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ABSTRACT 

NICKCOY FINDLATER. Expectancy-Value Model: Investigating Academic Success and 

Retention Predictors of First-Year STEM Majors 

(Under the direction of DR. XIAOXIA NEWTON & DR. STELLA KIM)  

 

The gap in supply (i.e., shortage) and demand of the STEM workforce have prompted extensive 

research on identifying factors that predict STEM outcomes and retention of students. Few 

studies, however, have examined the relationships between STEM outcomes and predictors in an 

integrated model, taking into account measurement errors in the predictors. Drawing upon the 

Expectancy-Value Model of Achievement Related Performance and Choice, I conducted a 

structural equation modeling (SEM) analysis to examine the relationships between academic 

support, academic engagement, mathematics readiness, student hours worked, and first-year 

STEM students’ academic success and retention. The SEM allowed me to investigate the 

relationships between predictors and outcomes simultaneously while accounting for the 

measurement errors. The sample consisted of 798 first-year STEM majors who took the National 

Survey of Student Engagement during the 2016, 2018, and 2020 academic years in a 

large urban university. Results indicated that academic support was a statistically significant 

predictor of first-year STEM students’ academic success and retention. 

Additionally, mathematics readiness was found to be a statistically significant predictor of first-

year retention. Lastly, results suggested that female students on average were more likely than 

their male counterparts to engage in academic support and academic engagement activities even 

though females worked more hours than males. The results have implications for policies and 

practices aimed at improving STEM retention. Areas of further research are also identified. 

 Keywords: expectancy-value model, structural equation modeling, STEM retention, 

academic success predictors, mathematics readiness 
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CHAPTER 1: INTRODUCTION 

Problem Statement 

 Annually, institutions of higher education, within the United States, allocate and invest 

significant amounts of money, time, and resources (e.g., web services and digital advertising, 

student search lists, recruitment events) in recruiting students to attend their institutions (Jaquette 

& Han, 2020; McClure, 2019; RNL, 2020). Specifically, a national higher education survey, 

assessing the financial cost institutions incurred by recruiting students, reported an increase of 

21% (private institutions) and 30% (public institutions) between the 2019-2020 calendar years; 

this is approximately $3,000 spent per student for recruitment purposes (RNL, 2020). Even 

globally, there has been a significant increase in students deciding to attend higher education 

institutions year after year through higher education institution recruitment initiatives (UNESCO 

Institute for Statistics [UIS], 2018). By focusing recruitment efforts to increase student 

enrollment, universities aim to achieve their academic and economic goals, through high student 

retention and graduation rates (Berger & Lyon, 2005; Larsen et al., 2013). However, many 

higher education institutions struggle with student retention and persistence. Retention and 

persistence are, respectively, defined as the percent of students returning to the same institution 

(i.e., retention) or a different institution (i.e., persistence) for their sophomore year (National 

Student Clearing House [NSCH], 2017).  

Retention Gaps in STEM Education 

 

 The gap between higher education institutional investments (i.e., students’ recruitment, 

retention, and persistence) and the returns on their investments, is further heightened when it 

comes to science, technology, engineering, and mathematics (STEM) fields of study (RNL, 

2020). STEM fields of study have been noted as preparing students for occupations “…with the 
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highest paying, fastest-growing, and most influential in driving economic growth and innovation 

in the U. S.” (Thomasian, 2011, p. 29). Moreover, researchers have noted that the United States' 

economic dominance throughout the 20th and 21st centuries was closely tied to its advances in 

science and technology (Goldin & Katz, 2008; Xie & Killewald, 2012). However, there are 

documented concerns that the U.S. is losing its dominance in science and technology as 

institutions of higher education, throughout the nation, struggle with recruitment and retention in 

STEM fields of study (National Academy of Science, 2007, 2011).  

 Furthermore, interests in supporting the growth of science, technology, engineering, 

and mathematics majors in higher education, from government and private agencies, has 

increased substantially in the past decade – aided by well-documented shortages of the 

government sector and private industry STEM workers; as well as, an increase in first-year 

college students declaring STEM majors (Xue & Larson, 2015). Not only are White and Asian 

first-year college students showing an increase in declaring STEM majors, but African 

American, Hispanic, and Native American students are also declaring STEM majors at a higher 

rate than in past decades (Eagan et al., 2013). Even with this increased interest in STEM majors, 

bachelor’s degree retention and completion rates in STEM remain persistently low, especially 

among women (Nix & Perez-Felkner, 2019) and historically minoritized students in the STEM 

fields (i.e., African American, Hispanic, and Native American) (Schnettler et al., 2020).  

 Additionally, at the higher education level, financial incentive packages, and special 

government funding are offered to encourage students to study in the science, technology, 

engineering, and mathematics fields. Despite continued investments in STEM education, the 

U.S.-based dropout rate of students participating in a STEM major is estimated to be 40 to 50 

percent higher, relative to non-STEM-focused majors (Schnettler et al., 2020). Though the U.S. 
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federal government has mandated policies to prioritize STEM education, the task ultimately falls 

to higher education institutions to produce STEM graduates ready to enter STEM fields of 

practice (Romash, 2019).  

First-Year STEM Majors 

 
 Griffith’s (2010) longitudinal study found that most students dropping out of their 

STEM majors take place during the first year of their undergraduate study. During this time, 

students are completing their introductory gateway courses relative to their disciplines (Griffith, 

2010). Regarding STEM majors, or more specifically, Physical, Engineering, Mathematics, and 

Computer Science (PEMC) majors, these introductory gateway courses tend to be mathematics-

based in their content (e.g., Calculus, Physics, Chemistry, etc.), and earning a grade below a “C” 

in a course can result in removal from the STEM major or even extended degree completion by 

more than one year (Griffith, 2010; Maltese & Tai, 2011). From this finding, we can assume 

research, policies, and practices to increase retention for STEM majors may best be served by 

focusing on the first year of participation in the major.  

 As previously outlined, students pursuing STEM majors will take mathematics-based 

introductory coursework during their first year of study. The sequencing of these courses is 

deliberate in their content progression, as it requires, since being adopted in 1905, for students to 

complete chemistry or physics and calculus in the first year, followed by biology and physics in 

the second year (mainly for PEMC majors) (Barr et al., 2010; Romash, 2019; Zhang et al, 2004). 

The progression of these content areas (i.e., Calculus, Chemistry, Physics) is prerequisite 

intensive, as proficiency in the introductory content is required to understand more advanced 

content in later courses (Griffith, 2010; Maltese & Tai, 2011). Considering the first-year 

mathematics intensive curriculum, many first-year STEM majors report having significant 
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struggles and difficulties with what they consider to be “...too heavy a course load in their first 

year” (Noel-Levitz, 2006, p. 4). Additionally, previous research has found STEM students, in 

need of completing remedial mathematics coursework during their first year, were approximately 

50% more likely to leave the STEM fields of study after their first year (Adelman, 2006; 

Cabrera, et al., 2005; Herzog, 2005). Given these points, it is advantageous for future research on 

first-year STEM major retention to account for student math readiness. As such, this current 

study included the element of STEM students' mathematics readiness by investigating their 

possible enrollment in a developmental mathematics course during the first year of study.  

PEMC-STEM Majors 

 

 Furthermore, this study also explored student majors from physical, engineering, 

mathematics, and computer science (PEMC) and other-STEM majors, regarding if varying 

STEM major subsets influenced first-year and minoritized students' retention and academic 

achievement. Researchers have reported that first-year STEM major students are tasked with 

intensive and time-consuming mathematics-based courses for their first year of study (Barr et al., 

2010; Romash, 2019; Zhang et al, 2004); however, this is not generally the case for all STEM 

majors (Griffith, 2010; Maltese & Tai, 2011). Previous research has highlighted this point as 

findings showed differing relationships regarding female student outcomes in other-STEM 

majors and non-STEM majors, relative to mathematic-intensive STEM majors, or physical 

sciences, engineering, mathematics, and computer sciences majors (Dika & D’Amico, 2015; Nix 

& Perez-Felkner, 2019; Perez-Felkner et al., 2012). 

  Nix and Perez-Felkner (2019) define PEMC majors as a subset of STEM majors 

considered to be the most mathematics-intensive in their coursework (e.g., Chemistry, Computer 

Science, Engineering, Mathematics, Physics). The authors note that previous publications may 



5 
 

have erroneously reported STEM major participation and retention without adequately 

delineating the areas in which gender and minoritized students may be struggling (Lubinski et 

al., 2001; McPherson, 2017; Meyer et al., 2015; Snow, 1961). A quantitative study by Dika and 

D’Amico (2015) explored the relationship between PEMC-STEM majors, other-STEM majors, 

and non-STEM majors of first-generation college students when considering the significance of 

academic and pre-college factors. Of the findings reported, Dika and D’Amico (2015) stated 

“…[we] should not paint STEM with a broad brush.…findings from the present study is that the 

preparation leading to PEMC-STEM majors and then transitions for PEMC-STEM students may, 

in fact, be different than those for other-STEM majors” (p. 380). The authors go on to 

recommend that future research explore the varying STEM subsets and the potential differing 

relationships that may be present.  

Marginalized Students 

 The obstacles in STEM major retention noted previously are not equally distributed 

across social groups, and have been found to, more so, adversely affect women and racial 

minorities, when compared to White and Asian male students (Xie et al., 2015). For instance, the 

U. S. Census Bureau (2016) reported that women represent more than half of the U.S. 

population, and attained approximately 57% of bachelor’s degrees, 59% of master’s degrees, and 

51% of doctorate degrees between 2013 and 2014. However, during the same years, and in years 

previous, women were found to be underrepresented in PEMC fields of study and practice 

(Charles & Bradley, 2002, 2006, 2009; DiPrete & Buchmann, 2013; Xie & Shauman 2003; Xie 

& Killewald, 2012). In 2018, The National Science Foundation (NSF) reported that female 

students achieved less than 20% of bachelor’s degrees in the physical sciences, and less than 

40% in mathematics and statistics during the 2013-2014 academic year. 
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 Regarding race and ethnicity, the U.S. population was and continues to be in the 

coming decades, ever more racially and ethnically diverse (NSF, 2018a). The National Science 

Foundation (2018a) predicts by 2060, 56% of the U.S. population will be minorities (i.e., non-

White/European descent). However, data highlights that minoritized students in STEM majors 

continue to lag their population representation in educational attainment (NSF, 2018a). The 

National Science Board (2016) reports, that in 2014, minoritized students earned 20% of 

bachelor’s, less than 15% of master’s, and less than 8% of doctorate degrees in STEM fields of 

study. Given the reported underrepresentation of women and minoritized students in STEM 

majors, it is crucial for research focused on first-year STEM major retention to include gender 

and race as measures of assessment.  

 Regarding minoritized students in STEM, it is important to note that though Asians are 

considered racial minorities within the United States, the Pew Research Center classifies Asians 

as being overrepresented in STEM majors and the STEM workforce (PRC, 2018). When 

compared to the overall workforce population, especially considering college-educated workers, 

Asians are 10% of the overall workforce, yet account for 17% of the college-educated STEM 

workforce (PRC, 2018). As such, this paper referred to ethnic/racial minoritized students relative 

to STEM fields of study (e.g., African American, Hispanic, and Native American). Nevertheless, 

given that Asians are racial minorities within the U.S., this study included Asian STEM students 

when examining this study’s proposed research questions across racial groups.   

Challenges of Working While Studying 

 Alongside the aforementioned struggles of first-year STEM majors, the necessity of 

paying for college is an ever-increasing challenge for higher education students in the 21st 

century. The National Center for Education Statistics reports that, between 2008-09 and 2017-18, 
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the average tuition and fees of four-year public institutions rose by 36 percent, while two-year 

public institutions rose by 34 percent (NCES, 2018). All the while, the maximum federal Pell 

Grant available per student has decreased by more than 92 percent since 1999 (Perna & Odle, 

2020). As such, if a student does not have sufficient savings, wealth, or access to other financial 

resources to cover the costs of enrollment, they are usually left with taking on loans, working 

while studying, or both (Perna & Odle, 2020).  In 2017, the U.S. Department of Education 

reported that 43 percent of all full-time undergraduate students were working while studying, and 

81 percent of part-time students were working while studying; in all, 11.4 million students 

throughout the nation were working while enrolled in an institution of higher education (NCES, 

2018).  

 Though it is not uncommon for students to be employed while studying, there, 

however, may be negative implications for students working while studying. There are growing 

bodies of literature highlighting the negative implications of hours spent working and academic 

achievement (Bozick, 2007; Douglas & Attewell, 2019; Stinebrickner & Stinebrickner, 2003, 

2004). Research has shown that students allocating time to work, tend to reduce the necessary 

time needed to allocate for educational activities which may lead to increased attrition in a 

bachelor’s degree program or continuing full-time enrollment (Douglas & Attewell, 2019). As 

noted previously, STEM major students are more likely to experience demanding and 

challenging curriculums than non-STEM majors, coupled with increased time being spent 

working, which may lead to increased attrition in STEM retention. Given these points, this paper 

included this phenomenon (i.e., hours worked) when evaluating STEM students' first-year 

retention and performance.  
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Academic Success and Retention Predictors 

 The previously presented challenges to STEM student retention and academic success 

have been examined; as such, scholars have identified various predictor and motivational 

variables considered to contribute to the phenomenons of STEM retention and academic success 

(Adelman, 2006; Cabrera, et al., 2005; Herzog; Perez et al., 2014; Robinson et al., 2018; 

Trautwein et al., 2012). However, previous works have excluded possible contextual 

interrelationships with persisting and possible emerging predictors of STEM retention. Of the 

previous empirical studies examining this topic, the research designs did not account for 

predictor contributions to STEM first-year retention and academic success, while controlling for 

additional predictors in a single model (Adelman, 2006; Chen, 2013; Ost, 2010; Sklar, 2015; 

Watkins & Mazur, 2013). This has resulted in gaps in current literature. Given that the 

aforementioned challenges presented continue to persist, this dissertation aims to evaluate and 

enlarge the scope of this topic. This dissertation aimed to explore previously researched and 

possible emerging predictors of STEM first-year retention and academic success, by utilizing a 

single theoretical model to control for potential interrelationships and assess their influence on 

predicting STEM students’ academic success and retention after their first year of study. As 

such, this section will introduce the three primary predictors of academic success and retention 

driving this study. 

Academic Support 

 

 Aiming to address the multitude of challenges obstructing student persistence and 

retention, as well as, overall academic achievement, previous empirical research studies have 

been conducted to identify key predictors related to student retention and success (DiPrete & 

Buchmann, 2013; Eagan, et al., 2013; Lubinski et al., 2001; McPherson, 2017; Meyer et al., 
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2015; Snow, 1961). One such extensively researched predictor of academic success and retention 

in higher education is academic support. Though academic support initiatives in higher 

education can be accounted for in various methods (e.g., co-curricular support, faculty-student 

interactions, peer support) (DeFreitas & Bravo, 2012; Ferguson, 2021; Gnebola, 2015; Martinez, 

2016); Gnebola’s (2015) extensive empirical study identified faculty-student interactions to be 

especially of note, as faculty-student interactions positively correlated in predicting student 

achievement outcome measures, such as GPA.  

 Furthermore, additional research studies have supported Gnebola’s (2015) findings, by 

noting student interactiveness with faculty and peers, in and outside of the instructional space, to 

be especially crucial in increasing their chances of academic success (Aikens, et al., 2017; 

Ferguson, 2021; Pajares, 1996; Thiry & Laursen, 2011). Specifically from a STEM major 

perspective, Micari and Pazos’s (2012) study confirmed faculty-student interactions as a 

predictor of academic retention and success, as they reported confirmed correlations between 

students’ course grades and the feelings of how connected the student felt to their professors. 

Allen et al. (2018) confirmed these findings, as their study reported increased student 

performance with increased student-faculty interaction. Though the aforementioned research 

studies support the notion of academic support metrics being a key predictor of academic 

success, the research studies did not specifically account for the STEM first-year student 

experience, regarding retention to the second year of study and academic success. As such, this 

dissertation aimed to contribute to this gap in current literature regarding STEM first-year 

success and retention.  

Academic Engagement 
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 Another extensively researched, and considered to be a key predictor of academic 

retention and success, is academic engagement (Bryson & Hand, 2007; Glanville & Wildhagen, 

2007; Horstmanshof & Zimitat, 2007; Krause & Coates, 2008). Though there are extensive 

academic debates regarding a primary definition of academic engagement (Bryson & Hand, 

2007; Glanville & Wildhagen, 2007; Horstmanshof & Zimitat, 2007; Krause & Coates, 2008); a 

general interpretation of academic engagement can be summarized by stating, the amount of 

time a student devotes to their academic activities, both in and outside of the classroom, are 

reliable predictors of student retention and academic success (Fredericks et al., 2004). These 

academic activities, or engagement, can be further grouped into three categories of academic 

engagement (i.e., behavioral engagement, emotional engagement, and cognitive engagement) 

(Lester, 2013).  

 The three categories of academic engagement are further investigated in Chapter 2, 

however, Fredericks et al.’s (2004) study found that there may be varying levels of overlap 

regarding the three categories of academic engagement. Fredericks et al. (2004) further argued 

that the three academic engagement categories are “dynamically interrelated within the 

[participant]; they are not isolated processes” (p. 61). As such, research designs that encompass 

overlapping elements of the three categories ought to assess the academic engagement construct 

from a “meta” perspective (i.e., as a single construct). Nevertheless, previous research 

investigating academic engagement has yet to investigate STEM first-yeat retention and 

academic success, while accounting for the academic support and hours worked (to be presented 

in the following subsection) predictors (Fredericks et al., 2004; Lester, 2013; Martinex, 2016). 

The current study aimed to close the gap in research by assessing first-year STEM student 
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retention and academic success, with the predictor's academic engagement, academic support, 

and hours worked.  

Hours Worked 

 

 Though research gaps exist regarding academic support and academic engagement for 

STEM first-year students, these latent constructs are, nevertheless, extensively researched and 

documented predictors of higher education student retention and academic success (Martinez, 

2016). In addition to these predictors, this study aimed to include the less researched, yet 

impacting phenomenon of higher education students working while studying (Perna & Odle, 

2020). With the increase in higher education students working while studying, research studies 

have noted that students devoting more time to work, rather than studying, has demonstrated to 

have negative effects on overall student academic performance and retention (Scott-Clayton & 

Minaya, 2016; Stinebrickner & Stinebrickner, 2003, 2004).  

 Research on the subject matter has documented that more than half of higher education 

students within the United States are working while enrolled in a degree-seeking program 

(National Center for Education Statistics, 2015). This level of work commitment has been 

founded to be directly related to financial need and not an optional endeavor, as researchers have 

investigated and found an increase in financial hardships for undergraduate degree-seeking 

students (Broton & Goldrick-Rab, 2016). Though this subject matter of research is emerging 

(Scott-Clayton & Minaya, 2016), there is currently a research gap investigating the impacts of 

first-year STEM students working while studying as a predictor of student academic success and 

retention beyond the first year. Similar to predictors, academic support, and academic 

engagement, student hours worked have not been investigated holistically, within a single model, 

to assess first-year STEM students' retention and overall academic success. This current research 
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study aimed to explore this proposed phenomenon and contribute to the literature gap in 

improving first-year STEM major success and retention through a single model accounting for 

correlational relationships that may exist between the aforementioned predictors of academic 

success and retention. To execute the vision of this research study, a singular model grounded in 

theoretical evidence was imperative to account for the predictors of academic success and 

retention presented in this section. The following section highlights the Expectancy-Value 

Model, which the researcher aimed to use in aligning the aforementioned predictors, to address 

the key concerns presented in the Problem Statement section. 

Expectancy-Value Model 

 As presented earlier, the concerns regarding attrition in STEM education, especially 

among first-year, women, and minoritized students in STEM majors, continue to be a key 

concern for researchers and policies-makers to address. The multiplicity of varying issues and 

predictors presented in the previous sections illustrates the need for continued research utilizing 

theoretical frameworks with multidimensional factors, which may better account for the 

numerous obstacles contributing to the attrition of  STEM major first-year retention and 

academic success (Perez et al., 2014; Robinson et al., 2018; Trautwein et al., 2012). Martinez 

(2016) notes that one such theoretical model, which is well-grounded in accounting for student 

persistence and academic success in primary and secondary education, is the Expectancy-Value 

Model (see Figure 1).  
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Figure 1 

 

Framework of Expectancy-Value Model (Wigfield & Eccles, 2000) 

 
  

 According to Andersen and Ward (2014), more than a decade of research utilizing the 

expectancy-value model of achievement-related choices has been employed to demonstrate 

unique relationships between student beliefs and task values, concerning outcomes related to 

middle and high school STEM persistence and future degree completion intentions (Maltese & 

Tai, 2011; Mau, 2003; Syed et al., 2011; Tai et al., 2006; Simpkins et al., 2006). More generally, 

Xie and Andrews (2012) noted that the Expectancy-Value Model has a well-documented 

foundation for understanding how student attitudes and behaviors can influence achievement-

related choices and performance. As such, this present study aimed to be the first in applying this 

theoretical framework, which was conceptualized as a model by Eccles and colleagues (Eccles et 

al., 1983; Wigfield & Eccles, 2000) (see Figure 1.1), to specifically investigate the retention and 

academic success of first-year students in STEM majors, while accounting for the predictor 
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variables presented in the previous section (i.e., academic support, academic engagement, and 

hours worked). The following paragraphs will briefly outline the major components of the 

Expectancy-Value Model, and how they relate to investigating students’ choices to persist in an 

academic domain. Moreover, the alignment of the previously identified predictor variables and 

the Expectancy-Value Model will be briefly presented in this section and further stated, in-depth, 

in Chapter 2. 

 Eccles and colleagues’ (Eccles et al., 1983; Wigfield & Eccles, 2000) Expectancy-

Value Model emphasizes two essential “…motivational questions that individuals [i.e., students] 

ask themselves before engaging in a particular task: Can I do this? and Why do I want to do 

this?” (Perez et al., 2019, p. 3). Given this theoretical framework, individuals will be most 

motivated when they express feelings of competence and success in a domain (i.e., Expectancies 

for Success; e.g., I can be successful in mathematics) and how highly they value the domain 

(Subjective Task Value; e.g., I want to study this because it’s interesting) (Andersen & Chen, 

2016). Regarding expectancies for success, previous research has aligned this construct to latent 

factors related to faculty-student interactions in way of academic support measures (Ferguson, 

2021; Gnebola, 2015; Martinez, 2016; Pajares, 1996).    

 In terms of subjective task values, Eccles and colleagues’ (Eccles & Wigfield, 2002; 

Wigfield & Eccles, 2000) noted three unique sub-components contributing to an individuals’ 

positive task values: “(1) intrinsic interest value, the anticipated enjoyment of a task or interest in 

a domain; (2) attainment value, the perceived importance of a task to one’s identity; and (3) 

utility value, the subjective value of a task for attaining an extrinsic goal such as a career goal” 

(Perez et al. 2019, p. 4). All three sub-components can be summarised as indicators that assess an 

individual's likelihood to engage in a task or behavior, given that their self-interests align with 
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the engaging task or behavior (Wigfield & Eccles, 2000). As a result, previous researchers have 

identified the latent factor, academic engagement, to be theoretically associated with Eccles's 

first three sub-components of subjective task value (Chow et al., 2012; Fan & Dempsey, 2017; 

Martinez, 2016; Plante et al., 2013; Wang & Liou, 2018; Wu et al., 2019). 

 Lastly, a fourth sub-component (i.e., negative task value), perceived cost (i.e., cost), 

which has been traditionally included under the subjective task value, is thought of like the 

question, “why don’t I want to do this?” (Perez et al., 2019). Eccles et al., (1983) represent 

perceived cost as any apparent drawbacks of an individual choosing to engage in a task. For 

example, as noted previously, the need for undergraduate higher education students to work 

more than 15 to 20 hours a week (i.e., hours worked) while enrolled in a STEM program 

(Douglas & Attewell, 2019), may contribute to a student’s perceived cost of remaining enrolled 

and completing their program. Currently, there is limited research utilizing the Expectancy-

Value Model while including the fourth sub-component of subjective task value (i.e., cost), and 

its contribution to first-year STEM retention and academic outcomes (Barron & Hulleman, 2015; 

Wigfield & Cambria, 2010).  

 With the aforementioned theoretical alignment of the predictors driving this study, the 

researcher was able to utilize a revised version of Eccles and colleagues (Eccles et al., 1983; 

Wigfield & Eccles, 2000) Expectancy-Value Model of Achievement-Related Performance and 

Choices (see Figure 2). As such, this study utilized the expectancy-value model to assess higher 

education STEM first-year retention and academic success with the following factors: (1) 

Expectancies for Success (i.e., academic support); (2) Subjective Task Values (i.e., academic 

engagement and hours worked); and (3) Achievement Related Performance (i.e., academic 

success through GPA) and Choices (i.e., persistence to the second year in STEM major). 
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Figure 2 

 

Proposed Revised Framework of Expectancy-Value Model 

 

Research Purpose 

 Though the expectancy-value model has been utilized extensively in research for 

primary and secondary education, research designs specifically in postsecondary education are 

limited (Martinez, 2016); even more so when considering expectancy-value model research 

designs focusing on STEM fields of study (Schnettler et al., 2020). Specifically, there is limited 

research utilizing this well-grounded theoretical model of student choice and academic success 

(Andersen & Ward, 2014; Martinez, 2016), while connecting STEM-focused students’ 

expectations and performance during the first year of college while accounting for the academic 

and success predictors: academic support, academic engagement, and hours worked (Andersen 

& Ward, 2014; Martinez, 2016; Perez, 2019). More so, this gap in the literature is more apparent 

regarding the following demographic groups: women and minoritized students in STEM majors 

(DiPrete & Buchmann, 2013; Eagan et al., 2013; Schnettler et al., 2020; Xie & Shauman 2003; 

Xie & Killewald, 2012).  
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 The purpose of this study was to utilize a revised version of the Expectancy-Value 

Model of Achievement Related Performance and Choice: (1) Expectancies for Success; (2) 

Subjective Task Values; and (3) Achievement Related Performance and Choice (see Figure 2). 

The aim was to assess if first-year and marginalized college students in the STEM major’s 

academic support and academic engagement are predictors of overall student success and 

retention after their first year of study. In addition to these two predictors, the researcher assessed 

if hours worked while studying was a predictor as a subjective task value. The researcher used 

the National Survey of Student Engagement (NSSE), an assessment instrument completed during 

approximately the first and senior years of college. The use of analyzing secondary data from the 

NSSE survey was especially deliberate, as the survey instrument has more than two decades of 

participation at more than 601 colleges and universities throughout the United States; as well as, 

well-documented psychometrics validating its reliability in assessing student academic support 

and academic engagement predictors (Ewell & McCormick, 2020; NSSE Psychometric 

Portfolio, 2019). Using secondary data from the NSSE survey assessment tool, along with 

institutional data (i.e., student demographics, second-year cumulative GPA, mathematics 

remedial course completion, and enrollment intention) the following research questions guided 

the study: 

1. To what extent does the Expectancy-Value Model of Achievement Motivation explain: 

• First-year STEM major students’ academic success and retention? 

• First-year STEM major students’ academic success and retention by gender? 

• First-year STEM major students’ academic success and retention by race? 

2. Given the Expectancy-Value Model of Achievement Motivation, are hours worked 

(perceived cost) a predictor of academic success and retention for: 
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• First-year STEM majors? 

• First-year STEM major students across gender? 

• First-year STEM major students across race? 

3. Is the relationship between the Expectancy-Value Model of Achievement Motivation and 

first-year STEM major students’ academic success and retention mediated by math 

coursework readiness? 

4. To what extent does the Expectancy-Value Model of achievement motivation explain 

first-year students’ declared PEMC or Other-STEM majors' academic success and 

retention? 

Significance of the Study 

Previous research studies have explored the three predictive latent constructs (i.e., 

academic support, academic engagement, and hours worked), and how they influence higher 

education student retention and academic success. However, these research studies have yet to 

explore these predictors collectively (i.e., in a single model controlling for possible 

interrelationships) relative to first-year STEM major students (Adelman, 2006; Cabrera et al., 

2005; Herzog, 2005); as well as, the growing number of women and minoritized STEM students 

unable to persist in a STEM field of study (Bozick, 2007; Douglas & Attewell, 2019; 

Stinebrickner & Stinebrickner, 2003, 2004). Moreover, this study aimed to explore this current 

literature gap, by including the predictors in a single model while assessing STEM first-year 

retention and academic success relationships. As such, future researchers may account for factors 

most influential in predicting first-year STEM retention and academic success.  

To elaborate further on the current literature gap, Gnebola’s (2015) study found that 

faculty-student interaction (i.e., academic support) and academic self-efficacy positively 
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correlated in predicting student achievement outcome measures, such as GPA. Pajares (1996) 

also found that academic support, through students' ability to interact with their environment 

(i.e., faculty, advisor, administrators), increased their chances of academic success. However, 

these studies did not control for correlational relationships between other possible predictive 

constructs (e.g., academic engagement, hours worked) concerning student achievement outcome 

measures.  

Moreover, Lester (2013) notes that higher education research initiatives have found 

academic engagement to be especially effective in predicting student engagement behavior and 

academic achievement outcomes of students in post-secondary education. Lastly, the growing 

number of higher education students working while studying is contributing to the broader 

discussion of academic success and retention, as such, should be a primary predictor for future 

educational research focus (Douglas & Attewell, 2019). For example, Stinebrickner & 

Stinebrickner’s (2003, 2004) study found that the number of student hours worked has negative 

effects on academic performance and student retention. The authors highlighted that student 

hours worked contributed to a phenomenon known as “time bind”; this occurs when higher 

education students are unable to contribute the time and effort needed to complete their 

coursework. Tinto (1993), earlier, supports this view “…full-time employment limits time for 

interaction with other students and faculty, leading to poor social integration and higher rates of 

student drop-out” (p. 64).  

All three predictors (which will be expanded on in Chapter 2), academic support, 

academic engagement, and hours worked, which have been researched independently, were 

found to be especially important in assessing the retention and/or achievement of higher 

education students in varying institutional settings (DiPrete & Buchmann, 2013; Eagan et al., 
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2013; Martinez, 2016; Schnettler et al., 2020; Xie & Killewald, 2012; Xie & Shauman 2003). By 

utilizing a well-grounded theoretical multi-construct model (i.e., expectancy-value model), the 

study will be able to assess the predictive relationship of the three predictor constructs (i.e., 

academic support, academic engagement, and hours worked) relative to first-year STEM and 

marginalized students in a single theoretical model. This particular study is important as its 

findings will contribute to current educational research aiming to aid in stemming the growing 

attrition rate of domestic STEM students in institutions of higher education throughout the 

United States (Griffith, 2010; Maltese & Tai, 2011; Romash, 2019). Moreover, this study's 

findings may aid higher education leaders and policymakers allocate resources toward STEM 

retention and academic success predictors most relevant to their institution's needs and strategic 

goals.   

