap values are scaled to be within the range [−1, 1] — these scaling parameters

are automatically calculated while training the Siamese network. We reduce the

number of possible locations considered within the heatmap by determining local

maximums. We find the local maximum positions by performing image dilation,

then comparing the original heatmap with the dilation and checking which pixels had

no value change. The kernel size for dilation is set to be roughly half the smallest

dimension of the target. We adjust the locations of the local maximums to better

represent the surrounding evidence by calculating the center of mass within a radius

of the response. This radius is equal to the size of the dilation kernel. Let Rt be the

detected responses at frame t.

3.2.2 Tree Growth

Initially, the hypothesis tree contains a single leaf, the root leaf, which represents

the initial location of the target. The initial location of the target is provided as

input. For each subsequent time step t, the process for growing the tree given the set

of detected responses Rt is as follows. For every leaf in the tree at t-1, child leaves

are created for responses that are reachable by that leaf at time step t. The potential
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of a child leaf l having parent p is defined as:

δ(l, p) = α(l) ∗ γ(l, p)
z
∗ β(l, p) (3.1)

Where α(l) is the appearance score of the response reachable by parent p, γ(l, p)

is the displacement probability measure, and β(l, p) represents a penalty for using

interpolation between l and p. Displacement probability is calculated as a normal

distribution N (µ, σ2) and z is equal to the maximum value of the distribution â

meaning the most probable amount of displacement will result in the term value of 1.

Interpolation nodes in the tree represent a duration in which the available responses

fail to explain the situation to some level of certainty. Specifically, interpolation

nodes are created when no responses are reachable by a leaf or when all reachable

responses have a potential lower than parameter π. Because of this, interpolation

nodes have no associated response and can propagate for several time steps until it

finds an acceptable response and transition to a response node. Moreover, until an

interpolation node transitions into a response node, no explicit location is defined.

This is because we require an ending location and the interpolation node’s parent to

fill the missing location values. Another point to realize is that while interpolation

nodes are necessary to cope with occlusions, they represent periods when no image

information was available to explain the decisions made. Because of this, we penalize

the score during interpolation with the following:

β(l, p) =


1 if∆t == 1

c0 ∗ (cdr)∆
t−1 if∆t > 1

Where C0 represents the initial potential for all new interpolation leaves. cdr rep-

resents the rate at which C0 drops as the interpolation node propagates. δt is the

number of time steps between interpolation leaf l and its parent p. The potential of
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interpolation leaves is β(l, p) until transition, at which point the value β(l, p) is used

to compute δ(.).

At this point in the explanation of tree growth, it is helpful to reiterate that many

situations can occur in MOT where our information sources, like appearance, are

unreliable by themselves. For example, situations can occur where a similar-looking

distractor (i.e., some target other than the target of interest) may have a higher

heatmap score simply because the target of interest is undergoing a difficult dynamic

(e.g., illumination change, occlusion, or large deformation). We rely on relative po-

tentials for several decision-making processes throughout tree growth to deal with

this. Let Lp represent the set of children for node p. We define the relative value of

a node l having parent p as:
−→
δ (l) =

δ(l)

δ(l∗)
(3.2)

where l∗ the child node with the highest potential in Lp. A branch in the tree is

defined as sequence of nodes from a leaf to the root. The score of a branch b is:

∑
li∈b

Cs(li) ∗
−→
δ (li) (3.3)

Where Cs(li) is the sum of potentials from li onward. The term within the sum-

mation of this equation can be thought of as the amount of potential gathered from

li onward scaled by the relative potential of li. The tree growing process continues

until the provided stopping criteria Φ have been met. In this chapter, we use a simple

stopping criterion — maximum tree height — and discuss more advanced methods

in chapter-4.

3.2.3 Branch management

Without branch management, the tree would grow to an unreasonable width (i.e.,

number of branches) quickly. We use two forms of branch management, merging and

pruning. Merging is the primary form of branch management and largely handles
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Figure 3.2: Illustration of HypTree construction. Green square is initial location and
tree’s root. Circles (nodes) represent detected responses in the appearance heatmap
(section-3.2.1), where circle size depicts the appearance score. Edges between two
circles means a response is reachable and the edge color represents relative score (eq.-
3.2, darker is better score). Dashed edges represent interpolation. Gray edges that are
hollow (both dashed and solid) represent branch paths that were merged according
to section-3.2.3 (no pruning is required for this example). Nodes without edges are
distractions captured in larger search radius (section-3.2.4).

redundancies within small temporal windows. When a single response r ∈ Rt is

associated with more than π0 leaves, a merge is performed. Other than the leaf

with the highest branch score, all leaves are removed. In practice, we set π0 = 1,

meaning a response will be associated with a most one leaf. Pruning is required

when merging cannot keep the number of branches below some predefined maximum.

Three parameters control the rate of branch pruning. The maximum number of

interpolation nodes at any time step π1, the maximum number of leaves at any given

time step π2, and the over-pruning rate. When either maximum π1 or π2 has been

reached, the number of leaves to remove is calculated according to the over-pruning

rate and the leaves with the lowest branch scores are removed.
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3.2.4 Factoring in Distractions

Up to this point, the score of a branch has been calculated using relative poten-

tial, specifically relative in the forward direction. This means that while a transition

may be promising from a forward-facing perspective, it may turn out to be a lousy

transition from a backward perspective. This point is essential to grasp given that

interpolation nodes are permitted (i.e., regions where no information was available,

or worse, ignored). Imagine the following situation, for example. A target has un-

dergone heavy occlusion with the scene, forcing an interpolation node to be created.

Now imagine that some number of time steps later, a high scoring response suddenly

becomes reachable to the interpolation node, but in reality, the target has not reap-

peared. Here, it would be helpful to know if the high-scoring response agrees that

the transition is good relative to its options in the backward direction. If it does

not agree, this may indicate a distractor’s presence, and that additional explanations

should be considered. We model distractors by incorporating relative potentials in

the backward direction. Specifically, the search instance area used for heatmap cal-

culation is increased to cover three units of "maximum movement." This allows us to

capture responses within one unit of "maximum movement" at time step t that could

be reached in the backward direction from responses at time step t + 1. We define

the backward relative potential of leaf l to response r ∈ Rt as:

←−
δ (l) =

δ(l)

δ(r∗)
(3.4)

where δ(r∗) is the highest potential in the backwards direction from r to responses in

set Rt-1. We modify the branch score equation to include distractor information:

∑
li∈b

Cs(li) ∗
−→
δ (li) ∗

←−
δ (li) (3.5)
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3.3 Post-processing Trees

Once the tree has met the stopping criteria to discontinue growth, post-processing

is performed to determine a more thorough measure of favorability at the tree’s node

and branch levels. Applying the following during tree growth would be very computa-

tionally demanding due to the recursive nature of the functions and is thus why they

are performed in a post-processing manner. The following recursive function defines a

variant of the branch score that penalizes accumulated scores along routes that were

less likely than the alternatives. Let ln represent the last leaf along a branch, and li

be the leaf corresponding to frame index i.

δ̂(ln) = C(ln) ∗ (
−→
δ (ln) ∗

←−
δ (ln)) (3.6)

δ̂(li) = (δ̂(li+1) + C(li)) ∗ (
−→
δ (li) ∗

←−
δ (li)) (3.7)

In this way, every leaf li of a branch has a value calculated that depicts the amount

of accumulated potentials beyond leaf li, scaled by the relative potential of li. A key

difference between this function and the functions used during tree growth is that

potentials beyond a relatively bad move will be harshly penalized and result in little

score accumulated from leaf li onward.

3.4 Related works

Traditionally, appearance modeling within SOT has been approached as a learning

problem. These works often propose intricate procedures for determining sets of

positive and negative training examples followed by model construction performed

once or progressively as tracking is performed. For example, [39] proposes a method

for determining sets of training examples that can be used with multiple instance

learning. Hare et al. [40] propose a structured output SVM that employs a budgeting

mechanism while progressively updating the appearance model online. A central
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theme in these works is determining suitable training data for learning and adapting

appearance models online. Numerous works have been proposed to utilize Siamese

network architectures for appearance modeling in visual tracking [35, 34, 41]. These

works leverage the feature extraction abilities of deep learning to develop a generalized

model of appearance. Bertinetto et al. [38] propose a Siamese network for extracting

features in both the template patch and the search instance such that the template

feature can be used as a filter on the search instance features. This allows the model

to produce a heat map-like response matrix representing appearance similarities at

many translated locations within the search image. Several works have built upon

this concept by incorporating things such as region proposal sub-networks [36, 42],

segmentation [43], higher-order information sources (e.g., appearance history and

motion) [44], and offline training procedures that account for distractions [45].

Similar work to the SOT procedure described in this chapter is multiple hypothesis

tracking (MHT) [46]. In his paper, Reid [46] proposed to track multiple targets si-

multaneously in a sequential manner such that track hypotheses are maintained over

k frames of the video. The set of possible track hypotheses are then considered jointly

to determine global hypotheses, where a global hypothesis is a set of track hypotheses

that are not in conflict. The motivating idea is to postpone decisions (i.e., assigning

frame observations to targets) until ambiguities are hopefully resolved. Kim et al.

[47] later proposed several improvements to work developed by Reid by incorporating

modern appearance modeling techniques using deep convolutional neural networks.

There are several differences between our work and MHT, but the key distinctions are

the following. The first difference involves scoring possible explanations of the data.

Our work uses relative scoring for both frame observations (i.e., leaf siblings) and

whole trajectories (i.e., branches of the hypothesis tree). The second significant dif-

ference is that our work explicitly models the possibility of distractors (section-3.2.4).

