
USER CENTERED SECURITY SERVICE LEVEL AGREEMENT
ENFORCEMENT MECHANISMS

by

Sultan Alasmari

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Software and Information Systems

Charlotte

2022

Approved by:

Dr. Weichao Wang

Dr. Jinpeng Wei

Dr. Mohamed Shehab

Dr. Jun-tao Guo

ii

©2022
Sultan Alasmari

ALL RIGHTS RESERVED

iii

ABSTRACT

SULTAN ALASMARI. User Centered Security Service Level Agreement
Enforcement Mechanisms. (Under the direction of DR. WEICHAO WANG)

As businesses profoundly rely on cloud services security becomes a critical concern.

Various emerging technologies depend on cloud computing for its intrinsic features

such as scalability, storage and cost-effectiveness. While this may be true, cloud

users are wary about the confidentiality and integrity of outsourced data. Security

Service Level Agreement(SSLA) provides transparency between service providers and

customers to guarantee security services terms are delivered as agreed in the SSLA.

Since many corporations outsource security services to cloud providers, it appears

necessary to develop a user-centered SSLA enforcement mechanism to verify service

provider commitment.

In this dissertation, the main objective is to design and adopt user centered service

level agreement security enforcement mechanisms to verify the execution of SSLA

and hence detect SSLA violations. First, we tackle the problem of Proof Of En-

cryption (PoE) and then propose two security mechanisms to verify the encryption

operation by the service provider whether both parties have the encryption keys or

only the service provider maintains the key. Second, we developed a security enforce-

ment mechanism where the service requester chooses one service provider to negotiate

Partial Homomorphic Encryption (PHE) algorithm so that the service requester can

only query encryption results at the service provider without disclosing the cipher-

text. Another SSLA security enforcement mechanism is proposed to verify third-party

network scanning. A customer can verify if SSLA is violated or not by relying on a

group of tester nodes called bots to do the testing. Finally, in order to engage more

nodes to participate in the network scanning verification, one future direction would

be to develop an incentive model to motivate nodes who launch the network scanning

iv

to maximize their profit and attract more nodes. The results show that our security

approaches are able to detect a deceptive service provider with high probability while

reducing the overhead on the service requester which paves the way to design effective

SSLA enforcement mechanisms.

v

ACKNOWLEDGEMENTS

I am grateful for my dissertation committee chair Professor Weichao Wang for his

guidance, encouragement and patience in completing this dissertation. I am also

thankful for Professor Yu Wang for his advice and mentoring during the journey.I

would like to extend my thanks to the dissertation committee members for their

valuable insight including Dr.Mohammed Shehab, Dr. Jinpeng Wei and Dr. Jun-tao

Guo.

I would like to thank my wife Daryen and my wonderful kids Omar and Mila for

being supportive during the PHD journey. I would like to thank my family especially

my father Ali who taught me perseverance and hard work and my lovely mom Alwah

who inspired me with kindness and wisdom and all my siblings for their loving and

support during the journey.

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1: Introduction 1

1.1. Motivation 1

1.2. Problem Statement 5

1.3. Contribution 5

1.4. Outline 6

CHAPTER 2: Security Service Level Agreement 7

2.1. SSLA Definition 7

2.2. SSLA Benefits 7

2.3. SSLA key entities 8

2.4. SSLA Elements 8

2.5. SSLA cloud Standards 9

2.6. Threat Model 10

2.7. SSLA Cloud Architecture 10

CHAPTER 3: Related Work 13

3.1. SSLA Knowledge Representation 13

3.2. Cloud Audit 14

3.3. Runtime Security Monitoring and Enforcement 15

3.4. SSLA verification in cloud 16

vii

CHAPTER 4: Proof of Encryption: Enforcement of Security Service Level
Agreement for Encryption Outsourcing

18

4.1. Introduction 18

4.2. Related Works 20

4.3. The Proposed Approach 21

4.3.1. Expected Properties of Proof-of-Encryption
Algorithms

21

4.3.2. System Assumptions 22

4.3.3. Proposed Mechanism for Scenario 1 23

4.3.4. Proposed Mechanism for Scenario 2 26

4.4. Implementation and Experimental Results 35

4.4.1. Detection of Encryption-On-the-Fly Attack 35

4.4.2. Cross-Comparison Detection of Symmetric Encryption
Results

36

4.5. Discussion on Security of Approaches 38

4.6. Conclusion 39

CHAPTER 5: Proof of Outsourced Encryption: Cross Verification of Se-
curity Service Level Agreement

41

5.1. Introduction 41

5.2. Related Works 42

5.3. Proposed Mechanism for Homomorphic Encryption Based
Verification

42

5.3.1. Correctness Verification of the Proposed Approach 47

5.4. Comparison to Public Auditing of Outsourced Storage 50

5.4.1. Achievements in Public Auditing of Cloud Storage 50

viii

5.4.2. Challenges and Potential Improvement to our
Approach

51

5.5. Implementation and experimental results 53

5.5.1. Homomorphic Encryption Based Detection 53

5.6. Conclusion 54

CHAPTER 6: Proof of Network Security Services: Enforcement of Secu-
rity SLA through Outsourced Network Testing

56

6.1. Introduction 56

6.2. Related Work 58

6.3. Proof of Network Security Services: Proposed Approach 60

6.3.1. Inadequacy of Penetration Testing 61

6.3.2. Expected Properties of Proof-of-Network Security
Services

62

6.3.3. System Assumptions and Attacker Model 64

6.3.4. Proposed Approach 65

6.3.5. Analysis of Detection Accuracy and Overhead 69

6.3.6. Reducing False Alarms 71

6.4. Quantitative Results 72

6.4.1. Detection of Time-Varying SSLA Enforcement 72

6.4.2. Mitigating Impacts of Packet Removal along the Path 73

6.4.3. Future Extensions 75

6.5. Conclusion 76

ix

CHAPTER 7: Incentivisation of Outsourced Network Testing: View from
Platform Perspective

77

7.1. Introduction 77

7.2. Related Work 79

7.3. Incentivisation of Outsourced Network Testing 81

7.3.1. System Assumptions 82

7.3.2. Working Procedure and the Cost Model 84

7.3.3. Heuristic Algorithms 90

7.4. Quantitative Results 92

7.4.1. Achievable Profit vs Heuristic Approaches 92

7.4.2. Comparison of Heuristic Approaches 94

7.4.3. Future Extensions 97

7.5. Conclusion 98

CHAPTER 8: Conclusions 100

References 102

x

LIST OF TABLES

TABLE 4.1: Symbols used in the chapter. 24

TABLE 6.1: Symbols used in the chapter. 65

TABLE 7.1: Symbols used in the chapter. 84

TABLE 7.2: Maximum profit vs heuristic approaches. 93

xi

LIST OF FIGURES

FIGURE 2.1: SLA Structure diagram 11

FIGURE 4.1: Application scenarios of PoE approaches. 22

FIGURE 4.2: Overview of the approach for scenario 2. 27

FIGURE 4.3: Only data blocks submitted to multiple providers can be used
for detection of SSLA violations.

34

FIGURE 4.4: Detection of on-the-fly encryption attacks through changes in
network delay.

36

FIGURE 4.5: Detection probability as the number of data blocks changes. 38

FIGURE 5.1: Merkle’s hash tree for integrity verification of encryption results. 45

FIGURE 5.2: Detection probability of the homomorphic encryption approach. 53

FIGURE 6.1: Application scenarios of the proposed approach. 64

FIGURE 6.2: Overview of the approach. 66

FIGURE 6.3: Detection capability of the approach. 71

FIGURE 6.4: Detection capability under traffic bypass. 73

FIGURE 6.5: Detection capability when we send along multiple paths. 74

FIGURE 7.1: Application scenarios of the proposed approach. 82

FIGURE 7.2: Testing capacity forms a large pool. 89

FIGURE 7.3: Greedy assignment algorithm when each task must be assigned
to a single tester.

91

FIGURE 7.4: Relationship between the maximum profit and profit of different
mechanisms.

94

FIGURE 7.5: Detection capability when we send along multiple paths. 96

FIGURE 7.6: Detection capability when we send along multiple paths. 97

xii

LIST OF ABBREVIATIONS

CTP Cloud Trust Protocol.

HE Homomorphic Encryption.

PHE Partially Homomorphic Encryption.

PoE Proof of Encryption.

SLO Service Level Objective.

SSLA Security Service Level Agreement.

TTPP Trusted Third Party Provider.

CHAPTER 1: Introduction

This chapter is organized as follows: Section 1.1 introduces the research motivation,

then Section 1.2 describes the concept of Security Service Level Agreement (SSLA) in

the cloud model. Then, Section 1.3 discusses the chapters contribution and Section

1.4 outlines the research proposal.

1.1 Motivation

Recently, the cloud-edge computing paradigm has attracted great attention from

both academia and corporations for its great value in reducing costs, providing better

utilization of resources and ensuring the continuity of services provided to customers.

Furthermore, the cloud-edge services provide stability and easy use, and execute

massive amounts of computation. Gartner research group predicts that public cloud

providers will earn more than 100 billion dollars by 2020, only by providing Cloud

Application Services (SaaS) to customers [Gartner(2019)]. Small and Medium Enter-

prises (SMEs) rely heavily on cloud providers to reduce operation costs and receive

reliable services. The main common cloud providers can be categorized as Infrastruc-

ture as a Service (IaaS), Platform as a Service (PaaS) ,Software as a Service (SaaS)

and Security as a Service (SECaaS). The growing popularity of cloud computing

providers has directly stimulated businesses and investors to outsource services by

providing affordable security services. Conversely, the lack of security enforcement

mechanisms and the massive number of incidents continue to occur causes users to

be wary about the adoption of cloud services.

As a result, security researchers have argued that storing files in the cloud could

introduce new threats. For instance, a recent report published by Symantec [Syman-

2

tic(2019)] indicated alarming results where one of the top threats is managing identity

and authentication environments, where 65% of users do not even apply multi-factor

authentication and 70% percent do not use encryption. In many cases, cloud security

compliance mostly relies on third parties to check whether the provider is compliant

with security standards and best practices. Another way to verify security property

compliance is by applying attestation and cryptographic techniques to verify cloud

compliance from the users side. This is cost effective and ensures the user cannot rely

on third party providers.

Cloud providers and customers sign a Security Service Level Agreement (SSLA),

which is an agreement between the service requester and cloud-edge provider to iden-

tify cloud security services, metrics agreed upon and overall the responsibilities of the

service provider. This agreement entails that the providers are required to sign and

adhere to Security Service Level Agreements (SSLAs) to set specific performance and

security metrics. These metrics are the quantifiable measurements that are mandated

in the agreement to notify the user if any violation occurs. In cloud-edge computing,

the customer is incapable of quantifying the cloud-edge services the user is receiving.

Thus, cloud providers guarantee the protection of customer stored data and appli-

cations running by either outsourcing security services to third parties or allowing

the user to apply security controls, such as encrypting one's own data and using

sanitization methods to protect that data.

Cloud computing has been facing several security threats that impact cloud cus-

tomers severely, such as data breaches, insufficient-access control management, and

limited cloud usage visibility [Alliance(2019)]. First, one of the major threats is data

breaches, where confidential information is disclosed by a malicious user or entity.

The lack of cloud user knowledge of the undetected threat, if it is detected, exacer-

bates the problem and causes uncertainty about whether the data is being protected

from the cloud service provider or any third party involved with the service provider.

3

Secondly, weak identity and access management policies, the lack of protecting cre-

dentials, cryptographic keys, and digital certificates expose cloud resources to serious

threats. Finally, this breach occurs when the company is unable to detect whether

the cloud service model that is being adopted is secure or malicious. Consequently,

the occurrence of these significant threats causes system security researchers to de-

sign audit schemes and security approaches to investigate the credibility of cloud-edge

providers.

This research domain has several challenges, such as the lack of disclosing security

enforcement metrics from cloud providers due to maintaining the confidentiality and

non-disclosure agreement with customers. Disclosing sensitive information about spe-

cific security controls being adopted would allow the attackers to infiltrate through

the network or system using the announced published security parameters.

The second challenge is developing a lightweight security enforcement mechanism

from the user's side to verify data security,but, this is not a straightforward problem.

The data security verification is intricate because of the complex security issues of the

cloud model and a few cryptography based security mechanisms exist that assume

users can audit cloud providers without their knowledge. One of the main papers

in this domain proposed Proof of Retrievability (POR) [Shacham and Waters(2008)],

which supports public auditing schemes. Next, this dissertation is precisely interested

in studying the problem of file encryption and network scanning in cloud outsourcing,

which has never been discussed in the literature.

Despite the enormous benefits the cloud services provide, the service provider cheats

the user by degrading security services to reduce the computation cost by violating the

SSLA, while storing the data in the cloud. Therefore, several papers have focused on

developing verification schemes to detect if the provider is cheating or trying to reduce

the SLO or metrics value parameter to gain a competitive advantage over other service

providers. Several approaches have been proposed to study the remote verification of

4

security properties to ensure that the confidentiality and integrity of the data stored

in the cloud are honored as agreed in the SSLA. First, the researchers investigated

the integrity of the outsourced data in the cloud to discover whether the stored file

is corrupted due to internal malicious use instance [Shacham and Waters(2008)].

Secondly, the thread of research is focused on developing audit schemes for cloud

outsourced data to guarantee data sharing in the cloud environment, while hiding

sensitive information [Wang et al.(2010)Wang, Wang, Ren, and Lou]. It is notice-

able that most of the provided security approaches assume that there is a third-party

auditor (TPA) residing between the cloud and the user side to conduct the verifica-

tion and enforcement of security properties. In addition, the approaches are focused

mainly on guaranteeing the integrity of the data by ensuring that the modification

of the file blocks are maintained and tracked. Nevertheless, the trusted third party

can be compromised, thus, disclosing confidential client information. Consequently,

user-centric enforcement mechanisms are needed to conduct verification directly from

users to cloud-edge providers with no other third-party intervention. However, in

this research approach, this proposal assumes that the cloud provider who outsources

customer's data is not to be trusted. Therefore, there is a need to develop a novel

security enforcement mechanism to verify file encryption in the cloud. End users of

cloud-edge computing services may have an agreement with cloud providers regard-

ing file encryption algorithms, verifying the key length, and maintaining this level of

protection. For instance, the agreement may specifically state that the cloud-edge

provider shall encrypt the data with AES algorithm and the key size 256-bit length.

However, how the end users are able to verify that the level of encryption is main-

tained. Thus, one way to achieve this is by selecting a random chunk of data and

sending several challenges to the provider without knowing what data segment has

been selected. The cloud-edge provider will not be able to identify the selected data

for verification. The user adapts a challenge-and-response approach to test whether

5

the provider is going to maintain the same level of protection on the outsourced data

without knowing that they are being verified from the user side. For such approaches,

maintaining low overhead while verifying the data is required to guarantee the effi-

ciency of the proposed approach. Lastly, ensuring that the provider is not capable

of applying encryption on the fly attacks, which has been detected in our approach,

is needed to detect SSLA violations. In the context of cloud computing, there are

two common security audit approaches. Public auditing is where the user relies on a

third-party auditor to handle verification sent to the cloud provider. Private auditing

is directly conducted between the user and the cloud provider. In this research, we

use private auditing techniques to verify several SSLA metrics are honored by the

service provider.

1.2 Problem Statement

Cloud audits are security mechanisms to verify and validate cloud provider's com-

mitment to the service requester to make sure the cloud provider is genuine and

trustworthy. We aim to develop several user based security mechanisms to detect

SSLA violations.

1.3 Contribution

This dissertation presents multiple security mechanisms to enforce security ser-

vice level agreement (SSLA) properties to detect SSLA violations.First we discuss

the Proof of Encryption (PoE), we define the expected properties of PoE mecha-

nisms,then we design two mechanisms for PoE that allow end users to verify the

encryption operations by service provider. Next, we study the problem of proof of

outsourced encryption, we begin with defining the expected properties and propose

the symmetric and homomorphic encryption cases and design the challenge and veri-

fication procedures. We propose an infrastructure through which an end user can test

its network security services with configurable frequency and self-crafted test cases.

6

The integrity and authenticity of the test are properly protected. Third,we analyze

the detection capability and overhead of the proposed approach. In the fourth con-

tribution, an incentive model is developed to incentivise network nodes to participate

in the network security verification.

1.4 Outline

The rest of this dissertation is organized as follows: We discuss the SSLA Cloud

major concepts in Chapter2. Then, we review some related works in chapter 3. In

Chapter 4 we propose the proof of encryption, the detailed description of the security

approach is presented. In Chapter 5 we present the proposed approach for the Proof of

Outsourced Encryption in detail and analyze the correctness of the proposed protocol

using BAN logic. Next, we present the Proof of Network Security Scanning Services

and discuss the results in Chapter 6. In Chapter 7 we present the last contribution

Incentivisation of outsourced network testing. Last but not least we conclude our

work and discuss the future work in Chapter 8.

CHAPTER 2: Security Service Level Agreement

2.1 SSLA Definition

The National Institute of Standards and Technology (NIST) [NIST2(2015)] defines

Service Level Agreement as “A service contract between a service provider and a

service-using organization that defines the level of service to be provided,such as the

time to recover from an operational failure or a system compromise”. This legal

agreement between several parties entails terms of services where a provider offers

security services or leases security appliances to customers. The SSLA also touches

upon data confidentiality, rights to access the data and states each party restrictions

and penalties when a violation is detected. In order to measure Service Provider's

commitment with the SSLA,the agreement communicates Service Level Objective

(SLO) and the value assigned for each objective.

2.2 SSLA Benefits

The SSLA protects users and provider's rights by guaranteeing transparent and

dependable services. The following are some key benefits the SSLA would provide to

satisfy all parties and manage conflicts in case of violations:

• Clearness: The SSLA document should be written in a clear way, so it can be

understood and explained to the parties involved.

• Doable : The services and metrics shall be achieved by the provider as commit-

ted or a compensation shall be paid to users.

• Enforceable: The SSLA security service metrics can be enforced and validated

by users and third party auditors.

8

• Quantifiable: The SSLA security services can be measured to evaluate the ef-

fectiveness of the security services while running.

2.3 SSLA key entities

The SSLA involves key entities that are engaged not only in the SSLA planning ,

negotiation but also in verification and enforcement :

1. Users : Cloud users are the data owners, they are capable of uploading and

downloading files and running web services on the cloud instead of hosting

physical servers and network devices to run the business with less cost.

2. Service Providers : The provider runs a massive amount of networking and

infrastructure appliances to gain profit and provide cost effective services for

customers.

3. Third Party Auditor : This entity works with the user to verify that service

provider services are compliant with SSLA terms and metrics.

2.4 SSLA Elements

Service Description: The Service Provider publishes the service description

to outline cloud services, the charged metrics such as MTTD (meantime to detect) as

specified in the agreement. Moreover, the service description specifies functions and

the time period when the users are charged either monthly or based on the usage of

the metrics.

Service Credit: The amount of money the Service Provider credits cloud

users when a violation occurred. Once a violation is detected the service provider

shall apply the SSLA renegotiation phase to establish or terminate the agreement

and compensate the cloud user. It is important to note that the two parties might

not reach an agreement that could lead to a service termination.

9

Security Metrics: As mentioned in the previous section that the security

metrics are assigned a value to measure SSLA service commitment. The value is rep-

resented as a percentage or a Boolean condition.These metrics vary from one cloud

security service to another based on the frequency the value should be measured. The

metrics are classified into two categories,technical metrics, to quantify the effective-

ness of the cloud service and to enforce certain security controls for monitoring. The

second type of the security metrics are the managerial metrics, this category includes

the security policies, standards and procedures that the service provider is bound by.

Payments and Exclusions: The cloud users shall request a credit when the

Service Provider commitment is not met or a violation is detected. The SSLA exclu-

sions express the factors that are out of control and the provider is not responsible

for either due to user negligence or an interference of a third party entity.

2.5 SSLA cloud Standards

Cloud computing is widely adapted, the adherence to well-established standards

are becoming crucial to regulate all cloud services. The following are some standards

accompanied the cloud model:

• US Health Insurance Portability Accountability Act (HIPPA) [HIPPA(2015)]

• US Sarbanes-Oxley Act(SOX) [SAOX(2022)]

• Payment Card Industry Data Security Standard(PCI DSS) [PCI-DSS(2022)]

• Open Web Application Security Project(OWASP) [OWASP2(2022)]

• US Fedral Information Security Management Act (FISMA) [FISMA(2022)]

The cloud users play a big role in the cloud audit and enforcement, several ap-

proaches developed to meet users needs and allow them to gain faith in service

providers. The models provide a baseline foundation for cloud technical and ad-

ministrative controls :

10

Cloud STAR Roadmap: This model is developed by Cloud Security Alliance

(CSA) , the Security Trust Assurance and Risk(STAR) [Standard(2022)] is a very

solid framework to audit cloud resources and ensure comparability among standards.

Cloud Controls Matrix: is a framework consisting of cloud security controls,

the standard provides very detailed and structured security controls that cover sev-

eral security domains.Some experts claim that the standard is the currently effective

standard.

C5 Cloud Controls [Control(2022)]: The cloud computing compliance cat-

alog is developed by the German Federal Office for information security, it combines

several standards such as ISO 27001, cloud security matrix and BSI publications.

2.6 Threat Model

In this work, we assume that the Service Provider is untrusted, the provider does

not intentionally jeopardize data confidentiality and integrity to disclose user infor-

mation. However, the provider has the intention to downgrade or evade services as

agreed in the SSLA to serve his performance needs. Given the above assumption, we

aim to design several SSLA enforcement mechanisms to detect a service provider who

violate the SSLA.

2.7 SSLA Cloud Architecture

Generally, the cloud model is organized into two categories:

1. Single_tenant: This type of architecture is designed for businesses who prefer

to run a separate infrastructure, it is usually customized for the customer to

provide better security for data protection.

2. Multi_tenant: The cloud server is basically shared among several cloud cus-

tomers where all data partitions has the same hardware and platform configu-

rations. Therefore, several entities have access to the cloud resource and thus

the risk of storing confidential data and running web services may lead to data

11

theft and disclosure.

Having established the differences between single tenant and multi-tenant cloud, it

is very important to mention that the cloud has several deployment models such as

public, private and hybrid cloud. The private cloud allows more controls on the assets,

while the public cloud controls all software and hardware and offers only services to

users.

