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ABSTRACT 

 

 

ZHENG LI. Constitutive Modeling and Dynamic Impact Analysis of Bighorn Sheep 

Horn. (Under the direction of DR. HOWIE FANG) 

 

 

Bighorn sheep (Ovis canadensis) is known for its giant spiral horns that can sustain 

impact loading at a speed up to 5.5 m/s during ramming without causing severe damage or 

head concussion. The bighorn sheep horn is composed of a keratin-based biological 

material with a tubule-lamella structure. This special structure produces the anisotropic 

hardening characteristics of the horn material under impact loading. Investigating the 

mechanisms of energy dissipation of bighorn sheep horn can inspire the design and 

development of artificial materials with high capacity of energy dissipation and/or impact 

mitigation. 

 In this study, a transversely isotropic constitutive model with anisotropic hardening 

and strain-rate effects was developed for predicting the mechanical responses of the horn 

under impact loading. The characterization of material properties was conducted using test 

data from uniaxial compression tests of the horns under both quasi-static and dynamic 

loadings. The constitutive model was later implemented into the commercial finite element 

code, LS-Dyna, as user-defined material subroutine and was successfully validated against 

test results. Finite element simulations were conducted on the dynamic impact against the 

bighorn sheep horn, and the user-defined constitutive model was used to study the 
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mechanical responses of the horn material subjected to large impact loads without causing 

severe damage. The mechanism of energy dissipation was also investigated from energy 

absorption and conversion, stress distributions, and propagation of displacement waves. 

  



v 

 

ACKNOWLEDGEMENTS 

 

 

I am grateful for my advisor Dr. Howie Fang for his support and guidance in my 

research work. He gave me extensive advice and help along the whole journey of my 

doctoral study, and trained me with critical thinking to help me acquire good habits to 

conduct research. He also guided me on learning how to become a good person with 

humble personalities. 

I would like to show my gratitude for all my committee members, Dr. Alireza 

Tabarraei, Dr. David Weggel, Dr. Naiquan Zheng, Dr. Matthew Whelan, for their valuable 

advice and comments to my research topic. I would also thank Lukasz Pachocki from 

Gdańsk University of Technology in Poland for providing help generously on LS-Dyna 

subroutine compiling in Linux. 

I would like to thank my parents for providing endless emotional support during 

my doctoral study. They gave me strong encouragement for the challenges I meet in my 

doctoral study and personal life during global pandemic. I also want to thank the person 

who provides love and companion over the course of my dissertation research. 

  



vi 

 

TABLE OF CONTENTS 

 

 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES ............................................................................................................ x 

LIST OF SYMBOLS ........................................................................................................ xv 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

1.1 Mechanical Testing of Horns .................................................................................... 4 

1.2 Finite Element Modeling of Horns ........................................................................... 9 

1.3 Dissertation Research.............................................................................................. 13 

CHAPTER 2: FINITE ELEMENT MODELING FOR CONTACT PROBLEMS .......... 16 

2.1 Contact Theory........................................................................................................ 16 

2.1.1 Standard Penalty Formulation.......................................................................... 18 

2.1.2 Soft Constraint Penalty Formulation ............................................................... 21 

2.1.3 Segment-based Penalty Formulation ............................................................... 22 

2.1.4 Contact Friction ............................................................................................... 23 

2.1.5 Contact Energy................................................................................................. 24 

2.2 Contact Algorithms in LS-Dyna ............................................................................. 25 

2.2.1 Surface-to-Surface Contact .............................................................................. 25 

2.2.2 Single-Surface Contact .................................................................................... 27 

2.2.3 Automatic-General Contact ............................................................................. 30 

2.3 Hourglass Control ................................................................................................... 31 

CHAPTER 3: CONSTITUTIVE MODELING OF HORN MATERIAL ........................ 33 



vii 

 

3.1 Preliminary .............................................................................................................. 35 

3.1.1 Orthogonal Material ......................................................................................... 35 

3.1.2 Yield Criterion ................................................................................................. 39 

3.1.3 Hardening Rule ................................................................................................ 40 

3.2 Constitutive Modeling ............................................................................................ 42 

3.2.1 Yield Function ................................................................................................. 44 

3.2.2 Effective Plastic Strain Rate ............................................................................ 48 

3.2.3 Plastic Flow ...................................................................................................... 50 

3.2.4 Strain Decomposition....................................................................................... 52 

3.2.5 Consistency Condition ..................................................................................... 52 

3.2.6 Evolution of Modified Effective Plastic Strain ................................................ 53 

3.4 Model Implementation ............................................................................................ 54 

3.5 Material Characterization........................................................................................ 59 

3.5.1 Mechanical Response in the Radial Direction under Quasi-static Loading .... 59 

3.5.2 Mechanical Response in the Longitudinal Direction under Quasi-static 

Loading ..................................................................................................................... 63 

3.5.3 Shear Responses under Quasi-static Loading .................................................. 66 

3.6 Model Validation .................................................................................................... 68 

 CHAPTER 4: STRAIN-RATE EFFECT OF THE HORN MATERIAL ........................ 74 

4.1 Dynamic Tests ........................................................................................................ 74 

4.2 Coupling of Strain-rate Effect in the Constitutive Model ....................................... 80 

4.2.1 Young’s Modulus in the Radial Direction ....................................................... 81 

4.2.2 Young’s Modulus in the Longitudinal Direction ............................................. 81 



viii 

 

4.2.3 Yield Strength in the Radial Direction............................................................. 82 

4.2.4 Yield Strength in the Longitudinal Direction .................................................. 82 

4.2.5 Hardening Factor in the Radial Direction ........................................................ 83 

4.2.6 Hardening Factor in the Longitudinal Direction .............................................. 84 

4.3 Model Validation .................................................................................................... 86 

 CHAPTER 5: DYNAMIC IMPACT ANALYSIS OF HORNS ..................................... 91 

5.1 Modeling of the Horn.............................................................................................. 91 

5.1.1 Geometry Modeling ......................................................................................... 91 

5.1.2 Finite element Modeling .................................................................................. 93 

5.2 Dynamic Simulation of the Horn ............................................................................ 97 

5.3 Analysis of Simulation Results ............................................................................... 99 

5.3.1 Stress Distributions .......................................................................................... 99 

5.3.2 Propagation of Displacement Waves ............................................................. 105 

5.3.3 Energy Transmission and Conversions .......................................................... 111 

CHAPTER 6: CONCLUSIONS ..................................................................................... 119 

REFERENCES ............................................................................................................... 124 

APPENDIX A: COMPILING USER-DEFINED MATERIAL SUBROUTINE FOR LS-

DYNA ............................................................................................................................. 127 

A.1 The Original UMAT Package .............................................................................. 127 

A.2 Modifying the UMAT Package............................................................................ 128 

A.3 Compiling the UMAT .......................................................................................... 130 

 

  



ix 

 

LIST OF TABLES 

 

 

Table 3.1: List of symbols used for mathematical expressions of the constitutive model.

........................................................................................................................................... 48 

Table 5.1: Specifications of FE model of the single horn. ................................................ 95 

Table 5.2: Specifications of FE model of the horn-impactor. ........................................... 97 

 

  



x 

 

LIST OF FIGURES 

 

 

Figure 1.1: Two male bighorn sheep ramming. .................................................................. 2 

Figure 1.2: Microstructure of tubule-lamellae for the cross section of (a) longitudinal 

view; and (b) transverse view (Tombolato et al., 2010). .................................................... 3 

Figure 1.3: The hierarchical structure of a bighorn sheep’s horn from macro-level to 

nano-level (Huang et al. 2019). ........................................................................................... 4 

Figure 2.1: Examples of segments on contact surfaces (marked by a cross). ................... 18 

Figure 2.2: Standard penalty formulation (LS-Dyna manual). ......................................... 19 

Figure 2.3: Example of self-contact case. ......................................................................... 27 

Figure 2.4: Projection of the contact interface in Type 4 single-surface contact. ............ 28 

Figure 2.5: Projection of the contact interface in Type 13 single-surface contact. .......... 29 

Figure 2.6: Example of edge contact case. ....................................................................... 31 

Figure 3.1: The principal directions of the horn. .............................................................. 34 

Figure 3.2: A yield surface in a two-dimensional space of principal stresses. ................. 39 

Figure 3.3: Illustration of plastic hardening patterns in a two-dimensional space of the 

principal stresses. .............................................................................................................. 42 

Figure 3.4: Stress-strain curve of the horn material from the quasi-static compression test 

in the radial direction. ....................................................................................................... 60 

Figure 3.5: Material characterization of the horn material under quasi-static compression 

in the radial direction. ....................................................................................................... 61 

Figure 3.6: Hardening factor in the radial direction under quasi-static compression. ...... 62 



xi 

 

Figure 3.7: True stress-strain curve of the horn material under quasi-static compression in 

the longitudinal direction. ................................................................................................. 63 

Figure 3.8: Material characterization of the horn in longitudinal direction under quasi-

static compression. ............................................................................................................ 64 

Figure 3.9: Hardening factor in the longitudinal direction under quasi-static compression.

........................................................................................................................................... 65 

Figure 3.10: Stress strain curve from the quasi-static shear loading of the horn material. 

........................................................................................................................................... 66 

Figure 3.11: Material characterization of the horn sheath under quasi-static shear loading.

........................................................................................................................................... 67 

Figure 3.12: Hardening factor under quasi-static shear loading. ...................................... 68 

Figure 3.13: FE model of the horn sample for validation under quasi-static compression 

in the radial direction. ....................................................................................................... 69 

Figure 3.14: Ramp signal for prescribed velocity. ............................................................ 70 

Figure 3.15: Comparison of stress-strain curves from simulation results and test data for 

the quasi-static compression of the horn material in the radial direction. ........................ 71 

Figure 3.16: FE model of horn sample for validation under quasi-static compression in 

the longitudinal direction. ................................................................................................. 72 

Figure 3.17: Comparison of stress-strain curves from simulation results and test data for 

the quasi-static compression of the horn material in the longitudinal direction. .............. 73 

Figure 4.1: Stress-strain curves of the horn material from the dynamic impact test and 

quasi-static compression test in the radial direction. ........................................................ 75 



xii 

 

Figure 4.2: Determination of material properties of the horn under dynamic impact 

loading in the radial direction. .......................................................................................... 76 

Figure 4.3: Hardening factor in the radial direction under dynamic impact loading. ....... 77 

Figure 4.4: Stress strain curves from the dynamic and quasi-static compression tests of 

the horn material in the longitudinal direction. ................................................................. 78 

Figure 4.5: Material characterization of the horn under dynamic compression in 

longitudinal direction. ....................................................................................................... 79 

Figure 4.6: Hardening factor in longitudinal direction under dynamic compression. ...... 80 

Figure 4.7: The scaling factor for the hardening function from quasi-static to dynamic 

loading conditions in the radial direction.......................................................................... 84 

Figure 4.8: Scaling factor from quasi-static loading to dynamic loading in longitudinal 

direction for hardening factor. .......................................................................................... 85 

Figure 4.9: FE model of the horn sample for validation under dynamic compression in the 

radial direction. ................................................................................................................. 86 

Figure 4.10: Comparison of stress-strain curves from simulation results and test data for 

the dynamic compression of the horn material in the radial direction. ............................. 88 

Figure 4.11: FE model of the horn sample for validation in longitudinal compression 

under dynamic loading. ..................................................................................................... 89 

Figure 4.12: Comparison of stress-strain curves from simulation results and test data for 

the dynamic compression of the horn material in the longitudinal direction. .................. 90 

Figure 5.1: The average model of adult male bighorn sheep. ........................................... 92 

Figure 5.2: An example for mapped style solid elements. ................................................ 94 

Figure 5.3: The FE model of a single horn meshed with mapped style elements. ........... 95 



xiii 

 

Figure 5.4: Local principal directions of one solid element assigned with orthogonal 

transversely isotropic material properties. ........................................................................ 96 

Figure 5.5: Finite element model of the horn-impactor system. ....................................... 98 

Figure 5.6: Distribution of the first principal stresses (unit: MPa) of the horn at 1.3 ms.

......................................................................................................................................... 100 

Figure 5.7: Distribution of the third principal stresses (unit: MPa) of the horn at 1.2 ms.

......................................................................................................................................... 101 

Figure 5.8: Distribution of von Mises stresses (unit: MPa) of the horn at 1.2 ms. ......... 101 

Figure 5.9: Distribution of the first principal stresses (unit: MPa) of the horn at (a) 8.7 

ms; and (b) 9.8 ms. .......................................................................................................... 102 

Figure 5.10: Distribution of the third principal stresses (unit: MPa) of the horn at time of 

(a) 9.4 ms; and (b) 11.1 ms. ............................................................................................ 103 

Figure 5.11: A thread of elements (source elements) extending from the proximal base to 

the distal end. .................................................................................................................. 105 

Figure 5.12: Time history of displacement waves in the x-direction for locations 

extending from the proximal base to the distal end of the horn...................................... 107 

Figure 5.13: Time history of displacement waves in the y-direction for locations 

extending from the proximal base to the distal end of the horn...................................... 107 

Figure 5.14: Time history of displacement waves in the z-direction for locations 

extending from the proximal base to the distal end of the horn...................................... 108 

Figure 5.15: Displacement wave propagation in the x-direction from the proximal base to 

the distal end of the horn (unit: mm). ............................................................................. 109 



xiv 

 

Figure 5.16: Displacement wave propagation in the y-direction from the proximal base to 

the distal end of the horn (unit: mm). ............................................................................. 110 

Figure 5.17: Displacement wave propagation in the z-direction from the proximal base to 

the distal end of the horn (unit: mm). ............................................................................. 111 

Figure 5.18: Time history of energy balance of the horn-impactor simulation. ............. 112 

Figure 5.19: Time history of the impactor’s kinetic energy during dynamic impact. .... 113 

Figure 5.20: Time history of the horn’s energy during dynamic impact. ....................... 114 

Figure 5.21: Evolution of energy compositions in the horn-impactor system during 

dynamic impact. .............................................................................................................. 115 

Figure 5.22: Energy conversion in the horn-impactor system from the time at initial 

impact to the time with maximum internal energy. ........................................................ 116 

Figure 5.23: Energy conversions in the horn-impactor system after dynamic impact. .. 117 

 

  



xv 

 

LIST OF SYMBOLS 

 

 

( )q
E  Young’s modulus under quasi-static loading 

( )d
E  Young’s modulus under dynamic loading 

K  Bulk modulus 

  Poisson’s ratio 

( )0 q
Y  Initial yield strength under quasi-static loading 

( )0 d
Y  Initial yield strength under dynamic loading 

C  Stiffness matrix 

S  Compliance matrix 

A  Anisotropic factor matrix 

B  The inverse of anisotropic factor matrix 

H  Hardening factor matrix 

( )q
h  Hardening function under quasi-static loading 

( )d
h  Hardening function under dynamic loading 

f  Conventional yield function 

f̂  Modified yield function 

σ  Cauchy stress 

σ̂  Modified stress tensor 

  Conventional effective stress 

  Modified effective stress 

eε  Elastic strain 



xvi 

 

p
ε  Conventional plastic strain 

ˆ
p
ε  Modified plastic strain 

p
ε  Conventional plastic strain rate 

ˆ
p
ε  Modified plastic strain rate 

p  Conventional effective plastic strain 

p  Modified effective plastic strain 

p  Conventional effective plastic strain rate 

p  Modified effective plastic strain rate 

r  Scaling factor in the radial direction 

l  Scaling factor in the longitudinal direction 

 



1 

 

CHAPTER 1: INTRODUCTION 

 

 

Energy absorbent biological materials have recently raised much research interest 

due to their outstanding performance in impact resistance and energy absorption and 

dissipation. Many natural materials have been shown to be highly efficient in energy 

absorption and impact wave mitigation. There is a need to study and understand the 

fundamental mechanism of energy absorbent biological materials under dynamic impact 

so as to provide ideas and guidance to novel bioinspired material designs and applications. 

Common energy absorbent materials can be categorized into two major groups: one 

based on mineralized biological composites and the other non-mineralized biological 

composites. Mineralized biological materials such as mollusk shells, cortical bones, and 

teeth, usually have a high value of stiffness but low toughness, to provide support and 

mastication (McKittrick et al., 2010). Cortical bones are the strongest skeleton bone of 

mammals with a Young’s modulus of 7 - 21 GPa. A hierarchical structure is found in the 

composition of the cortical bone, with a basic unit called osteon that is composed of blood 

vessels surrounded by stacked concentric lamellae with altering orientated collagen fiber 

and dispersed with calcium phosphate. Mineralized calcium phosphates account for 33 - 

43% of the total volume of the cortical bones, leading to their high overall stiffness and 

capability of supporting functions. 

In contrast to the high stiffness of mineralized biological materials, non-

mineralized phase materials, such as horns and hooves, tend to have a lower stiffness but 

higher toughness (Wegst et al., 2004). This feature allows them to exhibit higher resistance 
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to dynamic impacts with the capability of absorbing impact energy without significant 

failure. Most non-mineralized biological materials are based on protein, such as keratin. 

Within keratin-based biological materials, the horns of bighorn sheep have been shown to 

have outstanding impact resistance and energy absorption. 

The horns of a male bighorn sheep (Ovis canadensis) are reportedly capable of 

withstanding an impact force up to 3,400 N at a speed of 5.5 m/s during ramming. This 

impact force is almost four times the weight of the sheep, but does not cause catastrophic 

damage to the horns or severe brain concussion (Johnson et al., 2017). Figure 1.1 shows 

two male bighorn sheep ramming against each other. 

 

 

Figure 1.1: Two male bighorn sheep ramming (North American Nature). 

 

Extensive research has been conducted on bighorn sheep horns and it has been 

observed that the key factors of their high impact resistance during ramming are the 

hierarchical structure, macro-structure, and material compositions. The bighorn sheep horn 

is composed of trabecular bone surrounded by keratin sheath. A type of protein with right-
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handed helicoidal structure called α-keratin is found in the horn sheath (Tombolato et al., 

2010). The basic unit of the sheath is the keratin fiber that is composed of three threads of 

α-keratin protofibril intertwined together. The keratin fiber is called intermediate filament 

(IF) and has an average diameter of 12 nm. These IFs are embedded in an amorphous 

keratin matrix called keratinized cell lamellae, which are stacked together by cell boundary 

made of proteinaceous substance. A hollow tube called tubule is extended along the 

growing direction of horn wrapped by stacked multi-layered lamellae, forming a tubule-

lamella structure. The tubule pointed by the yellow arrow in Figure 1.2(b) is not fully 

aligned with the lamella; there is an approximate 30° angle between the stacked lamella 

and the tubule direction. It is also noticed that the tubules had increased porosity from the 

inner center (virtually 0%) to the exterior edge (ranges from 8-12%) on the horn’s cross-

section. Figure 1.3 shows the hierarchical structure of a bighorn sheep’s horn sheath from 

macro-level to nano-level. 

 

   

 (a) (b) 

Figure 1.2: Microstructure of tubule-lamellae for the cross section of (a) longitudinal 

view; and (b) transverse view (Tombolato et al., 2010). 
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Figure 1.3: The hierarchical structure of a bighorn sheep’s horn from macro-level to 

nano-level (Huang et al. 2019). 