Definitions of Relevant Terms 

Definitions for terms relevant to this study are provided below: 

• Academic Engagement: constitutes the level of effort and time a student devotes to 

educational activities, both in and outside of the instructional space (NSSE, 2011). 

• Academic Success: A higher value grade point average (GPA) on a scale of 0.00 to 4.00 

will indicate better grades and higher academic success (Meyer et al., 2019).  

• Academic Support: In this study, academic support is defined by the quality of faculty 

and academic advisor interactions with students both within and beyond the classroom 

(Lee & Matusovich, 2016). 

• Marginalized Students: Marginalized students, relative to STEM fields of study, are 

defined as identity groups encompassing: Blacks/African Americans, Native Americans, 

Latinx, Pacific Islanders, women, English language learners, newcomers or immigrants to 
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the U.S., LGBTQ people, first-generation college students, individuals from low-income 

backgrounds, and people with disabilities (Gushue & Whitson, 2006). For this study, 

marginalized students will include the following identity groups: Blacks/African 

Americans, Native Americans, Latinx, Pacific Islanders, and women (Lee & Matusovich, 

2016). 

• Other-STEM: Other-STEM is defined as STEM majors comprising the study of human 

and animal behaviors, interactions, thoughts, and feelings (e.g., biology, psychology, 

sociology, anthropology) (Nix & Perez-Felkner, 2019)  

• PEMC: Defined as physical sciences, engineering, mathematics, and computer sciences, 

and are considered mathematics-intensive science fields of study (Perez-Felkner et al., 

2012). 

• Retention: This study utilizes retention relative to a student's acquisition to an institution 

of higher education and remains enrolled in the following academic year (Bean & Eaton, 

2002). 

• STEM Retention: STEM retention, for this study, is defined as students’ enrollment in a 

STEM major until the following academic year (Khan, 2012). 

• Hours Worked: The amount of time a student has worked either on-campus or off-

campus while enrolled in a degree-seeking program (NCES, 2018).  
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CHAPTER 2: LITERATURE REVIEW 

Introduction 

 This chapter will first review the current demand, and excessive shortages, for STEM 

majors in fields of practice. Next, an examination of past and current literature that investigates 

the challenges in first-year STEM major retention will be presented. Lastly, the chapter will 

examine past and current literature regarding the expectancy-value model and the three core 

predictors found to contribute to academic success and retention in post-secondary education 

(Martinez, 2016). To adequately collect relevant scholarly literature related to the research focus 

of this study, the researcher systematically collected and synthesized previous research 

publications related to STEM education and higher education first-year student retention and 

persistence (Baumeister & Leary, 1997; Tranfield et al., 2003) from Springer International 

Publisher, Sage Journals, and ERIC Education databases.  

 Furthermore, the review of the literature was aligned with the research conducted in 

the theoretical framework of Eccles and colleagues’ (Eccles et al., 1983; Wigfield & Eccles, 

2000) Expectancy-Value Model, to focus the review method to address the proposed research 

focus in Chapter 1. By aligning these focus areas in the review of the literature, the researcher 

was able to illustrate research evidence of findings at a meta-level and present potential research 

gaps warranting further investigation (Tranfield et al., 2003); these potential research gaps are 

highlighted in the following sections. 

Demand for STEM Majors 

 Xue and Larson (2015) note that there are labor shortages in the STEM fields and 

these shortages vary across the STEM fields of practice, degree levels of workers, and 

geographic locations. Belser (2017) posited that the argument of there being a shortage, and 
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simultaneously a surplus in STEM jobs for industry and academia is possible given the focus 

area being investigated. For example, STEM fields such as computer science and technology 

fields, as well as, petroleum engineers are some areas in STEM fields of practice that are in 

major shortage concerns given increased retirements and creation of new jobs through the 21st-

century technological evolution (NSB, 2015).  

 The demand for STEM degree seekers and qualified workers is at an all-time high as 

the industrial automation of developed nations continues to dominate the industry and societal 

needs (NSB, 2015). However, students with declared STEM major’s attrition continues to show 

a downward trend after their first year in college (Sithole et al., 2017). Chen (2013) highlights 

that less than 30 percent of students awarded a bachelor’s degree had chosen their major in the 

STEM fields. Of the students that declared a STEM major, almost half had changed their major 

to a non-STEM major before graduation (Chen, 2013). To aid in combating this growing concern 

in attrition rates of STEM majors, higher education institutions across the county devoted time 

and resources (e.g., targeted STEM recruitment initiatives and STEM learning communities) to 

develop programs to increase student retention and persistence in the STEM fields-of-study 

(Bouwma-Gearhart et al., 2014; Defraine et al., 2014; Schneider et al., 2015).  

 These efforts saw increased spikes in the number of STEM graduates; however, the 

increase related primarily to the number of international students studying in the United States 

and pursuing STEM degrees (NSB, 2016b). As such, the STEM retention and persistence 

downfall are still apparent for non-international students, especially among female and 

underrepresented minoritized students (Sithole et al., 2017). Hossain and Robinson (2012), 

emphasize that a nation’s success, security, and leadership will depend on the usage of 

technology; as well as, the number of native (i.e., domestic) workers in the STEM fields. 



24 
 

Friedman (2005) and Reid (2009) summarize that American leaders across the STEM fields 

believe the nation to be in a steady erosion of domestic talent within the scientific and 

engineering fields. Reid (2009) goes on to describe this downward trend in domestic talent as a 

“quiet crisis” (p. 5) which primarily resides in the inadequate quality and quantity of STEM 

education throughout the nation. Given these concerns in domestic STEM major retention and 

academic success, it is imperative educational researchers, practitioners, and policy-makers, 

continue to investigate methodologies, relationships, and potential predictors linked to 

inadequate STEM retention and persistence in STEM fields of practice within the United States.  

First-Year STEM Retention Challenges 

 The National Center for Education Statistics found that the withdrawal rate for first-year 

students at four-year institutions in the U.S. was 24 percent from 2004 to 2009; with only 64 

percent of students having obtained a degree or certificate by 2014 (U.S. Dept. of Education, 

2011). Colleges and universities throughout the nation struggle with first-year student retention, 

especially among the “hard sciences” in STEM fields, as large amounts of recourses, are devoted 

to these students that leave with an incomplete education and are tasked with having to find 

employment to repay an educational debt that may have accrued (Vedder et al., 2010). Tinto 

(1993) described, even years earlier, that the first-year retention issue is a “…tremendous loss of 

resources (i.e., talent and revenue) and a principal concern for students, parents, and 

administrators” (p. 309). Though increased attention has been given to student retention and 

persistence, the graduation rates for U.S. colleges and universities have remained consistent over 

the past 30 years (AASCU, 2005). 

Unprepared for First-Year Mathematics Coursework 
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 To better understand the first-year retention gap and its underlying student characteristics, 

several research studies (Adelman, 2006; Chen, 2013; Ost, 2010; Sklar, 2015; Watkins & 

Mazur, 2013) has attempted to centralize key factors to consider when assessing first-year 

student retention intentions, especially those from STEM majors. Unfortunately, research has 

indicated that the first-year student retention gap begins well before the higher education 

experience begins. Wirt et al. (2004) found that 76% of postsecondary institutions offered some 

variation of remedial basic skills courses in the areas of reading, writing, or mathematics; 

mathematics being foundational for many STEM fields of study. Their finding suggests that 

many first-year students entering higher education are underprepared in the required course 

content (e.g., mathematics preparedness for STEM major coursework) for their college 

anticipated major field of study.  

 The National Math Panel of the American College Testing published their research report 

in 2006 revealing a 14% reduction in students' progress toward college readiness in mathematics 

(ACT, 2007; McCormick & Lucas, 2011). The report goes on to note that the reduction can be 

attributed to a lack of general direction, on the part of state education boards, regarding specific 

course content and expectations needed for the achievement of high school and college readiness 

in STEM majors (ACT, 2007). The report also highlighted a clear misalignment between K-12 

and higher education institutions on the readiness level of student’s mathematics education, 

“…more than two-thirds of high school teachers surveyed believe they are meeting state 

standards for preparing students for college-level mathematics, [while] approximately the same 

ratio of post-secondary educators believe students are coming to college unprepared” 

(McCormick & Lucas, 2011, p. 12). This reported finding indicates that mathematics under-

preparedness may contribute critically to first-year STEM major retention and academic success.  
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Challenges for Women and Minortized STEM Majors 

In addition to mathematics under-preparedness, Malcolm and Feder (2016) note from 

their study’s findings, that gateway STEM courses are also contributors to the challenges of 

retaining STEM majors after the first year of study. The authors emphasize that gateway STEM 

courses, which are typically experienced during the first year of study and are mathematics 

intensive, often serve as barriers to career aspirations and retention. Gateway courses are found 

to be sequential in their focus and tend to rely on mastery of previous content to be successful 

moving forward in the program. As such, students who fail to master the content tend to leave 

the major and are often derailed of any hopes in a STEM field of study.  

Moreover, Weston et al. (2019) found that first-year gateway courses can be especially 

“unwelcoming” to minoritized STEM students (i.e., female, Native American, Black, and 

Hispanic students). As stated earlier, STEM faculty members have considered the withdrawal of 

students from their courses as a sign of successfully weeding out those incapables of navigating 

the rigors of scientific inquiry (Christe, 2013). Weston and colleagues note that “weed out” 

classes are especially detrimental to female and minoritized student STEM persisters, as their 

findings stated that 25% of the student participants reported negative consequences arising from 

their participation. These negative experiences were attributed to 43% of STEM degree changers, 

of which, 35% reported that their decision came as a direct consequence of their negative 

experience in the gateway courses.  

 Furthermore, Kudish et al.'s (2016) study of first-year STEM gateway courses found that 

many of these courses are considered traditional in their delivery format. Traditional courses are 

lecture-based which, “…relay decontextualized scientific minutiae [and] presuppose a familiarity 

with implicit premises and values that are culturally narrow” (Kudish et al., 2016, p. 10). Their 
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findings also found that minority students tend to not seek help when feeling overwhelmed or 

falling behind in these early gateway courses as “…they perceive [questioning] reveals a deficit 

in their knowledge base and exposes them as an outsider” (Kudish et al., 2016, p. 6). Ballen et al. 

(2017) echo these findings by noting that minoritized students tend to struggle in traditional 

lecture formats as “…the lecture format undermines their abilities due to the burden of social 

isolation, low confidence, and stereotype threat these students feel” (p. 1). First-year gateway 

courses are not holistically designed to encourage all students to weather the challenges of early 

college experiences, especially for minoritized students.  

Summary of Challenges 

 As presented in Chapter 1, students declaring STEM majors experience intensive 

mathematics-based curriculums in their very first year of study, which students have found to be  

“...too heavy a course load in their first year” (Noel-Levitz, 2006, p. 4); which may lead to 

increased attrition in STEM majors. Researchers have also found concerns regarding STEM 

students being under-prepared for their mathematics intensive first year of study (Adelman, 

2006; Chen, 2013; Ost, 2010; Sklar, 2015; Watkins & Mazur, 2013). Additionally, researchers 

have reported that STEM major students of marginalized groups (i.e., women and racial 

minorities in STEM majors) are especially susceptible to enrollment attrition and eventual lack 

of degree completion beginning in their first-year courses (Lubinski et al., 2001; McPherson, 

2017; Meyer et al., 2015; Snow, 1961). Lastly, higher education students are spending more time 

working, while enrolled in a degree-seeking program, than in years past (NCES, 2018; Perna & 

Odle, 2020). For varying reasons (Perna & Odle, 2020), this increase in time working may lead 

to less time devoted to academic coursework, which is already considered demanding for first-

year STEM majors (Bozick, 2007; Douglas & Attewell, 2019; Stinebrickner & Stinebrickner, 
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2003, 2004). Given the multitude of challenges presented facing first-year STEM majors, further 

research utilizing measures of theoretical assessment that accounts for multiple predictors is 

needed (DiPrete & Buchmann, 2013; Eagan et al., 2013; Schnettler et al., 2020; Xie & 

Killewald, 2012). As such, the subsequent sections will present a theoretical model that accounts 

for this dissertation's three guiding predictors, and the past and present literature expanding on 

the theoretical model's validity and efficacy in predicting student retention and academic success. 

Expectancy Value Model of Achievement Related Performance and Choice 

 Though not designed specifically to measure STEM majors, Martinez’s (2016) study 

utilized three factors of the expectancy-value model, (1) Expectancies for Success; (2) Subjective 

Task Values; and (3) Achievement Related Performance and Choice, to examine if they’re 

predictors for higher education academic success and educational attainment of Hispanic 

students. Kuh et al. (2006) and Martinez (2016) emphasized that higher levels of educational 

attainment are not only directly linked to an enhanced quality of life through improved economic 

and social benefits, “…but also benefit communities and society as a whole since educated 

citizens tend to be more involved in national and community initiatives” (Martinez, 2016, p. 16). 

As such, Tinto (1997) argued that it is the responsibility of postsecondary institutions to provide 

sufficient opportunities to participate in college academic and social constructs while providing 

access to education. Research conducted by Upcraft and Gardner (1989) and Upcraft et al. 

(2005) concluded that the most important academic year in predicting student retention in higher 

education achievement was the first year of study. 

 Furthermore, Wigfield and Eccles (2000) note that educational achievement is 

predicated on a students’ motivation to engage with an educational task, persistence, 

performance, and self-efficacy. Martinez (2016) highlights that these constructs align with 
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Vroom’s (1964) Expectancy-Value Theory, “…which proposes that expectations of success, 

ability beliefs, and values associated with certain tasks directly influence achievement and 

persistence” (p. 15). In an extension of the expectancy-value theory, Eccles, Wigfield, and their 

colleagues proposed an expectancy-value model of achievement-related performance and choice 

(see Figure 1), which aims to measure expectancies and values which are assumed to directly 

influence educational achievement (Eccles, 1984; Eccles et al., 1983; Wigfield, 1994; Wigfield 

& Eccles, 1992). 

Figure 3 

Martinez’s (2016) Revised Expectancy-Value Model 

 

 Given the focus of Eccles et al.'s (1983) expectancy-value model, Martinez (2016) 

proposed a quantitative study that utilized an abbreviated expectancy-value model to investigate 

probable associations between pre-college experiences and expectations of first-year Hispanic 

students at a predominantly Hispanic serving institution of higher education in the southwest. 
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The abbreviated model focused primarily on the following three factors from the expectancy-

value model in Figure 3: (1) Expectancies for Success, (2) Subjective Task Values, and (3) 

Achievement Related Performance and Choice. Martinez’s (2016) model aligned, through an 

extensive review of literature, with the following three areas of Wigfield and Eccles's (2000) 

expectancy-value model: (1) Academic Self-Efficacy (Expectancies for Success); (2) Academic 

Perseverance (Expectancies for Success); and (3) Academic Engagement (Subjective Task 

Value).  

 Though Martinez’s (2016) study did not specifically account for STEM majors or 

other racial and/or ethnic groups in higher education, her study was able to assess known higher 

education achievement-related predictors in a single theoretical model, as such, the currently 

proposed study will utilize an abbreviated version of Martinez’s revised Expectancy-Value 

Model with the following factors to assess first-year STEM student’s academic success and 

choice to retain: (1) Academic Support (Expectancies for Success); (2) Academic Engagement 

(Subjective Task Value); and (3) Hours Worked (Subjective Task Value).  

Academic Support (Expectancies for Success) 

 Academic support initiatives, more specifically, concerning the currently proposed 

research study, faculty-student interactions, and academic self-efficacy in higher education have 

limited research consideration when attempting to investigate the impact of first-year student 

STEM retention and academic achievement using the expectancy-value model (DeFreitas & 

Bravo, 2012; Ferguson, 2021; Gnebola, 2015; Martinez, 2016). Gnebola (2015) notes this is 

especially true in how these two factors correlate with student race and ethnicity and student 

first-year retention and persistence to careers in their chosen major. Gnebola’s study found that 

faculty-student interaction is positively correlated in predicting student achievement outcome 
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measures, such as GPA; however, this study did not account specifically for STEM students and 

first-year retention.  

Figure 4 

 

Bandura's model of Social Cognitive Theory represents the triangular relationship between the 

three main factors of human behavior (Bandura 2001) 

 
  

Moreover, Pajares (1996) found that a student’s ability to interact and manage their 

environment increases their chances of academic success (see Figure 4). Pajares goes on to note 

that it is in the student’s best interest to create and maintain a cordial relationship with their 

campus faculty and staff to increase their overall chances of academic success. Lastly, Pajares 

notes that this interactive relationship between students with faculty and staff must be especially 

mindful of the student’s demographics. Ferguson (2021) echoes this point as student interactions 

with faculty and staff have been found to have differing conclusions regarding White and non-

White students’ academic achievement. Studies have identified minoritized students, more so 

than White students, to be especially sensitive to faculty-student interaction experiences, 

particularly concerning academic performance (Aikens et al., 2017; Thiry & Laursen, 2011). 

As noted previously, the expectancy-value model has solid foundational literature in 

understanding how attitudes and behaviors can lead to student achievement-related choices and 
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performance (Martinez, 2016). Of the two main factors contributing to student achievement-

related choices and performance, expectancies for success are considered crucial in Eccles et 

al.’s (1983) model when attempting to understand an individual’s belief in how well they can 

accomplish a task (Schunk, 1991). As such, this study will include academic support variables 

related to students’ interaction experiences with university faculty and staff. The three following 

sub-sections will cover literature regarding STEM academic support factors germane to the 

purpose of this study. 

STEM Student-Faculty Interactions 

Seymour and Hewitt (1997) earlier characterized the climate in STEM education as 

“chilly and unwelcoming” (p. 22) to current and prospective students. Literature has also 

documented that science and engineering faculty tend to view their status in higher education as 

educators aimed at producing top-quality graduates while encouraging attrition of weaker STEM 

students (Kokkelenberg & Sinha, 2010; Seymour & Hewitt, 1997). As such, STEM faculty 

members have considered the withdrawal of students from their courses as a sign of successfully 

weeding out those incapables of navigating the rigors of scientific inquiry (Christe, 2013). Still, 

Seymour and Hewitt’s publication in 1997, with others that followed later (Eris et al., 2010; 

Marra et al., 2012; Wagner et al., 2012), found that not only were underprepared or low 

performing students leaving STEM disciplines, but high performing students were leaving at 

similar frequencies.  

Tinto’s (1993) stance on student persistence and causes of withdrawal from college is 

from a sociological approach. He supports the perspective that educators should focus on 

relationships between students and faculty members, as the social experiences between the two 

are vital to promoting degree completion. Though Tinto’s encouragement was made years 
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earlier, literature continues to show that faculty member interactions play a crucial role in student 

decisions to retain in the STEM disciplines (Chrise, 2013; Jamieson & Lohmann, 2012; 

Mastascusa et al., 2011; Rodgers & Marra, 2012; Vogt, 2008); nevertheless, “…despite all of the 

literature-based evidence pointing to the importance of student-faculty interactions in college, 

many faculty overlook, or underestimate, the impact they have on their students” (Micari & 

Pazos, 2012, p. 45). 

Micari and Pazos (2012) conducted a quantitative study around student-faculty 

interaction in an organic chemistry course. Their study found correlations between students’ 

course grades and the feelings of how connected the student felt to their professors. The findings 

also documented three qualities of positive relationships between student and instructor: 

approachability, respect for students, and the faculty as a role model. Lastly, the authors also 

reported that students with a strong-perceived relationship with their instructor exhibited 

increased student confidence in course success. Similarly, Allen et al. (2018) conducted a 

quantitative study examining student questionnaire data from a sample (n = 272) of engineering 

student persisters (i.e., juniors and seniors) regarding the association of student-faculty 

interaction and the perceived quality of such interactions. Their findings reported that frequent 

interactions with faculty in class, along with lesser negative experiences from faculty resulted in 

greater levels of engineering self-efficacy.  

These findings are not isolated to quantitative research methods alone, as Hong and Shull 

(2010) qualitative study explored the role of faculty in retaining STEM students. The researchers 

reported from students interviewed, the following common negative themes were identified in 

describing their experiences with their STEM faculty interactions: the absence of “any positive 

relationships with faculty members” (Hong & Shull, 2010, p. 274); also, “learners described their 
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professors as, insensitive to their learning and personal needs” (Hong & Shull, 2010, p. 274). 

Moreover, students described feeling humiliated and insulted by their faculty members (Christe, 

2013). Lastly, Hong and Shull (2010) noted that there were contrasting responses as some 

learners identified that they received caring and engaging interactions with their faculty 

members.  

As noted previously by the presented literature, not only are student-faculty interactions 

crucial to promoting higher levels of student academic achievement but are especially important 

for STEM major retention. As such, institutions of higher education have focused on initiatives 

that can be utilized to improve STEM retention, at the institutional level, to encourage better 

faculty-student relationships. One such initiative is the implementation of undergraduate research 

programs readily supported financially by the National Science Foundation and several other 

agencies (Erbes, 2008). Through undergraduate research programs, STEM undergraduate 

students have the chance to make meaningful connections with faculty which have been shown 

to increase STEM retention and persistence in STEM careers and fields of study; especially that 

of minoritized students in STEM education (Badger, 2008; Groccia, 2012; Johnson, 1995; 

Miller, 1997; Sadler & McKinney, 2010; Thiry & Laursen, 2011) Given this point, the following 

two sub-sections will cover literature related to undergraduate research programs and their 

relationship with minoritized student STEM retention. 

STEM Minoritzed Students and Faculty Interactions 

Among all the STEM degrees granted in 2015, including nonresident aliens, Black 

students received 8% of STEM Bachelor's degrees, 10% of STEM Master's degrees, and only 

5% of STEM doctoral degrees; these figures highlight that Blacks (15%) remain 

underrepresented in every degree level when considering their proportion of the U.S. college-age 
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population (National Science Foundation, 2018). Despite these alarming figures, many 

institutions of higher education continued to implement “one-size fit all” undergraduate research 

programs to mentor STEM majors; however, it is negligent to assume that what is recommended 

for the general STEM student body, will work effectively for minoritized students (Domingo & 

Carrillo, 2011) 

Previous researchers have sought to identify significant links between undergraduate 

research programs’ mentoring structures and the likelihood of student retention, graduation rate, 

and aspirations to professional practice in STEM fields – accounting specifically for minoritized 

students. One such study, by Thiry and Laursen (2011), developed an empirical research design 

to investigate key approaches to promoting successful student-advisor mentoring practices in 

undergraduate research (UR) programs; specifically, to assimilate students to the norms, values, 

and specialized practice in the science fields.  

The authors implemented a qualitative comparative study, using a phenomenological 

research approach, which explored the outcomes associated with varying types of guidance and 

support factors from the point of view of novice and experienced UR students. 73 UR students 

were interviewed; divided according to the students’ prior research experience: novice (first-year 

researchers) and experienced (three or more semesters and one summer of UR). Women made up 

48% of the sample, while minoritized groups represented 36%. Specifically, 23% were African 

American, 12% were Hispanic, and 1% were multi-racial; the remaining students were White 

(47%) and Asian or Asian-American (17%) (Thiry & Laursen, 2011).  

The authors concluded that three main support frames are crucial in successful faculty 

mentoring of UR students in STEM majors: (a) Professional socialization, which transmits the 

values and norms of the profession; (b) Intellectual support, which helps with problem-solving or 
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progression through experiments; and (c) Personal/emotional support, be supportive, accessible, 

friendly, et cetera (Thiry & Laursen, 2011). Their findings also highlighted that minoritized 

students reported interactions with senior-level scientists, not student scientists and/or adjuncts, 

as being extremely beneficial to their scientific confidence and development. These interactions 

and mentoring relationships led to Black and Hispanic students showing greater socialization in 

their STEM programs and planning to continue their coursework in STEM at the graduate school 

level (Thiry & Laursen, 2011). As noted by the authors, minoritized students in STEM education 

tend to be less prepared for college-level scientific coursework and have fewer faculty role 

models within the STEM fields. As such, those minoritized students that are members of STEM 

programs will require strong socialization benefits with research mentors within their field of 

study, to overcome having little research knowledge and confidence from their K-12 educational 

experience (Thiry & Laursen, 2011). 

Academic Engagement (Subjective Task Value) 

As stated earlier, the expectancy-value model has proven to provide a solid foundation 

for understanding attitudes and behaviors that can lead to achievement-related choices and 

performances. Given the expectancy-value model's extensive usage in primary and secondary 

education and continuous emergence in higher education research, expectancies for success and 

subjective task value are considered to be the most crucial areas of the model that link 

individuals’ academic goals with achievements (Martinez, 2016). Given this point, the next two 

sections will cover subjective task value and the constructs (i.e., academic engagement and hours 

worked) which align with the aims of this study. 

Wigfield and Eccles’ (2000) model, see Figure 1, theorizes that individuals are more 

likely to engage in activities, behaviors, and tasks if they consider the activities to be aligned 
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with their self-interests and goals. Eccles’s expectancy-value model encompasses this theoretical 

perspective in the construct called subjective task value. As presented in Chapter I, subjective 

task value includes four factors: attainment, intrinsic interest, utility, and cost (Wigfield & 

Eccles, 2000). First, the attainment value constructs measure the degree of importance an 

individual considers to be performing well on a task, given a person’s self-concept and identity 

(Wigfield & Eccles, 2000; Wu et al., 2020). The intrinsic interest (or intrinsic) value construct 

aims to predict an individual’s interest and contentment in engaging in a given task or activity 

(Wigfield & Eccles, 2000). The utility value refers to the usefulness of a task or goal relative to 

an individual’s short- and long-term goals (Wigfield & Eccles, 2000; Wu et al., 2020). Finally, 

the last construct, cost (or perceived cost), and arguably the least researched construct of the four 

constructs (Barron et al., 2015; Wigfield & Cambria, 2010), refers to the perceived drawbacks or 

burden of engaging in a task (Wigfield & Eccles, 2000). This study will aim to include the cost 

construct concerning student hours worked for STEM first-year majors; literature will be 

presented on this topic in the next section (i.e., Student Hours Worked -Subjective Task Value).  

Given the first three subjective task values (i.e., attainment, intrinsic interest, and utility), 

researchers have empirically found that student engagement or academic engagement is 

theoretically associated with Eccles's first three subjective task values (Chow et al., 2012; Fan & 

Dempsey, 2017; Martinez, 2016; Plante et al., 2013; Wang & Liou, 2018; Wu et al., 2019). 

Student engagement, or academic engagement, is defined as, “…the investment of time, effort 

and other relevant resources by both students and their institutions intended to optimize the 

student experience and enhance the learning outcomes and development of students and the 

performance, and reputation of the institution” (Astin, 1984, p. 2). This broad definition has 
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taken on systematic review and categorization over the past decades, as researchers aimed to 

gain clarity around the construct of academic engagement (Lester, 2013).  

Moreover, the definition of academic engagement has been debated extensively regarding 

the theoretical approach of engagement being singular or multi-faceted (Bryson & Hand, 2007; 

Glanville & Wildhagen, 2007; Horstmanshof & Zimitat, 2007; Krause & Coates, 2008); 

however, Fredericks et al.’s (2004) paper proposed a unique multi-faceted definition of academic 

engagement which includes the following categories: behavioral, emotional, and cognitive. 

These categories constitute what Lester (2013) refers to as “meta constructs” of engagement; 

Lester goes on to note that these three categories have shown to have a wide range of 

applicability in K-12 and higher education settings. 

The first category, behavioral engagement, is defined to consist of students’ participation 

in both social and academic endeavors. Fredericks et al. (2004) elaborate that there are three 

main constructs of behavioral engagement, which include, (1) positive conduct, (2) involvement 

in learning, and (3) participation in school-related activities. Positive conduct assumes indicators 

that include students adhering to defined class rules. Involvement in learning posits that students’ 

behaviors are “…related to concentration, attention, persistence, effort, asking questions, and 

contributing to [class] discussion” (Fredericks et al., 2004, p. 32). Participation in school-related 

activities incorporates students’ involvement in school extra-curricular activities (e.g., school 

government, athletics, non-academic clubs, etc.) (Fredericks et al., 2004). 

The second category, emotional engagement, consists of students’ attitudes, interests, and 

values as they are related to positive and negative interactions with faculty, staff, students, 

academics, and/or other institutional factors (Fredericks et al., 2004). This category has three 

main constructs which delineate into the following components: affective reactions, emotional 
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reactions, and school identification. Affective reactions measures student interest, boredom, 

anxiety, sadness, and happiness in the classroom (Fredericks et al., 2004). Emotional reactions 

constitute a student’s feelings, positive or negative, toward their instructor or institution. Lastly, 

school identification relates to students’ sense of belongingness and significance within their 

institutional environment (Fredericks et al., 2004). 

The third category, cognitive engagement, consists of two main components: 

psychological and cognitive. According to Fredericks et al. (2004), the component of 

psychological engagement includes motivational goals and self-regulated learning. Both 

components are related to students’ thoughtfulness, willingness, and effort to engage in an 

academic task, to gain an understanding of complex ideas (Fredericks et al., 2004). Lastly, the 

cognitive engagement component includes the student’s effort to “…self-regulated learning, 

metacognition, application of learning strategies, and [being strategic] in thinking and studying” 

(Fredericks et al., 2004, p. 608).  

In aiming to capture the academic engagement predictor, this study utilized survey items 

that overlapped behavioral engagement and cognitive engagement categories. This is not a 

surprise, as Fredericks et al. (2004) argued that three engagement categories are “dynamically 

interrelated within the [participant]; they are not isolated processes” (p. 61). Moreover, 

Fredericks et al. (2004) note that the term academic engagement should be used in a “meta” 

construct, which is reserved for when multiple categories of academic engagement are present in 

the study’s design (Guthrie & Anderson, 1999; Guthrie & Wigfield, 2000). As such, this study 

included questions aimed at ascertaining higher education students’ level of effort in gaining an 

understanding of course content and mastering complex academic content, through the singular 

use of the term academic engagement. 
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Hours Worked (Subjective Task Value) 

 The fourth and final sub-component of subjective task value is perceived cost or cost. 

Eccles and Wigfield (1995) stated, “the first three [sub] components [attainment, intrinsic 

interest, utility] are best thought of as attracting characteristics that affect the positive valence of 

the task…cost, in contrast, is best thought of as those [sub-components]…that affect the negative 

valence of the activity” (p. 216). For example, if a student perceives the effort and time (i.e., 

cost) needed to achieve a STEM degree is too much, they may be less likely to persist in the 

STEM major (Perez et al., 2014). As such, students’ perceived costs in a STEM major may be 

especially important when attempting to understand first-year students' intentions to persist 

beyond their first year (Barron & Hulleman, 2015; Flake et al., 2011; Perez et al., 2014). While a 

sub-component of subjective task value, researchers have noted that the cost component has 

received comparatively less research focus related to STEM achievement and persistence than 

the first three sub-components (Barron & Hulleman, 2015; Wigfield & Cambria, 2010). This 

section will elaborate on past and current research on the cost sub-component, and how the factor 

(i.e., student hours worked) this study aims to assess, relates to this sub-component. 