Lastly, branch management in our work does not rely on the global configuration of
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Table 3.1: HypTree construction accuracy over 1000 frames of tracking. A tree was
grown for every target in the ant colony testing set (209 total), initialized at the first
frame of the video. The distance between branches of the tree and the ground truth
are calculated. Branches with distance less than a threshold (width of the target) are
recorded at set frame intervals (height column). Below shows the percentage of trees
with a branch in the Top-K maintaining the assigned target. At a tree height of 1000,
33% of the trees had correctly maintained the target as the best branch (Top-1) and
58% of the trees maintained the target in at least one of the branches (Top-75).

Height Top-1 Top-3 Top-5 Top-10 Top-20 Top-30 Top-50 Top-75
5 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00
50 0.92 0.93 0.93 0.93 0.93 0.94 0.94 0.96
100 0.86 0.87 0.87 0.87 0.87 0.87 0.88 0.90
200 0.80 0.81 0.82 0.82 0.82 0.82 0.83 0.87
300 0.67 0.69 0.70 0.70 0.71 0.72 0.77 0.79
400 0.56 0.59 0.61 0.61 0.61 0.63 0.67 0.70
500 0.53 0.56 0.58 0.58 0.59 0.61 0.64 0.66
600 0.52 0.56 0.57 0.58 0.58 0.60 0.64 0.66
700 0.51 0.53 0.54 0.55 0.55 0.58 0.64 0.66
800 0.48 0.50 0.51 0.53 0.53 0.56 0.63 0.66
900 0.37 0.40 0.42 0.43 0.47 0.50 0.59 0.62
1000 0.33 0.34 0.37 0.40 0.43 0.49 0.53 0.58

targets in the scene and is concerned explicitly with ambiguities relating to a single

target.

3.5 Evaluation

This chapter focuses on evaluating the proposed hypothesis tree method on its

ability to track a single target in the presence of multiple distractions. Furthermore,

we evaluate its ability to capture multiple hypothetical paths the target may have

taken. We use the ant dataset outlined in section-2.4 for evaluation.

We test the ability of hypothesis tree construction to maintain an assigned target by

growing trees to a height of 1000 (frames) and checking if the target is still captured

within the tree at set frame intervals. Specifically, for each target in each of the

videos within the ant colony test set, we initialize a tree. This results in a total

of 209 trees grown to a height of 1000 frames. At set frame intervals, the distance

between branches of a tree and the ground truth target assigned is calculated. We
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recorded if the assigned target is captured by one of the top-k branches in the tree,

where k ranges from one to 75 (maximum number of branches). Table-3.1 show the

average number of trees containing the assigned target in it’s top-k scoring branches

(equation-3.5). At height 200, 80% of the trees maintain the target in its best branch,

and an additional 7% of the trees maintain the target in at least one branch. At height

1000, only 33% of the trees maintain the target in their best branch, but an additional

25% of the trees maintained the target in at least one branch — resulting in 58% of

trees capturing the assigned target at the height of 100 frames.

3.6 Summary

This chapter presented a procedure for growing a tree-like data structure that

models possible paths a target may have taken in video recording. We detailed

how responses are gathered from a classification heatmap using a Siamese network

appearance model, how the tree state is grown in the presence of (or lack of) nearby

responses, and how branch management is performed through a combination of two

techniques: merging and pruning.

It is worth noting that several promising areas of improvement are happening in

the SOT appearance modeling community, such as [48, 49]. This approach should

fit well with anything that can provide a heatmap-like output. Furthermore, parts-

based appearance modeling methods could be explored [50] to improve performance

during heavy occlusions and provide more detailed records of the target’s state (e.g.,

orientation information).
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Procedure 1 Tree growth procedure
Input: Hypothesis tree x, the detected responses Rt, minimum child potential θ,

and maximum number of leaves λ
Output: Hypothesis tree x grown by one time step
1: Initialize empty set for new leaves, Lt

2: Let Lt−1 be the set of leaves grown in the previous time step for x
3: for leaf p in Lt−1 do
4: Determine set of responses R∗ = {ri} ⊂ Rt reachable by p
5: if R∗ is empty then
6: Create interpolation child leaf within Lt

7: else
8: for ri in R∗ do
9: Calculate child leaf l with potential δ(l, p) ▷ Eq-3.1

10: if p represents an interpolation node then
11: Adjust potential of c ▷ Eq-3.2.2
12: Redirect parent of c, to be parent of p
13: Add l to leaf set Lt

14: if no child of p created has δ(l, p) > θ then
15: Create additional interpolation child leaf within Lt

16: Update relative potentials for leaves in Lt ▷ Eq-3.5
17: Merge out leaves in Lt covering common response in Rt ▷ section-3.2.3
18: if ∥Lt∥ > λ then
19: Prune Lt ▷ section-3.2.3
20: if any leaves were pruned or merged then
21: Update relative potentials for remaining leaves in Lt
22: Update time step of x to be t
23: Assign Lt as the current leaf set in x
24: return x



CHAPTER 4: DETERMINING POSSIBLE TRACKLET CONNECTIONS AND

AFFINITIES WITH BI-DIRECTIONAL HYPOTHESIS FORESTS

This chapter proposes a process for determining the set of connections that a track-

let matching approach should consider and a means of scoring the affinity between

pairs of tracklets these connections represent. In the tracklet matching context, an

affinity measure is a likelihood that two tracklets originate from a common target

in the video sequence. Often, the affinity between a pair of tracklets is measured

independently, without considering other matching possibilities. As such, the task of

tracklet matching is then to take the set of possible connections and their affinities

and determine a subset of these connections to make. In other words, the possible

connections and their affinities are the elements that describe the matching problem

to be solved, and it is tracklet matching’s job to solve it.

From this perspective, it should be clear that both the set of possible connections

and their affinities are critical to the success of tracklet matching. Having an accurate

representation within the set of possible connections together with poor affinity esti-

mates will likely result in poor tracking performance. The same can be said for the

reverse, where quality affinity measures are used with a possible connection set lack-

ing representation. The following sections detail how hypothesis trees can be grown

bi-directional to construct the association graph and score possible connections in the

graph. The underlying motivation for the remaining sections of this chapter is that

correct tracking should be independent of the direction it was performed, which is

similar to arguments made by [51, 16]. Moreover, an agreement between independent

trackers that start at different points and run in opposite directions is meaningful

information for performing tracklet matching.
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We first describe the process for growing bi-directional hypothesis forests. From

there, we outline how a high-precision possible connection set can be determined

with the forests. We then discuss two types of affinity measures derived from the

bi-directional forests, one of which can be used to directly find a matching solution

via cycle detection among forward/backward predictions, without the need for an

additional optimization step. The affinity measures are then used within a traditional

tracklet matching optimization approach where we compare against a commonly used

affinity measure, ReID [30].

4.1 Bi-directional hypothesis forests

The basic idea behind bi-directional hypothesis forests is that independent sequen-

tial trackers (i.e., the hypothesis trees), initiated from tracklet endpoints, are run

both forward and backward to estimate which associations should be considered and

their affinity. We’ll describe the process for growing the forest in the forward direc-

tion. The only differences between forward and backward forests are the direction the

trees are grown and the endpoint of a tracklet from which trees are initiated. Trees in

the forward forest are initiated from the tail end (i.e., latest time point) of tracklets,

while trees in the backward forest are initiated from the head end (i.e., earliest time

point).

Given the initial tracklet set T0, we first initiate empty sets F∗ and F representing

trees currently growing and completed trees respectfully. For each time step t of the

video sequence, tracklets which terminate at time step t have a new tree initiated and

added to the set F∗. As we continue to process the frame sequence, we will check

if trees that are actively growing within F∗ have met certain "landing" conditions.

The "landing" concept here represents part of the stopping condition for tree growth

mentioned in chapter-3 and means that branches of a tree are spatially within a certain

distance of another tracklet’s endpoint. Since we are describing forward forests, the

branch locations at a particular time step t are near the head end (i.e., earliest time
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Figure 4.1: Illustration of Bi-Forest applied to a tracklet matching toy example. The
four elements shown here are the ground truth trajectories for three targets (upper-
left), low-level tracklets that might result (upper-right), a depiction of a forward
hypothesis forest grown from the tail endpoints of the low-level tracklets (bottom-
left), and a depiction of the Bi-forest after forward and backward forests have been
grown. Note that the shape of blue and red trapezoids here only represent tree length
(i.e., temporal extent) and do not represent the spatial extent of the tree. Spatial
information is not used while determining the set of possible connections.

Figure 4.2: Illustration of directed and undirected tracklet matching graph on a toy
example. The two graphs above represent what would result from using the Bi-forest
illustrated in figure-4.1 to construct the tracklet matching graph. Left shows the
directed tracklet matching graph where each tracklet is represented by a single vertex.
Right shows the undirected tracklet matching graph where each of the two endpoints
for every tracklet is given a vertex. Grey vertices represent tracklet endpoints with
no possible connections.
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point) location of another tracklet that also occurs at time t. When a tree branch

has "landed", we record such and propagate this property to all descendants of that

branch. A tree stops being grown when one of two stopping conditions are met.

Namely, when a particular amount of branches within the tree have "landed" or

when the tree’s height (i.e., number of frames processed) reaches some predefined

maximum. In practice, we define a weighted percentage of branches needed to have

landed, 0.5, where the weight of each branch in the tree equals their branch’s score

normalized across the branches currently in the tree. We allow trees to grow to a

maximum height of 1000. It is worth noting that most of the trees terminate due to

the "landing" condition and rarely grow to a height of 1000.