 

These compositional and structural features indicate that the horn sheath has a 

special tubular laminated composite structure with anisotropic material properties. 

 

1.1 Mechanical Testing of Horns 

 

Since 2010, mechanical testing has been conducted on horn sheath to characterize 

the material properties and study the stress-strain behaviors under various loading 

conditions. 

Tombolato et al. conducted quasi-static three-point bending and compressive tests, 

in both longitudinal and transverse directions, on horn samples at two moisture levels: air-

dried at ambient temperature and fully rehydrated (Tombolato et al. 2010). The air-dried 

samples had a 10.6±0.6% moisture content while the rehydrated horn samples had a 
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34.5±2.1% moisture content. It was shown that the maximum bending strength and elastic 

modulus were similar in both directions on fully rehydrated samples. For air-dried samples, 

the test results clearly showed the anisotropic material properties in terms of elastic moduli 

and bending strengths in the longitudinal and transverse directions. The researchers found 

extensive collapses of the tubules in the samples used in the radial-direction compression 

tests, indicating a source of energy absorption by collapsing of those tubules. 

In 2011, Trim et al. studied the mechanical properties of horns of the bighorn sheep 

based on the effect of water content level and microstructures (Trim et al. 2011). The stress-

strain responses were obtained by a series of compressive and tensile tests performed with 

a constant strain rate of 3.0×10-3/s using dog-bone shaped samples cut from different 

locations from proximal to distal ends. It was shown that the density, tensile response and 

compressive response, did not vary significantly along the length of the horn, indicating a 

more homogenized distribution. However, the test results clearly showed the anisotropy of 

the keratin horn material between the longitudinal and radial directions. The longitudinal 

direction of the horn was found to be stiffer, stronger, and more ductile than the transverse 

direction, as indicated by higher Young’s modulus, yield strength, and failure elongation 

ratio in the longitudinal direction. It was also observed that failures in the tension and 

compression tests were primarily triggered by matrix separation, tubule fracture, and shear. 

Investigation of the effect of water contents showed that the horn material transitioned from 

anisotropic to isotropic with increased hydration level, called “matrix-dominated” phase 

for samples with high hydration levels. 

Zhu et al. investigated the mechanical properties of the horns of Small Tailed Han 

Sheep (Ovis aries), inspired by its promising applications to vehicle bumper designs (Zhu 
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et al. 2016). They conducted compressive and tensile tests to study the strength of horns in 

different directions and at different locations. In both compression and tension test, they 

found that the horn material yielded quickly after undergoing a small linear elastic 

deformation, and entered a plateau plastic region of material densification followed by 

dramatically increased material strength before ultimate failure. Anisotropic behaviors 

were observed on the horn sheath, with test data showing different impact resistances in 

the longitudinal and transverse directions under the same impact loading. The largest 

Young’s modulus was found at the center part of the horn along the growing direction, 

which was the area mainly used for ram fighting to absorb impact energy. 

Huang et al. studied the deformation mechanisms of the horns of bighorn sheep 

under compressive loading (Huang et al. 2017). The transmission electron microscopy 

imaging was used to observe the hierarchical structure of the horn, which was shown to 

have an in-plane arrangement of microfibrils for laminated structures. This finding 

suggested that the horn sheath material should be considered transversely isotropic in 

which the material properties along radial and transverse directions were similar, but they 

were different from those in the longitudinal direction. Huang et al. also conducted 

comprehensive compressive tests using 4×4×4 mm3 samples that were loaded in radial, 

transverse, and longitudinal directions under quasi-static loading and dynamic loading with 

strain rates ranging from 10-3/s to 103/s. In these tests, two types of samples were 

considered based on water contents, one was air-dried with approximately 10% water 

content and the other wet with approximately 30% water content. Strain-rate effect was 

found under high-speed dynamic impact loading, and the authors suggested that it could 

be due to insufficient time for the keratin-based structure to adapt into the configurations 
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found in lower energy mode. At low level strain rates from 10-3/s to 1/s, the strain-rate 

effect was not significant. The experiment results also showed significant differences in 

the material properties of the horn sheath in the three loading directions, confirming the 

anisotropic properties of the horn with higher toughness and strength in the radial and 

transverse directions than those in the longitudinal direction. Hopkinson bar impact 

recovery tests were also conducted to investigate damage modes. Tubule collapse in the 

radial direction, lamella buckling in the longitudinal direction, and microcracking and 

coalescence were found during dynamic impacts. The study showed that the radial 

direction provided the largest impact resistance with the highest energy absorption and 

compressive strength at both hydration levels. Water-assisted recoverability of keratin 

under high strain rate was found in this study from wet samples, which provided ideas for 

recoverable energy-absorbent designs. 

In the study of Johnson et al., the compressive and tensile tests were performed on 

horn sheaths of the bighorn sheep with an average strain rate of 103/s in both longitudinal 

and radial directions (Johnson et al. 2017). At the high strain-rate level, the flow stresses 

in both directions were found to be increased, which led to an increased capability of energy 

absorption. It was observed that more substantial strain-rate dependency occurred in the 

longitudinal direction than in the radial direction. Johnson et al. also found that the horn 

sheath behaved more brittle at lower moisture level (10%) than at higher moisture level 

(35%). The increased moisture level would significantly reduce the compressive strength, 

improve ductility, and decrease the anisotropic effect. The hydration level of horn sheath 

in nature is approximately 20% during ramming, which achieves a proper balance between 
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the strength and ductility. It was also found that the hydration level could induce 

asymmetry on yield stresses between compression and tension.  

Zhang et al. compared the mechanical properties of the horns from bighorn sheep 

with other keratin-based horns such as those from domestic sheep (Ovis aries), mountain 

goat (Oreamnos americanus), and pronghorn (Antilocapra americana) (Zhang et al. 2018). 

They found that the horn properties were adapted in nature to fit the species’ fighting 

behaviors. From the drop tower impact tests, the failure strength of the horns from bighorn 

sheep, which was defined when 50% of the samples failed by puncture damage on the 

bottom surface, was measured as 75 kJ/m2. That was 36% higher than the impact strength 

of domestic sheep (55 kJ/m2), which had a lower ramming speed than the bighorn sheep 

during fighting. The study of the horn’s microstructure showed that its outstanding impact 

resistance was due to the large amount of energy absorption of the internal tubular structure 

under plastic deformation. The horns from bighorn sheep were found to have higher tubular 

density and thus higher capacity of energy absorption than those from the domestic sheep. 

From compression and tensile tests, they found that the highest Young’s modulus and yield 

strength were in the longitudinal direction of dried horns of the bighorn sheep and the 

highest toughness was in the radial direction. The radial direction was considered as the 

ideal direction for the horn to withstand high-speed impact loading. 

Previous studies showed that increased hydration level of the horn would decrease 

the anisotropic effect and increase the ductility of horn keratin. Furthermore, the hydration 

level was also found to be critical to the recoverability of horn tissues after severe impact 

loading. Huang et al. investigated the water-assisted recovery mechanism in the horns of 

bighorn sheep (Huang et al. 2019) and found that the water content affected the keratin 
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structure and tensile and creep properties to achieve recovery. In their study, the amorphous 

keratin matrix was diffused into water modules that interacted with intermediate filaments 

for breaking and reforming hydrogen bonds, leading to the recovery of horn keratin even 

after 50% of compressive strain. It should be noted that only the mechanical properties in 

the radial direction could be fully recovered by hydration due to the high damage resistance 

in this direction. Samples with the lowest hydration level were shown to have the highest 

strength; however, the failure tended to be very brittle with a low tensile strain at fracture. 

In fully hydrated samples, the failures appeared to be ductile as indicated by fiber pull-out 

due to the plasticized matrix from full hydration. The protein molecules inside the horn 

were more active and thus have higher mobility with higher water content than those with 

lower water content. This high mobility of the protein molecules led to higher creep strains 

and higher values of compliance of the horn material than those with low mobility, as 

validated by the nanoindentation test.  

 

1.2 Finite Element Modeling of Horns 

 

Most of the studies in literature on the impact resistance mechanism of horns are 

based on physical experiments. Numerical investigations, such as using the finite element 

(FE) methods, were rarely conducted to study the impact responses of bighorn sheep horns. 

Only a limited number of studies can be found in literature related to FE modeling and 

simulations of bighorn sheep horns. 

Maity et al. conducted FE analysis on the horn sheath of bighorn sheep attached to 

the internal bone core and under quasi-static loading conditions (Maity et al. 2011). The 



10 

 

horn geometry was obtained from computed tomography (CT) scan images and a three-

dimensional FE model of single horn sheath was created using tetrahedral solid elements. 

The horn sheath component was combined with compact bone, trabecular bone, and frontal 

sinus, respectively for a total of three different configurations. The keratin and bone used 

in the study of Maity et al. were assumed to be isotropic linear elastic materials. The keratin 

had a Young’s modulus of 2 GPa and a Poisson’s ratio of 0.3. A loading force with peak 

value of 3.4 kN was assigned to the horn that was considered to be equivalent to that from 

a 100-kg bighorn sheep when ramming at a speed of 5.5 m/s. The complex horn model was 

rotated by 43° so that the horn was impacted with the same clashing angle as that happened 

in real ramming. Due to limited experimental data of loads on the internal bone of the 

bighorn sheep, Maity et al. conducted a sensitivity analysis using varying Young’s modulus 

of the bone ranging from 0.8 to 20 GPa. It was shown that the strain energy of the horn 

was increased with the decrease of Young’s modulus of the bone. This indicated that a high 

modulus was critical for the bone to dissipate impact energy by elastic deformation. The 

study generated preliminary results on the sensitivity of internal bones to Young’s modulus, 

but did not consider the anisotropic property of horn materials and the strain-rate effects 

from dynamic impacts. 

In 2014, Johnson et al. investigated stress wave propagation considering geometry 

effects, inspired by the bighorn sheep horn (Johnson et al. 2014). Four different bars, a 

cylindrical bar, a tapered bar, a spiral bar, and a tapered spiral bar, were studied under 

impulse loading initiated at the same location. The first stress invariant (associated with 

hydraulic pressure) and the second stress invariant (associated with shearing) were 

evaluated in the four bars. It was observed that the tapered bar had higher hydraulic stresses, 
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uniaxial stresses, and shear stresses than the cylindrical bar due to its converging geometry. 

For the two spiral bars, a significant transverse displacement was observed, caused by the 

shear waves and reflection of longitudinal stress waves. The tapered spiral bar had larger 

shear stresses and transverse displacements than the non-tapered spiral bar. It was 

concluded that a tapered spiral geometry such as that of the bighorn sheep horn would 

induce large shear stresses and transverse displacements, resulting in reduced normal 

impulses and pressures. It should be noted that the study only focused on the effect of 

geometry on wave mitigation during impacts and did not use the material properties of a 

real horn in the FE model. 

In the work of Drake et al. (2016), a dynamic FE analysis on energy absorption and 

wave mitigation of the bighorn sheep horn was performed. They used CT scan technology 

to obtain the geometries of the exterior horn sheath and the interior cancellous bone. The 

horn material was assumed isotropic linear elastic, and a simplified point mass was 

attached to the horn complex through a spring element to represent the body mass of the 

bighorn sheep. An initial velocity of 4.7 m/s was assigned to the horn complex that 

impacted a rigid plate. A vibration analysis was also conducted on the horn both 

experimentally and numerically to study its natural frequency as well as to validate the FE 

model. The principal stresses were evaluated after the impact, and it was found that the 

lateral oscillation at the distal end (i.e., horn tip) was incited by a torque generated from 

the distal stress wave. For a pair of horns, such lateral oscillations could cancel the forces 

generated by the two opposite sides and prevent from impact damage to the head. The horn 

and internal bone were shown to absorb a significant portion of the initial kinetic energy. 

The horn played a critical role in dissipating energy and mitigating translational and 
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rotational accelerations, which were the main cause of head concussion. The internal 

trabecular bone was found to provide sufficient bending stiffness when the horn sheath was 

subjected to localized compressive load. Drake et al. did an excellent investigation on 

energy absorption and impact pulse dissipation of horn sheath and internal trabecular bone; 

however, there were limitations of the study such as the use of isotropic, linear elastic and 

homogeneous materials in the FE model of the horn and internal bone. In addition, the 

material properties used for dynamic impact simulations were taken from quasi-static tests 

that did not consider strain-rate effects that were shown by previous studies. 

Lee et al. investigated the effect of horn ridges on stress wave propagation under 

impact pulses (Lee et al. 2019). They developed a simplified FE model of the horn with 

isotropic material properties to study normal and shear stresses and strains in four selected 

regions of the horn under different impact pulses. It was found that the horn ridges could 

increase the shear stress during impact and reduce the subsequent shear vibrations. They 

concluded that horn ridges were critical to transferring longitudinal waves to shear waves, 

further filtering shear waves, and finally reducing the strains to stabilize the whole structure. 

The special tapered spiral structure could decrease the impulse in longitudinal direction by 

triggering shear stresses and the subsequent transverse displacements would further 

dissipate the impact waves.  

In 2021, Johnson et al. (2021) studied the responses of the brain of the bighorn 

sheep using FE modeling and simulation. In their study, a comprehensive FE model was 

developed based on CT scans of a horn complex that included horn sheath, internal bone, 

germinative epithelium, skull, and brain. The effects of hydration and strain rate were 

incorporated into the constitutive model of the horn keratin. Two levels of hydration were 
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considered, dry (10% water content) and wet (35% water content), to represent the lower 

and upper bonds of hydration levels in an actual horn at fresh state. For the wet hydration 

level, both low and high strain rates were considered in the numerical simulations. The 

shock mitigation capability of the bighorn sheep horn was confirmed in the study with an 

acceleration of 607g in the extreme case. It was shown that the horn with high hydration 

level was more effective in dissipating impact pulses than that with low hydration level. 

Similar to other prior studies, material anisotropy was not considered for both the wet and 

dry horn keratins. In addition, validation of the horn’s constitutive model using coupon 

testing was not reported.  

Among the limited studies related to FE simulation of bighorn sheep horns under 

dynamic impacts, there is no study that has considered an anisotropic non-linear plastic 

and viscoelastic material for the horn sheath. The trabecular structures of the bony core 

were ignored in most of studies and the interface between core and sheath has not been 

investigated. The angle of incidents in the impact locations has also not been investigated 

to included side impact or oblique impact. 

 

1.3 Dissertation Research 

 

Research results from existing studies confirmed through electron optical 

examination and mechanical testing that the keratin sheath of the bighorn sheep horn is an 

anisotropic material. Based on compression and tensile tests in the radial direction (i.e., the 

impact direction when ramming), longitudinal direction (i.e., the horn’s growing direction), 

and transverse direction (i.e., the circumferential direction of the horn), the keratin sheath 
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was shown to have clearly different stress-strain responses in different directions. In the 

longitudinal direction, the keratin sheath has the highest stiffness to withstand uniaxial 

stresses and in the radial direction, it has the highest toughness for energy absorption and 

dissipation. This anisotropy can also be explained by the macrostructure of the tubule-

lamellae that is similar to fiber reinforced laminated composites. The horn keratin also 

exhibits strong strain-rate dependency as revealed through the comparison of quasi-static 

test data and dynamic impact test data. Although many existing studies investigated the 

energy dissipation mechanism of the bighorn sheep horn using FE modeling and simulation, 

no study incorporated strain-rate dependence as well as anisotropic material properties in 

the FE models of horn sheaths. Research is needed to bridge these gaps so as to improve 

the model fidelity for the analysis of horn sheaths. 

In this dissertation research, a constitutive model was developed for the horn 

material with anisotropic material properties coupled with strain-rate effect from 10-3/s to 

103/s. The anisotropic feature of the horn material was mainly focused on the large 

discrepancy between material properties in the longitudinal and radial direction, and the 

horn material was considered as transversely isotropic (in radial and circumferential 

directions) for simplification. Compression test data in the longitudinal and radial 

directions at different strain rates were used to derive the constitutive responses of the horn 

material. An anisotropic material model with anisotropic hardening was developed in this 

study and integrated with commercial FE code as a user subroutine. This constitutive model 

was then validated against test data and finally incorporated into the horn model for 

dynamic impact analysis. 



15 

 

The remaining portion of this dissertation is organized as follows: Chapter Two 

gives the fundamental theory of FE modeling of contact problems including contact 

handling methods and algorithms. In Chapter Three, detailed characterization of test data 

of the horn material is provided. A user-defined constitutive model of the horn material is 

developed and thoroughly discussed, including the formulations and stress update method. 

Chapter Three also includes validation of the constitutive model using quasi-static test data. 

Strain-rate effect is coupled into the validated quasi-static constitutive model and a new, 

strain-rate dependent model is developed and presented in Chapter Four. In Chapter Five, 

the FE model of a full horn is developed to incorporate the strain-rate dependent 

constitutive model for dynamic impact simulations in which the stress distributions, 

displacement wave propagations, and energy conversions are studied and discussed. 

Finally, some major findings and key contributions of this research are summarized in 

Chapter Six along with a few concluding remarks. 
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CHAPTER 2: FINITE ELEMENT MODELING FOR CONTACT PROBLEMS 

 

 

Contact handling is an essential part of FE modeling of impact problems that 

involve interactions among different bodies or components. Common examples of contact 

problems are seen in cases such as vehicular crashes, stamping processes, and metal 

forming. It is necessary to carefully select the proper contact setting (i.e., contact 

definitions and algorithms) to improve the fidelity of FE simulations, especially in those 

with large deformations.  

Since the contact theory behind the different commercial FE codes, such as LS-

Dyna, Abaqus, and Ansys, is essentially the same, the contact definitions, methods, and 

algorithms implemented in LS-Dyna, are presented in this chapter and used in the 

simulations of this research.  

 

2.1 Contact Theory 

 

In contact analysis, methods and algorithms are needed to handle the interactions 

between two contacting bodies that initially are not in contact. The contact interfaces on 

the two bodies are typically defined as a master and a slave surface. In contact modeling, 

the contact surface with stiffer material or coarser mesh is usually chosen as the master 

surface to provide stable contact analysis. There are three methods for contact handling in 

LS-Dyna: the kinematic constraint method, distributed parameter method, and penalty 

method (LSTC, 2019). Both the kinematic constraint method and distributed parameter 
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method deal with contact problems by confining one contact interface along the other 

interface and do not allow for penetration. In the kinematic constraint method, the 

constraints are imposed on nodes along the contact interfaces for their degrees of freedom 

normal to the contact surfaces. A potential issue of this method is that some nodes may be 

determined as inactive when the mesh of the master surface is finer than that of the slave 

surface: some nodes on the master surface may not be fully captured by the boundary of 

the slave surface, leading to undesired penetration. In the distributed parameter method, 

the mass and internal pressure of the elements from the slave surface are distributed to the 

covered area on the master surface. Constraints are then imposed on slave nodes for 

accelerations and velocities to insure their movements along the master surface and without 

penetration. 

