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ABSTRACT

YUNFEI XIA. Estimation and Simulation for Multivariate Tempered Stable
Distributions with Applications To Finance. (Under the direction of DR.

MICHAEL GRABCHAK)

In this thesis, we introduce a methodology for the simulation and parameter esti-

mation of multivariate tempered stable distributions. Using the fact that tempered

stable distributions can be specified indirectly by a Lévy measure, our approach is

based on an approximation due to a discretization of the Lévy measure. We derive this

discretization in general and give an explicit construction of the discretization in the

bivariate case. Also, our approximation results hold for a wide class of multivariate

infinitely divisible distributions.

Based on our main approximation, we develop a method for simulations, which we

call the discretization and simulation (DS) method. To demonstrate how well the

method works, we perform a series of simulations in the bivariate cases and compare

it with another approximate simulation method developed by Rosiński’s. Further, we

use our discretization for parameter estimation by minimizing the distance between

the characteristic function of the multivariate tempered stable distribution and the

empirical characteristic function. We then apply our methodology to two bivariate

financial datasets related to exchange rates. The first is comprised of exchange rates

between standard currencies, while the second is based on exchange rates related to

cryptocurrencies. We also perform goodness-of-fit tests to show that the multivariate

tempered stable model does a good job fitting the model.

Further, we apply our model for the pricing of the bivariate basket option. Toward

this end, we provide theoretical results on the existence of equivalent martingale

measures. Then combining this with our model for parameter estimation and the DS

method for simulation, we develop a Monte Carlo based method for option pricing.

We apply it to the pricing of European call options with different strikes and the
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pricing of the Multi-asset rainbow option.
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CHAPTER 1: INTRODUCTION

Tempered stable (TS) distributions form a large and flexible class of models and

they are popular in real-world applications and have been used in computer science,

see [1], [2], actuarial science [3], physics [4], dynamical system [5], biostatistics [6],

mathematical finance, see [7], [8], [9] and so on.

Especially in the finance area, TS distribution has an important role and this disser-

tation is motivated by this. Over the past decades, academic researchers and market

practitioners have developed and investigated many different models and techniques

for modeling financial returns. As early as 1900, Louis Bachelier proposed Brownian

motion to model financial return in his Ph.D thesis, and then Brownian motion is still

widely used and is the framework. The most famous model is Black-Scholes model

[10], which assumed that the asset price dynamics are driven by a Geometric Brow-

nian Motion (GBM). But Brownian motion is based on Normal distribution, and its

tails are too light and cannot fit financial data well. To improve this, stable distri-

butions were proposed, and they allow skewness and fat tails. Stable distributions

are widely applied in financial returns, and they could provide a good fit in financial

data, except on the extreme tails [11]. Hence, both normal and stable distributions

have limitations to model financial return, see [12]. To know the limitation of stable

distributions further, we give a brief introduction to them. Stable distribution be-

longs to infinitely divisible distributions. We give the definition of infinitely divisible

distributions as follows,

Definition 1. A probability measure µ on Rd is called infinitely divisible if for any

n there exists a probability measure µn such that if X ∼ µ and Y (n)
1 , . . . , Y

(n)
n

iid∼ µn
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then

X
d
= Y

(n)
1 + Y

(n)
2 + · · ·+ Y (n)

n .

The characteristic function of an infinitely divisible distribution µ on Rd can be writ-

ten in the form

µ̂(z) = E[ei〈z,X〉] = eψ(z), z ∈ Rd

where

ψ(z) = −1

2
〈z, Az〉+ i〈b, z〉+

∫
Rd

(
ei〈x,z〉 − 1− i 〈x, z〉

1 + |x|2

)
L(dx),

A is a d×d covariance matrix, b ∈ Rd, L is a Borel measure, called the Lévy measure

satisfying

L({0}) = 0 and
∫
Rd

(
1 ∧ |x|2

)
L(dx) <∞

The parameters (A,L, b) uniquely determine the distribution. According that, we

give the definition of stable distribution, as follow,

Definition 2. Let X1, X2, ...Xn
iid∼ µ be d-dimensional random vectors. We say that

µ is stable if for any n there are nonrandom constants an > 0 and bn ∈ Rd such that

an (X1 +X2 + ...+Xn − bn)
d
= X1.

It turns out that an = n−1/α for some α ∈ (0, 2], and we say that µ is α-stable. There

is a fact that a distribution is Gaussian if and only if it is 2-stable. Let’s consider the

case d = 1. For α ∈ (0, 2) the Lévy measure of a stable distribution is of the form

L0(dx) = c−|x|−1−α1x<0dx+ c+x
−1−α1x>0dx
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for c−, c+ ≥ 0. Since
∫
|x|>1
|x|2L0(dx) = ∞, all stable distributions with α ∈ (0, 2)

have an infinite variance. Their infinite variance and extreme heavy tails let stable

distributions be often unrealistic in practices, there may be real-world obstacles lim-

iting the size of random phenomena. This has led researchers to find new models

that are similar to stable distributions but with a lighter tail. TS distributions were

first introduced in Tweedie (1984) [13]. Under d = 1, the Lévy measure of a TS

distribution is given by

L(dx) = c−|x|−1−αe−b−|x|1x<0dx+ c+x
−1−αe−b+x1x>0dx.