4.2 Tracklet affinity and matching through prediction cycles

This section details how bi-directional hypothesis forests can be used to perform

tracklet matching directly, without the need for traditional optimization techniques

using the maximum a posteriori (MAP) formulation of tracking. We can view the

landing point of the best branch within a hypothesis tree as a prediction. The pre-

dictions of these trackers are then represented as directed edges on an association

graph G = (V,E). This allows for a binary form of affinity to be measured through

graph cycle detection. Given a set of tracklets, we grow both forward and backward

hypothesis forests from tracklet endpoints. Each tracklet is represented by two ver-

tices in G corresponding to the head (beginning) and tail (end) of the tracklet — no

edge is defined between the two endpoints. Directed edges in G represent predictions

from the trackers (i.e., targets to track which "landed"). We first detect prediction

agreements by finding graph cycles with a length of 2. We then filter all detected cy-

cles which have a vertex with more than one inbound edge. A vertex with more than

one inbound edge would mean that multiple predictions "landed" on that tracklets

endpoint and thus would represent an unreliable association. Finally, we associate

the tracklet endpoints corresponding to the filtered cycles detected in G. Note that
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Procedure 2 Forward hypothesis forest construction
Input: Initial tracklet set T0, Siamese network backbone B and head H, tracklet

landing criteria Φ
Output: Hypothesis Forest F
1: Let F be the set of completed trees, initially empty
2: Let F∗ be the set of trees currently being grown, initially empty
3: for frame t do
4: Calculate the frame level features ξfrm with backbone B
5: for tree x in forest F∗ do
6: Calculate response heatmap h = H(ξfrm, ξτ̂i) ▷ section-3.2.1
7: Determine region responses Rt within h ▷ section-3.2.1
8: Apply tree growth procedure to x using Rt ▷ Procedure-1
9: if x meets the landing criteria Φ then

10: Remove tree x from set F∗

11: Add x to the set of completed trees F

12: Let T̂ = {τ̂i} be tracklet tail endpoints in T0 occurring at t
13: for τ̂i in T̂ do
14: Calculate template features ξτ̂i with appearance model backbone B
15: Initialize a new tree having template ξτ̂i and add to set F∗

16: Post-process trees in F ▷ section-3.3
17: return F

while this approach is practical at matching, it has a few key drawbacks that will be

discussed in chapter-5.

4.3 Constructing possible connections set

As previously mentioned, it is important to represent the correct connections within

the possible connection set — meaning recall in critical. There is little to no hope for

tracking to perform well with a low recall on the possible connection set. Additionally,

prior works have shown that it can be to the matching algorithm’s advantage if

higher levels of precision can be obtained without sacrificing recall [26]. Meaning

false positives have been filtered within the possible connections set. Here we describe

how the Bi-forests can construct a high precision set of possible connections without

sacrificing recall. We do this by examining the temporal extent of trees in the Bi-forest

to define what connections should be considered for matching.

Let −→x i represent the forward tree generated for the tail end of tracklet τi, and ←−x k
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be the backward tree generated for the head end of some other tracklet τk. Further,

let the −→x i
S and −→x i

E the beginning and ending time-steps for tree −→x i respectfully. A

connection between τi and τk is possible if the following holds:

−→x i
S
>←−x k

E
and ←−x k

S ≤ −→x i
S
and ←−x k

E ≤ −→x i
E (4.1)

Note that this definition does not use any spatial information defined by the trees for

determining if a connection is possible. Doing so would risk lower recall performance

within the possible connection set. During our evaluation, we will show that the tem-

poral extent of trees filters a large portion of incorrect connections without suffering

losses in recall.

4.4 Tracklet affinity as tree similarity

This section details how a traditional form of affinity can be measured given the

Bi-Forests and set of possible connections in the association graph. For each possible

connection in the association graph, we can compare the trees that stem from the

connection endpoints and calculate a few similarity measures. Assume that the asso-

ciation graph contains the possible connection between tracklets τi and τk. Also, let
−→x i and ←−x k represent the forward and backward trees generated for the proper end-

points of tracklet τi and τk respectfully. We define the following four tree similarity

affinity measures:

Best branch landing distance (bbld): For both forests −→x i and ←−x k, we identify

the best scoring branch. Specifically, we find the best scoring branch at the

time-step when the opposite tracklet begins. The L2 distance between the

landing location (i.e., the tracklets initial location in that direction) and the

best branches location is calculated. The average between these two distances

serves as the best branch landing distance affinity.

Most similar branch pair distance (sbd): For every pair of branches between
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−→x i and←−x k, the average L2 distance is calculated for the temporally overlapping

segment. The distinction of the temporally overlapping segment is necessary

since a tree can grow beyond (but never shorter than) the temporal range of the

connection being considered. The smallest average distance between all branch

pairs serves as the most similar branch pair distance affinity.

Min relative weighted pair distance (brwd): For every branch pair (bn ∈−→x i,

bm ∈ ←−x k) of branches between trees −→x i and ←−x k, we calculate the average L2

distance over the temporally overlapping segment as well as the relative score

of each branch. The relative score is the branch score divided by the maximum

scoring branch in its associated tree. Let rel(bn) and rel(bm) represent these

relative branch scores. Let avgD(bn, bm) represent the average distance over the

temporally overlapping segment. The following equation calculates the relative

weighted pair distance, and the minimum across all pairs serves as the min

relative weighted pair distance:

avgD(bn, bm) ∗ (1.001−min (rel(bn), rel(bm))) (4.2)

Normalized weighted pair distance (bnwd): For every branch pair (bn ∈−→x i,

bm ∈ ←−x k) of branches between trees −→x i and ←−x k, we calculate the average

distance over the temporally overlapping segment as well as the normalized

score of each branch. Let nrm(bn) represent the score of branch bn normalized

over all branches within its associated tree.

avgD(bn, bm) ∗ (1.001−min (nrm(bn), nrm(bm))) (4.3)
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4.5 Related Works

Although uncommon, a few works in the MOT literature use the information within

the ”hard” regions of tracking. Kalal et al. [51] propose to perform automatic error

detection based on the forward and backward sequential key-point trackers. Rather

than determine elements necessary for performing tracklet matching, [51] utilizes

disagreement between the trackers to identify errors. Wang et al. [52] propose to

extrapolate tracklet endpoints (i.e., extend as much as possible) using online adapted

instance detectors and determine appearance affinity measures for use in the global

association. Our work also utilizes what can be thought of as online instance detectors.

Still, it goes further than extrapolating to the point of uncertainty by capturing

possible routes the target may have taken beyond the point of uncertainty.

Milan et al. [53] propose to automatically identify regions of tracking that likely

contain an error and consider trajectories from sequential trackers as a replacement to

the region in question. Trajectories from sequential trackers are accepted if including

the segments minimizes a global energy function. The tracklet matching approach

used the ABCTracker software [16] also proposes to use the information within the

”hard” trajectory regions to perform matching. They attempt to globally track all tar-

gets in the scene, both forwards and backward, from tracklet endpoints. Predictions

by the trackers, represented as cycle detection like mentioned in section-4.2, deter-

mine the matching solution over multiple iterations. The foreground corresponding

to known target locations is removed during each matching iteration, and the remain-

ing foreground is maximized among the set of targets currently being tracked using

a genetic algorithm-based particle filter. Again, the goal in that work was not to

capture the possible routes a target had taken. Furthermore, the method proposed in

[16] relies heavily on the foreground in order to allow matching iterations to account

for information gathered in previous stages of matching.
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4.6 Evaluation

This chapter evaluates the proposed bi-directional hypothesis forests on their abil-

ity to determine essential elements of tracklet matching association graph — namely,

the set of possible connections and their affinities. We first compare the Bi-directional

hypotheses forest with the typical means of determining possible connections. The

method we compare with, which is often used in tracking literature, is a maximum

temporal window [29]. Here all connections within a set temporal distance are con-

sidered as possible. Table-4.3 shows the number of connections that result for each

method as well as the percentage of tracklet endpoints that have their correct con-

nection captured in the matching graph. The table shows that the Bi-forest approach

can capture 98% of the correct connections while only using 18,011 possibilities in

the matching graph. Compared to a maximum window approach of 768 frames, Bi-

forest can gather nearly as many correct possibilities (98.22% vs. 99.1%) while only

considering 2.6% of the connections (18,011 vs. 685,195).

We next evaluate the affinity estimating abilities of the proposed approach. We

compare with ReID [30], a widely used feature in the tracking literature [54, 55, 47,

56, 57, 58, 59] that utilized information in the ”easy-to-track” regions of a tracklet to

estimate affinities. We construct an association graph using the Bi-forest approach

outlined previously in this chapter to compare the methods. According to the dataset

ground truth, the prevalence of correct connections in the association graph created

with bi-forest is 12.07%. Affinities for connections in the graph were calculated using

ReID and combinations of bi-forest affinities outlined in 4.4. The association graph,

together with the method’s estimated affinities, were then optimized using the Hun-

garian approach [60, 29]. Table-4.1 shows the performance of each method to classify

connections. Note that no additional information was provided in the cost matrix to

the optimization step. Finally, we evaluate the cycle detection methods for tracklet

match classification. Results are reported in Table-4.2.
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Table 4.1: Comparison of affinity measures for match classification on one ant video
from the ant colony test dataset.

TP Endpoint Predictions FP Endpoint Predictions
Reid 1,667 508

HypTrees (bbld) 2,057 118
HypTrees (sbd) 2,085 90
HypTrees (bwrd) 2,065 110
HypTrees (bnrd) 2,084 91
Hyptrees (all) 2,088 87

Table 4.2: Tracklet matching classification comparison using variants of Bi-Forest
cycle prediction on the ant colony test set videos. Numbers are the summed across
all 5 videos in the set. The two right-most columns show the number of tracklet
endpoints with a least one correct match and no correct matches available respectfully.