While both the kinematic constraint method and distributed parameter method do 

not allow penetrations from slave nodes to the master surface, the penalty method 

artificially introduces a small penetration before intervention. Once the contact algorithm 

detects that certain nodes have penetrated the other surface, the interface springs are placed 

between all penetrating nodes and the contact surface to provide contact forces that push 

back the penetrated nodes from the contact surface. Based on the formulations to determine 

the stiffness of the interface spring, the penalty method can be categorized into three 

different methods: standard penalty formulation, soft constraint penalty formulation, and 

segment-based penalty formulation. 
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2.1.1 Standard Penalty Formulation 

 

The standard penalty formulation is the most basic penalty-based contact algorithm 

if one slave node is detected to have penetrated the master surface, a normal interface force 

will be imposed between the slave node and the corresponding contact point in the segment 

on the master surface. A segment is the basic unit for contact handling in contact algorithms. 

For surfaces composed of shell elements, a segment is the surface formed by the nodes of 

a shell element, either triangular or quadrilateral depending on the type of the element. For 

contact surfaces formed by solid elements, a segment is defined as the exterior face of the 

solid element. Figure 2.1 shows two examples of the segments on the surfaces of a shell 

and solid element (marked with a cross). 

 

    

 (a)  (b) 

Figure 2.1: Examples of segments on contact surfaces (marked by a cross). 

(a) Surface formed by shell elements; and (b) Surface formed by solid elements. 

 

Figure 2.2 illustrates penetration checking between a slave node and a segment on 

the master surface in a contact algorithm.  
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Figure 2.2: Standard penalty formulation (LS-Dyna manual). 

 

The slave node, denoted by ns, is checked by contact algorithm for penetration, 

which occurs if the condition in Eq. (2.1) is met: 

 [ ( , )] 0i c cl  =  − n t r  (2.1) 

where t and r are the vectors from the origin of the global coordinate system to the slave 

node and contact point, respectively. The normal unit vector from contact point to the 

master segment is denoted as 

 ( , )i i c c =n n  (2.2) 

The penetration of a slave node ns to a master segment can be determined by checking Eq. 

(2.1). When l is greater than zero (l > 0), the slave node has no contact with the master 

segment and thus no penetration occurs. When l is less than zero (l < 0), the slave node has 

penetration into the master segment and the penetration distance is given by | l |. If a 

penetration is detected, a contact force will be calculated and applied to the slave node and 

the master segment as 
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 s i ilk= −f n  (2.3) 

where ki is the contact stiffness. For shell element, the contact stiffness of the master 

segment, ki, is determined by the geometry of the shell element containing si as well as the 

bulk modulus of material, given by 

 

2

max(shell diagonal)

si i i
i

f K A
k =  (2.4) 

where Ki is the bulk modulus, Ai is the area of the shell element on the master segment, and 

fsi is a scale factor that has a default value of 0.1 and is used to adjust the contact stiffness 

to maintain numerical stability when handling contact problems. 

 For solid elements, the contact stiffness is given by 

 
2

si i i
i

i

f K A
k

V
=  (2.5) 

where Ai is the face area of the solid element on the master segment and Vi is the volume 

of the solid element. 

Since the bodies in contact may have significantly different material properties and 

thus stiffness, several options are available for users to set the proper value of penalty 

contact stiffness to prevent numerical instability of contact modeling. In the standard 

penalty formulation, the commonly used method is to use the smaller one of the master 

segment stiffness and slave node stiffness as the penalty stiffness. Other options such as 

only using master segment stiffness, using slave node stiffness with or without mass 

weighted can be found in the LS-Dyna user manual. 
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2.1.2 Soft Constraint Penalty Formulation 

 

The soft constraint penalty formulation is developed for soft materials that may 

cause excessive penetrations and consequently numerical instability when using the 

standard penalty formulation in contact analysis. In addition to contact stiffness, another 

stability contact stiffness kcs(t) is introduced based on the Courant criteria and calculated 

by 

 
( )

2

*

cs

1
( ) 0.5 SOFSCL

c

k t m
t t

 
=      

 (2.6) 

where SOFSCL is a scale factor for the constraint force of soft constraint option, Δtc(t) is 

the solution timestep at time instant t, and m* is a function of the masses of the slave and 

master nodes given by 

 * 1 2

1 2

m m
m

m m
=

+
 (2.7) 

In Eq. (2.7), m1 and m2 are masses of the slave node and the master node, respectively. The 

mass of master node is the interpolated value from four nodes of the master segment. 

The stability contact stiffness is adjusted dynamically based on the varying timestep 

and to achieve stable contact handling. In a contact analysis using the soft constraint 

penalty formulation, the standard penalty contact stiffness kcs and the stability contact 

stiffness kcs(t) are compared and the larger one is chosen as the contact stiffness, kSOFT=1, 

which is used to calculate the contact forces. 

 SOFT=1 max( , ( ))cs csk k k t=  (2.8) 
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2.1.3 Segment-based Penalty Formulation 

 

In segment-based penalty formulation, the stability contact stiffness is determined 

similarly to that in the soft constraint penalty formulation but with different methods of 

calculating the mass and updating the timestep. Segment mass, which is defined as the 

element mass for shell elements and half of the element mass for solid elements, is used 

instead of the nodal masses used in the soft constraint penalty formulation. The timestep 

Δtc(t) is updated only when the current solution timestep is 5% more than the initial 

timestep. The contact stiffness in the segment-based penalty formulation, kSOFT=2, is given 

by 

 
*

SOFT=2 max( , ( ))cs csk k k t=  (2.9) 

where 
* ( )csk t  is the stability contact stiffness for segment-based penalty formulation and is 

determined by 

 
( )

2

* 1 2

1 2

SFS
1

( ) 0.5 SLSFAC or

SFM

cs

c

m m
k t

m m t t

 
   

=          +     
 

 (2.10) 

In Eq. (2.10), SLSFAC is a scale factor for sliding interface penalties, SFS and SFM are 

scale factors for default slave and master penalty stiffnesses, respectively, and m1 and m2 

are the masses of the slave and master segments. As defined in LS-Dyna, the mass of a 

shell segment is its element mass, and the mass of a solid segment is half of the solid 

element mass. 
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2.1.4 Contact Friction 

 

Contact sliding energy is generated through friction between two contact surfaces. 

The friction defined in LS-Dyna is based on the Coulomb formulation. The coefficient of 

friction µ is interpolated using the coefficient of static friction µs and the coefficient of 

dynamic friction µd with an exponential decay given by a coefficient c and the relative 

velocity vvel of the two surfaces in contact: 

 ( ) relc

d s d e   
−

= + −
v

 (2.11) 

The friction force between the contacting surfaces, Fy, is given by 

 
y nF = f  (2.12) 

where fn is the normal contact force. 

The displacement of the slave node after one timestep can be denoted by 

 ( ) ( )1 1 1, ,n n n n n n

c c c c   + + + = −e r r  (2.13) 

where ( ),n n n

c c r  and ( )1 1 1,n n n

c c + + +
r  are the vectors from the origin of the global 

coordinate system to the slave node at two subsequent states, n and n+1, respectively. 

The relative velocity vvel  between the slave node and the master segment is given 

by 

 rel
t


=



e
v  (2.14) 

where ∆t is the time step size. 

Let f n be the frictional force at the current state, an internal trial force is introduced 

as 
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* n k= − f f e  (2.15) 

where k is the interface stiffness. Then the updated Coulomb frictional force is defined as 

 

* *

1 *
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n
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+

 
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

f f

f f
f

f

 (2.16) 

To cap the excessive Coulomb friction force generated by interface shear stress, a 

limit on the surface tangential force is composed: 

 Coulomb

1 1

mastermin( , )n nf A+ += f  (2.17) 

where κ is the viscous coefficient and Amaster is the area of master segment. 

 

2.1.5 Contact Energy 

 

The contact energy from the current (nth) state to the (n+1)th state is updated by  

 

1

2
1 slave slave master master

contact contact

1 1

n
nsn nmn

n n

i i j j

i j

E E F d F d

+

+

= =

 
= +   +   

 
   (2.18) 

where 
slave

iF is the interface force between the i-th slave node and the contact segment, 

slave

id is the moving distance increment at the current timestep from i-th slave node, 

master

jF is the interface force between the j-th master node and the contact segment, master

jd  

is the moving distance increment in current timestep from j-th master node, nsn is the 

numbers of slave nodes, and nmn is the number of master nodes. 

The total net contact energy from the slave and master surfaces should equal to the 

energy storage in the system. In an ideal situation without friction, the contact energy from 
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the slave surface should be the same as the contact energy from the master surface without 

any energy lost. When friction or damping is considered, a portion of the contact energy 

from the slave and master surfaces is converted to the sliding interface energy or damping 

energy. 

 

2.2 Contact Algorithms in LS-Dyna 

 

2.2.1 Surface-to-Surface Contact 

 

The surface-to-surface contact in LS-Dyna is based on a kinematic partitioned 

approach developed by Taylor and Flanagan (1989). In surface-to-surface contact, each 

master surface accumulates masses and forces from the slave surface for a portion of time 

partitioned by the factor, β (-1 < β < 1), then switched over. That means when β = 1, the 

contact is a one-way treatment that only the master surface accumulates forces from the 

slave surface, and vice versa when β = -1.  

A trial state was firstly updated without contact interaction to obtain trial values of 

acceleration, velocity, and displacement. After the trial state, the acceleration will be 

corrected by considering contact penetrations. For a slave node, the penetration force can 

be expressed as 

 
2

sm L

t


=


p

f n  (2.19) 

where ms is mass of the slave node, ∆L is the penetration distance, n is the normal vector 

of the master surface, and ∆t is the time step size. 
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It was assumed that the acceleration of a slave node, which resided and constrained 

by its contacting master surface, is consistent with the master segment. The slave node 

acceleration as can be expressed as 

 1 2 3 4   = + + +1 2 3 4

s nk nk nk nka a a a a  (2.20) 

where 
1

nka , 
2

nka , 
3

nka , 
4

nka  are the accelerations of the four nodes of the master segment k, 

and ϕ1, ϕ2, ϕ3, ϕ4, are the corresponding shape functions. By accumulating all the penetrated 

slave nodes for its nodal masses and penetration forces to the global master surface, it gives 

 k ks ks

s s

m m
 

+ = 
 

 nk
a f  (2.21) 

where ank is the acceleration vector of master segment, mk is the mass of master segment k, 

and mks is given by 

 ,  ks k s km m = =
ks p

f f  (2.22) 

The corresponding shape function is denoted as ϕk. After solving master acceleration vector 

ank and substituting it into Eq. (2.21), the acceleration of slave node as can be interpolated 

and the acceleration correction for slave node is 

 
sm

= −
p

ns s

f
a a  (2.23) 

The acceleration is calculated again by switching the master and slave surfaces and the 

average acceleration correction is obtained by 

 
final 1st pass 2st pass1 1

2 2

 − +
= +

n n n
a a a  (2.24) 

The acceleration correction is added to the trial acceleration to obtain the final value for 

acceleration. The surface-to-surface contact has an option of “automatic” that searches for 

contact and penetration on both master and slave surfaces. 
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 The surface-to-surface contact is normally adopted for solving problems in which 

a simple contact path is expected such as two parts with simple geometries and without 

self-warpage during contact. Under such circumstances, the surface-to-surface contact is 

computationally efficient while maintaining high modeling accuracy. However, due to the 

lack of self-contact checking, surface-to-surface contact may cause inaccurate modeling 

issues such as the case shown in Figure 2.3. In Figure 2.3, the block on top is compressing 

a tube whose top and bottom inner surfaces may be in contact under large compressive 

forces. For the case as in Figure 2.3, surface-to-surface contact is not capable of handling 

the contact between the top and bottom inner surfaces of the tube; another algorithm called 

single-surface contact should be used to maintain modeling accuracy. 

 

 

Figure 2.3: Example of self-contact case. 

 

2.2.2 Single-Surface Contact 

 

The single-surface contact is the most commonly used and robust contact algorithm 

in LS-Dyna. It was evolved from surface-to-surface contact and share similar contact 

searching and acceleration calculation formulations. However, it has much more 
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advantages over the surface-to-surface contact algorithm. In single-surface contact, there 

is no need to explicitly define the slave and master parts, because the algorithm conducts 

penetration checking among all the parts included in the contact definition: the contact 

between two parts and the contact between different areas on the same part (self-contact). 

It is a common practice to include all the components with potential contacts in a single 

single-surface contact with the “automatic” option for handling complicated problems such 

as vehicular crashes. 

There are two major types of contact for single-surface contact: Type 4 and Type 

13. The Type 4 single-surface contact projects the contact interface using the nodal normal 

vectors from the master surface as shown in Figure 2.4. For shell segment, the offset 

distance on both sides at each node is defined as the half nodal thickness of the element. 

The contact interface shown in Figure 2.4 is unsmooth and may cause instability issue 

when the slave node contacts the projected interface at the sharp corner. 

 

Figure 2.4: Projection of the contact interface in Type 4 single-surface contact. 

 

The projection of the contact interface was refined in Type 13 single-surface 

contact. Figure 2.5 illustrates the method for penetration detection in the Type 13 single-

surface contact. For shell element, the contact interface is projected from the master 
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segment in the direction of the normal vector for an offset distance, which is defined as 

half of the element thickness. For solid element, the offset distance is zero; no projection 

of the contact interface is necessary. The projected interfaces are used for checking if a 

slave node has any penetration into the master segment. For adjacent segments that do not 

have a 180° angle, special handling at the intersection of the two segments is needed to 

prevent unsmooth contact interfaces such as the one shown in Figure 2.4. 

To bridge the discontinuity between the projected contact interfaces of two adjacent 

segments, a cylindrical surface is created with the center at the intersection of the mid-

planes of the two segments, as shown in Figure 2.5. The entire surface created by the two 

projected contact interfaces and the cylindrical surface is used for checking penetrations 

from the slave nodes. 

 

Figure 2.5: Projection of the contact interface in Type 13 single-surface contact. 

 

The general idea of the automatic-single-surface contact algorithm can be 

summarized as follows. 

(1) Conduct segment-based bucket sorting and identify the closest segment for each of the 

slave nodes; 
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(2) For each slave node, check whether the node is in contact with the master segment. 

Update the closest segment and flag the contact side of the surface; 

(3) Apply contact forces at nodes where penetrations are detected; and 

(4) Switch the slave and master parts and perform contact checking again. 

 

2.2.3 Automatic-General Contact 

 

The automatic-general contact is another commonly used contact algorithm in LS-

Dyna that is mainly for dealing with edge contact. Figure 2.6 gives an example of edge 

contact in which two surfaces composed of shell elements are in contact at edges. In this 

situation, single-surface and surface-to-surface contacts may not handle the contacts well 

because both contact algorithms detect penetrations by offsetting the contact interface 

using vectors normal to the origin surfaces. With automatic-general contact, a beam 

element with null material (i.e., with no stiffness but only the cross-section geometry) is 

artificially created along the exterior edge of the original surface. The contact between two 

edges of the shell surfaces is then converted to the contact between two beam elements on 

their contact edges. There is also an “interior” option for the automatic-general contact in 

which null beam elements are also created along the interior edges of the contact surfaces. 

This option is widely used for cases involving potential interior edge contacts to prevent 

penetrations caused by undetected interior contacts.  

 



31 

 

 

Figure 2.6: Example of edge contact case. 

 

2.3 Hourglass Control 

 

In finite element simulation, under-integrated elements, such as the constant-stress 

solid element with one integration point, are commonly chosen for its reduced 

computational cost. However, using under-integrated elements may often cause a non-

physical deformation state called hourglass mode that has a negative volume of the element 

and thus produces no meaningful stress values. The existence of hourglass modes can cause 

contact penetrations and/or abnormal interface reaction forces. 

To avoid hourglass modes, hourglass control is adopted in finite element analysis 

to apply an artificial internal force to resist hourglass deformation of the element. Based 

on the way to generate the internal force, two types of hourglass controls were developed: 

the viscous form (Type 1, Type 2, and Type 3 in LS-Dyna) and the stiffness form (Type 4, 

Type 5, and Type 6). The viscous form hourglass control generates hourglass force that is 

proportional to the nodal velocity while the stiffness form hourglass control generates 

hourglass force that is proportional to the nodal displacement. 
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The energy associated with the hourglass internal force is called hourglass energy. 

The following requirement should be met to maintain modeling accuracy if introducing 

hourglass energy into the system. The hourglass energy of the part that is assigned with 

hourglass control should below 10% of its peak internal energy. Under this condition, the 

range of hourglass energy is considered as acceptable. 

 

In this study, to accurately handle contacts in both quasi-static and dynamic loading 

conditions, the automatic-single-surface contact with segment-based is chosen as the major 

contact modeling method. The frictional and sliding behaviors between contact interfaces 

are also considered. Under-integrated elements with Type 4 (stiffness form) hourglass 

control were used in the models of this study. In the next chapter, a constitutive material 

model will be developed using finite element theory, cooperating with contact setting to 

solve for the deformation of horn under typical mechanical loadings.  
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CHAPTER 3: CONSTITUTIVE MODELING OF HORN MATERIAL 

 

 

The horn sheath of bighorn sheep is made of keratin-based material with tubule- 

lamella structure. Similar to fiber-reinforced laminated composites, horn sheath is 

considered as anisotropic material, i.e., with different mechanical properties in the principal 

directions that are defined as longitudinal, radial, and circumferential directions based on 

the exterior geometry of a horn (see Figure 3.1). The longitudinal direction is the growing 

direction of the horn starting from the proximal base (the location where the horn is 

connected to the head) to the distal end (i.e., horn tip).  The extending direction of tubules 

in the horn sheath is aligned with the longitudinal direction. The radial direction, which 

extends from the inner core of the horn to the exterior skin and is perpendicular to the 

longitudinal direction, is the principal direction to sustain impact loading during bighorn 

sheep ramming. As discussed in Chapter 1, the macrostructure of the horn sheath is 

composed of tubules in the longitudinal direction and surrounded by layers of lamellas 

stacked in the radial direction. The last principal direction, circumferential direction, is in 

the tangent direction on a cross-section of the horn and perpendicular to the radial direction. 
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Figure 3.1: The principal directions of the horn. 

 

Over the years, extensive mechanical tests have been performed and the results 

have showed that there are differences in the material characteristics in the three principal 

directions, especially between the longitudinal and radial directions. These differences 

include material properties such as Young’s modulus, yield strength, and hardening 

behaviors under plastic deformations. A simplified approach to model the anisotropic 

materials of the horn sheath is to treat it as transversely isotropic materials that are isotropic 

in the radial and circumferential directions. 

In this chapter, an anisotropic constitutive model is developed for the horn material 

to represent the elastic and plastic behaviors under quasi-static loading conditions. A user-

defined material subroutine was implemented and integrated with LS-Dyna and validated 

against test data that were taken from typical loading scenarios such as uniaxial 

compression tests in the radial and longitudinal directions. The test data were used for 

material characterization, model parameterization and validation. 
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3.1 Preliminary 

 

In this section, the preliminary knowledge of constitutive modeling is presented on 

the constitutive relationship of stresses and strains, yield criteria involving anisotropy, and 

the anisotropic hardening rules. 