This leads to the exponential decay of the distribution. So, TS distributions are

obtained by modifying the tails of infinite variance stable distributions to make them

lighter. And they have ∫
|x|>1

|x|γL(dx) <∞,

thus, all moments of TS distributions with α ∈ (0, 2) are finite. Also, TS distribu-

tions are similar to stable distributions in some central regions. Based on these nice

properties, obviously, TS distributions are more realistic for financial markets.

In the applications in finance, we are interested in how to provide a reasonable

model of financial returns and focus on option pricing. Under univariate case, there

are lots work of TS distributions on financial derivative, see, e.g [14], [15], [16], [17],

[18], and so on. These literature show that TS tends to provide a good fit for financial

data. For multivariate cases, Rosiński provided a more general class of multivariate

TS distributions in [19] and set up a general theoretical framework for them. And

many theoretical properties can be found in [20], [21], and [22]. But there are almost

no applications to finance based on the multivariate TS distributions, and the exist-

ing models related to normal TS distributions (NTS), see, [23], [24], [25], which are

different with generalized TS distributions. And they simulated TS subordinator of
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NTS by Theorem 5.3 in [19], which is the only existing simulation methodology of

multivariate TS distributions, although it is approximate. To apply the generalized

TS distributions in the multi-asset option pricing problem, we introduce a method-

ology for simulation and parameter estimation of multivariate TS distributions, with

an emphasis on the bivariate case.

However, working with TS distributions is nontrivial in the univariate case, as

these distributions do not have a closed form for their probability density functions,

which must be evaluated numerically by inverting the characteristic function. See

e.g. [26] for a discussion of various numerical methods. The situation is even more

complicated in the multivariate case, where there is not even a closed form for the

characteristic function and where the model is only semiparametric as it relies on the

so-called spectral measure, and spectral measure is an infinite dimensional parameter.

We realized that little work is on the multivariate case in terms of computation and

data analysis, and this problem becomes one of the most important parts of this

dissertation.

This dissertation is organized as follows. In Chapter 2, we introduce the class

of multivariate TS distributions and give some properties of their mean, variance,

correlation, skewness, and kurtosis’s formula. Also, we state our main approximation

results. And we introduce a methodology to simulate the approximate multivariate

TS distributions by discretizing the spectral measure. This approach is inspired by

a similar discretization for multivariate stable distributions, which was derived in

[27]. That discretization was then used for simulation and parameter estimation of

stable distributions in [28], [29], and [30]. Further, we give a construction of the

discretization in the bivariate case.

In Chapter 3, based on our main approximation, we develop a method for simula-

tions in the bivariate case and call it the discretization and simulation (DS) method.

To demonstrate how well the method works, we perform a series of simulations in the
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bivariate cases and compare it with another approximate simulation method called

Rosińskis method in [19].

In Chapter 4, we use the DS method to do parameter estimation by minimizing

the distance between the characteristic function of the multivariate tempered sta-

ble distribution and the empirical characteristic function. And we give a couple of

simulation examples to show the performance of the methodology. Further, we ap-

ply it to two bivariate financial datasets related to exchange rates and also perform

goodness-of-fit tests to show that the multivariate tempered stable model does a good

job fitting the model.

In Chapter 5, we consider another related problem which is how to find a suitable

risk-neutral measure in order to discuss option pricing based on arbitrage theory,

some related work in [31], [32]. We provide the theoretical result of the existence of

equivalent martingale measures. Then combing with the DS method, we apply them

to bivariate financial datasets to get the prices of European call options with different

strikes and the price of the Multi-asset rainbow option by performing a Monte Carlo

study.

In Chapter 6 we extend our theoretical results to a wide class of multivariate

infinitely divisible models. And the Chapter 7 gives the proofs of Chapter 6.

This dissertation is based on the published paper: Estimation and simulation

for multivariate tempered stable distributions published in the Journal of Statisti-

cal Computation and Simulation, 2022, Volume 92, no.3, page 451-475, [33], but with

more details and extend its application to finance, specific in option pricing.

we introduce some notation. We write Rd to denote the space of d-dimensional

column vectors equipped with the usual inner product 〈·, ·〉 and the usual norm | · |.

We write Sd−1 =
{
s ∈ Rd : |s| = 1

}
to denote the unit sphere in Rd.For a Borel set

H ⊂ Rd, we write B(H) to denote the collection of Borel sets contained in H. If µ is

a probability distribution on Rd, we write X ∼ µ to denote that X is a d-dimensional
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random vector with distribution µ. We write U(a, b) to denote a uniform distribution

on (a, b) and Exp(λ) to denote an exponential distribution with rate λ. We write C

to denote the set of complex numbers. For z ∈ C we write <z to denote its real part

and =z to denote its imaginary part.