 In its earliest form, Eccles et al. (1983) presented cost as an important mediator of value 

in their theoretical model (i.e., Expectancy-Value Model). In later writings, Eccles and her team 

promoted the cost value as one of the four sub-components aligned with the subjective task value 

component. Eccles and colleagues noted that the need to make this change was paramount as 

their early writings found “…the overall effect of value on promoting motivation depends on 

knowing whether or not someone experiences high or low cost” (Barron & Hulleman, 2015, p. 

10). As such, including cost into the expectancy-value model is crucial to adequately measure the 

motivational dynamics or factors that encourage or discourage individuals from engaging in a 
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task. Unlike the first three sub-components, researchers noted that Eccles and colleagues’ 

previous works fail to illustrate a clear picture or recommended direction of how to measure, 

sufficiently, the cost sub-component (Chen & Liu, 2009; Chiang et al., 2011; Luttrell et al., 

2010; Watkinson et al., 2005). 

 Eccles et al. (1983) first conceptualized the cost sub-component along three theoretical 

dimensions: “(1) effort cost, perceptions of whether the time and effort needed to be successful 

on a task [are] worthwhile; (2) opportunity cost, perceptions of lost opportunities to engage in 

other valued activities; and (3) psychological costs, perceptions related to fear of failure and 

anxiety associated with engaging in the task” (Perez et al., 2019, p. 12). Though theoretically 

separable, some researchers have noted that the cost sub-types should be measured as a single, or 

general, construct given that there is limited empirical evidence to separate them as distinct sub-

types (Trautwein et al., 2012). For example, Chiang et al. (2011) conducted a quantitative study 

that surveyed elementary school students’ beliefs regarding their expectancy, value, and cost 

attitudes and willingness to engage in physical activities. The researchers accounted for the three 

sub-types of cost theorized by Eccles and colleagues (1983). Their factor analysis revealed that 

all three cost sub-components loaded onto a single factor when combined with both the 

expectancy and value factors. Their findings reported that, when predicting students’ level of 

physical activity, students reporting higher levels of costs (all three sub-components) were less 

likely to be active, as opposed to students reporting higher levels of expectancy/values, who were 

more likely to be active. 

 Another example of the generalizable assumption in using cost as a single sub-component 

of subjective task value was confirmed in a large-scale study by Trautwein et al. (2012). Their 

study deployed items aimed at assessing the expectancy, intrinsic value, utility value, attainment 
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value, and cost of mathematics and English students. Their study measured cost as the following 

items: (1) the amount of effort required to be successful in their class; and (2) the loss of 

engaging in a valued alternative task. For both Math and English students, the researchers 

reported that their factor analysis revealed a singular cost sub-type, along with the three value 

factors to be supported by a four-factor structure (i.e., subjective-task value). Moreover, their 

findings showed that cost was negatively correlated with the other three value sub-components, 

as well as, being negatively correlated with the expectancy factor. This study also supports 

previous findings that analysis of students using the expectancy-value model will yield differing 

beliefs by the academic domain (i.e., reading, writing, mathematics) (Barron & Hulleman, 2015).  

Though the above research was presented noting findings to support a singular use of 

cost, this assumption is not shared by all researchers utilizing the expectancy-value model. For 

example, a study by Robinson et al. (2018) investigated engineering students during their first 

two years of college given their development in the first three sub-components of subjective task 

values (utility, interest, attainment) and the three types of cost (effort cost, opportunity cost, 

psychological cost). The authors modeled their analysis to account for the separate motivation 

components and found that students with slower declines in the first three sub-components of 

value and slower increases in effort cost were more likely to remain in an engineering major. As 

such, Robinson et al. (2018) empirically identified a singular sub-type (i.e., effort cost) of cost to 

be predictive of student retention in an engineering major. Nevertheless, given the scope of this 

study, a singular design of cost was employed given previous empirical findings on this topic 

(Chiang et al., 2011; Li et al., 2008; Mamaril et al., 2016; Trautwein et al., 2012;). 

 As stated earlier by Eccles and her colleagues, cost, or perceived cost can be theorized as 

any perceived shortcomings of participating in a task (Eccles et al., 1983). For example, an 
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individual’s perceived cost of participating in a task, given the time and effort needed to be 

successful, is directly related to Eccles and her colleagues’ theoretical assumptions related to 

subjective task values. In Chapter I, literature was presented emphasizing that STEM students, 

when compared to non-STEM students, and even more so for PEMC majors, are tasked with 

increased course content and study time required to successfully persist beyond the first year of 

study (Griffith, 2010; Maltese & Tai, 2011). However, statistical trends from the past decade 

continue to show that higher education students are engaging in working on and off-campus at a 

much higher rate than in previous years (National Center for Education Statistics, 2015). This 

phenomenon of increased student hours worked may reduce the available time needed to engage 

in STEM course content and negatively influence STEM students’ retention in their majors. The 

following sub-section will present literature on the growing trend of higher education students 

devoting more time to work while studying. 

The Cost of Working While Studying 

 Years of previous research summarize undergraduate students that work, regardless of 

year or term of enrollment, are less likely to graduate than their non-working peers (Douglas & 

Attewell, 2019). The National Postsecondary Student Aid Study (NPSAS) documented that 

62.3% of undergraduate students were employed during the 2015 and 2016 academic years. The 

distribution of students working while studying was evenly distributed among demographic 

variables such as student gender, race/ethnicity, first-generation status, et cetera (National Center 

for Education Statistics, 2015). Employment while studying was more common at community 

colleges and less-selective colleges and universities – the student demographic at these 

institutions tends to be part-time enrollees and are from disproportionality lower-income families 

(National Center for Education Statistics, 2015). However, Perna et al. (2007) note that 
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approximately half of the students attending highly selective 4-year institutions work while 

studying. 

 Furthermore, NPSAS has documented that 54% of students felt that they must work to 

afford to attend college. Previous research findings have documented those numerous 

undergraduate students face financial hardships while attending colleges and universities; some 

of these hardships include food and housing insecurities (Broton & Goldrick-Rab, 2016). Other 

researchers have debated that current financial aid packages are insufficient for many 

undergraduate students, as the Federal financial aid, calculations include estimates of “Expected 

Family Contribution” which many families cannot afford (Goldrick-Rab, 2016; King, 2002; 

Stringer et al., 1998; St. John, 2003). 

 Considering the other half of undergraduates saying they must work to attend school, are 

those students choosing to work for less dire reasons. Clydesdale's (2007) ethnography study of 

freshman students working found that the academic side of college took secondary priority 

overworking to pay for practical life skills, such as “…paying for dating, entertainment, and 

consumerism, and earning $1,000 a month. These activities and reasons took on a symbolic 

meaning, as a measure of adulthood” (p. 111). When considering these factors, it is not a simple 

factor to consider whether students are working because they must or because they choose to for 

non-financial requirements or social factors.   

 A major consideration related to working while studying is what researchers call a “time 

bind”, which has been demonstrated to have negative effects on academic performance and 

student retention (Stinebrickner & Stinebrickner, 2003, 2004). Tinto (1993) has stated that 

“…full-time employment limits time for interaction with other students and faculty, leading to 

poor social integration and to higher rates of student drop-out” (p. 64). However, not all 
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researchers support the notion that working while studying is a solely negative effect. For 

example, Bozick (2007) found that working, in moderation, does not negatively affect student 

academic progression; however, notes that “working more than 20 [hours] a week during the first 

year of college…limits students' ability to sustain enrollment” (p. 271-273).  

 Moreover, labor economists have contributed to this field of study by assessing the 

effects of student employment on academic progression and outcomes. Darolia (2014) found that 

students working while studying did not have any significant impact on students’ academic 

performance but did note that the work demand itself did result in students completing fewer 

credit hours than full-time students. This study's findings may provide insight into why working 

students take longer to complete their degree requirements within five years. Additionally, where 

the students worked, on or off-campus, plays a factor in their academic performance while 

working. A study by Scott-Clayton and Minaya (2016) found that working students that engaged 

in on-campus work-study programs performed better, academically, than students working off-

campus. Given the points outlined above, this study aims to assess the working commitments and 

locations (on or off-campus) of first-year STEM majors.  

Summary of Literature 

Higher education first-year retention is a major concern, especially for those in STEM 

fields of study (Vedder et al., 2010). Tinto (1993) found that the first-year retention issue is an 

especially troubling loss of talent and resources from fields of study and practice. To better 

understand the first-year STEM retention gap, researchers have found the troubles begin well 

before students enter postsecondary institutions (ACT, 2007; McCormick & Lucas, 2011; Wirt et 

al., 2004). More specially, researchers expressed concerns related to student math readiness and 

STEM retention (Conley, 2007; Chait & Venezia, 2009; McCormick & Lucas, 2011; Wirt et al., 
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2004). Given these challenges, this study aimed to assess student math readiness at college entry, 

conceptualized by developmental mathematics course attendance during the first year, 

concerning STEM major retention and academic success.  

Eccles and colleagues’ (1983) Expectancy-Value Model of Achievement-Related 

Choices has been shown to demonstrate unique relationships between student beliefs and task 

values, concerning student education attainments. Kuh et al. (2006) and Martinez (2016) 

emphasized that higher levels of educational attainment are not only directly linked to an 

enhanced quality of life through improved economic and social benefits, but also improved 

community and societies as a whole. Current literature suggests that the first year of college is 

the most important academic year in predicting student retention in higher education attainment 

(Upcraft & Gardner,1989; Upcraft et al., 2005). 

Wigfield and Eccles (2000) note that educational attainment is predicated on a students’ 

motivation to engage with an educational task, persistence, performance, and self-efficacy. 

Building on Wigfield and Eccles's (2000) work, Martinez’s (2016) study aligned the following 

factors in predicting student retention and academic success at a Hispanic-serving institution of 

higher education (1) Expectancies for Success, (2) Subjective Task Values, and (3) Achievement 

Related Performance and Choice. Eccles et al.’s (1983) Expectancy-Value Model of 

Achievement-Related Performance and Choices are also aligned with the following predictors of 

retention and academic success: (1) Academic Support (Expectancies for Success); (2) Academic 

Engagement (Subjective Task Value); and (3) Hours Worked (Subjective Task Value). 

Regarding the first factor, academic support, Pajares (1996) found that a student’s ability 

to interact and manage their environment increases their chances of academic success. Ferguson 

(2021) supported this notion as their study upheld Pajares’ (1996) findings, but also noted that 
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academic support varied across racial groups. The second factor of the model address the 

theoretical construct of academic engagement. Wigfield and Eccles’ (2000) study found that 

individuals are more likely to engage in activities, behaviors, and tasks if they consider the 

activities to be aligned with their self-interests and goals. Researchers continue to debate if 

academic engagement should be singular or multi-faceted (Bryson & Hand, 2007; Glanville & 

Wildhagen, 2007; Horstmanshof & Zimitat, 2007; Krause & Coates, 2008). Fredericks et al. 

(2004) recommend the singular (i.e., meta-level) use of academic engagement when assessing 

engagement categories that overlap in their assessment purposes.   

Lastly, hours worked, which has yet to be assessed by Eccles et al.’s (1983) expectancy-

value model, aims to include a growing trend of student behavior in higher education. NPSAS 

documented that 62.3% of undergraduate students were employed during the 2015 and 2016 

academic years. Stinebrickner and Stinebrickner (2003, 2004) noted that students working while 

a student can be influenced by a “time bind”, where they lack the time to contribute to their 

academic tasks. Tinto (1993) echoed a similar finding by stating that higher education students 

working while studying can limit their interaction with their campus, and may have negative 

consequences for their retention and increase dropout rates (Tinto, 1993). Given the challenges 

presented regarding first-year STEM major retention, this study aimed to assess student math 

readiness concerning first-year STEM major retention and academic success. Based upon the 

review of various existing literature influencing first-year STEM student retention, this study 

attempted to connect theory to practice by operationalizing Eccles and colleagues (1983) 

expectancy-value model to explore possible relationships between academic support (i.e., 

Expectancies for Success), academic engagement (i.e., Subjective Task Value), and hours 
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worked (i.e., Subjective Task Value), as predictors of academic success (i.e., Achievement 

Related Performance) and retention (i.e, Choices) of STEM first-year and marginalized students. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

CHAPTER 3: METHODOLOGY 

Introduction 

 The purpose of this study investigated if academic support, academic engagement, and 

hours worked are predictors of overall student success and retention of first-year and 

marginalized college students in STEM majors. Independently, existing research confirms that 

the aforementioned predictors contribute (on various levels) to student retention and/or academic 

success (please review Chapters 1 and 2); however, there is a lack of existing research 

accounting for these predictors in a sole model while focusing exclusively on first-year students 

in STEM majors (Andersen & Ward, 2014; Martinez, 2016; Perez, 2019). Martinez’s (2016) 

study confirmed that a revised version of the well-grounded theoretical model, Expectancy-

Value Model of Achievement Motivation, sufficiently accounts for the stated predictors through 

the following theoretical components: (1) Expectancies for Success; (2) Subjective Task Values; 

and (3) Achievement Related Performance and Choices.  

 The results of this study aimed to provide new perspectives on understanding first-year 

STEM major retention and academic success. Moreover, the results will potentially aid higher 

education administrators, researchers, and policymakers increase STEM degree completers, 

especially among marginalized students (i.e., women and STEM racial minorities). To outline 

the focus of this chapter, the researcher first introduced the research questions driving the study. 

After this point, the researcher presented the following research methodological components: (a) 

research questions; (b) data source; (c) data sample; (d) instrumentation; (e) definition of 

variables; and (f) assumptions and limitations. 
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Research Questions 

As stated previously, Eccles and colleagues' (1983) Expectancy-Value Model of 

Achievement-Related Performance and Choices has a well-documented foundation for 

understanding how student attitudes and behaviors can influence achievement-related choices 

and performance (Anderson & Ward, 2014; Martinez, 2016; Perez, 2019; Xie & Andrews, 

2012). Given that STEM majors’ retention continues to show a downward trend after their first 

year in college (Sithole et al., 2017), it is advantageous for research questions investigating this 

phenomenon to focus on first-year STEM students to better understand STEM retention. 

Moreover, STEM major attrition is a phenomenon that is not equally distributed across social 

groups and has been found to, more so, adversely affect women and racial/ethnic minorities 

students, when compared to White and Asian male students in STEM fields of study (DiPrete & 

Buchmann, 2013; Xie & Killewald, 2012; Xie et al., 2015). As such, the first research questions 

aimed to utilize this model in exploring possible relationships between STEM first-year and 

marginalized students’ academic success and retention beyond their first year (the model became 

more advanced as additional research questions were explored): 

▪ (RQ1)To what extent does the Expectancy-Value Model of Achievement Motivation 

explain: 

o First-year STEM major students’ academic success and retention? 

o First-year STEM major students’ academic success and retention by gender? 

o First-year STEM major students’ academic success and retention by race? 

Figure 5 illustrates a theoretical model addressing the first research question. This model 

assumed correlations for the study’s first two predictor variables (i.e., academic support, 

academic engagement) through the theoretical components presented by Eccles et al.’s (1983) 
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expectancy-value model and its theoretical constructs: Expectancies for Success and Subjective-

Task Values. Research subquestions related to gender and race illustrate the same revised 

expectancy-value model in Figure 5 and follow the same structure.  

Figure 5 

Revised Framework of Expectancy-Value Model (Research Question 1a) 

 
Note. Not all observed indicators of latent variables are listed (see Table 3). 

 

Given the growing phenomenon of higher education students working while studying, and 

the growing bodies of literature highlighting the negative implications of hours spent working 

and academic achievement (Bozick, 2007; Douglas & Attewell, 2019; Stinebrickner & 

Stinebrickner, 2003, 2004), this study was the first to include student’s self-reported hours 

worked as a subjective-task value to investigate the relationships between STEM first-year 

student academic success and retention. As such, the second research question included student 

hours worked as a predictor variable to the expectancy-value model from the first research 

question (see Figure 6; gender and race models follow the same structure): 

▪ (RQ2) Given the Expectancy-Value Model of Achievement Motivation, are hours 

worked (perceived cost) a predictor of academic success and retention for: 

Expectancy-Value Model

Academic Support

(Exp. for Success)

Academic 

Engagement

(Sub. Task Value)

Performance-

Choices

STEM

Retention
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o First-year STEM majors? 

o First-year STEM major students across gender? 

o First-year STEM major students across race? 

Figure 6 

 

Revised Framework of Expectancy-Value Model (Research Question 2) 

 
Note. Not all observed indicators of latent variables are listed (see Table 3). 

 

Previous research has highlighted that STEM major first-year students tend to be exposed 

to mathematics intensive curriculums during their first-year introductory coursework. Former 

research has also found STEM students, in need of completing developmental math coursework 

during their freshmen year, were approximately 50% more likely to leave the STEM fields of 

study after their first year (Adelman, 2006; Cabrera et al., 2005; Herzog, 2005). As such, the 

third research question included, in the revised expectancy-value model, if the STEM first-year 

student completed a developmental math course during their first year of study: 

▪ (RQ3) Is the relationship between the Expectancy-Value Model of achievement 

motivation and first-year STEM major students’ academic success and retention mediated 
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by math coursework readiness? 

By including this predictor variable as a mediator (see Figure 7), the researcher was able to 

analyze the direct and indirect effects of students completing a developmental math course 

during their first year and the relationship between STEM first-year students’ academic success 

and retention beyond the first year. 

Figure 7 

 

Revised Framework of Expectancy-Value Model (Research Question 3) 

 
Note. Not all observed indicators of latent variables are listed (see Table 3). 

 

 Lastly, though STEM students’ first-year retention and academic success are the focus 

of this proposed study, previous researchers have noted that not all STEM majors are considered 

to be equally affected by the obstacles presented in Chapter 1 (Dika & D’Amico, 2015; Meyer et 

al., 2015; Snow, 1961). As such, by posing the fourth research question, this study was able to 

explore student majors from PEMC and Other-STEM majors to investigate if the varying STEM 

subsets influence first-year students' retention (see Figure 6; PEMC and Other-STEM models 

follow the same structure): 

▪ (RQ4) To what extent does the Expectancy-Value Model of achievement motivation 
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explain first-year students’ declared PEMC or Other-STEM majors' academic success 

and retention? 

 

Research Design 

The proposed study employed a quantitative research design. This study was designed to 

be non-experimental, as the data collection and analysis of the study did not require the 

researcher to manipulate variables, and relied on relationships given measurements of variables 

as they naturally occur. McMillan and Schumacher (2010) note that educational research, 

specifically, should rely on establishing relationships among variables, as they “…make a 

preliminary identification of possible causes of important educational outcomes… identify 

variables that need further investigation…predict one variable from another” (p. 222). By 

investigating variables through relationships, a deeper understanding of phenomena through 

educational research can be attained (McMillan & Schumacher, 2010).  

This study was conducted utilizing a correlational design. Creswell (2012) notes that a 

correlational design is appropriate given a researcher’s goal is to relate more than one variable 

and account for their influences. Creswell (2012) identified two main categories of correlational 

design: prediction and explanatory. Creswell notes that research designs aimed at predicting 

outcomes, follow the prediction category, while designs aimed at explaining relationships among 

variables, follow the explanatory design. Given that this study aimed to explore possible 

relationships between academic support, academic engagement, and hours worked through an 

abbreviated expectancy-value framework, this study utilized a correlational, explanatory design.  

Furthermore, Creswell (2012) states that there are two main types of survey designs: 

cross-sectional and longitudinal. Creswell (2012) defines cross-sectional survey designs as being 

especially relevant for studies that aim to collect data from a population at a specific point in 
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time. While a longitudinal survey design aims to collect data from the same population at 

different points in time (Creswell, 2012). This study utilized data collected from different 

populations at three different points in time (i.e., Spring 2016, Spring 2018, and Spring 2020 

academic terms). All survey items utilized in this study were administered across the three 

academic terms previously noted. Given this distinction and this study’s data sample, a cross-

sectional research design was utilized for this study.   

Instrumentation 

The National Survey of Student Engagement (NSSE, pronounced “nessie”) is a student 

survey aimed at measuring undergraduate students’ academic experiences, co-curricular 

experiences, and potential for partaking in educational events during their first year and senior 

year of college (Ewell & Jones, 1993). To quote from the NSSE project’s lead designer and 

current director (Ewell & McCormick, 2020): 

NSSE annually collects information at hundreds of four-year colleges and universities 

about first-year and senior students’ participation in programs and activities that 

institutions provide for their learning and personal development.… Survey items 

represent empirically confirmed ‘good practices’ in undergraduate education. That is, 

they reflect behaviors by students and institutions that are associated with desired 

outcomes of college. NSSE doesn’t assess student learning directly, but survey results 

point to areas where colleges and universities are performing well and to aspects of the 

undergraduate experience that could be improved (p. 2). 

The NSSE assessment survey evaluates student behaviors respective to decades of research that 

align these behaviors with constructs related to learning and development (Ewell & McCormick, 

2020). Table 1 shows the Cronbach’s alpha coefficient and inter-item correlation for the NSSE 
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scales which highlight a medium to a high degree of internal consistency and reliability for most 

of the ten NSSE scales (NSSE Psychometric Portfolio, 2019). Moreover, the NSSE assessment 

survey consists of 39 questions (varies by year), consisting of various Likert scale ranges for 

each question posed. This study aims to explore the relationships between multiple predictor 

variables relative to student academic success and retention, as such, the NSSE survey 

incorporates many of these multiple variables; therefore, not all 39 survey questions will be 

utilized for this study (see Table 3).  

Table 1  

 

Scale Cronbach’s Alphas 

NSSE scales  
Cronbach’s 

α  

Inter-Item 

Correlation  

Average 

Inter-Item 

Correlation  

Higher-Order Learning 0.83 .46-.63  0.48 

Reflective & Integrative 

Learning 
0.85 .35-.57  0.45 

Learning Strategies 0.76 .42-.64 0.5 

Quantitative Reasoning 0.82 .55-.69 0.59 

Collaborative Learning 0.83 .49-.62 0.55 

Discussions with Diverse 

Others 
0.87 .47-.58 0.51 

Student-Faculty 

Interaction 
0.81 .47-.58 0.52 

Effective Teaching 

Practices 
0.84 .43-.62 0.51 

Quality of Interactions 0.85 .40-.70 0.54 

Supportive Environment 0.88 .33-.64 0.47 

Note. NSSE 2019 questionnaire sample included 129,108 first-year students and 152,028 seniors 

from 491 higher education institutions throughout the U.S. (NSSE Psychometric Portfolio, 

2019). 
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Structural Equation Modeling (SEM) 

This study employed the use of Structural Equation Modeling (SEM), using the Lavaan 

package in R Project for Statistical Computing (Rosseel, 2012), to quantitatively analyze the 

collected data to answer the previously posed research questions. As this study aimed to explore 

possible relationships between theoretical latent variables (i.e., Expectancies for Success and 

Subjective-Task Values) relative to predicted outcome variables, SEM is considered especially 

useful in this matter. Meyers et al. (2013) note that SEM can analyze two types of models: 

measurement and structural. The measurement model aims to assess the extent to which a 

predicted relationship among variables can be found to relate to observed variables (Kline, 2011; 

Meyers et al., 2013; Proitsi et al., 2009). While the structural model aims to measure possible 

relationships among latent constructs, as well as, the possible relationships among other 

measured variables (Kline, 2016; Meyers et al., 2013; Proitsi et al., 2009). Moreover, Meyers et 

al. (2013) note that, if a hypothesized model and observed model match, SEM can be used to 

further explain the hypothesized model. Given the proposed study’s research question and 

theoretical models previously presented, this study used SEM as a data analysis technique. 

As stated earlier, structural equation modeling analysis can be utilized in both 

measurement and structural models. Though this study focused on the findings generated by 

testing the structural component of the model, the measurement model is crucial in assessing 

model fit statistics (i.e., reliability and validity), before testing the structural model (Meyers et 

al., 2013). Meyers et al. (2013) note that the following model fit indices of the measurement 

model should precede any analysis of a structural model: The chi-square (2) likelihood ratio 

statistic, the goodness-of-fit index (GFI), the comparative fit index (CFI), and the root mean 

square error of estimation (RMSEA). 
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The chi-square (2) likelihood ratio statistic is considered to be crucial in evaluating a 

model’s absolute fit index. Meyers et al. (2013) notes that the chi-square (2) statistic tests the 

differences between both theoretical and the proposed empirical model. Moreover, Meyers et al. 

(2013) states that a significant 2 statistic indicates that the proposed theoretical model does not 

fit the empirical data being utilized. In contrast, a non-significant 2 statistic indicates an 

acceptable model fit between theoretical and empirical models. 

Moreover, the goodness-of-fit index measures the number of variances and covariances 

measured by the model. GFI estimates that are equal to or greater than .90 are considered to have 

a good model fit (Khine et al., 2013). CFI analyzes the level of difference between the theoretical 

model and the empirical data being utilized (Meyers et al., 2013). As such, values at or greater 

than .95 indicate a good model fit. The RMSEA statistic measures estimate the amount of error 

between the observed model’s covariance and the covariance of the theoretical model; as such, 

an RMSEA statistic of .08 or less is considered to have a good model fit (Meyers et al., 2013).  

Lastly, because the instrumentation for data collection utilized Likert-type scale items 

(see Table 3), the use of maximum likelihood (ML) in estimating parameters in SEM is not 

appropriate. ML is not appropriate for Likert-type scale items, as the model’s estimation 

presumes that the observed indicators in the model follow a multivariate normal distribution 

(Bollen, 1989; Jöreskog, 1969; Satorra, 1990). However, a diagonally weighted least squares 

(WLSMV) estimate is specifically designed to estimate non-continuous and abnormal 

distributions, or ordinal data (Li, 2015). As such, this study utilized WLSMV for model 

estimation.  

Recommended Sample Size for Structural Equation Modeling 

 There have been varying positions taken regarding a minimum sample size to sufficiently 
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assess and interpret analysis from structural equation modeling (Khine et al., 2013; Schumacker 

& Lomax, 2010). Khine et al. (2013) note that while the sample size is crucial when considering 

the utilization of SEM in research designs, “no consensus has been reached among researchers at 

present” (p. 10). Khine et al. (2013) go on to note that there seems to be a forming consensus that 

SEM is well suitable for analyzing larger sample sizes (Loehlin, 2004; Schumacker & Lomax, 

2004). Schumacker and Lomax (2010) found that sample sizes of 400 or more were required to 

maintain statistical power and increase the chance of obtaining accurate results. Nevertheless, 

Kline (2011) notes that SEM is acceptable for use in simpler models with fewer parameters. 

Moreover, researchers have found sample sizes as small as 100 to 150 respondents to be 

minimally recommended size in preserving statistical precision and yielding accurate results 

(Kline et al., 2013; Schumacker & Lomax, 2010). More specifically, Hair et al. (2009) note that a 

minimum sample size of 100 respondents was recommended for empirical research investigating 

SEM models containing fewer than five latent variables. 

Sample 

This proposed study utilized secondary data analysis from a large public university in the 

Southeast. The university is a co-educational, urban research institution with approximately 

30,000 students enrolled as of Fall 2021. The institution's student demographics can be 

considered generally diverse: 60% Caucasian, 17% African-American, 7% Hispanic, 5% 

Asian/Pacific Islander, 6% other/unknown, and 5% international students. The proposed study 

focused on first-year students from STEM majors. The university enrolled approximately 5,000 

first-year students for the Fall 2016, 2018, and 2020 terms.  

This study used secondary data collected by way of a student survey questionnaire, The 

National Survey of Student Engagement (NSSE). The survey is administered by the university 
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in-practice and Indiana University’s Center for Survey Research. This process is adhered to by 

upholding standard administration protocols and ensuring comparability across all administering 

institutions. The NSSE survey is marketed and encouraged to student participation (on a biennial 

basis by the institution), regardless of admitted major, college, program, et cetera; however, this 

study, specifically, focused on first-year STEM students that completed the survey. The NSSE 

survey is administered through computerized self-administered questionnaires. All first-year 

students from the undergraduate entering class from 2016, 2018, and 2020 academic years were 

invited (approximately 5,000 students per entering class year), via email recruitment, to complete 

the survey. The email recruitment contained a survey invitation link, and the invitations were 

sent up to four times to remind students of their invitation to complete the NSSE survey. 

Additional student data points (i.e., declared major, gender, GPA, race, developmental 

math attendance) were provided to the researcher by the universities Office of Institutional 

Research (IR). Because the IR office collected these student data points outside of the NSSE 

survey’s administration, the means of collecting the data by the IR office was not shared with the 

researcher.  

Definition of Variables 

 This study’s conceptual and operational definitions of all variables used in this study 

are presented below and in Table 3. The variables consist of three predictor variables, consistent 

with Eccles and colleagues' (1983) Expectancy-Value Model of Achievement Motivation, six 

independent variables, and two outcome variables. 

Academic Support (Expectancies for Success) 

Previous literature has noted the importance of academic support as related to student 

success measures. Gnebola’s (2015) study found that faculty-student interaction and academic 
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support positively correlated in predicting student achievement outcome measures, such as GPA. 

Pajares (1996) found that students’ ability to interact and manage their environment increased 

their chances of academic success. To connect theory to practice, this latent variable includes 

items aiming to gauge varying levels of perceived student support through faculty-student 

interactions. Ten items were used to represent the academic support latent factor.  

Academic Engagement (Subjective-Task Value) 

 Lester (2013) identified higher education research initiatives that have found the 

cognitive engagement category to be especially effective in predicting student engagement 

behavior and academic achievement outcomes of students in post-secondary education. Martinez 

(2016) echoes this statement as she states, “[m]ultiple researchers have found that the amount of 

time and the level of energy that students devote to educational activities, inside and outside of 

the classroom, are effective predictors of student development and success” (p. 27). Moreover, 

researchers have found that higher education students that collectively (i.e., with peers) 

interacted with course material, both in and outside of the classroom setting, were more 

academically engaged, as well as, exhibited higher levels of critical thinking (Mcormick, 2010; 

Pascarella & Terenzini, 2005). Given these points, the Academic Engagement latent construct 

included questions aimed at ascertaining higher education students’ level of effort (in and outside 

of the classroom), including curricular interactions with classmates, in gaining an understanding 

of course content and mastering complex academic content. Seven items were used to represent 

the academic engagement latent factor.  

Hours Worked (Subjective-Task Value) 

 Hours Worked is a novel indicator variable to assess student success and retention 

utilizing the expectancy-value model. Eccles and Wigfield (1995) stated the sub-component of 



62 
 

subjective-task value, perceived cost or cost, is the negative valence of predicting an individual 

completing a task. For example, if a student believes the time and effort (i.e., cost) needed to 

achieve a STEM degree is too much, they may be less likely to persist in the STEM major (Perez 

et al., 2014). As such, students’ perceived costs in a STEM major may be especially important 

when attempting to understand first-year students' intentions to persist beyond their first year 

(Barron & Hulleman, 2015; Flake et al., 2011; Perez et al., 2014). To measure this phenomenon 

within the context of the expectancy-value framework, this variable assessed self-declared 

student hours worked in on- and off-campus work environments. Two items were used to 

represent the hours worked indicator variables.  