 

3.1.1 Orthogonal Material 

 

In the 1-2-3 coordinate system, the Cauchy stress tensor σ and elastic strain tensor 

ε are defined as 

  11 22 33 12 23 31, , , , ,
T

     =σ  (3.1) 

  11 22 33 12 23 31, , , 2 ,2 ,2
T

     =ε  (3.2) 

and the relationship between them is given by 

 = σ C ε  (3.3) 

where C is the stiffness matrix. 

The compliance form of orthogonal material is given by 

 = ε S σ  (3.4) 

The compliance matrix S is defined as 



36 

 

 

3121

11 22 33

3212

11 22 33

13 23

11 22 33

12

23

31

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

1
0 0 0 0 0
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0 0 0 0 0

E E E

E E E

E E E

E

E

E





 

 
− − 

 
 
− − 

 
 
− − 

 =
 
 
 
 
 
 
 
 
  

S  (3.5) 

where E11, E22, E33 are the Young’s moduli of the orthogonal material in the 1, 2, and 3 

directions, E12, E23, E31 are the shear moduli in 1-2, 2-3, and 3-1 planes, and ν is the 

Poisson’s ratio defined as the ratio of transverse and axial strains given by  

 t
at

a





= −  (3.6) 

where εa is the strain in the axial direction, εt is the strain in transverse direction induced 

by the axial stress, and νat represents the Poisson’s effect in the t-direction induced by the 

stress in a-direction. 

The upper limit of Poisson’s ratio for common materials can be determined based 

on non-negativity of its bulk modulus using a simplified isotropic model with a Young’s 

modulus of E and Poisson’s ratio ν. Let a, b, and c be the dimensions of a cubic sample 

along the three orthogonal axes 1, 2, and 3, and a, b, and c be the corresponding 

dimensional increments during time interval t. The volumes in the deformed and initial 

states can be described as 

 ( ) ( ) ( )tV a a b b c c= +   +   +   (3.7) 
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 0V abc=  (3.8) 

Equation (3.7) can be simplified to 

 
2

0 ( )tV V bc a ca b ab c o= +  +  +  +   (3.9) 

and the volume change is 

 V bc a ca b ab c =  +  +   (3.10) 

The volumetric strain is given as 

 

0

11 22 33

V

V

V

bc a ca b ab c

abc

a b c

a b c



  


=

 +  + 
=

  
= + +

= + +

 (3.11) 

and with Hooke’s law, Eq. (3.11) can be expressed in terms of σ11, σ22, σ33 as 

 
3(1 2 )

V m
E


 

−
=   (3.12) 

where σm is the hydraulic pressure given by 

 
11 22 33

3
m

  


+ +
=  (3.13) 

With Eqs. (3.12) and (3.13), the bulk modulus can be determined as 

 
3(1 2 )

m

V

E
K



 
= =

−
 (3.14) 

The bulk modulus is defined as a positive material characteristic that requires the Poisson’s 

ratio to be smaller than 0.5. For incompressible material such as rubber, the Poisson’s ratio 

is found to reach this limit. The reported values of Poisson’s ratio for keratin horn sheath 

range from 0.25 to 0.35. 
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From the symmetry of the compliance matrix 

 13 31 23 3212 21

11 22 11 33 22 33

, ,  
E E E E E E

    
= = =  (3.15) 

The compliance matrix in Eq. (3.5) can be expressed in terms of nine independent variables 

as 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S

S

S

S

 
 
 
 

=  
 
 
 
  

S  (3.16) 

Similarly, the stiffness matrix can be expressed as 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 
 
 
 

=  
 
 
 
  

C  (3.17) 

It can be seen from Eqs. (3.3) and (3.4) that the stiffness matrix is the inverse of the 

compliance matrix and vice versa; therefore, the stiffness matrix can be calculated by 

 
1−=C S  (3.18) 

with entry representations given as 

 

2 2 2

22 33 23 11 33 13 11 22 12
11 22 33

12 33 13 23 13 22 12 23 23 11 12 13
12 13 23

44 55 66

44 55 66

2 2 2

11 23 22 13 33 12 11 22 33 12 13 23

,  ,  

,  ,  

1 1 1
,  ,  

where 2

S S S S S S S S S
C C C

S S S S S S S S S S S S
C C C

C C C
S S S

S S S S S S S S S S S S

− − −
= = =

  

− − −
= = =

  

= = =

 = + + − −

 (3.19) 
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Since the entries in the compliance matrix are given in Eq. (3.5), the stiffness matrix in Eq. 

(3.18) can be determined using the given material properties. 

 

3.1.2 Yield Criterion 

 

In multi-dimensional stress states, the yield criterion can be described using a yield 

function given as 

 f Y= −  (3.20) 

where   is the effective stress and Y is the yield stress. When the effective stress is smaller 

than the yield stress (f < 0), the material undergoes elastic deformation. The material starts 

to yield when the effective stress reaches the yield limit and the yield surface, f = 0, defines 

all possible stress states that have the same effective stress. Figure 3.2 gives an example of 

a yield surface in a two-dimensional space of principal stresses.  

 

 

Figure 3.2: A yield surface in a two-dimensional space of principal stresses. 
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A popular yield criterion is the von Mises criterion that uses von Mises stress as the 

effective stress that is given by 

 ( ) ( ) ( ) ( )
2 2 2 2 2 2

11 22 22 33 33 11 12 23 31

1
6

2
e          = − + − + − + + +

 
 (3.21) 

Hill (1948) proposed a more generalized format of the effective stress for anisotropic 

materials with three orthogonal planes of symmetry. The three planes of symmetry are 

mutually orthogonal and meet at three orthogonal directions that are called the principal 

axes of anisotropy. When choosing the principal axes of anisotropy as the reference axes, 

a generalized form of the effective stress is given as 

( ) ( ) ( )
2 2 2 2 2 2

22 33 33 11 11 22 23 31 12

1
2 2 2

2
F G H L M N          = − + − + − + + +

 
 (3.22) 

where F, G, H, L, M, and N are characteristic constants. The effective stress can also be 

expressed by a tensor representation proposed by Lubliner (2008) as 

 T

ijkl ij klA  = =σ Aσ  (3.23) 

where A is a 4th order tensor defining the anisotropy of yield. With three principal directions, 

the anisotropic factor matrix A is given as a 6×6 matrix. Similar to the stiffness matrix, the 

anisotropic factor matrix is also symmetric and share the same features for off-diagonal 

entries. The expression of anisotropic factor matrix will be discussed in detail in the 

following sections. 

 

3.1.3 Hardening Rule 

 

Most real-world materials have plastic hardening behaviors that increase the yield 

stresses as the materials undergo plastic deformations. A classic example of materials with 
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plastic hardening is crystalline metal. Based on the dislocation theory, the density of 

dislocation inside the metal will dynamically change during deformation incited by 

external loading, affecting the average distance and the repulsive interaction force among 

dislocations. These changes increase the difficulty for existing dislocations to move, 

appearing as plastic hardening of the material. 

For perfectly plastic material without hardening, the yield surface keeps the original 

shape after the material reaches the initial yield state and undergoes plastic deformations. 

With plastic hardening, the yield stress will keep increasing after reaching the initial yield 

limit and before reaching the ultimate strength. The plastic hardening behavior is indicated 

by the expansion of the yield surface in the normal directions of the principal-stress space. 

The expansion of yield surface is associated with the increasing of plastic strain, i.e., plastic 

flow. The relationship between plastic strain increment and the yield surface expansion can 

be described by associative plastic flow theory given as 

 p

f
d d 


=

σ
 (3.24) 

where εp is the current plastic strain, λ is a hardening coefficient, and f is the yield function 

(also called the plastic potential function) defined in Eq. (3.20). Equation (3.24) shows that 

the direction of plastic flow is parallel to the tangent direction of the yield surface and is 

normal to the direction of yield surface expansion. 

In terms of the expansion of yield surface, two types of plastic hardening patterns 

can be identified: isotropic hardening and anisotropic hardening, as illustrated in Figure 

3.3. 
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 (a) (b) 

Figure 3.3: Illustration of plastic hardening patterns in a two-dimensional space of the 

principal stresses. 

(a) Isotropic hardening; and (b) Anisotropic hardening. 

 

In isotropic hardening, the yield surface expands uniformly along its normal 

directions, as shown in Figure 3.3(a), i.e., the yield surface is enlarged while maintaining 

the original shape. For anisotropic hardening shown in Figure 3.3(b), the yield surface 

expands nonuniformly and both its size and shape are changed.  

 

3.2 Constitutive Modeling 

 

The horn material was shown to have anisotropic plastic hardening from uniaxial 

compression tests in the longitudinal, radial, and circumferential directions. Experimental 

results showed that the horn material has similar mechanical properties and thus responses 
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in radial and circumferential directions due to the stacked structure of tubule-lamella. This 

similarity leads to the simplification of horn material as transversely isotropic. 

In this dissertation research, a transversely isotropic constitutive model was first 

developed for quasi-static loading conditions (i.e., no strain-rate effect) based on the work 

by Li et al. (2018). The coupling of strain-rate effect in this constitutive model will be 

presented in the next chapter. In this work, the radial and circumferential directions are 

denoted as direction-1 and direction-2, respectively, and the longitudinal direction is 

denoted as direction-3. The 1-2 plane of the horn sheath is therefore the plane of isotropy 

with the following identical material properties 

 11 22 23 13 32 31,  ,  E E E E  = = =  (3.25) 

For a transversely isotropic constitutive model, the compliance matrix in Eq. (3.5) can be 

simplified to 
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S  (3.26) 
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3.2.1 Yield Function 

 

Based on the Tagarielli-Deshpande model (Tagarielli et al., 2005), the yield 

function for an anisotropic material can be expressed by 

 f Y Y= − = −Tσ Aσ  (3.27) 

where   is the effective stress given by   = T
σ Aσ , Y is the yield stress, and A is the 

anisotropic factor matrix. Tagarielli et al. gave an expression of matrix A for an anisotropic 

material as 

 

2 2 2

33 33 33
21 31

11 11 11

2 2

33 33
31

22 22

2

33

12

2

33

23

2

33

31

0 0 0

0 0 0

1 0 0 0

0 0

symmetric 0

Y Y Y

Y Y Y

Y Y

Y Y

Y

Y

Y

Y

Y

Y

 



      
 − −     
      
 

    
−    

    
 
 
 

=  
  
  

  
 

  
  
 

 
  
  
   

A

 (3.28) 

with the yield criterion given by 

 33 0Y− =T
σ Aσ  (3.29) 

In Eq. (3.28), Yij is the initial yield stress in direction-i (when i = j) or the shear 

flow stress on the i-j plane (when i  j). For transversely isotropic material, with direction-
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1 and direction-2 forming the plane of isotropy and direction-3 as the reference principal 

axis, the follow stresses are related by 

 33 33 33 33

11 22 23 31

,  
Y Y Y Y

Y Y Y Y
= =  (3.30) 

 At initial yield state, Eq. (3.30) still holds and gives 

 
0 0 0 0 0

33 33 33 33 33 33 33 33 33 33

0 0 0 0 0

11 11 22 22 12 12 23 23 31 31

,  ,  ,  ,  
Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y
= = = = =  (3.31) 

where 0

ijY  is the initial flow stress, i.e., yield stress. Combining Eq. (3.30) and Eq. (3.31) 

gives the hardening rule of the Tagarielli-Deshpande model as 

 33 23 3111 22 12

0 0 0 0 0 0

11 22 33 12 23 31

Y Y YY Y Y

Y Y Y Y Y Y
= = = = =  (3.32) 

Equation (3.32) represents isotropic hardening behavior in which the yield surface expands 

uniformly as shown in Figure 3.3(a). 

 Li et al. (2018) generalized the hardening rule based on the yield function of 

Tagarielli-Deshpande model by introducing the concept of the hardening function, hij. The 

hardening functions are the ratios of the current flow stresses to the corresponding initial 

yield stresses given by 

 
0

ij

ij

ij

Y
h

Y
=  (3.33) 

The hardening behaviors of orthogonal material thus can be examined by comparing all six 

hardening functions (h11, h22, h33, h12, h23, h13), with isotropic hardening having the same 

hardening functions and anisotropic hardening having different hardening functions. 
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For isotropic hardening, let the hardening factors equal to h in all principal 

directions and principal planes as shown in Eq. (3.32). The yield function of Tagarielli-

Deshpande model with direction-3 as the reference axis can then be rewritten as 

 
0

33 33

T Tf Y Y h= − = −σ Aσ σ Aσ  (3.34) 

and 

 ( ) ( )1 1 0

33
ˆ Tf
f h h Y

h

− −= = −Tσ I A I σ  (3.35) 

where I is a 6×6 identity matrix. 

Inspired by Eq. (3.35), Li et al. (2018) defined a hardening factor matrix, H, with 

varying hardening factors to model anisotropic hardening behaviors by modifying the 

stresses in the Tagarielli-Deshpande model as 

 
1ˆ −=σ H σ  (3.36) 

where σ̂  is the modified stress and H is a diagonal matrix given as 
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 
 
 
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H  (3.37) 

The hardening factor matrix H serves as a tensor from the initial yield surface to 

the current yield surface. Similarly, the current yield surface is scaled back to the initial 

yield surface by the inverse of the hardening factor matrix, H-1, as shown by Eq. (3.36). 

The yield function with the modified stress, called modified yield function and denoted by 

f̂ , can be written as 
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0 0 1 0

33 33 33
ˆ ˆ ˆT T Tf Y Y Y − −= − = − = −σ Aσ σ H AH σ  (3.38) 

where   is the modified effective stress given as 

 1T T − −= σ H AH σ  (3.39) 

For clear notation, the conventional stress tensor is denoted as σ, the conventional effective 

stress is denoted as  , the conventional plastic strain tensor is denoted as εp, the 

conventional plastic strain rate is denoted as p
ε , the conventional effective plastic strain is 

denoted as p , the conventional effective plastic strain rate is denoted as 
p , the modified 

stress tensor is denoted as σ̂ , the modified effective stress is denoted as  , the modified 

plastic strain tensor is denoted as ˆ
p
ε , the modified plastic strain rate is denoted as ˆ

p
ε , the 

modified effective plastic strain is denoted as p , the modified effective plastic strain rate 

is denoted as 
p . The symbols used in the following discussion are summarized in Table 

3.1. 
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Table 3.1: List of symbols used for mathematical expressions of the constitutive model. 

Symbol Explanation 

f  Conventional yield function 

f̂  Modified yield function 

σ  Cauchy stress 

σ̂  Modified stress tensor 

  Conventional effective stress 

  Modified effective stress 

p
ε  Conventional plastic strain 

ˆ
p
ε  Modified plastic strain 

p
ε  Conventional plastic strain rate 

ˆ
p
ε  Modified plastic strain rate 

p  Conventional effective plastic strain 

p  Modified effective plastic strain 

p  Conventional effective plastic strain rate 

p  Modified effective plastic strain rate 

 

3.2.2 Effective Plastic Strain Rate 

 

The conventional effective plastic strain rate 
p  is described as 

 1T

p −=
p p
ε A ε  (3.40) 
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Equation (3.40) can be proven from the conjugacy of plastic work. At time interval dt, the 

plastic work is conserved and expressed as 

 :pd  =
p

σ dε  (3.41) 

which can be rewritten in the rate form as 

 : T T

p = = = 
p p p

σ ε σ ε σ ε  (3.42) 

or 

 

1 1 1

2( )

T T T T

p

T

p p p

 

  

− − − =  =

= = =

p p p p p

p

ε A ε σ Aσ ε A ε σ A A ε

σ ε
 (3.43) 

The plastic work associated with the modified stress and modified effective plastic strain 

rate 
p  is given as 

 ˆ ˆˆ ˆT T T

p p = =  = =p p pσ ε σ ε σ ε  (3.44) 

or 

 1 1ˆ ˆ ˆˆ ˆ ˆT T T

p − −= = = p p pσ ε σ AA ε Aσ ε A  (3.45) 

The multiplication of Eqs. (3.44) and (3.45) gives 

 ( )
2

1 2 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆT T T T

p p  − −= =  =
p p p p p

σ ε σ Aσ ε A ε ε A ε  (3.46) 

and the modified plastic strain rate is obtained as 

 
1ˆ ˆT

p −=
p p
ε A ε  (3.47) 

Substitute 
1ˆ −=σ H σ  into Eq. (3.45) and noted that H is a diagonal matrix, Eq. (3.45) 

becomes 

 ( )1 1ˆ ˆ ˆ ˆˆ
T

T T T T T− − −= = = =
p p p p p

σ ε H σ ε σ H ε σ H ε σ ε  (3.48) 

then the modified plastic strain rate is related to the conventional plastic strain rate by 
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 ˆ =p pε Hε  (3.49) 

Substituting Eq. (3.49) into Eq. (3.47), the modified effective plastic strain rate can be 

expressed in terms of the conventional plastic strain rate and is given as 

 1T T

p −=
p p
ε H A Hε  (3.50) 

 

3.2.3 Plastic Flow 

 

The plastic flow rate with conventional plastic strain rate, p
ε , and anisotropic 

hardening yield function, f̂ , can be described with the associated flow theory as 

 

ˆ

ˆ

f

f




=




p

σε

σ

 (3.51) 

where   is the flow rate coefficient and can be represented by yield state variables as 

follows. 

Substitute Eq. (3.51) into Eq. (3.50), the modified effective plastic strain rate 
p  

becomes  

 

1
ˆ ˆ

ˆ

T

T

p

f f

f
 

−
    
          

=




H A H
σ σ

σ

 (3.52) 

With Eq. (3.36), the derivative of the anisotropic hardening yield function 

(
1 0

33
ˆ T Tf Y− −= −σ H AH σ )  with respect to stress σ is obtained as 
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1ˆ Tf



− −
=



H AH σ

σ
 (3.53) 

Noted that H is a diagonal matrix (i.e., 
1T− −=H H ) and A is a symmetric matrix (i.e., 

T=A A ). Eq. (3.52) can be simplified by substituting Eq. (3.53), 
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 (3.54) 

The flow rate coefficient   can be obtained from Eq. (3.54), and substituting   into Eq. 