CHAPTER 2: MULTIVARIATE TEMPERED STABLE DISTRIBUTIONS

2.1 Introduction of multivariate tempered stable distributions

Let’s formally introduce multivariate tempered stable distributions first. Fix α ∈

(0, 1), γ ∈ Rd, let b : Sd−1 7→ (0,∞) be a Borel function, and let σ be a finite Borel

measure on Sd−1. Consider a distribution µ on Rd, whose characteristic function is

given, for any z ∈ Rd, by

µ̂(z) = exp

[
i〈γ, z〉+

∫
Sd−1

∫ ∞
0

(ei〈s,z〉x − 1)
e−b(s)x

x1+α
dxσ(ds)

]
(2.1)

= exp

[
i〈γ, z〉+ Γ(−α)

∫
Sd−1

((b(s)− i〈s, z〉)α − bα(s))σ(ds)

]
,

where the equality follows by (3.38) in [22]. We call this a tempered stable (TS)

distribution and write µ = TSα(σ, b, γ). Here α is called the index of stability, σ is

called the spectral measure, b(·) is called the exponent function, and γ is called the

drift. This terminology is influenced by the corresponding terms in the context of

stable distributions, which correspond to the limiting case when b ≡ 0, see [34]. Let’s

see the univariate case of TS distribution first.

Example 1. When d = 1, the unit sphere is S0 = {−1, 1}. Perhaps the simplest class

of TS distributions corresponds to the case where d = 1, σ({−1}) = 0, and γ = 0. In

this case, taking a = σ({1}) > 0 and b = b(1) > 0, the characteristic function reduces

to

µ̂(z) = exp

[∫ ∞
0

(eizx − 1)
ae−bx

x1+α
dx

]
= exp [Γ(−α) ((b− iz)α − bα)] (2.2)

for z ∈ R. We refer to such distributions as simple tempered stable (STS) distributions
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and we write µ = STSα(a, b). These distributions were first introduced in Tweedie

(1984) [13] and are sometimes called Tweedie distributions.

We now give several useful facts about TS distributions. The distribution TSα(σ, b, γ)

is infinitely divisible with Lévy measure

L(B) =

∫
Sd−1

∫ ∞
0

1B(sx)x−1−αe−b(s)xdxσ(ds), B ∈ B(Rd). (2.3)

See [35] for an overview of the theory of infinitely divisible distributions. And they

have the following property.

Proprtion 1. If X ∼ TSα(σ, b, γ) and Y = cX + d for some c > 0 and d ∈ Rd, then

Y ∼ TSα(cασ, c−1b, cγ + d).

Proof. Let’s begin with the characteristic function of Y ,

E[ei〈z, Y 〉] = E[ei〈z,cX+d〉] = E[ei〈cz+d, X〉]

= exp

[
i 〈γ, cz + d〉+

∫
Sd−1

∫ ∞
0

(
eit〈cz, s〉 − 1

)
t−1−αe−tb(s)dtσ(ds)

]
= exp

[
i 〈cγ + d, z〉+

∫
Sd−1

∫ ∞
0

(
eiu〈z,

cs
|cs|〉 − 1

)
u−1−αe

−ub(s)
|cs| du |cs|α σ(ds)

]
= exp

[
i 〈cγ + d, z〉+

∫
Sd−1

∫ ∞
0

(
eiu〈z, s〉 − 1

)
u−1−αe

−ub(s)
c du cα σ(ds)

]
,

where the third line by change of variable, let u = t|cs|, then du = dt|cs|. By the last

line, we get Y ∼ TSα(cασ, c−1b(s), cγ + d).

Next, if X ∼ TSα(σ, b, γ) and infs∈Sd−1 b(s) > 0, then, by Corollary 25.8 in [35], all

moments of the distribution exist. Followed that, let’s µ̂(z) = exp {Cµ(z)}, where

Cµ(z) = i 〈γ, z〉+

∫
Sd−1

Γ(−α)((b(s)− i 〈s, z〉)α − bα(s))σ(ds),
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and we call Cµ be cumulant generating function.

Since X ∼ µ and the cumulant determine the moments, we let c1 represent the first

cumulant, which is E(Xj); c2 represent the second cumulant, which is V ar(Xj); c3

represent the third cumulant, which is the third central moment of E[(Xj −E(Xj))
3];

c4 represent the fourth cumulant, which is E[(Xj − E(Xj))
4] − 3E2[(Xj − E(Xj))

2]

and c11 represent the covariance between Xi and Xj, where i, j ∈ {1, 2, . . . , d}. By

[36], skewness γ1(Xj) =
c3

c
3/2
2

and the kurtosis γ2(Xj) =
c4

c2
2

. We then give the general

formula of them.