Gender 

 The variable Gender is conceptually defined as a students’ institutionally reported 

gender, male or female. This variable was provided by the higher education institutions Office of 

Institutional Research (IR). The variable was operationally recorded (i.e., dummy coded) with 

values of “0” and “1” (i.e., male = 0; female = 1). 

Developmental Math Course 

 Previous research has found STEM students, in need of completing remedial 

mathematics coursework during their freshmen, were approximately 50% more likely to leave 

the STEM fields of study after their first year (Adelman, 2006; Cabrera et al., 2005; Herzog, 

2005). To assess previous literature findings, and the importance of mathematics readiness for 

first-year STEM majors, this variable was included and provided by the higher education 

institution’s IR office. The variable measured if a student attended a developmental math course 

during their first year of study. The institution defines its developmental mathematics course as 

covering the following content areas: elementary algebra, inequalities, exponents, and equations. 
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The variable was operationally recorded (i.e., dummy coded) with values of “0” and “1” to 

indicate if the student attended a developmental math course (i.e., No = 0; Yes = 1). 

Major During First Year of Study 

 These variables indicate if the student was a PEMC, Other-STEM, or non-STEM 

student during their first year of study (see Table 2). Given that previous research has reported 

differing relationships among PEMC and Other-STEM majors (Dika & D’Amico, 2015; Nix & 

Perez-Felkner, 2019; Perez-Felkner et al., 2012), this study aimed to assess the relationship of 

the varying STEM subgroups and non-STEM majors in the revised expectancy-value model. 

There were three distinct variables, operationally recorded (i.e., dummy coded) with values of 

“0” and “1” to directionally compare these subgroups within the model. STEM First-Year 

variable will be coded as 0 = non-STEM major and 1 = STEM major; PEMC First-Year variable 

will be coded as 0 = non-PEMC major and 1 = PEMC major; and Other-STEM First-Year 

variable will be coded as 0 = non-Other-STEM major and 1 = Other-STEM major. 

Table 2 

Major Variables 

STEM and non-STEM majors     

PEMC Majors    
Civil and Environmental Engineering    
Chemistry     
Computer Science     
Electrical and Computer Engineering   
Engineering Technology and Construction Management  
Mathematics and Statistics    
Mechanical Engineering and Engineering Science  
Physics and Optical Science    
Systems Engineering and Engineering Management  
      

Other-STEM Majors    
Biological Sciences     
Exercise Science      
Geography & Earth Sciences    
Health Systems Management    
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Health Informatics and Analytics   
Health Services Research    
Interdisciplinary Biology    
Kinesiology     
Neurodiagnostics & Sleep Science   
Operations and Supply Management   
Psychology     
Sociology      
      

Non-STEM Majors    
Accounting     
Architecture     
Art history     
Business Administration    
Communications     
Criminology     
Economics     
Education      
English (language and literature)    
French (language and literature)    
Gender Studies     
History      
Humanities (general)     
Music      
Philosophy     
Political science     
Theater and Drama     
Spanish (language and literature)   
Undecided         

 

Race 

 The race variable allowed the researcher to assess if group differences exist relative to 

the study’s proposed model. Student race variables were included and provided by the higher 

education institutions' IR offices. The category was dummy coded to account for lower levels of 

participation from applicable racial/ethnic groups (i.e., Other) (see Table 3 for items). 

Academic Achievement 

 This variable was provided by the higher education institutions' IR offices. The 

variable included the student’s end of first-year GPA, which is on an interval scale ranging from 



65 
 

0.00 to 4.00. This study utilized Meyer et al.’s (2019) definition of Academic Success, or 

Achievement, as related to the Expectancy-Value Model of Achievement Motivation. As such, a 

higher value GPA on a scale of 0.00 to 4.00 indicated better grades and higher academic 

achievement (Meyer et al., 2019). 

Persistence in STEM 

 Lastly, the Persistence_STEM variable was provided by the higher education 

institutions' IR offices. The variable assessed if the first-year STEM student persisted to the start 

of the second year (following fall term) as a STEM major. The variable was dummy coded “0” 

or “1” when assessing if the student retained at the institution and remain with a STEM major, 0 

= No and 1 = Yes. Allowing for this variable to be dummy coded in the model accounted for 

student predictor and independent variables and showed directional relationships as an outcome 

variable. 

Table 3 

Predictor Variables 

Academic Support (Expectancies for Success) 
   
Q: During the current 

school year, about how 

often have you done 

the following? 

 

1. Discussed course topics, ideas, or concepts with a 

faculty member outside of class (SFdiscuss) 

2. Discussed your academic performance with a faculty 

member (SFperform) 

  

Scale: 1=Never; 2=Sometimes; 3=Often; 

 4=Very often. 

   
Q: During the current 

school year, to what 

extent have your 

instructors done the 

following? 

 

3. Clearly explained course goals and requirements 

(ETgoals) 

4. Taught course sessions in an organized way 

(ETorganize) 

5. Used examples or illustrations to explain difficult points 

(ETexample) 

6. Provided feedback on a draft or work in progress 

(ETfeedback) 

7. Provided prompt and detailed feedback on tests or 

completed assignments (ETdraftfb) 
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Scale: 1=Very little; 2=Some; 3=Quite a bit; 

4=Very much. 

   
Q: During the current 

school year, to what 

extent have your 

courses challenged you 

to do your best work? 
 

8. During the current school year, to what extent have your 

courses challenged you to do your best work? 

(challenge) 

  Scale: 1=Not at all to 7=Very much 

   
Q: Indicate the quality 

of your interactions 

with the following 

people at your 

institution.  

9. Academic Advisor (QIadvisor) 

10. Faculty (QIfaculty) 

 

  Scale: 1=Poor to 7=Excellent 
   

Academic Engagement (Subjective Task Value) 
   
Q: During the current 

school year, about how 

often have you done 

the following? 

 

1. Asked questions or contributed to course discussions in 

other ways (askquest) 

2. Come to class without completing readings or 

assignments (unprepared) 

3. Asked another student to help you understand course 

material (CLaskhelp) 

4. Explained course material to one or more students 

(CLexplain) 

5. Prepared for exams by discussing or working through 

course material with other students (CLstudy) 

6. Worked with other students on course projects or 

assignments (CLproject) 

7. Given a course presentation (present)  

  

Scale: 1=Never; 2=Sometimes; 3=Often; 

 4=Very often. 
   

Hours Worked (Subjective Task Value) 
   
Q: About how many 

hours do you spend in 

a typical 7-day week 

doing the following? 
 

Hours per week: Working for pay ON CAMPUS 

(tmworkon) 

Hours per week: Working for pay OFF CAMPUS 

(tmworkoff)  

  

Scale: 1=0 Hours per week; 2=1-5 Hours; 3=6-10 Hours; 

 4= 11-15 Hours; 5=16-20 Hours; 6=21-25 Hours; 7=26-30 

Hours; 8=More than 30. 

Independent Variables     

Gender  Male = 0; Female = 1 

Develop. Math 

Attended  No = 0; Yes = 1 
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MajorFirstYear_STEM  Non_STEM_Major = 0; STEM_Major = 1 

MajorFirstYear_PEMC  Non_PEMC_Major = 0; PEMC_Major = 1 

MajorFirstYear_Other-STEM Non_Other-STEM_Major = 0; Other-STEM_Major = 1 

Race (Dummy Coded)  

White = 0 (reference group);  

Asian = 1;  

Black or African American = 1;  

Hispanic or Latino = 1. 

Outcome Variables     

Academic 

Achievement  End of first-year GPA 

  Interval Scale: 0 to 4 

Persistence_STEM  Continuation to the second year in STEM 

    No = 0; Yes = 1 

Note. Other race variable includes the following groups: American Indian or Alaska 

Native; Foreign or Nonresident alien; Native Hawaiian or Other Pacific Islander; 

Unknown. 

Assumptions and Limitations 

 It should be noted that this study made assumptions and was beholden to general 

limitations. The following assumptions were presumed for this study: (a) students were willing to 

complete the NSSE survey and were truthful with their responses; (b) the researcher is allowed 

access to relevant institutional data, and (c) the sample size of the data will be sufficient to 

recognize associations. Also, the statistical methodology utilized in this study (i.e., SEM), the 

following assumptions were presumed to be acceptable: sufficient sample size (n > 100); (b) no 

missing data; (c) normality; (d) absence of outliers; (e) collinearity; and (f) factor correlations. 

Regarding limitations to this study’s research design the following were identified: (a) 

dependence on self-reported opinions about a student’s level of academic engagement, academic 

support, and hours worked; (b) the NSSE surveys were completed voluntarily; therefore, 

respondents were not selected at random; lastly, (c) the data collected were particular to only one 

institution; thus, generalizability is difficult to infer. 
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CHAPTER 4: RESULTS 

Introduction 

 The primary purpose of this study was to utilize a revised version of the Expectancy-

Value Model of Achievement Motivation: (1) Expectancies for Success; (2) Subjective Task 

Values; and (3) Achievement Related Performance and Choices, to assess if first-year and 

marginalized college students in the STEM major’s academic support, academic engagement, 

and hours worked are predictors of overall student success and retention after their first year of 

study. By utilizing secondary data from the NSSE survey assessment tool and institutional data, 

over three academic years, this chapter reports on the descriptive statistics relevant to the study; 

as well as, presents inferential statistics of the research questions guiding the study: 

1. To what extent does the Expectancy-Value Model of Achievement Motivation explain: 

• First-year STEM major students’ academic success and retention? 

• First-year STEM major students’ academic success and retention by gender? 

• First-year STEM major students’ academic success and retention by race? 

2. Given the Expectancy-Value Model of Achievement Motivation, are hours worked 

(perceived cost) a predictor of academic success and retention for: 

• First-year STEM majors? 

• First-year STEM major students across gender? 

• First-year STEM major students across race? 

3. Is the relationship between the Expectancy-Value Model of Achievement Motivation and 

first-year STEM major students’ academic success and retention mediated by math 

coursework readiness? 

4. To what extent does the Expectancy-Value Model of achievement motivation explain 
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first-year students’ declared PEMC or Other-STEM majors' academic success and 

retention? 

Description of the Sample 

 The sample consisted of first-year STEM undergraduate students from a large, urban, 

university in the southeast with an overall student population of approximately 30,000. The first-

year STEM major sample was taken across three academic years, 2016-2017 (N = 3,453), 2018-

2019 (N = 3,708), and 2020-2021 (N = 3,999). Table 4 shows a breakdown of demographic 

information for first-year STEM majors by academic year of survey administration.  

Table 4 

Demographic Characteristics by Academic Year 

 
 

Descriptive Statistics 

 The overall sample for the study consisted of 798 first-year students across the three 

academic years previously noted. Descriptive statistics were used to attain an accurate 

description of the sample (see Table 5). Participants in the study were predominantly White 

(59.3%), with Black/African American (12.2%) and Hispanic/Latinx (10.2%), accounting for the 

second and third largest racial and ethnic groups respectively. Female students (52.4%) consisted 

of a larger group of participants than male students (47.6%). Of the reported first-year STEM 

Variable N Percent (%) N Percent (%) N Percent (%)

Gender

Male 120 42.7 72 52.9 183 49.2

Female 161 57.3 64 47.1 189 50.8

Ethnicity

White 165 58.7 88 64.7 217 58.3

Asian -- -- 10 7.4 36 9.7

Black/African American 33 11.7 16 11.8 46 12.4

Hispanic/Latino 31 11 9 6.6 40 10.8

Two or More Races 16 5.7 6 4.4 16 4.3

Other 36 12.8 7 5.1 17 4.6

2016-2017 2018-2019 2020-2021



70 
 

majors, PEMC majors accounted for the majority (56.5%), when compared to Other-STEM 

majors (43.5%). Lastly, of the sample, the majority of participants reported attending a 

developmental math course (64.2%) during their first year of study.  

Table 5 

Total Demographic Characteristics (N = 798) 

Variable N Percent (%) 

Gender   

Male 380 47.6 

Female 418 52.4 

Race/Ethnicity   

White 473 59.3 

Asian 47 5.9 

Black/African American 97 12.2 

Hispanic/Latinx 81 10.2 

Two or More Races 39 4.9 

Other 61 7.5 

STEM Major   

PEMC 451 56.5 

Other STEM 347 43.5 

Attended Developmental  

Math Course   

Yes 512 64.2 

No 286 35.8 

Note. N = 798, % = 100 

Missing Data 

 Data elements were screened for missing values during an initial review of the data. As 

noted by Little and Rubin (1987), missing data, especially in large frequencies, can be generally 

troubling when considering research data analysis. Becker and Walstad (1990), support this 

notion as their meta-analysis of the effects of varying levels of missing data in research designs 

found that missing data can introduce varying levels of bias into concluding estimates from 

various statistical models. This loss in information can render a data sample no longer random 

and/or representative of the sample's intended population (Schafer, 1997). Furthermore, Rubin 
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(1987), reaffirmed the seriousness of missing data in quantitative data analysis as many 

multivariate statistical methods rely on and assume a complete dataset with there being no 

missing data present. 

 Though Rubin (1987) highlights the importance of quantitative research having 

complete datasets, free of missing data, the issue of how much, is too much missing data has very 

little to no clear set of assumptions (Kline, 1998). Cohen (1983) notes that the missingness of 

data on a variable between 5% to 10% can be considered small, while 40% or higher may be 

considered to be high (Kline, 1998). Regardless of the level of missing data, a meta-analysis 

research study found missing data on a variable of 5% or higher should be remedied before 

further data analysis (Xu, 2004). Given the importance of screening data for missingness of 

variables, a Missing Value Analysis (MVA) was conducted (see Table 6). The MVA concluded 

that there were missing data from participant responses on 19 of the survey items utilized from 

the NSSE survey. The scale of missingness in the data ranged from 1.1% to 26.30% (see Table 

6). 

 Before identifying a method to remedy the missing data in this study, an effort was 

made to detect the reason for the “missingness” of the data. Little and Rubin (2002) note that 

there are three main categories of missing data, as related to randomness: Missing completely at 

random (MCAR); missing at random (MAR); and not missing at random (NMAR) or non-

ignorable missing data. Firstly, to assess if the data were missing completely at random, Little's 

MCAR test was conducted. The results of Little’s MCAR test were statistically significant (2 = 

1945.465, df =1705, p =.005). These results indicate that the data were not missing completely at 

random, as such, the missing data cannot be ignored, and further analysis of the missing data 

must be assessed. To evaluate if the data were missing at random or not missing at random,  
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Allison (2002) recommends analyzing the structural patterns of the missing data. Figure 8 

illustrates the pattern of missing data and non-missing data. Figure 8 is interpreted by first 

observing the x-axis; where the x-axis is aligned from variables with the least missingness 

patterns detected (left side), to variables with the most patterns of missingness (right side) (Von 

Hippel, 2004). This illustrates both missing data in random and non-random pattern effects. As 

such, neither MAR nor NMAR can be concluded. Given this finding, Allison (2002) 

recommends data remediation through the replacement of each missing value.  

 One such remediation technique to replace missing data, multiple imputations, was 

first developed by Rubin (1987). A study by Ping Xu’s (2004) found, that of the various 

remedies utilized for missing data in quantitative survey research, “…multiple imputation 

procedures provided more reliable parameter estimates than did listwise deletion…producing 

parameter estimates with smaller standard errors” (p. 5). As such, the multiple imputation 

techniques, utilizing the Markov Chain Monte Carlo (MCMC) simulation method, were applied 

to replace the missing values through five imputations of pooling estimates from the imputed 

datasets.  

Table 6 

Missing Value Analysis (N = 798) 

Var. Name Variable Summary Missing Percent Valid N 

tmworkoff Hours per week: Working for pay OFF CAMPUS 210 26.30% 588 

tmworkon Hours per week: Working for pay ON CAMPUS 206 25.80% 592 

QIadvisor Quality of interactions with academic advisors 177 22.20% 621 

QIfaculty Quality of interactions with faculty 175 21.90% 623 

challenge 

To what extent have your courses challenged you 

to do your best work? 168 21.10% 630 
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ETfeedback 

Instructors: Provided prompt and detailed 

feedback on tests or completed assignments 134 16.80% 664 

ETdraftfb 

Instructors: Provided feedback on a draft or work 

in progress 128 16.00% 670 

ETexample 

Instructors: Used examples or illustrations to 

explain difficult points 128 16.00% 670 

ETorganize 

Instructors: Taught course sessions in an 

organized way 124 15.50% 674 

ETgoals 

Instructors: Clearly explained course goals and 

requirements 122 15.30% 676 

SFperform 

Discussed your academic performance with a 

faculty member 102 12.80% 696 

SFdiscuss 

Discussed course topics, ideas, or concepts with a 

faculty member outside of class 99 12.40% 699 

present Given a course presentation 23 2.90% 775 

CLproject 

Worked with other students on course projects or 

assignments 21 2.60% 777 

CLstudy 

Prepared for exams by discussing or working 

through course material with other students 15 1.90% 783 

CLexplain Explained course material to one or more students 14 1.80% 784 

CLaskhelp 

Asked another student to help you understand 

course material 13 1.60% 785 

unprepared 

Come to class without completing readings or 

assignments 9 1.10% 789 

askquest 

Asked questions or contributed to course 

discussions in other ways 4 0.50% 794 
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Figure 8 

Missing Value Patterns (N = 798) 

 
Note. Each pattern (along the y-axis) represents grouped variables with the same pattern of 

missing values. The variables on the x-axis are organized by the frequency of missing values 

identified; from left to right, smallest to largest (Von Hippel, 2004). 

Assumptions 

 Outliers. As for univariate outliers, an examination of all nineteen predictor variables 

utilizing boxplots indicated that there were univariate outliers present in three of the variables: 

unprepared (n = 10); challenge (n = 17); tmworkon (n = 27). However, closer inspection of the 

univariate outliers detected in the aforementioned variables did not respond outside of the 

established survey item response range (see Figures 9, 10, 11. correspondingly). The responses 

were within the provided range of possible choices, and no data entry error was identified; as 

such, the outlier responses are assumed to be present given the skewness of the responses from 
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the variables mean, see Table 7 (Hyndman & Shangsee, 2010). Given these observations, the 

univariate outliers were retained in the dataset for further analysis.  

 Moving on to assessing for multivariate outliers within the dataset, the Mahalanobis 

distance test was used to assess if there are multivariate anomalies in the distribution of variables 

(Brereton, 2014). Analysis of the Chi-square distribution of the Mahalanobis distance reported 8 

p - values less than .01, therefore, 8 participants reported for the variables are problematic for 

multivariate analysis. Because SEM relies heavily on the assumption of multivariate normality 

(Yuan & Bentler, 2001; Yuan & Zhong, 2013), the 8 participants were removed from the study. 

Collinearity. The collinearity of the nineteen variables was not problematic. The 

following Tolerance and Variance Inflation Factor (VIF) was reported for all nineteen predictor 

variables (see Table 8). Based on supported guidelines (Kline, 2011), a Tolerance of less than 1.0 

and VIF greater than 10 is indicative of multicollinearity. Given the reported collinearity 

statistics (see Table 8), all nineteen predictor variables did not appear to be problematic. 

Factor Correlations. To assess the correlation among the predictor variables, and the 

appropriateness of using the predictor variables in factor analysis (i.e., SEM), a Kaiser-Meyer-

Olkin (KMO) Measure of Sampling Adequacy and Bartlett’s Test of Sphericity were conducted 

(Schriesheim et al, 1999; Williams et al., 2010). Table 9 shows the KMO measure of sample 

adequacy as (.824), which is close to 1.00. Furthermore, Bartlett’s Test of Sphericity analysis 

(Dziuban et al. 1974; Williams et al., 2010) resulted in a significance value (p<.001) that was 

less than .05. As such, the sample and predictor variables are appropriate for use in factor 

analysis.  
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Figure 9 

Boxplot of Univariate Outliers (Var. unprepared; N = 798) 

 

 

Figure 10 

Boxplot of Univariate Outliers (Var. challenge; N = 798) 
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Figure 11 

Boxplot of Univariate Outliers (Var. tmworkon; N = 798) 

 

Table 7 

Variable Descriptive Statistics 

            Skewness Kurtosis 

Variable n Minimum Maximum M SD Statistic 

Std. 

Error Statistic 

Std. 

Error 

ETgoals 797 1.000 4.000 2.930 .724 -.230 .087 -.360 .173 

ETorganize 797 1.000 4.000 2.840 .778 -.188 .087 -.525 .173 

ETexample 797 1.000 4.000 2.930 .791 -.295 .087 -.523 .173 

ETdraftfb 797 1.000 4.000 2.550 .847 .051 .087 -.658 .173 

ETfeedback 797 1.000 4.000 2.510 .841 .109 .087 -.629 .173 

challenge 797 1.000 7.000 5.380 1.121 -.575 .087 .424 .173 

QIadvisor 797 1.000 9.000 5.110 1.684 -.535 .087 -.257 .173 

QIfaculty 797 1.000 9.000 5.110 1.366 -.389 .087 .218 .173 

SFdiscuss 797 1.000 4.000 1.940 .847 .636 .087 -.255 .173 

SFperform 797 1.000 4.000 2.080 .792 .517 .087 -.002 .173 

askquest 797 1.000 4.000 2.650 .819 .248 .087 -.772 .173 

unprepared 797 1.000 4.000 1.950 .773 .749 .087 .579 .173 

CLaskhelp 797 1.000 4.000 2.690 .845 .030 .087 -.760 .173 
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CLexplain 797 1.000 4.000 2.850 .800 -.037 .087 -.843 .173 

CLstudy 797 1.000 4.000 2.670 .940 -.104 .087 -.914 .173 

CLproject 797 1.000 4.000 2.790 .808 -.078 .087 -.667 .173 

present 797 1.000 4.000 2.240 .827 .422 .087 -.261 .173 

tmworkon 797 1.000 7.000 1.560 1.022 2.077 .087 3.976 .173 

tmworkoff 797 1.000 8.000 2.400 1.913 1.240 .087 .443 .173 

GPA 798 .500 4.000 3.305 .588 -1.322 .087 2.271 .173 

Persist 798 .000 1.000 .840 .366 -1.867 .087 1.490 .173 

 

Table 8 

Intercorrelations Statistics 

Model   

Collinearity 

Statistics 

Var. Name Variable Summary Tolerance VIF 

unprepared 

Come to class without completing readings or 

assignments .936 1.069 

CLaskhelp 

Asked another student to help you understand course 

material .598 1.673 

CLexplain Explained course material to one or more students .599 1.669 

CLstudy 

Prepared for exams by discussing or working through 

course material with other students .538 1.858 

CLproject 

Worked with other students on course projects or 

assignments .595 1.680 

present Given a course presentation .728 1.373 

SFdiscuss 

Discussed course topics, ideas, or concepts with a 

faculty member outside of class .604 1.655 

SFperform 

Discussed your academic performance with a faculty 

member .630 1.587 

ETgoals 

Instructors: Clearly explained course goals and 

requirements .579 1.726 

ETorganize Instructors: Taught course sessions in an organized way .509 1.963 

ETexample 

Instructors: Used examples or illustrations to explain 

difficult points .535 1.870 

ETfeedback 

Instructors: Provided feedback on a draft or work in 

progress .551 1.814 
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ETdraftfb 

Instructors: Provided prompt and detailed feedback on 

tests or completed assignments .518 1.929 

challenge 

To what extent have your courses challenged you to do 

your best work? .815 1.227 

QIadvisor Quality of interactions with academic advisors .726 1.377 

QIfaculty Quality of interactions with faculty .627 1.594 

tmworkon Hours per week: Working for pay ON CAMPUS .940 1.063 

tmworkoff Hours per week: Working for pay OFF CAMPUS .952 1.050 

askquest 

Asked questions or contributed to course discussions in 

other ways .785 1.273 

      

   
Table 9 

KMO and Bartlett's Test 
Kaiser-Meyer-Olkin (KMO) Measure of Sampling 

Adequacy   .824 

Bartlett's Test of Sphericity 2 20848.976 

 df 190 

  Sig. .000 

Note. Significance is less than .001. 

Variable Description 

This section presents descriptive statistics of the three latent factors, along with their 

corresponding indicator variables, that were utilized in this study. Indicator variables aimed at 

assessing first-year STEM students' motivation, willingness, and competence to interact and 

manage their environment to increase their chances of academic success (Pajares, 1996), were 

grouped under the Expectancies for Success (esuccess) latent factor. Indicator variables that 

assessed first-year STEM students’ likeness to engage in activities, behaviors, and tasks that 

align with their self-interest (Andersen & Chen, 2016; Guo et al., 2016; Nagengast et al., 2011), 

were grouped under the Subjective Task Values (subjective_hoursworked) latent factor. Lastly, 

the two indicator variables that assessed first-year STEM students’ willingness to persist in a 
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STEM field of study and their academic performance during their first year, were grouped under 

the Achievement Related Performance and Choices (perfchoice) latent factor. 

Expectancies for Success 

 Descriptive statistics for each indicator variable for the esuccess latent factor are 

presented in Table 10. Overall descriptive analysis of the esuccess latent factor yielded an 

average mean of 3.34 and an average standard deviation of .979. Mean scores ranged from 1.940 

to 5.380. It's important to note that not all survey items for the esuccess latent factor were 

assessed on the same response scale (see Table 3). The lowest mean score (M = 1.940, SD = 

.847; Scale: 1=Never; 2=Sometimes; 3=Often; 4=Very often.), was assessed from the indicator item, 

SFdiscuss (Discussed course topics, ideas, or concepts with a faculty member outside of class). 

While the highest mean score (M = 5.380, SD = 1.121; Scale: 1=Not at all to 7=Very much), was 

assessed from the indicator variable, challenge (To what extent have your courses challenged 

you to do your best work). Of note, indicator items, QIadvisor (M = 5.110, SD = 1.684; Scale: 

1=Poor to 7=Excellent), “Quality of interactions with academic advisors”, and QIfaculty (M = 

5.110, SD = 1.366; Scale: 1=Poor to 7=Excellent), “Quality of interactions with faculty”, also 

assessed high mean scores. 

 The general results infer that first-year STEM students were likely to have low levels of 

engagement to discuss course topics, ideas, or concepts with a faculty member outside of class. 

The results also suggest that first-year STEM students were likely to feel challenged by their 

courses to do their best, as well as, felt their quality of interaction with their academic advisor 

and faculty was of higher quality. 
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Table 10 

Mean and Standard Deviation for Expectancies for Success (N = 797) 

Variable Variable Summary M SD 

ETgoals 

Instructors: Clearly explained course goals and 

requirements 2.930 .724 

ETorganize 

Instructors: Taught course sessions in an organized 

way 2.840 .778 

ETexample 

Instructors: Used examples or illustrations to explain 

difficult points 2.930 .791 

ETdraftfb 

Instructors: Provided feedback on a draft or work in 

progress 2.550 .847 

ETfeedback 

Instructors: Provided prompt and detailed feedback 

on tests or completed assignments 2.510 .841 

challenge 

To what extent have your courses challenged you to 

do your best work? 5.380 1.121 

QIadvisor Quality of interactions with academic advisors 5.110 1.684 

QIfaculty Quality of interactions with faculty 5.110 1.366 

SFdiscuss 

Discussed course topics, ideas, or concepts with a 

faculty member outside of class 1.940 .847 

SFperform 

Discussed your academic performance with a faculty 

member 2.080 .792 

 

Subjective Task Value 

 Descriptive statistics for each indicator variable for the subjective_hoursworked latent 

factor are presented in Table 11. Overall descriptive analysis of the subjective_hoursworked 

latent factor yielded an average mean of 2.42 and an average standard deviation of .972. Similar 

to the esuccess latent factor, subjective_hoursworked latent factor indicator variables were 

assessed on the same response scale (see Table 3). Mean scores ranged from 1.560 to 2.850. The 

lowest mean score (M = 1.560, SD = 1.088; Scale: 1=0 Hours per week; 2=1-5 Hours; 3=6-10 

Hours; 4= 11-15 Hours; 5=16-20 Hours; 6=21-25 Hours; 7=26-30 Hours; 8=More than 30.), was 

assessed from indicator item, tmworkon (Hours per week: Working for pay ON CAMPUS). 

While the highest mean score (M = 2.850, SD = .800; Scale: 1=Never; 2=Sometimes; 3=Often; 
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4=Very often.), was assessed from the indicator variable, CLexplain (Explained course material to 

one or more students). Worth mentioning, indicator items, tmworkoff (M = 2.400, SD = 1.913; 

Scale: 1=0 Hours per week; 2=1-5 Hours; 3=6-10 Hours; 4= 11-15 Hours; 5=16-20 Hours; 6=21-25 

Hours; 7=26-30 Hours; 8=More than 30.), “Hours per week: Working for pay OFF CAMPUS”, and 

tmworkon (Hours per week: Working for pay ON CAMPUS), assessed high standard deviations 

relative to their mean. 

The general results infer that STEM students were likely to engage in working less than 5 

hours per week on-campus during their first year of study. The results also suggest that first-year 

STEM students are more likely to engage in explaining course materials with their peers than not 

engaging with their peers regarding course materials.  

Table 11 

Mean and Standard Deviation for Subjective Task Value (N = 797) 

Variable Variable Summary M SD 

askquest 

Asked questions or contributed to course discussions 

in other ways 2.650 .819 

unprepared 

Come to class without completing readings or 

assignments 1.950 .773 

CLaskhelp 

Asked another student to help you understand course 

material 2.690 .845 

CLexplain Explained course material to one or more students 2.850 .800 

CLstudy 

Prepared for exams by discussing or working through 

course material with other students 2.670 .940 

CLproject 

Worked with other students on course projects or 

assignments 2.790 .808 

present Given a course presentation 2.240 .827 

tmworkon Hours per week: Working for pay ON CAMPUS 1.560 1.022 

tmworkoff Hours per week: Working for pay OFF CAMPUS 2.400 1.913 
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 Descriptive statistics for each indicator variable for the perfchoice latent factor are 

presented in Table 12. The Persist (Retained in STEM major) had a mean score of .840 (SD = 

.366; Scale: No = 0, Yes = 1). While GPA (GPA in all coursework after the first year) reported a 

mean score of 3.305 (SD = .588; Interval Scale: 0 to 4). The general results infer that first-year 

STEM students were more likely to persist in their STEM major after their first year than to 

change to a non-STEM major. The results also suggest that first-year STEM students were likely 

to have a GPA higher than 2.50 after their first year of study. 