(3.51) gives the plastic strain rate as 

 
ˆ

p

f



=


p
ε

σ
 (3.55) 
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3.2.4 Strain Decomposition 

 

The total strain increment, dε, can be decomposed into two parts: the elastic strain 

increment, dεe, and the plastic strain increment, dεp, as shown below. 

 d d d= +
e p

ε ε ε  (3.56) 

The elastic strain increment is used for stress update given by 

 ( )d d d d= = −e pσ C ε C ε ε  (3.57) 

In most finite element programs, the total strain increment, dε, is automatically 

calculated; therefore, the major work in Eq. (3.57) is to determine the plastic strain 

increment. From Eq. (3.55), the plastic strain increment dεp over a single timestep can be 

rewritten as 

 
ˆ

p

f
d d


=


p
ε

σ
 (3.58) 

 

3.2.5 Consistency Condition 

 

The consistency condition of the flow plasticity theory ( ˆ 0df = ) can be elaborated 

as 

 
ˆ

ˆ ˆ: 0
ˆ

f
df d


= =


σ

σ
 (3.59) 

where ˆdσ  is the modified stress increment and can be obtained from the modified stress 

(
1ˆ −=σ H σ ) as 

 ( ) ( )1 1 1ˆd d d d− − −= = +σ H σ H σ H σ  (3.60) 
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The consistency condition is then rewritten as 

 ( )1 1
ˆ

: 0
ˆ

f
d d− −

 + =
 

H σ H σ
σ

 (3.61) 

 

3.2.6 Evolution of Modified Effective Plastic Strain  

 

Since the inverse of anisotropic hardening factor matrix, H-1, is diagonal, its 

increment can be written as 

 ( )1 1 1

p

p

d d


− − − 
= −



H
H H H  (3.62) 

Substituting the conventional plastic strain rate, p
ε , from Eq. (3.55) into Eq. (3.40), the 

conventional effective plastic strain rate, 
p , is obtained as  

 
1

ˆ ˆ
T

p p

f f
  −

    
=           

A
σ σ

 (3.63) 

From Eq. (3.63), the increment of conventional effective plastic strain over a small timestep 

can be written as  

 
1

ˆ ˆ
T

p p

f f
d d  −

    
=           

A
σ σ

 (3.64) 

By substituting pd  from Eq. (3.64) into Eq. (3.62) to get ( )1d −
H , substituting dεp from 

Eq. (3.58) into Eq. (3.57) to get the stress increment dσ , and substituting both ( )1d −
H  

and dσ  into the consistency condition in Eq. (3.61), the modified effective plastic strain 

increment pd  is obtained and given as 
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H
H H A σ + H C

σ σ σ σ σ

 (3.65) 

In Eq. (3.65), the stiffness matrix C, anisotropic factor matrix A, and anisotropic hardening 

factor matrix H can be determined using material properties from experimental data. The 

total strain increment dε will be automatically calculated by the finite element program at 

each iteration after the initial timestep. The derivatives of the anisotropic hardening yield 

function f̂  with respect to the modified stress σ̂  and to the stress σ are given as 

 
ˆ ˆ

ˆ ˆ

f




=



Aσ

σ
 (3.66) 

 
1ˆ

ˆ

Tf



− −
=



H AH σ

σ
 (3.67) 

With Eqs. (3.66) and (3.67), the modified effective plastic strain increment pd  in 

every timestep can be calculated and then substituted into Eq. (3.58) to obtain plastic strain 

increment dεp. The plastic strain increment dεp along with total strain increment dε are then 

used to calculate the stress update in Eq. (3.57). 

 

3.4 Model Implementation 

 

To implement the constitutive model discussed in Section 3.3 into a finite element 

program such as LS-Dyna, a user-defined material subroutine (UMAT) needs to be 

developed and linked to the main program. The explicit method was used to calculate 

updated stress state from the previous stress state. 
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In LS-Dyna, the following variables in each element are provided to the UMAT by 

the main program along with the current timestep dt: 

(1) σ1, σ2, σ3, σ4, σ5, σ6: six stress components on local coordinates in previous timestep; 

(2) dε1, dε2, dε3, dε4, dε5, dε6: the increments of six strain components on local coordinates; 

(3) p : effective plastic strain in previous timestep; 

The following variables were defined to assist in updating the stress values in the 

constitutive model of the UMAT: 

(1) h11, h22, h33, h12, h23, h13: six hardening functions; 

(2) 11 22 33 12 23 13, , , , ,h h h h h h      : the derivatives of hardening functions with respect to the 

effective plastic strain; 

(3) A11, A12, A13, A22, A23, A33, A44, A55, A66: nine constants in anisotropic factor matrix; 

(4) B11, B12, B13, B22, B23, B33, B44, B55, B66: non-zero entries for the upper triangle of the 

inverse anisotropic factor matrix; 

(5) C11, C12, C13, C22, C23, C33, C44, C55, C66: nine constants in the stiffness matrix; 

(6) 1 2 3 4 5 6, , , , ,f f f f f f      : six derivatives of the yield function with respect to the stress; 

(7) 
1 2 3 4 5 6
ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,f f f f f f      : six derivatives of the yield function with respect to the modified 

stress; 

From Eq. (3.38), the yield function f̂  is checked at every timestep to determine if 

the material has plastic deformation using the modified effective stress,  , calculated as 

follows. 
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2 2 22 2 2

33 3 55 5 66 6 13 1 3 23 2 311 1 22 2 44 4 12 1 2

2 2 2 2 2 2

11 22 33 12 23 13 11 22 11 33 22 33

2 22A A A A AA A A A

h h h h h h h h h h h h

          
 = + + + + + + + +

 (3.68) 

If ˆ 0f  , the material is still undergoing elastic deformation and the elastic strain 

increments used for stress update in Eq. (3.57) are exactly the total strain increments given 

as dε1, dε2, dε3, dε4, dε5, dε6 in the current state. The strain increments are calculated by LS-

Dyna and the stress increments at the current timestep are determined by 
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 (3.69) 

With Euler explicit method, the new stresses at the current timestep are updated as 

 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

d

d

d

d

d

d

  
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  

  

  

  

= +

= +

= +

= +

= +

= +

 (3.70) 

The updated stresses will be stored and used for checking yield in the next timestep. When 

ˆ 0f  , the material reaches yield point and then undergoes plastic deformation. The plastic 

flow rates are needed to determine the evolution of plastic deformation that are given with 

respect to the stress as 
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and with respect to the modified stress as 
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 (3.72) 

Substituting Eqs. (3.71) and (3.72) into Eq. (3.65), the modified effective plastic 

strain increment pd  can be calculated as 
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2 3 4

pd


=
 +  

 (3.73) 

where 
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Finally, the plastic strain increment at the current timestep can be determined by 

substituting pd  from Eq. (3.73) into Eq. (3.58). The stress increments are then substituted 

into Eq. (3.70) to update the current stresses due to plastic hardening. 

The above procedures and calculations were implemented in Fortran and integrated 

into LS-Dyna through the “usermat” package, an interface package for users-defined 

material subroutines. The UMAT for the anisotropic hardening constitutive model was 

written into the Fortran file “dyn21umats.f” file that was compiled and linked to the LS-

Dyna program. Certain modifications were made in the original Makefile from the 

“usermat” package: 

(1) Three additional libraries need to be loaded: libscalapack.a, liblapack.a, and libblas.a;  

(2) The local path of math kernel library needs to be identified. 
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Using the modified Makefile, the modules of mpp-dyna/12.0.0, and Intel Fortran 

complier 2020, a massively parallel processing version of LS-Dyna R12.0.0 with the 

UMAT was created for high-performance computing clusters. Detailed instructions of 

compiling the UMAT and linking to the LS-Dyna program are provided in Appendix A. 

 

3.5 Material Characterization 

 

To obtain the parameters of the anisotropic hardening constitutive model, material 

characterization was conducted using available experimental data of the horn under loading 

along the principal axes (Huang et al. 2017 and Tombolato et al. 2010). 

 

3.5.1 Mechanical Response in the Radial Direction under Quasi-static Loading 

 

The stress-strain curve under quasi-static compression was retrieved from the study 

of Huang et al. (2017). In their test, an air-dried horn was cut into 4×4×4 mm3 cubic sample. 

The uniaxial compression test was conducted using Instron 3367 testing system with a 

strain rate of 10-3/s. More than three samples were tested in the radial direction and the 

average values were reported. The engineering strains and engineering stresses from the 

original data were converted to true strains and true stresses using the following equations. 

 ( )ln 1true eng = +  (3.74) 

 ( )1true eng eng  = +  (3.75) 

The true stress-strain curve under quasi-static uniaxial compression test in the radial 

direction (direction-1) was plotted in Figure 3.4. 
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Figure 3.4: Stress-strain curve of the horn material from the quasi-static compression test 

in the radial direction. 

 

Figure 3.4 shows that the horn material deforms elastically until it yields at a strain 

of 0.06, then undergoes plastic hardening. An intersection method using tangent lines was 

applied on the true stress-strain curve to obtain the mathematical expression of its stress 

response and to determine the Young’s modulus, initial yield strength, and hardening 

function of horn material in the radial direction (Pouriayevali et al. 2013). As shown in 

Figure 3.5, two tangent lines were drawn on the stress-strain curve. For the elastic region, 

a tangent line was drawn by connecting the origin and the first data point with a strain of 

0.024 and a stress of 24.2 MPa, giving the Young’s modulus for the radial direction as 

( )

11 1.007qE =  GPa. The second tangent line, which was taken at the point with a strain of 

0.160 and a stress of 96.6 MPa, gave the modulus of the plateau region of plastic 

deformation. The intersection point of these two tangent lines was chosen as the initial 
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yield point with a yield strength of 
0( )

11 60.3qY =  MPa. The shaded area in Figure 3.5 gives 

the region of plastic deformation with hardening, starting from the initial yield point. 

 

Figure 3.5: Material characterization of the horn material under quasi-static compression 

in the radial direction. 

 

The hardening factor h11 in radial direction was calculated based on Eq. (3.33) with 

respect to the effective plastic strain. The relationship between h11 and the effective plastic 

strain was shown in Figure 3.6. 
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Figure 3.6: Hardening factor in the radial direction under quasi-static compression. 

 

A fourth-order polynomial was used to fit the hardening factor data in Figure 3.6. 

The polynomial function is given in Eq. (3.76) and it has an adjusted coefficient of multiple 

determination ( 2

adjR ) of 0.99967. The derivative of the polynomial function is provided in 

Eq. (3.77) that was used in the mathematical calculations in the UMAT. 

 2 3 4

11 1 5.13783 21.18819 138.29079 446.14202p p p ph    = + + − +  (3.76) 

 2 3

11 5.13783 42.37638 414.87237 1787.56808p p ph    = + − +  (3.77) 

As previously discussed, the horn material can be considered as transversely 

isotropic material, i.e., the mechanical properties in the radial direction (direction-1) and 

circumferential direction (direction-2) are similar. Therefore, the material properties in the 

circumferential direction were taken from those in the radial direction in the UMAT. 
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3.5.2 Mechanical Response in the Longitudinal Direction under Quasi-static 

Loading 

 

Figure 3.7 shows the true stress-strain curve of the horn material under quasi-static 

uniaxial compression in the longitudinal direction (direction-3) with a strain rate of 10-3/s. 

The true stress-strain curve was converted from the engineering stress-strain curve obtained 

from the test. 

 

Figure 3.7: True stress-strain curve of the horn material under quasi-static compression in 

the longitudinal direction. 

 

It can be seen from Figure 3.7 that a clear linear elastic region exists with the initial 

yielding stress of 70 MPa occurred at 4% of strain. After the initial yielding point, the 

material undergoes densification without significant hardening, as shown by the plateau 
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region between 4% and 20% of strain. After 20% of strain, the material deforms with 

significant plastic hardening as the increase of plastic strains. 

Figure 3.8 shows material characterization of the horn under quasi-static 

compression in the longitudinal direction. The tangent line in the elastic region was drawn 

by connecting the origin and the first data point with a strain of 0.021 and a stress of 35.3 

MPa, giving the Young’s modulus for the longitudinal direction as 
( )

33 1.643qE =  GPa. The 

second tangent line gave the modulus of the plateau region of plastic deformation, and it 

was taken at the point with a strain of 0.093 and a stress of 73.4 MPa. The intersection 

point of these two tangent lines was chosen as the initial yield point for the longitudinal 

direction with a yield strength of 
0( )

33 67.8dY =  MPa. The region of plastic deformation with 

hardening starting from initial yield point was shown by the shaded area in Figure 3.8. 

 

Figure 3.8: Material characterization of the horn in longitudinal direction under quasi-

static compression. 
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The hardening factor 33h  for quasi-static compression in the longitudinal direction 

is calculated and shown in Figure 3.9. Using a fifth-order polynomial, the hardening factor 

function 33h  was obtained, as given in Eq. (3.78), and has an adjusted coefficient of 

multiple determination ( 2

adjR ) of 0.99996. The derivative of the polynomial function is 

given in Eq. (3.79). 

 

Figure 3.9: Hardening factor in the longitudinal direction under quasi-static compression. 

 

2 3 4 5

33 1 2.83387 34.98844 345.88854 1134.65913 1441.30631p p p p ph     = + − + − +  (3.78) 

2 3 4

33 2.83387 69.97688 1037.66562 4538.63652 7206.53155p p p ph     = − + − +  (3.79) 
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3.5.3 Shear Responses under Quasi-static Loading 

 

The shear stress-strain curve of the horn material was obtained from the study of 

Tombolato et al. (2010), as shown in Figure 3.10. The shear stresses were much lower than 

the normal stresses from the compression tests in the radial and longitudinal directions. 

Due to extremely limited experimental data of horn materials under shear loading, the shear 

stress-strain curve shown in Figure 3.10 were adopted as the material properties for all 

three planes formed by the principal axes. 

 

Figure 3.10: Stress strain curve from the quasi-static shear loading of the horn material. 

 

Figure 3.11 shows material characterization of the horn material under quasi-static 

shear loading. A tangent line was drawn by connecting the origin and the data point with a 

strain of 0.050 and a shear stress of 1.9 MPa. This gives a shear modulus of 0.037 GPa in 

the elastic region. The initial yield point was determined and the yield strength was 3.4 
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MPa. The plastic deformation phase was marked by the shaded area in Figure 3.11 for 

calculating the associated hardening factor. 

 

Figure 3.11: Material characterization of the horn sheath under quasi-static shear loading. 

 

A fourth-order polynomial was used to fit the hardening factor data as shown in 

Figure 3.12. The polynomial function is given in Eq. (3.80) and it has an adjusted 

coefficient of multiple determination ( 2

adjR ) of 0.9998. The derivative of the polynomial 

function is given in Eq. (3.81). 
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Figure 3.12: Hardening factor under quasi-static shear loading. 

 

 2 3 41 10.48626 46.71161 85.93777 48.05504s p p p ph    = + − + −  (3.80) 

 2 310.48626 93.42322 257.81331 192.22016s p p ph    = − + −  (3.81) 

 

3.6 Model Validation 

 

The user-defined material model was first validated before it was adopted in the 

simulation of the horn under dynamic impact loading. The validation was conducted by 

comparing the stresses from simulation results to the experimental data from the quasi-

static compression test. In the experiment, a 4×4×4 mm3 sample was compressed at a strain 

rate of 10-3/s by two rigid plates in an Instron 3367 system. An FE model of the horn sample, 

as shown in Figure 3.13, was developed to simulate the experiment of quasi-static 

compression in the radial direction. 
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Figure 3.13: FE model of the horn sample for validation under quasi-static compression 

in the radial direction. 

 

The FE model consisted of a single constant stress hexahedron element with the 

same size as the cubic horn sample. The element’s local principal directions were defined 

by material axes, i.e., radial, circumferential, and longitudinal directions that were also 

aligned with the global coordinate system (i.e., the global x, y, and z directions). The four 

nodes on the front surface were assigned a prescribed velocity of 2×10-3 mm/s pointing to 

the negative axis of the radial direction. This prescribed velocity was to compress the 

element at a strain rate 10-3/s that was later confirmed by the simulation results. The total 

simulation time was 1,500 seconds, which resulted in 52% of true strain on the element. 

To prevent numerical instability and reduce noises at the beginning of the compression 

when the velocity was applied, the prescribed velocity was introduced by a ramp signal as 
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shown in Figure 3.14 within the first 0.1 mm of compression distance giving a tramp of 100 

s. 

 

Figure 3.14: Ramp signal for prescribed velocity. 

 

The four nodes on the back surface of the element as highlighted in gold color in 

Figure 3.13 were fixed by constraining all three degrees of freedom (translational 

displacements in x, y, and z directions). The transversely isotropic constitutive model with 

anisotropic hardening was applied to the material definition in the FE model through 

keyword MAT-USER-DEFINED-MATERIAL-MODELS. No mass scaling was used in 

the validation model for higher simulation fidelity; this resulted in an averaged timestep of 

10-6 s. 

Figure 3.15 shows the comparison of stress-strain curves from simulation results 

and the quasi-static compression test in the radial direction. The simulation results 

predicted a linear elastic deformation until the material reached 6% strain and then entered 

the plastic hardening phase. It can be seen that the simulation results agreed well with the 

experimental data. Three instants of the deformed element from the FE simulation were 



71 

 

also shown in Figure 3.15. It can be concluded that the numerical model of the horn 

material, specifically the constitutive model, can accurately predict the stress responses for 

both elastic and plastic deformations under quasi-static compression in the radial direction. 

 

Figure 3.15: Comparison of stress-strain curves from simulation results and test data for 

the quasi-static compression of the horn material in the radial direction. 

 

 Another FE model of the horn sample was developed to simulate the experiment of 

quasi-static compression in the longitudinal direction as shown in Figure 3.16. The same 

type of constant-strain hexahedron element was used for the cubic horn sample. Its local 

principal directions were aligned with the global coordinate system as well. The four nodes 

on the top surface were assigned a prescribed velocity of 2×10-3 mm/s pointing to the 

negative axis of the longitudinal direction, compressing the element at a strain rate 10-3/s 

confirmed by simulation results. The same as in FE model for compression in the radial 

direction, the total simulation time of compression in the longitudinal direction was 1,500 
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seconds resulting in 52% of true strain on the element. The same ramp signal for prescribed 

velocity was used to prevent numerical instability and reduce noises. All three degrees of 

freedom of the four nodes on the bottom surface of the element as highlighted in gold color 

in Figure 3.16 were completely constrained. 

 

Figure 3.16: FE model of horn sample for validation under quasi-static compression in 

the longitudinal direction. 

 

  Figure 3.17 shows the comparisons of stress-strain curves from simulation results 

and the quasi-static compression test in the longitudinal direction. The simulation results 

also predicted a linear elastic deformation in the longitudinal direction until the material 

reached 4% of strain and then entered plateau between 4% and 20% of strain for 

densification but without significant hardening. With further increase of the strain, the 

material exhibited significant plastic hardening as shown on the stress strain curve. It can 

be seen that the simulation results agreed well with the experimental data. Three instants 

of the deformed element from the FE simulation were also shown in Figure 3.17. It can be 



73 

 

concluded that the numerical model of the horn material, specifically the constitutive model, 

can accurately predict the stress responses for both elastic and plastic deformations under 

quasi-static compression in the longitudinal direction.   

 

Figure 3.17: Comparison of stress-strain curves from simulation results and test data for 

the quasi-static compression of the horn material in the longitudinal direction. 

 

The above comparisons indicated that the constitutive model could accurately 

predict the stress responses of the horn sheath material under quasi-static compressions in 

both radial and longitudinal directions. In the situation of two bighorn sheep ramming, the 

maximum impact velocity could reach 5.5 m/s that may cause a strain rate as high as 103/s. 