Proprtion 2. Let X ∼ µ, i, j ∈ {1, 2, . . . , d} then

• The expectation of Xj

c1 = E[Xj] = γj + Γ(1− α)

∫
Sd−1

bα−1(s)sjσ(ds). (2.4)

• The variance of Xj

c2 = Var[Xj] = Γ(2− α)

∫
Sd−1

bα−2(s)s2
jσ(ds). (2.5)

• The third central moment of Xj

c3 = E[(Xj − E(Xj))
3] = Γ(3− α)

∫
Sd−1

bα−3(s)s3
jσ(ds) (2.6)

• The fourth cumulan of Xj

c4 = E[(Xj − E(Xj))
4]− 3E2[(Xj − E(Xj))

2]

= Γ(4− α)

∫
Sd−1

bα−4(s)s4
jσ(ds) (2.7)
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• The Covariance between Xi and Xj

c11 = Cov(Xi, Xj) = Γ(2− α)

∫
Sd−1

bα−2(s)sisjσ(ds) (2.8)

• The skewness of Xj

γ1(Xj) =
c3

c
3/2
2

=
2− α

[Γ(2− α)]1/2

∫
Sd−1 b

α−3(s)s3
jσ(ds)[∫

Sd−1 bα−2(s)s2
jσ(ds)

]3/2 (2.9)

• The kurtosis of Xj

γ2(Xj) =
c4

c2
2

=
(2− α)(3− α)

Γ(2− α)

∫
Sd−1 b

α−4(s)s4
jσ(ds)[∫

Sd−1 bα−2(s)s2
jσ(ds)

]2 (2.10)

In principle, if there are parametric forms for σ and b, then one could use the method

of cumulant matching to fit the parameters. Instead, we propose a methodology based

on a discretization of σ. We will give the detailed information in the following sections.

Let’s begin by recalling the following definition. We say that a Borel measure σ

on Sd−1 is full if there are d linearly independent vectors in its support. We now give

several statements that are equivalent to this.

Lemma 1. Let σ be a finite Borel measure on Sd−1 and, for β > 0, let uβ =

inf
ξ∈Sd−1

∫
Sd−1 |〈s, ξ〉|βσ(ds). The following statements are equivalent:

1. σ is full;

2. uβ > 0 for every β > 0;

3. uβ > 0 for some β > 0.

We now give our main approximation result.
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Theorem 1. Fix α ∈ (0, 1) and let µ = TSα(σ, b, γ). Assume that the function b has

an upper bound and that the set of its discontinuities has σ measure 0. If σ is full,

then µ has a pdf p. Further, in this case, for any ε > 0, there is a finite measure σ∗

with a finite support such that µ∗ = TSα(σ∗, b, γ) has a pdf p∗ satisfying

sup
x∈Rd
|p(x)− p∗(x)| ≤ ε.

This is a special case of a more general result, see Section 6. The theorem suggests

that, for practical purposes, one just needs to work with TS distributions where the

measure σ has finite support. In this case, assuming that the support has k elements,

there exist a1, a2, . . . , ak > 0 and s1, s2, . . . , sk ∈ Sd−1 such that

σ =
k∑
j=1

ajδsj , (2.11)

where δsj is a point mass at sj. We now give a simple interpretation of the corre-

sponding TS distributions.

Theorem 2. Fix α ∈ (0, 1) and let µ = TSα(σ, b, γ), where σ is as in (2.11). If

X1, X2, ..., Xk are independent random variables with Xj ∼ STSα(aj, bj), where bj =

b(sj), and

Y = γ +X1s1 +X2s2 + ...+Xksk, (2.12)

then Y ∼ µ.

Proof. To get Y ’s characteristic function, let’s X1, X2..., Xn are independent random

variables following µXj(z) = STSα(aj, bj), and s1, s2, ..., sn ∈ Sd−1. Then, Y = γ +

X1s1 +X2s2 + ...+Xnsn, and its characteristic is

µ̂Y (z) = E[eiz〈Y,s〉] = E[ei〈γ,z〉+
∑n
j=1〈Xjsj ,z〉]
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= ei〈γ,z〉
n∏
j=1

E
[
ei〈Xjsj ,z〉

]
= exp

[
i 〈γ, z〉+

∫ ∞
0

(ei〈s1,z〉x − 1)
a1e
−b1x

x1+α
dx+ . . .

+

∫ ∞
0

(ei〈sn,z〉x − 1)
ane

−bnx

x1+α
dx

]
= exp

[
[i 〈γ, z〉+

n∑
j=1

∫ ∞
0

(ei〈sj ,z〉x − 1)
aje
−bjx

x1+α
dx

]

= exp

[
i 〈γ, z〉+

∫
Sd−1

∫ ∞
0

(ei〈s,z〉x − 1)
e−b(s)x

x1+α
dxσ(ds)

]
,

which is equalivent to equation (2.1) with the given σ, as required.

2.2 Discretization in the bivariate base

In practice, to use the result of Theorem 1, we need a systematic approach for

discretizing the spectral measure. In this section, we discuss such an approach in the

bivariate case where d = 2. In this case S1, the unit circle in R2, is isomorphic to the

interval [0, 2π) through the bijection η : [0, 2π) 7→ S1 given by η(θ) = (cos(θ), sin(θ))T .