Figure 2.1: SLA Structure diagram

The security SLA comprises several phases including the negotiation, agreement

signing, implementation, enforcement and continuous monitoring for verification, and

finally remediation to compensate customers. Several cloud Security SLA frameworks

are proposed such as SPECS [Casola et al.(2015)Casola, De Benedictis, Rak, and Vil-

lano] and SLA Security by Design (SSDE) [Casola et al.(2020b)Casola, De Benedictis,

Rak, and Villano]. SPECS framework is a European project aims to automate the

SSLA life cycle starting from negotiation to enforcement in PaaS (Platform as a

Service). The SPECS application integrated with the cloud services to administer

12

security SLA stages while connecting all cloud services modules. Furthermore, one

key feature of SPECS is enabling agents to monitor SLO parameters, then generate

and collect data that are refined by the enforcement agent to detect an SSLA viola-

tion. The SSDE model is developed to facilitate the development of a secure cloud

application to tackle security risks and combine security in the overall development

process. The idea is to identify software vulnerability while conducting security as-

sessment, the vulnerability is divided into categories such as data ownership or data

integration to mitigate vulnerabilities earlier in the design process.

Another Security SLA framework called LoM2HiS is developed [Emeakaroha

et al.(2010)Emeakaroha, Brandic, Maurer, and Dustdar] to assign a security metric

to specific high level security parameters. The enforcement module does the metric

assignment to SLO for run time monitoring. The ultimate goal is to monitor security

metrics and automate the security enforcement to detect SSLA violations. Speci-

fying Security requirements studied by researchers [Kaaniche et al.(2017)Kaaniche,

Mohamed, Laurent, and Ludwig] , they designed an SSLA monitoring system and a

description language relying on rSLA model and their enhanced framework Sec-rSLA

aims to enforce SSLA by dividing the cloud service into elements and then assign a

measured security properties for each element.

CHAPTER 3: Related Work

In this chapter we present and discuss prior research that relates to the problem of

SSLA knowledge representation and verification for outsourced data. We also explore

previous research that investigates user based security verification and enforcement

approaches for data.

3.1 SSLA Knowledge Representation

The notion of knowledge representation is concerned with expressing description

of an object to reason about the entities and their relationships. During SSLA provi-

sioning phase, SSLA model representation is inarguably mandatory to devise SSLA

contracts, parties involved and processes in place for compliance and verification

of SSLA contract. The way in which SSLA is represented was studied extensively,

in [Hale and Gamble(2013)], [Lee et al.(2015)Lee, Kavi, Paul, and Gomathisankaran]

several SSLA cloud compliance terms ontology were developed and then each SSLA

term is linked to a security control relying on a security standard and federal regula-

tion such as NIST SP800-53 and HIPAA. The purpose is to automate the process of

SSLA provisioning where each security concept is represented as a class with reference

to standards. Furthermore, SSLA contract establishment ontology is presented [Griffo

et al.(2019)Griffo, Almeida, Guizzardi, and Nardi] to describe SSLA contract over-

all life cycle and describe each customer and a service provider legal involvement

in the SLA contract to specify their roles and responsibilities. Afterward, the de-

vised ontology is used as an input to Archimate language model to express SSLA

service contract entities. However, this approach is limited to external entities and it

overlooks individuals involvement inside an organization in SSLA compliance.

14

3.2 Cloud Audit

The major cloud audit models can be categorized into public audit and private audit

approaches. The public audit ensures that the Trusted Third Party Provider (TTPP)

is involved while conducting the security audit. On the other hand, the private

audit enables users to design their own verification mechanism independently [Zhou

et al.(2018)Zhou, Fu, Yu, Su, and Kuang]. Previous lines of research were interested

in studying public audit schemes, the authors [Kim and Jeong(2017)] proposed a

public auditing scheme for cloud shared data using constant verification time. Their

scheme is resilient against key replacement attack and passive KGC attack. Tian et

all [Tian et al.(2015)Tian, Chen, Chang, Jiang, Huang, Chen, and Liu] developed a

public batch auditing scheme where the TPA uses Dynamic Hash Table (DHT) to

keep track of the audit task and minimize computation and communication overhead.

There is undoubtedly a need for a user based security audit to verify service provider

security services. Several research efforts have been proposed to engage users to verify

cloud security properties based on the blockchain. The authors [Hao et al.(2018)Hao,

Xin, Wang, Jiang, and Wang] proposed a remote audit approach using Proof of

Work (PoW) as a distributed consensus mechanism. This approach can bring several

benefits, it reduces collusion and cheating among Third party Auditors (TPAs) and

minimizes user’s overhead. However, every peer in the blockchain network participates

in the audit process and this would minimize audit efficacy.

Most early studies such as [Lu et al.(2020)Lu, Zhang, Shi, Kumari, and Choo]

utilizes Hyperledger Fabric to design a data integrity audit approach to verify files

integrity in untrusted environment. The user can assign two private groups of nodes

as TPAs to conduct the security audit. In addition, they designed two selection

algorithms to select the right TPA that meets user requirements. Next, since most

public audit schemes have a serious problem in certificate and key management, [Yang

et al.(2020)Yang, Pei, Wang, Li, and Wang] developed a public audit scheme based

15

on blockchain, it provides traceability , support for dynamic hash table and resistance

against a malicious auditor. Moreover, logs processing and analysis is the key method

to monitor and detect incident. This research [Wang et al.(2019a)Wang, Peng, Tian,

Chen, and Lu] proposed a public auditing scheme where a Third Party Auditor (TPA)

is able to check the accuracy of the service provider logs using Merkle hash tree, only

the root node is stored on the blockchain. This will reduce the computation cost on

the service providers and generate log tags that cannot be altered.

3.3 Runtime Security Monitoring and Enforcement

Runtime security enforcement enables cloud tenants to verify applications dur-

ing run time to meet regulations and compliance standards. It also enhances user’s

trust in the cloud service provider. For this reason a considerable amount of lit-

erature has been published to discuss enforcing security property in the cloud.

The authors [Madi et al.(2016)Madi, Majumdar, Wang, Jarraya, Pourzandi, and

Wang], [Majumdar et al.(2015)Majumdar, Madi, Wang, Jarraya, Pourzandi, Wang,

and Debbabi] proposed a method to check cloud security compliance of access con-

trol policies and then discover security violations using formal methods. However,

their approach can detect violation after it occurs and this can impact the data

confidentiality and integrity. Another thread of research studies monitoring net-

work traffic. Previous research [Dastjerdi et al.(2012)Dastjerdi, Tabatabaei, and

Buyya], [Emeakaroha et al.(2010)Emeakaroha, Brandic, Maurer, and Dustdar], [Trap-

ero et al.(2017)Trapero, Modic, Stopar, Taha, and Suri] modeled monitoring capabil-

ities, proposed a framework, developed a security SLA approach to quantify security

SSLA measurements, and identified circumstances that might cause SLA violations.

Multi-tenant cloud faces several security challenges that need to be addressed.

Thus, the authors [Rios et al.(2017)Rios, Rak, Iturbe, Mallouli et al.] presented an

enhanced approach for MUSA security assurance [MUSA(2015)] where monitoring

agents are installed in the virtual machine to calculate the security metrics based on

16

network and system agents. The agents passively monitor the traffic and combine

several events to capture incidents enforcing SSLA. The other system agents monitor

active system process , memory and buffer size to detect abnormal behaviour.

3.4 SSLA verification in cloud

Over the last decade we have witnessed a significant revolution in cloud services

including security services provided by gigantic tech companies. These security ser-

vices vary from threat detection, Firewall management and cryptographic services.

The service provider signs SSLA with customers to receive the security services as

agreed in the SSLA agreement. This agreement explains the key characteristics of

the cloud security service and initiates a common understanding for services providers

and customers.

In order to verify SLA cloud services, many SLA enforcement approaches have been

proposed.The authors [Silva et al.(2019)Silva, Silva, Rocha, and Queiroz] developed

a model to calculate and measure service trust relying on security measurements. In

their work, each security measurement is assigned a risk value to measure the service

provider's trustworthiness in SSLA. The authors [Liu et al.(2020)Liu, Xia, Wang,

Zhong, and Li] proposed a cloud behaviour SSLA model based on temporal logic to

express SSLA as a series of properties and constraints instead of a fixed measurable

values, then they applied model checking using a verification tool called UPPAAL to

verify the cloud service compliance with security SSLA. To better validate SLA , a

probabilistic model checker precisely using Continuous Time Markov Chain (CTMC)

is presented [Krotsiani et al.(2017)Krotsiani, Kloukinas, and Spanoudakis], first a

WS agreement language model is extended to include SLO. Second, using PRISIM

they are able to detect the probability of having SLA violations on data confidential-

ity in regards to specific asset. One of the security requirements in cloud SSLA is

resource isolation and layer consistency, this work [Madi et al.(2018)Madi, Jarraya,

Alimohammadifar, Majumdar, Wang, Pourzandi, Wang, and Debbabi] examines this

17

property by applying Constraint Satisfaction Problem (CSP) to verify this property.

First, the Isolation rules are represented in First Order Logic(FOL) to express each

entity variable and relationships relying on cloud real data. The ultimate goal is to

pass these rules through a solver to examine whether the constraint is satisfied or not

to detect any violations.

Proactive verification of service level agreement is another new thread of research

to address SLA dynamic changes and the detection of SSLA violations that might

occur in the future. The authors in [Nawaz et al.(2018)Nawaz, Janjua, Hussain,

Hussain, Chang, and Saberi] proposed an event driven methodology to specify a

certain reaction to violation events once a violation is predicted to happen. In order

to adapt probabilistic reasoning and predict future events, they divided their approach

into two levels, the first level is to discover SLA discrepancies and then predict what

will occur by applying state constraints which are rules to define each SLA metric

quantified during specific time. They also rely on effect constraint rules to correlate

each metric transition to another state to predict SLA violation.

Another work designed a proactive approach called LeaPS [Majumdar

et al.(2019)Majumdar, Tabiban, Jarraya, Oqaily, Alimohammadifar, Pourzandi,

Wang, and Debbabi] to automatically study system logs of events dependencies at

run time. The adaption of Bayesian probability network is very useful to examine

cloud system logs in live and test cloud environments.

CHAPTER 4: Proof of Encryption: Enforcement of Security Service Level

Agreement for Encryption Outsourcing

4.1 Introduction

With the fast development and deployment of cloud and edge computing, a large

portion of data processing and storage operations are actually outsourced to various

types of service providers. For example, according to Forbes, about 77% of enterprises

have at least one application or a portion of their enterprise computing infrastruc-

ture in the cloud. Service providers and cloud customers often use Service Level

Agreement (SLA) to determine the committed resources or responsibilities [Sfon-

drini et al.(2015)Sfondrini, Motta, and You]. Since service providers often charge

end users based on the amount of resources that they use (e.g.CPU cycles, network

bandwidth, and memory), verification mechanisms have been designed so that claims

from service providers can be verified [Akter and Whaiduzzaman(2017)] [Giachino

et al.(2016)Giachino, de Gouw, Laneve, and Nobakht].

In parallel to the proliferation of cloud computing is Security-as-a-Service (SaaS)

[Khettab et al.(2018)Khettab, Bagaa, Dutra, Taleb, and Toumi], [Sun et al.(2015)Sun,

Nanda, and Jaeger]. Here end users depend on third parties to scan their network

traffic, hard drive, or even execution states in systems to detect vulnerabilities and

defend against on-going attacks. However, SaaS faces a serious challenge, which is

the verification of services that are actually delivered. While the resources in a tra-

ditional SLA such as CPU cycles can be roughly audited based on the computation

speed [Zhou et al.(2015)Zhou, Zhang, Yu, and Guo], the execution of security SLAs

cannot be verified based on only the detection results. Below we describe an ex-

ample. Assuming that an end user out-sources data storage to a service provider.

19

The Security SLA requires that data must be encrypted by a symmetric encryption

algorithm not weaker than AES-256. Restricted by available computation resources

and remaining energy, the data source cannot conduct encryption by itself. Therefore

,it needs to outsource the operations. However, the service providers have motiva-

tions to use a weaker encryption algorithm (or even store just plain text) to reduce

the computation cost and electricity bill. Please note that this challenge is different

from the Proof-of-Retrievablity [Tan et al.(2018)Tan, Hijazi, Lim, and Gani] problem

since we care about the format in which data is stored instead of whether or not the

provider has it. We need a new approach to solve this problem.

In this chapter, we propose to design mechanisms to achieve proof of encryption

(PoE). We assume that the end customer has relatively weak computation resources

and cannot accomplish all encryption operations by itself (it may or may not have

resources to encrypt selected data blocks). The service providers will encrypt data

with a predetermined algorithm and key strength. To prevent a service provider from

cheating, the end user needs to verify some of the encryption results. There are sev-

eral expected properties, such as randomness during data selection and configurable

overhead, of the PoE mechanisms. We propose two mechanisms based on whether

or not the service requester (aka end user) knows the encryption key. Through both

analysis and experiments, we evaluate the proposed approaches on detection probabil-

ity, overhead, and robustness to false results. Our evaluation shows that the proposed

approaches allow end users to achieve proof-of-encryption with high probability and

configurable overhead.

The contributions of the chapter can be summarized as follows. Firstly, we identify

that compared to other types of SLAs, it is fairly difficult to verify the execution of

security SLAs. As a special example, we discuss the problem of proof of encryption.

Secondly, we define the expected properties of PoE mechanisms. Thirdly, we design

two mechanisms for PoE that allow end users to verify the encryption operations by

20

service providers. Last but not least, we evaluate the proposed approaches through

both analysis and experiments.

4.2 Related Works

Since many users of cloud computing are middle size or small size business, they

cannot afford a special security team for the companies. Therefore, outsourcing the

security services becomes a natural choice. Several efforts have been made to pave

the way for auditing of the services. For example, in [Luna et al.(2015)Luna, Suri,

Iorga, and Karmel],the authors propose to firstly map security SLAs to Service Level

Objects (SLO). Cloud service providers (instead of end customers) need to assess

the fulfillment of the SLOs. Similarly, in Cloud Trust Protocol (CTP) [CloudTrust

Protocol Working Group(2015)], the cloud providers build an open API set to enable

end customers to query providers about the security level of their services. Another

factor that the authors in [Luna et al.(2015)Luna, Suri, Iorga, and Karmel] identify

for security SLA enforcement is standardization. From this perspective, ISO/IEC

19086 [EC Cloud Select Industry Group (C-SIG)(2014)] and EU's General Data Pro-

tection Regulation (GDPR) [Erkuden Rios and Eider Iturbe and Xabier Larrucea

and Massimiliano Rak and etc.(2019)] could become pioneers. Cloud companies of-

ten pay close attention to data storage encryption. For example, Concentra Health

agreed to a settlement of $1.7 million for failing to meet industry-standard data en-

cryption expectations [HIPPA(2015)].Another thread of research in this domain is

the establishment of ontology for security feature understanding [Lee et al.(2015)Lee,

Kavi, Paul, and Gomathisankaran]. This scheme provides a formal framework for

representing knowledge for potential logic inference. While the approach allows end

users to understand the security agreements with a provider, its auditing efforts focus

on compliance with federal regulations, instead of fulfillment of security operations.

Based on the analysis, we can see that there is not much effort in enforcement of se-

curity SLAs in cloud computing environments, especially for the fulfillment by cloud

21

providers. More research is needed to solve this problem.

4.3 The Proposed Approach

In this section, we will present the details of the proposed approaches. We will first

analyze the expected properties of a Proof-of-Encryption mechanism. We will then

describe the working procedures of the protocols. We will also analyze the detection

capability of the proposed approaches.

4.3.1 Expected Properties of Proof-of-Encryption Algorithms

Randomness: The goal of the algorithm is to prevent a service provider from

violating the SSLA by selectively encrypting only a portion of data, using a weaker

encryption algorithm, or skipping encryption at all. To avoid incurring too much

overhead at the end user, it can only verify encryption results of a small portion of

data. Therefore, the selection procedure must be robust against pre-computation or

guessing attacks. In other words, a service provider cannot predict the segments of

data that the requester will challenge.

Robust against encryption on the fly attack: Since the requester will chal-

lenge the service provider and the response must be calculated based on both the

challenge and the data encryption results, the approach must be robust against en-

cryption on the fly attacks. In other words, the requester must be able to identify

whether or not the encryption operation is conducted only after the provider receives

the challenge.

Configurable overhead: Since a service requester usually has very limited com-

putation and communication resources, the proposed approach needs to support con-

figurable overhead. Quantifiable analysis needs to be provided to maintain balance

between detection accuracy/capability and its commitment to resources for verifica-

tion.

22

Support changes to data: This property is directly related to the data applica-

tions. For example, if a small portion of data is updated, the PoE operations should

not be heavily impacted. Otherwise, the adoption of the approach will be greatly

restricted.

From the description above, we can see that the first two properties are used to

prevent the service provider from cheating. The last two properties focus on the

obstacles of adoption. These properties are not bound to any specific encryption

algorithms or cloud architectures. Therefore, the proposed approach can be applied

to various scenarios.

4.3.2 System Assumptions

Figure 4.1: Application scenarios of PoE approaches.

Figure 4.1 shows the application scenario of the proposed approaches. We as-

sume that a service requester R will outsource the storage of data to one or multiple

providers Pi, i = 1 · · · s. Here the providers Pi may belong to the same owner or

multiple owners. Restricted by available computation resources, R cannot afford to

encrypting all data with a strong algorithm by itself. It has to outsource the encryp-

tion operations to Pi. Please note that R has concerns on data confidentiality for

attackers who can compromise the storage devices of Pi. Therefore, it needs to verify

that Pi actually accomplishes the encryption of all data with the agreed algorithm and

key strength as defined in SSLA. To achieve that, R will generate random challenges

and Pi has to respond to them based on the challenges and encryption results.

Since the verification of data encryption happens between the service providers and

data owners, we need to differentiate between two cases: whether or not the service

23

requester R has enough information (about the key) and hardware/software resources

to encrypt selected data blocks by itself. In the first case, if the requester R knows

the encryption key used by Pi and has the CPU power to encrypt some data with

the key (it may not be power efficient for R to encrypt all data), the PoE problem

becomes straightforward. The two parties R and Pi need to verify that: (a) they

know the same information (the encryption results), and (b) the information is not

generated on the fly. A variation of the real-time data flow verification scheme [15]

can be adopted to achieve the goal.

However, in real life under many cases, the storage providers will not share the

encryption keys with the requester. Therefore, even if R has a powerful CPU and

corresponding resources, it cannot verify the cipher-text directly. We must design a

different approach to the problem. In this chapter, we propose a cross-comparison

based scheme to detect a dishonest service provider. The attacker is a dishonest

service provider that tries to save encryption operations through violating the SSLA.

It may have a superfast computer that can encrypt data on the fly. However, to

allow such attacks, the attacker must be able to transmit data from storage to the

computer through a link with very short delay. Similarly, if multiple service providers

are involved, they may try to collude to cheat the requester.

The following table summarizes the symbols.

4.3.3 Proposed Mechanism for Scenario 1

In scenario 1, we assume that both the service provider Pi and the requester R

know the encryption key. At the same time, R has the software/hardware resources

to accomplish encryption on a selected group of data blocks. Therefore, the requester

can randomly select a group of data blocks and challenge Pi for encryption results. In

this way, the property of “randomness” is satisfied automatically. At the same time,

since R can determine the amount of data that it will challenge Pi with, it can control

the committed resources.

24

Table 4.1: Symbols used in the chapter.

R service requester (end user)
Pi service providers
h(x) secure hash function known to both parties
mj jth data message sent by R to P
L each data chunk contains L data blocks
t length of specific patterns in encryption results to

trigger verification operation
qj the probability that Provider Pj skips encryption

of a data block
pj,k the percentage of data blocks provided to Pj

that are also provided to Pk

The major challenge is to prevent Pi from encrypting the data blocks after it re-

ceives the request (encryption on the fly). To differentiate the situation in which

encryption is pre-accomplished from the case in which data is encrypted after the

request is received, we can measure the network delay between the request is sub-

mitted and the response is received. However, a dishonest provider may choose to

hide the computation time in the network transmission delay. For example, based

on BearSSL [16], on an Intel Xeon CPU 3.1GHz, AES-256 CBC mode can encrypt

about 125MB/sec. Based on this measurement result, for a 1KB data block, the

service provider needs only 8µsec to accomplish the encryption. It can easily hide the

delay under the round trip communication time oftens of millisecond between R and

Pi.

To detect this cheating behavior, we propose the following approach. Assume that

the data blocks that Pi needs to encrypt are represented as mj, j= 1 to n. These

data blocks are divided into chunks with the size L. For example, m1 to mL form

Chunk 1, mL+1 to m2L form Chunk 2, so long and so forth. The corresponding

cipher-text blocks are represented as c1, c2,· · · ,cn. Within each chunk, CBC (cipher

blockchaining) mode is used for data encryption. The initial vector(IV) for encryption

can be jointly determined by R and Pi. In this way, we guarantee that within a chunk,

25

multiple blocks cannot be encrypted in parallel.

When the requester R wants to verify that proper encryption operation has been

applied to the data blocks, it will randomly choose one block maL+j(a =0· · · n
L
) in a

chunk and provide a random number r as the challenge. The service provider Pi needs

to return the MAC (message authentication) code hash(r,hash(r,c(a+1L),c(aL+j)

caL + 1)). We can see that the hash result covers the first block, the last block,

and requested block in the chunk .

If Pi has properly encrypted all data blocks and stored them, it just needs to concate-

nate the corresponding cipher text and return the results. On the contrary, should

Pi have violated the SSLA and stored the data in other formats, it has to re-encrypt

the blocks with the secret key determined in the SSLA. Since CBC mode is adopted,

it cannot use parallel computing to accelerate the procedure. It has to encrypt the

blocks one by one. Since the hash result puts c(a+1)L as the first entry, the hash cal-

culation cannot start until the encryption of the whole chunk is accomplished. This

operation will drastically increase the response delay.