Endpoint Connections
Predictions Endpoints

w/ Answer
Endpoints

w/o AnswerTP FP Total
Forward Predictions 5939 112 6051 7749 698

Bi-Forest Cycles 6112 65 6177 7749 698
Bi-Forest Cycles (Strict) 5179 41 5220 7749 698

4.7 Summary

This chapter proposed several ways in which bi-directional hypothesis forests can

construct essential elements of the tracklet matching problem. First, we showed how

bi-forests could determine a high-precision set of connections that a tracklet matching

approach should consider. Then we showed how several traditional affinity measures

could be calculated between pairs of tracklets using bi-forests. We then detailed

how a binary form of tracklet affinity can be established based on cycle detection

among independent sequential tracker predictions such that tracklet matching can be

performed directly without the need for an optimization step.
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CHAPTER 5: ESTIMATING TRACKLET MATCHING MARGINALS

This chapter proposes a probabilistic graphical model for estimating tracklet match-

ing marginals. We first outline how we represent the tracklet matching problem as

a factor graph such that matching is posed as a task of determining the best action

to take on a tracklet-endpoint. Possibilities considered in the tracklet matching fac-

tor graph, as well as their favorability, are determined using the Bi-Forest approach

(discussed in chapter-4). We then describe how marginal probability estimates over

the set of possible connections are determined using the sum-product loopy belief

propagation algorithm. The matching marginals are then used to construct a greedy

matching solution together with hypothesis tree aided gap-filling. Finally, we evalu-

ate the proposed approach against several prior works using the ant dataset detailed

in section-2.4.

5.1 Constructing the tracklet matching factor graph

Let ĝ represent the tracklet matching factor graph being constructed and g be

the undirected tracklet matching graph detailed in section-4.3. To model possible

connections in ĝ, we first extract the set of possible connection pairs, Ψ, from g. For

each connection pair in Ψ, an unknown binary variable node is added to ĝ. The set

of preprocessed affinity measures corresponding to a connection pair in Ψ define the

notion of observed evidence or favorability within ĝ. In situations where only a single

affinity measure is defined for each connection, a unary factor is created and linked

to the connection variable in ĝ. Given the preprocessed affinity measurement m, the

unary factors potentials are defined as [m, 1 −m] — representing the favorability of

the connection being correct and incorrect respectfully.
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In situations where a set of affinity measurements are available for each connection,

an equality constraint factor is used to join the evidence. For each measurement

mi ∈ m a variable is created with a unary factor having potentials: [mi, 1 − mi].

Each of these measurement variables, along with the connection variable associated

with the measurement set m, is connected to an equality constraint factor. The

number of matrix dimensions for the equality constraint factor’s potentials will be

one greater than the number measurements in m. The value of the potentials is zero

except for the configurations where all connected variables share the same label (i.e.,

two configurations, all true or all false). The value at these configurations is uniform,

equaling 0.5. An example of this is shown for connection variable (b, e)′ within figure

figure-5.1.

A constraint often utilized in tracklet matching is that a tracklet can connect with

at most one other tracklet. Theoretically, this constraint could be modeled within the

tracklet matching factor graph in one of two ways. One approach is to construct many

pairwise dependencies between connections to encode the feasible associations. In this

way, each pairwise dependency factor would constrain and communicate with exactly

two connection variables. This results in a vast number of small loops in the factor

graph. Furthermore, the number of dependency factors is defined by the number of

connections being considered when using this approach. This means the number of

unknown variables and the number of dependencies grow as more possibilities are

considered.

During our attempts at using this approach, we experienced oscillating predictions

between two significantly different solution states. Momentum was required to ob-

tain any convergence, significantly more than what was reported in related works on

oscillations in very loopy graphs [61]. Additionally, [61] reports that when momen-

tum is applied to settle oscillating state predictions, the resulting estimates can be

unreliable.
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The other approach to modeling the "matches to at most one" constraint is to

capture all of the dependencies related to a tracklet endpoint using a single factor.

Here, the number of variables connected to the constraint factor grows as we consider

more possibilities, not the number of constraint factors. One challenge with this

approach is that the number of configurations modeled in the dependency factor’s

potentials matrix grows exponentially. Specifically, the matrix will be of size 2n for

a binary random variable formulation, where n is the number of possible connections

considered for a particular tracklet endpoint. We will first describe the details of

constructing the factor and then explain how this configuration size issue can be

overcome by taking advantage of the constraint the factor governs.

Let ΨH be the set of unique connection heads (i.e., the earlier end of the two

connection endpoints) within the set of possible connections Ψ. For each connection

head id ci
H ∈ ΨH , we first determine the set of variables vc

H in ĝ that have ci
H

as their connection head id. Given vc
H , we construct a factor that dictates at most

one variable in vc
H can be correct. The values for the factor’s potentials are all

zero, except for configurations where only one of the variables in vc
H is true or when

all variables are false. Note that the configuration where all variables are false is

included here for clarity purposes and will be replaced by a better representation in

the following paragraphs. The value at these non-zero configurations is uniform. All

variables vc
H are then connected to the constraint factor. This process is repeated

for unique connection tails ΨT (i.e., the latter end of the two connection endpoints).

Now, consider that a majority of the factor’s configurations are defined as impos-

sible (i.e., potentials are zero). In this way, the factor is only concerned with n + 1

of the 2n possible configurations. Leveraging this is critical for achieving reasonable

memory and computation performance, especially for endpoints having many connec-

tion possibilities. We modify how messages from these factors are created, ignoring

all configurations other than the n+ 1 that are possible.
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Procedure 3 Tracklet matching factor graph construction
Input: Tracklet matching graph g, set of connection affinity scores S
Output: Tracklet matching factor graph ĝ
1: Let Ψ be the set possible connection pairs, extracted from g
2: Initialize empty factor graph ĝ
3: for connection id pair c in the set of possible connections Ψ do
4: Create connection variable for vc in ĝ
5: Let Sc ⊂ S be the set of affinity measures associated with c
6: Create evidence factor using Sc

7: Connect evidence factor with vc
8: Let ΨH ⊂ Ψ be the set of unique connection head ids
9: for connection head id cH in ΨH do

10: Let vc
H ⊂ ĝ be variables having cH as their connection head

11: Create Na variable vHNa and its unary factor for cH

12: Create a constrained factor vf for cH

13: Connect all variables in vc
H with vf

14: Connect Na variable vHNa with vf

15: repeat lines 8—14 for set of unique connection tail ids ΨT ⊂ Ψ
16: return ĝ

Up to this point, the factor graph has been made aware of possible connections,

a local measure of how favorable each connection is, and can convey the "matches

to at most one" constraint to variables with constraint factors on tracklet endpoints.

The last type of elements added to the factor graph represents the possibility that a

tracklet endpoint has no correct connection modeled in the graph. We create what we

will refer to as a Na (i.e., a No Answer available) variable for each tracklet endpoint.

The Na variable is connected to two factors, a unary factor representing how likely

the Na state is and the "matches to at most one" constraint factor associated with

the tracklet endpoint in question. By connecting the Na variable to the constraint

factor, we essentially replace the configuration where all connection variables are false,

allowing us to utilize any evidence that all possible connections modeled are incorrect.

5.2 Sum-product loopy belief message passing

Given the loopy tracklet matching factor graph ĝ, we apply the sum-product mes-

sage passing algorithm [62] to estimate matching marginals. We use the sum-product
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Figure 5.1: Tracklet matching factor graph example. Here illustrates the tracklet
matching factor graph that would result from the toy example shown in figure-4.1
and figure-4.2. Solid black squares depict unary factors. A circle with the text
”Na(xH)” represents a Na variable on the head endpoint of tracklet x. Na variables
capture the possibility that a tracklet endpoint has no correct answer represented in
the association graph. Circles with the text ”(x, y)” represent a connection variable
between tracklets x and y. For illustration purposes, the equality constraint factor
(black square with ”=”) is only shown for the lower-left association variable (b,e)’.
A dark blue square with the text ”xT ” represents a matching constraint factor node
for the tail endpoint of tracklet x. The matching constraint factor nodes dictate that
one and only one action (i.e., connection or no connection) explains their associated
endpoint, where the possible actions are variables connected by an edge in the graph
— namely, a Na variable and the possible connections.
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approach instead of the max-product since we wish to estimate matching marginals.

Despite the graph containing loops, we find convergence is obtained in a moder-

ately small number of message passing cycles — often less than 30 iterations for our

datasets. Convergence within loopy graphs is typically determined by monitoring the

average change across all variables in the graph. When the average amount of change

reaches a predefined threshold, the graph is said to have converged to an approximate

state, and message passing stops. Due to the size of our graph, we also look for the

maximum change in any single variable. This is because most of the variables in our

graph tend to settle faster than a smaller portion of the graph. To handle this, we also

monitor the maximum amount of change in the graph. When the average amount

of change, as well as the maximum amount, drops below ζ1 and ζ2 respectfully, we

terminate message passing and extract the estimated marginals for all connection

variables in ĝ.

5.3 Building the matching solution

We use a greedy approach to building the matching solution given the association

marginals. We maintain a list of head and tail tracklet endpoints that have been

assigned a connection or marked as having no answer (i.e., the Na variable represent-

ing no connection). We iterate the following until all tracklet endpoints have a label

assigned: 1.) select the variable with the highest marginal probability (among all

connection and Na variables), 2) if assignment conflicts with available endpoints lists,

continue. Otherwise, apply the assignment and record the endpoint(s) as no longer

available for further assignment.

Gap frames between matches determined during greedy solution building are filled

using the hypothesis trees corresponding to the connection endpoints. Given the pair

of trees corresponding to the connection endpoints, the pair of branches with the

smallest L2 distance is selected. A weighted average between the pair is determined

such that the weight of a branch’s location decreases linearly as you continue up the
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tree (i.e., away from the root node).

5.4 Related Works

Several works have been proposed that use factor graph representations of the data

association problem for sequential MOT [63, 64, 65, 66, 67, 68, 69]. In these works, the

task is to sequentially associate targets with measurements (i.e., detections) frame-

by-frame. Some of these works consider multiple frames at a time while processing

the video sequentially [68, 70]. The target-to-detection graph constructed and solved

frame-by-frame will almost always be smaller than a tracklet-to-tracklet graph would

be that is constructed across the entirety of the same video.