Table 12 

Mean and Standard Deviation for Achievement Related Performance and Choices (N = 797) 

        

Variable Variable Summary M SD 

GPA GPA in all coursework after the first year 3.305 .588 

Persist Retained in STEM major .840 .366 

 

Measurement Model 

Before assessing the full structural models to answer the research questions proposed for 

this exploratory study, a measurement model was conducted to test whether the data fit the latent 

variables with covariances among the latent variables (Mueller & Hancock, 2001). The 

measurement model was evaluated against five model fit estimates. The criteria included: chi-

square (2) likelihood ratio statistic, the goodness-of-fit index (GFI), the standardized root mean 

square residual (SRMR), the comparative fit index (CFI), and the root mean square error of 

estimation (RMSEA). The overall model fit indices suggested an approximate poor fit (2= 

890.074, df =149, p<.001; RMSEA=.079, CFI=.841; SRMR=.084; GFI=.937). The chi-square 

test is statistically significant which indicates a poor fit; however, this test is sensitive to large 

sample sizes; as such, the chi-square statistic will not be considered a core indicator of model fit. 
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The RMSEA is less than .08 (Hu & Bentler, 1999) and the GFI is greater than .90 which all 

indicate a good model fit. The SRMR is greater than the recommended .08, which is an indicator 

of a poor global model fit (Hu & Bentler, 1999). Moreover, the CFI statistic was less than the 

recommended level of greater than .95 (Myers et al., 2013), which is an indicator of poor model 

fit. Overall, the fit indices indicate a poor global model fit with the data (Hair et al., 2013; Myers 

et al., 2013). 

The standardized regression weight (or pattern coefficients) are reported in Table 4.13 

(also see Appendix A). A closer examination of the standardized regression weights shows that 

there are several variable loadings ≤ .40. Hair et al. (2013, p. 736) note that model fit 

modifications can be initiated by first examining the local model fit indices (see Table 13), 

specifically the standardized regression weights, and recommending the removal of indicator 

loadings that are less than .40 for exploratory studies. The authors also noted that the removal of 

indicators should be backed by theory; more specifically, the potential contribution the indictor is 

making to the latent construct being assessed (Hair et al., 2013).  

Given these guidelines for an exploratory research study, and to improve the local and 

global model fit, the following indicators were removed from the study: challenge (β = .21, p < 

.001), SFdiscuss (β = .31, p < .001), SFperform (β = .33, p < .001), unprepared (β = .03, p = 

.496). Theoretical grounds for removing these indicator variables are found in Martinez (2016), 

as the researcher's findings, utilizing multiple regression models, did not yield statistical 

significance, given First-Year Academic Engagement, relative to predicting academic success 

and persistence to the second year of college. Moreover, indicators QIadvisor (β = .360, p < 

.001) and askquest (β = .400, p < .001) were not removed as they’re aligned with this study’s 

need to assess levels and engagement with faculty and staff. Lastly, Persistnc_STEM (β = .372, p 
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= .137) indicator was not removed as it relates directly to the outcome measure within the 

theoretical model. The remaining indicator variables were retained and were used in the 

structural models. After the aforementioned modifications were made to the measurement model, 

the overall model fit indices suggested an approximate good fit (2= 357.589, df =87, p<.001; 

RMSEA=.063, CFI=.929; SRMR=.066; GFI=.969).  

Table 13 

Standardized Regression Weights for the Measurement Model (N = 797) 

Latent Factor Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .421 .587 

esuccess ⇒  ETorganize 1.093 .075 .000* .460 .599 

esuccess ⇒  ETexample 1.293 .087 .000* .545 .694 

esuccess ⇒  ETdraftfb 1.223 .093 .000* .515 .613 

esuccess ⇒  ETfeedback 1.333 .097 .000* .562 .670 

esuccess ⇒  challenge .554 .110 .000* .233 .212 

esuccess ⇒  QIadvisor 1.426 .163 .000* .600 .360 

esuccess ⇒  QIfaculty 1.498 .147 .000* .631 .466 

esuccess ⇒  SFdiscuss .624 .095 .000* .263 .314 

esuccess ⇒  Sfperform .615 .089 .000* .259 .330 

subjective ⇒  askquest 1.000   .326 .400 

subjective ⇒  unprepared .078 .115 .496 .026 .033 

subjective ⇒  CLaskhelp 1.613 .181 .000* .526 .627 

subjective ⇒  CLexplain 1.674 .180 .000* .546 .684 

subjective ⇒  CLstudy 2.119 .219 .000* .691 .739 

subjective ⇒  CLproject 1.640 .177 .000* .535 .669 

subjective ⇒  present 1.046 .134 .000* .341 .415 

perfchoice ⇒  Persistnc_STEM 1.000   .137 .372 

perfchoice ⇒  GPAONEYEAROUT 2.618 1.341 .051 .358 .608 

esuccess ⇔ subjective .042 .009 .000* .307 .307 

esuccess ⇔ perfchoice .011 .006 .059 .183 .183 

subjective ⇔ perfchoice .006 .004 .068 .145 .145 

Note. Std.lv = illustrates standardized results when the latent variable has a variance of one; 

Std.all = illustrates standardized results when the latent variable and observed variables have a 

variance of one (Hu & Bentler, 1999). 
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Research Question 1: Expectancy-Value Model and First-Year STEM Majors 

 The primary purpose of this study was to utilize a revised version of the Expectancy-

Value Model of Achievement Motivation: (1) Expectancies for Success; (2) Subjective Task 

Values; and (3) Achievement Related Performance and Choices, to assess if first-year and 

marginalized college students in the STEM major’s academic support, academic engagement, 

and hours worked are predictors of overall student success and retention after their first year of 

study. The first revised hypothesized theoretical model tested if the Expectancy-Value Model of 

Achievement Motivation can explain: (a) First-year STEM major students’ academic success and 

retention; (b) First-year STEM major students’ academic success and retention by gender; and 

(c) First-year STEM major students’ academic success and retention by race. 

Research Question 1A (First-Year STEM) 

Regarding research subquestion 1A (i.e., First-year STEM major students’ academic 

success and retention, the structural model was evaluated against five model fit estimates. The 

overall model fit indices suggested an approximate good fit (2 = 357.589, df =87, p<.001; 

RMSEA=.063, CFI=.929; SRMR=.066; GFI=.969). The standardized regression weight (or 

pattern coefficients) are reported in Table 14 and Figure 12. All the weights were statistically 

significant, at an alpha level of .05, except for the path between the latent variable perfchoice and 

indicator variable GPAONEYEAROUT. This suggests that GPA after the first year does not 

have a direct effect on a student's performance and choice to retain in a STEM major. Moreover, 

path coefficients for the structural model show that latent factor Expectancies for Success are not 

a statistically significant predictor of Achievement Related Performance and Choices (β = .155, p 

= .093). Additionally, the Subjective Task Value latent factor is not a statistically significant 

predictor of Achievement Related Performance and Choice (β = .108, p = .148).  
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Table 14 

Standardized Regression Weights for RQ1A-First-Year STEM (N = 789) 

Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .447 .623 

esuccess ⇒  ETorganize 1.106 .071 .000* .494 .643 

esuccess ⇒  ETexample 1.271 .079 .000* .568 .724 

esuccess ⇒  ETdraftfb 1.135 .086 .000* .507 .604 

esuccess ⇒  ETfeedback 1.258 .087 .000* .563 .672 

esuccess ⇒  QIadvisor 1.383 .151 .000* .618 .371 

esuccess ⇒  QIfaculty 1.445 .133 .000* .646 .478 

subjective ⇒  askquest 1.000   .297 .364 

subjective ⇒  CLaskhelp 1.811 .217 .000* .537 .640 

subjective ⇒  CLexplain 1.860 .215 .000* .552 .691 

subjective ⇒  CLstudy 2.376 .267 .000* .705 .754 

subjective ⇒  CLproject 1.811 .212 .000* .537 .672 

subjective ⇒  present 1.111 .151 .000* .330 .401 

perfchoice ⇒  Persistnc_STEM 1.000   .127 .345 

perfchoice ⇒  GPAONEYEAROUT 3.047 1.604 .057 .387 .656 

esuccess ⇔ subjective .029 .008 .000* .222 .222 

esuccess ⇒  perfchoice .044 .026 .093 .155 .155 

subjective ⇒  perfchoice .046 .032 .148 .108 .108 

Note. (*) the p-value is less than .001 
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Figure 12 

Structural Model (Standardized Path Coefficients) of First-Year STEM Major (RQ1A; N = 789) 

 
Note. (*) the p-value is less than .001. A revised theoretical model of the Expectancy-Value 

Model of Achievement Motivation. Latent constructs are shown in ellipses. Lines with arrows 

represent the path or direction of influence. Curved arrows represent correlations among latent 

variables. An observed variable is represented by a rectangle. 

Research Question 1B (First-Year STEM: Gender) 

Research subquestion 1B utilized the same structural model presented in research 

subquestion 1A, with the added independent exogenous variable of gender (i.e., dummy coded) 

included. The overall model fit indices suggested an approximate good fit (2 = 

564.784, df =101, p<.001; RMSEA=.076, CFI=.880; SRMR=.076; GFI=.994). The path 

coefficients for gender (Male = 0; Female = 1) show that there is a statistically significant 

relationship between STEM first-year students’ gender (β = .164, p < .001) and the latent factor 

Expectancies for Success. The structural model shows that there is a statistically significant 

relationship between STEM first-year students’ gender (β = .172, p = .001) and the latent factor 
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Subjective Task Value. Lastly, path coefficients for the structural model show that latent factors 

Expectancies for Success (β = .169, p = .111) and Subjective Task Value (β = .130, p = .133) are 

not statistically significant predictors of Achievement Related Performance and Choices given 

student gender (see Table 15). 

Table 15 

Standardized Regression Weights for RQ1B-Gender (N = 789) 

Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .458 .639 

esuccess ⇒  ETorganize 1.107 .067 .000* .507 .659 

esuccess ⇒  ETexample 1.214 .073 .000* .556 .709 

esuccess ⇒  ETdraftfb 1.080 .083 .000* .494 .588 

esuccess ⇒  ETfeedback 1.201 .082 .000* .550 .657 

esuccess ⇒  QIadvisor 1.397 .146 .000* .640 .384 

esuccess ⇒  QIfaculty 1.435 .128 .000* .657 .486 

subjective ⇒  askquest 1.000   .254 .312 

subjective ⇒  CLaskhelp 2.282 .305 .000* .579 .691 

subjective ⇒  CLexplain 2.156 .281 .000* .547 .686 

subjective ⇒  CLstudy 2.833 .367 .000* .719 .769 

subjective ⇒  CLproject 2.073 .278 .000* .526 .658 

subjective ⇒  present 1.240 .187 .000* .315 .383 

perfchoice ⇒  Persistnc_STEM 1.000   .113 .307 

perfchoice ⇒  GPAONEYEAROUT 3.841 2.273 .091 .434 .736 

Gender_Recoded ⇒  esuccess .151 .039 .000* .329 .164 

Gender_Recoded ⇒  subjective .087 .026 .001 .343 .172 

esuccess ⇒  perfchoice .042 .026 .111 .169 .169 

subjective ⇒  perfchoice .058 .038 .133 .130 .130 

Note. (*) the p-value is less than .001 

Research Question 1C (First-Year STEM: Asian Students) 

Research subquestion 1C utilizes the structural model from 1A and includes the race 

independent exogenous independent variable, race (i.e., dummy coded). Subquestion 1C was 

focused on Asian students with White students as the reference group (White = 0; Asian = 1). 

The overall model fit indices suggested an approximate good fit (2 = 426.280, df =101, p<.001; 

RMSEA=.079, CFI=.858; SRMR=.081; GFI=.942). The path coefficients for the structural 

model show that latent factor Expectancies for Success (β = .263, p = .047), is a statistically 

significant predictor of Achievement Related Performance and Choices, as related to Asian first-
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year STEM majors. However, the path coefficients for subquestion 1C show that there are no 

statistically significant relationships between Asian first-year STEM students and the latent 

factor Expectancies for Success (β = .063, p = .165); this also holds for the latent factor 

Subjective Task Value (β = -.027, p = .629) which is not significantly associated with STEM 

Asian first-year STEM students (see Table 16).  

Table 16 

Standardized Regression Weights for RQ1C-Asian Students (N = 516) 
Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .444 .631 

esuccess ⇒  ETorganize 1.005 .087 .000* .447 .604 

esuccess ⇒  ETexample 1.162 .100 .000* .516 .670 

esuccess ⇒  ETdraftfb 1.032 .107 .000* .459 .560 

esuccess ⇒  ETfeedback 1.052 .106 .000* .467 .581 

esuccess ⇒  QIadvisor 1.497 .175 .000* .665 .406 

esuccess ⇒  QIfaculty 1.457 .165 .000* .647 .484 

subjective ⇒  askquest 1.000   .226 .276 

subjective ⇒  CLaskhelp 2.438 .460 .000* .550 .659 

subjective ⇒  CLexplain 2.439 .439 .000* .550 .683 

subjective ⇒  CLstudy 3.180 .567 .000* .717 .777 

subjective ⇒  CLproject 2.432 .443 .000* .549 .674 

subjective ⇒  present 1.387 .275 .000* .313 .390 

perfchoice ⇒  Persistnc_STEM 1.000   .141 .376 

perfchoice ⇒  GPAONEYEAROUT 2.902 1.477 .049 .409 .687 

Asian_Recoded ⇒  esuccess .098 .070 .165 .220 .063 

Asian_Recoded ⇒  subjective -.022 .045 .629 -.096 -.027 

esuccess ⇒  perfchoice .083 .042 .047 .263 .263 

subjective ⇒  perfchoice .066 .050 .188 .105 .105 

Note. (*) the p-value is less than .001 

Research Question 1D (First-Year STEM: Black Students) 

For subquestion 1D (i.e., First-year STEM major students’ academic success and 

retention by race), the model focuses on the exogenous independent variable Black_recoded. 

The structural model uses that of subquestion 1A, with the added exogenous variable dummy 

coded to assess Black first-year STEM majors (White = 0;  Black = 1). The overall model fit 

indices suggested an approximate good fit (2 = 429.987, df =101, p<.001; RMSEA=.076, 

CFI=.868; SRMR=.078; GFI=.948). The findings of the path coefficients for the structural model 
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show that latent factor Expectancies for Success (β = .217, p = .073) and Subjective Task Value 

(β = .159, p = .107) are not statistically significant predictors of Achievement Related 

Performance and Choices. Furthermore, the path coefficients for Black_recoded show that there 

are no statistically significant relationships given Black first-year STEM students and the latent 

factors Expectancies for Success (β = .008, p = .877) and Subjective Task Value (β = -.023, p = 

.601) (see Table 17). 

Table 17 

Standardized Regression Weights for RQ1D-Black Students (N = 565) 

Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .457 .629 

esuccess ⇒  ETorganize 1.038 .081 .000* .475 .622 

esuccess ⇒  ETexample 1.195 .092 .000* .546 .697 

esuccess ⇒  ETdraftfb 1.073 .101 .000* .490 .587 

esuccess ⇒  ETfeedback 1.164 .103 .000* .532 .637 

esuccess ⇒  QIadvisor 1.504 .172 .000* .688 .404 

esuccess ⇒  QIfaculty 1.427 .158 .000* .652 .480 

subjective ⇒  askquest 1.000   .232 .283 

subjective ⇒  CLaskhelp 2.369 .426 .000* .549 .664 

subjective ⇒  CLexplain 2.211 .381 .000* .513 .659 

subjective ⇒  CLstudy 2.982 .505 .000* .692 .761 

subjective ⇒  CLproject 2.272 .397 .000* .527 .664 

subjective ⇒  present 1.155 .237 .000* .268 .336 

perfchoice ⇒  Persistnc_STEM 1.000   .131 .347 

perfchoice ⇒  GPAONEYEAROUT 3.334 1.784 .062 .438 .734 

Black_Recoded ⇒  esuccess .010 .066 .877 .022 .008 

Black_Recoded ⇒  subjective -.014 .027 .601 -.062 -.023 

esuccess ⇒  perfchoice .062 .035 .073 .217 .217 

subjective ⇒  perfchoice .090 .056 .107 .159 .159 

Note. (*) the p-value is less than .001 

Research Question 1E (First-Year STEM: Hispanic Students) 

In the final subquestion for the first research question, the structural model included the 

exogenous independent variable Hispanic_recoded. The variable includes Hispanic first-year 

STEM majors and their White student peers (White = 0; Hispanic = 1). The overall model fit 

indices suggested an approximate good fit (2 = 410.120, df =101, p<.001; RMSEA=.075, 

CFI=.876; SRMR=.077; GFI=.949). The main findings of the model show that there are no 
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statistically significant relationships between predictor latent factors Expectancies for Success (β 

= .217, p = .099) and Subjective Task Value (β = .137, p = .155), and the outcome latent factor 

Achievement Related Performance and Choices. Moreover, the path coefficients for 

Hispanic_recoded show that there are no statistically significant associations given STEM first-

year student’s race and the latent factors Expectancies for Success (β = .034, p = .504) and 

Subjective Task Value (β = -.047, p = .345) (see Table 18).  

Table 18 

Standardized Regression Weights for RQ1E-Hispanic Students (N = 550) 

Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .440 .628 

esuccess ⇒  ETorganize 1.086 .089 .000* .478 .631 

esuccess ⇒  ETexample 1.209 .097 .000* .531 .680 

esuccess ⇒  ETdraftfb 1.036 .105 .000* .455 .555 

esuccess ⇒  ETfeedback 1.107 .106 .000* .487 .599 

esuccess ⇒  QIadvisor 1.563 .178 .000* .687 .417 

esuccess ⇒  QIfaculty 1.466 .161 .000* .644 .488 

subjective ⇒  askquest 1.000   .232 .286 

subjective ⇒  CLaskhelp 2.382 .419 .000* .552 .660 

subjective ⇒  CLexplain 2.446 .415 .000* .567 .696 

subjective ⇒  CLstudy 3.169 .523 .000* .734 .796 

subjective ⇒  CLproject 2.277 .396 .000* .528 .666 

subjective ⇒  present 1.203 .239 .000* .279 .350 

perfchoice ⇒  Persistnc_STEM 1.000   .127 .335 

perfchoice ⇒  GPAONEYEAROUT 3.719 2.194 .090 .471 .778 

Hispanic_Recoded ⇒  esuccess .042 .063 .504 .095 .034 

Hispanic_Recoded ⇒  subjective -.031 .033 .345 -.134 -.047 

esuccess ⇒  perfchoice .063 .038 .099 .217 .217 

subjective ⇒  perfchoice .075 .053 .155 .137 .137 

Note. (*) the p-value is less than .001 

Research Question 2: Expectancy-Value Model and First-Year STEM Majors 

 The second revised hypothesized theoretical model tested if hours worked (perceived 

cost) is a predictor of academic success and retention for (a) First-year STEM major students’ 

academic success and retention; (b) First-year STEM major students’ academic success and 

retention by gender; and (c) First-year STEM major students’ academic success and retention by 

race. As such, the second structural model mirror the first research questions model, with the 
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added indicator variables of assessing student hours worked, on- and off-campus (tmworkon and 

tmworkoff, respectively) with the Subjective Task Value latent factor.   

Research Question 2A (First-Year STEM) 

As for the model’s overall fit, indices suggested an approximate good fit (2 = 

407.433, df =116, p<.001; RMSEA=.056, CFI=.924; SRMR=.062; GFI=.966). The standardized 

regression weight (path coefficients) are reported in Table 19 and Figure 13. All the weights 

were statistically significant except for the path between the latent variable perfchoice and 

indicator variables loading onto the latent construct GPAONEYEAROUT; as well as, the path 

between latent variable subjective_hoursworked and indicator variable tmworkoff. Regarding the 

GPAONEYEAROUT indicator, given that the observed indicator variable is not statistically 

significant, it can be assumed that GPAONEYEAROUT is not reliably inferred given the 

hypothesized observed latent factor, perfchoice.  

Similarly, the model hypothesized that student time dedicated to working off-campus 

(tmworkoff) can be inferred by the hypothesized unobserved latent factor, 

subjective_hoursworked. Given that tmworkoff was not statistically significant, the observed 

estimates captured by tmworkoff may be due to chance, when being grouped by the 

subjective_hoursworked latent factor. Also, student time dedicated to working off-campus does 

not have a statistically significant direct effect on a student's subjective task values. Moreover, 

path coefficients for the structural model show that latent factor Expectancies for Success is not a 

statistically significant predictor of Achievement Related Performance and Choices (β = .157, p 

= .087). Additionally, the Subjective Task Value (including student hours worked) latent factor is 

not a statistically significant predictor of Achievement Related Performance and Choice (β = 

.109, p = .141).  
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Table 19 

Standardized Regression Weights for RQ2A-First-Year STEM (N = 789) 
Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .447 .623 

esuccess ⇒  ETorganize 1.106 .071 .000* .494 .642 

esuccess ⇒  ETexample 1.271 .079 .000* .567 .723 

esuccess ⇒  ETdraftfb 1.139 .087 .000* .509 .605 

esuccess ⇒  ETfeedback 1.262 .087 .000* .564 .673 

esuccess ⇒  QIadvisor 1.382 .151 .000* .617 .371 

esuccess ⇒  QIfaculty 1.447 .134 .000* .646 .478 

subjective_hoursworked ⇒  askquest 1.000   .298 .365 

subjective_hoursworked ⇒  CLaskhelp 1.803 .215 .000* .537 .640 

subjective_hoursworked ⇒  CLexplain 1.845 .213 .000* .550 .689 

subjective_hoursworked ⇒  CLstudy 2.361 .265 .000* .703 .752 

subjective_hoursworked ⇒  CLproject 1.810 .211 .000* .539 .674 

subjective_hoursworked ⇒  present 1.111 .150 .000* .331 .403 

subjective_hoursworked ⇒  tmworkon .292 .134 .029 .087 .085 

subjective_hoursworked ⇒  tmworkoff .393 .270 .146 .117 .061 

perfchoice ⇒  Persistnc_STEM 1.000   .129 .352 

perfchoice ⇒  GPAONEYEAROUT 2.933 1.513 .053 .379 .643 

esuccess ⇔ subjective_hoursworked .029 .008 .000* .221 .221 

esuccess ⇒  perfchoice .045 .027 .087 .157 .157 

subjective_hoursworked ⇒  perfchoice .048 .032 .141 .109 .109 

Note. (*) the p-value is less than .001 
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Figure 13 

Structural Model (Standardized Path Coefficients) of First-Year STEM Major (RQ2A; N = 789) 

 
Note. (*) the p-value is less than .001. A revised theoretical model of the Expectancy-Value 

Model of Achievement Motivation. Latent constructs are shown in ellipses. Lines with arrows 

represent the path or direction of influence. Curved arrows represent correlations among latent 

variables. An observed variable is represented by a rectangle. 

Research Question 2B (First-Year STEM: Gender) 

Research subquestion 2B (i.e., First-year STEM major students’ academic success and 

retention by gender), adds student gender (Male = 0; Female = 1) as an exogenous independent 

variable to the structural model utilized for research subquestion 2A. The model’s overall fit 

indices suggested an approximate good fit (2 = 615.762, df =132, p<.001; RMSEA=.068, 

CFI=.876; SRMR=.070; GFI=.993). The main findings show that latent factor Expectancies for 

Success (β = .171, p = .102) and Subjective Task Value_Hoursworked (β = .131, p = .125) are 

not statistically significant predictors of Achievement Related Performance and Choices. 

However, the path coefficients for gender (β = .165, p < .001) show that there is a statistically 
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significant association with the latent factor Expectancies for Success. Because the path 

coefficient is positive, the analysis infers that female students indicated higher levels of academic 

support during their first year of study in a STEM Major. Similarly,  gender (β = .173, p = .001) 

has a statistically significant direct effect on the latent factor Subjective Task Value. More 

specifically, female first-year STEM majors responded as having higher levels of academic 

engagement and working on-campus (see Table 20). The results, however, do not support the 

notion of an indirect predictive relationship with academic performance and choice, through both 

latent factors, Expectancies for Success and Subjective Task Value.  

Table 20 

Standardized Regression Weights for RQ2B-Gender (N = 789) 

Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .458 .638 

esuccess ⇒  ETorganize 1.107 .067 .000* .507 .659 

esuccess ⇒  ETexample 1.214 .073 .000* .556 .709 

esuccess ⇒  ETdraftfb 1.080 .083 .000* .495 .588 

esuccess ⇒  ETfeedback 1.202 .082 .000* .550 .657 

esuccess ⇒  QIadvisor 1.397 .146 .000* .640 .384 

esuccess ⇒  QIfaculty 1.435 .128 .000* .657 .486 

subjective_hoursworked ⇒  askquest 1.000   .256 .314 

subjective_hoursworked ⇒  CLaskhelp 2.264 .301 .000* .579 .690 

subjective_hoursworked ⇒  CLexplain 2.131 .276 .000* .545 .683 

subjective_hoursworked ⇒  CLstudy 2.805 .362 .000* .717 .767 

subjective_hoursworked ⇒  CLproject 2.066 .275 .000* .528 .661 

subjective_hoursworked ⇒  present 1.237 .185 .000* .316 .385 

subjective_hoursworked ⇒  tmworkon .342 .152 .025 .087 .086 

subjective_hoursworked ⇒  tmworkoff .513 .318 .106 .131 .068 

perfchoice ⇒  Persistnc_STEM 1.000   .115 .313 

perfchoice ⇒  GPAONEYEAROUT 3.692 2.132 .083 .426 .722 

Gender_Recoded ⇒  esuccess .151 .039 .000* .330 .165 

Gender_Recoded ⇒  subjective_hoursworked .089 .026 .001 .347 .173 

esuccess ⇒  perfchoice .043 .026 .102 .171 .171 

subjective_hoursworked ⇒  perfchoice .059 .038 .125 .131 .131 

Note. (*) the p-value is less than .001 

Research Question 2C (First-Year STEM: Asian Students) 
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Research subquestion 1C (i.e., First-year STEM major students’ academic success and 

retention by race), includes student race exogenous variable assessing Asian and White (White = 

0; Asian = 1) first-year STEM majors to the structural model in subquestion 1A. Regarding the 

model’s overall fit, indices suggested an approximate good fit (2 = 477.127, df =132, p<.001; 

RMSEA=.071, CFI=.851; SRMR=.076; GFI=.938). The main results show that latent factor 

Expectancies for Success (β = .263, p = .047) is a statistically significant predictor of 

Achievement Related Performance and Choices, given student first-year STEM student’s race. 

Moreover, Subjective Task Value_Hoursworked (β = .105, p = .189) was found to not be a 

statistically significant predictor of Achievement Related Performance and Choices. Lastly, the 

path coefficients for Asian_recoded show that there are no statistically significant relationships 

regarding STEM first-year students' race and the latent factors Expectancies for Success (β = 

.062, p = .171) and Subjective Task Value_Hours Worked (β = -.030, p = .603) (see Table 21). 

Table 21 

Standardized Regression Weights for RQ2C-Asian Students (N = 516) 
Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .444 .631 

esuccess ⇒  ETorganize 1.005 .087 .000* .447 .604 

esuccess ⇒  ETexample 1.162 .100 .000* .516 .670 

esuccess ⇒  ETdraftfb 1.032 .107 .000* .459 .560 

esuccess ⇒  ETfeedback 1.052 .106 .000* .467 .581 

esuccess ⇒  QIadvisor 1.497 .175 .000* .665 .406 

esuccess ⇒  QIfaculty 1.457 .165 .000* .647 .484 

subjective_hoursworked ⇒  askquest 1.000   .227 .278 

subjective_hoursworked ⇒  CLaskhelp 2.426 .456 .000* .550 .659 

subjective_hoursworked ⇒  CLexplain 2.414 .433 .000* .548 .679 

subjective_hoursworked ⇒  CLstudy 3.169 .564 .000* .719 .779 

subjective_hoursworked ⇒  CLproject 2.416 .438 .000* .548 .673 

subjective_hoursworked ⇒  present 1.386 .273 .000* .314 .392 

subjective_hoursworked ⇒  tmworkon .185 .196 .345 .042 .042 

subjective_hoursworked ⇒  tmworkoff .473 .436 .278 .107 .055 

perfchoice ⇒  Persistnc_STEM 1.000   .141 .377 

perfchoice ⇒  GPAONEYEAROUT 3.019 1.624 .063 .415 .699 

Asian_Recoded ⇒  esuccess .096 .070 .171 .217 .062 

Asian_Recoded ⇒  subjective_hoursworked -.023 .045 .603 -.103 -.030 

esuccess ⇒  perfchoice .084 .042 .047 .263 .263 
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subjective_hoursworked ⇒  perfchoice .065 .050 .189 .105 .105 

Note. (*) the p-value is less than .001 

Research Question 2D (First-Year STEM: Black Students) 

 The global model fit indices suggested an approximate good fit (2 = 

497.565, df =132, p<.001; RMSEA=.070, CFI=.856; SRMR=.075; GFI=.943). The main 

findings for research subquestion 2D show that latent factor Expectancies for Success (β = .218, 

p = .071) and Subjective Task Value_Hoursworked (β = .159, p = .106)  are not statistically 

significant predictors of Achievement Related Performance and Choices. Furthermore, the path 

coefficients for Black_recoded show that there are no statistically significant relationships 

between White and Black (White = 0; Black = 1) STEM first-year students (β = .007, p = .891) 

and the latent factor Expectancies for Success. Lastly, the structural model shows that there is 

not a statistically significant relationship between Black STEM first-year students (β = -.025, p = 

.566) and the latent factor Subjective Task Value including student works worked (see Table 22). 

Table 22 

Standardized Regression Weights for RQ2D-Black Students (N = 565) 
Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .457 .629 

esuccess ⇒  ETorganize 1.038 .081 .000* .475 .622 

esuccess ⇒  ETexample 1.195 .092 .000* .546 .697 

esuccess ⇒  ETdraftfb 1.073 .101 .000* .490 .587 

esuccess ⇒  ETfeedback 1.164 .103 .000* .532 .637 

esuccess ⇒  QIadvisor 1.504 .172 .000* .688 .404 

esuccess ⇒  QIfaculty 1.427 .158 .000* .652 .480 

subjective_hoursworked ⇒  askquest 1.000   .234 .285 

subjective_hoursworked ⇒  CLaskhelp 2.352 .421 .000* .549 .664 

subjective_hoursworked ⇒  CLexplain 2.185 .374 .000* .510 .656 

subjective_hoursworked ⇒  CLstudy 2.961 .499 .000* .692 .761 

subjective_hoursworked ⇒  CLproject 2.259 .392 .000* .528 .665 

subjective_hoursworked ⇒  present 1.149 .234 .000* .268 .337 

subjective_hoursworked ⇒  tmworkon .158 .191 .408 .037 .035 

subjective_hoursworked ⇒  tmworkoff .389 .401 .332 .091 .048 

perfchoice ⇒  Persistnc_STEM 1.000   .132 .349 

perfchoice ⇒  GPAONEYEAROUT 3.296 1.754 .060 .436 .730 

Black_Recoded ⇒  esuccess .009 .066 .891 .020 .007 

Black_Recoded ⇒  subjective_hoursworked -.016 .028 .566 -.068 -.025 
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esuccess ⇒  perfchoice .063 .035 .071 .218 .218 

subjective_hoursworked ⇒  perfchoice .090 .056 .106 .159 .159 

Note. (*) the p-value is less than .001 

Research Question 2E (First-Year STEM: Hispanic Students) 

Lastly, regarding Hispanic students (White = 0; Hispanic = 1) and the structural model 

presented in subquestion 2A, the model’s overall fit, indices suggested an approximate good fit 

(2 = 453.179, df =132, p<.001; RMSEA=.067, CFI=.872; SRMR=.072; GFI=.946). The 

structural model show that latent factor Expectancies for Success (β = .218, p = .097) and 

Subjective Task Value_Hoursworked (β = .136, p = .154)  are not statistically significant 

predictors of Achievement Related Performance and Choices. Furthermore, the path coefficients 

for Hispanic_recoded show that there are no statistically significant relationships between STEM 

first-year students’ race and the latent factors Expectancies for Success (β = .034, p = .501) and 

Subjective Task Value_Hours Word (β = -.047, p = .348) (see Table 23). 