4.3.3.1 Analysis

The chunk size L provides a user configurable parameter that can impact the

increases in response time should the service provider conduct encryption-on-the-fly

attacks. The larger is L, the longer time Pi needs to encrypt the whole chunk. In

this way, R can adjust the choice of L based on the network connection quality and

speed between it and Pi. Please note that the goal of initial vector and chain mode

is to prevent an attacker from conducting random encryption of the data. It is not

bound to AES or any other specific encryption function as long as the overhead can

be enforced.

Another manipulation Pi can play is to store only the ciphertext of the first and

last blocks of each chunk. This operation is not attractive to the service provider

because of the following reasons. Firstly, to calculate and store the cipher-text of the

26

last block in a chunk, it needs to accomplish the encryption of the whole chunk since

CBC mode is used. From this point of view, even if Pi decides to store the data

in other formats, the cost of encryption has already been paid. Secondly, since the

challenge of verification covers the cipher text of caL+j, if Pi stores only caL+1 , it

needs to re-encrypt the data blocks to get the value of caL+j. The introduced delay

could still be detected by the requester.

4.3.4 Proposed Mechanism for Scenario 2

In real life scenarios, very frequently the service provider of encryption and storage

and the service requester will belong to different organizations. Therefore, they will

not trust each other on encryption key generation and storage. For example, should

the data confidentiality be compromised because of key disclosure, it will be very

hard to determine accountability if multiple parties know the key. Therefore, more

frequently we need to deal with the scenario in which the requester does not know

the encryption key.

Since R does not know the encryption key, it cannot directly challenge Pi for data

result. Therefore, we need a new approach to randomly select the data blocks/records

and verify their encryption results. In this approach, we assume that the requester R

chooses symmetric encryption such as AES 128 for data encryption. Without losing

generality, we assume that R will choose three different service providers P1, P2, and

P3 to accomplish the encryption and storage tasks. Some of the data blocks that R

sends to the three parties will overlap so that R can cross compare the encryption

results. In addition to R and Pi, we also assume that a certificate authority (CA)

exists in the system and all four parties trust it.

4.3.4.1 Overview of Approach

In this part, we will provide an overview of the proposed approach. More details

will be provided in subsequent parts. First, R will notify P1, P2, and P3 that they are

27

chosen for its encryption and storage task. Each of them will work with CA to get a

new public/private key pair. Please note that this new key pair is associated with a

pseudo ID of each party. In this way, through looking at only the public keys, they

cannot figure out the real identities of the service providers.

After getting the public/private key pairs, the service providers will run a multi-

party Diffie-Hellman key generation protocol [Bresson et al.(2001)Bresson, Chevassut,

Pointcheval, and Quisquater] with the help from R. Again all communications among

the providers will go through R. In this way, they cannot figure out the real iden-

tities of each other. At the same time, the authenticity of exchanged information is

protected by digital signatures with the new private keys.

Figure 4.2: Overview of the approach for scenario 2.

Once the key generation procedure is accomplished, R can distribute different

chunks of data to different providers. Since the providers know only there are other

service providers but not their identities, they cannot collude to manipulate the en-

cryption results. Since the requester R does not know the encryption key, it cannot

directly verify the encryption results. However, it can cross compare the encryption

results from multiple parties since they use the same key. R can either challenge dif-

ferent service providers with the same data blocks or use another method to randomly

choose data blocks. An overview of the approach is shown in Figure 4.2.

4.3.4.2 Detailed Description

Step 1 : Generation of Encryption Key

As shown in Figure 6.2, R decides to choose P1, P2, and P3 to help it encrypt data.

It will notify them and also provide the identity of the CA. Now each provider will

28

contact CA and acquire a new public/private key pair for its temporary identity P ′
1,

P ′
2, and P ′

3. Please note that the temporary IDs are not linked to their real IDs. Once

receiving the new public key certificates, P1, P2, and P3 will share them with R. R

will then distribute the certificates to all providers. At this time, only R and CA

know the real IDs of the providers.

R will choose a finite cyclic group G of order w and a generating element g in G. R

will distribute the generator g and the large prime number P to all three providers.

They will then run the multi-party Diffie-Hellman protocol. Specifically, each provider

will generate its own random number rP ′
i
, calculate g

rP ′
i mod P , and send it to R.

The integrity of the information will be protected by the digital signature associated

with the new temporary ID.

As shown in Figure 6.2, all providers will send their digitally signed shares to R. R

will then forward them to other parties that have not added their shares. Throughout

the procedure, the requester R serves as the center of communication and transmits

packets between the providers. In this way, a provider cannot learn the identities of

other providers and collude with them. At the end of the key generation procedure,

each provider will learn the group key g
rP ′

1
×rP ′

2
×rP ′

3 mod P . The key is protected

by three digital signatures from the providers. The requester R, although passes all

traffic, cannot learn the group secret.

Step 2 : Selection of Challenged Data Blocks

In this part, we will introduce two methods to select data blocks for encryption

result challenge. In the first method, R will send the same group of data blocks to

two or even more encryption providers. These blocks will blend into other groups of

blocks that are sent to them. Since the providers do not know the identities of each

other, they cannot conduct off-line collusion. After confirming that the data blocks

have been encrypted, R will challenge two or more parties with the same group of

data blocks for encryption results. During the challenge-response procedure, R needs

29

to measure two parameters. First, it needs to measure the delay between the request

is sent and the result is received. This is to prevent Pi from conducting encryption-

on-the-fly attacks. Second, R needs to cross compare the encryption results of the

same group of blocks from different providers. If a provider has chosen to violate the

SSLA and uses other encryption algorithms or weaker keys, its encryption results will

be different from those of others. Therefore, R will be able to verify the encryption

results even if it does not know the key.

Letting R select data blocks for challenge, although achieving the randomness

property, has several limitations. First, the distribution of the verified data blocks is

very unbalanced. If a group of blocks are chosen, thousands of consecutive blocks will

be verified. On the contrary, if a group of blocks are not selected, non of them will

be verified. Second, the data access delay could vary a lot depending on the storage

medium. For example, after encryption, a provider may move the data to external

hard drive, or under an extreme condition, a tape drive. Therefore, when a challenge

is received, the provider may need an extended period of time to get data back into

memory. This may lead to increases in false alarms.

To solve these problems, we need to design a mechanism that selects data blocks

for challenges when the encryption algorithm is running. In this way, the data has not

been moved to external devices. At the same time, the selection procedures cannot

be controlled by service providers. A potential solution is the criteria that have been

used for mining in BlockChains. Assume that the requester R and provider Pi have

determined the encryption algorithm, encryption mode, and key strength. R will now

choose a pattern in the encryption result of a data block. If the result satisfies the

pattern (e.g. the first t bits are all ‘0’), Pi needs to report the index of the block to

R. This mechanism has the following advantages.

First, Randomness of Selected Data for Verification

Since the criteria are applied to the encryption results, the provider Pi cannot

30

predict which blocks to encrypt beforehand. The usage of initial vector (IV) prevents

Pi from predicting the encryption results based on similarity of data blocks. From this

point of view, the selection procedure is random. Even the requester R cannot predict

which blocks will be selected. A provider may choose to lie about the encryption

results or the index of the blocks. However, there are other providers and it does not

know to which provider which blocks are shared. Therefore, should it choose to lie,

it will face the risk that the same block may be encrypted by another provider.

Second, Configurable Overhead

Through adjusting the criteria pattern, R can control the probability that any

block is challenged. For example, we can approximate any probability p with the sum

of a group of negative powers of 2:

p = a0 ×
1

20
+ a1 ×

1

21
+ a2 ×

1

22
· · ·+ al ×

1

2l
· · · ; (4.1)

Here the probability p has the value between [0, 1], and the value of ai is either 0 or 1,

depending on the probability we want to approximate. The accuracy of approximation

is determined by the length of the encryption results.

4.3.4.3 Analysis of Detection Accuracy and Overhead

In this part, we will analyze the detection capability and overhead of the proposed

approaches. We will discuss two scenarios when the provider Pi is benign or malicious,

respectively. If Pi is benign, it will encrypt all data blocks based on the SSLA.

Therefore, the only factors that impact the frequency of data verifications are the

choices of encryption algorithm, the initial vector, the key, and the data blocks.

Without losing generality, we assume that when the first t bits of the encryption

results are all ‘0’, it will trigger the verification procedure. For each block, the prob-

ability that it does not trigger verification is (1 − 1
2t
). Here we propose to divide

31

data into windows with the size of L consecutive blocks. If at least one block in a

window satisfies the criteria, we say that the whole window is verified. Therefore, the

probability that no block in vt consecutive windows triggers verification is (1− 1
2t
)vt×L.

Here we will follow the adjustment practice of blockchain mining. To prevent Pi

from cheating, we require that if vt windows of consecutive blocks do not trigger any

verification operations, we will reduce t by 1 bit. In other words, we double the

probability that a block satisfies the verification criteria. Similarly, if ut consecutive

windows have all triggered the verification procedure, we will increase t by 1 so that

fewer blocks will be verified by R. Therefore, the requester R can adjust the choices

of L, vt, and ut to control the probability that a block is verified.

If the provider P is malicious, it needs to find a trade-off between the percentage of

data that it encrypts and the probability that it is detected by the requester. Assume

that the provider has the probability q to not encrypt a data block. Since it does not

encrypt the block, it will not report the index to the requester even if the encryption

result could have triggered verification. Since for each block, the probability that it

triggers verification is 1
2t

, the probability that the provider misses the block is q× 1
2t

.

Note that if another provider encrypts this block and discovers that the encryption

results satisfy the criteria, it will report to the requester and this violation of SSLA

will be detected. Therefore, the probability that in x consecutive blocks the malicious

provider does not miss any blocks that could trigger verification is (1− q
2t
)x.

In real life the situation will be more complicated. It is possible that two providers

both skip the block. Therefore. even if it could have triggered verification, none will

report to the requester. Let us assume that for Provider P1 the parameters have the

values (q1, t1) (P1 has probability q1 to not encrypt a block, and the trigger pattern

covers the first t1 bits.) Similarly, for provider P2 the parameters have the values

(q2, t2). Without losing generality, we assume that t1 ≥ t2. In other words, if the

encryption results satisfy the pattern of provider P1, it will also satisfy the pattern of

32

P2.

For any data block that R provides to both P1 and P2, the scenarios in which a

violation of SSLA by either party is detected can be described as follows: (1) P1

chooses to encrypt the block but P2 decides to skip it; or (2) P2 chooses to encrypt it

while P1 skips it. Now let us examine their probability.

If P1 encrypts the block and the results satisfy its pattern but P2 skips the block,

the probability is

(1− q1)× q2 ×
1

2t1
; (4.2)

Here since t1 ≥ t2, the encryption results will automatically satisfy the pattern of P2.

Under this case, P2’s violation of SSLA will be detected.

On the other hand, if P2 encrypts the block and the results satisfy its pattern but

P1 skips the block, the probability is

q1 × (1− q2)×
1

2t2
; (4.3)

Here we face a problem. An encryption result that satisfies the pattern of P2 may

not satisfy the pattern of P1. To differentiate between the two cases, we need the

provider P2 to send back not only the index of the block but also the encryption

result. In this way, we can tell whether or not the violation of P1 can be detected. So

the probability that P1’s violation can be detected is:

q1 × (1− q2)×
1

2t1
; (4.4)

When we investigate the equations, we can learn the following information. First,

33

since the requester R does not know the encryption key, it can detect an SSLA

violation only when the same data block is sent to more than one provider and their

encryption results differ. Therefore, the higher percentage of blocks that are sent to

multiple providers, the better chance to detect violations. If R can afford it, it should

provide the same data blocks to as many providers as possible. This also assists the

enforcement of data randomness and the prevention of collusion between providers.

Second, although R could choose different patterns for different providers (e.g. t1

‘0’s for provider P1 and t2 ‘1’s for P2), the analysis above shows that R has the best

chance of detecting violations when the patterns of different providers are similar.

At the same time, the detection probability is determined by the longer pattern

between two providers. On one side, the longer is the pattern, the lower chance

that the encryption result triggers verification. Therefore, the detection probability

will be low. On the other side, the longer is the pattern, the lower communication

volume between the providers and requester. Therefore, it makes sense to keep the

pattern length of different providers close to each other. In this way, we reduce the

communication overhead without impacting the detection capability.

Third, we want to analyze the relationship between the detection capability and

the value of q. In other words, what is the best strategy of a dishonest service provider

to avoid detection. If we look at only Equation (2), for P2 to avoid being detected,

it needs to reduce the value of q2, and increases the value of q1. In other words,

it needs to encrypt more data blocks and expects P1 to skip more. Similarly, if P1

wants to protect itself from being detected, it needs P2 to increase q2. If we jointly

consider the sum of the two detection probabilities, we get (q1+ q2−2× q1× q2)× 1
2t1

Analysis shows that the joint detection probability has the double-saddle shape. The

probability is low when both q1 and q2 are very close to 0 or 1. In other words, if

we look at only P1 and P2, they can avoid detection by either encrypting all data

blocks or encrypting none at all. For the latter option, however, they will be caught

34

very soon since the trigger pattern will become very short (thus many blocks should

trigger verification). If there is at least one honest service provider in the system, it

will report data blocks satisfying the criteria and the dishonest ones will be caught

as well.

4.3.4.4 Managing the Probability of Sharing Blocks

The analysis in Section 6.3.5 considers only the data blocks that have been sub-

mitted to both P1 and P2. In real applications, restricted by the cost, only a part of

data blocks will be submitted to more than one encryption service provider, as shown

in Figure 4.3. Without losing generality, we use the probability p1,2 to represent the

ratio between the number of blocks that are known to both P1 and P2 and those

known to only P1. Therefore, for the requester to detect an SSLA violation by P1

through the report of P2, the probability is

p1,2 × q1 × (1− q2)×
1

2t1
; (4.5)

If P1 skips the encryption of v data blocks, the probability that it is detected by R is

1− (1− p1,2 × q1 × (1− q2)×
1

2t1
)v; (4.6)

Figure 4.3: Only data blocks submitted to multiple providers can be used for detection of
SSLA violations.

35

4.4 Implementation and Experimental Results

In this part, we will conduct experiments to collect quantitative results about

the proposed approaches. The experiments include both data encryption and access

operations on real networked devices and the simulation of the impacts of different

parameters on the detection capability.

4.4.1 Detection of Encryption-On-the-Fly Attack

As we describe in Section 2.3.3, if a dishonest service provider chooses to encrypt

data blocks after receiving a verification request, it will introduce extensive delay

into the response procedure. To verify that we can detect such attacks through

measuring the network delay, we choose three could service providers and implement

encryption functions on a virtual machine hosted by them. A client machine will

issue a verification request. If the virtual machine has already accomplished data

block encryption, it will reply with the hash results as described in Section 2.3.3.

Otherwise, if the virtual machine has not encrypted the data blocks, it will have to

conduct encryption and hash in sequence. We choose two sites, one on-campus and

one off-campus, as the client to conduct the experiments. The delays are measured

in four consecutive days during both day time busy hours and late in the night. The

data blocks that are challenged have the size of 1K Byte. The window size is 10,000

blocks. Five groups of experiences are conducted and their average delay is shown in

Figure 4.4.

From the figures, we can see that the on campus connections with the service

providers are very stable. If the virtual machines have to encrypt the 10M Byte data

on the fly, it will take somewhere between 80 to 100 ms. The increases in delay

obviously deviate from the normal network conditions. A user will be able to detect

such changes. We assume that a dishonest service provider will choose to use the

customized environments such as AES-NI [Gueron(2012)] to avoid detection. Based

36

on [Pornin(2018)], the AES 256 CBC mode encryption speed will increase about 4

times if AES-NI is adopted, which will bring the extra delay down to 20 to 25 ms.

Such increases are still detectable compared to the normal measurement results.

Figure 4.4: Detection of on-the-fly encryption attacks through changes in network delay.

4.4.2 Cross-Comparison Detection of Symmetric Encryption Results

data sharing probability pi,j ratio b/w data at each provider

between two providers and overall data volume

0% 33.3%

10% 37%

20% 41.6%

30% 47.6%

40% 55.5%

50% 66.7%

In the second group of experiments, we will use simulation to investigate the im-

pacts of different parameters on the detection capability of the requester when it does

not have a copy of the encryption key. To simplify analysis, we assume that the re-

quester chooses three encryption service providers. The probability pi,j represents the

37

percentage of data blocks of provider Pi that are also known to provider Pj. Please

note that as pi,j increases, the probability that a dishonest provider is detected also

increases. As the price to pay for improved security, each provider has to encrypt

more data blocks. The table above shows as pi,j increases from 10% to 50%, the

changes of encryption load at each provider. We can see that when the sharing prob-

ability reaches about 30%, each provider needs to encrypt about half of overall data

blocks.

The simulation results are shown in Figure 4.5. Here we experiment with the data

block sharing probability between two providers pi,j = 10% and 20%. The probability

that a provider skips encrypting a data block ranges from 5% to 15%. In other words,

a service provider will randomly pick 1 to 3 data blocks to skip encryption in every 20

blocks. The length of the pattern in the encryption results to trigger data verification

ranges from 7 bits to 13 bits. In other word, on average, one block in every 128 to

8192 data blocks could trigger a verification operation. In all six sub-figures, on the

X-axis we show the number of data blocks that are provided to a provider and it

needs to encrypt all of them. On the Y-axis, we show the probability that a dishonest

provider is caught if it skips encryption of some data blocks. Please note that the

number of blocks on X-axis is roughly in logarithmic scale.

From the figures, we can see that as the number of data blocks increases, the

probability that a dishonest service provider is caught increases very fast. When R

provides only 10% of the data blocks of the provider P1 to P2 and P1 skips only 5%

of the encryption operations, when the number of data blocks reaches 500,000, P1 has

20% chance to be caught. Please note that if we choose the data block size to be 1K

Byte, that is only 500M Byte data that R sends to P1. Considering the amount of

data that is uploaded to the cloud everyday, this is a very small number. The service

providers do not have a strong motivation to cheat when they are aware of the high

probability of detection.

38

(a) (b)

(c) (d)

(e) (f)
Figure 4.5: Detection probability as the number of data blocks changes.

(a) pi,j=10%, qi=5%; (b) pi,j=10%, qi=10%; (c) pi,j=10%, qi=15%; (d) pi,j=20%,
qi=5%; (e) pi,j=20%, qi=10%; (f) pi,j=20%, qi=15%.

Another feature we can see from the simulation results is that the length of the

pattern in encryption results to trigger verification has a large impact on the detection

capability. When we use a longer pattern, the probability that a data block will

trigger verification decreases exponentially. An end user needs to maintain balance

between the communication overhead and the detection capability when it outsources

the encryption operations.

4.5 Discussion on Security of Approaches

In this part, we will discuss the safety of the approaches. We are especially inter-

ested in the following aspects.

Robustness against off-line collusion

Although the proposed approach in Section 4.3.4 tries to hide the real identities

of the service providers during key generation, some of them may still have off-line

39

agreement to cover up for each other. For example, P2 and P3 may exchange the

hash results of an encryption key to determine whether or not they are assigned to

the same task. If the answer is ‘yes’, they can then identify the data blocks shared

between them. However, the knowledge that the colluding parties can learn is limited.

For example, if there is at least one provider that does not collude with them, they

face the same probability of detection as we analyze in Section 6.3.5. To hide the

information on data distribution among different encryption providers, R can involve

more parties during the key generation procedures. After the key is determined, it

will provide data blocks to only a subset of the providers. In this way, a dishonest

provider cannot derive out the number of encryption servers solely based on the key

generation procedures.

Verification of encryption algorithm vs. properties

The objective of POE approaches is to verify the execution of a specific encryption

algorithm. Some may have the concern that the approach in Section 5.3 verifies the

homomorphic property instead of the algorithm itself. Several methods can be used

to solve this problem. The end user can analyze some features of the cipher text to

verify the encryption algorithm. For example, RSA has the homomorphic feature.

Based on the distribution of the cipher text, we can estimate the size of the product

of the two large prime numbers. In this way, we can derive out whether or not

the service provider uses smaller prime numbers in the algorithm. Similarly, there

has been efforts [Xiao et al.(2019)Xiao, Hao, and Yao] to estimate the strength of

encryption algorithm based on the features of cipher text.

4.6 Conclusion

In this chapter we investigate the problem of proof of encryption. Specifically,

when a data source asks one or multiple providers to encrypt its data with specified

algorithms and key strength, there must be a way for it to verify the execution of

the SSLA. We investigate two scenarios: cross verification of duplicate data records

40

and homomorphic encryption based approach. The designed approaches can detect

the violations of SSLA on encryption. We conduct both experiments and analysis

to investigate the mechanisms and their probability to detect a dishonest service

provider.

When we put the research problems of the chapter in a bigger view, the goal is

to allow end users to verify the execution of security service level agreement (SSLA).

Different from the SLAs that focus on resource usage aspects (e.g. CPU cycles,

available bandwidth), security related SLAs are harder to verify since there is not

always a security incident available for detection. We plan to design a comprehensive

suite of mechanisms to cover more features in security enforcements. We are especially

interested in the services such as malware scanning and effectiveness of firewalls. The

completeness of the approaches can be assessed with an ontology framework.

CHAPTER 5: Proof of Outsourced Encryption: Cross Verification of Security

Service Level Agreement

5.1 Introduction

The inevitable growth of cloud data requires service providers to create a trans-

parent security services so users are able to guarantee their data safety. The verizon

data breach report [Verizon(2020)] indicates that cloud services and applications rep-

resented 24% of overall last year data breaches. Although, the cloud services provide

scalability and massive storage, recent research direction indicates that the service

providers falls short not only in security but also in meeting ultra-low latency de-

mands [Hui et al.(2019)Hui, Zhou, An, and Lin]. Given these circumstances a user

based security verification mechanism remains a glimmer of hope for customers to

verify the confidentiality of their data.

In this chapter, our objective is to propose Asymmetric mechanisms to achieve

proof of cross-verification of outsourced encryption. In addition, Partially Homomor-

phic Encryption (PHE) provides a protection against data disclosure and enables user

to send data stream among networks in ciphertext. In this approach, we adopt PHE

to allow cloud users and providers to perform only one operation on the ciphertext

either addition or multiplication instead of decryption the ciphertext so that the cloud

user can verify encryption services. The proposed approach is different from the pre-

vious chapter symmetric problem, the cloud user selects only one service provider to

negotiate homomorphic encryption instead of sending out verification data to multiple

providers for verification. Through both analysis and experiments, we evaluate the

correctness of the proposed approach using BAN logic and probability of detection

to detect SSLA violations.