The typical approach to tracklet matching-based MOT is to construct a graphical

representation of the matching possibilities and estimate the optimal solution. To

our knowledge, no works concentrate on estimating the marginal probability of the

tracklet matching possibilities. Numerous works frame the tracklet matching problem

using either linear programming [71, 72], network-flow [73], graph cliques [74, 75], or

Hungarian optimization [29, 76, 77, 78, 28]. Some works propose statistical graphical

model representations of the tracklet matching problem (e.g., mean-field, conditional

random field) but only seek to find the optimal solution rather than the relative

favorability of different solutions [79, 80]. Several works pose tracklet matching as

an energy minimization problem [81, 80, 53, 82]. These works operate by iteratively

modifying the global solution state and seeing if the resulting state has lower energy.

For all of the examples listed in this paragraph, the goal of the method is to determine

the optimal solution. The work presented in this dissertation first seeks to estimate

the certainty of possible explanations and then pick a solution consistent with this

measure of certainty.

Based on our literature search, we believe that estimating matching marginals is

overlooked in the related works for a few reasons. First, the tracklet matching prob-

lem usually results in large graphical models that are difficult to solve efficiently. By
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using Bi-forest (chapter-4) to determine the set of possible connections, we were able

to reduce the size of the matching graph significantly without sacrificing recall. The

second reason concerns tracking performance evaluation: there is no benefit to accu-

rately modeling uncertainty when using standard evaluation metrics. An uncertain

error made by a tracklet matching algorithm is treated no differently than a certain

one.

5.5 Evaluation

This chapter evaluates the proposed tracklet matching method on its ability to

both match tracklet and fill connection gaps (i.e., the detections between connection

endpoints). For this, we use the evaluation process typically used in MOT literature,

which is to sequentially map ground truth identities to predicted trajectory identities

and calculate several metrics based on this mapping. One evaluation conducted in

this chapter is across methods that share a common set of input (i.e., detections).

Another part of the evaluation compares our work with recent tracking pipelines

submitted to the 2020 MOTChallange benchmark. First, we detail the metrics used

during the evaluation before discussing implementation details and results.

5.5.1 Evaluating metrics

We use an evaluation procedure and metric set commonly used MOT. The evalua-

tion procedure and metrics follow from [29, 83]. Namely, we use the following metric

set below. Note that the definition we use for fragment (Frag) and ID switch (IDS)

is that of [29].

• Fragment (Frag) — Ground truth track changes its matched predicted track id.

• ID Switch (IDS) — Predicted track changes its matched ground truth id.

• Recall (Rcll) — Percent of ground truth matched to a predicted detection.

• Precision (Prcn) — Percent of predicted detections matched to a ground truth.
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• Mostly tracked (MT) — Ground truth trajectory is detected more than 80%

• Partially tracked (PT) — Ground truth trajectory is detected between 20%-80%

• Mostly lost (ML) — Ground truth trajectory is detected less than 20%

• ID Precision (IDP) — Percent of predicted detections correctly identified

• ID Recall (IDR) — Percent of ground truth detections correctly identified

5.5.2 Implementation details

The set of methods sharing a common input include: GAPF [16], Cycle-BiForest

(section-4.2), and the proposed method (LBP-Forest). For all of these methods, input

is the set of low-level tracklets outlined in section-2.3. We also include a modified

version of GAPF where the foreground is disabled during the tracklet matching stage.

Specifically, all pixels of the foreground image are set to zero. The evaluation includes

two versions of prediction cycle detection-based matching, strict and loose. The strict

version is as described in section-4.2. The loose version is similar to the strict version,

except that connections involving nodes with more than one inbound edge are not

filtered. Concerning the Bi-Forest used by the proposed method, LBP-Forest, we used

the same training process and training data as described in section-4.6. Namely, the

appearance model was trained using the ant colony dataset training split (section-2.4,

table-2.1).

Two recent methods within the MOTChallange 2020 benchmark are used while

comparing tracking pipelines with the proposed approach: WOBW and MPN. The

first of these works is called tracking without bells and whistles (WOBW) [54].

WOBW proposed to track targets by using bounding box regression from a trained

object detector to predict subsequent positions. They also extend the method by

using ReID [30]. The other method we compare against is MPN [55]. Authors of

MPN [55] propose to learn message functions (i.e., multi-layered perceptron) such
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that message passing can be performed towards solving the matching solution. We

follow the procedures outlined by the authors during training and evaluation. Ac-

cording to MPN [55], we use the output trajectories from WOBW as input into MPN

during evaluation. As such, we train three separate deep learning models used by

WOBW and MPN, namely, a Fast recurrent neural network (FRCNN), a Siamese

Re-identification network (ReId), and the learned message function used by MPN.

All three models were trained using the authors’ code on the ant colony training

dataset (table-2.1) with only slight modification to work on our dataset.

5.6 Discussion of results

Table-5.1 shows the tracking performance comparison between methods that use

a common input. The top row of Table-5.1 (low-level tracklets) shows the tracking

metrics for the input. The low-level tracklets cover the ground-truth detections with

50% recall and 99% precision, which are connected into short tracklets that result

in 6,826 fragment errors and one ID switch. The strict variant Cycle-BiForest per-

forms similar to the loose version. The loose version recovered slightly more of the

missing ground-truth detections (4.5 percent points) at the cost of three additional

ID switches. Both variants of GAPF achieve the highest recall, with LBP-Forest

recovering roughly 3 percent points less of the ground truth. While the number of

fragments produced by LBP-Forest is the lowest among all the methods, it signifi-

cantly increases ID switches. Note that no threshold on matching marginals was used

for LBP-Forest during this evaluation. Finally, it is essential to realize that none of

the approaches in table-5.1 can produce matching marginals along with the matching

solution, other than LBP-Forest.

Table-5.2 shows the tracking performance comparison between methods using dif-

ferent inputs. The tracks produced by WOBW [54] cover 90% of the ground truth

with a precision of roughly 85%. To reiterate, the output trajectories produced by

WOBW are the input to MPN [55]. The table shows that MPN can increase recall and
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precision on its input by 1.3 and 4.3 percent points, respectfully. Furthermore, MPN

reduced the number of fragments and ID switches from its input by 824 (32%) and

132 (91%), respectfully. LBP-Forest, which used the low-level tracklets from section-

2.3 as input, was able to recover 26.5 percent points more of the ground truth over its

input. Neither WOBW nor MPN can estimate tracklet matching marginals because

WOBW uses a sequential processing formulation, and MPN operates on detections

and uses a learned message function. LBP-Forest does have the lowest number of frag-

ments (95% reduction over input) and the highest precision but performs worse than

the other methods in two ways. First, all numbers related to recall are worse. This

is due to the differences in the inputs to these methods — LBP-Forest may perform

more favorably if the recall was similar across the two inputs. Secondly, LBP-Forest

resulted in significantly more IDS switches. The latter of these two points is discussed

further in the following comparison.

Even though LBP-Forest showed comparable performance in the previous two com-

parisons, a significant downside of the method was the number of ID switches. Note

that this is partly due to the threshold on matching marginals being set to zero for

comparison. Table-5.3 shows the performance of LBP-Forest using different thresh-

old values. At a threshold of 0.80, the number of fragment and ID switch errors is

more comparable to the numbers reported for MPN in table-5.2 — albeit with lower

recall, which we mentioned is likely due to differences in the input recall. Addition-

ally, Table-5.3 also indicates that LBP-Forest is modeling the uncertainty of different

tracklet matches. No ID switches occur at a threshold of 0.99. Even at the highest

threshold tested in table-5.3, 0.999, more the 3,400 correct matches are made between

the input tracklets.

5.7 Summary

This chapter proposed a probabilistic factor graph representation of the tracklet

matching problem. We detailed how to construct a factor graph that considers the set
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of possible connections and their connection affinities, both of which are determined

with the Bi-Forest approach. We showed how matching marginals could be calculated

with the sum-product algorithm, and with these marginals, how a greedy approach

can be used to construct a tracklet matching solution. Furthermore, we show that the

hypothesis trees can perform gap-filling once a matching configuration is determined.

Finally, we evaluated the proposed approach against several prior works using the

ant colony dataset detailed in section-2.4. The evaluation showed that the proposed

method performs favorably against the previous works and can model the certainty

of individual matches.

Future works could consider alternative means of calculating affinities. For exam-

ple, one could use a learning method to combine individual affinity measures, similar

to [29, 26]. Additionally, it is worth noting that even though Na terms were able to

be used in a general manner here, they could be expanded upon to better model pos-

sibilities. For example, instead of aggregating several classes of possibilities together,

as is done here, one could explicitly model terms that represent: the target exiting the

scene, false-positive tracks, and even more abstract concepts like tracks that divide

and merge (e.g., cell tracking were cells can split and merge, or pedestrians entering

a car). Thus, making the Na concept more interpretable and likely more robust.

Furthermore, several works have been proposed on more efficiently performing mes-

sage passing in loopy graphs [84, 85]. Although this work did not modify message

passing scheduling, we parallelized message creation and marginal updates to help

reduce computation time. It will be worth considering techniques such as residual

belief propagation [84] as tracking situations become more complex.

Finally, this approach could be modified to operate on detections instead oflow-

level tracklets. Doing so would further motivate the need to investigate efficiently

performing message passing. It would also require a motion prior since these are

determined from the low-level tracklets.
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CHAPTER 6: CORRECTING TRACKLET MATCHING ERRORS WITH

ACTIVE SAMPLING OF THE ASSOCIATION GRAPH

This chapter details an interactive procedure that allows a user to correct tracklet

matching errors more efficiently. The biggest motivator for such a procedure is that

tracklet matching results typically have errors in them for all but the simplest of

videos. This can present an issue to individuals who seek to use the results as part of

some analysis pipeline. Faced with this issue, one can find a way to either: filter the

errors if filtering would not introduce a harmful bias, correct the errors, or find an

approach that does not rely so much on tracklet matching performance (e.g., manually

annotating the positions all targets in the video from scratch). We will show later in

this chapter that manually annotating targets from scratch is a very time-consuming

process. Furthermore, we argue that time could be saved by avoiding this process if

errors in tracklet matching results could be more easily addressed.