Further, every finite Borel measure σ on S1 is in one-to-one correspondence with a

finite Borel measure σ′ on [0, 2π). Specifically, for A ∈ B([0, 2π)) and B ∈ B(S1)

σ′(A) = σ (η(A)) and σ(B) = σ′
(
η−1(B)

)
,

where η−1(B) is the inverse image of B and η(A) is the image of A (or, equivalently,

the inverse image of the inverse function of η). For any complex valued Borel function

f : S1 7→ C, which is integrable with respect to σ the following change of variables

formula holds

∫
S1

f(s)σ(ds) =

∫
[0,2π)

f(cos(θ), sin(θ))σ′(dθ), (2.13)

Now, the characteristic function of µ = TSα(σ, b, γ) can be written, for any z =
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(z1, z2) ∈ R2, as

exp

[
i〈γ, z〉+ Γ(−α)

∫
[0,2π)

(
(b∗(θ)− i

(
cos(θ)z1 + sin(θ)z2)

)α − bα∗ (θ))σ′(dθ)] ,
where b∗(θ) = b(η(θ)) = b(cos(θ), sin(θ)).

This leads to a simple approach for discretization. First, fix k and divide the

interval [0, 2π) into k subintervals as follows. Fix 0 = d0 < d1 < · · · < dk = 2π, let

θ1, θ2, . . . , θk ∈ (0, 2π) be any numbers with dj−1 < θj < dj, and let

aj = σ′([dj−1, dj)) = σ(η([dj−1, dj))).

It follows that

σ′k =
k∑
j=1

ajδθj and σk =
k∑
j=1

ajδη(θj) (2.14)

are discretization of σ′ and σ, respectively. In this dissertation, we take the subinter-

vals of [0, 2π) to be evenly spaced and we take θj to be the midpoint of the subinterval.

Thus, we take dj = 2πj/k and θj = (dj−1 + dj)/2 = (2j − 1)π/k. Of course, in prac-

tice, if σ′ has point masses, then it would make sense to keep at least the ones with

larger weights. Then, after these have been extracted, one can discretize the rest

using the procedure described above.

2.3 Example

Now, we give two specific examples in this section to show the results in Section

2.1 and 2.2.

Proprtion 3. Let X = (X1, X2) ∼ TSα(σ, b, γ), where σ′(ds) = f(θ)dθ such that for

f(θ) =
1

2π
, θ ∈ [0, 2π).
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This means that σ′ is a uniform distribution on [0, 2π). Under this case, we have the

means are

E(X1) = γ1 +
1

2π
Γ(1− α)

∫ 2π

0

bα−1
∗ (θ) cos θdθ

E(X2) = γ2 +
1

2π
Γ(1− α)

∫ 2π

0

bα−1
∗ (θ) sin(θ)dθ,

the variance are

Var(X1) = (1− α)Γ(1− α)
1

2π

∫ 2π

0

bα−2
∗ (s) cos2 θdθ

Var(X2) = (1− α)Γ(1− α)
1

2π

∫ 2π

0

bα−2
∗ (θ) sin2 θdθ,

the covariance between X1 and X2 is,

Cov(X1, X2) = (1− α)Γ(1− α)
1

4π

∫ 2π

0

bα−2
∗ (θ) sin 2θdθ.

Proof. Following Proprtion 2 and equation(2.13), we easy to get means, variances

and covariance of X. Let’s see the means first.

E(X1) = γ1 − 1
2π

Γ(−α)α
∫ 2π

0
bα−1
∗ (θ) cos(θ)dθ

= γ1 + 1
2π

Γ(1− α)
∫ 2π

0
bα−1
∗ (θ) cos(θ)dθ,

where the last equation follows Γ(−α) = −Γ(1−α)
α

. To get E(X2) is similar.

Then, let’s show the variances as follow,

Var(X1) =

∫
S1

Γ(−α)α(α− 1)bα−2
∗ (s)s2

1σ(ds)

=

∫ 2π

0

Γ(−α)α(α− 1)bα−2
∗ (s) cos2 θ

1

2π
dθ

= (1− α)Γ(1− α)
1

2π

∫ 2π

0

bα−2
∗ (θ) cos2 θdθ
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Similar with Var(X1), for Var(X2), we have

Var(X2) =

∫
S1

Γ(−α)α(α− 1)bα−2
∗ (s)s2

2σ(ds)

=

∫ 2π

0

Γ(−α)α(α− 1)bα−2
∗ (θ) sin2 θ

1

2π
dθ

= (1− α)Γ(1− α)
1

2π

∫ 2π

0

bα−2
∗ (θ) sin2 θdθ.

And then Cov(X1, X2) is

Cov(X1, X2) =

∫
Sd−1

Γ(−α)α(α− 1)bα−2
∗ (s)s1s2σ(ds)

=

∫ 2π

0

Γ(−α)α(α− 1)bα−2
∗ (θ) cos θ sin θ

1

2π
dθ

= (1− α)Γ(1− α)
1

4π

∫ 2π

0

bα−2
∗ (θ) sin 2θdθ,

where the last equation follow Γ(−α) = −Γ(1−α)
α

and sin 2θ = 2 sin θ cos θ.