42

The contributions of the chapter can be summarized as follows. First, in the

SSLA enforcement domain, we study the problem of proof of outsourced encryption

using homomorphic encryption case. We verify the correctness of the approach using

BAN logic. Then, we evaluate the proposed approaches through both analysis and

experiments.

The remainder of the chapter is organized as follows. In Section 5.2, we describe

related work that we can benefit from. In Section 5.3, we present the details of the

security verification approach using Partially Homomorphic Encryption. We then

verify the correctness of the approach using BAN Logic. Section 5.4 compares our

approach to public auditing, and finally section 5.5 discuss the experiment results

using parameters that can impact the detection of a dishonest service provider and

analyze the detection probability. Finally, Section 5.6 concludes the chapter.

5.2 Related Works

Depending on the usage of outsourced data, end users may choose different encryp-

tion algorithms. For example, if the sole purpose of encryption is data confidentiality,

symmetric encryption algorithm with decent key size may be the most power efficient

choice. However, with the increasing need of operations on cipher text, homomor-

phic encryption has attracted a lot of research efforts [Fun and Samsudin(2016),Yang

et al.(2019)Yang, Huang, Liu, Cheng, Weng, Luo, and Chang,Zhao and Geng(2019)].

The algorithms allow end users or service providers to directly operate on cipher text

to get the results they want. In this chapter, we analyze both types of encryption

algorithms and the methods to verify the encryption.

5.3 Proposed Mechanism for Homomorphic Encryption Based Verification

The mechanisms described in previous sections have a few drawbacks. First, sub-

mitting the same data blocks to multiple service providers will increase cost at the

requester. Since the probability of detection is directly related to the percentage

43

of shared blocks, an end user has to submit more duplicate data blocks to multi-

ple service providers to increase the detection capability. Second, when Blockchain

based mechanism is adopted, even the requester cannot predict which data blocks

will trigger verification. This uncertainty causes confusion at the requester. When

no verification is triggered for an extended period of time, it cannot tell whether or

not it is caused by an SSLA violation. The third drawback comes from the potential

of service provider collusion. In a previous Section , the anonymity among service

providers is achieved through a new pair of public/private keys with fake identity.

In real life, however, considering the limited number of large scale storage service

providers, it is possible that two providers maintain a stealth communication channel

and collude to fool the requester. The two providers can compare the digest of the

data blocks to identify the shared ones. They will then encrypt only those shared

blocks.

To overcome these drawbacks, we investigate the outsourced storage service based

on homomorphic encryption. A homomorphic encryption (HE) scheme allows com-

putations to be performed on cipher text without the need for the cipher text to

be decrypted. One of the original purposes of HE algorithms is to protect data

privacy. While there are several ways to classify the HE algorithms [Chaudhary

et al.(2019)Chaudhary, Gupta, Singh, and Majumder, Chen et al.(2019)Chen, Wu,

Lu, and Ren, Fun and Samsudin(2016)], in this chapter we focus on the “Partial

Homomorphic Encryption” (PHE) methods since they have weaker assumptions on

the algorithm properties. Therefore, the designed approach can be generalized to

“Somewhat Homomorphic Encryption” and “Fully Homomorphic Encryption” [Fun

and Samsudin(2016)].

In PHE algorithms, we assume that either additive or multiplicative operations

upon the plaintext group are supported (but not both). In [Fun and Samsudin(2016)],

more than 10 types of PHE algorithms are discussed. Most PHE algorithms are

44

built upon asymmetric encryption schemes and have the non-deterministic prop-

erty. Several of the PHE algorithms have been adopted in commercial systems such

as CryptDB [Popa and Redfield(2011)], MyCrypt [Tetali et al.(2013)Tetali, Lesani,

R.Majumar, and Millstein], Crypsis [Stephen et al.(2014)Stephen, S.Savvides, Sei-

del, and Eugster], and CMD [Gadepally et al.(2015)Gadepally, Hancock, B.Kaiser,

Kepner, P.Michaleas, Varia, and Yerukhimovich].

Our designed approach can be applied to both additive and multiplicative homo-

morphic algorithms. Here we define the homomorphism as:

Enc(M1 ⊙p M2) = C1 ⊙c C2; (5.1)

M1 and M2 are plain text, C1 and C2 are corresponding cipher text, and ⊙p and ⊙c

are group operations in plain text and cipher text space, respectively.

Following the assumptions in Section 4.2, we assume that the service requester

R has data records d1, d2, · · · , dl to encrypt. Here it needs to choose only one

service provider P1 and negotiates the homomorphic encryption algorithm with it.

The service requester does not need to know the encryption key. When the data

records are provided to P1, the requester will add some noise records n1, n2, · · · , nw

into the data for future verification operations. The generation of the noises will be

described below.

P1 will encrypt all data records with the selected algorithm. To reduce commu-

nication overhead, it will not transmit the encryption results back to the requester.

However, for every L records, it needs to construct a Merkle’s hash tree with the

encryption results, as shown in Figure 5.1. The roots of the trees will be sent back

to the requester as the digests of the encryption results.

Now let us explain how to embed noises into data to detect a dishonest service

provider. Consider a simple example. Assume that ni ⊙p dk = dj. Here dj and dk

45

Figure 5.1: Merkle’s hash tree for integrity verification of encryption results.

are two randomly selected data records. The noise record ni will be inserted into

data records and transmitted to P1. If P1 is honest, it will encrypt all the records

(including the noises), generate the hash trees, and send back the tree roots.

When the end user R tries to verify the encryption operations, it will request

the encryption results Enc(ni), Enc(dj), and Enc(dk) from P1. Since the provider

has committed the roots of trees during the encryption procedure, the end user can

easily verify the integrity of the encryption results. It can then compare Enc(dj) to

Enc(ni)⊙cEnc(dk). If the two results are equal, the end user confirms that the service

provider conducts the encryption operations. Otherwise, a violation is detected.

For a dishonest service provider, since it knows that the end user can verify only

the data records that satisfy the ⊙p operations, it can examine the submitted data

records and try to locate them. Generally speaking, for a noise record ni ⊙p dk = dj,

the provider P1 needs to examine all possible data pairs dk and dj to identify them,

which lead to the complexity of l2. Should it successfully locate the data pair dj and

dk, it can generate fake encryption results so that the ⊙c function over cipher text is

satisfied.

To defend against such attacks, the service requester can adopt the following meth-

ods. First, it can put the three data records ni, dj, and dk into three Merkle’s trees.

In this way, the dishonest service provider has to search for the target data records

within a much larger domain. By the time it identifies the last data record of interest,

the encryption results of the other two records have already been committed. The

second technique that the requester can use is to use more data records to construct

46

a noise record. For example, if we have ni ⊙p dk1 ⊙p dk2 ⊙p dk3 · · · dkr = dj, the com-

plexity of identifying all involved data records will increase to lr. The end user can

choose the number of involved data records to overwhelm the computation capability

of the dishonest service provider.

Below we provide some quantitative analysis on the relationship between the be-

haviors of the dishonest service provider and its probability of being detected. We

assume that each Merkle’s tree covers L data records. The dishonest service provider

has probability p to apply the negotiated encryption algorithm to a data record. For

the remaining records, it will use a weaker encryption algorithm. If the end user

chooses r data records from the L records and applies the ⊙p group operation upon

them to construct a verification challenge, the probability that P1’s violation is de-

tected can be represented as:

Detection(L, p, r) =

 1− CpL−r
L−r

CpL
L

: r <= pL

1 : otherwise

If L >> r, the probability of detection can be estimated as 1- pr. From the formula,

we can see that if a dishonest provider tries to avoid detection, it needs to encrypt

more data records. From the end user’s point of view, it needs to use more data

records to construct the challenge. Please note that here we assume the end user

chooses all records from the same tree. It can choose the data records from multiple

trees.

Compared to the cross verification mechanism described in Section 4.3, this ap-

proach has multiple advantages. First, it does not require the same data records to

be provided to multiple encryption parties simultaneously. The end user can choose

only one service provider. In this way, it can reduce the storage cost and avoid the

collusion of multiple service providers. Second, the end user has full control over the

47

density and placement of the inserted noise data records. Since the end user can ran-

domly select data records to construct the challenge but a dishonest service provider

has to conduct exhaustive search, the computation workload at the attacker will be

very heavy. At the same time, we do not have to worry about the unpredictability

caused by Blockchain.

5.3.1 Correctness Verification of the Proposed Approach

In this part, we will formally analyze the correctness of the proposed approach

based on the BAN logic. While BAN logic has been widely used for verification of

authentication protocols [Gao et al.(2018)Gao, Deng, Wang, and Kong], it has also

been used to verify the execution of service level agreement, especially the delivery of

intended information to participating parties [Bhasker and Murali(2020),Pourpouneh

and Ramezanian(2016)]. Our recent work in this domain focuses on protocol verifi-

cation in smart health environments [Wang et al.(2019b)Wang, Shi, and Qin,Wang

et al.(2020)Wang, Qin, and Wang].

Since our protocol is not an authentication protocol, the BAN logic cannot directly

verify its safety. On the contrary, we focus on two aspects: (1) the service requester R

can verify that the received message is what the provider P believes in, and (2) it has

confidence in the received encryption results for subsequent SLA violation detection.

During our verification procedure, we use the ‘message meaning rule’, the ‘nonce-

verification rule’, the ‘freshness rule’, the ‘principal sees rule’, and the ‘jurisdiction

rule’, the meaning of which can be found in [Anderson(2008)]. We use some exten-

sions to BAN logic that were presented in [Gope and Sikdar(2019)] to handle the

combination of two components in a message. Our protocol safety partially depends

on the large search space from which the provider P cannot identify the selected

messages for homomorphism property. To simplify the analysis procedure, we design

the following interaction operations. Here P represents the service provider and R is

the service requester. K is the key that P selects for data encryption.

48

In this simplified version of the protocol, the real data block that R wants to encrypt

is m1. v1 and v2 are embedded for verification purposes and we have: v1⊙pm1 = v2

and Enc(v1)⊙cEnc(m1) = Enc(v2). In real life, these values will be hidden in a large

number of plain text blocks. The freshness of the protocol is protected by the random

nonce n. We use the hash results of the cipher text to replace the Merkle’s tree in

Section 5.3. The messages are signed by the private key of P for authentication.

To accomplish formal verification, we need to first convert the message to idealized

representation. Here we use {{m1′}K}{v1}K to represent Enc(v1)⊙cEnc(m1) (which

should also be Enc(v2)) in the protocol. Two reasons lead to this change: (1) we

use it to represent the combination of Enc(v1) and Enc(m1) so that BAN rules

can be applied to it, and (2) should P violate the protocol and not encrypt v2, the

homomorphism no longer holds. Therefore, we use m1′ to represent the potential

violation before we can verify it. The idealized protocol is illustrated below. In

addition to the message, the two parties also share the knowledge about the plain

texts and hash of the cipher texts.

Below we show the assumptions and verification goals of the protocol. Their mean-

ings are explained in the brackets. The four goals guarantee that R will receive the

intended messages from P and can conduct subsequent verification.

49

The verification procedure is shown in the following figure. All four goals are

met. Here goal 4 allows the requester R to see two encryption results {m1}K and

{m1′}K so that verification of the homomorphism property can be conducted through

comparison of their values.

50

5.4 Comparison to Public Auditing of Outsourced Storage

In Section 4.1, we shortly discuss the difference between the POE problem we

study in this chapter and the POR (proof of retrievability) problem. In this section,

we provide more discussion and investigate how we can benefit from research results

in that area. We will focus on the results in public auditing for cloud storage since

this direction represents the focus in past few years.

5.4.1 Achievements in Public Auditing of Cloud Storage

According to [Wang et al.(2010)Wang, Wang, Ren, and Lou], public auditabil-

ity allows an external party, in addition to the data owner, to verify the integrity

of outsourced data on cloud. Here the data is usually stored in the format that

the owner provides. For example, the owner needs to encrypt data by itself if it

wants the data to be stored in a more secure format. The storage provider will

not apply other functions to the data. While the early approaches to POR [Juels

and Kaliski(2007), Wang et al.(2009)Wang, Wang, Li, Ren, and Lou] support in-

tegrity verification by only data owners, a series of subsequent research achieve-

ments [Wang et al.(2010)Wang, Wang, Ren, and Lou, Tian et al.(2019)Tian, Nan,

Chang, Huang, Lu, and Du, Tu et al.(2017)Tu, Rao, Huan, Wen, and Xiao, Wang

et al.(2013)Wang, Chow, Wang, Ren, and Lou,Li et al.(2018)Li, Yu, Yang, Min, and

Wu] have been designed to allow non-interest third party to accomplish the task.

Several approaches to public auditing are built upon the homomorphic linear authen-

ticator technique [Ateniese et al.(2007)Ateniese, Burns, Curtmola, Herring, Kissner,

Peterson, and Song,Shacham and Waters(2008)]. They usually build a bilinear map

upon two or three multiplicative cyclic groups. Using the hardness of discrete-log

assumption, the data owner will construct signatures of the data blocks that contain

information from both the data contents and their index numbers. The data blocks

and signatures will then be provided to cloud storage provider. During auditing, the

51

third party will send out a challenge. The storage provider will use the challenge to

calculate a linear combination of the data blocks. It will also use the signatures to

calculate another part of the response. To prevent the verifier from combining multi-

ple responses to compromise data privacy, the storage provider will also use a random

number to achieve masking. When the verifier receives the responses, it will project

them to the bilinear map and compare their equality to accomplish verification.

After the basic approach, multiple extensions have been designed. For example, in

[Wang et al.(2013)Wang, Chow, Wang, Ren, and Lou] the authors adjust their original

design of the masking function to provide better protection to data privacy. In [Tu

et al.(2017)Tu, Rao, Huan, Wen, and Xiao], the authors remove data block index

from the signatures and use Merkle Hash Tree to maintain the order information. In

this way, the insertion, update, and removal operations to a block will not impact

other blocks. Tian et. al. [Tian et al.(2019)Tian, Nan, Chang, Huang, Lu, and Du]

extend the approach to fog computing environments. They design different signature

generation algorithms for mobile sinks and fog nodes so that they can be transformed.

Last but not least, Li et. al. [Li et al.(2018)Li, Yu, Yang, Min, and Wu] design a

mechanism that supports users to update their signature keys for data blocks.

While the approaches described above have differences in multiple aspects, their

strong points can be summarized as follows: (1) allow non-interest third party in addi-

tion to data owner to verify data integrity while preserving data privacy; (2) support

unlimited number of times of verifications; (3) maintain low communication overhead

since the signatures instead of data blocks are transmitted during verifications, and

(4) support batch verification.

5.4.2 Challenges and Potential Improvement to our Approach

While the advantages summarized above for public auditing are very attractive, the

differences between POR and POE (proof of encryption) problems make direct adop-

tion of the techniques very difficult. Below we will describe the challenges caused by

52

these differences, and present potential improvements inspired by these mechanisms.

The most important difference is that in POR problem both data owner and cloud

storage provider process data in the same format. For example, the signatures are

generated based on the data that the cloud provider stores. In the POE problem,

however, this fact no longer holds. Since the data owner cannot conduct the encryp-

tion function, it has to outsource the operations to external service provider. Should

the service provider refuse to share the encryption key with the data owner because of

security concerns, the data owner can only generate signatures of data blocks based

on the plaintext instead of cipher text. At the same time, to prevent a malicious

party from generating fake signatures and impersonating the owner, the signatures of

data blocks must contain some secret information. This is represented as the secret

key in the homomorphic linear authenticator in [Wang et al.(2010)Wang, Wang, Ren,

and Lou].

In the POE problem, if we want to support non-interest third party to accomplish

verification, we need a procedure similar to that of the public auditing. First, the

verifier sends out a random challenge. The encryption service provider needs to cal-

culate two parts of response based on the cipher text and signature of the plaintext,

respectively. Note that the cipher text and signatures are generated with different

secrets. To make sure that the two parts of response are equal, the encryption func-

tion and signature generation function need to be commutative (since the two secrets

are applied in reverse order). Therefore, we cannot design a generic signature gen-

eration algorithm independent of the encryption mechanism (since they need to be

commutative). This also presents a direction for future improvement to our approach.

From the discussion above, we can see that since in the proof of encryption prob-

lem the data owner and encryption service provider use plaintext and cipher text

respectively, the design of a public auditing algorithm is very challenging. For some

encryption algorithm, we may choose a commutative signature generation algorithm

53

to accomplish the task. This will be our next target in research.

5.5 Implementation and experimental results

In this part, we will conduct experiments to collect quantitative results about

the proposed approaches. The experiments include both data encryption and access

operations on real networked devices and the simulation of the impacts of different

parameters on the detection capability.

5.5.1 Homomorphic Encryption Based Detection

In this group of simulation, we investigate the relationship between the encryption

workload at the service provider and its probability of being detected if it violates the

SSLA. Here we assume that the end user requests the provider to construct a Merkle’s

tree for every 1000 encrypted data records. The service provider will randomly select

data records for encryption with the probability p. For the remaining records, it

will choose some weaker encryption algorithm. Therefore, if not all data records

covered by a verification challenge are correctly encrypted, the end user will detect

the violation.

(a) (b)

Figure 5.2: Detection probability of the homomorphic encryption approach.

In Figure 5.2.(a), on the X direction, we have the probability that a data record is

encrypted with the negotiated homomorphic algorithm. We consider the cases that

a verification challenge is constructed with 3, 5, and 7 data records, respectively. On

the Y direction, we have the probability that the violation is detected by the end

user when it challenges the results in one Merkle’s tree. We can see that even when

54

the service provider encrypts half of the data records, the end user can construct

a challenge and detect the violation with the probability close to 90%. Under this

condition, the risk is too high for the service provider to conduct the attack.

In Figure 5.2.(b), on the X direction, we have the number of data records that are

encrypted by the provider with the negotiated algorithm. We experiment with 1, 2,

and 4 Merkle’s trees, respectively. As the number of involved Merkle’s trees increases,

the percentage of encrypted data records decreases. We assume that the end user will

choose 5 records to construct a verification challenge. On the Y direction, we have the

probability that a violation is detected. For example, when the end user constructs

the challenge with five records selected from 2000 records (2 hash trees) and the

provider encrypts only 1000 of them, the probability of being detected is close to

97%. For the case that the end user selects five records from 1000 records and the

provider encrypts 800 of them, the chance of being detected will still be about 70%.

The detection probability will drop to 0 when the service provider correctly encrypts

all data records (thus, there is no violation).

5.6 Conclusion

In this chapter we investigate the problem of proof of encryption. Specifically,

when a data source asks one or multiple providers to encrypt its data with specified

algorithms and key strength, there must be a way for it to verify the execution of

the SSLA. We investigate two scenarios: cross verification of duplicate data records

and homomorphic encryption based approach. The designed approaches can detect

the violations of SSLA on encryption. We conduct both experiments and analysis

to investigate the mechanisms and their probability to detect a dishonest service

provider.

When we put the research problems of the chapter in a bigger view, the goal is

to allow end users to verify the execution of security service level agreement (SSLA).

Different from the SLAs that focus on resource usage aspects (e.g. CPU cycles,

55

available bandwidth), security related SLAs are harder to verify since there is not

always a security incident available for detection. We plan to design a comprehensive

suite of mechanisms to cover more features in security enforcements. We are especially

interested in the services such as malware scanning and effectiveness of firewalls. The

completeness of the approaches can be assessed with an ontology framework.

CHAPTER 6: Proof of Network Security Services: Enforcement of Security SLA

through Outsourced Network Testing

6.1 Introduction

With fast development and wide adoption of cloud computing, lightweight startup

becomes a practical approach. Since such small or mid-size companies often have

very few technicians, they often need to outsource the security functions such as

Deep Packet Inspection (DPI) [Sahay et al.(2019)Sahay, Meng, and Jensen]. Similar

to other cloud based services, the end customers and security service providers need

to sign a Security Service Level Agreement (SSLA) to concrete the details of the

services and price. For example, the service provider commits to continuously update

its network security rule sets so that within 48 hours of the discovery and publicizing

of any malicious payload, it will be able to detect and block it.

While such security SLAs sound very attractive to end users, there is one challenge

that must be overcome: verification of the execution of the SLA. Specifically, end users

need to verify that the SSLAs are actually in effect. While this sounds reasonable, it

is fairly hard to enforce when we consider the specialty of the SSLAs. Let us consider

an example. Customer u orders the DPI service from service provider s. In the SSLA

s commits to scan at least 99.99% of network traffic to u to protect it from malicious

attacks. As the business of u becomes better, more customer traffic is attracted to

the site and s can no longer keep its promise. A wrong yet viable solution for s is

to reduce the amount of traffic that it scans for u. Please note that the misbehavior

of s has a good chance of escaping detection since it is possible that the skipped

packets do not contain any malicious contents. This scenario is quite different from

those performance SLAs [Hermanto et al.(2019)Hermanto, Iskandar, Hendrawan, and

57

Edward, Samuels et al.(2017)Samuels, Syambas, Hendrawan, Edward, Iskandar, and

Shalannanda] in which a customer can detect degradation in performance. Lack of

verification for SSLA deserves more research efforts since many end users now depend

on third parties to secure their networks.

In this chapter, we will focus on the verification of outsourced network security

services. We do not restrict our approach to any specific security services. On the

contrary, we just assume that s needs to examine all traffic to u based on a set of

rules. In our approach, when the SSLA between u and s is in effect, u will bring

in a non-interest third party t to help it test the coverage and effectiveness of the

security services. Please note that this is different from the scenario in which u hires

a separate company to conduct a thorough pen-testing [Casola et al.(2020a)Casola,

Benedictis, Rak, and Villano] since such operations usually have relatively high cost

and need to involve multiple parties including the service provider s. To accomplish

this procedure, we assume that u knows the details of the security rules. Therefore, it

will be able to use our verification infrastructure to test the services that s provides.

For example, it can craft a group of packets so that our infrastructure can send them

to u from different nodes. Based on the packets that reach to it, u can verify the

enforcement of the SSLA.