In the next chapter, the strain-rate effect of the horn material will be discussed using 

dynamic compression tests. A refined constitutive model that was coupled with strain-rate 

effect will be developed and implemented into LS-Dyna as a user-defined material. 
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 CHAPTER 4: STRAIN-RATE EFFECT OF THE HORN MATERIAL 

 

 

It is estimated that the impact speed between two bighorn sheep during ramming 

can reach 5.5 m/s, which may cause the horn to have a strain rate of 103/s. To accurately 

simulate the dynamic impact between two horns, strain-rate effects of the horn material 

should be considered in the constitutive models. In this chapter, the stress-strain responses 

of the horn material under dynamic tests were analyzed for coupling the strain-rate effect 

with the anisotropic hardening constitutive model that was initially designed for quasi-

static loading conditions. The constitutive model with strain-rate effect was then validated 

against the dynamic test data. The coupled constitutive model could be used to predict the 

mechanical behaviors of the horn material under dynamic loading with strain rates ranging 

from 10-3/s to 103/s. 

 

4.1 Dynamic Tests 

 

The dynamic test data of the horn material were obtained from the work by Huang 

et al. (2017). The dynamic impact tests were conducted on a Hopkinson bar system with 

modifications to the original setting to accommodate the lower impedance of the horn 

material. Instead of using metal material that may affect the constancy of strain rate and 

uniformity of stresses over the test sample, rods made of woven glass/epoxy composites 

were used as the striking bar, incident bar and transmission bar. A total of three samples 

were tested for each loading condition and the averaged results were reported. 
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Figure 4.1 shows the stress-strain curves of dynamic impact test of the horn samples 

in the radial direction at a strain-rate level of 103/s, along with that of the quasi-static 

comparison test with a strain rate of 10-3/s. Figure 4.1 clearly shows the strain-rate effect 

from the increased stress values of the dynamic test compared to those of the quasi-static 

test at the same strain levels. It is also shown in Figure 4.1 that the Young’s modulus in 

radial direction from the dynamic test is estimated to be three times larger than that from 

the quasi-static test, along with the increased initial yield strength.  

 

Figure 4.1: Stress-strain curves of the horn material from the dynamic impact test and 

quasi-static compression test in the radial direction. 

 

Figure 4.2 shows the material characterization of the horn material under dynamic 

impact loading in the radial direction with a strain rate of 103/s. For the elastic region, a 

tangent line was drawn by connecting the origin and the first data point with a strain of 

0.016 and a stress of 65.5 MPa, giving the Young’s modulus for the radial direction as 
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( )

11 3.740dE =  GPa. The second tangent line, which was taken at the point with a strain of 

0.208 and a stress of 322.7 MPa, gave the modulus of the plateau region of plastic 

deformation. The intersection point of these two tangent lines was chosen as the initial 

yield point with a yield strength of 
0( )

11 230.2dY =  MPa. The shaded area in Figure 4.2 gives 

the region of plastic deformation with hardening, starting from initial yield point. 

 

Figure 4.2: Determination of material properties of the horn under dynamic impact 

loading in the radial direction. 

 

The hardening factor for the dynamic compression test in the radial direction was 

calculated and shown in Figure 4.3. It was observed that the hardening factor in the 

dynamic test was lower than that in the quasi-static test. A fourth-order polynomial was 

used to fit the hardening factor data. The polynomial function is given in Eq. (4.1) and it 
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has an adjusted coefficient of multiple determination ( 2

adjR ) of 0.99995. The derivative of 

the polynomial function is given in Eq. (4.2) and will be used in the constitutive model. 

 

Figure 4.3: Hardening factor in the radial direction under dynamic impact loading. 

 

 ( ) 2 3 4

11 1 3.18877 3.30006 13.46988 94.80184d

p p p ph    = + − − +  (4.1) 

 ( ) 2 3

11 3.18877 6.60012 40.40964 379.20736d

p p ph    = − − +  (4.2) 

The dynamic compression test of the horn material in the circumferential direction 

showed similar responses as the radial direction, an indication of transversely isotropic 

material property. For the longitudinal direction, the stress-strain curve from the dynamic 

compression test is shown in Figure 4.4, along with that from the quasi-static test. It can be 

seen from Figure 4.4 that the yield strength of the horn sheath in the longitudinal direction 

under dynamic loads was approximately three times of that under quasi-static loads. The 

scaling factor of the yield strength from quasi-static (10-3/s) to high strain rate (103/s) was 
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similar as in dynamic test in radial direction. It was also observed from the dynamic test 

that there was a clear plateau region in plastic deformation with almost no hardening that 

extended to 40% strain, as shown in Figure 4.4. 

 

Figure 4.4: Stress strain curves from the dynamic and quasi-static compression tests of 

the horn material in the longitudinal direction. 

 

Material characterization of the horn under dynamic impact loading in the 

longitudinal direction with a strain rate of 103/s was shown in Figure 4.5. For the elastic 

region, a tangent line was drawn by connecting the origin and the first data point with a 

strain of 0.024 and a stress of 95.6 MPa, giving the Young’s modulus for the longitudinal 

direction as 
( )

33 4.084dE =  GPa. The second tangent line, which was taken at the point with 

a strain of 0.186 and a stress of 282.6 MPa, gave the modulus of the plateau region of 

plastic deformation. The intersection point of these two tangent lines was chosen as the 

initial yield point for longitudinal direction with a yield strength of 
0( )

33 277.6dY =  MPa. 
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The region of plastic deformation with hardening starting from initial yield point was 

highlighted as shaded area in Figure 4.5. 

 

Figure 4.5: Material characterization of the horn under dynamic compression in 

longitudinal direction. 

 

The hardening factor for the dynamic compression test in the longitudinal direction 

was calculated and shown in Figure 4.6. A fifth-order polynomial was used to fit the 

hardening factor data. The polynomial function is given in Eq. (4.3) and it has an adjusted 

coefficient of multiple determination ( 2

adjR ) of 0.99988. The derivative of the polynomial 

function is given in Eq. (4.4). 
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Figure 4.6: Hardening factor in longitudinal direction under dynamic compression. 

 

 ( ) 2 3 4 5

33 1 0.68528 8.65678 66.11459 227.47015 301.1215d

p p p p ph     = + − + − +  (4.3) 

 ( ) 2 3 4

33 0.68528 17.31356 198.34377 909.8806 1505.6075d

p p p ph     = − + − +  (4.4) 

 

4.2 Coupling of Strain-rate Effect in the Constitutive Model 

 

To couple strain-rate effects into the existing constitutive model, a direct 

interpolation from quasi-static state to dynamic state based on strain rate levels was applied 

for variables such as Young’s moduli, yield strengths, and hardening factors. Due to very 

limited dynamic test data of horn materials with strain rates between 10-3/s and 103/s, a 

linear interpolation was adopted to determine the variables for strain rates between these 

extrema. The loading case with the highest strain rate (103/s) was used for model validation. 
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4.2.1 Young’s Modulus in the Radial Direction 

 

Under quasi-static state with a strain rate of 10-3/s, the Young’s modulus of the horn 

material in the radial direction was determined to be 1.007 GPa. For the dynamic test with 

a strain rate of 103/s, the Young’s modulus was determined to be 3.740 GPa. To obtain the 

Young’s modulus at any strain rate between 10-3 /s and 103/s, the following interpolation 

function was adopted: 

 ( )

11 113
( ) 1 2.71225

10

qE E



 

= +  
 

 (4.5) 

where 
( )

11

qE  is the Young’s modulus in radial direction under quasi-static loading and 

11( )E   is the interpolated Young’s modulus in radial direction at a strain rate  . 

 

4.2.2 Young’s Modulus in the Longitudinal Direction 

 

Under quasi-static state with strain rate of 10-3/s, the Young’s modulus of the horn 

material in the longitudinal direction was determined to be 1.643 GPa. For the dynamic 

test with strain rate of 103/s, the Young’s modulus was determined to be 4.084 GPa. To 

obtain the Young’s modulus at any strain rate between 10-3/s and 103/s, the following 

interpolation function was adopted: 

 ( )

33 333
( ) 1 1.48589

10

qE E



 

= +  
 

 (4.6) 

where 
( )

33

qE  is the Young’s modulus in longitudinal direction under quasi-static loading and 

33( )E   is the interpolated Young’s modulus in longitudinal direction at a strain rate  . 
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4.2.3 Yield Strength in the Radial Direction 

 

Under quasi-static state with a strain rate of 10-3/s, the initial yield strength of the 

horn material in the radial direction was determined to be 60.3 MPa. For the dynamic test 

with a strain rate of 103/s, the initial yield strength was determined to be 230.2 MPa. To 

obtain the yield strength at any strain rate between 10-3/s and 103/s, the following 

interpolation function was adopted: 

 0 0( )

11 113
( ) 1 2.81657

10

qY Y



 

= +  
 

 (4.7) 

where 
0( )

11

qY  is the initial yield strength in the radial direction under quasi-static loading and 

0

11( )Y   is the interpolated yield strength in the radial direction at a strain rate  . 

 

4.2.4 Yield Strength in the Longitudinal Direction 

 

Under quasi-static state with a strain rate of 10-3/s, the initial yield strength of the 

horn material in the longitudinal direction was determined to be 67.8 MPa. For the dynamic 

test with a strain rate of 103/s, the initial yield strength was determined to be 277.6 MPa. 

To obtain the yield strength at any strain rate between 10-3/s and 103/s, the following 

interpolation function was adopted: 

 0 0( )

33 333
( ) 1 3.09622

10

qY Y



 

= +  
 

 (4.8) 
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where 
0( )

33

qY  is the initial yield strength in the longitudinal direction under quasi-static 

loading and 
0

33 ( )Y   is the interpolated yield strength in the longitudinal direction at a strain 

rate  . 

 

4.2.5 Hardening Factor in the Radial Direction 

 

The hardening factor was also interpolated using the quasi-static and dynamic test 

data for any strain rate between 10-3/s and 103/s. It should be noted that the hardening factor 

is always equal to 1 when effective plastic strain is zero at the initial yield state regardless 

of strain rate level. With plastic hardening, the hardening factor increases from 1 with the 

increase of effective plastic strain. The interpolation function ( )11h   of the hardening 

factor in the radial direction is given as 

 ( ) ( ) ( )( )

11 113
1 1 1 1

10

q

rh h


 
 

= + + −  − 
 

 (4.9) 

where 
( )

11

qh  is the hardening factor of the horn material in the radial direction under quasi-

static loading condition, and 
r  is a scaling factor determined by the strain rates of the 

quasi-static and dynamic tests. 

Figure 4.7 shows the scaling factor 
r  that was determined by comparing the 

hardening functions for the quasi-static and dynamic loading conditions. 
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Figure 4.7: The scaling factor for the hardening function from quasi-static to dynamic 

loading conditions in the radial direction. 

 

A third order polynomial was adopted to calculate the scaling factor using the 

effective plastic strain. The polynomial model had an adjusted coefficient of multiple 

determination ( 2

adjR ) of 0.99912 and is given as 

 2 31 9.41017 37.10269 49.52212r p p p   = − + −  (4.10) 

 

4.2.6 Hardening Factor in the Longitudinal Direction 

 

The interpolation function ( )33h   of the hardening factor in the longitudinal 

direction is given as 

 ( ) ( ) ( )( )

33 333
1 1 1 1

10

q

lh h


 
 

= + + −  − 
 

 (4.11) 
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where 
( )

33

qh  is the hardening factor of the horn material in the longitudinal direction under 

quasi-static loading condition, and 
l  is a scaling factor determined by the strain rates of 

the quasi-static and dynamic tests. 

Figure 4.8 shows the scaling factor 
l  that was determined by comparing the 

hardening functions for the quasi-static and dynamic loading conditions. 

 

Figure 4.8: Scaling factor from quasi-static loading to dynamic loading in longitudinal 

direction for hardening factor. 

 

A piecewise mathematical model was adopted to calculate the scaling factor using 

the effective plastic strain as given in Eq. (4.12). 
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4.3 Model Validation 

 

After coupling strain-rate effects into the preciously developed user-defined 

material model, a new executable LS-Dyna program was re-compiled. To validate the new 

user-defined material model that was implemented in LS-Dyna, a single-element FE model 

for the horn material was developed for dynamic loading with a strain rate of 103/s. The 

validation model for dynamic loading was similar to the one used in the quasi-static loading 

case. Figure 4.9 shows the FE model under dynamic compression in the radial direction. 

 

Figure 4.9: FE model of the horn sample for validation under dynamic compression in the 

radial direction. 

 

This model was created by the same single hexahedron element as that in the quasi-

static validation model. The element had a size of 4 mm in each dimension, same as the 

cubic horn sample used in the test. The local principal directions of the element were 
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aligned with the axes of global coordinate system (x, y, and z directions) and were parallel 

to the material axes (radial, circumferential, and longitudinal directions). The boundary 

conditions were the same as those in the quasi-static case, with four nodes on the back 

surface completely fixed for all three degrees of freedom, as highlighted in gold color in 

Figure 4.9. The four nodes on the front surface were assigned a prescribed velocity of 2×103 

mm/s pointing to the negative axis of the radial direction. This prescribed velocity was to 

compress the element at a strain rate 103/s that was later confirmed by the simulation results. 

The total simulation time was 1.5 ms, which resulted in 52% of true strain on the element. 

The prescribed velocity was introduced by the ramp signal with a tramp of 0.1 ms. 

Figure 4.10 shows the comparison of stress-strain curves from simulation results 

and the compression test in the radial direction. The simulation results matched well with 

test data except for the distinct transition at initial yield point of the curve from simulation, 

which was due to the simplification in model characterization as discussed in Section 4.1. 

The smooth transition seen from test results was replaced by the intersection of two tangent 

lines that were used to determine the initial yield strength. Nevertheless, the constitutive 

model captured extremely well the plastic hardening of the horn material that was the main 

focus of this research. The simulation results showed the successful implementation of 

strain-rate effect in the constitutive model, which was capable of predicting the material 

responses in both elastic and plastic regions. 
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Figure 4.10: Comparison of stress-strain curves from simulation results and test data for 

the dynamic compression of the horn material in the radial direction. 

 

For the longitudinal direction, Figure 4.11 shows the corresponding validation 

model for dynamic loading conditions. The prescribed velocity of 2×103 mm/s was applied 

to the top four nodes with the bottom four nodes completely fixed. 
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Figure 4.11: FE model of the horn sample for validation in longitudinal compression 

under dynamic loading. 

 

The stress-strain curve from simulation results was compared to that from test data 

at a strain rate of 103/s, as shown in Figure 4.12. For the same reason as in the case of 

dynamic compression in the radial direction, two tangent lines were used to determine the 

initial yield point where a distinct transition was formed from elastic to plastic region in 

the simulation results. Following the initial elastic region, a plateau region is formed from 

the initial yield point at approximately 6% strain until approximately 40% strain before a 

clear plastic hardening started. Figure 4.10 indicated that the plastic hardening behaviors 

of the horn material under dynamic loading in longitudinal direction were captured very 

well by the FE simulation. The strain-rate effect in the longitudinal direction was also 

successfully implemented and validated into the constitutive model that was capable of 

predicting elastic and plastic deformations at different strain rates. 
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Figure 4.12: Comparison of stress-strain curves from simulation results and test data for 

the dynamic compression of the horn material in the longitudinal direction. 

 

In the next chapter, the constitutive model with anisotropic hardening and strain-

rate effect will be employed in the simulation of dynamic impacts of the horn of bighorn 

sheep to study the mechanisms of energy dissipation and stress distributions of the horn 

during impacts. 

  

0.0 0.2 0.4 0.6
0

250

500

750

1000

T
ru

e
 s

tr
e

s
s

 (
M

P
a

)

True strain

 Dynamic test

 Dynamic simulation



91 

 

 CHAPTER 5: DYNAMIC IMPACT ANALYSIS OF HORNS 

 

 

In this chapter, the mechanical behaviors of horns from the bighorn sheep under 

dynamic impact are analyzed. The validated constitutive model coupled with strain-rate 

effect was adopted in FE model of the horn and used in the simulations. The direct dynamic 

impact against the horn was simulated and the stress distributions, displacement wave 

propagations, and energy conversions were investigated to understand the mechanical 

behaviors of horns under dynamic impact loading. 

 

5.1 Modeling of the Horn 

 

To study the mechanical behaviors of horns under impact loading with numerical 

simulations, the geometry of the horn needs to be accurately represented in the finite 

element model. To this end, the geometry of the horn was obtained from a high accuracy 

CAD model and was meshed in Hypermesh (Altair Engineering 2021) to obtain the finite 

element model for this study. 

 

5.1.1 Geometry Modeling 

 

An adult bighorn sheep has a shoulder height of 81 to 101 cm (32 to 40 inches) and 

is 127 to 157 cm (50 to 62 inches) long (Bighorn Institute 2002). The horn is a typical 

physical characteristic to distinguish the species’ sexual dimorphism. The male sheep’s 
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horn has a more massive shape and diverging curl than the smaller and thinner horn of the 

female sheep. The horn of an adult male bighorn sheep has a full curl that may extend to 

84 cm (33 inches) long, nearly half of the total length of the sheep. The curling angle of 

female sheep horn is limited below just half a circle. 

In nature, most ramming activities between bighorn sheep are among the male 

sheep. The average weight of a male bighorn sheep was reported to be 79 kg (175 lb) with 

a range of 68-90 kg (150-200 lb). In this research, the CAD model of an adult male bighorn 

sheep was obtained and used to develop the horn model. In order to obtain a numerical 

model that can represent the average geometric characteristics of male bighorn sheep such 

as shoulder height of 91 cm (36 inches) and weight 79 kg (175 lb), a specific model was 

then created by scaling from original model to the averaged dimensions. This model was 

referred as “averaged model” in the following sections. Figure 5.1 showed the overall 

appearance of the average model of male bighorn sheep. 

 

 

Figure 5.1: The average model of adult male bighorn sheep. 
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To simplify the modeling work, the bighorn sheep was assumed symmetric in the 

average model and only the left-side horn was used for creating the finite element model. 

 

5.1.2 Finite element Modeling 

 

The CAD model of the left-side horn was extracted from the modified bighorn 

sheep model and the finite element meshes were created using Hypermesh, a commercial 

pre-processing tool for finite element analysis (Altair Engineering 2021). The geometry of 

the horn was first screened and adjusted in Hypermesh by applying a geometry cleanup, 

which merged extremely close vertices to ensure high quality meshes as well as a 

geometrically continuous model. 

In order to assign the transversely isotropic material properties to the horn model, 

the local principal directions of each element should match with the principal material 

directions, i.e., radial direction, longitudinal direction, and circumferential direction. To 

achieve this, the so-called “mapped” style homogenous solid elements were first created to 

assist assigning the transversely isotropic properties. 

Figure 5.2 gave an example of a portion of the “mapped” style solid elements. 

These uniformly distributed elements were created by mapping solid elements between the 

front surface (marked as source surface in Figure 5.2) and the back surface (marked as 

destination surface in Figure 5.2) along the stacking direction. As shown in Figure 5.2, the 

stacked elements formed “threads” in the stacking direction and elements in the same 

thread were connected by node sharing with adjacent elements. 
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Figure 5.2: An example for mapped style solid elements. 

 

These “mapped” style elements had the following characteristics: 

(1) They were created by dragging the elements in between the source and destination 

surfaces; 

(2) Each solid element was similar to an ideal regular hexahedron in order to maintain the 

perpendicularity among the three principal directions; 

(3) The elements were stacked in layers between the source and destination surfaces such 

that the stacking direction was aligned with the normal directions of the source and 

destination surfaces; 

(4) The number stacked elements in each layer were the same as all other layers to maintain 

the mapping feature along the stacking direction. 