Under this case, when we discretize measure σ, we get

aj = σ′([dj−1, dj)) = σ′([2π(j − 1)/k, 2πj/k))

=

∫ 2πj/k

2π(j−1)/k

f(θ)dθ =

∫ 2πj/k

2π(j−1)/k

1

2π
dθ

=
1

k
.

Next, let’s see the other case.

Proprtion 4. Let X = (X1, X2) ∼ TSα(σ, b, γ), where σ′(dθ) = f(θ)dθ such that for

some α∗, β∗ > 0

f(θ) =
1

C
θα
∗−1(2π − θ)β∗−1, θ ∈ [0, 2π),

where C = B(α∗, β∗)(2π)α
∗+β∗−1 and B(·, ·) is the beta function. This means that σ′

is a beta distribution on [0, 2π). We denote this distribution by Beta(α∗, β∗, 2π). In
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this case, the means are

E(X1) = γ1 +
Γ(1− α)

C

∫ 2π

0

bα−1
∗ (θ) cos(θ)θα

∗−1(2π − θ)β∗−1dθ

E(X2) = γ2 +
Γ(1− α)

C

∫ 2π

0

bα−1
∗ (θ) sin(θ)θα

∗−1(2π − θ)β∗−1dθ,

the variances are

Var(X1) =
Γ(2− α)

C

∫ 2π

0

bα−2
∗ (θ) cos2(θ)θα

∗−1(2π − θ)β∗−1dθ

Var(X2) =
Γ(2− α)

C

∫ 2π

0

bα−2
∗ (θ) sin2(θ)θα

∗−1(2π − θ)β∗−1dθ,

and the covariance is

Cov(X1, X2) =
Γ(2− α)

2C

∫ 2π

0

bα−2
∗ (θ) sin(2θ)θα

∗−1(2π − θ)β∗−1dθ.

Proof. Again, following Proprtion 2 and equation (2.13), we get means, variances and

covariance of X. First, the means of X as follow,

E(X1) = γ1 −
∫ 2π

0

Γ(−α)αbα−1
∗ (θ) cos(θ)

θα
∗−1(2π − θ)β∗−1

C
dθ

= γ1 −
Γ(−α)α

C

∫ 2π

0

bα−1
∗ (θ) cos(θ)θα

∗−1(2π − θ)β∗−1dθ

= γ1 +
Γ(1− α)

C

∫ 2π

0

bα−1
∗ (θ) cos(θ)θα

∗−1(2π − θ)β∗−1dθ,

where the last equation follows Γ(−α) = −Γ(1−α)
α

. Similar to the E(X1), E(X2) is

easy to get. Then, for the variances of X,

Var(X1) =

∫
S1

Γ(−α)α(α− 1)bα−2(s)s2
1σ(ds)

=

∫ 2π

0

Γ(−α)α(α− 1)bα−2
∗ (s) cos2 θ

θα
∗−1(2π − θ)β∗−1

C
dθ
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=
Γ(−α)α(α− 1)

C

∫ 2π

0

bα−2
∗ (θ) cos2(θ)θα

∗−1(2π − θ)β∗−1dθ

=
Γ(2− α)

C

∫ 2π

0

bα−1(θ) cos2(θ)θα
∗−1(2π − θ)β∗−1dθ.

Similar with Var(X1), for Var(X2),

Var(X2) =

∫
S1

Γ(−α)α(α− 1)bα−2(s)s2
2σ(ds)

=

∫ 2π

0

Γ(−α)α(α− 1)bα−2
∗ (s) sin2 θ

θα
∗−1(2π − θ)β∗−1

C
dθ

=
Γ(−α)α(α− 1)

C

∫ 2π

0

bα−2
∗ (θ) sin2(θ)θα

∗−1(2π − θ)β∗−1dθ

=
Γ(2− α)

C

∫ 2π

0

bα−2
∗ (θ) sin2(θ)θα

∗−1(2π − θ)β∗−1dθ.

Last, for the covariance of X1 and X2,

Cov(X1, X2) =

∫
Sd−1

Γ(−α)α(α− 1)bα−2(s)s1s2σ(ds)

=

∫ 2π

0

Γ(−α)α(α− 1)bα−2
∗ (θ) cos(θ) sin(θ)

θα
∗−1(2π − θ)β∗−1

C
dθ

=
Γ(−α)α(α− 1)

C

∫ 2π

0

bα−2
∗ (θ) cos(θ) sin(θ)θα

∗−1(2π − θ)β∗−1dθ

=
Γ(2− α)

2C

∫ 2π

0

bα−2(θ) sin(2θ)θα
∗−1(2π − θ)β∗−1dθ

as required.

Under this case, when we discretize, similarly, we get

aj = σ′([dj−1, dj)) = σ′([2π(j − 1)/k, 2πj/k))

=

∫ 2πj/k

2π(j−1)/k

f(θ)dθ = F

(
j

k

)
− F

(
j − 1

k

)
,

where F is the cumulative distribution function (cdf) of the Beta distribution on [0, 1)

with shape parameters α∗ and β∗.