Table 23 

Standardized Regression Weights for RQ2E-Hispanic Students (N = 550) 

Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .440 .628 

esuccess ⇒  ETorganize 1.086 .089 .000* .478 .631 

esuccess ⇒  ETexample 1.209 .097 .000* .531 .680 

esuccess ⇒  ETdraftfb 1.036 .105 .000* .455 .555 

esuccess ⇒  ETfeedback 1.107 .106 .000* .486 .599 

esuccess ⇒  QIadvisor 1.563 .178 .000* .687 .417 

esuccess ⇒  QIfaculty 1.466 .161 .000* .644 .488 

subjective_hoursworked ⇒  askquest 1.000   .232 .286 

subjective_hoursworked ⇒  CLaskhelp 2.382 .419 .000* .552 .661 

subjective_hoursworked ⇒  CLexplain 2.437 .414 .000* .565 .694 

subjective_hoursworked ⇒  CLstudy 3.167 .522 .000* .734 .796 

subjective_hoursworked ⇒  CLproject 2.278 .395 .000* .528 .666 

subjective_hoursworked ⇒  present 1.207 .238 .000* .280 .351 

subjective_hoursworked ⇒  tmworkon .133 .183 .469 .031 .031 

subjective_hoursworked ⇒  tmworkoff .358 .423 .398 .083 .043 

perfchoice ⇒  Persistnc_STEM 1.000   .127 .336 

perfchoice ⇒  GPAONEYEAROUT 3.691 2.171 .089 .470 .770 

Hispanic_Recoded ⇒  esuccess .042 .063 .501 .096 .034 

Hispanic_Recoded ⇒  subjective_hoursworked -.031 .033 .348 -.133 -.047 
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esuccess ⇒  perfchoice .063 .038 .097 .218 .218 

subjective_hoursworked ⇒  perfchoice .075 .053 .154 .136 .136 

Note. (*) the p-value is less than .001 

Research Question 3: Expectancy-Value Model and First-Year STEM Majors 

The third revised hypothesized theoretical model tested is the relationship between the 

Expectancy-Value Model of Achievement Motivation and first-year STEM major students’ 

academic success and retention mediated by math coursework readiness. The hypothesized 

model’s overall fit indices suggested an approximate good fit (2 = 433.052, df =130, p<.001; 

RMSEA=.054, CFI=.921; SRMR=.060; GFI=.970). The path coefficients for the structural 

model show that latent factors Expectancies for Success (β = .163, p = .046) and Subjective Task 

Value_Hours Worked (β = .116, p = .099) are not statistically significant predictors of 

Achievement Related Performance and Choices. Moreover, the path coefficients also indicate 

that neither Expectancies for Success (β = .003, p = .993) nor Subjective Task Value_Hours 

Worked (β = -.001, p = .975) are statistically significant predictors of attending a Developmental 

Math course during their first year (see Table 24 and Figure 14).  

Furthermore, the Developmental Math variable is a statistically significant predictor of 

Achievement Related Performance and Choices (β = -.146, p = .030). Lastly, the indirect effect 

of latent factors Expectancies for Success and Subjective Task Value (including student hours 

worked) are not statistically significant predictors of Achievement Related Performance and 

Choice (β < -.001, p = .933). The path coefficients total effect of latent factors Expectancies for 

Success and Subjective Task Value_Hours Worked with the outcome latent factor Achievement 

Related Performance and Choice were statistically significant (β = .162, p = .048), with an alpha 

of .05 (see Table 24 and Figure 14).  
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Table 24 

Standardized Regression Weights for RQ3-First-Year STEM (N = 789) 

Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .446 .623 

esuccess ⇒  ETorganize 1.106 .071 .000* .494 .642 

esuccess ⇒  ETexample 1.271 .079 .000* .567 .723 

esuccess ⇒  ETdraftfb 1.140 .087 .000* .509 .605 

esuccess ⇒  ETfeedback 1.262 .087 .000* .564 .673 

esuccess ⇒  QIadvisor 1.383 .151 .000* .617 .371 

esuccess ⇒  QIfaculty 1.447 .134 .000* .646 .478 

subjective_hoursworked ⇒  askquest 1.000   .298 .365 

subjective_hoursworked ⇒  CLaskhelp 1.804 .215 .000* .537 .640 

subjective_hoursworked ⇒  CLexplain 1.845 .213 .000* .549 .688 

subjective_hoursworked ⇒  CLstudy 2.362 .265 .000* .703 .752 

subjective_hoursworked ⇒  CLproject 1.811 .211 .000* .539 .674 

subjective_hoursworked ⇒  present 1.112 .151 .000* .331 .403 

subjective_hoursworked ⇒  tmworkon .294 .134 .028 .087 .086 

subjective_hoursworked ⇒  tmworkoff .393 .270 .146 .117 .061 

perfchoice ⇒  Persistnc_STEM 1.000   .144 .392 

perfchoice ⇒  GPAONEYEAROUT 2.366 .956 .013 .341 .578 

esuccess ⇔ subjective .029 .008 .000* .221 .221 

esuccess ⇒  perfchoice .052 .026 .046 .163 .163 

subjective_hoursworked ⇒  perfchoice .056 .034 .099 .116 .116 

esuccess ⇒  DEV_MATH .004 .043 .933 .002 .003 

subjective_hoursworked ⇒  DEV_MATH -.002 .066 .975 -.001 -.001 

DEV_MATH ⇒  perfchoice -.044 .020 .030 -.306 -.146 

Note. (*) the p-value is less than .001 
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Figure 14 

Structural Model (Standardized Path Coefficients) of First-Year STEM Major (RQ3; N = 789) 

 
Note. (*) the p-value is less than .05; (**) the p-value is less than .001. A revised theoretical 

model of the Expectancy-Value Model of Achievement Motivation. Latent constructs are shown 

in ellipses. Lines with arrows represent the path or direction of influence. Curved arrows 

represent correlations among latent variables. An observed variable is represented by a rectangle. 

Research Question 4: Expectancy-Value Model and First-Year STEM Majors 

 The fourth, and final, revised hypothesized theoretical model tested to what extent the 

Expectancy-Value Model of achievement motivation explains first-year students’ declared 

PEMC or Other-STEM majors' academic success and retention. 

Research Question 4A (PEMC Majors) 

Research subquestion 4A (i.e., First-year STEM major students’ academic success and 

retention regarding PEMC majors), utilized the same structural model presented in subquestion 

2A and included first-year PEMC majors from this study’s sample. Considering the model’s 

overall fit, indices suggested an approximate good fit (2 = 258.784, df =116, p<.001; 

RMSEA=.053, CFI=.930; SRMR=.065; GFI=.961). Regarding findings, student time dedicated 
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to working off-campus or on-campus does not have a statistically significant direct effect on a 

student's subjective task values given that they were declared in a PEMC major (see Table 25). 

Moreover, path coefficients for the structural model show that latent factor Expectancies for 

Success (β = .138, p = .129) and Subjective Task Value_Hoursworked (β = .078, p = .335)  are 

not statistically significant predictors of Achievement Related Performance and Choices when 

considering declared PEMC majors (see Table 25). 

Table 25 

Standardized Regression Weights for RQ4-PEMC Majors (N = 444) 

Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .422 .590 

esuccess ⇒  ETorganize 1.190 .108 .000* .502 .657 

esuccess ⇒  ETexample 1.328 .124 .000* .561 .713 

esuccess ⇒  ETdraftfb 1.165 .130 .000* .492 .589 

esuccess ⇒  ETfeedback 1.162 .126 .000* .491 .609 

esuccess ⇒  QIadvisor 1.344 .227 .000* .568 .333 

esuccess ⇒  QIfaculty 1.626 .208 .000* .687 .494 

subjective_hoursworked ⇒  askquest 1.000   .313 .386 

subjective_hoursworked ⇒  CLaskhelp 1.635 .248 .000* .512 .613 

subjective_hoursworked ⇒  CLexplain 1.733 .247 .000* .543 .675 

subjective_hoursworked ⇒  CLstudy 2.279 .326 .000* .714 .765 

subjective_hoursworked ⇒  CLproject 1.749 .253 .000* .548 .686 

subjective_hoursworked ⇒  present 1.235 .191 .000* .387 .473 

subjective_hoursworked ⇒  tmworkon .268 .163 .100 .084 .086 

subjective_hoursworked ⇒  tmworkoff .023 .346 .948 .007 .004 

perfchoice ⇒  Persistnc_STEM 1.000   .199 .595 

perfchoice ⇒  GPAONEYEAROUT 1.590 1.049 .130 .317 .506 

esuccess ⇔ subjective .029 .010 .004 .219 .219 

esuccess ⇒  perfchoice .065 .043 .129 .138 .138 

subjective_hoursworked ⇒  perfchoice .049 .051 .335 .078 .078 

Note. (*) the p-value is less than .001 

Research Question 4B (Other-STEM Majors) 

Lastly, research subquestion 4A (i.e., First-year STEM major students’ academic success 

and retention regarding Other-STEM majors), included students from the sample that indicated a 

declared Other-STEM major during their first year of study. The overall model fit indices 
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suggested an approximate good fit (2 = 238.409, df =116, p<.001; RMSEA=.055, CFI=.932; 

SRMR=.071; GFI=.958). An analysis of the standardized regression weight (or path coefficients) 

indicates that there is a statistically significant direct effect of student time working off-campus 

and Subjective Task Value given that they are a declared Other-STEM major, see Table 26. 

Moreover, path coefficients for the structural model show that latent factor Expectancies for 

Success (β = .192, p = .301) and Subjective Task Value_Hoursworked (β = .103, p = .360)  are 

not statistically significant predictors of Achievement Related Performance and Choices when 

considering Other-STEM majors (see Table 26). 

Table 26 

Standardized Regression Weights for RQ4-Other-STEM Majors (N = 345) 

Latent Factor   Variable Estimate Std.Err P(>|z|) Std.lv  Std.all 

esuccess ⇒  ETgoals 1.000   .473 .661 

esuccess ⇒  ETorganize 1.030 .093 .000* .487 .630 

esuccess ⇒  ETexample 1.223 .098 .000* .579 .741 

esuccess ⇒  ETdraftfb 1.094 .113 .000* .518 .615 

esuccess ⇒  ETfeedback 1.357 .116 .000* .643 .737 

esuccess ⇒  QIadvisor 1.394 .195 .000* .660 .408 

esuccess ⇒  QIfaculty 1.260 .170 .000* .596 .456 

subjective_hoursworked ⇒  askquest 1.000   .269 .331 

subjective_hoursworked ⇒  CLaskhelp 2.140 .421 .000* .576 .684 

subjective_hoursworked ⇒  CLexplain 2.103 .406 .000* .567 .717 

subjective_hoursworked ⇒  CLstudy 2.554 .470 .000* .688 .734 

subjective_hoursworked ⇒  CLproject 1.960 .387 .000* .528 .660 

subjective_hoursworked ⇒  present .961 .249 .000* .259 .313 

subjective_hoursworked ⇒  tmworkon .306 .231 .186 .082 .077 

subjective_hoursworked ⇒  tmworkoff .921 .454 .043 .248 .127 

perfchoice ⇒  Persistnc_STEM 1.000   .099 .247 

perfchoice ⇒  GPAONEYEAROUT 4.152 3.681 .259 .412 .806 

esuccess ⇔ subjective .028 .011 .010 .222 .222 

esuccess ⇒  perfchoice .040 .039 .301 .192 .192 

subjective_hoursworked ⇒  perfchoice .038 .042 .360 .103 .103 

Note. (*) the p-value is less than .001 
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Summary of Major Findings 

 This chapter utilized student responses from three years of the National Survey of 

Student Engagement survey, at an urban institution of higher education in the Southeast. The 

primary purpose of this study was to apply a revised version of the Expectancy-Value Model of 

Achievement Motivation: (1) Expectancies for Success; (2) Subjective Task Values; and (3) 

Achievement Related Performance and Choices, to assess if first-year and marginalized college 

students in the STEM major’s academic support, academic engagement, and hours worked are 

predictors of overall student success and retention after their first year of study. Structural 

equation modeling was deployed to assess the four main research questions presented. The 

validity of each observed model was tested, and considered to have an overall good model fit, 

given the theorized model and the data presented. The main findings from Chapter 4 are 

presented in the following: 

• Across both models presented in the first and second research questions, with and 

without hours worked as an indicator of subjective task value, first-year STEM 

major students’ gender was found to be a statistically significant predictor of 

Expectancies for Success and Subjective Task Value latent factors; however, 

Achievement Related Performance and Choices did not have a statistically 

significant association with the predictor latent factors.  

• First-year STEM students’ race was not found to be a statistically significant 

predictor of either of the latent factors presented in this study. Regarding first-

year STEM major students attending a developmental math course during their 

first-year results indicated that there is a direct statistically significant relationship 

between a first-year STEM student's Achievement Related Performance and 
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Choices and if they attended a developmental math course.  

• The results presented indicated that developmental math course attendance does 

not mediate first-year STEM students’ Expectancies for Success and Subjective 

Task Value, and their Achievement Related Performance and Choices after their 

first year of study.  

• Lastly, both PEMC and Other-STEM major students are considered to have no 

statistically significant relationships between Expectancies for Success and 

Subjective Task Value latent factors and Achievement Related Performance and 

Choices.  

 The following, and final chapter, will summarize the primary sections presented 

throughout this dissertation. The final chapter encompasses a general overview of the purpose of 

the study and methodology utilized,  a general discussion of the major findings; as well as, 

conclusions inferred from the findings. Lastly, the final chapter will discuss possible 

recommendations for policy, practice, and future research. 
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CHAPTER 5: DISCUSSION 

Introduction 

 The purpose of this study was to assess if first-year college students in the STEM major’s 

academic support and academic engagement are predictors of overall student success and 

retention after their first year of study. In addition to these two predictors, the researcher assessed 

if hours worked while studying was a predictor as a subjective task value. In this chapter, the 

researcher provided a review and discussion of the key findings and implications of the study. 

Following, the research presents limitations of the study, as well as, recommendations for policy, 

practice, and future research to conclude this chapter.  

Key Findings & Implications 

Research Question 1 

• To what extent does the Expectancy-Value Model of Achievement Motivation explain: 

o First-year STEM major students’ academic success and retention? 

o First-year STEM major students’ academic success and retention by gender? 

o First-year STEM major students’ academic success and retention by race? 

The first research question, and subquestions, employed the use of a revised model 

grounded in Eccles and colleagues' (1983) theorized model, Expectancy-Value Model of 

Achievement-Related Performance and Choices. The first research question aimed to determine 

if STEM student experiences related to academic support and academic engagement are 

predictors of academic performance and retention after their first year of study. The revised 

model utilized in the first research question consisted of three parameters; the first is a bivariate 

correlation, between academic support, and academic engagement latent factors. The second and 

third parameters were between the two predictors (i.e., academic support and academic 
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engagement) and the outcome latent factor which included academic performance and choice to 

remain in a STEM major after the first year (see Figure 5). Of the three parameters observed, 

only the bivariate correlation estimate between academic support and academic engagement 

predictors attained statistical significance (see Appendix A; Figure A2). This finding supports 

Gnebola's (2015) and Martinez’s (2016) findings that academic support and academic 

engagement behaviors of higher education students share a relationship regarding their influence 

on student performance. However, the latent factors (i.e., academic support and academic 

engagement) were not significant predictors of STEM first-year students’ performance and 

choice.  

The failure of this study’s revised expectancy-value model to reach statistical 

significance may be related to measurement issues; as well as, the observed indicators utilized to 

assess academic support and academic engagement latent factors. For example, the observed 

model for the first research question resulted in standardized regression weights of  ≤ .40. Hair et 

al. (2013) recommend a minimum factor loading for indicator variables of .40. A possible reason 

for the low factory loadings may be the result of using secondary data. As the secondary data 

was collected from the use of survey items that were not designed and collected specifically to 

address this study’s research questions.  

For theoretical purposes, however, indicators loading below the .40 threshold (i.e., 

Quality of interactions with academic advisors, Asked questions or contributed to course 

discussions in other ways, and Persisted in STEM Major After the First Year) were retained in 

this study. Furthermore, the outcome latent factor, Achievement-Related Performance and 

Choices (i.e., perfchoice) included two indicators (i.e., GPA and Persist_STEM) to estimate the 

latent factor perfchoice. Kenny (1979) notes that this may be an issue, as the indicator-per-factor 
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ratio may be too low to adequately estimate a latent variable. Kenny (1979) recommends a 

minimum of three observed variables per latent variable, and having more “is gravy” (p. 143). 

Nunnally and Bernstein (1994) supported Kenny’s (1979) findings and noted that the more 

abstract and loosely defined a latent construct is, referencing an exploratory research design, the 

more observed indicators will be needed to sufficiently measure the proposed latent factor.  

By gender. The first research question also aimed to explore possible relationships 

regarding STEM students’ gender, in addressing the predictability of academic support and 

academic engagement latent factors of academic performance and retention after their first year 

of study. The findings suggest that gender is a predictor of both academic support (β = .164, p < 

.001) and academic engagement (β = .172, p = .001) latent factors. The positive β coefficient of 

the analysis indicates that female STEM students were more likely to engage in academic 

support and academic engagement activities during their first year of study. This finding 

supports previous literature that has found, though female students experience increased gender 

biases in STEM majors, female STEM students are more likely to engage with their faculty and 

peers, both in and outside of the classroom, than their male counterparts (Bloodhart et al., 2020; 

Ding et al., 2006; Felder et al., 1995; Lorenzo et al., 2006; Martinez, 2016). However, no 

statistical significance was identified regarding the latent predictors and STEM students’ choice 

to remain in a STEM major or academic performance. As noted previously, this observation may 

be due to measurement issues and/or a lack of well-designed observed indicators. 

By race. The first research question was also explored if first-year STEM students’ race 

provided significant relationships with this revised expectancy-value model proposed in this 

study. Surprisingly, the results from this study did not identify statistically significant 

relationships given students’ race and the academic support and academic engagement latent 
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predictors. Previous research findings noted that social integration, peer support, and academic 

engagement activities play a significant part in STEM student retention and academic success, 

given their race (Arcidiacono et al., 2012; Fleming, 2002; Martinez, 2016; Severo et al., 2021).  

However, with the Asian_Recoded independent variable included in the model, the latent 

factor, academic support, was found to be a significant predictor of first-year STEM retention 

and academic success. This is to say, for Asian students, academic support is a significant 

predictor of STEM first-year performance in courses and retention in the second year. This 

finding supports the growing body of literature focused on STEM student race and the quality of 

interactions with their faculty and advisors (Dortch & Patel, 2017; Packard, 2015; Park et al., 

2019). More specifically, Park et al. (2019) identified Asian American STEM students to have 

higher quality levels of interaction with their faculty, and are more likely to remain in their 

STEM major, when compared to White, Black, and Latinx racial/ethnic groups.  

Though first-year STEM Asian students were found to have a significant relationship 

given their quality level of interaction with faculty and advisor, this was not found to be a 

significant predictor for Black and Hispanic STEM students. A possible reason for this 

phenomenon may be due to this study not assessing the frequency of interactions, as well as, 

capturing perceived negative attitudes from faculty-student and advisor-student interactions. 

Previous research has noted the benefits (i.e., academic performance) of these interactions for 

minoritized STEM students may contribute primarily to the frequency of interactions, along 

with, STEM students’ perceived importance given their interactions with faculty and advisors 

(Allen et al., 2018; Carini et al., 2006). Future research aiming to replicate this study should 

include survey items seeking to capture further depth in first-year STEM student interactions 

with faculty and advisors. Moreover, this study’s Asian student sample was overrepresented 



111 
 

when compared to Black and Hispanic students. As the NSSE survey was collected through 

voluntary recruitment methods, the lack of representativeness of the sample may have introduced 

some bias into the data. As such, future research should aim to collect data from racial groups 

that are proportional to their representation in the population. Doing so will allow for further 

accuracy and inference in evaluating possible predictor relationships across the different racial 

groups. 

Research Question 2 

• Given the Expectancy-Value Model of Achievement Motivation, are hours worked (perceived 

cost) a predictor of academic success and retention for: 

o First-year STEM majors? 

o First-year STEM major students across gender? 

o First-year STEM major students across race 

With regards to the addition of the working, while studying indicators, tmworkon (i.e., 

Hours per week: Working for pay ON CAMPUS) was found to have a statistically significant 

association with the subjective task value latent factor (see Appendix A; Figure 6). This finding 

from the observed model confirms the theoretical alignment of STEM students reporting their 

time spent working on-campus, and other indicators significantly aligned with students being 

more likely to engage in activities, behaviors, and tasks if they consider the activities to be 

aligned with their self-interests and goals (Wigfield & Eccles, 2000; Wu et al., 2020). With this 

said, tmworkoff (i.e., Hours per week: Working for pay OFF CAMPUS) was not a statistically 

significant indicator of the subjective task value latent factor. This finding may be explained by 

Bozick’s (2007) study, which noted that first-year students tend to contribute their time working 

for pay on-campus, as opposed to off-campus work.  
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Similar to the first research question, the second research question’s proposed predictors 

(i.e., academic support, academic engagement, and hours worked) were not statistically 

significant predictors of STEM first-year students’ performance and choice to retain after their 

first year. Even though measurement issues and/or lack of well-designed observed indicators, 

may play a factor in this finding (similar to the first research question), it is important to note that 

previous findings have found significant relationships between student time allocated to working 

on-campus and academic performance (Darolia, 2014; Scott-Clayton & Minaya, 2016).  

Moreover, given the findings of the second research question, further delineation may be 

needed, regarding students working for pay while studying in a STEM program. Future research 

studies should include survey questions to capture potential financial hardship indicators as 

reasons for working while studying. Broton and Goldrick-Rab (2016) confirmed that students 

that must work while studying (i.e., food, housing, income insecurities) have experienced more 

challenges in academic performance and retention when compared to students working for pay to 

fund play and social needs. Additionally, future research should account for the type of work a 

student is engaging in while enrolled in a STEM major. Students working in an office or 

laboratory typesetting may be more likely to engage with their coursework on the job or have 

time to complete their coursework when compared to service-based jobs which may demand 

longer hours and are not suited for engaging with coursework on the job. This level of 

delineation may capture potential nuances in STEM student retention and academic success 

during their first year of study. As such, this study’s findings present a need for further research 

on student hours worked while accounting for other theoretical predictors of academic 

performance in higher education. 
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By gender. Considering STEM first-year student gender, the observed model's results 

suggests that gender is a statistically significant predictor of academic support (β = .165, p < 

.001) and academic engagement/hours worked (β = .173, p = .001). This finding is noteworthy as 

previous research on the predictability of  Eccles et al.’s (1983) expectancy-value model and the 

growing literature focused on students working while studying (Stinebrickner & Stinebrickner, 

2003, 2004), did not investigate possible relationships of student gender. Moreover, this finding 

suggests that female first-year STEM students are more likely to engage in academic support and 

academic engagement activities; as well as, spend more time working on-campus while studying. 

Furthermore, the results indicated that there were no statistically significant relationships 

between the hypothesized predictors (i.e., academic support, academic engagement, and hours 

worked) and first-year STEM students’ choice to retain in a STEM major or academic 

performance.  

By race. The second research question was also explored if first-year STEM students’ 

race provided significant relationships with this revised expectancy-value model proposed in this 

study. Similar to the first research question, student race was not a significant predictor of latent 

factors, Expectancies for Success, and Subjective Task Values_Hours Worked. This finding 

suggests, that even with the inclusion of student hours working on and off-campus, student race 

is not a factor in predicting a significant relationship to this study’s proposed predictors of 

academic achievement and retention. Moreover, with the Asian_Recoded independent variable 

included in the model, the latent factor academic support was found to be a significant predictor 

of first-year STEM retention and academic success. This finding remains unchanged from the 

first research question, which omitted the student hours worked indicators to the subjective task 

value latent factor.   
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Research Question 3 

• Is the relationship between the Expectancy-Value Model of Achievement Motivation and 

first-year STEM major students’ academic success and retention mediated by math 

coursework readiness? 

The third research question aimed to assess if developmental math course attendance, or 

math readiness, during the first year of study has a significant influence on first-year STEM 

students’ retention and academic success while accounting for this study's theorized predictors 

(i.e., academic support, academic engagement, and hours worked). Given the Expectancies for 

Success and Subjective Task Value latent constructs, the results suggest that developmental math 

course attendance does not mediate (i.e., indirect effect) first-year STEM students’ academic 

success and choice to remain in a STEM major (see Appendix A; Figure A12). This is to say that 

first-year STEM students’ developmental math course attendance (i.e., math readiness) does not 

significantly help to explain the theorized predictor’s (i.e., academic support, academic 

engagement, and hours worked) influence on first-year STEM academic success and choice to 

retain in a STEM major.  

However, this study’s results did find that developmental math course attendance is a 

significant predictor (i.e., direct effect) of performance and choice to remain in a STEM major. 

This finding adds context to the previous research which has found math readiness, more 

specifically, remedial math course attendance, to be a significant predictor of STEM retention 

and GPA (Cabrera et al., 2005; Adelman, 2006; Herzog, 2005). The finding also supports the 

notion that STEM first-year “leavers” tend to do so because of academic underperformance (i.e., 

GPA) in their first-year STEM courses (Chen, 2013).  
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Given this study’s findings related to developmental math course attendance, it should be 

theorized that math readiness may be sufficiently captured within the model's Expectancies for 

Success latent construct, as opposed to mediation. The expectancies for success construct posits 

factors that attempt to understand an individual’s belief in how well they can accomplish a task 

(Eccles et al, 1983; Schunk, 1991). Because first-year developmental math course attendance 

includes academic (e.g., mathematics performance and preparedness in K-12) and social (e.g., 

mathematics self-efficacy) factors that predate their first year of study in higher education 

(Adelman, 2006; Herzog, 2005), future research should consider aligning the developmental 

math course attendance variable with the expectancies for success latent construct. Another 

consideration is to assess the final grades of first-year STEM students that completed a 

developmental math course, to investigate if academic performance in a developmental math 

course attendance influences student interactions with academic support, academic engagement, 

and hours worked predictors; and if these interactions are then predictors of their first-year 

academic performance and choice to remain in their STEM major. 

Research Question 4 

• To what extent does the Expectancy-Value Model of achievement motivation explain 

first-year students’ declared PEMC or Other-STEM majors' academic success and 

retention? 

This study’s results did not identify, for either PEMC or Other-STEM majors, statistically 

significant relationships between academic support, academic engagement, and hours worked 

predictors and first-year STEM students’ academic success and choice to retain in a STEM 

major. Though previous research has noted possible differences in experiences of PEMC and 

Other-STEM majors (Nix & Perez-Felkner, 2019), this study did not support that opinion 
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regarding first-year STEM students’ academic success and choice to remain in a STEM major. A 

possible explanation for this finding may be attributed to the relatively high average first-year 

grade point average of both PEMC (3.20 GPA) and Other-STEM (3.43 GPA) students (Chen, 

2013). Moreover, this study’s descriptive results found that first-year STEM students were more 

likely to persist in their STEM major after their first year (see Table 12). This level of a high 

academic profile from both groups may have allowed both PEMC and Other-STEM majors a 

smooth transition to their second year of study. Furthermore, though this study did not find 

significant relationships within the model for either PEMC or Other-STEM student groups; 

assessing STEM students by PEMC and Other-STEM student groups alone may be insufficient. 

Nix and Perez-Felkner (2019) found significant academic performance differences between both 

groups by examining the gender and race of the PEMC or Other-STEM students. As such, 

consideration should be made to further delineate PEMC and Other-STEM groups by gender and 

student race, given the this study’s theorized predictors and the student's choice to remain in their 

STEM major and their academic performance during the first year of study.  

Limitations of the Study 

This study included fundamental limitations which should be considered when 

interpreting the findings. Firstly, this study utilized secondary data to investigate and answer the 

proposed research questions. A disadvantage of utilizing secondary data from the NSSE survey 

lies in that the survey items were not developed specifically to address this study’s research 

questions. For example, academic support, or student-faculty and student-advisor interactions, 

were found to be significant predictors of first-year stem retention and academic success; 

however, more information is needed regarding the context of such interactions, frequency of 

interactions, and the subject (e.g., academic, career, social) of discussions held between student 
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and faculty/advisor. A survey designed to capture explicit information regarding student 

interactions with faculty and advisors is needed.  

Another limitation of this study’s design is its dependence on participants’ self-reported 

data.  Though self-reported information from research participants is advantageous when aiming 

to capture their lived experiences, a disadvantage in this approach lies in the potential of 

receiving less accurate information, due to social desirability (Barker et al., 2002). As noted in 

the next section, future researchers should aim to create a well-designed survey to capture 

various points of the predictors being assessed. Moreover, the data collected for this study 

included participant responses from the spring 2020 academic term; given the start of a global 

pandemic during this same period, participant responses may have been influenced by factors 

related to the global COVID-19 pandemic. It should also be noted that this study captured 

student gender identity as a binary construct (i.e., male or female), provided by the university’s 

department of Institutional Research. As such, student gender identity was not self-reported and 

should be considered a limitation of this study (Gushue & Whitson, 2006). 

Lastly, this study’s outcome latent factor, Achievement-Related Performance, and 

Choices (i.e., perfchoice), included first-year STEM students’ overall GPA. The overall GPA 

included STEM and non-STEM courses completed during the first year of study. In observing 

and including the STEM student’s overall GPA, and not solely their GPA in STEM major 

courses, the outcome latent factor may not have been representative of their actual performance 

in their first-year STEM courses. Furthermore, the developmental math course attendance 

variable was not captured to delineate between students required to take the course, or if the 

student voluntarily attended the course during their first year of study. That is to say, the 

developmental math course attendance variable was not able to distinguish if a student was not 
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sufficiently prepared for their first year of mathematics study, or highlight the student’s 

willingness to prepare themselves for subsequent advanced mathematics courses by voluntarily 

attending a developmental math course. As such, the developmental math course attendance 

variable used in this study is noted as a limitation. 

The limitations listed in this section are not indicative of this study’s design for future 

research. Nevertheless, future research should account for this study’s limitations, and attempt to 

remedy them with future data collection and comparative analysis. As such, the following 

section will present recommendations for future research, given these limitations. 