With the technique of creating “mapped” style elements, the curved horn was “cut” 

into a number of segments by the cross-sectional surfaces at a series of locations along the 

horn’s growth direction to generate elements suitable for assigning transversely isotropic 

material properties. The meshing process was completed by applying solid mapping 
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function with source and destination surfaces in Hypermesh and duplicated nodes were 

checked and eliminated by merging nodes from both sides of each cutting surface. Figure 

5.3 shows the finite element model of a single horn meshed with “mapped” style elements. 

 

Figure 5.3: The FE model of a single horn meshed with mapped style elements. 

 

Table 5.1: Specifications of FE model of the single horn. 

Element Type Element Number Node Number. Average Element Size 

Solid constant stress 37,976 41,135 7 mm 

 

The specifications of the FE model of the single horn were summarized in Table 

5.1. It had a total of 37,976 hexahedron solid elements and 41,135 nodes. The averaged 

element size was 7 mm with size gradients, as shown in Figure 5.3, due to the mapping 

characteristics from a wide proximal base to a very narrow distal end as well as a curled 

geometry. Constant strain solid elements were assigned to the model, same as that of the 
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single element validating model discussed in Chapter 3 and Chapter 4. After assigning the 

orthogonal transversely isotropic material properties to the elements, the local principal 

directions of the elements were checked in LS-PrePost (Livermore Software Technology 

2019) for agreement with the designated material directions as illustrated by the example 

shown in Figure 5.4. 

 

Figure 5.4: Local principal directions of one solid element assigned with orthogonal 

transversely isotropic material properties. 

 

In Figure 5.4, solid element No.1210  on the exterior edge of the proximal base was 

selected with the local principal directions shown on the element, highlighted as Local 

direction A, Local direction B, and Local direction C. Local direction A matched with the 

circumferential direction at the exterior edge, Local direction B matched with the radial 

direction of the selected element, and Local direction C matched with the longitudinal 

direction of the layer that included the selected element. This indicated that the assigned 

orthogonal material model was correctly recognized by the finite element code. With a 

density of 1.237 g/cm3, the total mass of a single horn was determined to be 8.16 kg. 
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5.2 Dynamic Simulation of the Horn 

 

To study the dynamic impact behavior of the horn, a simplified scenario was 

developed for the numerical simulation: a single horn was hit by a rigid plate at a velocity 

of 5.5 m/s along the normal direction of the plate. As discussed in Chapter 1, 5.5 m/s is the 

maximum impact speed during ramming of bighorn sheep.  

The finite element model of the horn developed in Section 5.1 was combined with 

that of a rigid-plate impactor to create the numerical simulation model, as shown in Figure 

5.5. The specifications of the horn-impactor FE model were summarized in Table 5.2. It 

has two parts composed by a total number of 42,816 nodes that were discretized to 37,976 

solid elements for the horn, 1,600 rigid shell elements for the impactor, and 1,681 mass 

elements for adding extra payload on the impactor. 

 

Table 5.2: Specifications of FE model of the horn-impactor. 

Part Number 
Node 

Number 

Solid Element 

Number 

Shell Element 

Number 

Mass Element 

Number 

2 42,816 37,976 1,600 1,681 

 

A 13-kg of payload was added to the rigid plate to provide adequate initial impact 

energy; this added mass represent approximately one sixth of the total mass of a male 

bighorn sheep. In real situation when two male bighorn sheep ramming against each other, 

they raised their head and upper body to clash the other one but keep rear foot firmly on 

the ground for support. The mass that withstands the impact was not the full amount of its 
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own weight, instead, the part of the weight till the rear leg. In this study, one third of its 

full weight was chosen the weight for sustain impact, giving one six of total weight to be 

added on a single horn. Kitchener et al. (1988) determined that the clashing angle of 

bighorn sheep was approximately 43° measured from the axis normal to the symmetric 

plane of sheep’s skull. In Figure 5.5, the impact direction was determined as the normal 

direction of the initial contact point on the horn based on a 43° impact angle measured from 

the proximal base. 

 

Figure 5.5: Finite element model of the horn-impactor system. 

 

The boundary conditions were assigned to the proximal base of the horn with all 

three degrees of freedom of the nodes constrained. The automatic-single-surface contact 

with the segment-based soft option was applied to the rigid impactor and the horn with a 

coefficient of 0.2 for the dynamic friction. Initial penetrations were cleared by contact 

checking before running the finite element simulations. To prevent hourglass modes due 
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to the use of reduced-integration solid elements, a stiffness-based Type 4 hourglass control 

for solid elements was utilized with a coefficient of 0.03. The hourglass energy and sliding 

interface energy were calculated and included in the total energy. Mass scaling was not 

used in the FE analysis for dynamic impact to improve accuracy of simulation results. The 

termination time for impact was 20 ms and the average time step size during simulation 

was 10-7 s. 

 

5.3 Analysis of Simulation Results 

 

The simulation results of dynamic impact against the horn were analyzed on 

distributions of stresses and displacements to understand the mechanism of the horn 

deformations and displacement wave propagations. The time history of energy balance was 

also examined to learn about the energy absorption of the horn during impacts as well as 

energy conversions among different forms.  

 

5.3.1 Stress Distributions 

 

The first principal stress and the third principal stress were studied on their 

distribution patterns in the horn during the dynamic impact. Simulation results showed that 

the rigid impactor impacted the exterior surface of the horn at a speed of 5.5 m/s and at a 

43° angle measured from the proximal base and continuously compressed the horn until 

the impactor reached zero velocity. The rigid impactor then rebounded from the horn when 

the deformed horn resumed its shape from elastic deformation. It was observed from the 
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simulation results that the impact process lasted for 2 ms, after which the rigid impactor 

lost contact with the horn and the horn underwent self-oscillation with distal end swinging 

back and forth. 

Figure 5.6 shows the distribution of the first principal stresses on the horn at 1.3 ms 

during the impact process, with the maximum stress value reached 33.3 MPa at the 

proximal base where the horn was fixed. This indicated that the fixed proximal base was 

in tension due to the impact load. 

 

 

Figure 5.6: Distribution of the first principal stresses (unit: MPa) of the horn at 1.3 ms. 

 

The maximum magnitude of the third principal stress was 174.9 MPa that happened 

at 1.2 ms and was located at the initial impact point as shown in Figure 5.7. By comparing 

the distributions of the first and third principal stresses, it was observed that most of the 

horn was in compression state under the impact loads. Figure 5.8 shows the von Mises 

stresses with a maximum value of 112.9 MPa near the impact location, exceeding the yield 

strength of 103.2 MPa that was interpolated based on the average strain rate around the 

impact location. The permanent deformation was also confirmed by the residual effective 
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strain at the impact location, which was 3% after the rigid impactor was bounced back and 

lost contact with the horn. It was observed that the stress distributions of the horn during 

dynamic impact was localized; the high stresses were limited to the small area around the 

impact point without spreading to the surrounding areas. This could be beneficial for 

bighorn sheep to switch to different impact locations on the horn during ramming to allow 

the localized damaged area to heal. 

 

 

Figure 5.7: Distribution of the third principal stresses (unit: MPa) of the horn at 1.2 ms. 

 

 

Figure 5.8: Distribution of von Mises stresses (unit: MPa) of the horn at 1.2 ms. 
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After 2 ms, a cyclic pattern of stress distributions was observed from the evolution 

of stress waves. Figure 5.9 showed the first principal stress distributions at 8.7 and 9.8 ms. 

It can be seen that the peak values of the first principal stresses moved spirally from the 

inner side of the horn to the outer side while traveling towards the distal end. The tip of the 

horn at the distal end was found to swing inward (i.e., towards the proximal base) when 

the peak stresses propagated toward the outer side of the horn. 

 

 

(a) 

 

(b) 

Figure 5.9: Distribution of the first principal stresses (unit: MPa) of the horn at (a) 8.7 

ms; and (b) 9.8 ms. 
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This spiral pattern of stress propagation was also observed in the third principal 

stresses, as shown in Figure 5.10 at 9.4 and 11.1 ms. It should be noted that to clearly show 

the stress contour outside the impact area, the minimum value of the stresses in the legend 

of Figure 5.10 was set to the minimum stress excluding the impact area. The peak 

compressive stresses propagated spirally from the inner side of the horn to the outer side 

while moving towards the distal end. It was observed that the tip of the distal end swung 

outwards along with the propagation of the peak values of the third principal stresses. 

 

 

(a) 

 

(b) 

Figure 5.10: Distribution of the third principal stresses (unit: MPa) of the horn at time of 

(a) 9.4 ms; and (b) 11.1 ms. 



104 

 

 A repetitive impact study was also conducted on the horn to assist in understanding 

its impact behaviors. The same rigid impactor was used to hit the horn for a total of three 

times with the same impact speed of 5.5 m/s. At the first impact, the maximum von Mises 

stress was consistent to the single-impact simulation, with the same value of 113 MPa at 

4.6% effective strain. For the second impact, the maximum von Mises stress was 116 MPa 

with an effective strain of 5.2%. For the third impact, the maximum von Mises stress was 

increased to 157 MPa with an effective strain of 5.3%. The discrepancy between the 

maximum von Mises stress values between the second and third impact with relatively 

similar effective strain was due to the strain-rate effect. After the first impact, the horn 

gained a portion of the kinetic energy from the impactor and oscillated along the impact 

direction (i.e., the z-direction). Upon the third impact, the velocity of the horn near the 

impact location was over ten times higher than the second impact due to the horn’s 

oscillation while the horn’s velocity at the second impact was similar to that in the first 

impact. This was also confirmed by comparing the strain rates of the second and third 

impacts; the average strain rate at the time of maximum von Mises stress in the third impact 

was approximately 1.5 times of that in the second impact. 

 The isotropic material model was also introduced to compared with the constitutive 

model in this study. An elastic-plastic isotropic material model was used and the uniaxial 

material preparties from the radial direction (i.e., the impact direction) were assigned to all 

principal directions. The maximum von Mises stress was found to be 132 MPa with a final 

effective plastic strain of 4.5% after the impactor left the horn. Both the maximum von 

Mises stress and effective plastic strain were higher than the results from the anisotropic 

material model, 113 MPa and 3%, respectively. The comparison showed that the isotropic 
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material model represented a horn with less stiffness than the anisotropic material model 

and thus would underestimate the impact resistance and overestimate the damage of the 

horn. 

 

5.3.2 Propagation of Displacement Waves 

 

To understand the propagation characteristics of displacement waves on the horn 

under dynamic impact, a thread of elements (a total of 94 elements), which extended from 

the proximal base to the distal end along the exterior edge of the horn, were selected to 

extract the displacements of the horn from simulation results for studying the displacement 

waves (see Figure 5.11). For simplicity, these elements were called “source elements” 

hereafter; they were uniformly distributed along the longitudinal direction of the horn. 

 

Figure 5.11: A thread of elements (source elements) extending from the proximal base to 

the distal end. 
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The time histories of displacement waves of the source elements were obtained 

from simulation results in all three directions: x-, y-, and z-direction as shown in Figure 

5.12, Figure 5.13, and Figure 5.14, respectively. The z-direction was aligned with the initial 

impact direction and the x-direction was normal to the midplane of the sheep. In Figures 

5.12 to 5.14, the navy-blue color represented the distal end, red color represented the 

proximal base, and the colors for locations in between were interpolated. As seen from 

Figures 5.12 to 5.14, the displacement waves in all three directions exhibited a cyclic 

sinusoid pattern for most of the locations between the proximal base and the distal end, 

especially for the displacements in the z-direction. The displacements at the locations near 

the distal end are shown clearly to have dominant amplitudes in all three dimensions. For 

the displacement waves in the x-direction, the wave at the distal end had a half-cycle lag to 

that near the proximal base. This half-cycle lag was also found at certain locations in the 

displacement waves in the z-direction. This lag is beneficial for the horn to cancel out a 

portion of forces that were generated by the movement of the horns at the locations near 

the distal end and the proximal base, preventing a severe concussion to the head brain 

However, there was no obvious lag in the displacement waves in the y-direction; the 

displacement waves at most of locations synced with each other but with different 

amplitudes. 
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Figure 5.12: Time history of displacement waves in the x-direction for locations 

extending from the proximal base to the distal end of the horn. 

 

 

Figure 5.13: Time history of displacement waves in the y-direction for locations 

extending from the proximal base to the distal end of the horn. 
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Figure 5.14: Time history of displacement waves in the z-direction for locations 

extending from the proximal base to the distal end of the horn. 

 

Figures 5.15, 5.16, and 5.17 shows the propagations of displacement waves from 

1.1 to 1.7 ms in the x-, y-, and z-direction, respectively. These figures showed how the 

displacement waves propagated between the proximal base and the distal end after the 

impact was initiated at 0.5 ms near the proximal base. In the x-direction, the displacement 

waves gradually and smoothly propagated towards the distal end, with consistent 

wavelengths and increased amplitudes as indicated by the increasing depth of color. This 

is beneficial to smoothly dissipate the impact pulse as to the distal end using the spiral 

structure with x-direction as its central axis. The wavefront with high amplitude was 

moving to the distal end, causing the oscillation of horn material concentrated mainly on 

the distal end which was far from the proximal end that was connected with skull.  In the 

y-direction, the displacement waves also propagated towards the distal end, but had a sharp 

transition between 1.3 to 1.4 ms. In the z-direction, the propagation of displacement waves 
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was accompanied by expanded wavelengths as indicated by the widths of blue bands in 

Figure 5.17. The expanded wavelengths can be explained by the accumulated deformation 

in the impact direction. After initial impact, the permanent deformation at the impact 

location started to affect the movement of surrounding areas. The wave incited by initial 

impact radiated from the impact location to the distal end, which is considered as an 

approach of inducing more horn material to absorb impact energy. The expanding of 

wavelength also consumed the impact force in z-direction, helping to reduce the forces 

applied on the sheep skull. The displacement waves in the z-direction also had the largest 

amplitudes among the three directions. 

 

Figure 5.15: Displacement wave propagation in the x-direction from the proximal base to 

the distal end of the horn (unit: mm). 
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Figure 5.16: Displacement wave propagation in the y-direction from the proximal base to 

the distal end of the horn (unit: mm). 
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Figure 5.17: Displacement wave propagation in the z-direction from the proximal base to 

the distal end of the horn (unit: mm). 

 

5.3.3 Energy Transmission and Conversions 

 

In the horn-impactor simulation, the total impact energy came from the kinetic 

energy of the impactor, which was 197 J with an initial velocity of 5.5 m/s and a 13-kg 

payload. The time history of energy balance for the first 15 ms of the impact was extracted 

from the simulation results, as shown in Figure 5.18. Four different types of energy were 

reported: kinetic energy, internal energy (or strain energy), hourglass energy, and sliding 

interface energy. The hourglass energy is a non-physical energy associated with the 

hourglass control that should be less than 10% of peak internal energy in numerical 

simulations to be considered acceptable. In the horn-impactor system, hourglass energy 

1.1 ms

1.2 ms

1.3 ms

1.4 ms

1.5 ms

1.6 ms

1.7 ms

-3.000 3.000

Proximal Distal



112 

 

was calculated to be 1.8% of the peak internal energy. The sliding interface energy is also 

known as contact energy, caused by the frictional force on the contact interface. 

 

Figure 5.18: Time history of energy balance of the horn-impactor simulation. 

 

When the impact was initiated at 0.5 ms, the impactor started compressing the horn 

and the kinetic energy of the impactor was transformed into the internal energy of the horn 

until it became zero. Figure 5.19 shows the time history of the impactor’s kinetic energy in 

which the kinetic energy reached zero at 1.3 ms. At 1.3 ms, the internal energy of the horn 

reached maximum as shown in Figure 5.18. The internal energy of the horn consisted of 
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deformation. When the horn started resuming from elastic deformation, the impactor was 

pushed back by the horn and regained some kinetic energy transformed from the horn’s 

internal energy. The impactor completely lost contact with the horn at 2 ms and kept 

0 5 10 15
0

100

200

E
n
e
rg

y
 (

J
)

Time (ms)

 Kinetic energy

 Hourglass energy

 Internal energy

 Sliding interface energy



113 

 

moving outward at a constant speed while its kinetic energy remained constant. Due to 

impact pulse, the horn also gained a small portion of kinetic energy that caused its vibration 

as shown in Figure 5.20.  In Figure 5.18, the total kinetic energy at 1.3 ms was from the 

horn’s kinetic energy, because the kinetic energy of the impactor reached zero at 1.3 ms. 

After 2 ms, the energy remained in the horn interchanged cyclically between its kinetic 

energy and internal energy as seen from the oscillations in Figure 5.20. 

 

Figure 5.19: Time history of the impactor’s kinetic energy during dynamic impact. 
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Figure 5.20: Time history of the horn’s energy during dynamic impact. 
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energy (at 1.3 ms). It can be seen that the horn is capable of temporally storing a large 

amount of energy converted from the impact energy. 

 

Figure 5.21: Evolution of energy compositions in the horn-impactor system during 

dynamic impact. 
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Figure 5.22: Energy conversion in the horn-impactor system from the time at initial 

impact to the time with maximum internal energy. 
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(at 2.0 ms). Additional energy was further dissipated into the sliding energy when the 

impactor was leaving from the horn, leading to a total of 12.4% of total impact energy lost 

caused by frictional forces. The 52.7% of initial impact energy was converted back to the 

impactor as its kinetic energy from the bouncing-back released speed. The remaining 34.9% 

of initial impact energy was retained inside the horn that can be discretized into 18.7% of 

initial impact energy as its kinetic energy and 16.2% of initial impact energy as its internal 

energy. 

 

Figure 5.23: Energy conversions in the horn-impactor system after dynamic impact. 
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From the study of stress distributions, displacement wave propagations, and the 

energy conversions, the mechanisms of bighorn sheep horn to withstand dynamic impact 

was learnt from the following three perspectives: 

The permanent damage of the horn from impacts during ramming was 

predominantly due to compression and localized around the impact location. This was 

shown by the effective plastic strain from the dynamic impact simulation. The stress wave 

propagated through the horn following a spiral pattern from the inner side to the outer side 

while moving along the growing direction of the horn. At the same time, the distal tip 

vibrated back and forth as a result of the stress wave propagations. 

The study on displacement wave propagations showed that the energy stored in the 

horn was mainly due to the displacement waves in the impact direction and the spiral 

extending direction where the distal tip swung about the central axis. This observation coud 

be verified through the time history of energy balance at the state of dynamic equilibrium 

after impact. The kinetic energy stored in the horn by the displacement wave propagations 

was found to be higher than the horn’s internal energy caused by plastic deformation. 