While the basic idea is straightforward, several problems must be properly ad-

dressed before our infrastructure can be deployed. First, since our infrastructure will

send network traffic, mechanisms must be designed to prevent it from being abused

for network attacks. At the same time, corresponding credential and log information

must be maintained for the testing requests. Second, mechanisms must be designed

to prevent our infrastructure from faking the network tests. Only in this way can u

differentiate the packets being discarded by s from those not transmitted from our

infrastructure. Third, our infrastructure must recruit a large number of distributed

nodes to prevent s from identifying the testing packets. Last but not least, the veri-

58

fication procedure must provide configurable balance between the detection accuracy

and overhead.

The contributions of the chapter can be summarized as follows. First, our analysis

shows that one thorough pen-testing is not enough to enforce the SSLA for net-

work security. Unpredictable, user initiated verification will serve the purpose better.

Second, we propose an infrastructure through which an end user can test its network

security services with configurable frequency and self-crafted test cases. The integrity

and authenticity of the test are properly protected. Third, we analyze the detection

capability and overhead of the proposed approach.

6.2 Related Work

In this part, we will describe the state-of-the-art research in several directions

from which we can benefit. We are especially interested in the establishment and

enforcement of the security SLA for customers. At the high level, researchers have

tried to build frameworks for the definition, description, and enforcement of secu-

rity SLAs. For example, in [Trapero et al.(2017)Trapero, Modic, Stopar, Taha, and

Suri], the EU researchers built a framework SPECS [Rak et al.(2013)Rak, Suri, Luna,

Petcu, Casola, and Villano] that allowed users to prepare, negotiate, implement,

and remediate security SLAs. The responsibility of SLA monitoring is put on the

cloud provider. In [de Carvalho et al.(2017)de Carvalho, de Andrade, de Castro,

Coutinho, and Agoulmine], the authors summarize several systems based on different

standards [Luna et al.(2015)Luna, Suri, Iorga, and Karmel]. The efforts in [Casola

et al.(2020b)Casola, De Benedictis, Rak, and Villano] try to embed security into the

system from the design phase. They emphasize at both component and application

levels. But they do not discuss the enforcement in the system execution procedures.

The MUSA project of EU [Rios et al.(2016)Rios, Mallouli, Rak, Casola, and Ortiz]

adopts a similar design concept and tries to enable the deployment of cross-platform

applications.

59

To enable the definition and negotiation of the security SLAs, a common lan-

guage that can be understood by both service providers and customers is essential

for the system. In [Casola et al.(2017)Casola, De Benedictis, EraÅcu, Modic, and

Rak], the authors extend the WA agreement [Andrieux et al.(2007)Andrieux, Cza-

jkowski, Dan, Keahey, Ludwig, Nakata, Pruyne, Rofrano, Tuecke, and Xu] so that

in addition to the description capability, the approach can also select correspond-

ing components for the automatic execution of the security SLAs. In [Kaaniche

et al.(2017)Kaaniche, Mohamed, Laurent, and Ludwig], the authors design the sec-

rSLA language to define the security agreements. In addition to identifying the se-

curity rules in SLAs, the customers also need to determine the measuring param-

eters. In [Wonjiga et al.(2019b)Wonjiga, Rilling, and Morin], the authors identify

the key performance indicators (KPI) and extend the CSLA language [Kouki and

Ledoux(2012)] to define the monitoring SLAs. To improve user experiences in SLA

definition, an interactive system was presented in [Casola et al.(2016)Casola, De Bene-

dictis, Rak, and Rios] for SLA generation.

After the definition of security SLAs, the next step is the measurement of the

parameters so that SLA violations can be detected. Different from several other

approaches that depend on the cloud service provider to measure performance indi-

cators, the authors of [Hussain and Al-Mourad(2014)] specify that third party could

be used for SLA violation detection. In [Casola et al.(2017)Casola, De Benedictis,

EraÅcu, Modic, and Rak], the approach links security properties with mechanisms

through constraints so that violations can be detected. Example approaches are built

to measure parameters for network security [Wonjiga et al.(2019b)Wonjiga, Rilling,

and Morin] and data integrity [Wonjiga et al.(2019c)Wonjiga, Rilling, and Morin].

The definition and enforcement of security SLAs also benefit from the advances

in the new techniques such as AI and blockchain. For example, in [Wonjiga

et al.(2019a)Wonjiga, Peisert, Rilling, and Morin], the authors propose to add hash

60

results of data into blockchains to generate secure and unforgeable data records while

preserving user privacy. Similarly, the research group applied blockchain to data in-

tegrity protection [Wonjiga et al.(2019c)Wonjiga, Rilling, and Morin] so that both end

users and cloud providers can verify the results. In [Rios et al.(2016)Rios, Mallouli,

Rak, Casola, and Ortiz], data mining technique is used for deep packet inspection so

that network IDS can be enforced.

In parallel to the advances in definition and enforcement of SLAs are changes in

penetration testing for enterprise security. With the fast increases in cyber attacks

upon cloud computing environments, corporations often refer to internal or external

penetration testing to evaluate their network defense capabilities. This service is often

outsourced to security vendors that provide independent evaluation reports. Previous

work [Al Shebli and Beheshti(2018), Denis et al.(2016)Denis, Zena, and Hayajneh]

discussed automated penetration testing frameworks, techniques and tools commonly

used while conducting this rigorous test. In addition, latest research [Schwartz and

Kurniawati(2019)] shows that penetration testing could benefit from the dramatic

resurgence of artificial intelligence and the availability of massive cyber security data

sets.

Penetration testing is not a one-time deal. According to Cybersecurity Maturity

Model Certification (CMMC), a cooperation should run the test one to two times per

year. Since a thorough test can often impact the normal operations of a company,

continuous and user-initiated tests may serve the purpose better. This demand leads

to the design and experiment of our approach.

6.3 Proof of Network Security Services: Proposed Approach

In this section, we will present the details of the proposed approach. We will first

discuss why penetration testing through a third party vendor is inadequate for SSLA

enforcement. We will then analyze the expected properties of a Proof-of-Network Se-

curity Services mechanism. We will describe the working procedures of the protocols

61

and how to prevent external verifier from cheating. We will also analyze the detection

capability of the proposed approach.

6.3.1 Inadequacy of Penetration Testing

Penetration Testing is the procedure of conducting controllable network scanning

and attacks in order to discover vulnerabilities in systems and networks. Since the

tester usually conducts controllable scanning and attack, the impacts are not catas-

trophic. Based on the recommendation of CMMC, a cooperation needs to conduct

one to two thorough pen-testing each year. However, because of the wide deployment

of Software Defined Networks and data centers, the frequency of network configura-

tion changes is much higher. For example, the data in [Foerster et al.(2019)Foerster,

Schmid, and Vissicchio] shows that the inter-data center networks can change their

connections every few minutes. Since the network changes will affect the firewall

rules, a more flexible and targeted test mechanism is needed.

Another problem is that penetration testing cannot really verify the execution

of the security SLAs. For example, when the network security and firewall rules

are originally configured, they faithfully represent the requirements of the SSLAs.

Therefore, the penetration testing results will support this conclusion. However, as

the system runs, the conflict between security rules and performance demand may

appear [Shah et al.(2019)Shah, Patel, and Jinwala]. While the performance SLAs

(such as CPU cycles and number of network requests served) can be easily verified by

end users, the security SLAs are hard to tell. An end user cannot tell the difference

between an undetected attack from a scenario in which no attack exists. Therefore,

cloud providers have an intention to disable security measures to improve system

performance. The mechanism that we design can capture such intentional negligence.

62

6.3.2 Expected Properties of Proof-of-Network Security Services

In this chapter, we propose an end-user initiated, non-interest third party executed

verification mechanism for network security SLA. Specifically, an end user can ask

a third party to test outsourced network security services with a group of carefully

crafted packets. It can verify both the execution of the tests and their results. While

the goals are intuitive, a more formal description of the expected features will allow

us to compare our approach with existing mechanisms. Below, we will describe the

properties that our approach can deliver.

Randomness of Testing Activity: If the security service provider knows that

the end user may conduct random test to verify the execution of SSLA, it will try

to identify such traffic and handle it differently so that SSLA violations cannot be

detected. To prevent this from happening, the testing activities must be random. In

other words, the frequency, time, format, and content of the test cannot be predictable

to the service provider.

Sender Unpredictability: In our approach, we assume that the security service

provider s is dishonest about the provided services. Therefore, it has the motivation

to detect and disguise any third party security testing activities. In this way, the

source from which the testing packets are sent must be unpredictable to the service

provider. Please note that some of the security testing is stateful and multiple rounds

of packet exchanges are expected. Therefore, the source node cannot use fake IP

address during the testing procedure.

Authenticity of Testing Request: In our approach, the third party will send out

network testing packets to u upon the user’s request. If not managed properly, this

network testing service can be abused by malicious parties to conduct real attacks.

Therefore, thorough verification must be carefully conducted to make sure that the

requester and the testing target are the same node. The authenticity of the testing

63

traffic must be verifiable as well.

Verification of Execution of the Tests: In our approach, the tester t is not

trustworthy either. Therefore, it is possible that the tester does not send out the se-

curity testing packets at all. From the end user’s point of view, it cannot differentiate

this scenario from the scenario in which all testing packets are successfully filtered

out by the service provider. Therefore, corresponding mechanisms must be designed

to prevent a tester from not serving the request.

Based on the discussion above, we can see that these properties serve different

purposes. The first two properties are used to prevent the service provider from

identifying the testing traffic and handling it differently. In the third property, we

try to prevent the testing service from being abused for malicious attacks. The last

property focuses on protection to the end user. These properties are not bound to

any specific encryption algorithms or network architectures. Therefore, the proposed

approach can be applied to various scenarios.

64

6.3.3 System Assumptions and Attacker Model

Figure 6.1: Application scenarios of the proposed approach.

Figure 6.1 shows the application scenario of the proposed approach. We assume

that an end user u uses the network security services provided by s. u wants to use a

third party to verify whether or not s is satisfying the security service level agreement

(SSLA). Therefore, it resolves to the tester t. To simplify the scenario, we assume

that u carefully crafts a group of packets and asks t to conduct the test. To prevent s

from recognizing the source address of t and the testing traffic, t can recruit a group

of bots to actually conduct the test. The test results can then be shared with u.

The scenario involves four parties: u, s, t, and bot. Just as u cannot fully trust s, it

cannot fully trust t either. Therefore, it needs to verify the execution of the testing

procedure as well.

The service provider s follows a “not risk being caught” model. In other words,

if the server can satisfy all SLAs without threatening its profit, it will follow all the

rules. However, if it knows that it can violate the security SLAs without being caught,

it will skip some of the security operations to improve system performance. Different

servers may have different threshold values for risks of being caught. In our approach,

the user u can adjust the frequency and granularity of tests to prevent a server from

cheating.

The tester t and bots also follow the “not risk being caught” model. If they know

that the user can verify whether or not the network testing is conducted, they will

follow the request strictly to conduct the test and send back the results. However, if

65

the user cannot tell whether or not the test is conducted, they will cheat as well.

The following table summarizes the symbols we use.

Table 6.1: Symbols used in the chapter.

pubx/prix public/private key pair of node x
cert(x) public key certificate of x
h(x) secure hash function known to all parties
Ek(m) message m encrypted with the key k
pktj jth packet for security testing

6.3.4 Proposed Approach

In real life scenarios, after the user u and server s finalize the details of the secu-

rity SLA, a thorough test may be conducted to verify that all rules in the SLA are

functioning. After that, the user u may randomly select several rules in the SSLA

and request a non-interest third party to conduct a second round test. This test can

be conducted at any time, by any node, and in any format as long as the SSLA is

still in effect.

6.3.4.1 Overview of Approach

We assume that u selects a group of rules in the SSLA to test. It will carefully craft

a group of packets that can be used to test the effectiveness of the rule set. After

constructing the packets, it will contact the tester t and send the packets to it. Note

that application level encryption can be used between u and t so that the server s

cannot learn the details of the test even if it monitors the network traffic of u. After

receiving the request and verifying the authenticity of the packets, t will choose a bot

to actually conduct the network testing. The bot will send out the packets constructed

by u and record the results of the test. At the same time, u may receive some of the

packets sent by bot based on the construction of the packets and the security rules in

effect. Finally, the bot will report the results to t, who will then share the results with

u. u can combine the packets that it receives from the bot and the records shared

by t to determine whether or not the selected rules are in effect. An overview of the

66

approach is shown in Figure 6.2.

Figure 6.2: Overview of the approach.

6.3.4.2 Detailed Description

Step 1 : Negotiation of Testing Request

When the user u plans to conduct a network test, it will first contact node t. Since

t provides the network testing services, its identity and public key certificate can be

acquired. u will generate a testing request with its private key and t’s public key.

u → t :(u, t, cert(u)); (6.1)

u → t :(u, t, Epubt(Epriu(u, t, request, r1, hash(u, t, r1)))); (6.2)

Here cert(u) represents the public key certificate of node u, and r1 represents a

random number. Since the request is protected by two layers of encryption, the tester

t will be able to verify the authenticity of the message. The two parties t and u can

then generate a session key k through a secure method such as a variation of Diffie-

Hellman. During the generation procedure, t will use the IP address in the network

testing packets as the communication destination to verify the mapping between the

IP address and the certificate. Note that even though the service provider s recognizes

the tester t, it cannot figure out the details of the traffic because of data encryption.

Once u and t establish a secure session key, u can send the carefully crafted testing

packets to t. u will construct a Merkle’s hash tree based on the contents of the packets

67

and sign the root of the tree with its private key. The packet structure is shown below.

u → t :(u, t, Ek(u, t, pkt1, pkt2, · · · , pktn), (6.3)

Epubt(Epriu(u, t, hash tree of the packets)));

Step 2 : Conduction of the Test

After receiving the testing request and verifying its authenticity, t will recruit a bot

to conduct this test. Here we use the bot to refer to a machine that has collaboration

with t and they will split the fee that u pays. t can run the operations as a P2P

network or a crowd-sourcing service [Su and Pan(2016)]. Once identifying the bot, t

will forward the request, packets, and digitally signed hash tree to it so that it can

verify authenticity of the test as well. The bot will then send the packets to u, and

interact with it based on its replies to the packets. bot will maintain a record of the

interaction history and share the record with t and u later.

Step 3 : Results of the Test

After the test is accomplished, the bot will generate the record and the complete

interaction history. It will then submit the history to t, who will then provide the

record to u. During the whole procedure, the IP address of the bot is not visible to

the service provider s. If u is happy with the submitted results, it will keep a record

and use the results as a proof to s for any violations to SSLA.

6.3.4.3 Analysis of Expected Properties

In this part we will analyze how the approach satisfies the expected properties and

defends against several attacks.

First, Randomness of Testing Activity

During the SSLA verification procedure, only u and s have the complete view of the

network security rules stated in the SSLA. Therefore, it is easy for u to craft packets

68

for a test to the rules. Based on [Wool(2010)], a modern firewall can easily contain

hundreds of rules and thousands of objects. Therefore, the number of combinations

of rules and objects that u can choose for testing is large. The probability that s can

correctly identify the incoming or outgoing testing traffic through random guess is

really low.

Second, Sender Unpredictability

In our approach, we clearly differentiate the node t who manages the testing services

and the node bot who actually executes the test. From the service provider s’ point

of view, it can easily identify the IP address of node t. However, since t can recruit

a bot node to actually conduct the test, the packet sender cannot be identified by s.

Some readers may still have the concerns about identifying the testing traffic based

on the receiver of the packets. For example, when s monitors traffic and finds out

that u contacts t, it assumes that u will start third party testing. Although it cannot

figure out the IP address of the sender bot, it can reactivate all network security rules

of node u so that it can successfully pass the test. This action, however, will not

guarantee the avoidance of detection should s actually violate the SSLA. Below is the

analysis.

The test that u and t negotiate can be conducted at a future time. For example,

u and t may determine that the test will be executed every seven days. Since the

communication between t and u is encrypted, s could not figure out the determined

time and format of testing. If s decides to reactivate the SSLA for u, the objective of

u is achieved since it only wants its network security to be protected. Unless s keeps

all SSLA of u active all the time, a violation could still be captured once s deactivates

the rules.

Third, Authenticity of Testing Request

Since the network testing traffic may contain suspicious or even malicious packets,

the tester t and sender bot must verify the authenticity of the request to prevent the

69

mechanism from being abused for network attacks. In our approach, t and bot can

verify the digital signature of the request from u. At the same time, Merkle's hash

tree of the packets is constructed and signed by u as well so that the contents of each

packet is authenticated. When bot sends out a packet, an authentication method such

as the keyed MAC code can be attached to the packet so that later t and bot can

prove that they strictly adhere to the testing request.

Fourth, Verification of Testing Activities

In our approach, the tester t and user u do not have mutual trust. Therefore, after

paying t for the test and submitting the packets, u must have a method to verify that

the test actually happens. For example, if u crafts a group of packets that will all be

discarded by s should all SSLA are enforced, u will not be able to differentiate the

scenario of an honest service provider from that of a cheating bot who does not send

out any test traffic. Therefore, some method must be designed to prevent such events

from happening.

To identify a dishonest t or bot, u can intentionally embed a group of packets that

can successfully penetrate the SSLA into the request. When they are mixed with the

real testing packets, t or bot cannot differentiate them since they do not know the

details of the security rules. Therefore, if the bot does not send out the testing packets,

u will not receive any packets that could have penetrated the network security rules.

Under this case, u can detect the dishonest bot.

6.3.5 Analysis of Detection Accuracy and Overhead

In this part, we will analyze the detection capability and overhead of the proposed

approach. We will discuss two scenarios when the service provider s is benign or

malicious, respectively. Without losing generality, we assume that the SSLA that s

needs to enforce for u contains R rules. For each test, u will randomly select r rules

and construct the testing traffic. To make sure that bot will actually conduct the

network test, it will also embed e testing packets that will go through the SSLA and

70

reach to u. We assume that for the testing of each rule, the user u needs to provide

b bytes to t. The total amount of traffic between u and bot for testing of one rule is

B bytes. Here B ≥ b since some test cases involve multiple rounds of interaction.

Now let us look at the first scenario in which s is honest and executes all SSLAs

faithfully. When u decides to conduct a third party test of the network security

rules, it will first communicate with t and provide (r + e)b Bytes of data to t. t

will then share the packets with the selected bot. Please note that at this time we

ignore the network traffic and computation overhead caused by the generation and

transmission of the digital signatures and hash trees. Once the testing traffic and bot

are selected, u will undergo the test. Depending on the actions that s should take on

the testing packets, u and bot may exchange up to (r + e)B bytes of traffic. During

this procedure, s will check the network security rules for u for each packet. So the

total communication overhead at u is (r + e)(b+B) Bytes.

The second scenario is more complicated. Let us assume that out of the R rules

u and s have for their SSLA, s is enforcing only f rules so that less resource will be

used. Therefore, when u randomly selects r rules for testing, it is possible that some

violations will be detected.

Since there are R rules between u and s altogether, the different combinations of

r rules are selected for testing is
(
R
r

)
. Similarly, the number of combinations that all

r rules under test are selected from the f rules enforced by s is
(
f
r

)
. Therefore, for a

single round of detection, the probability that at least some violation is detected is:

1− (fr)
(Rr)

. As an exception, if r > f , the probability that s is caught is 1.

So the detection probability depends on three parameters: the total number of rules

between u and s, the number of rules that s enforces, and the number of rules that t

tests. The next figure illustrates the detection probability when the three parameters

change their values. In Figure 6.3, the total number of rules between u and s is 300.

s enforces 10% to 70% of the rules. u will select 3 to 15 rules for testing. Since u has

71

a large free space to select the rules to test, it becomes extremely hard for the server

s to guess which set of rules to enforce. As Figure 6.3 shows, even when s enforces up

to 70% of the rules and u selects only 3 rules to test, u still has about 65% chance to

catch the violation in one round of test. Please note that the communication overhead

for u stays roughly the same no matter s is dishonest or benign.

Figure 6.3: Detection capability of the approach.

6.3.6 Reducing False Alarms

The analysis results in Section 6.3.5 show that if u and t successfully accomplish

the negotiation about testing and the packets from bot successfully reach to s, we

have a very good chance to detect the violations. Here we need to consider a scenario

in which false alarms may arise. Since bot will send out a group of packets to test

the network security functionality, it is possible that some of the packets will look

‘suspicious’ to the routers or network security devices along the path and get discarded

(just as many spam emails are silently removed by the routers).

These silent operations by the routers may lead to false alarms of the proposed

approach. For example, if a router discards all of the testing packets, u will assume

that the bot does not execute the contract and request refund from t. As another

example, if a router discards the packets that should have been identified and removed

by s because of the SSLA, u will wrongly label s as an honest service provider.

To reduce false alarms caused by such scenarios, we propose to use the method

described in [Kanich et al.(2008)Kanich, Kreibich, Levchenko, Enright, Voelker, Pax-

son, and Savage]. Specifically, when t is helping users to test their network security

72

functions, it can recruit multiple bots to execute the test. The goals here are two

folds: (1) The probability that the same subset of testing packets are removed is low

when they travel along different paths, thus reducing false alarms. (2) Based on the

feedback from u, t can learn the actions of routers along different paths and assign

testing requests to different bots accordingly in the future.

6.4 Quantitative Results

In this part, we will present some quantitative results about the proposed approach.

The experiments focus on the detection capability of the approach and the impacts

of traffic filtering by the network devices.

6.4.1 Detection of Time-Varying SSLA Enforcement

As we describe in Section 6.3.5, even when the service provider disables the en-

forcement of only 30% of the network security rules, it still risks the chance of 65% of

being detected. From this point of view, partially enforcement of the network security

rules is not an attractive method to s.

In this part, we consider another option that s could adopt to avoid detection.

We know that the service provider faces severe challenges between performance and

security when the network traffic volume is high. Therefore, s could choose to bypass

a certain portion of network traffic to solve the problem. This scenario is different

from the method described in Section 6.3.5 since now a part of the network traffic

will experience thorough examination, while the remaining part will go free.

Similar to the scenario studied in Figure 6.3, we assume that there are 300 rules

between u and s, and u randomly chooses 2, 4, 6, 8 or 10 rules to test. To simplify

the analysis, we assume that for each rule u will need only one packet to test. We

assume the probability that s decides to bypass a packet without examination is p.

This probability can be applied to each testing packet. The following figure shows

the detection capability of the proposed approach.