The first two of these ideas for resolving the tracking errors, filtering or correcting

the errors, requires some means of identifying where errors likely are in the first place.

In the case of correcting the errors, which may be required to avoid biases introduced

by filtering, a process is needed to address the identified errors. These points motivate

a couple of concepts. The first is that the ability to identify errors would be valuable.

Secondly, the process for addressing errors is also necessary.

The following sections define an interactive procedure that allows a user to more

efficiently correct tracklet matching errors by leveraging both matching marginals

(Chapter-5) and information within Bi-Forests (Chapter-3 and Chapter-4). Details

of the method are largely broken up into two parts: Identifying likely errors (i.e.,

graph sampling) and the correction procedure (i.e., review/user annotation process



54

that allows us to label nodes in the graph).

6.1 Sampling the association graph

Let Aτ = {ai} be the set of actions that could be performed on some endpoint of

tracklet τ . Note that we are using a simplified notation here, which does not indicate

which of the two tracklet endpoints are being examined. In the context of this chapter,

Aτ would be the set of possible connections that could be made with the tracklet’s

endpoint (specifically, the ones captured by the association graph) and the possibility

that no correct connection is represented in the graph (i.e., Na term within the factor

graph). So, for the endpoint of some tracklet τ that has four possible connections in

the association graph, there would be five elements in the set Aτ .

If the goal of sampling is to identify errors efficiently with respect to the number

of samples, then it would be quite naïve to sample tracklet endpoints randomly (i.e.,

completely disregard any indicators during sampling). For example, consider the

following tracking situation: a 2.5-minute video at 30 frames per sec (about 5000

frames) containing roughly 50 objects in any given frame. A situation such as this

can easily result in 1000 low-level tracklets, and, in our experience, it is often more

than this if using techniques such as 2.3. Reviewing even a third of these endpoints

would be unreasonable.

Another approach would be to consider the connectivity of nodes in the association

graph. This would essentially result in the sampler favoring endpoints with a larger

number of elements in Aτ . One may be led to believe this would be a good sampling

heuristic given that, once the endpoint label has been determined and applied, this

represents the number of neighbors that would be affected by the label (i.e., only one

action in Aτ can be true, all others are thus false). The shortcoming of this approach

is that one tracklet endpoint could be very uncertain with only a few options, while

some other tracklet endpoint could have many more options available with one clearly

the answer.
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We could look for endpoints that have the greatest amount of uncertainty on any

single action available, essentially assigning the sampling value for an endpoint as

maxai∈Aτ (∥p(ai = 1) − p(ai = 0)∥), where p(ai = 1) is the predicted probability of

action ai being true. A better approach would be to consider the total uncertainty

at a tracklet endpoint. Here, we can calculate this as the entropy over the marginal

probabilities of action set Aτ .

6.2 Correction procedure

We refer to a review in this chapter as a request for user input on a low-level track-

let’s endpoint. The information requested from the user is target location annotations

at key time steps beyond the selected endpoint. A review contains the following in-

formation once completed by the user: the tracklet endpoint, the key-frames selected

for user input, and the target’s location in those key-frames. Additionally, a review

also contains properties associated with the occurrence of certain events (e.g., target

exiting the scene) specified by the user. An illustration of this is shown in figure-6.2.

The goal of having the user review the tracklet’s endpoint is to determine the best

action to take on the selected endpoint. The action could be to connect the tracklet

to another tracklet, remove the tracklet (i.e., false-positive tracklet), or extend and

terminate the tracklet when no correct connection is available (e.g., exists the scene

or reaches the end of the video sequence). The appropriate action is determined

by comparing the user’s key-frame annotations against known targets locations with

which the selected endpoint can connect.

Before we discuss the procedure for creating tracklet endpoint reviews any further,

it is important to note that we assume video playback during the user annotation

process can only play forward, not in reverse. As such, we only create reviews for

tracklet tail endpoints (later end of the tracklet) and do not create reviews for track-

let head endpoints (earlier end of the tracklet). This is because most video players

provided with user interface APIs cannot perform playback in reverse. Future works
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could consider both tracklet ends and overcome the playback limitation with addi-

tional bookkeeping in the code and maintaining two video copies, one forward and

one in reverse.

6.2.1 Review Creation

Let ĝ and T0 represent the tracklet matching factor graph and low-level tracklets

as detailed in chapter-5 and chapter-2 respectfully. Let {τi}∗ ∈ T0 be the set of all

tracklets in T0 which do not cover the final frame of the video. We create a review

for each of these tracklets’ tail endpoint. Tracklets that reach the end of the video do

not need reviewing since the only possible action that could be taken (i.e., on its tail

endpoint) is to remove the tracklet entirely. We create a review for the tail endpoint

of every tracklet in T0. Let Ri = {rk} be the set of tracklet endpoint reviews created

during correction iteration i. Here, a correction iteration refers to a single cycle of

sampling and applying a batch of reviews. A new set of reviews is created after each

correction iteration. From the set of all possible reviews, the sampler then prioritizes

and selects a batch Bi = {rk} ⊂ Ri of size b to present to the user during correction

iteration i. Methods for prioritizing and selecting a batch of reviews are discussed in

section-6.1.

6.2.2 Review annotation process

We now detail the process of annotating a single review rk ∈ Bi within a given

batch of reviews Bi. Since reviews are created on low-level tracklets as opposed to

tracklet matching tracklets, there should rarely be a conflict while applying a batch

of review answers. A method that creates reviews from and continuously modifies a

tracklet matching solution will need to account that multiple matches were likely made

within a tracklet; thus, multiple reviews are possible on a single tracklet. Submitting

multiple reviews for a single tracklet within a batch could cause conflicts, resulting

in wasted reviews, and building a new solution from low-level tracklets after each
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correction iteration largely avoids these issues.

Let t0 be the frame at which the tracklet tail endpoint being reviewed occurs. For

now, assume that the set of key-frames selected for annotation have been determined

in advance. Section-6.2.3 discusses different approaches to scheduling key-frame se-

lection as well as schemes that select key-frames dynamically as user annotations are

gathered.

First, the user is presented with a video frame focused on the target to follow.

Specifically, some frame prior to t0 is selected as the start of video playback — roughly

30 frames before t0 if the length of the tracklet will permit it. This lets the user

see a portion of the tracklet’s trajectory during playback, alleviating many minor

localization issues that may confuse what target should be followed during crowded

settings. At any point, the user may right-click and specify the target is a false

positive or has exited the scene. Once the user clicks the video to start the review,

playback begins and continues until the next key-frame is reached. While paused, the

user annotates the target’s location with a click and drag interaction, which defines

the center of the target (i.e., the click) and the object’s orientation (i.e., the drag).

The length of the drag does not matter. Other interactions could be used, such

as bounding box definitions used in [86], but the click and drag procedure is fast.

Once the click and drags interaction is complete, playback resumes until the next

key-frame. This process is repeated until some stopping condition Φ for the review is

met. Said another way, when an action that should be taken is determined. Section-

6.2.3 discusses stopping conditions. A sample is shown in figure-6.1, illustrating the

user interaction process.

6.2.3 Key-frame selection schemes

Like poorly selecting reviews, a poorly selected set of key-frames can significantly

affect user effort and tracking performance. The difference here is that poorly selecting

reviews indirectly impacts tracking performance (i.e., it takes longer to achieve some
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Figure 6.1: An example showing typical user annotation process.

level of matching accuracy). In contrast, a poorly selected set of key-frames can

indirectly and directly harm tracking performance (i.e., lead inference to the wrong

conclusion). The remainder of this section discusses ways to determine key-frames

for user annotation—the final portions of the section detail the proposed key-frame

selection approach.

A naïve approach to key-frame scheduling is to employ a static step size over a

predefined number of key-frame annotations. Such an approach is used in [16]. Here,

no inference is used to determine when to stop requesting user annotations within a

single review. As a result, a review can end up falling short of the correct connection

tail (a connection tail is a tracklet head) and needs to be re-queued. In other words,

no action on the review endpoint gets taken at that time, causing the user to see

the review later again and continue key-frame annotations where they left off. The

more obvious downside of re-queuing reviews is time wasted transitioning reviews. A

less obvious downside is that it can cause some confusion to the user. For example,

if a target is not moving much and a review gets re-queued several time for it, it

may appear to the user as though they are annotating the same set of frames over

and over (i.e., it looks like a bug in the software), even though they are continuing

where they left off. Another disadvantage of this approach is that it can result in a

review overextending, which means more key-frame annotations were requested than

necessary to match with the correct connection tail. Lastly, a small static step size
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tends to be the best option to handle the wide variety of situations that corrections

will encounter. Although this approach has been shown to work [16], it ignores

several sources of information that, if utilized, would allow the key-frame scheduler

to determine step size dynamically as well when to stop requesting annotations for a

review.

A slight improvement to the previous approach is to continue using a static key-

frames step size but automatically decide when to stop requesting annotations. An-

other way to describe this modification is that the action to take on the review

endpoint is determined online, or rather as annotations are being gathered, not as

a post-processing step that hopes enough information was requested. The benefit of

this is that reviews rarely overextend the correct connection tail, and an action is

always determined, so re-queuing reviews are never necessary.

The better alternative to a static key-frame step size is to figure out what frames to

annotate dynamically. The simplest method for dynamically determining key-frame

step size is to consider the points in time where connection tails occur. Here, the key-

frame scheduler will take the set of connection tails and define the next key-frame

as the minimum frame within the connection tails beyond the last annotation. The

downside of this approach is that playback will often make many unnecessary stops

depending on how far away the correct connection tail (temporally) is.

One improvement on the previous approach is to dynamically determine key-frame

step sizes based on displacement probability to connection tails. The basic idea is that

instead of simply stopping once playback reaches a connection tail, we can consider

the proximity between the last annotation and the connection tail to establish if the

match is reasonable, thus preventing unnecessary stoppage playback to some extent.