The study on energy conversions indicated that the horn had a high capacity of 

absorbing the impact energy with a maximum conversion ratio of 81%. After reaching the 

maximum internal energy, the horn then released part of the stored energy to the impactor 

as kinetic energy and also maintained a dynamic equilibrium itself with oscillating internal 

and kinetic energy. This study indicated that the bighorn sheep horn could sustain the large 

impact loads without severe damage to the horn from ramming at a speed up to 5.5 m/s. 
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CHAPTER 6: CONCLUSIONS 

 

 

In this dissertation research, a transversely isotropic constitutive model with 

anisotropic hardening coupled with strain-rate effect was developed for the horn material 

of bighorn sheep, and implemented into the commercial finite element code, LS-Dyna, as 

a user-defined material subroutine (UMAT) for simulations of horns under dynamic impact 

loadings. The horn of bighorn sheep was made of a keratin-based bio-composite material 

with tubule-lamella structure. In the constitutive model, three orthogonal principal 

directions were defined at the element level: the first principal direction in the extending 

direction of hollow tubules that is parallel to the longitudinal direction of the horn, the 

second principal direction in the stacking direction of the lamella that is the radial direction 

on a cross-section of the horn, and the third principal direction in the circumferential 

direction on a cross-section of the horn. The special stacking structure of the horn, i.e., the 

tubules surrounded by layered lamellas, causes the horn to have different mechanical 

responses under uniaxial compressions in the three principal directions and therefore is 

referred as an anisotropic material. The anisotropy of the horn material was confirmed by 

extensive experimental studies, particularly on its anisotropic hardening rules. From the 

uniaxial compression tests of the horn, it was observed that the horn material had similar 

mechanical responses and materials properties in the radial and circumferential directions 

and thus was simplified to a transversely isotropic material. It was also confirmed from 

experimental data that strain-rate effects existed in the horn material under dynamic impact 

loading. To model the mechanical behaviors of the horn material with fidelity, the 

transversely isotropic constitutive model, which was initially developed for quasi-static 
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loading conditions based on the modified stress theory of Li. et al. (2018), was improved 

by including the strain-rate effect for simulating dynamic impacts with strain rates up to 

103/s. 

 In the transversely isotropic constitutive model, anisotropic hardening was 

achieved by introducing a hardening factor tensor to scale a nonuniform expanding yield 

surface back to its initial state. To determine the parameters for material properties used in 

the constitutive model, experimental data from quasi-static uniaxial compression tests were 

used to characterize the anisotropic hardening behaviors of the horn material in the three 

principal directions. The strain-rate effect was later coupled into the model by interpolating 

material parameters between the quasi-static test data (with a strain rate of 10-3/s) and 

dynamic impact test data (with a strain rate of 103/s). The constitutive model was 

implemented into LS-Dyna as a UMAT and validated using a single-element FE model of 

4×4×4 mm3 horn sample, which had the same dimensions as those used in the uniaxial 

compression tests under quasi-static and dynamic loading. The simulation results showed 

that the constitutive model could accurately predict the mechanical responses of the horn 

material under both quasi-static and dynamic loading conditions. 

 The validated constitutive model was then used in FE simulation of an entire horn 

under dynamic impact loading to investigate the mechanisms of its energy absorption and 

conversion, stress distributions, and displacement wave propagations. A rigid impactor 

with a payload of 13 kg was included to initiate a direct impact against a single horn with 

an impact angle of 43° and a speed of 5.5 m/s. The horn absorbed 81% of the total kinetic 

energy of the impactor (referred as “total impact energy” hereafter) within 1.3 ms and 

stored it as its internal energy from both elastic and plastic deformations. The distributions 
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of the first principal stresses and the third principal stresses showed that the stress waves 

propagated from the inner side to the exterior edge of the horn, following a spiral pattern 

with its distal end oscillating back and forth. The energy remaining inside the horn after 

impact was interchangeably converted between its internal energy and kinetic energy to 

reach a dynamic equilibrium. Except for the lost energy in the form of sliding energy and 

hourglass energy, 34.9% of the total impact energy was stored in the horn and 52.7% of 

the total impact energy was retained by the impactor after leaving the horn. 

 In summary, the constitutive model of the horn material developed in this study 

could accurately capture the mechanical responses of the horn under both quasi-static and 

dynamic loading conditions. The successful implementation of the constitutive model into 

LS-Dyna facilitated its validation and more importantly, its use in the dynamic impact 

simulation of the entire horn to understand the mechanism of sustaining impact loading 

from the perspectives of energy absorption/conversion, stress distributions, and 

displacement wave propagations. Such understanding is essential and beneficial to 

developing bioinspired materials that can be used in applications for impact resistance and 

dissipations. 

 This dissertation research provides a pathway to model biological materials using 

finite element analysis. In biomechanics, coupon-level testing of a variety of biological 

materials such as cortical bone, ligament, and tendon, has been widely conducted under 

uniaxial loading conditions. With the original test data for these biological materials, the 

corresponding constitutive models can be developed and integrated into commercial finite 

element analysis tools using the method developed in this research. These models can then 

be used to investigate the mechanical behaviors of these biological materials under 
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complex loading conditions. Such investigations can be very difficult and challenging 

using the method of data collection from live human bodies or cadavers.  

 It should be noted that the horn model of this study was simplified such that it did 

not distinguish the trabecular bone inside the horn and the horn ridges on the exterior 

surface. In a bighorn sheep horn, the horn material transitioned from trabecular bone at 

inner core to cortical bone surrounded by exterior horn sheath (Fuller et al., 2021). This 

type of trabecular-cortical-sheath combination extended in the longitudinal direction until 

the cross-section that formed approximately 90° with the proximal base (Drake et al., 2016). 

The horn was also connected to the skull at its proximal base through cortical bone. In 

future investigations, the inner bone can be modeled with functionally gradient materials 

to simulate the transition from the trabecular bone to the cortical bone and the surrounding 

horn sheath. The membrane interface between the cortical bone and horns sheath can also 

be considered in the studies of stress propagation and impact pulse dissipation. A more 

comprehensive exterior shape, i.e., with horn ridges, can be considered in developing future 

horn models to study the benefits of these ridges in stress propagation and energy 

dissipations. 

Other future work may be conducted on coupon-level testing under compression 

and shear loads with a wide range of strain rates. These experimental data are necessary to 

further improve the fidelity of the constitutive models under dynamic impacts. With respect 

to hydration levels, future horn models could include hydration effect since high hydration 

levels decrease the stiffness, strength, and anisotropy of the horn material. Horn models 

with the highest possible hydration level and lowest hydration level may be developed to 

understand its mechanical behaviors at these two extreme conditions. Finally, a skull model 
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may be developed and combined with the horn model to form to a head complex, which 

can used to investigate the effect on the brain and potential head damage under dynamic 

impacts on the horns. Stress distributions and impact pulse propagations inside the head 

can also be studied to understand the mechanism of how head concussions are prevented 

by the bighorn sheep during ramming. 
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APPENDIX A: COMPILING USER-DEFINED MATERIAL SUBROUTINE FOR LS-

DYNA 

 

 

This appendix provides instructions on compiling a user-defined material 

subroutine (UMAT) for the MPP version of LS-Dyna R12.0.0 in the Linux environment. 

This compiling method is also compatible to previous versions of LS-Dyna since R11.2.0. 

  

A.1 The Original UMAT Package  

  

The original UMAT package of LS-Dyna was provided by LSTC as a template for 

users to develop their own material subroutines. It can be obtained from the FTP site of 

LSTC associated with the organization that purchased LS-Dyna licenses or by requesting 

LSTC customer service to provide the package. 

In this study, the UMAT was compiled for the MPP version of LS-Dyna R12.0.0 

x64 with double precision, which had the corresponding UMAT package named as 

ls-dyna_mpp_d_R12_0_0_x64_centos65_ifort160_sse2_openmpi4.0.0.usermat.tar.gz 

Save this package in the working directory where the UMAT is to be compiled and 

then unzip it using the following command in a Linux terminal under the same working 

directory 

tar -xzf <name of the UMAT package> 

The package contains two vital files, dyn21umats.f and Makefile. The file 

dyn21umats.f contains the source code provided by LSTC for developing user-defined 



128 

 

subroutines and Makefile is the command script for compiling dyn21umats.f using a 

Fortran compiler. 

 

A.2 Modifying the UMAT Package 

  

The available templates in dyn21umats.f are subroutine umat41 to umat50 from 

which a user may choose for user-defined material subroutines. In this study, subroutine 

umat41 was chosen for the anisotropic hardening constitutive model. Replace the contents 

of subroutine umat41 with the Fortran code for the user-defined material model and the 

UMAT is ready for compiling. 

 The calculations in the UMAT of this study need a series of subroutines provided 

by the Math Kernel Library (MKL), whose local directory and library files need to be 

specified in Makefile. The following directory and library files are what were used in this 

study on the Linux system. 

LIBS_LOCAL=${MKLROOT}/lib/intel64/libmkl_blas95_ilp64.a 

${MKLROOT}/lib/intel64/libmkl_lapack95_ilp64.a 

${MKLROOT}/lib/intel64/libmkl_scalapack_ilp64.a -Wl,--start-group 

${MKLROOT}/lib/intel64/libmkl_intel_ilp64.a 

${MKLROOT}/lib/intel64/libmkl_sequential.a ${MKLROOT}/lib/intel64/libmkl_core.a 

${MKLROOT}/lib/intel64/libmkl_blacs_openmpi_ilp64.a -Wl,--end-group -lpthread -

lm -ldl 

The following is the complete Makefile for compiling the UMAT and create the 

LS-Dyna executable file. 

# 

# Makefile for building mppdyna 

# on 'Open-MPI 4.0.0 Xeon64' 

# for 'Linux CentOS 6.5' 

# using 'Intel Fortran Compiler 2020' 

# 

LMATH=/opt/intel/compilers_and_libraries_2016/linux/mkl/lib/intel64/libmkl_scal

apack_ilp64.a /opt/intel/compilers_and_libraries_2016/linux/mkl/lib/intel64/lib

mkl_intel_ilp64.a /opt/intel/compilers_and_libraries_2016/linux/mkl/lib/intel64

/libmkl_sequential.a /opt/intel/compilers_and_libraries_2016/linux/mkl/lib/inte

l64/libmkl_core.a /opt/intel/compilers_and_libraries_2016/linux/mkl/lib/intel64

/libmkl_blacs_intelmpi_ilp64.a /opt/intel/compilers_and_libraries_2016/linux/mk
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l/lib/intel64/libmkl_scalapack_ilp64.a /opt/intel/compilers_and_libraries_2016/

linux/mkl/lib/intel64/libmkl_intel_ilp64.a /opt/intel/compilers_and_libraries_2

016/linux/mkl/lib/intel64/libmkl_sequential.a /opt/intel/compilers_and_librarie

s_2016/linux/mkl/lib/intel64/libmkl_core.a /opt/intel/compilers_and_libraries_2

016/linux/mkl/lib/intel64/libmkl_blacs_intelmpi_ilp64.a /opt/intel/compilers_an

d_libraries_2016/linux/mkl/lib/intel64/libmkl_scalapack_ilp64.a /opt/intel/comp

ilers_and_libraries_2016/linux/mkl/lib/intel64/libmkl_intel_ilp64.a /opt/intel/

compilers_and_libraries_2016/linux/mkl/lib/intel64/libmkl_sequential.a /opt/int

el/compilers_and_libraries_2016/linux/mkl/lib/intel64/libmkl_core.a /opt/intel/

compilers_and_libraries_2016/linux/mkl/lib/intel64/libmkl_blacs_intelmpi_ilp64.

a  

# 

FC=mpif90 

# 

FF=-safe_cray_ptr -assume byterecl,buffered_io,protect_parens -warn nousage -

zero -ftz -fp-model precise -mP2OPT_hpo_dist_factor=21 -

diagdisable 10212,10010 -fimf-arch-consistency=true -qno-opt-dynamic-align -

xSSE2 -align array16byte -traceback -pad -DLINUX -DIFORT -DNET_SECURITY -

DADDR64 -DINTEL -DXEON64 -DFCC80 -DTIMER=cycle_time -DSSE2 -DOVERRIDE -DMPP  -

DAUTODOUBLE -DNEWIO -DHAVE_BLAS_LAPACK -DHAVE_I8R8_LIBRARY -DMF3_SYM -

DNEW_UNITS -DEXTENDED -DBATTERY -DDUALCESE -DUSE_R123 -DLSTCODE -DBIGID -

DENABLE_HASH3 -DFFTW -DROTORDYN -DMUMPS -DLSGPART -DMF3_SYM -DMCMS -DUSES_CXX -

DPFEM -DMUMPSVER=stable -DUSES_CPP -DPTHREADS -i8 -r8 -fPIC -O2 

# 

LD=mpif90 -sox -static-intel 

# 

LF= -safe_cray_ptr -assume byterecl,buffered_io,protect_parens -warn nousage -

zero -ftz -fp-model precise -mP2OPT_hpo_dist_factor=21 -diag-

disable 10212,10010 -fimf-arch-consistency=true -qno-opt-dynamic-align -xSSE2 -

align array16byte -traceback -pad -DLINUX -DIFORT -DNET_SECURITY -DADDR64 -

DINTEL -DXEON64 -DFCC80 -DTIMER=cycle_time -DSSE2 -DOVERRIDE -DMPP -

DAUTODOUBLE -DNEWIO -DHAVE_BLAS_LAPACK -DHAVE_I8R8_LIBRARY -DMF3_SYM -

DNEW_UNITS -DEXTENDED -DBATTERY -DDUALCESE -DUSE_R123 -DLSTCODE -DBIGID -

DENABLE_HASH3 -DFFTW -DROTORDYN -DMUMPS -DLSGPART -DMF3_SYM -DMCMS -DUSES_CXX -

DPFEM -DMUMPSVER=stable -DUSES_CPP  -DPTHREADS -i8 -r8 -lpmpi -lrt -lstdc++ -

lpthread -lstdc++ -lpthread 

# 

LMATH=libscalapack.a liblapack.a libblas.a 

# 

OBJS=init_once.o init_dyn21.o dynm.o banner.o sec.o dyn21.o dyn21umat.o dyn21um

ats.o dyn21umatv.o dyn21umatc.o dyn21tumat.o dyn21utan.o dyn21ueos.o dyn21cnt.o

 dyn21ushl.o dyn21usld.o  couple2other_user.o dynrfn_user.o adummy_graph.o orde

rByMetis.o mod_impl_matrices.o  

# 

LIBS=libdyna.a liblsmpp.a libmpp_lanczos.a libbcsext4.a liblsda.a liblsdb.a lib

lssecurity.a liblcpack.a libspooles.a libcparse.a libmf2.a liblsm.a liblscrypt.

a libresurf.a liblsmppdes.a libdsa.a libbalance.a libsfg.a libzmumps.a libdmump

s.a libmumps_common.a libmetis.a libim_rotor_dynamics.a libmcms.a liblsmpp.a li

blso.a libunits.a libem.a libfemster_wrap.a libfemster_wrap2d.a libfemster_wrap

1d.a libfemster.a libfemster2d.a libfemster1d.a libpfem.a libcese.a libchemistr

y.a libparticles.a libeosfl2.a libpfem.a libmoving.a libdualcese.a libbattery.a

 liblsmpp.a libmetis.a libfftw3.a libansysl.a libdyna.a libmetis.a libspooles.a 

# 

LIBS_LOCAL=${MKLROOT}/lib/intel64_lin/libmkl_blas95_ilp64.a ${MKLROOT}/lib/inte

l64_lin/libmkl_lapack95_ilp64.a ${MKLROOT}/lib/intel64_lin/libmkl_scalapack_ilp

64.a -Wl,--start- group ${MKLROOT}/lib/intel64_lin/libmkl_intel_ilp64.a  

${MKLROOT}/lib/intel64_lin/libmkl_sequential.a ${MKLROOT}/lib/intel64_lin/libmk

l_core.a ${MKLROOT}/lib/intel64_lin/libmkl_blacs_openmpi_ilp64.a -Wl,--end-

group -lpthread -lm -ldl 

# 

mppdyna: $(OBJS) 

   set PATH=.:$(PATH) 

   $(LD) -o mppdyna $(OBJS) $(LIBS) $(LMATH) $(LF) $(LIBS_LOCAL) 
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# 

init_dyn21.o: init_dyn21.f nhisparm.inc 

   $(FC) -c $(FF) -I. init_dyn21.f 

userinterface.o: userinterface.f90 

   $(FC) -c $(FF) -I. userinterface.f90 

dyn21.o: dyn21.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21.f 

dyn21umat.o: dyn21umat.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21umat.f 

dyn21umats.o: dyn21umats.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21umats.f 

dyn21umatv.o: dyn21umatv.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21umatv.f 

dyn21umatc.o: dyn21umatc.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21umatc.f 

dyn21tumat.o: dyn21tumat.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21tumat.f 

dyn21utan.o: dyn21utan.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21utan.f 

dyn21ueos.o: dyn21ueos.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21ueos.f 

dyn21cnt.o: dyn21cnt.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21cnt.f 

dyn21ushl.o: dyn21ushl.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21ushl.f 

dyn21usld.o: dyn21usld.f nhisparm.inc userinterface.o 

   $(FC) -c $(FF) -I. dyn21usld.f 

couple2other_user.o: couple2other_user.f  

   $(FC) -c $(FF) -I. couple2other_user.f 

dynrfn_user.o: dynrfn_user.f  

   $(FC) -c $(FF) -I. dynrfn_user.f  

 

A.3 Compiling the UMAT 

 

In the same working directory as the UMAT, use the following command to load 

the regular MPP LS-Dyna program and intel compliers. 

 module load mpp-dyna/12.0.0 intel/2020 

 The corresponding requirement modules will be automatically loaded at the same 

time: 

Loading mpp-dyna/12.0.0 

  Loading requirement: intel-rtl/2020 openmpi/4.0.3-intel 

Then use the make command to compile the UMAT and create a new LS-Dyna 

executable file that contains the user-defined material subroutine. The following message 

indicates that the UMAT has been successfully complied and linked to LS-Dyna. 
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mpif90 -c -safe_cray_ptr -assume byterecl,buffered_io,protect_parens -

warn nousage -zero -ftz -fp-model precise -mP2OPT_hpo_dist_factor=21 -diag-

disable 10212,10010 -fimf-arch-consistency=true -qno-opt-dynamic-align -xSSE2 -

align array16byte -traceback -pad -DLINUX -DIFORT -DNET_SECURITY -DADDR64 -

DINTEL -DXEON64 -DFCC80 -DTIMER=cycle_time -DSSE2 -DOVERRIDE -DMPP  -

DAUTODOUBLE -DNEWIO -DHAVE_BLAS_LAPACK -DHAVE_I8R8_LIBRARY -DMF3_SYM -

DNEW_UNITS -DEXTENDED -DBATTERY -DDUALCESE -DUSE_R123 -DLSTCODE  -DBIGID -

DENABLE_HASH3 -DFFTW -DROTORDYN -DMUMPS -DLSGPART -DMF3_SYM  -DMCMS -

DUSES_CXX -DPFEM -DMUMPSVER=stable -DUSES_CPP  -DPTHREADS -i8 -r8 -fPIC -O2 -

I. dyn21umats.f … 

The new LS-Dyna executable file, named mppdyna is generated along with a new 

object file named dyn21umats.o and is ready for running simulations. 

 

 

 

 

 