Recommendations for Future Research 

 This study’s findings differed from previously reported findings regarding academic 

support, academic engagement, and hours worked as significant predictors of higher education 

student retention and/or academic success (Andersen & Ward, 2014; Martinez, 2016; Perez, 

2019; Scott-Clayton & Minaya, 2016; Stinebrickner & Stinebrickner, 2003, 2004). This study 

assessed all three predictors in a single model, utilizing structural equation modeling, as well as, 

first-year STEM students, which were both deviations from previous research designs. This 

study did not identify all of the aforementioned predictors as statistically significant influencers 

of student retention and/or academic success. Given this study’s observed findings and review of 

relevant literature, this section will present recommendations for future research. 

 Recommendation 1. Replicate this study, but remove the hours worked predictor from 

the subjective task value latent construct and include this predictor as two observed variables 

(i.e., hours worked on-campus and hours worked off-campus) as potential mediators of first-year 

STEM retention and academic success (Scott-Clayton & Minaya, 2016; Stinebrickner & 

Stinebrickner, 2003, 2004). Though theoretically aligned, the hours worked predictor was not 
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significantly associated with the subjective task value latent factor. For example, the hours 

worked on-campus indicator loaded significantly to the subjective task value latent factor for all 

but the fourth research question; this was not the case for hours worked off-campus, as the 

indicator did not load significantly to the subjective task value latent factor. As such, the reported 

findings did not support the theoretical alignment. Nevertheless, previous research confirms that 

student hours worked influences student retention and academic achievement (Scott-Clayton & 

Minaya, 2016; Stinebrickner & Stinebrickner, 2003, 2004). Given the continued increase in 

higher education students working while studying (Perna & Odle, 2020), further investigation is 

needed regarding this predictor's influence on first-year STEM student retention and academic 

success. 

Recommendation 2. Given that the hypothesized outcome latent factor, Achievement-

Related Performance and Choices (i.e., perfchoice), was minimally supported by its indicator 

variables: GPA and retention in a STEM major, future research should consider including, at 

minimum, a third observed indicator to the perfchoice latent factor. Though this study’s revised 

model fit indices reached an approximate good model fit at the local and global levels, previous 

researchers have noted that latent factors with less than three indicators, may be insufficient to 

adequately estimate a latent factor (Kenny, 1979; Nunnally & Bernstein, 1994). A third possible 

indicator may be STEM credit hours attempted. For example, previous research has found that 

STEM credit hours attempted significantly predicted first-year retention (Bettinger, 2010; 

Westrick, 2014; Zhang et al., 2004). Romash (2019) found that STEM students taking less 

demanding (e.g., liberal studies and orientational coursework) during their first year, had an 

increase in their chances to remain in their STEM major beyond the first year. Furthermore, 

disaggregating STEM credit hours earned from STEM credits hours attempted may provide 
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further depth in investigating factors contributing to first-year STEM retention and academic 

success, given STEM credit hours. For example, future research may consider including STEM 

credit hours attempted as an independent variable within the model, while aligning STEM credit 

hours earned with the perfchoice latent factor as an outcome predictor, given previous research 

(Bettinger, 2010; Westrick, 2014; Zhang et al., 2004). 

Recommendation 3. This study assessed the theorized revised expectancy-value model 

across students’ racial identity. However, the racial demographic of this study’s sample was 

taken primarily from White students (59.3%). Future research should replicate this study with a 

more racially diverse (i.e., heterogenous) sample of first-year STEM students. 

Recommendation 4. This study’s theoretical model can be expanded with the inclusion 

of other researched predictors of student retention and academic success. For example, previous 

research has identified academic self-efficacy to be significantly aligned with the Expectancies 

for Success latent construct (Ferguson, 2021; Martinez, 2016). More specifically, previous 

research has found statistically significant relationships between students’ academic self-efficacy 

(i.e., Expectancies for Success) in their writing and mathematics ability, and their choice to 

persist to the second year of college (Martinez, 2016; Safavian, 2019). However, these studies 

were not designed to control for other predictors of academic success and retention, as well as, 

error variances within a single model while assessing first-year STEM major students.  

Recommendation 5. This study utilized secondary data from a survey instrument not 

specifically designed to assess this study’s research questions. As such, future researchers can 

replicate this study’s design with survey questions specifically designed to capture this study’s 

hypothesized predictors (i.e., academic support, academic engagement, and student hours 

worked) of retention and academic success. 



121 
 

Recommendations for Policy & Practice 

 Following the previous section's recommendations for future research, this section will 

present recommendations for policy and practice. 

Recommendation 1. This study confirmed academic support as a significant predictor of 

first-year STEM students’ academic performance and choice to retain.  This finding is aligned 

with previous studies which emphasized how STEM students’ sense of connectedness with 

advisors and level of interaction with their professors was correlated with academic performance 

(Allen et al., 2018; Hong & Shull, 2010; Micari & Pazos, 2012). As such, higher education 

institutions should proactively target faculty-student and academic advisor-student interaction 

training to enhance the experiences of these exchanges in and outside of the classroom. For 

example, policies should aim to encourage mandatory interaction sessions with faculty and 

academic advisors at interval points throughout the term. Though areas for training will vary 

based on institutional setting and culture, past and current research have found faculty-student 

interaction to be especially engaging when faculty convey areas of support and interest to their 

students (Allen et al., 2018; Carini et al., 2006; Christe, 2013). This recommended training 

should be especially encouraged for faculty that teach first-year STEM introductory courses. As 

previous research has found STEM students feel that their first-year STEM introductory courses 

are especially unwelcoming, given their interactions with faculty (Kokkelenberg & Sinha, 2010; 

Seymour & Hewitt, 1997). Lastly, this policy should encourage interactions of STEM students if 

they are identified to be struggling in their first-year STEM courses; as well as, female and 

minoritized STEM students.   

Recommendation 2. In this study, developmental math course attendance was a direct 

significant predictor of first-year STEM academic performance and choice to retain. The finding 
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confirmed that students that did not attend a developmental math course during their first year 

were more likely to have a higher GPA and remain in their STEM major. This supports the 

extensive literature regarding math readiness and STEM academic success (Adelman, 2006; 

Cabrera et al., 2005; Herzog, 2005). As such, higher education institutions should encourage 

their STEM programs to collaborate with regional high schools, and encourage college math 

readiness. This should be relative to college readiness benchmarks in mathematics required for 

first-year STEM coursework (e.g., Pre-Calculus, Calculus I, Physics I). 

Recommendation 3. Given this study’s findings noting the significance of math 

readiness and predicting first-year STEM academic success and retention, higher education 

institutions should encourage the creation of summer bridge programs. STEM summer bridge 

programs have been found to encourage and enhance both student-faculty interactions, as well 

as, increase first-year STEM students’ math readiness before the start of their first academic term 

(Zuo et al., 2018). Moreover, previous research has reported that STEM summer bridge 

programs have increased the STEM academic success rate and have been found to aid, especially 

students coming from academically challenging high school experiences, specifically in the 

mathematics and physical science subjects (National Academy of Sciences, 2010). 

Summary 

 The United States continues to experience labor shortages in the STEM fields (Belster, 

2014; Xue & Larson, 2015). All the while, students with declared STEM majors continue to 

experience a higher level of attrition, especially during their first year of study, when compared 

to non-STEM majors (Sithole et al., 2017). This labor market gap in the supply of a qualified 

workforce, and demand for technology and automation throughout developed nations, has 

encouraged and led to extensive research investigating possible predictors of academic success 
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and retention for STEM majors. Of possible predictors identified in previous literature, academic 

support, academic engagement, and student hours worked have been found, independently, to 

significantly influence higher education student retention and academic success (DiPrete & 

Buchmann, 2013; Eagan et al., 2013; Martinez, 2016; Schnettler et al., 2020; Xie & Killewald, 

2012; Xie & Shauman 2003). 

 Despite previous empirical findings of potential predictors, previous research has not 

accounted for these predictors in a single model, controlling for possible intercorrelation 

relationships, to assess their influence on student academic success and retention. Moreover, 

previous studies have not assessed these predictors solely for first-year STEM majors, which is 

found to be the most decisive year for STEM retention (Griffith, 2010). To provide evidence and 

context to this gap in literate, this study utilized Eccles and colleagues' (1983) Expectancy-Value 

Model of Achievement-Related Performance and Choices to investigate if possible, predictors: 

academic support, academic engagement, and student hours worked. significantly influence 

STEM students' academic success and retention after the first year of study. 

 Results of this study suggest that academic support is a predictor of first-year STEM 

students’ academic success and likelihood to remain in their major. Findings also infer that 

mathematics readiness is a significant predictor of retention and academic success of first-year 

STEM majors. Future researchers should aim to replicate this study by including academic self-

efficacy as a possible predictor of the model, as well as, assessing student hours worked as a 

mediating factor, and not directly aligned to the expectancy-value model. Lastly, institutions of 

higher education should aim to encourage implementing training and professional development 

initiatives aligned with this study’s academic support predictor (i.e., faculty-student interactions; 
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academic advisor-student interactions); as well as, working with pre-college stakeholders to 

increase first-year STEM student’s mathematics readiness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



125 
 

References 

ACT. (2007). 2007 ACT college readiness report news release. Retrieved from 

http://www.act.org/news/releases/2007/ndr.html 

Adelman, C. (2006). The Toolbox Revisited: Paths to Degree Completion From High School 

Through College. US Department of Education. 

Aikens, M., Robertson, M., Sadselia, S., Watkins, K., Evans, M., & Runyon, C. (2017). Race and 

gender differences in undergraduate research mentoring structures and research 

outcomes. CBE Life Sciences Education, 16(2), 12. https://doi.org/10.1187/cbe.16-07-

0211 

Allen, M., Dika, S.L., Tempest, B., & Pando, M. (2018). Interactions with Faculty and 

Engineering Self-efficacy Among Underrepresented Engineering Persisters. Association 

for Engineering Education - Engineering Library Division Papers. 

Allison, P.D. (2002). Missing Data. Thousand Oaks, CA: Sage. 

Altan, E. B., Yamak, H., & Kirikkaya, E. B. (2016). STEM education in pre-service teacher 

education: Design-based science education. Trakya University Education Faculty 

Journal, 6(2), 212-232. 

American Community Survey. (2011). Racial and Ethnic Representation in STEM Workforce. 

U.S. Census Bureau (ACS Report 2011). 

American Association of State Colleges and Universities. (2005). “Student success in state 

colleges and eniversities: A matter of culture and leadership.” 

http://www.calpoly.edu/~acadsen/documents/AASCUGRO_Report_093005.pdf 

Andersen, L., & Chen. J.A. (2016). Do high-ability students disidentify with science? A 

descriptive study of U.S. ninth-graders in 2009. Science Education, 100, 57–77. doi: 



126 
 

10.1002/sce.21197 

Arcidiacono, P. (2004). Ability sorting and the returns to college major. Journal of 

Econometrics, 121 (2004), pp. 343-375 

Astin, A.W. (1984). Student involvement: A developmental theory for higher education. Journal 

of College Student Personnel, 25, 297-308. 

Ballen, C. J., Wieman, C., Salehi, S., Searle, J. B., & Zamudio, K. R. (2017). Enhancing 

diversity in undergraduate science: Self-efficacy drives performance gains with active 

learning. CBE—Life Sciences Education, 16(4), 1–6. https://doi.org/10.1187/cbe.16-12-

0344 

Bandura, A. (1977). Self-Efficacy: Toward a unifying theory of behavioural change. 

Psychological Review, 84, 191-215. doi:10.1037/0033-295X.84.2.191 

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Upper 

Saddle River, N.J.: Prentice Hall. 

Bandura, A. (1997). Self-Efficacy: The exercise of control. New York, NY: W. H. Freeman and 

Company. 

Bandura, A. (2012). Social cognitive theory. In P. M. Van Lange, A. W. Kruglanski, E. Higgins 

(Ed.), Handbook of theories of social psychology (Vol 1) (pp. 349-373). Thousand Oaks, 

CA: Sage Publications Ltd. 

Barnes, W., Slate, J. R., & Rojas-LeBouef, A. (2010). College-readiness and academic 

preparedness: The same concepts? Current Issues in Education, 16(1), 1–13. 

Barron, K.E, & Hulleman, C.S. (2015). Expectancy-value-cost model of motivation. 

International Encyclopedia of Social and Behavioral Sciences, 261–271. 

doi:10.1016/B978-0-08-097086-8.26099-6 



127 
 

Baumeister, R. F., & Leary, M. R. (1997). Writing Narrative Literature Reviews. Review of 

General Psychology, 1(3), 311–320. https://doi.org/10.1037/1089-2680.1.3.311 

Belser, C. (2017). Predicting undergraduate retention in STEM majors based on demographics, 

math Ability, and career development factors. Electronic Theses and Dissertations, 2004-

2019. 5377. https://stars.library.ucf.edu/etd/5377 

Barker, C., Pinstrang, N., & Elliot, R. (2002). Research methods in clinical psychology: An 

introduction for students and practitioners. Chichester, West Sussex: John Wiley & Sons. 

Barr, D. A., Matsui, J., Wanat, S. F., & Gonzalez, M. E. (2010). Chemistry courses as the turning 

point for premedical students. Advances in health sciences education, 15(1), 45-54. 

Berger, J. B., & Lyon, S. C. (2005). Past to present: A historical look at retention. In A. Seidman 

(Ed.), College student retention: Formula for student success (pp. 1–30). Wesport, CT: 

Praeger.  

Beyers, J. (2011). Student dispositions with respect to mathematics: What current literature says. 

In D. Brahier & R. Speer (Eds.), Motivation and disposition: Pathways to learning, 73rd 

NCTM yearbook. Reston: NCTM. 

Bidwel, A. (2015). STEM workforce, no more diverse than fourteen years ago. U.S. News and 

World Report. Retrieved July 20, 2017 from https://www.usnew s.com/news/stem-

solutions/articles/2015/02/24/stem-workforce-no-more-diver se-than-14-years -ago. 

Bloodhart, B., Balgopal, M., Casper, A., Sample-McMeeking, L.B., Fischer, E.V. (2020) 

Outperforming yet undervalued: Undergraduate women in STEM. PLoS ONE 15(6): 

e0234685. https://doi.org/10.1371/journal.pone.0234685 

Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley. 



128 
 

Bouwma-Gearhart, J., Perry, K. H., & Presley, J. B. (2014). Improving postsecondary STEM 

education: Strategies for successful interdisciplinary collaborations and brokering 

engagement with education research and theory. Journal of College Science Teaching, 

44(1), 40-47. 

Bozick, R. (2007). Making it through the first year of college: the role of students' economic 

resources, employment, and living arrangements. Sociol. Educ. 80, 261–285. doi: 

10.1177/003804070708000304 

Boser, U. & Burd, S. (2009). Bridging the gap: How to strengthen the Pk-16 pipeline to improve 

college readiness. Retrieved from 

http://www.newamerica.net/files/NAF%20Bridging%20the%20Gap.pdf 

Brereton, R.G. (2014). The chi-squared and multinormal distributions. J. Chemometrics, DOI: 

10.1002/cem.2680 

Brockway, D., McGrath, E., McKay, & M, Schultz, D. (2009). Analysis of a statewide K-12 

engineering program: Learning from the field. American Society for Engineering 

Education Annual Conference, Austin, TX, June 2009. 

Broton, K., & Goldrick-Rab, S. (2016). The dark side of college (Un)affordability: food and 

housing insecurity in higher education. Change Mag. High. Learn. 48, 16–25. doi: 

10.1080/00091383.2016.1121081 

Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering 

Teacher, 70(1), 30-35. 

Cabrera, A. F., Burkum, K. R., & La Nasa, S. M. (2005). Pathways to a four-year degree. 

College student retention: Formula for student success, 155-214. 



129 
 

Carini, R., Kuh, G., & Klein, S. (2006). Student engagement and student learning: Testing the 

linkages. Research in Higher Education, 47(1), 1-32. 

Chait, R. & Venezia, A. (2009). Improving academic preparation for college: What we know 

and how state and federal policy can help. Retrieved from 

http://www.americanprogress.org/issues/2009/01/pdf/academic_prep.pdf 

Charles, M., & Bradley, K. (2002). Equal but separate? A cross-national study of sex segregation 

in higher education. American Sociological Review, 67(4), 573–599.DOI: 

10.2307/3088946 

Charles, M., & Bradley, K. (2006). A matter of degrees: female underrepresentation in computer 

science programs cross-nationally. In Women and Information Technology: Research on 

the Reasons for Underrepresentation, eds. J McGrath & B. Aspray, pp. 183–203. 

Cambridge, MA: MIT Press 

Charles. M., & Bradley, K. (2009). Indulging our gendered selves? Sex segregation by field of 

study in 44 countries. American Journal of Sociology, 114, 924–976. 

Chemers, M. M., Hu, L., & Garcia, B. F. (2001). Academic self-efficacy and first year college 

student performance and adjustment. Journal of Educational Psychology, 93(1), 55–64. 

Chen, X., & Soldner, M. (2013). STEM Attrition: College students’ path into and out of STEM 

fields (NCES 2014-001). Retrieved from http://nces.ed.gov/pubs2014/2014001rev.pdf 

Chen, A., & Liu, X. (2009). Task values, cost, and choice decisions in college physical 

education. Journal of Teaching in Physical Education, 28, 192-213. 

Chiang, E. S., Byrd, S. P., & Molin, A. J. (2011). Children’s perceived cost for exercise: 

Application of an expectancy-value paradigm. Health Education & Behavior, 38, 143-

149. 



130 
 

Choi, N. (2005). Self-efficacy and self-concept as predictors of college students’ academic 

performance. Psychology in the Schools, 42, 197-205. 

Chow, A., Eccles, J.S., & Salmela-Aro, K. (2012) “Task Value Profiles Across Subjects and 

Aspirations to Physical and IT Related. Sciences in the United States and Finland.” 

Developmental Psychology 48: 1612–1628. doi:10.1037/a003019. 

Christe, B. (2013). The importance of faculty-student connections in STEM disciplines: A 

literature review. Journal of STEM Education, 14(3), 22–28. 

Clydesdale, T. (2007). The First Year Out: Understanding American Teens After High School. 

Chicago, IL: University of Chicago Press. 

Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the 

behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Committee on Science, Engineering, and Public Policy; Planning Committee for the 

Convocation on Rising Above the Gathering Storm Two Years Later; Thomas Arrison, 

Rapport. “Rising Above the Gathering Storm Two Years Later: Accelerating Progress 

Toward a Brighter Economic Future: Summary of a Convocation.” Accelerating Progress 

Toward a Brighter Economic Future: Summary of a Convocation | The National 

Academies Press, 4 Feb. 2009, www.nap.edu/catalog/12537/rising-above-the-gathering-

storm-two-years-later-accelerating-progress. 

Committee on Science, Engineering, and Public Policy; Committee on Prospering in the Global 

Economy of the 21st Century: An Agenda for American Science and Technology. 

“Rising Above the Gathering Storm: Energizing and Employing America for a Brighter 

Economic Future.” Energizing and Employing America for a Brighter Economic Future | 



131 
 

The National Academies Press, 12 Oct. 2005, www.nap.edu/catalog/11463/rising-above-

the-gathering-storm-energizing-and-employing-america-for. 

Conley, D. T. (2007). Toward a more comprehensive conception of college readiness. Eugene, 

OR: Educational Policy Improvement Center. 

Conley, D. T. (2008). Rethinking college readiness. New Directions for Higher Education, 144, 

3–13. https://doi.org/10.1002/he.321 

Covington, M., Chavis, T., & Perry, A. (2017). A scholar-practitioner perspective to promoting 

minority success in STEM. Journal for Multicultural Education, 11(2), 149–159. 

https://doi.org/10.1108/JME-01-2016-0001 

Darolia, R. (2014). Working (and studying) day and night: heterogeneous effects of working on 

the academic performance of full-time and part-time students. Econ. Educ. Rev. 38, 38–

50. doi: 10.1016/j.econedurev.2013.10.004 

Defraine, W. C., Williams, W. M., & Ceci, S. J. (2014). Attracting STEM talent: Do STEM 

students prefer traditional or work/life-interaction labs? PLoS ONE, 9(2), 1-7. 

doi:10.1371/journal.pone.0089801 

DeFreitas, S. C. & Bravo, A. (2012). The influence of involvement with faculty and mentoring on 

the self-efficacy and academic achievement of African American and Latino college 

students. Journal of the Scholarship of Teaching and Learning, 12(4), 1-11. 

Dika, S. L., & D’Amico, M. M. (2015). Early experiences and integration in the persistence of 

first-generation college students in STEM and non-STEM majors. Journal of Research in 

Science Teaching, 53(3), 368–383. https://doi.org/10.1002/tea.21301 

Ding, N., & Harskamp, E. (2006). How partner gender influences female students’ problem-

solving in physics education. Journal of Science Education and Technology, 15(5–6), 



132 
 

331–343. 

DiPrete, T. A., & Buchmann, C. (2013). The rise of women: The growing gender gap in 

education and what it means for American schools. New York: Russell Sage Found. 

Douglas, D., & Attewell, P. (2019). The relationship between work during college and post 

college earnings. Frontiers in Sociology, 4, 78–78. 

https://doi.org/10.3389/fsoc.2019.00078 

Dortch, D., & Patel, C. (2017). Black undergraduate women and their sense of belonging in 

STEM at predominantly White institutions. NASPA Journal About Women in Higher 

Education, 10(2), 202–215. 

Dziuban, C.D., & Edwin, C. S. (1974). When is a correlation matrix appropriate for factor 

analysis? Some decision rules. Psychological Bulletin 81.6: 358. 

Eccles J.S., Adler, T.F., Futterman, R., Goff, S.B., Kaczala, C.M., Meece, J.L., & Midgley, C. 

(1983). Expectancies, values, and academic behaviors. In J.T. Spence (Ed.), Achievement 

and achievement motivation (pp. 75-146). San Francisco, CA: W.H. Freeman. 

Erbes, S. (2008). Interdisciplinary efforts used to assess research experiences for undergraduates. 

Council on Undergraduate Research Quarterly, 29(2), 34-42. 

Eris, O., et al. (2010). Outcomes of a longitudinal administration of the persistence in 

engineering survey. Journal of Engineering Education, 99(4), 371-395. 

Ewell, P. T., & A. C. McCormick. (2020). The national survey of student engagement (NSSE) at 

twenty. Assessment Update, 32, 2–16. 

Ewell, P. T., & D. P. Jones. (1993). “Actions matter: The case for indirect measures in assessing 

higher education’s progress on the national education goals.” Journal of General 

Education, 42, 123–148. 



133 
 

Fan, W., & Dempsey, A. (2017). “The Mediating Role of School Motivation in Linking Student 

Victimization and Academic Achievement.” Canadian Journal of School Psychology 32 

(2): 162–175. doi:10.1177/0829573516655228. 

Ferguson, S. N. (2021). Effects of faculty and staff connectedness on student self-efficacy. The 

Journal of Scholarship of Teaching and Learning, 21(2). 

https://doi.org/10.14434/josotl.v21i2.28597 

Felder, R. M., Felder, G. N., Mauney, M., Hamrin, C. E. Jr, & Dietz, E. J. (1995). A longitudinal 

study of engineering student performance and retention. III. Gender differences in 

student performance and attitudes. Journal of Engineering Education, 84(2), 151–163. 

Flake, J., Barron, K.E., Hulleman, C.S., Grays, M., Lazoswki, R., & Fessler, D. (2011, May). 

Evaluating cost: The forgotten component of expectancy-value theory. Poster presented 

at the annual meeting of Association for Psychological Sciences, Washington, DC. 

Fleming, J. (2002). Who will succeed in college? When the SAT predicts black students’ 

performance. The Review of Higher Education, 25 (2002), pp. 281-296, 

10.1353/rhe.2002.0010 

Fredericks, J.A., Blumenfeld, P.C., & Paris, A.H. (2004). School engagement: Potential of the 

concept, state of the evidence. Review of Educational Research, 74(1), 59-109. 

Friedman, T. L. (2005). The world is flat: A brief history of the twenty-first century. New York: 

Farrar, Strauss, and Giroux. 

Gnebola, M.A. (2015). Examining relationships among faculty-student interactions, academic 

self-efficacy, self-regulation, and academic achievement of undergraduate students. 

George Mason University, VA. 



134 
 

Goldin, C. & Katz, L. F. (2008). Transitions: Career and family life cycles of the educational 

elite. American Economic Review Papers & Proceedings, 98 (2), 363-369. doi: 

10.1257/aer.98.2.363 

Goldrick-Rab, S. (2016). Paying the Price: College Costs, Financial Aid, and the Betrayal of the 

American Dream. Chicago, IL: University of Chicago Press. 

Griffith, A. (2010). Persistence of women and minorities in STEM field majors: Is it the school 

that matters? Economics of Education Review, 29, 911-922. 

Groccia, J. (2012). Handbook of college and university teaching: A global perspective. Thousand 

Oaks, CA: Sage 

Guo, J., Nagengast, B., Marsh, H. W., Kelava, A., Gaspard, H., Brandt, H., Cambria, J., Flunger, 

B., Dicke, A.-L., Häfner, I., Brisson, B., & Trautwein, U. (2016). Probing the Unique 

Contributions of Self-Concept, Task Values, and Their Interactions Using Multiple 

Value Facets and Multiple Academic Outcomes. AERA Open, 2(1), 233285841562688–. 

https://doi.org/10.1177/2332858415626884 

Gushue, G. V., & Whitson, M. L. (2006). The relationship among support, ethnic identity, career 

decision self-efficacy, and outcome expectations in African American high school 

students: Applying social cognitive career theory. Journal of Career Development, 

33(2), 112-124. 

Guthrie, J. T., & Anderson, E. (1999). Engagement in reading: Processes of motivated, strategic, 

and knowledgeable social readers. In J. T. Guthrie & D. E. Alvermann (Eds.), Engaged 

reading: Process, practices and policy implications (pp. 17-46). New York: Teachers 

College Press 



135 
 

Guthrie, J. T., & Wigfield, A. (2000). Engagement and motivation in reading. In M. Kamil & P. 

Mosenthal (Eds.), Handbook of reading research (Vol. 3, pp. 403-422). Mahwah, NJ: 

Lawrence Erlbaum. 

Guzey, S.S., Harwell, M., & Moore, T. (2014). Development an instrument to assess attitudes 

toward science, technology, engineering, and mathematics (STEM). School Science and 

Mathematics, 114(6), 271-279 

Hair, J. F., Jr., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation 

modeling: Rigorous applications, better results, and higher acceptance [Editorial]. Long 

Range Planning: International Journal of Strategic Management, 46(1-2), 1–12. 

https://doi.org/10.1016/j.lrp.2013.01.001 

Hair, J., Black, W., Babin, B., & Anderson, R. (2009). Multivariate data analysis (7th ed.). 

Upper Saddle River, NJ: Prentice-Hall. 

Herzog, S. (2005). Measuring determinants of student return vs. dropout/stopout vs. transfer: A 

first-to-second year analysis of new freshmen. Research in Higher Education, 46(8), 

883-928. 

Hong, B. S., & Shull, P. J. (2010). A retrospective study of the impact faculty dispositions have 

on undergraduate engineering students. College Student Journal, 44(2), 266-278. 

Honicke, T., & Broadbent, J. (2016). The Relation of Academic Self-Efficacy to University 

Student Academic Performance: A Systematic Review. Educational Research Review, 

17, 63-84. http://dx.doi.org/10.1016/j.edurev.2015.11.002 

Hossain, M. M. & Robinson, G. R. (2012). How to motivate U. S. students to pursue STEM 

(science, technology, engineering and mathematics) careers. US-China Education 

Review, 4, 442-451. 



136 
 

Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to 

underparameterized model misspecification, Psychological Methods, 3(4): 424-453. 

Hurtado, S., Eagan, M.K., Tran, M.C., Newman, C.B., Chang, M.J., & Velasco, P. (2011), “We 

do science here: underrepresented students’ interactions with faculty in different college 

contexts”, The Journal of Social Issues, Vol. 67 No. 3, pp. 553-579. 

Hyndman, R.J., & Shang, H.L. (2010). Rainbow plots, bagplots, and boxplots for functional data. 

Journal of Computational and Graphical Statistics, 19(1):29–45, 2010. doi: 

10.1198/jcgs.2009.08158. 

Ibrahim, H., & Johnson, O. (2019). School discipline, race–gender and STEM readiness: A 

hierarchical analysis of the impact of school discipline on math achievement in high 

school. The Urban Review. doi: 10.1007/s11256-019-00513-6. 

Jamieson, L. & Lohmann, J. (2012). Innovation with impact: Creating a culture for scholarly 

and systematic innovation in engineering education. Washington, DC: American Society 

for Engineering Education. Retrieved from http://www.asee.org/about-us/the-

organization/advisory-committees/ Innovation-With-Impact/Innovation-With-Impact-

Report.pdf 

Jaquette, O., & Han, C. (2020). Follow the money recruiting and the enrollment priorities of 

public research universities. Retrieved from https://www.thirdway.org/report/follow-the-

money-recruiting-and-the-enrollment-priorities-of-public-research-universities 

Johnson, G. (1995). First steps to excellence in college teaching. Madison, WI : Magna 

Publications. 

Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. 

Psychometrika, 34, 183–202. 



137 
 

Kenny, D. A. (1979). Correlation and causality. New York: Wiley. 

King, J. E. (2002). Crucial Choices: How Students' Financial Decisions Affect Their Academic 

Success. Washington, DC: American Council on Education. 

Khine, M., Ping, L., & Cunningham, D. (2013). (Eds.). Application of structural equation 

modeling in educational research and practice. Rotterdam, The Netherlands: Sense 

Publishers. 

Kline, R. (1998). Principles and practice of structural equation modeling. N ew York: Guilford. 

Kline, R. (2011). Principles and practice of structural equation modeling (3rd ed.). New York, 

NY: The Guilford Press. 

Kokkelenberg, E. C., & Sinha, E. (2010). Who succeeds in STEM studies? An analysis of 

Binghamton University undergraduate students. Economics of Education Review, 29(6), 

935-946. doi:10.1016/j.econedurev.2010.06.016 

Kudish, P., Shores, R., McClung, A., Smulyan, L., Vallen, E. A., & Siwicki, K. K. (2016). 

Active learning outside the classroom: Implementation and outcomes of peer-led team-

learning workshops in introductory biology. CBE—Life Sciences Education, 15(3), 1–11. 

https://doi.org/10.1187/cbe.16-01-0051 

Langen, A. V., & Dekkers, H. (2005). Cross‐national differences in participating in tertiary 

science, technology, engineering and mathematics education. Comparative Education, 

41(3), 329-350. doi:10.1080/03050060500211708. 

Larsen, M. R., Sommersel, H. B., & Larsen, M. S. (2013). Evidence on dropout phenomena at 

universities. (vol. 143) Copenhagen: Danish Clearinghouse for Educational Research. 

Lee, S., Bulut, O., & Suh, Y. (2017). Multidimensional extension of multiple indicators multiple 

causes model to detect DIF. Educational and Psychological Measurement, 77(4), 545-



138 
 

569. https://doi.org/10.1177/0013164416651116. 