CHAPTER 3: SIMULATION METHODOLOGY

3.1 Simulation methodology of tempered stable variable

In this section, we discuss our methodology for simulation. When σ has finite

support, following Theorem 2, an exact simulation method is provided by (2.12). At

this time, we only need to have an efficiently method to simulate STSα(aj, bj). In

the literature, one approach is the algorithm on page 11 of [37] or a simple rejection

sampling algorithm, which is given in e.g. Algorithm 0 of [38]. Simple rejection

sampling algorithm is easy to achieve, however, the probability of rejecting on a given

iteration is e−ajΓ(1−α)bαj /α, which is not efficient when aj or bj is large. To deal with this,

a double rejection sampling approach was developed in [37], where the probability of

rejection is bounded away from 0 for all choices of the parameters. This algorithm was

further optimized in [39]. This optimized version is implemented in the retstable

method of the “copula” package for the statistical software R. In this dissertation, we

choose the double rejection sampling approach to simulate STSα(aj, bj) .

Now, we have known how to simulate STSα(aj, bj) efficiently, and then based on

(2.12), when σ has a finite support, an exact simulation method is provided. When σ

does not have a finite support, Theorem 1 implies that there exists a σ∗ with a finite

support such that TSα(σ, b, γ) ≈ TSα(σ∗, b, γ). Thus, we can approximately simulate

TSα(σ, b, γ) by using (2.12) to simulate TSα(σ∗, b, γ). We refer to this methodology

as the discretization and simulation (DS) method.

The only other simulation approach that we have seen in the literature is an ap-

proximate method, which is based on truncating an infinite series representation.

This representation is given, for a more general class of models, in Theorem 5.1 of

[19]. Let’s see that how to apply this algorithm in our case. According to another
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definition in [19], the Lev́y measure could write as

M(B) =

∫
Sd−1

∫ ∞
0

1B(sx)q(x, s)x−1−αdxσ(ds), B ∈ B(Rd).

Comparing with equation (2.3), we get q(x, s) = e−b(s)x and

q(x, s) =

∫ ∞
0

e−xuQ(du|s), Q(du|s) = δb(s)(du),

where {Q(.|s)}s∈Sd−1 is a measure on (0,∞). Following equation (2.4) in [19], we

defined Q be a Borel measure on Rd given by

Q(B) =

∫
Sd−1

∫ ∞
0

1B(sx)Q(dx|s)σ(ds)

=

∫
Sd−1

∫ ∞
0

1B(sx)δb(s)(du)σ(ds)

=

∫
Sd−1

1B(sb(s))σ(ds),

where σ(ds) = cσ1(ds), σ1(ds) is a probability measure and c > 0. Hence, we have

Q(B) = c

∫
Sd−1

1B(sb(s))σ1(ds). (3.1)

Now, let {vj} be an independent sequences of independent and identically dis-

tributed (iid) random vectors in Rd with the distribution of
Q

|σ|
, where |σ| = |cσ1| =

cσ(Sd−1) = c. By equation (3.1), we have

Q(B)

|σ|
=

c
∫
Sd−1 1B(sb(s))σ1(ds)

c

=

∫
Sd−1

1B(sb(s))σ1(ds). (3.2)

Further, |vj| = |b(sj)sj| = |b(sj)| and
vj
|vj|

= Sj ∼
σ

σ(Sd−1)
, which is iid random

variable. Also, let {ej}, {e′j}, {uj} be iiid sequence of random variables such that
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ej ∼ Exp(1), e′j ∼ Exp(1), uj ∼ U(0, 1) and let γj = e′1 + e′2 + · · · + e′j. If X ∼

TSα(σ, b, 0), then

X
d
=

∞∑
j=1

min

{(
αγj
|σ|

)−1/α

,
eju

1/α
j

|vj|

}
vj
|vj|

=
∞∑
j=1

min

{(
αγj

σ(Sd−1)

)−1/α

,
eju

1/α
j

|b(sj)|

}
Sj. (3.3)

Truncating this infinite sum at some large value k gives an approximate simulation

technique. We refer to this methodology as Rosiński’s method after the author of

[19]. Unlike the DS method, this method is never exact.

We now use simulation to compare the performance of the DS method and Rosiński’s

method in the bivariate case. Our approach is as follows. First, we choose an integer

k. For the DS method, we use the approach described in Section 2.2 to discretize σ

into σk which has k elements in its support. From the corresponding TS distribution,

we simulate N observations. Using these, we estimate the means m1,m2 of both

components, the variances σ2
1, σ

2
2 of both components, and the covariance between

the components σ12 by using the empirical means x̄1, x̄2, empirical variances s2
1, s

2
2,

and the empirical covariance s12. Also, followed by section 2.3, we can get the value

of m1, m2, σ
2
1, σ

2
2 and σ12. We then calculate the absolute errors between theoretical

values and empirical values, which include mean, variance in each component, and

covariance. Further, we calculate the error in the approximation by

Ek =
√
|m1 − x̄1|2 + |m2 − x̄2|2 + |σ2

1 − s2
1|2 + |σ2

2 − s2
2|2 + |σ12 − s12|2.