73

Figure 6.4: Detection capability under traffic bypass.

In the figure, we assume that s will bypass 5% to 25% of the network traffic. If a

testing packet is not examined, it will reach to u and u will detect the violation. Out

of all the selected rules, u needs to capture only one skipped packet to identify the

violation. From the figure, we can see that with the increase of the number of tested

rules, the detection probability reaches above 80% even when s skips only 25% of the

network traffic. Note that the number of tested rules in this figure is independent of

the total number of rules. This property is especially beneficial for large corporations

with complicated network security regulations and many security rules.

6.4.2 Mitigating Impacts of Packet Removal along the Path

With the development of network security practise, devices at both edge and core

networks start to enforce tight packet inspections to filter out potentially harmful

traffic as soon as it enters the network. From this point of view, when a bot sends out

the network test traffic upon the request of u, it is possible that some of the packets

are labeled as ‘malicious’ and silently discarded by routers. If this scenario happens

and u does not receive the packets, false alarms will arise.

To reduce such false alarms, one mechanism that u and t can adopt is to choose

more than one bot from the network and expect that different network devices will

adopt different security measures when they examine the traffic contents. This also

supports the discussion in previous sections on the recruitment of bots from different

areas of the network. When multiple groups of testing packets choose disjoint paths,

different subsets of packets will reach to s. Should s disable some or all of the security

74

rules, we have a better chance to catch the violation.

Figure 7.5 shows the quantitative results. Here we refer to the idea in [Desai(2012)]

and classify the testing packets into three categories based on their sensitivity to

security devices: low, middle, and high. Without losing generality, we assume that

for each type of packets, the probability that an edge router of an Autonomous

System (AS) discards the packets silently is 0.1% (for low), 1% (for middle), and 5%

(for high), respectively. We also assume that once a packet enters an AS, it will not

be examined again. Therefore, if a testing packet travels through 5 ASes before it

reaches to s, it will be examined for 5 times.

Figure 6.5: Detection capability when we send along multiple paths.

In addition to the sensitivity of the testing packets, we also consider two other

parameters: the number of autonomous systems (AS) that a testing packet goes

through, and the number of bots that send out the packets through disjoint paths.

In Figure 6.5, each curve is labeled by a pair of numbers (a, b), in which a is the

percentage that a packet is labeled as ‘malicious’ and is silently discarded by an AS,

and b is the number of bots that send out the testing packets through disjoint paths.

From the figure we can learn the following patterns. (a) As the number of ASes

increases, a testing packet has higher probability to be discarded by network devices

along the path. The impacts are especially obvious for those highly sensitive packets.

For example, the light blue line labeled by (5, 1) suffers the most in detection accuracy

when the number of ASes increases. (b) Using multiple bots to send out testing packets

through different paths is an effective method to mitigate the impacts. For example,

for highly sensitive packets (5% probability to be discarded), when we increase from

75

1 bot to 3 bots, the detection rate will jump from 77% to 99% even when the packets

have to go through 5 ASes. (c) The packets with low or middle sensitivity levels are

not greatly impacted by the path length. Based on these observations, t can choose

bot accordingly based on the features of the testing traffic.

6.4.3 Future Extensions

In this part, we will discuss potential extensions to our approach. We are especially

interested in the following aspects.

Incentive Model to Recruit bot

In our approach, the tester t who manages the third party test services and the

bots who conduct the operations are two groups of nodes. Therefore, t must recruit

nodes to serve as packet senders. To attract more nodes to the job, certain incentive

must be provided. From a bot’s point of view, it trades its bandwidth and risks being

identified as a ‘potential network attacker’ by its firewall or edge router for the profit

that t can provide. Therefore, a corresponding cost-benefit model must be established

so that a reasonable price can be charged to u and a fair split of the profit can be

shared between t and bot.

Please note that this recruitment procedure is different from the crowd-sourcing

problem [Li et al.(2019)Li, Li, Wang, and Wang, Wang et al.(2020)Wang, Tushar,

Yuen, and Zhang] since the participants in crowd-sourcing usually contribute their

labors but seldom risk their reputation. Some efforts such as [Moradi and Li(2020)]

provide some hint from which we can benefit.

Reducing Overhead at t and bot

In our approach, the user u must digitally sign all the packets for test so that t and

bot can verify the integrity and authenticity of the packets. Similarly, if a bot wants to

prove that it strictly follows the procedure, it also needs to sign the packets with its

private key. This operation, however, provides some hint for s to identify the testing

76

traffic since only a limited amount of traffic is digitally signed from end to end.

To solve this problem, we need to design a mechanism through which we can prove

the integrity of t and bot without disclosing the objective of the packets. Some efforts

from the automatic execution of smart contracts [Viglianisi et al.(2020)Viglianisi,

Ceccato, and Tonella] could be our sources of solutions.

6.5 Conclusion

In this chapter we investigate the problem of proof of network security SLA. Specif-

ically, a user could depend on a non-interest third party to assist it to test the enforce-

ment of network SSLA. We first discuss the overview of the approach. The details

of each step are then presented. We also focus on the authenticity and integrity of

the test request, the execution of the test, and schemes to reduce false alarms. The

quantitative results show that our approach can effectively detect the violation of the

SSLA even when the user and tester do not have mutual trust. The user also has full

control over the detection frequency and overhead.

When we put the research problem of the chapter in a bigger view, the goal is

to allow end users to verify the execution of security service level agreement (SSLA)

with the service providers. Different from the SLAs that focus on system performance,

security related SLAs are hard to enforce since there is no obvious indicator of its

execution. Our approach has the potential to be applied to other types of security

services. These efforts will help end users to better protect their network and data

security.

CHAPTER 7: Incentivisation of Outsourced Network Testing: View from Platform

Perspective

7.1 Introduction

With fast development and wide adoption of Security as a Service (SaaS) [Hawedi

et al.(2018)Hawedi, Talhi, and Boucheneb], more and more corporations start to de-

pend on third party companies to protect their networks. This decision drastically

reduces the workload of the CISO (Chief Information Security Officer) of the com-

pany since now she/he can focus on the policy level requirements and the expected

security and robustness properties. However, the security services must be verified

periodically to make sure that the service provider does not violate any of the service

level agreements (SLA) [de Carvalho et al.(2017)de Carvalho, de Andrade, de Castro,

Coutinho, and Agoulmine].

While the requirement on periodic verification sounds reasonable, it is quite hard

to enforce in real life if the company depends on one or two nodes to conduct such

test since their identities can be easily recognized and remembered by the service

provider. In [Alasmari et al.(2020)Alasmari, Wang, and Wang], the authors propose

an approach similar to the crowd-sensing system: a platform serves as the middleman

to connect the customers who need their security properties to be tested and the

nodes who can conduct such tests for them. The authors investigate the expected

properties of the outsourced tests and the mechanisms to prevent either testers or

customers from cheating.

While the approach in [Alasmari et al.(2020)Alasmari, Wang, and Wang] presents

an overview of the platform, it lacks the discussion on an important problem: in-

centive models for the platform and network testers to participate in the verification

78

procedure. Note that to conduct network testing, a tester often needs to send out

some packets that will be considered ‘suspicious’ or ‘malicious’ under some cases. For

example, to assess whether or not the network security service provider will react

promptly enough to identify some malicious payload, the tester may need to send

out some packets that match to the malware signature. These packets, however, may

be labeled by the tester’s internet service provider (ISP) and causing negative conse-

quence (e.g. limiting the network bandwidth of the tester). Therefore, a cost-benefit

model must be established and analyzed before such a platform can be deployed.

To solve this problem, in this chapter we will establish a cost-benefit model from

the platform point of view. We will first classify the network testing traffic based on

the probability that they will be labeled and filtered by ISP. We will then establish a

model for the problem as a linear programming problem. We analyze the complexity

of the problem and design a heuristic algorithm to solve the incentive model under

different situations. Finally, we apply the algorithm to multiple cost/benefit scenarios

of outsourced network testing. The outputs of the algorithm explain the potential

policies that the platform can adopt.

Our chapter has the unique contributions as follows. First, we establish an incentive

model for outsourced network security testing. Different from traditional incentive

models in which the participants trade resources for monetary incentives, in our model

the testers try to maximize their profit while staying under the radar of network

security monitors. Second, we model the problem as a linear programming problem

and show that it is equivalent to variations of the knapsack problem. We then design

a heuristic algorithm to solve the situation. Third, we apply our algorithm to multiple

network testing scenarios and show that the outputs of the algorithm can explain the

potential policies of the platform very well.

The remainder of the chapter is organized as follows. In Section 7.2, we describe

related work that we can benefit from. In Section 7.3, we first discuss the differences

79

between our incentive problem and several problems that also demand incentive mod-

els. We then use a linear programming model to characterize the problem and show

that it is equivalent to an NP hard problem. We design a heuristic algorithm to

solve it. Section 7.4 presents the quantitative evaluation results and how the outputs

match to the policy that a network testing platform can adopt. Finally, Section 7.5

concludes the chapter.

7.2 Related Work

In this part, we will describe the state-of-the-art research in several directions

from which we can benefit. We are especially interested in the outsourced security

services, their enforcement, and incentive models in other domains that we can refer

to. For Security-as-a-Service (SaaS), researchers have conducted a lot of efforts to use

Service Level Agreement (SLA) to define the criteria of evaluation. For example, the

EU researchers built the framework SPECS [Rak et al.(2013)Rak, Suri, Luna, Petcu,

Casola, and Villano] and the project MUSA [Rios et al.(2016)Rios, Mallouli, Rak,

Casola, and Ortiz] that allowed users to prepare, negotiate, implement, and remediate

security SLAs. The efforts in [Casola et al.(2020b)Casola, De Benedictis, Rak, and

Villano] try to embed security into the system from the design phase. In [Boudi

et al.(2019)Boudi, Farris, Bagaa, and Taleb], to alleviate the workload of security

enforcement at the cloud service provider, authors try to distribute the efforts at

edge nodes through lightweight virtualization. In [Hawedi et al.(2018)Hawedi, Talhi,

and Boucheneb], the authors designed a different approach. They embed a lightweight

IDS system at the cloud provider and allow the tenants to configure their own rules

in the IDS for their VM. This approach provides a certain level of flexibility to users

who have security expertise.

There are efforts in which the security provider allows end customers to participate

in the configuration of security measures. For example, in [Casola et al.(2017)Casola,

De Benedictis, EraÅcu, Modic, and Rak], end users can propose security ob-

80

jectives and the provider will determine and allocate resources to satisfy the

needs. Example approaches are built to measure parameters for network secu-

rity [Wonjiga et al.(2019b)Wonjiga, Rilling, and Morin] and data integrity [Wonjiga

et al.(2019c)Wonjiga, Rilling, and Morin]. Note that the enforcement of the security

measures still solely depends on the provider itself. A similar approach is to stan-

dardize the interfaces to the network security functions (NSF) in network function

virtualization environments [Hyun et al.(2018)Hyun, Kim, Kim, Jeong, Hares, Dun-

bar, and Farrel]. In addition, software-defined networking can be imposed to optimize

the security service process by implementing some of the packet filtering rules.

The definition and enforcement of security SLAs also benefit from the advances

in the new techniques such as AI and smart contract. For example, in [Wonjiga

et al.(2019c)Wonjiga, Rilling, and Morin], researchers applied blockchain to data

integrity protection so that both end users and cloud providers can verify the results.

In the proposed approach, the platform will recruit a large number of testers to con-

duct the network security evaluation. During this procedure, the testers often need to

send out data packets that are ‘suspicious’ or even sometimes labelled as ‘malicious’.

Therefore, we need to study how ISPs (internet service providers) are monitoring net-

work traffic to assess the risk/cost of the testers. In [Haddadi et al.(2018)Haddadi,

Christophides, Teixeira, Cho, Suzuki, and Perrig], the ISP compares the traffic pat-

terns sampled from IoT devices with those at edge routers to detect anomaly traffic. A

similar approach is applied to IDS at the wide area network level [Aqil et al.(2017)Aqil,

Khalil, Atya, Papalexakis, Krishnamurthy, Jaeger, Ramakrishnan, Yu, and Swami].

In [Tedja et al.(2018)Tedja, Lim, and Ipung], the ISP uses the anomaly in DNS queries

to detect command and control in botnets. ISPs have also used neural networks to

analyze the URL access data to detect SQL injection attacks [Tang et al.(2020)Tang,

Qiu, Huang, Lian, and Liu]. In [Tosun et al.(2021)Tosun, De Donno, Dragoni, and

Fafoutis], the authors study the usage of residential IP addresses as proxies for mali-

81

cious network traffic, and propose to use the in and out traffic volume as a fingerprint

to detect such activities.

Incentive models have been widely used to promote participation in the activities

such as crowdsourcing [Islam et al.(2019)Islam, Alvi, Uddin, and Rahman,Muldoon

et al.(2018)Muldoon, O’Grady, and O’Hare], crowdsensing [Khan et al.(2019)Khan,

Ur Rehman, Zheng, Jan, and Alam, She(2020)], and next generation wireless net-

works [Luong et al.(2019)Luong, Wang, Niyato, Liang, Han, and Hou]. Compared

to these models, our application scenario has some unique properties. Sending out

‘suspicious traffic’ to conduct network security tests may lead to identification and

disconnection by ISP, thus leading to mid or long term negative impacts. The only

scenarios we can find that share the properties are the financial incentives for clinical

trials of treatment for infectious diseases [Kraft et al.(2019)Kraft, Duenas, Kublin,

Shipman, Murphy, and Shah, Paul et al.(2021)Paul, Harbarth, Huttner, Thwaites,

Theuretzbacher, Bonten, and Leibovici]. Here the volunteers will receive cash re-

wards for being contacting with infectious diseases and testing new medicines. They

trade the short term incentives (cash here) for the potential of long term diseases

(e.g. malaria). While the application scenarios are similar, the data from hospitals

or medical systems only provide cash amount value but not the quantifiable incentive

model.

7.3 Incentivisation of Outsourced Network Testing

In this chapter, we will present the details of the incentive model the platform can

use to attract more nodes to participate in the network security services as testers.

We will first discuss the assumed scenarios and the functionality of different parties

in the system. We will then present the cost and payment from both the platform

and the tester point of view. The incentivization model will then be formally defined

as a linear programming problem with constraints. Our analysis will show that the

problem is NP hard and heuristic approaches must be designed. We will also provide

82

a few such mechanisms.

7.3.1 System Assumptions

Figure 7.1: Application scenarios of the proposed approach.

Figure 7.1 shows the application scenario. We assume that an end user u uses

the network security services provided by s. u wants to use a third party to verify

whether or not s is satisfying the security service level agreement (SSLA). Therefore,

it resolves to the network security service testing platform P . To simplify the scenario,

we assume that u carefully crafts a group of packets and asks P to conduct the test.

To prevent s from recognizing the source address of P and the testing traffic, P can

recruit a group of testers to actually conduct the test. The test results can then be

shared with u.

From the platform perspective, the overall operations must be profitable to make

the business sustainable. For example, P will charge service fees from the user u

and has to pay the testers correspondingly. Note that different testers may charge

different fees to P because of the network service cost and security setup. While it is

not necessarily true for P to make a profit on every request (e.g. temporary discount

to attract users), in the long term it needs to make sure that ($income - $cost) is

positive.

Different from the crowd-sensing or crowd-sourcing scenarios [Khan

et al.(2019)Khan, Ur Rehman, Zheng, Jan, and Alam, Wei et al.(2020)Wei,

Wu, and Long, Zhao et al.(2021)Zhao, Tang, Liu, and Zhang] in which the partic-

ipants use valuable resources such as time and battery power to accomplish tasks,

83

the costs of network testers are usually caused by other factors. For example,

should the testing machine is connected to a wall power outlet, battery lifetime is

not a factor. The costs, however, are associated with the features of the testing

traffic. For example, many ISPs will monitor the network traffic for potential attack

detection [Aqil et al.(2017)Aqil, Khalil, Atya, Papalexakis, Krishnamurthy, Jaeger,

Ramakrishnan, Yu, and Swami,Sacramento et al.(2018)Sacramento, Medeiros, Bota,

and Correia]. Once a malicious or suspicious node is detected, the ISP may restrict

its network bandwidth or sometimes directly disable the services. From this point of

view, the testers are risking their network availability to participate in the services.

Because of the complexity of the ISP network monitoring and restriction policies,

in this chapter we adopt the model presented in [Desai(2012)]. Here we classify the

testing packets into three categories based on their sensitivity to security policies: low,

middle, and high (our model could support more fine grained classification, which will

be discussed in later sections). For each node i, within 24 hours of time period, the

node can send out at most Ri,low, Ri,mid, and Ri,hi packets at the low, medium, and

high sensitivity levels, respectively, if it wants to avoid any restrictions by her ISP.

Therefore, the platform P must consider such restriction when assigning tasks to the

tester.

While we understand that the security of the proposed approach and the plat-

form is essential for its success, in this chapter we focus on the incentive model, the

complexity of the problem, and heuristic mechanisms. Some initial discussion on

the security of the similar problem and its mitigation were presented in [Alasmari

et al.(2020)Alasmari, Wang, and Wang]. We will continue to explore the security

issues in future investigation.

The following table summarizes the symbols we use.

84

Table 7.1: Symbols used in the chapter.

P platform that provides testing services
Tj jth tester that conducts testing services
Ui ith user that demands testing services

BPh, BPm, BPl, base price P charges for each testing
packet at high, mid, and low sensitivity

Gi(Hi, Mi, Li) ith network testing request
with Hi high, Mi middle,
and Li low sensitivity packets

Pj,l, Pj,m, and Pj,h price tester j charges for sending a
low, middle and high sensitivity packet

Rj,l, Rj,m, and Rj,h the limits of low, middle, and high
sensitivity packet tester j can send in 24hrs

Xi,j whether or not we assign request Gi to tester j
Yi,j,H number of high sensitivity packets of request Gi

assigned to tester Tj (similar for middle and low)
G the set of network testing requests
J the set of network testers

7.3.2 Working Procedure and the Cost Model

In this section, we will describe the working procedure of the platform and establish

the cost model so that we can analyze the complexity of the overall problem.

Step 1: User ui will submit a network testing request to platform P that consists

of (Hui high, Mui middle, and Lui low sensitivity packets. The user agrees to pay

(Hui ∗BPh + Mui ∗BPm + Lui ∗BPl to the platform;

Step 2: Platform P will assign the testing request to one or multiple testers. Note

that different criteria and restrictions may need to be considered during this proce-

dure. We will discuss two assignment methods in subsequent discussion. During this

procedure, the platform needs to consider both its base price charge upon the user ui

and the price that it needs to pay to the tester to balance the book;

Step 3: The network testing will be conducted. Once the testing operations are

accomplished, each party will pay the fee as the agreed amount. This request is

complete.

85

7.3.2.1 Task Assignment Method 1

In this task assignment method, we assume that each testing request needs to be

assigned to a single tester. In other words, the remaining packet limits of the tester

must be large enough to hold the whole request. Therefore, we can formally define

the problem as:

maximize:
|G|∑
i=1

|J |∑
j=1

Xi,j(Hi ∗ (BPh − Pj,h)+

Mi ∗ (BPm − Pj,m) + Li ∗ (BPl − Pj,l))

subject to:
|G|∑
i=1

Xi,j ∗Hi ≤ Rj,h, Xi,j ∈ {0, 1}, j = 1 to |J |

|G|∑
i=1

Xi,j ∗Mi ≤ Rj,m, Xi,j ∈ {0, 1}, j = 1 to |J |

|G|∑
i=1

Xi,j ∗ Li ≤ Rj,l, Xi,j ∈ {0, 1}, j = 1 to |J |

|J |∑
j=1

Xi,j = 1, i = 1 to |G|

Here the objective is to maximize the profit of the platform by assigning the testing

requests to testers. While P has uniform price rules for different types of testing

traffic, each tester could charge different prices for the same type of packets since

they need to consider the network costs. The profit P collects is determined by the

difference between the two prices and the number of packets. At the same time,

since a testing request cannot be decoupled and assigned to multiple testers, the total

numbers of high, middle, and low sensitivity packets assigned to each tester must be

within its limits, as shown in the constraints. Here Xi,j represents whether or not

86

the requests Gi is assigned to tester j. The last constraint shows that each task is

assigned to one tester.

Complexity Analysis

From the definition of the problem, we can see that it is related to the knapsack

problem. Here each tester’s packet limits are the knapsacks while the testing requests

are the items. Below we will analyze the complexity of the problem.

Theorem 1: Assignment method 1 is an NP-complete problem.

Proof : We will show the equivalence between a special case of this problem and

the subset knapsack problem. Let us assume that a polynomial algorithm A can solve

the general problem described in assignment method 1. Now we consider a special

case. Assume that each tester adopts the same price rules, thus we have Pj,l = Pj′,l,

Pj,m = Pj′,m, Pj,h = Pj′,h for all different testers j and j′. Therefore, the profit that

P makes through satisfying a network testing request will be the same whichever

tester it assigns to. To further simplify the problem, we assume that for each tester

j we have Rj,l and Rj,m as infinite. In other words, the only factor prevents a tester

from accomplishing a request is its limit on high sensitivity packets. We also assume

that Pj,l = BPl and Pj,m = BPm. Now P can make a profit through only the high

sensitivity packets.

Through the simplification, we have the following scenario: (1) each tester j has

a knapsack with the capacity Rj,h; (2) the profit that P can make is proportional to

the number of high sensitivity packets that it can fit into each knapsack; and (3) the

goal of P is to maximize its profit.

This simplified problem is equivalent to the subset sum problem, which was classi-

fied as the Karp’s 21 NP-complete problem [Karp(1972)]. ■

87

7.3.2.2 Task Assignment Method 2

In this task assignment method, we assume that a testing request can be broken

down and assigned to multiple testers to jointly accomplish the task. Note that the

whole request must be satisfied. In other words, we will not serve only a part of the

request. Under this case, the assignment procedure could become more complicated

since we can draw the packet capacity from different sources. As long as the remaining

capacity of high, middle, and low sensitivity packets is enough for the request, we can

satisfy the request.

From the first sight, it seems that this problem can be solved with a greedy al-

gorithm, e.g., always assign the testing request to the tester that charges the lowest

price for a category of the packets. The following example will show that this may

not always be the optimal choice.