Lee, W. C., & Matusovich, H. M. (2016). A model of co-curricular support for undergraduate 

engineering students: Model of co-curricular support. Journal of Engineering Education 

(Washington, D.C.), 105(3), 406–430. https://doi.org/10.1002/jee.20123 

Lester, D. (2013). A Review of the Student Engagement Literature. FOCUS on Colleges, 

Universities & Schools. 2013, Vol. 7 Issue 1, p1-8. 8p. 

Little, R.J., & Rubin, D.B. (2002). Statistical Analysis with Missing Data. John Wiley & Sons, 

New York. 

Liu, X., & Koirala, H. (2009). The effect of mathematics self-efficacy on mathematics 

achievement of high school students. In Northeastern educational conference proceeding 

2009. 

Loehlin, J. (2004). Latent variable models: An introduction to factor, path, and structural 

equation analysis (4th ed). Mahwah, NJ: Lawrence Erlbaum Associates. 

Lubinski, D., Camilla, D. L., Shea, H., & Marcy, B. J. (2001). Men and women at promise for 

scientific excellence: Similarity not dissimilarity. Psychological Science 12: 309–17. 

Luttrell, V.R., Callen, B.W., Allen, C.S., Wood, M. ., Deeds, D.G., & Richard, D.C.S. (2010). 

The mathematics value inventory for general education students: development and initial 

validation. Educational and Psychological Measurement, 70, 142-160. 

Malcolm, S., & Feder, M. (Eds.) (2016). Barriers and opportunities for 2-year and 4-year STEM 

degrees. Washington, DC: National Academies Press. https://doi.org/10.17226/21739 

Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of 

educational experiences with earned degrees in STEM among US students. Science 

Education, 95, 877-907. 



139 
 

Mamaril, N. A., Usher, C. R., Li, D., & Kennedy, M.S. (2016). “Measuring Undergraduate 

Students’ Engineering Self-efficacy: A Validation Study.” Journal of Engineering 

Education 105: 366–395. doi:10.1002/jee.20121. 

Martinez, V. (2016). Adelante! From high school to higher education: An analysis of the 

academic success and persistence of Hispanic students through an expectancy-value 

framework. Colorado State University Press. 

Marra, R., Rodgers, K., Shen, D., & Bogue, B. (2012). Leaving engineering: A multi-year single 

institution study. Journal of Engineering Education, 101(1), 6-27. 

Mastascusa, E., Snyder, W., & Hoyt, B. (2011). Effective instruction for STEM disciplines: From 

learning theory to college teaching. San Francisco, CA: Jossey Bass. 

Maton, K.I., Hrabowski, F.A., & Schmitt, C.L. (2000). African American college students 

excelling in the sciences: College and post college outcomes in the scholars post-college 

Meyerhoff Scholars program. Journal of Research in Science Teaching, Vol. 37 No. 7, 

pp. 629-654. 

Mau, W. C. (2003). Factors that influence persistence in science and engineering career 

aspirations. The Career Development Quarterly, 51, 234-243. doi:10.1002/j.2161-

0045.2003.tb00604.x 

May, G.S., & Chubin, D.E. (2003). A retrospective on undergraduate engineering success for 

underrepresented minority students. Journal of Engineering Education, Vol. 92 No. 1, 

pp. 27-39. 

McClure, S.M. (2006), “Voluntary association membership: black Greek men on a 

predominantly white campus”, Journal of Higher Education, Vol. 77 No. 6, pp. 1036-

1057. 



140 
 

McClure, K. (2019). Examining the "amenities arms race" in higher education: Shifting from 

rhetoric to research. College Student Affairs Journal, 37(2), 128–142. https:// 

files.eric.ed.gov/fulltext/EJ1255471.pdf 

McCormick, A.C. (2010). National Survey of Student Engagement. Major differences: 

Examining student engagement by field of study – annual results 2010. Bloomington, IN: 

Indiana University Center for Postsecondary Research. 

McLeod, D. (1992). Research on affect in mathematics education: A reconceptualization. In G. 

Douglas (Ed.), Handbook of research on mathematics teaching and learning (pp. 575–

596). Reston, Va: National Council of Teachers of Mathematics. 

McMillan, J. & Schumacher, S. (2010). Research in education: Evidence-based inquiry. Boston, 

MA: Pearson. 

McPherson, E. (2017). Oh You Are Smart: Young, gifted african american women in STEM 

majors. Journal of Women and Minorities in Science and Engineering 23: 1–14. 

Meyers, L., Gamst, G., & Guarino, A. (2013). Applied multivariate research: Design and 

interpretation. Los Angeles, CA: Sage Publications, Inc. 

Meyer, M., Andrei, C., & Sarah-Jane, L. (2015). Women are underrepresented in fields where 

success is believed to require brilliance. Frontiers in Psychology 6: 235. 

Micari, M., & Pazos, P. (2012). Connecting to the professor: Impact of the student–faculty 

relationship in a highly challenging course. College Teaching, 60(2), 41-47. 

doi:10.1080/87567555.2011.627576 

Miller, M. (1997). Handbook for college teaching. Sautee-Nacoochee, GA: PineCrest 

Publications. 



141 
 

Moore, T.J., Stohlmann, M.S., Wang, H.-H., Tank, K.M., & Roehrig, G.H. (2013). 

Implementation and integration of engineering in K-12 STEM education. In J. Strobel, 

S. Purzer, & M. Cardella (Edt.), Engineering in pre-college settings: Research into 

practice. Rotterdam, the Netherlands: Sense Publishers. 

Mueller, R.O., & Hancock, G.R. (2001). Factor analysis and latent structure, confirmatory. 

doi.org/10.1016/B0-08-043076-7/00426-5. 

Multon, K. D., Brown, S. D., & Lent, R. W. (1991). Relation of self-efficacy beliefs to academic 

outcomes: A meta-analytic investigation. Journal of Counseling Psychology, 38(1), 30–

38. 

Meyer, J.L., Fleckenstein, J., & Köller, O. (2019). Expectancy value interactions and academic 

achievement: Differential relationships with achievement measures. Contemporary 

Educational Psychology. 

Nagengast, B., Marsh, H. W., Scalas, L. F., Xu, M. K., Hau, K.-T., & Trautwein, U. (2011). Who 

Took the “X” out of Expectancy-Value Theory? A Psychological Mystery, a 

Substantive-Methodological Synergy, and a Cross-National Generalization. 

Psychological Science, 22(8), 1058–1066. https://doi.org/10.1177/0956797611415540 

National Academy of Sciences. (2010). Expanding underrepresented minority participation: 

America’s science and technology talent at the crossroads and the expansion of the 

science and engineering workforce pipeline. Washington, DC: National Academies 

Press. 

National Academy of Science, National Academy of Engineering, and Institute of Medicine. 

(2007). Rising above the gathering storm: Energizing and employing America for a 

brighter economic future. Washington, DC: National Academies Press. 



142 
 

National Academy of Sciences, National Academy of Engineering, Institute of Medicine. (2011). 

Expanding underrepresented minority participation: America’s science and technology 

talent at the crossroads. Washington (DC): National Academies Press. 

National Center for Education Statistics (2018). Profile of Undergraduate Students: 2017-2018. 

Washington, DC: U.S. Department of Education, National Center for Education 

Statistics. Available: https://nces.ed.gov/programs/digest/d18/tables/dt18_503.40.asp. 

National Center for Education Statistics (2015). Profile of Undergraduate Students: 2011-2012 

(NCES 2015-167). Washington, DC: U.S. Department of Education, National Center for 

Education Statistics. Available online at: https://files.eric.ed.gov/fulltext/ED581717.pdf 

(accessed November 27, 2019). 

National Science Board. (2016). Science and engineering indicators 2016. Arlington, VA: 

National Science Foundation. Retrieved from 

https://www.nsf.gov/nsb/publications/2016/nsb20161.pdf 

National Science Foundation. (2018a). Science and engineering indicators 2018, (NSB 2018-1). 

Arlington, VA: National Center for Science and Engineering Statistics (NCSES). 

Retrieved from https://www.nsf.gov/statistics/2018/nsb20181/assets/901/science-

andengineering-labor-force.pdf 

National Science Foundation. (2018b). Chapter 2: Higher Education in Science and Engineering. 

Retrieved from https://nsf.gov/statistics/2018/nsb20181/report/sections/higher-

education-in-science-and-engineering/undergraduate-education-enrollment-and-degrees-

in-the-united-states 

National Science Foundation. (2016a). Women and Minorities in the S&E Workforce. Science 

and Engineering Indicators 2016 (NSB-2016-1) Digest (NSB-2016-2) January 2016. 



143 
 

Arlington, VA: National Science Board, National Center for Science & Engineering 

Statistics. 

National Science Foundation. (2016b). NSF STEM classification of instructional programs 

crosswalk. Retrieved from the National Science Foundation website: 

https://www.lsamp.org/help/help_stem_cip_2010.cfm 

National Science Foundation, National Center for Science and Engineering Statistics. (2015). 

Women, minorities, and persons with disabilities in science and engineering. Retrieved 

from the National Science Foundation website: www.nsf.gov/statistics/wmpd/ 

National Science Foundation. (2013). Women, minorities, and persons with disabilities in 

science and engineering: 2013. Washington, DC: National Center for Science and 

Engineering Statistics Directorate for Social, Behavioral and Economic Sciences. 

National Science Foundation, Division of Science Resources Statistics. Detailed Statistical 

Tables NSF 10-300. Arlington, VA: 2009. Science and Engineering Degrees, by 

Race/Ethnicity of Recipients: 1997-2006. Mark K. Fienegen, project officer. Available at 

http://www.nsf.gov/statistics/nsf10300/. 

National Survey of Student Engagement. (2019). NSSE 2019 overview. Bloomington, IN: 

Indiana University Center for Postsecondary Research. 

Nix, S., & Perez-Felkner, L. (2019). Difficulty orientations, gender, and race/ethnicity: An 

intersectional analysis of pathways to STEM degrees. Social Sciences (Basel), 8(2), 43–. 

https://doi.org/10.3390/socsci8020043 

Noel-Levitz, Inc. (2006). Student success in developmental math: Strategies to overcome 

barriers to retention. Iowa City, Iowa: Author. 



144 
 

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-

Hill. 

Ost, B. (2010). The role of peers and grades in determining major persistence in the sciences. 

Economics of Education Review, 29(6), 923-934. 

Packard, B. W. L. (2015). Successful STEM mentoring initiatives for underrepresented students: 

A research-based guide for faculty and administrators. Sterling, VA: Stylus Publishing. 

Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of Educational Research, 

66(4), 543–578. 

Pajares, F. & Schunk, H.D. (2001). Self-beliefs and school success: Self-efficacy, self-concept, 

and school achievement. In R. Riding & S. Rayner (Eds.), Perception, (pp. 239-266). 

Palmer, R.T., Davis, R.J., & Thompson, T. (2010). Theory meets practice: HBCU initiatives that 

promote academic success among African Americans in STEM. Journal of college 

student development, Vol. 51 No. 4, pp. 440-443. 

Park, J. J., Kim, Y. K., Salazar, C., & Hayes, S. (2019). Student–Faculty Interaction and 

Discrimination from Faculty in STEM: The Link with Retention. Research in Higher 

Education, 61(3), 330–356. https://doi.org/10.1007/s11162-019-09564-w 

Pascarella, E. T., & Terenzini, P. T. (2005). How college affects students: A third decade of 

research. San Francisco: Jossey-Bass. 

Paulsen, J., & Cole, J. (2019). Confirmatory Factor Analysis of the BCSSE Scales. Indiana 

University: Center for Postsecondary Research. 1900 East 10th Street, Suite 419 

Bloomington, Indiana 47406-7512 

Perez, T., Wormington, S. V., Barger, M. M., Schwartz‐Bloom, R. D., Lee, Y., & Linnenbrink‐

Garcia, L. (2019). Science expectancy, value, and cost profiles and their proximal and 



145 
 

distal relations to undergraduate science, technology, engineering, and math persistence. 

Science Education (Salem, Mass.), 103(2), 264–286. https://doi.org/10.1002/sce.21490 

Perez-Felkner, L., McDonald, S. K., Schneider, B., & Grogan, E. (2012). Female and male 

adolescents’ subjective orientations to mathematics and the influence of those 

orientations on postsecondary majors. Developmental Psychology, 48, 1658–1673. 

Perna, L. W., & Odle, T.K. (2020). Recognizing the reality of working college students. Read. 

American Association of University Professors. Retrieved from 

https://www.aaup.org/article/recognizing-reality-working-college-

students#.YTd4qp1KhPb 

Perna, L. W., Asha Cooper, M., & Li, C. (2007). Improving educational opportunities for 

students who work. Read. Equal Educ. 22, 109–160. Retrieved from 

https://repository.upenn.edu/gse_pubs/299 

Pew Research Center. (2018). “Women and Men in STEM Often at Odds Over Workplace 

Equity”. Retrieved from: https://www.pewresearch.org/socialtrends/2018/01/09/diversity-

in-the-stem-workforce-varies-widely-across-jobs/. 

Plante, I., O’Keefe, P.A., & Théorêt, M. (2013). “The Relation between Achievement Goal and 

Expectancy-value Theories in Predicting Achievement-Related Outcomes: A Test of 

Four Theoretical Conceptions.” Motivation and Emotion 37 (1):65–78. 

doi:10.1007/s11031-012-9282-9. 

President’s Council of Advisors on Science and Technology (PCAST). (2010). Prepare and 

inspire: K-12 education in STEM for America’s future. Retrieved November 3, 2018 

from http://www.white house .gov/sites /defau lt/files /micro sites /ostp/pcast -steme d-

report.pdf 



146 
 

Proitsi, P., Hamilton, G., Tsolaki, M., Lupton, M., Daniilidou, M., Hollingworth, P., Archer, N., 

Foy, C., Stylios, F., McGuinness, B., Todd, S., Lawlor, B., Gill, M., Brayne, C., 

Rubinzstein, D. C., Owen, M., Williams, J., Craig, D., Passmore, P., Loveston, S., & 

Powell, J. F. (2009). A multiple indicators multiple causes (MIMIC) model of behavioral 

and psychological symptoms in dementia (BPSD). Neurobiology of Aging, 32(3), 434-42. 

https:/dx.doi.org/10.1016/j.neurobiolaging.2009.03.005. 

Reeves, R., & Halikias, D. (2017). Race gaps highlight inequality., Social mobility papers 

Washinghton: Brookings Institute. 

Reid, E. L. (2009). Exploring the experiences of African American women in an undergraduate 

research program designed to address the underrepresentation of women and minorities 

in neuroscience: A qualitative analysis (Doctoral dissertations). Department Psychology 

and Special Education, Georgia State University. Retrieved from 

https://scholarworks.gsu.edu/epse_diss/66 

Richardson, M., Bond, R., & Abraham, C. (2012). Psychological correlates of university 

students’ academic performance: A systematic review and meta-analysis. Psychological 

Bulletin, 138, 353-387. doi: 10.1037/a0026838 

Riechert, S. E., & Post, B. K. (2010). From skeletons to bridges & other STEM enrichment 

exercises for high school biology. The American Biology Teacher, 72(1), 20-22. 

Riegle-Crumb, C., King, B., & Irizarry, Y. (2019). Does STEM stand out? Examining 

racial/ethnic gaps in persistence across postsecondary fields. Educ. Res. 48, 133–144. 

RNL. (2020). 2020 Cost of Recruiting an Undergraduate Student Report. Cedar Rapids, Iowa: 

Ruffalo Noel Levitz. Available at RuffaloNL.com/Recruiting2020. 

Robinson, K. A., Lee, E. A., Bovee, T., Perez, S. P., Walton, D., Briedis, L., and Linnenbrink-



147 
 

Garcia, A. (2018). “Motivation in Transition: Development and Roles of Expectancy, 

Task Values, and Costs in Early College Engineering.” Journal of Educational 

Psychology. doi:10.1037/edu0000331. 

Rogers, K. & Marra, R. (2012). Why they’re leaving. Prism, 21(5), 43. 

Romash, Z. M.( 2019). Leaving STEM: An examination of the STEM to non-STEM major 

change and how the STEM curriculum relates to academic achievement in Non-STEM 

fields. Seton Hall University Dissertations and Theses (ETDs). 2675. 

https://scholarship.shu.edu/dissertations/2675 

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of 

Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/ 

Rubin, D.B. (1987). Multiple imputation for nonresponse in surveys. New York: John Wiley. 

Rubin, D.B. (1996). Multiple imputation after 18+ years. Journal ofthe American Statistical 

Association. 91: 473-515. 

Sadler, T. D., & McKinney, L. (2010). Scientific research for undergraduate students: A review 

of the literature. Journal of College Science Teaching, 39(5), 43-49. 

Safavian, N. (2019). What Makes Them Persist? Expectancy-Value Beliefs and the Math 

Participation, Performance, and Preparedness of Hispanic Youth. AERA Open, 5(3), 

233285841986934–. https://doi.org/10.1177/2332858419869342 

Satorra, A. (1990). Robustness issues in structural equation modeling: A review of recent 

developments. Quality and Quantity, 24, 367–386. 

Schafer, J.L. (1997). Analysis of incomplete multivariate data. New York: Chapman & Hall. 

Schumacker, R., and Lomax, R. (2010). A beginner’s guide to structural equation modeling (3rd 

ed.). New York: Taylor and Francis. 



148 
 

Scott-Clayton, J., & Minaya, V. (2016). Should student employment be subsidized? Conditional 

counterfactuals and the outcomes of work-study participation. Econ. Educ. Rev. 52, 1–

18. doi: 10.1016/j.econedurev.2015.06.006 

Seymour, E. & Hewitt, N. (1997). Talking about leaving: Why undergraduates leave the 

sciences. Boulder, CO: Westview Press. 

Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: A 

longitudinal examination of the links between choices and beliefs. Developmental 

Psychology, 42, 70-83. doi:10.1037/0012-1649.42.1.70 

Sithole, A., Chiyaka, E., McCarthy, P., Mupinga, D., Bucklein, B., & Kibirige, J. (2017). Student 

attraction, persistence and retention in STEM programs: Successes and continuing 

challenges. Higher Education Studies. 7. 46. 10.5539/hes.v7n1p46. 

Schneider, K. R., Bickel, A., & Morrison-Shetlar, A. (2015). Planning and implementing a 

comprehensive student-centered research program for first-year STEM undergraduates. 

Journal of College Science Teaching, 44(3), 37-43. 

Schnettler, T., Bobe, J., Scheunemann, A., Fries, S., & Grunschel, C. (2020). Is it still worth it? 

Applying expectancy-value theory to investigate the intraindividual motivational process 

of forming intentions to drop out from university. Motivation and Emotion 44, 491–507. 

https://doi.org/10.1007/s11031-020-09822-w 

Schriesheim, C.A., Stephanie, L. C., & Claudia, C. (1999). Leader-member exchange (LMX) 

research: A comprehensive review of theory, measurement, and data-analytic practices. 

The Leadership Quarterly 10.1: 63-113. 

Schunk, D. H. (1995). Self-efficacy and education and instruction. In J. E. Maddux (Ed.), Self-

efficacy, adaptation, and adjustment (pp. 281–303). New York: Springer. 



149 
 

Schunk, D. H., & Pajares, F. (2002). The development of academic self-efficacy. In A. Wigfield 

& J. S.Eccles (Eds.), Development of achievement motivation (pp. 15–31). London: 

Elsevier 

Sklar, J. (2015). The impact of change of major on time to Bachelor’s degree completion with 

special emphasis on STEM disciplines: A multilevel discrete-time hazard modeling 

Xapproach final report. 

Snow, C. P. (1961). The Two Cultures and the Scientific Revolution. New York: Cambridge 

University Press. 

Sovero, V., Buchinsky, M., & Baird, M. (2021). "Playing catch up: A term-level investigation of 

the racial gap in STEM retention," Economics of Education Review, Elsevier, vol. 83(C). 

<https://ideas.repec.org/a/eee/ecoedu/v83y2021ics0272775721000650.html> 

St. John, E., Hu, S., Simmons, A., Carter, D. and Weber, J. (2004), “What difference does a 

major make? The influence of college major field on persistence by African American 

and White students”, Research in Higher Education, Vol. 45 No. 3, pp. 209-232. 

St. John, E. P. (2003). Refinancing the College Dream: Access, Equal Opportunity, and Justice 

for Taxpayers. Baltimore, MD: Johns Hopkins University Press. 

Stinebrickner, R., & Stinebrickner, T. R. (2003). Working during school and academic 

performance. J. Labor Econ. 21, 473–491. doi: 10.1086/345565 

Stinebrickner, R., & Stinebrickner, T. R. (2004). Time-use and college outcomes. J. Econ. 121, 

243–269. doi: 10.1016/j.jeconom.2003.10.013 

Stringer, W. L., Cunningham, L. F., O'Brien, C. T., and Merisotis, J. P. (1998). It's All Relative: 

The Role of Parents in College Financing and Enrollment. USAGroup Foundation. New 

Agenda Series 1. 



150 
 

Syed, M., Azmitia, M., & Cooper, C. R. (2011). Identity and academic success among 

underrepresented ethnic minorities: An interdisciplinary review and integration. Journal 

of Social Issues, 67(3), 442-468. 

Tai, R. H., Liu, C. Q., Maltese, A. V., & Fan, X. (2006). Planning early for careers in science. 

Science, 312, 1143-4. doi:10.1126/science.1128690 

Thomasian, J. (2011). Building a science, technology, engineering, and math education agenda: 

An update of state actions. Washington, DC: National Governors Association. Retrieved 

from https://files.eric.ed.gov/fulltext/ED532528.pdf 

Tinto, V. (1993). Leaving College: Rethinking the Causes and Cures of Student Attrition. 

Chicago, IL: University of Chicago Press. 

Tinto, V. (1997). Classrooms as communities: Exploring the educational character of student 

persistence. The Journal of Higher Education, 68(6), 599-623. 

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-

informed management knowledge by means of Systematic Review. British Journal of 

Management, 14: 207-222. https://doi.org/10.1111/1467-8551.00375 

Trautwein, U., Marsh, H.W., Nagengast, B., Ludtke, O., Nagy, G., & Jonkmann, K. (2012). 

Probing for the multiplicative term in modern expectancy–value theory: A latent 

interaction modeling study. Journal of Educational Psychology, 104, 763–777. 

Tsui, L. (2007). Effective strategies to increase diversity in STEM fields: A review of the 

research literature. The Journal of Negro Education, 76(4), 555-581. Retrieved October 

25, 2017, from http://www.jstor.org/stable/40037288. 

Tyson, W., Lee, R., Borman, K., & Hanson, M. (2007). Science, technology, engineering, and 

mathematics (STEM) pathways: High school science and math coursework and 



151 
 

postsecondary degree attainment, Journal of Education for Students Placed at Risk, 

12(3), 243-270. DOI: 10.1080/10824660701601266. 

UNESCO Institute for Statistics. Higher Education. Retrieved December 03, 2018, from https 

://uis.unesc o.org/en/topic /highe r-education 

Upcraft, M.L. & Gardner, J.N. (1989). A comprehensive approach to enhancing freshman 

success. In M.L. Upcraft & J.N. Gardner (Eds.), The freshman year experience (pp. 1-

12). San Francisco: Jossey-Bass. 

U.S. Department of Education. (2014). Civil rights data collection: School discipline. Issue Brief 

No.1 March 2014. 

U.S. Department of Education. (2011). Six‐Year attainment, persistence, transfer, retention, and 

withdrawal rates of students who began postsecondary education in 2003‐2004. Table 

5.0‐A, p. 188. http://nces.ed.gov/pubs2011/2011152.pdf 

United States Census Bureau, (2016). Quick facts: United States. Retrieved from 

https://www.census.gov/quickfacts/fact/table/US/SEX255216 

Vedder, R., Gillen, A., & Bennett, D. (2010). 25 ways to reduce the cost of college. Center for 

College Affordability and Productivity. 

http://www.centerforcollegeaffordability.org/uploads/25_Ways_Ch15.pdf 

Vogt, C. M. (2008). Faculty as a critical juncture in student retention and performance in 

engineering programs. Journal of Engineering Education, 97(1), 27-36. 

Von Hippel, P. (2004). Biases in SPSS 12.0 Missing Value Analysis. The American Statistician, 

58, 160 - 164. 

Wang, C., & Liou, P. (2018). “Patterns of Motivational Beliefs in the Science Learning of Total, 

High-, and Low-Achieving Students: Evidence of Taiwanese.” International Journal of 



152 
 

Science and Mathematics Education 16 (4): 603–618. doi:10.1007/s10763-017-9797-3. 

Wagner, M., Christe, B., & Fernandez, E. (2012). Comparing first-year engineering technology 

persisters and non-persisters. Paper presented at American Society of Engineering 

Education Annual Conference, San Antonio, TX. 

Watkinson, E. J., Dwyer, S. A., & Nielsen, A. B. (2005). Children theorize about reasons for 

recess engagement: Does expectancy-value theory apply? Adapted Physical Activity 

Quarterly, 22, 179-197. 

Watkins, J., & Mazur, E. (2013). Retaining students in science, technology, engineering, and 

mathematics (STEM) majors. Journal of College Science Teaching, 42(5), 36-41. 

Weston, T. J., Seymour, E., Koch, A. K., & Drake, B. M. (2019). Weed-Out Classes and Their 

Consequences. In Seymour, Elaine, Hunter, & Anne-Barrie (Eds.), Talking about Leaving 

Revisited (pp. 197–243). New York: Spring International. https://doi.org/10.1007/978-3-

030-25304-2_7 

Whitney, H., Goddard, K., & Favero, C. (2021). A cocurricular program that encourages specific 

study skills and habits improves academic performance and retention of first-year 

undergraduates in introductory biology. CBE—Life Sciences Education; doi: 

10.1187/cbe.20-06-0117 

Wigfield, A. (1994). Expectancy-value theory of achievement motivation: A developmental 

perspective. Educational Psychology Review, 6(1), 49-78. 

Wigfield. A., & Cambria. J. (2010). Students’ achievement values, goal orientations, and 

interest: Definitions, development, and relations to achievement outcomes. 

Developmental Review, 30, 1–35. doi:10.1016/j.dr.2009.12.001 

Wigfield, A. & Eccles, J.S. (1992). The development of achievement task values: A theoretical 



153 
 

analysis. Developmental Review, 12, 265-310. 

Wigfield, A. & Eccles, J.S. (2000). Expectancy-value theory of achievement motivation. 

Contemporary Educational Psychology, 25(1), 68-81. 

Williams, B., Andrys, O., & Ted, B. (2010) Exploratory factor analysis: A five-step guide for 

novices. Australasian Journal of Paramedicine 8.3. 

Wirt, J., Choy, S., Rooney, P., Provasnik, S., Sen, A., & Tobin, R. (2004). The condition of 

education 2004 (U. S. Department of Education Report No. NCES 2004-077). 

Washington, DC: National Center for Educational Statistics. 

Wu, F., Fan, W., Arbona, C., & de la Rosa-Pohl, D. (2020). Self-efficacy and subjective task 

values in relation to choice, effort, persistence, and continuation in engineering: an 

Expectancy-value theory perspective. European Journal of Engineering Education, 45:1, 

151-163, DOI: 10.1080/03043797.2019.1659231 

Xie, Q. & Andrews, S. (2012). Do test design and uses influence test preparation? Testing a 

model of washback with Structural Equation Modeling. Language Testing, 30(1), 49-70. 

Xie, Y. & Killewald, A. (2012). Is American science in decline? Cambridge, MA: Harvard 

University Press. 

Xie, Y, & Shauman, K. A. (2003). Women in science: Career processes and outcomes. 

Cambridge, MA: Harvard Univ. Press. 

Xue, Y., & Larson, R. (2015). STEM crisis or STEM surplus? Yes and yes. Monthly Labor 

Review. doi:10.21916/mlr.2015.14. 

Xu, P. (2004). The analysis of missing data in public use survey databases : a survey of statistical 

methods. Electronic Theses and Dissertations. Paper 1603. 

https://doi.org/10.18297/etd/1603 



154 
 

Yuan, K.H., & Bentler, P. M. (2001). Effect of outliers on estimators and tests in covariance 

structure analysis. Br. J. Math. Stat. Psychol. 54, 161–175. doi: 

10.1348/000711001159366 

Yuan, K.H., & Zhong, X. (2013). Robustness of fit indices to outliers and leverage observations 

in structural equation modeling. Psychol. Methods 18, 121–136. doi: 10.1037/a0031604 

Zajacova, A., Lynch, S. M., & Espenshade, T. J. (2005). Self-efficacy, stress, and academic 

success in college. Research in Higher Education, 46(6), 677–706 

Zhang, G., Anderson, T. J., Ohland, M. W., & Thorndyke, B. R. (2004). Identifying factors 

influencing engineering student graduation: A longitudinal and cross‐institutional study. 

Journal of Engineering Education, 93(4), 313-320. 

Zuo, C., Mulfinger, E., Oswald, F. L., & Casillas, A. (2018). First-generation college student 

success. In Feldman, R. S., (Ed.), The first year of college: Research, theory, and practice 

on improving the student experience and increasing retention (pp. 55–90). New York, 

NY: Cambridge University Press. https://doi.org/10.1017/9781316811764.004 

 

 

 

 

 

 

 

 



155 
 

APPENDIX A: Observed Model Data (R Project for Statistical Computing) 

 

Figure A1 

Measurement Model (Standardized Path Coefficients) of First-Year STEM Major (N = 797) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A2 

Structural Model (Standardized Path Coefficients) of First-Year STEM Major (RQ1A; N = 789) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A3 

Structural Model (Standardized Path Coefficients) for RQ1B-Gender (N = 789) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A4 

Structural Model (Standardized Path Coefficients) for RQ1C-Asian Students (N = 516) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A5 

Structural Model (Standardized Path Coefficients) for RQ1D-Black Students (N = 565) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A6 

Structural Model (Standardized Path Coefficients) for RQ1E-Hispanic Students (N = 550) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A7 

Structural Model (Standardized Path Coefficients) of First-Year STEM Major (RQ2A; N = 789) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A8 

Structural Model (Standardized Path Coefficients) for RQ2B-Gender (N = 789) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A9 

Structural Model (Standardized Path Coefficients) for RQ2C-Asian Students (N = 516) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A10 

Structural Model (Standardized Path Coefficients) for RQ2D-Black Students (N = 565) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A11 

Structural Model (Standardized Path Coefficients) for RQ2E-Hispanic Students (N = 550) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A12 

Structural Model (Standardized Path Coefficients) of First-Year STEM Major (RQ3; N = 789) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A13 

Structural Model (Standardized Path Coefficients) for RQ4-PEMC Majors (N = 444) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 
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Figure A14 

Structural Model (Standardized Path Coefficients) for RQ4-Other-STEM Majors (N = 345) 

 
Note. A revised theoretical model of the Expectancy-Value Model of Achievement Motivation. 

Latent constructs are represented by the ellipses. The arrowed lines signify the path of influence. 

Curved lines show correlations between latent variables. An observed indicator is characterized 

by a rectangle. 

 

 

 