The key-frame selection approach proposed in this dissertation is a dynamic step

size method based on proximity to connection tails and their favorability. Let r be

the review for the tail (later) endpoint of some tracklet τi ∈ T0 and let t0 be the
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Figure 6.2: Proposed process for gathering and applying user annotations.

frame at which this endpoint occurs. Let Γτ̂ = {τ̂k} represent the head endpoints

of all tracklet that temporally extend past t0 (thus, these are a set of connection

tails). Here, the upward hat on τ̂k denotes the head endpoint of the tracklet τk — a

downward hat τ̌k would then represent the tail endpoint of the tracklet. Note that this

is not the set of tracklets that begin at some point later than t0, therefore allowing

the system to consider tracklet merges (i.e., temporally overlapping trajectories) in

addition to connections. We will refer to the set Γτ̂ and the set of possible connection

tail endpoints to tracklet τi, or, simply, as the connection tails for this review.

Given the review r and its possible connection tails Γτ̂ , we repeat the following

until an action for the review endpoint is determined: the key-frame scheduler selects

the next frame to annotate given the favorability of the connection tails, the anno-

tation is gathered from the user in the selected frame, we update the favorability of

the connection tails Γτ̂ given the updated set of annotations, and determine if the

annotations have identified an action to take. Once an action has been determined,

this endpoint’s review process is complete, and labels resulting from the action are

applied to the tracklet matching factor graph.

The key-frame scheduler relies primarily on three elements: a measure of favora-
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Figure 6.3: Illustration comparing different approaches to key-frame scheduling. (a)
Static step size key-frame scheme, (b) dynamic step size based on the beginning
frame of connection heads, (c) dynamic step size that that also uses the marginals
to determine if a connection head should be stopped at, and (d) is the same as
the previous, but with tracklets extended (cyan segments) using confident regions of
hypothesis trees.
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bility for the connection tails Γτ̂ , a favorability threshold θkf for selecting the frame,

and a maximum step-size m. The favorability of the connection tails is calculated in

one of two ways depending on whether the connection tail overlaps temporally with

the annotations. When a connection tail does not overlap with the annotations, the

favorability is defined using an L2 displacement probability measure. Specifically, we

consider the average displacement between the last annotation atn and the location

of the connection tail endpoint τ̂k ∈ Γτ̂ . Note that at the very start of a review, no

annotations are available — thus, we use the location of the review endpoint as atn

instead. The favorability of a non-overlapping connection tail is then:

Fn(τ̂k, a
tn) = P (

∆(τ̂k, a
tn)

Q
) (6.1)

where ∆(.) is the L2 distance between the endpoint location and the last annotation,

Q is the number of frames separating the endpoint and the annotation, and P (.) is

a half-normal distribution with 0 mean and standard deviation σ2. The standard

deviation is determined automatically based on motion statistics gathered from the

low-level tracklets. The favorability of connection tails that have any amount of

overlap temporally with the annotations defined by:

FO(τ̂k, {at}∗) =
1

∥{at}∥
∗

∑
an∈{at}∗

P (∆(τ̂k, a
tn)) (6.2)

Where τk is the tracklet associated with connection tail τ̂k, {at}∗ is the subset of

annotations overlapping with τk, ∆(.) is the L2 distance between an annotation and

the corresponding location in tracklet τk, and P (.) is a half-normal distribution with 0

mean and standard deviation σ2. The standard deviation is determined automatically

based on the average size of the targets in the scene.

Once the favorability of all connection tails has been determined, we construct an

array v such that each index v[i] in the array represents the maximum favorability
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among all connection tails within a particular frame. Specifically, for a connection

tail τ̂k, we say that all frames covered by the tracklet associated with the connection

tail, τk, have equal favorability, calculated with one of the two functions outlined

above. The clarification being made here is that an annotation has value anywhere

within a connection tail’s tracklet τk, not just at the frame in which the connection tail

endpoint occurs τ̂k. The resulting array v allows us to quantify the value of annotating

a particular frame. Again, each index v[i] represents the maximum connection tail

favorability in a frame, not the sum of favorabilities across the set of connection tails

in that frame. Summing the values across the options would allow for many poor

options to collectively trigger an annotation request. With the frame annotation

value array v, we select the next annotation frame by finding the first element in v

that is both ≥ θkf and less than the maximum step size m. If no elements in v meet

these criteria, then the maximum step is used to define the next frame requested for

annotation.

After each new user annotation, the favorability of the connection tails is updated,

and connection actions are considered for connection tails temporally overlapping

with the annotations. A connection action is accepted for a particular connection

tail τ̂k if the overlapping favorability score FO(τ̂k, {at}∗) is greater than a predefined

threshold θc. Note that this means there is a chance that a connection tail will require

multiple annotations before it is accepted as the connection action. Because of this, we

include an ideal minimum frame step size to prevent annotating consecutive frames,

if possible. We set the ideal minimum to be 10, meaning that the next key-frame

will be at least ten frames from the last key-frame. The exceptions to this are when

the connection tail requesting the annotation does not extend ten frames or when the

end of the video has been reached.
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6.2.4 Implementation details

As observations are made on nodes in the tracklet matching factor graph, we rebuild

a new matching solution using the factor graph and greedy matching on marginal

values (after optional sum-product message updates). An illustration is shown in

figure-6.2.

As pointed out in chapter-4, Na variables within the factor graph rely on unary

terms determined during tree growth. The Na variables can adjust their marginal

beliefs as labels are added to the graph, but their unary terms can significantly hinder

this. For example, imagine a tree strongly believes an answer is present in the graph

because one branch dominates the others in terms of score and has "landed." Even if

the answer this branch believes receives a negative confirmation label, the unary term

will still push the endpoint to make a connection. This can cause unusual connections

to be established. We update the unary term for all Na variables after each batch of

reviews is answered to handle this. Branches that landed on endpoints with negative

confirmation labels are not counted as such and are ignored during the recalculation

of the Na unary terms.

6.3 Evaluation

This chapter compares the various alternatives for correcting tracklet matching

errors outlined in this chapter. We first compare review sampling approaches by

simulating user corrections and observing the decrease in fragment and ID switch

errors. From there, we compare key-frame selection schemes in terms of user time

spent. We use one video from the ant colony dataset testing split for all comparisons

made in this chapter. Input to the correction simulations is the LBP-Forest results

generated according to chapter-5. Correction simulations are performed using ground

truth. When calculating estimates of user time spent during simulations, we define:

the amount of time a user spends making a single click-and-drag annotation as 1.5



66

seconds, the number of frames viewed at the start of a review as 30 (i.e., the segment

of the trajectory a user sees before the track is lost), the amount of time it takes to

transition between reviews as 2 seconds, and the playback speed is set to 30 frames

per second.

While comparing review sampling approaches, we ignore estimates of user time

spent and concentrate on the reduction of errors in the tracking results. We set

the key-frame scheme to use static step sizes with a step size value of 1. We set

the key-frame selection scheme as such to eliminate it as a factor towards correcting

tracking errors. We compare three review sampling approaches, including random

endpoints, density favoring endpoints (i.e., number of possible connections), and an

endpoint entropy-based sampler. Tables 6.2-6.4 show the results of the samplers over

8 batches of 50 endpoint reviews. The random sampler resulted in the worst perfor-

mance, overall only addressing 20 ID switches and one fragment error. The endpoint

density sampler (i.e., number of possible connections for an endpoint) showed better

performance over random sampling, resulting in one ID switch (57 addressed) and

six fragments (31 addressed). Also, recall improved by 13.4 percent points using den-

sity sampling. The endpoint entropy sampling approach achieved the overall best

performance in terms of errors addressed and the number of reviews needed to get

there. At 200 reviews, the endpoint entropy sampler resulted in 5 fragments and one

ID switch. Furthermore, recall is 98% at 200 reviews which is two percentage points

better than density-based sampling and more than 12 percentage points higher than

random sampling.

To compare key-frame selection schemes, we lock in the review sampling approach

and observe the reduction in tracking errors in addition to estimates of user time

spent. We compare three key-frame sampling schemes: static step size, dynamic

step size based on connection endpoints proximity, and dynamic step size based on

connection endpoint proximity with marginal dampening. We will refer to these
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as static, simple-dynamic, and dampened-dynamic, respectfully. We also include a

variant we will refer to as damped-dynamic with extensions for this comparison. For

damped-dynamic with extensions, we extend the temporal extent of tracklets with

the confident segments of the hypothesis trees grown at its endpoints (figure-6.3,

(d)). Tables 6.5-6.8 show the results of the different key-frame selection schemes

over 8 batches of 50 endpoint reviews. The static method had the overall worst

performance among the methods compared — requiring an estimated user time of

3 hours to perform 400 reviews. While ID switches were mostly corrected using the

static approach, the number of fragments was significantly higher than the other

methods. This is because the static step size would overshoot the correct answer’s

endpoint. In terms of fragment and ID switch errors, both the simple-dynamic and

the dampened-dynamic approaches achieved the same amount of error reduction at

400 reviews — with dampened-dynamic performing 400 reviews with 27% less time

over simple-dynamic (152 minutes vs 110 minutes). Note that the amount of video

playback between dampened-dynamic and simple-dynamic is nearly identical. The

reduction in time between the two is due to dampened-dynamic requesting fewer

annotations. The last approach in this comparison, damped-dynamic with extensions,

performed similar to dampened-dynamic but with a slight reduction in overall time

— primarily due to slightly less video playback because of the tracklet extensions.

In several of the comparisons, the result comes to 5 fragments and one ID switch.

We reviewed the tracking results and found that all 6 of these errors are identical.

Upon review, all 5 of the fragment errors were due to tracks of length one. In these

cases, an earlier track was being reviewed for which the length-one track would be

the correct answer for connection. The connection is not made due to an edge case

scenario. Specifically, the short track in these scenarios is within the threshold for

mapping to ground truth but far enough away from the ground truth that one an-

notation does not meet the threshold for making the connection. The one ID switch
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that occurs is a track that briefly (less than 30 frames) switches to a target that has

not been detected at all since the beginning of the video.