Here we will use a simplified example. Assume that all testers will adopt the same

price table. Therefore, it does not matter to which tester we assign the task since the

profit of the platform will be the same. We can put all the testing packet capacity

together. Without losing generality, we assume that the testing packet capacity is

(19(H), 19(M), 19(L)). Here all testers together can send out at most 19 test packets

with high sensitivity, 19 with middle sensitivity, and 19 with low sensitivity. For

each testing packet, the profit that the platform can collect is $4 (H), $2 (M), and $1

(L), respectively. We also assume that the platform receives 4 requests, with the size

of R1(10, 10, 10), R2(6, 6, 6), R3(5, 5, 5), R4(4, 4, 4), respectively. Here the numbers

in parenthesis represent the high, middle, and low sensitivity packets in each task.

Based on the table, the profit of each task is: for R1, 10 * ($4 + $2 + $1) = $70, for

R2, 6 * ($4 + $2 + $1) = $42, for R3, $35, and for R4, $28.

If a greedy assignment algorithm is adopted, we will first accomplish task R1 and

R2. At this time, the remaining testing packet capacity is not enough for any other

task, so the platform’s profit will be $112. However, we know that the platform can

88

actually satisfy tasks R1, R3, and R4 to make the profit $133.

Below we will formalize the assignment problem as follows:

maximize:
|G|∑
i=1

|J |∑
j=1

(Yi,j,H ∗ (BPh − Pj,h) + Yi,j,M∗

(BPm − Pj,m) + Yi,j,L ∗ (BPl − Pj,l))

subject to:
|G|∑
i=1

Yi,j,H ≤ Rj,h, j = 1 to |J |

|G|∑
i=1

Yi,j,M ≤ Rj,m, j = 1 to |J |

|G|∑
i=1

Yi,j,L ≤ Rj,l, j = 1 to |J |

|J |∑
j=1

Yi,j,H = Hi, i = 1 to |G|

|J |∑
j=1

Yi,j,M = Mi, i = 1 to |G|

|J |∑
j=1

Yi,j,L = Li, i = 1 to |G|

Here we can assign a request to multiple testers as long as all of the testing packets

are covered. Yi,j,H represents the number of high sensitivity packets of request Gi that

are assigned to tester Tj. Another restriction is the total number of high (middle, or

low) sensitivity packets that are assigned to a tester is within her limit.

Complexity Analysis

Since now a single testing request can be assigned to multiple testers, it is different

from the scenario that we discussed in Section 3.2.1. Since the testing requests can

89

be assigned to multiple testers, the testing capacity of different nodes can actually be

merged together to form a large pool, as shown in Figure 7.2. Please note that since

each tester may have different capacities in high, middle, and low sensitivity packets,

their sums are also different. At the same time, each tester has its own price policy

of the packets.

Figure 7.2: Testing capacity forms a large pool.

Since the testing capacity can be merged to form a large pool, we have a variant

of the multi-dimensional knapsack problem [Akcay et al.(2007)Akcay, Li, and Xu,

Laabadi et al.(2018)Laabadi, Naimi, El Amri, and Achchab]. Here the profit of

satisfying a single testing request is not a constant since each tester has its own price

policy. Below we will prove that this variant is still an NP-hard problem.

Theorem 2: Assignment method 2 is an NP-hard problem.

Proof : We will show the equivalence between a special case of this problem and

the general multidimensional knapsack problem. Let us assume that a polynomial

algorithm B can solve the general request assignment problem described in assignment

method 2. Now we consider a special case. Assume that each tester adopts the same

price rules, thus we have Pj,l = Pj′,l, Pj,m = Pj′,m, Pj,h = Pj′,h for all different testers

j and j′. Therefore, the profit that P makes through satisfying a network testing

request will be the same whichever tester it assigns to. At the same time, note that

we have put all the testing capacity together to form a large, 3-dimensional (high,

middle, and low) knapsack. Given a set of testing requests, the algorithm B will solve

the profit maximization problem in Method 2 in polynomial time.

Through this simplification, we have created a 0-1 MDKP (multi-dimensional

knapsack problem) with the dimension number of 3. Based on [Garey and John-

son(1979),Lin(1998)], the 0-1 MDKP problem is strongly NP-Hard. Therefore, if the

90

algorithm B exists, we will have a polynomial solution to the MDKP problem.

■

7.3.3 Heuristic Algorithms

Since the request assignment problems cannot be solved within polynomial time,

in this section we will discuss some heuristic algorithms. Depending on whether or

not a testing request can be assigned to multiple testers, we discuss two different

approaches.

The first heuristic algorithm we present is a variation of the Primal Effective Ca-

pacity Heuristic (PECH) mechanism for the general MDKP [Akcay et al.(2007)Akcay,

Li, and Xu]. Specifically, it is a greedy algorithm for the Task Assignment Method

1. Here we assume that a task must be assigned to a single tester. Since each tester

adopts its own price model, the profit that P can collect from accomplishing the task

depends on the assigned tester. Figure 7.3 shows the pseudo code of the algorithm.

While the overall procedure is straight forward, the operation in step (4) could be

conducted in different ways. Here the platform needs to select one task from all the

unassigned network testing requests. The selection method could directly impact the

final result. Several examples of the selection criteria include: (1) first come first

serve; (2) fit as many as possible requests to the testing capacity (thus P inclines to

choose the tasks with fewer packets); or (3) randomly choose a task.

Another criteria of tester assignment is the traffic capacity usage of different cat-

egories. Since we assign a whole request to one tester, we try to use the packet

capacities in a balance way to avoid the situations in which a certain type of packet

capacity is used up and while for other types a plenty of capacity is reamined. Under

this case, we will assign a request to a tester that will create the least imbalance in its

capacities after satisfying the request. Below we provide an example. Assume that we

have two testers t1 and t2 who have used their capacities from high to low as follows:

t1(71%, 68%, 72%) and t2(66%, 69%, 67%). So the imbalance of t1 is 72%−68% = 4%,

91

and for t2 is 3%. Now assume that a request contains only high sensitivity packets.

Because of the difference in capacities of testers, it will use 2% of t1’s capacity or 3%

of t2’s capacity. Therefore, if we assign it to t1, the new imbalance value will be ((71%

+ 2%) - 68% = 5%). While for t2 the new value is (69% - 67% = 2%). Therefore, to

reduce imbalance at testers, we will give the task to t2.

Instead of maximizing the profit from the current request, we could adopt other

criteria during the procedure to select the testers. For example, the platform needs

to attract and maintain a large number of testers to keep the service sustainable.

Therefore, it needs to assign tasks to different testers even if that means loss of profit.

If that is the case, we can choose the tester who has the largest percentage of unused

testing capacity to achieve load balance.

Figure 7.3: Greedy assignment algorithm when each task must be assigned to a single
tester.

The Task Assignment Method 2 is a little bit different since we can assign the

packets to multiple testers. Therefore, a greedy algorithm will try to assign each

single testing packet to the tester who charges the lowest price. Once that tester’s

capacity is reached, we can move on to the next cheapest tester. Note that this

approach tries to maximize the profit of the current request for the platform. If the

first-come-first-serve method is always adopted, it is possible that a certain type of

packet capacity is used up first, thus preventing us from admitting new requests. For

92

example, if all testing capacity of the middle level sensitivity packets is used up, we

will not be able to admit any request that contains middle sensitivity packets since

we do not allow a request to be partially satisfied.

To prevent this scenario from happening, we can manage the remaining capacity

of different types of packets and try to maintain a balance. For example, during the

request assignment we can set up a threshold that after admitting any testing request,

the difference in remaining capacity of different types of packets in percentage will not

exceed this value. Below we provide an example. Assume that we set the threshold

at 5%. Before admitting a request, the capacity usage are 45% (low), 42% (middle),

and 47% (high), respectively. Now if a task requests 1% of middle sensitivity packet

capacity and 2% of high, we will not admit it since the ending capacity usage will be

43% (middle) and 49% (high) which will be larger than the threshold 5%. Note that

this method tries to improve the capacity usage to maximize the profit.

7.4 Quantitative Results

In this part, we will present some quantitative results about the proposed ap-

proaches. The experiments focus on the achieved profit of different approaches, and

the practicability of the task assignment models.

7.4.1 Achievable Profit vs Heuristic Approaches

Based on the discussion in previous sessions, we can see that the task assignment

problem is an NP problem. Therefore, in this section, we will compare the maximum

profit under some scenarios to the achievable profit of the heuristic approaches. Re-

stricted by the search space size and required computation power, we will experiment

with some small scale questions.

We assume that the prices that the platform charges for high, middle, and low

sensitivity packets are $12, $10, and $8, respectively. For each tester, the capaci-

ties of high, middle, and low sensitivity packets follow uniform distribution in the

93

ranges (900, 1100), (1800, 2200), (900, 1100), respectively. The size of the network

test requests also follows uniform distribution around the expected values. They are

divided into two groups. The first group have the sizes that range from 20% to 90%

of the testers’ capacities, while the second group range from 5% to 45%. The charg-

ing prices of the testers uniformly distribute between 95% to 100% of the platform

prices. To calculate the maximum profit of the assignment, we search for all possible

combinations.

Table 7.2: Maximum profit vs heuristic approaches.

of # of
Grp

Group
1

of
Grp

Group
2

Maximum FCFS Random

testers 1 re-
quest

req size 2 re-
quest

req size Profit
($)

Profit
($)

Profit
($)

1 8 90% 8 45% 1525.34 1466.66 1477.82
1 8 80% 8 40% 1393.38 1312.86 1319.06
1 8 70% 8 35% 1229.38 1148.86 1155.06
1 8 60% 8 30% 1555.3 1519.42 1525.62
1 8 50% 8 25% 1603.7 1385.42 1440.06
1 8 40% 8 20% 1613.46 1354.24 1388.02
1 8 30% 8 15% 1577.2 1400.88 1413.82
1 8 20% 8 10% 1584.76 1421.54 1470.4
2 8 90% 8 45% 3005.98 2929.48 2940.32
2 8 80% 8 40% 2688.22 2605.48 2616.32
2 8 70% 8 35% 2364.22 2281.48 2292.32
2 8 60% 8 30% 3022.18 2919.24 2947.64
2 8 50% 8 25% 2976.22 2617.88 2646.58
2 8 40% 8 20% 3005.34 2571.4 2634.2
2 8 30% 8 15% 3015.26 2820.78 2842.82

In this group of experiments, we consider three task assignment mechanisms: first

come first serve (FCFS), random assignment, and exclusive search (maximum profit).

Here the FCFS mechanism will try to satisfy the tasks based on their arriving order.

The random assignment mechanism picks from the pool of unsatisfied tasks and assign

it to the tester that will generate the highest profit. In Figure 7.4, we show the ratio

between the profits of the mechanisms and the maximum profit.

From the figure, we can see that the size of the network test requests has an

94

large impact on the achievable profit. For example, when the sizes of the requests

are comparable to the capacities of the testers (60% to 90%), very frequently we

can fit only one request into the tester’s capacity. Therefore, the difference between

the maximum profit and the achievable profits of the assignment mechanisms is not

large. When the size of the requests decreases (40% and 50%), we can actually

assign multiple requests to a tester. Therefore, the selection of testers could impact

the profit a lot since a good assignment mechanism can often use higher percentage

of the capacity, thus causing larger differences between the maximum profit and

achievable profits of the task assignment methods. When the size of the requests

further decreases, we can fit many requests into the capacity of a single tester, and

the percentage usage goes up again. From this point of view, after the platform learns

the distribution of the request sizes, they can recruit testers that can help the platform

to increase its profit. From another aspect, we can see that the FCFS and Random

assignment mechanisms demonstrate similar performance. The reason is that random

assignment can be viewed as another case of FCFS. The only difference is the order

of received requests. However, when the requests follow the same distribution and

the number of requests is large enough, their performance will be similar.

Figure 7.4: Relationship between the maximum profit and profit of different mechanisms.

7.4.2 Comparison of Heuristic Approaches

In the second group of experiments, we will compare multiple heuristic approaches.

Specifically, we study 4 heuristic mechanisms: (1) FCFS/Greedy: in this mechanism,

the platform adopts the first-come-first-serve policy. A single request must be assigned

95

to one tester who can generate the largest profit through accomplishing the request.

(2) Random/Greedy: in this method, we assume that all requests are available from

the beginning. We will then randomly pick requests from the pool and assign it to

a tester who can generate the largest profit. From this point of view, it is similar to

FCFS but we choose requests randomly instead of based on the arriving order.

The third mechanism that we experiment with is called “balanced capacity usage”.

In this method, we try to assign a request to a tester to minimize the difference

between the used capacity in high, middle, and low sensitivity packets at the tester.

Specifically, for all tester Tj, we try to min (max capacity usage difference). The

objective is to use the capacities in a balanced way so that we can assign more requests

to a single tester.

Last but not least, in the ‘merged’ mechanism, we allow a request to be assigned

to multiple testers and each accomplishes only a part of the task. In this method, the

capacities of the high, middle, and low sensitivity packets are actually merged into

one pool. For each request, we will choose the tester who charges the lowest price

to the corresponding packet type. Since different testers may charge different prices,

we may assign the high sensitivity packet to one tester and the middle sensitivity

packets to another tester. In this way, we can achieve higher profit since we will use

the tester capacities more effectively.

Since in this group of experiments we will not search for the optimum solution,

we can simulate a scenario with much more testers and requests. We assume that

the platform recruits 50 testers and there are 1500 requests submitted by end users.

The meanings of the parameters are similar to those discussed in Section 7.4.1. Since

we do not have the maximum profit value, in the following figures we will post the

absolute profit (in $).

Figure 7.5 shows the quantitative results. On the X-axis, we have the ratio between

the size of the network testing requests and the tester capacity. On the Y-axis, we have

96

the profit value. First, for the ‘merged’ mechanism, since we put all the capacities of

the testers into one pool, we can continue to satisfy the requests until at least one of

the categories can no longer fit any request (e.g. the smallest low sensitivity demand

of the remaining requests is 50 while the remaining tester capacity in that category

is 30). Therefore, we can see that the profit of the ‘merged’ mechanism is not largely

impacted by the request size. On the contrary, for the other three mechanisms, their

profit will slowly decrease as the size of the requests increases.

Compared to ‘FCFS/Greedy’ and ‘Random/Greedy’, the ‘Balanced’ mechanism

tries to use the capacity in different categories in a strategic manner so that we

can avoid the scenario that one category is exhausted first while a large portion

of capacities of other categories is still unused. From the figure, we can see that the

‘Balanced’ mechanism generates higher profit than the other two methods. As the size

of the requests increases, more capacity at the testers could not be used. Therefore,

the overall profit will decrease. Similar to the reason we discussed in Section 7.4.1,

the ‘FCFS/Greedy’ and ‘Random/Greedy’ mechanisms do not demonstrate noticeable

differences.

Figure 7.5: Detection capability when we send along multiple paths.

In Figure 7.6, we study how the price model of the testers impacts the profit of

the platform. Specifically, we adjust the price difference between the testers and the

platform. In the X-direction, the average price difference increases from 2% to about

10%. On the Y-direction we show the profit. From the figure we can see that as the

price difference changes, the profit increases almost linearly.

97

Figure 7.6: Detection capability when we send along multiple paths.

7.4.3 Future Extensions

In this part, we will discuss potential extensions to our approach. We are especially

interested in the following aspects.

Impacts of Price Model

This chapter can be viewed as our exploration of the practicability of the outsourced

network testing services. Specifically, we want to see how various factors impact the

profit of the platform. To simplify the discussion and simulation, we assume a uniform

distribution of the price difference between the testers and platform. In real life, both

platform and testers could adopt more complicated price model. For example, they

can dynamically adjust the price based on the number of requests, the number of

testers, and the remaining capacity. From this point of view, maximization of the

platform profit will become a more challenging question.

Long Term/Short Term Impacts on Testers

In this chapter, we assume an on/off model for the impacts on testers: as long as

a tester sends out the testing packets below the threshold, there will be no negative

impacts on their network usage. In real life, the impacts model will be more com-

plicated. For example, an ISP may restrict the tester’s network bandwidth based on

the number of suspicious packets that it sends out in the last week. Therefore, the

operation of a tester will have a long term impact on its capability to participate in

subsequent network testing operations (and generate profit).

98

Note that this problem is different from the recruitment problem in tradi-

tional crowd-sourcing domains [Li et al.(2019)Li, Li, Wang, and Wang, Wang

et al.(2020)Wang, Tushar, Yuen, and Zhang] since most cost/benefit models do not

have long term impacts. This problem is similar to the cases in which incentives are

offered by pharmaceutical companies to volunteers to test their new medicines since

the intentional infection of a disease may have long term negative impacts on the

patient that are not known at the test time. We could benefit from the previous

research in this domain [Hoffart and Scheibehenne(2019),Largent and Lynch(2017)].

Privacy of Security Policies

Another concern of the outsourced network testing is the leakage of the network

security policies of the end customers. Based on the construction and contents of the

network testing packets, a network tester may derive out the network security policies

that the end user adopts in its system. Therefore, should a tester turn malicious, it

has the capability to design attacks based on the knowledge of the policy. To defend

against such attacks, a potential mechanism is to distribute the testing traffic to

multiple testers so that each party will hold only a portion of the knowledge. The

end user could also embed deceitful traffic into the request (with increased cost).

Algorithms need to be designed to assign testing packets to different parties.

7.5 Conclusion

In this chapter we investigate the problem of outsourced network test. Specifically,

we focus on the working model of the platform and the possible mechanisms of task

assignment. Our analysis shows that the task assignment problem is an NP problem

and we need to design heuristic algorithms to assist the platform to generate higher

profit. We conduct simulation to investigate the maximum profit and the achievable

profits of different approaches. Our simulation shows that maintaining a balance

between the remaining testing capacities of different categories will increase profit of

the platform.

99

When we put the research problem of the chapter in a bigger view, the goal is to

allow the platform to run the network testing services in a sustainable way. Therefore,

it needs to attract enough number of end users as well as network testers to the

platform. At the same time, it needs to protect the privacy of the end users. Different

from the service level agreements that focus on resource usage such as CPU cycles,

outsourcing of security related SLAs deserves more careful execution since a balance

between the safety and efficiency must be maintained. We will investigate more

realistic price model and network usage models in future studies.

CHAPTER 8: Conclusions

This thesis explored and devised several user based SSLA security enforcement

approaches to detect SSLA violations. We demonstrated that it is feasible for the

user to verify cloud security services without requiring high computation overhead or

causing adverse availability impact that cause disruption to the service provider in-

frastructure. First, we presented the Proof Of Encryption (PoE) problem and devised

the security audit properties that are needed to achieve efficient audit approach where

computation cost and overhead is as low as possible. Then, we proposed two security

approaches to enable users to verify the encryption algorithm and key strength are

honored by the service provider. The experiment results are applied to evaluate the

proposed security mechanisms.

Second, the end user has the option to choose homomorphic encryption algorithm

for enforcement, the proposed security security approach is evaluated on several met-

rics such as detection capability , resilience to false positive results and incurred

overhead. In order to verify the security approaches, we developed a challenge and

verification procedure, then the security protocol is evaluated for correctness using

BAN logic.

The third security verification approach focused on studying outsourced network

security scanning services. The user selects a third party auditor (TPA) to execute

the audit test using crafted network traffic data that are securely shared with the

tester. The tester can simply conduct the security verification using network packets,

and sends back the testing results to the user to detect if any SSLA violation occured.

In the fourth contribution, an incentive model is proposed to ensure that network

security testers are incentivized and to maximize the overall platform profit. The

101

proposed approach proves that the task assignment problem is an NP problem and

we designed heuristic algorithms to assist the platform to generate higher profit. We

conducted an experiment to investigate the maximum profit and the achievable profits

of different approaches. Our simulation shows that maintaining a balance between the

remaining testing capacities of different categories will increase profit of the platform.

References 102

References

Akcay Y, Li H, Xu S (2007) Greedy algorithm for the general multidimensional knap-

sack problem. In: Annals of Operations Research, vol 150, pp 17–29

Akter S, Whaiduzzaman M (2017) Dynamic service level agreement verification in

cloud computing. International Journal of Computer Science and Information

Security (IJCSIS) 15(9)

Al Shebli H, Beheshti B (2018) A study on penetration testing process and tools. In:

IEEE Long Island Systems, Applications and Technology Conference (LISAT),

pp 1–7

Alasmari S, Wang W, Wang Y (2020) Proof of network security services: Enforcement

of security sla through outsourced network testing. In: International Conference

on Communication and Network Security (ICCNS), pp 52–59

Alliance CS (2019) Top threats to cloud computing the egregious.

https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-

egregious-eleven/

Anderson RJ (2008) Security Engineering: A Guide to Building Dependable Dis-

tributed Systems. Wiley

Andrieux A, Czajkowski K, Dan A, Keahey K, Ludwig H, Nakata T, Pruyne J,

Rofrano J, Tuecke S, Xu M (2007) Web services agreement specification (ws-

agreement). https://www.ogf.org/documents/GFD.107.pdf

Aqil A, Khalil K, Atya AO, Papalexakis EE, Krishnamurthy SV, Jaeger T, Ramakr-

ishnan KK, Yu P, Swami A (2017) Jaal: Towards network intrusion detection

at isp scale. In: Proceedings of the 13th International Conference on Emerging

Networking EXperiments and Technologies, pp 134â–146

Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, Song D (2007)

Provable data possession at untrusted stores. In: Proc. of CCS, pp 598–â609

Bhasker B, Murali S (2020) A survey on security issues in sensor cloud environment for

References 103

agriculture irrigation management system. Journal of Critical Reviews 7(4):1–10

Boudi A, Farris I, Bagaa M, Taleb T (2019) Assessing lightweight virtualization for

security-as-a-service at the network edge. IEICE TRANSACTIONS on Com-

munications E102-B(5):970–977

Bresson E, Chevassut O, Pointcheval D, Quisquater JJ (2001) Provably authenticated

group diffie-hellman key exchange. In: Proceedings of the 8th ACM Conference

on Computer and Communications Security, pp 255–264

de Carvalho C, de Andrade R, de Castro M, Coutinho E, Agoulmine N (2017) State of

the art and challenges of security sla for cloud computing. Computers Electrical

Engineering 59:141–152

Casola V, De Benedictis A, Rak M, Villano U (2015) Sla-based secure cloud appli-

cation development: The specs framework. In: 2015 17th International Sympo-

sium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),

IEEE, pp 337–344

Casola V, De Benedictis A, Rak M, Rios E (2016) Security-by-design in clouds: A

security-sla driven methodology to build secure cloud applications. Procedia

Computer Science 97:53–62

Casola V, De Benedictis A, EraÅcu M, Modic J, Rak M (2017) Automatically en-

forcing security slas in the cloud. IEEE Transactions on Services Computing

10(5):741–755

Casola V, Benedictis AD, Rak M, Villano U (2020a) A methodology for automated

penetration testing of cloud applications. International Journal of Grid and

Utility Computing 11(2)

Casola V, De Benedictis A, Rak M, Villano U (2020b) A novel security-by-design

methodology: Modeling and assessing security by slas with a quantitative ap-

proach. Journal of Systems and Software 163:110537

Chaudhary P, Gupta R, Singh A, Majumder P (2019) Analysis and comparison of

References 104

various fully homomorphic encryption techniques. In: International Conference

on Computing, Power and Communication Technologies (GUCON), pp 58–62

Chen B, Wu X, Lu W, Ren H (2019) Reversible data hiding in encrypted images

with additive and multiplicative public-key homomorphism. Signal Processing

164:48–57

CloudTrust Protocol Working Group (2015) Cloudtrust protocol data model and api.

Cloud Security Alliance

Control CCS (2022) Cloud computing compliance controls catalogue (c5).

https://www.bsi.bund.de/SharedDocs/Downloads/BSI/Publications/CloudComputing/

Dastjerdi AV, Tabatabaei SGH, Buyya R (2012) A dependency-aware ontology-based

approach for deploying service level agreement monitoring services in cloud.

Software: Practice and Experience 42(4):501–518

Denis M, Zena C, Hayajneh T (2016) Penetration testing: Concepts, attack meth-

ods, and defense strategies. In: IEEE Long Island Systems, Applications and

Technology Conference (LISAT), pp 1–6

Desai VR (2012) Techniques for detection of malicious packet drops in networks.

Master’s thesis, University of Massachusetts Amherst

EC Cloud Select Industry Group (C-SIG) (2014) Cloud service level agreement stan-

dardization guidelines. European Commission

Emeakaroha VC, Brandic I, Maurer M, Dustdar S (2010) Low level metrics to high

level slas-lom2his framework: Bridging the gap between monitored metrics and

sla parameters in cloud environments. In: 2010 International Conference on

High Performance Computing & Simulation, IEEE, pp 48–54

Erkuden Rios and Eider Iturbe and Xabier Larrucea and Massimiliano Rak and etc

(2019) Service level agreement-based gdpr compliance and security assurance in

(multi)cloud-based systems. IET Software

FISMA (2022) Open web application security project. https://www.cisa.gov/federal-

References 105

information-security-modernization-act

Foerster K, Schmid S, Vissicchio S (2019) Survey of consistent software-defined net-

work updates. IEEE Communications Surveys Tutorials 21(2):1435–1461

Fun TS, Samsudin A (2016) A survey of homomorphic encryption for outsourced

big data computation. KSII Transactions on Internet and Information Systems

10(8):3826–3851

Gadepally V, Hancock B, BKaiser, Kepner J, PMichaleas, Varia M, Yerukhimovich

A (2015) Computing on masked data to improve the security of big data. In:

Proc. of IEEE Symposium HST, pp 1–6

Gao T, Deng X, Wang Y, Kong X (2018) Paas: Pmipv6 access authentication scheme

based on identity-based signature in vanets. IEEE Access 6:37480–37492

Garey MR, Johnson DS (1979) Computers and Intractability : A Guide to the Theory

of NP-Completeness. W. H. Freeman, San Francisco

Gartner (2019) Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.5

Percent in 2019

Giachino E, de Gouw S, Laneve C, Nobakht B (2016) Statically and dynamically

verifiable sla metrics. In: Abraham E, Bonsangue M, Johnsen E (eds) Theory

and Practice of Formal Methods. Lecture Notes in Computer Science, vol 9660,

Springer, Cham

Gope P, Sikdar B (2019) Lightweight and privacy-preserving two-factor authentica-

tion scheme for iot devices. IEEE Internet of Things Journal 6(1):580–589

Griffo C, Almeida JPA, Guizzardi G, Nardi JC (2019) Service contract mod-

eling in enterprise architecture: An ontology-based approach. Informa-

tion Systems p 101454, https://doi.org/10.1016/j.is.2019.101454, URL

http://www.sciencedirect.com/science/article/pii/S030643791930506X

Gueron S (2012) Intel advanced encryption standard (intel aes) new instructions set.

Intel Whitepaper, 323641-001

References 106

Haddadi H, Christophides V, Teixeira R, Cho K, Suzuki S, Perrig A (2018) Siotome:

An edge-isp collaborative architecture for iot security. In: Proceedings of Inter-

national Workshop on Security and Privacy for the Internet-of-Things (IoTSec)

Hale ML, Gamble R (2013) Building a compliance vocabulary to embed security

controls in cloud slas. In: 2013 IEEE Ninth World Congress on Services, IEEE,

pp 118–125

Hao K, Xin J, Wang Z, Jiang Z, Wang G (2018) Decentralized data integrity veri-

fication model in untrusted environment. In: Asia-Pacific Web (APWeb) and

Web-age information management (WAIM) joint international conference on

Web and big data, Springer, pp 410–424

Hawedi M, Talhi C, Boucheneb H (2018) Security as a service for public cloud ten-

ants(saas). Procedia Computer Science 130:1025–1030

Hermanto BR, Iskandar, Hendrawan, Edward IJM (2019) Implementation of service

level measurement based on system uptime sensor of network device in internet

connection service. In: IEEE International Conference on Wireless and Telem-

atics (ICWT), pp 1–4

HIPPA (2015) Encryption almost prevents humana data breach in wisconsin. HIPAA

Journal

Hoffart J, Scheibehenne B (2019) Pill or bill? influence of monetary incentives on

the perceived riskiness and the ethical approval of clinical trials. Judgment and

Decision Making 14(2):130–134

Hui H, Zhou C, An X, Lin F (2019) A new resource allocation mechanism for security

of mobile edge computing system. IEEE Access 7:116886–116899

Hussain M, Al-Mourad MB (2014) Effective third party auditing in cloud computing.

In: International Conference on Advanced Information Networking and Appli-

cations Workshops, pp 91–95

Hyun S, Kim J, Kim H, Jeong J, Hares S, Dunbar L, Farrel A (2018) Interface to net-

References 107

work security functions for cloud-based security services. IEEE Communications

Magazine 56(1):171–178

Islam L, Alvi ST, Uddin MN, Rahman M (2019) Obstacles of mobile crowdsourcing:

A survey. In: IEEE Pune Section International Conference (PuneCon), pp 1–4

Juels A, Kaliski BS (2007) Pors: Proofs of retrievability for large files. In: Proceedings

of the 14th ACM Conference on Computer and Communications Security, pp

584–â597

Kaaniche N, Mohamed M, Laurent M, Ludwig H (2017) Security sla based monitoring

in clouds. In: IEEE International Conference on Edge Computing (EDGE), pp

90–97

Kanich C, Kreibich C, Levchenko K, Enright B, Voelker GM, Paxson V, Savage

S (2008) Spamalytics: An empirical analysis of spam marketing conversion.

In: Proceedings of the ACM Conference on Computer and Communications

Security, pp 3â–14

Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher

JW, Bohlinger JD (eds) Complexity of Computer Computations: The IBM

Research Symposia Series, Springer, Boston

Khan F, Ur Rehman A, Zheng J, Jan MA, Alam M (2019) Mobile crowdsensing:

A survey on privacy-preservation, task management, assignment models, and

incentives mechanisms. Future Generation Computer Systems 100:456–472

Khettab Y, Bagaa M, Dutra DLC, Taleb T, Toumi N (2018) Virtual security as a

service for 5g verticals. In: IEEE Wireless Communications and Networking

Conference (WCNC), pp 1–6

Kim D, Jeong IR (2017) Certificateless public auditing protocol with constant verifi-

cation time. Security and Communication Networks 2017

Kouki Y, Ledoux T (2012) CSLA: a language for improving cloud SLA manage-

ment. In: International Conference on Cloud Computing and Services Science

References 108

(CLOSER), pp 586â–591

Kraft SA, Duenas DM, Kublin JG, Shipman KJ, Murphy SC, Shah SK (2019) Ex-

ploring ethical concerns about human challenge studies: a qualitative study of

controlled human malaria infection study participantsâ motivations and atti-

tudes. Journal of Empirical Research on Human Research Ethics 14(1):49–60

Krotsiani M, Kloukinas C, Spanoudakis G (2017) Validation of service level agree-

ments using probabilistic model checking. In: 2017 IEEE International Confer-

ence on Services Computing (SCC), IEEE, pp 148–155

Laabadi S, Naimi M, El Amri H, Achchab B (2018) The 0/1 multidimensional knap-

sack problem and its variants: A survey of practical models and heuristic ap-

proaches. American Journal of Operations Research (8):395–439

Largent E, Lynch H (2017) Paying research participants: The outsized influence of

“undue influence”. IRB 39(4):1â–9

Lee C, Kavi KM, Paul RA, Gomathisankaran M (2015) Ontology of secure service

level agreement. In: IEEE International Symposium on High Assurance Systems

Engineering, pp 166–172

Li H, Li T, Wang W, Wang Y (2019) Dynamic participant selection for large-scale

mobile crowd sensing. IEEE Transactions on Mobile Computing 18(12):2842–

2855

Li Y, Yu Y, Yang B, Min G, Wu H (2018) Privacy preserving cloud data auditing

with efficient key update. Future Generation Computer Systems 78:789– 798

Lin EYH (1998) A bibliographical survey on some well-known non-standard knapsack

problems. INFOR 36(4):274–â317

Liu X, Xia C, Wang T, Zhong L, Li X (2020) A behavior-aware sla-based frame-

work for guaranteeing the security conformance of cloud service. Frontiers of

Computer Science 14:1–17

Lu N, Zhang Y, Shi W, Kumari S, Choo KKR (2020) A secure and scalable data

References 109

integrity auditing scheme based on hyperledger fabric. Computers & Security

92:101741

Luna J, Suri N, Iorga M, Karmel A (2015) Leveraging the potential of cloud security

service-level agreements through standards. IEEE Cloud Computing 2(3):32–40

Luong NC, Wang P, Niyato D, Liang YC, Han Z, Hou F (2019) Applications of

economic and pricing models for resource management in 5g wireless networks:

A survey. IEEE Communications Surveys and Tutorials 21(4):3298–3339

Madi T, Majumdar S, Wang Y, Jarraya Y, Pourzandi M, Wang L (2016) Auditing

security compliance of the virtualized infrastructure in the cloud: Application

to openstack. In: Proceedings of the Sixth ACM Conference on Data and Ap-

plication Security and Privacy, pp 195–206

Madi T, Jarraya Y, Alimohammadifar A, Majumdar S, Wang Y, Pourzandi M,

Wang L, Debbabi M (2018) Isotop: auditing virtual networks isolation across

cloud layers in openstack. ACM Transactions on Privacy and Security (TOPS)

22(1):1–35

Majumdar S, Madi T, Wang Y, Jarraya Y, Pourzandi M, Wang L, Debbabi M (2015)

Security compliance auditing of identity and access management in the cloud:

Application to openstack. In: 2015 IEEE 7th International Conference on Cloud

Computing Technology and Science (CloudCom), IEEE, pp 58–65

Majumdar S, Tabiban A, Jarraya Y, Oqaily M, Alimohammadifar A, Pourzandi

M, Wang L, Debbabi M (2019) Learning probabilistic dependencies among

events for proactive security auditing in clouds. Journal of Computer Security

27(2):165–202

Moradi M, Li Q (2020) Rogue people: on adversarial crowdsourcing in the context of

cyber security. Journal of Information, Communication and Ethics in Society

ahead-of-print(ahead-of-print)

Muldoon C, O’Grady MJ, O’Hare GM (2018) A survey of incentive engineering for

References 110

crowdsourcing. Knowledge Eng Review 33:e2

MUSA (2015) Multi-cloud secure applications. http://www.musa-project.eu.

Nawaz F, Janjua NK, Hussain OK, Hussain FK, Chang E, Saberi M (2018)

Event-driven approach for predictive and proactive management of sla

violations in the cloud of things. Future Generation Computer Sys-

tems 84:78 – 97, https://doi.org/10.1016/j.future.2018.02.025, URL

http://www.sciencedirect.com/science/article/pii/S0167739X1732280X

NIST2 (2015) A profile for u. s. federal cryptographic key management systems.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-152.pdf2

OWASP2 (2022) Open web application security project. https://owasp.org/

Paul M, Harbarth S, Huttner A, Thwaites G, Theuretzbacher U, Bonten M, Lei-

bovici L (2021) Investigator-initiated randomized controlled trials in infectious

diseases: Better value for money for registration trials of new antimicrobials.

Clinical Infectious Diseases 72(7):1259–â1264

PCI-DSS (2022) Payment card industry. https://www.pcisecuritystandards.org/pcisecurity/

Popa R, Redfield C (2011) Cryptdb: Protecting confidentiality with encrypted query

processing. In: Proc. of ACM SOSP, pp 85–100

Pornin T (2018) Bearssl: A smaller ssl/tls library. https://bearssl.org

Pourpouneh M, Ramezanian R (2016) A short introduction to two approaches in

formal verification of security protocols: Model checking and theorem proving.

The ISC International Journal of Information Security 8(1):3–24

Rak M, Suri N, Luna J, Petcu D, Casola V, Villano U (2013) Security as a service

using an sla-based approach via specs. In: Proceedings of IEEE International

Conference on Cloud Computing Technology and Science, (CloudComp), pp

1–â6

Rios E, Mallouli W, Rak M, Casola V, Ortiz AM (2016) Sla-driven monitoring of

multi-cloud application components using the musa framework. In: IEEE Inter-

References 111

national Conference on Distributed Computing Systems Workshops (ICDCSW),

pp 55–60

Rios E, Rak M, Iturbe E, Mallouli W, et al. (2017) Sla-based continuous security

assurance in multi-cloud devops

Sacramento L, Medeiros I, Bota J, Correia M (2018) Flowhacker: Detecting unknown

network attacks in big traffic data using network flows. In: IEEE International

Conference On Trust, Security And Privacy In Computing And Communica-

tions, pp 567–572

Sahay R, Meng W, Jensen CD (2019) The application of software defined networking

on securing computer networks: A survey. Journal of Network and Computer

Applications 131:89–108

Samuels CI, Syambas NR, Hendrawan, Edward IJM, Iskandar, Shalannanda W (2017)

Service level measurement based on uptime data monitoring for rural internet

access services in indonesia. In: International Conference on Telecommunication

Systems Services and Applications (TSSA), pp 1–5

SAOX (2022)

Schwartz J, Kurniawati H (2019) Autonomous penetration testing using reinforcement

learning. arXiv preprint arXiv:190505965

Sfondrini N, Motta G, You L (2015) Service level agreement (sla) in public cloud

environments: A survey on the current enterprises adoption. In: International

Conference on Information Science and Technology (ICIST), pp 181–185

Shacham H, Waters B (2008) Compact proofs of retrievability. In: Proc. of Asiacrypt,

vol 5350, pp 90–â107

Shah U, Patel S, Jinwala D (2019) An ontological approach to specify conflicts among

non-functional requirements. In: International Conference on Geoinformatics

and Data Analysis, pp 145â–149

She R (2020) Survey on incentive strategies for mobile crowdsensing system. In: In-

References 112

ternational Conference on Software Engineering and Service Science (ICSESS),

pp 511–514

Silva A, Silva K, Rocha A, Queiroz F (2019) Calculating the trust of providers through

the construction weighted sec-sla. Future Generation Computer Systems 97:873–

886

Standard S (2022) Security trust assurance risk

Stephen J, SSavvides, Seidel R, Eugster P (2014) Practical confidentiality preserving

big data analysis. In: Proc. of USENIX HotCloud, pp 10–16

Su H, Pan J (2016) Crowdsourcing platform for collaboration management in vul-

nerability verification. In: Asia-Pacific Network Operations and Management

Symposium (APNOMS), pp 1–4

Sun Y, Nanda S, Jaeger T (2015) Security-as-a-service for microservices-based cloud

applications. In: IEEE International Conference on Cloud Computing Technol-

ogy and Science, pp 50–57

Symantic (2019) Adapting the new reality of evolving cloud threats.

https://resource.elq.symantec.com/e/f2

Tan CB, Hijazi MHA, Lim Y, Gani A (2018) A survey on proof of retrievability

for cloud data integrity and availability: Cloud storage state-of-the-art, issues,

solutions and future trends. Journal of Network and Computer Applications

110:75–86

Tang P, Qiu W, Huang Z, Lian H, Liu G (2020) Detection of sql injection based on

artificial neural network. Knowledge-Based Systems 190:105528

Tedja A, Lim C, Ipung HP (2018) Detecting network anomalies in isp network using

dns and netflow. In: International Conference on Innovation, Entrepreneurship

and Technology, vol 2, pp 238–242

Tetali S, Lesani M, RMajumar, Millstein T (2013) Mrcrypt: Static analysis for secure

cloud computations. In: Proc. of ACM SIGPLAN, pp 271–286

References 113

Tian H, Chen Y, Chang CC, Jiang H, Huang Y, Chen Y, Liu J (2015) Dynamic-

hash-table based public auditing for secure cloud storage. IEEE Transactions

on Services Computing 10(5):701–714

Tian H, Nan F, Chang CC, Huang Y, Lu J, Du Y (2019) Privacy-preserving public

auditing for secure data storage in fog-to-cloud computing. Journal of Network

and Computer Applications 127:59 – 69

Tosun A, De Donno M, Dragoni N, Fafoutis X (2021) Resip host detection: Identifica-

tion of malicious residential ip proxy flows. In: IEEE International Conference

on Consumer Electronics

Trapero R, Modic J, Stopar M, Taha A, Suri N (2017) A novel approach to manage

cloud security sla incidents. Future Generation Computer Systems 72:193–205

Tu T, Rao L, Huan Z, Wen Q, Xiao J (2017) Privacy-preserving outsourced audit-

ing scheme for dynamic data storage in cloud. Security and Communication

Networks 2017:1–17

Verizon (2020) 2020-data-breach-investigations-report.

https://enterprise.verizon.com/resources/reports/2020-data-breach-

investigations-report.pdf

Viglianisi E, Ceccato M, Tonella P (2020) A federated society of bots for smart

contract testing. Journal of Systems and Software 168:110647

Wang C, Wang Q, Ren K, Lou W (2010) Privacy-preserving public auditing for data

storage security in cloud computing. In: Proceedings IEEE INFOCOM, pp 1–9

Wang C, Chow SSM, Wang Q, Ren K, Lou W (2013) Privacy-preserving public au-

diting for secure cloud storage. IEEE Transactions on Computers 62(2):362–375

Wang J, Peng F, Tian H, Chen W, Lu J (2019a) Public auditing of log integrity for

cloud storage systems via blockchain. In: International Conference on Security

and Privacy in New Computing Environments, Springer, pp 378–387

Wang Q, Wang C, Li J, Ren K, Lou W (2009) Enabling public verifiability and data

References 114

dynamics for storage security in cloud computing. In: Proceedings of the 14th

European Conference on Research in Computer Security, pp 355â–370

Wang W, Shi X, Qin T (2019b) Encryption-free authentication and integrity protec-

tion in body area networks through physical unclonable functions. Smart Health

12(2):66–81

Wang W, Qin T, Wang Y (2020) Encryption-free data transmission and hand-over

in two-tier body area networks. Elsevier Computer Methods and Programs in

Biomedicine 192

Wang X, Tushar W, Yuen C, Zhang X (2020) Promoting users participation in mobile

crowdsourcing: A distributed truthful incentive mechanism (dtim) approach.

IEEE Transactions on Vehicular Technology 69(5):5570–5582

Wei L, Wu J, Long C (2020) A blockchain-based hybrid incentive model for crowd-

sensing. Electronics 9(2)

Wonjiga AT, Peisert S, Rilling L, Morin C (2019a) Blockchain as a trusted compo-

nent in cloud sla verification. In: Proceedings of the IEEE/ACM International

Conference on Utility and Cloud Computing Companion, pp 93–â100

Wonjiga AT, Rilling L, Morin C (2019b) Defining security monitoring slas in iaas

clouds: the example of a network ids. Research Report RR-9263, Inria Rennes

Bretagne Atlantique, pages 1–37

Wonjiga AT, Rilling L, Morin C (2019c) Security monitoring sla verification in clouds:

the case of data integrity. Research Report RR-9267, Inria Rennes - Bretagne

Atlantique, pages 1–29

Wool A (2010) Trends in firewall configuration errors: Measuring the holes in swiss

cheese. IEEE Internet Computing 14(4):58–65

Xiao Y, Hao Q, Yao D (2019) Neural cryptanalysis: Metrics, methodology, and ap-

plications in cps ciphers. In: IEEE Conference on Dependable and Secure Com-

puting (IDSC)

References 115

Yang X, Pei X, Wang M, Li T, Wang C (2020) Multi-replica and multi-cloud data

public audit scheme based on blockchain. IEEE Access 8:144809–144822

Yang Y, Huang X, Liu X, Cheng H, Weng J, Luo X, Chang V (2019) A comprehensive

survey on secure outsourced computation and its applications. IEEE Access

7:159426–159465

Zhao B, Tang S, Liu X, Zhang X (2021) Pace: Privacy-preserving and quality-aware

incentive mechanism for mobile crowdsensing. IEEE Transactions on Mobile

Computing 20(5):1924–1939

Zhao M, Geng Y (2019) Homomorphic encryption technology for cloud computing.

Procedia Computer Science 154:73–83

Zhou L, Fu A, Yu S, Su M, Kuang B (2018) Data integrity verification of the out-

sourced big data in the cloud environment: A survey. Journal of Network and

Computer Applications 122:1–15

Zhou Z, Zhang H, Yu X, Guo J (2015) Audit meets game theory: Verifying reliable

execution of sla for compute-intensive program in cloud. In: IEEE International

Conference on Communications (ICC), pp 7456–7461