6.4 Summary

In this chapter, we detailed an interactive procedure that allows a user to more

efficiently correct tracklet matching errors. We discussed several approaches that

could be taken for sampling reviews and selecting key-frames for the user to annotate.

Evaluation on the ant colony video containing 50 objects over 5000 frames showed two

things. First is the entropy sampling approach based on estimated marginals gathered

with LBP-Forest (chapter-5) outperforms both random sampling and a graph density

sampling approach. This indicates that the marginals calculated by LBP-Forest help

correct tracking errors. Second, the evaluation showed that marginals could also

be used to determine key-frames for the user to annotate. The proposed dynamic

step size with the marginals dampening approach reduced user time spent over the

dynamic step size approach by 27% (42 minutes).
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Table 6.2: Random endpoint graph sampler performance over 400 reviews (average
of 6 runs, rounded down).

Num. Reviews Frag IDS Rcll Prcn FP
0 37 58 84.60% 98.1% 3958
50 35 53 84.7% 98.0% 4129
100 37 51 85.2% 98.2% 3805
150 36 52 85.6% 97.9% 4358
200 39 47 85.8% 98.1% 3922
250 42 41 86.2% 98.6% 2857
300 41 41 85.9% 98.5% 3210
350 37 40 86.6% 98.6% 2939
400 36 38 87.6% 98.8% 2476

Table 6.3: Endpoint Density endpoint graph sampler performance over 400 reviews
(8 batches of 50 reviews) .

Num. Reviews Frag IDS Rcll Prcn FP
0 37 58 84.60% 98.1% 3958
50 24 31 89.2% 98.8% 2655
100 22 16 92.1% 99.0% 2240
150 16 10 94.7% 99.0% 2328
200 12 5 96.0% 99.3% 1596
250 12 4 96.1% 99.4% 1507
300 10 3 97.3% 99.4% 1484
350 8 4 97.9% 99.4% 1459
400 6 1 98.0% 99.4% 1440

Table 6.4: Endpoint Entropy graph sampler performance over 400 reviews.

Num. Reviews Frag IDS Rcll Prcn FP
0 37 58 84.60% 98.1% 3958
50 22 26 91.8% 98.4% 3681
100 13 12 96.4% 98.8% 2698
150 8 2 97.8% 99.4% 1511
200 5 1 98.0% 99.3% 1544
250 5 1 98.2% 99.6% 1030
300 5 1 98.2% 99.4% 1363
350 5 1 98.2% 99.4% 1363
400 5 1 98.2% 99.5% 1303
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Table 6.5: Correction performance over 400 reviews (8 batches of 50 reviews) using
static step size key-frame selection scheme (figure-6.3, (a)). Step size is set to 30.
Review sampling was performed using endpoint entropy.

Num
Reviews Frag IDS Rcll Prcn FP Time

(Total)
Time
(Annot.)

Time
(Playback)

0 37 58 84.6% 98.1% 3958 0 0 0
50 21 23 94.6% 95.0% 12039 1:01:25 0:34:51 0:26:34
100 20 12 96.6% 94.9% 12354 1:39:02 0:55:22 0:43:40
150 17 6 97.9% 95.0% 12465 1:57:31 1:04:24 0:53:07
200 14 4 98.3% 95.0% 12416 2:10:50 1:09:52 1:00:58
250 19 2 98.4% 94.0% 14996 2:27:38 1:17:43 1:09:55
300 22 3 98.4% 93.7% 15788 2:41:08 1:23:42 1:17:26
350 27 3 98.6% 93.5% 16562 2:55:42 1:29:48 1:25:54
400 31 3 98.6% 93.1% 17434 3:04:29 1:33:00 1:31:29

Table 6.6: Correction performance over 400 reviews (8 batches of 50 reviews) using
a dynamic step size key-frame selection scheme based on proximity to connection
endpoints (figure-6.3, (c)). Step size is set to 30. Review sampling was performed
using endpoint entropy.

Num
Reviews Frag IDS Rcll Prcn FP Time

(Total)
Time
(Annot.)

Time
(Playback)

0 37 58 84.6% 98.1% 3958 0 0 0
50 22 26 91.8% 98.3% 3857 0:47:51 0:30:25 0:17:26
100 13 12 96.3% 98.8% 2923 1:20:15 0:49:30 0:30:45
150 8 2 97.7% 99.3% 1601 1:39:33 0:59:16 0:40:17
200 6 2 97.9% 99.3% 1702 1:50:59 1:04:28 0:46:31
250 6 2 98.0% 99.5% 1249 2:02:54 1:08:18 0:54:36
300 6 2 98.0% 99.5% 1255 2:13:04 1:12:51 1:00:13
350 6 2 98.0% 99.5% 1284 2:21:31 1:15:22 1:06:09
400 5 1 98.1% 99.5% 1227 2:32:29 1:20:03 1:12:26
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Table 6.7: Correction performance over 400 reviews (8 batches of 50 reviews) us-
ing dynamic step size key-frame selection scheme based on proximity to connection
endpoints with negative-belief dampening (figure-6.3, (c)). Review sampling was per-
formed using endpoint entropy.

Num
Reviews Frag IDS Rcll Prcn FP Time

(Total)
Time
(Annot.)

Time
(Playback)

0 37 58 84.6% 98.1% 3958 0 0 0
50 24 26 91.8% 98.2% 3953 0:30:28 0:12:52 0:17:35
100 15 13 96.3% 98.6% 3383 0:52:20 0:21:27 0:30:53
150 6 2 97.7% 99.2% 1807 1:06:59 0:26:22 0:40:36
200 5 1 97.8% 99.2% 1856 1:16:57 0:29:22 0:47:35
250 5 1 98.0% 99.4% 1390 1:27:23 0:31:57 0:55:26
300 5 1 98.0% 99.4% 1394 1:35:33 0:34:12 1:01:21
350 5 1 98.0% 99.4% 1448 1:43:45 0:36:06 1:07:39
400 5 1 98.0% 99.4% 1395 1:50:55 0:37:52 1:13:03

Table 6.8: Correction performance over 400 reviews (8 batches of 50 reviews) us-
ing dynamic step size key-frame selection scheme based on proximity to connection
endpoints with negative-belief dampening and extended tracklets (figure-6.3, (d)).
Review sampling was performed using endpoint entropy.

Num
Reviews Frag IDS Rcll Prcn FP Time

(Total)
Time
(Annot.)

Time
(Playback)

0 37 58 84.6% 98.1% 3958 0 0 0
50 24 26 91.8% 98.4% 3648 0:28:49 0:12:19 0:16:30
100 15 13 96.0% 98.7% 3017 0:48:38 0:20:03 0:28:35
150 6 2 97.6% 99.3% 1618 1:04:26 0:25:25 0:39:01
200 5 1 97.8% 99.3% 1673 1:12:45 0:27:51 0:44:54
250 5 1 98.0% 99.5% 1207 1:22:28 0:30:34 0:51:54
300 5 1 98.0% 99.5% 1213 1:31:13 0:32:46 0:58:26
350 5 1 98.0% 99.5% 1202 1:39:42 0:34:57 1:04:45
400 5 1 98.0% 99.5% 1278 1:46:31 0:36:45 1:09:46



CHAPTER 7: CONCLUSION

This dissertation described an offline multi-object tracking procedure that presents

a means for estimating matching uncertainty. This work ultimately outlines four

contributions to multi-object tracking, particularly in videos containing objects with

similar appearance and unpredictable motion:

• We presented a SOT procedure for growing a tree-like data structure that mod-

els possible paths a target may have taken within ”hard-to-track” regions of a

video recording.

• We presented bi-directional hypothesis forests for determining two essential ele-

ments of the tracklet matching association graph, the set of possible connections

and their affinities.

• We outlined how a probabilistic factor graph model is constructed for estimating

tracklet matching marginals using loopy belief propagation.

• We presented an interactive procedure that allows a user to correct tracklet

matching errors more efficiently.

Several areas could be explored as future works. Concerning hypothesis trees, we’ve

mentioned that several promising areas of improvement are happening in the SOT

appearance modeling community, such as [48, 49]. Our hypothesis tree approach

should fit well with anything that can provide a heat map-like output. Furthermore,

parts-based appearance modeling methods could be explored [50]. Another area that

could be further explored pertains to the proposed Bi-Forest method. For one, us-

ing some global context when growing the forest, similar to [16], could significantly
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improve tracking performance and possibly even reduce computation. Furthermore,

calculating affinity measures could using Bi-Forest could be improved. For example,

one could determine the most likely path given a pair of trees and calculate affinity

based on the generated path’s appropriateness.

Concerning LBP-Forest, future works could consider alternative means of calculat-

ing affinities and expand upon Na terms to better model possibilities. For example,

instead of aggregating several classes of possibilities with the Na term, one could ex-

plicitly model terms that represent: the target exiting the scene, false-positive tracks,

and even more abstract concepts like tracks that divide and merge. Moreover, our

LBP-Forest approach could be modified to operate from detections instead of low-level

tracklets.

Finally, there are several ways in which interactively correcting tracking errors could

be explored further. Generally speaking, these areas fall into one or more of a few

categories. The first category concerns speeding up time spent performing corrections.

This could include better approaches for review sampling and key-frame selection

schemes. The other category allows the user to define what errors are a higher priority.

This would be a practical improvement, as different video analysis situations have

different needs. One analysis setting may need to address ID switches over fragments

or vice versa. Furthermore, analysis settings may only need a subset of the targets

to be corrected. Finally, another practical improvement would be to present some

indicator that conveys when to stop answering reviews. Throughout the document,

we have made several points relating to the large number of tracklet endpoints that

either tracking or corrections must address. Providing a reliable indicator of expected

change to the tracking results would allow for either the system to automatically stop

requesting reviews or the user to determine on their own when to stop.
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