We follow the same procedure for Rosiński’s method, except that now, for simulations

we use the infinite sum in (3.3) truncated at k, i.e. we only take the first k terms in

that sum. We similarly calculate Ek in this case.
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3.2 Simulation results

In this section, we use each method to generate a dataset of bivariate TS variables

with N = 10000. Then we compare Rosinski’s method with the DS method by the

absolute error between theoretical values and empirical values, which include mean,

variance in each component, and covariance. Also, we compare with their Ek. We are

interested in how large k will let errors converge and approach to 0. We set α = 0.6,

b(s) ≡ 1, γ = 0, and σ′ = Beta(α∗, β∗, 2π) for several choices of α∗ and β∗. The

formulas for the means, variances, and covariance are given in Section 2.3. In this

case, for Rosiński’s method, we can simulate the Si’s by taking Si = (cos(θi), sin(θi)),

where θi ∼ Beta(α∗, β∗, 2π). We present results for four cases: α∗ = β∗ = 1, α∗ = 0.5

and β∗ = 1, α∗ = 2 and β∗ = 2, and α∗ = 2 and β∗ = 5. We also considered other

choices for the parameters, but the results were similar. In all cases, the results of

k from 1 to 100 are plotted in each plot. And in all the figures, the first row gives

the absolute error of their mean, variance in the first component, and the covariance

between two components, and the second row gives their mean, variance in the second

component, and Ek. Then, let’s see these cases one by one.

The first case is under α∗ = β∗ = 1, which corresponds to the uniform distribution.

In Figure 3.1, the performance of DS method and Rosinski’s method are similar

when we focus on the absolute error of mean and covariance, while, under the first

component, DS method has larger errors for small values of k. For the absolute error

of variances and Ek, DS method is better than Rosinski’s as DS method has a faster

speed of convergence. And both of these two methods’ amount of error is close to

zero at k = 100.



22

0 20 40 60 80

0.
0

1.
0

2.
0

Mean for Beta(1,1)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
0

0.
2

0.
4

Variance for Beta(1,1)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
00

0.
10

0.
20

Covariance for Beta(1,1)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
00

0.
10

0.
20

Mean for Beta(1,1)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
0

0.
2

0.
4

Variance for Beta(1,1)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
0

1.
0

2.
0

Error for Beta(1,1)

 

ab
so

lu
te

 e
rr

or

Figure 3.1: The solid (black) line is the error in the DS method, while the dashed
(red) line is the error in Rosiński method. The x-axis represents k, the number of
terms in the sum

For the second case, we consider is α∗ = 0.5 and β∗ = 1. In Figure 3.2, the perfor-

mance of DS method is better than Rosinski’s under Ek and both two components

of mean. Although their speed of convergence looks similar, Rosiński method has

less error for small values of k, but more for large values. However, when k = 100,

the amount of error is quite small in the DS method and is quite a bit higher for

Rosiński’s method. For the absolute error of covariance, DS method is a little worse

than Rosiński method at the beginning, and they are similar after k = 30. And both

these two methods have the similar results of variances in each component.
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Figure 3.2: The solid (black) line is the error in the DS method, while the dashed
(red) line is the error in Rosiński method. The x-axis represents k, the number of
terms in the sum

For the third case, we consider α∗ = 2 and β∗ = 2. From Figure 3.3, the plot

of Ek and the absolute error of mean which is in the first component are similar to

the second case, but DS method is a little worse in the second component at the

beginning. And then they have the similar performance until k = 60, at which the

error is almost close to 0. The absolute error of covariance is similar to the mean in

the second component. And the absolute error of variances, DS method provides a

slightly faster speed of convergence than Rosinski’s and their other performances are

similar in each component.
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Figure 3.3: The solid (black) line is the error in the DS method, while the dashed
(red) line is the error in Rosiński method. The x-axis represents k, the number of
terms in the sum

The last case is under α∗ = 2 and β∗ = 5. By the Figure 3.4, the performance of

DS is much better than Rosiński method for the absolute error of mean in the second

component since the solid (black) line has a faster speed of convergence and less error

for large k. But the contrary performances are shown in the first component of the

absolute error of mean. While DS method has the similar trend as the second compo-

nent, Rosiński method gives error is less than DS at the beginning, which has closed

to 0. Next, let’s see the absolute error of variance. In the second component, both

two methods have similar results. But in the first component, less error of Rosiński

method at the beginning and its speed of convergence is faster than DS. Further,

both two methods have the similar results for the absolute error of covariance except

for the beginning. Although we cannot distinguish which method’s performance is
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better by means, variances, and covariance, from Ek, we could get the same result as

before, which is that DS method has less error than Rosiński method for large k.

0 20 40 60 80

0.
0

1.
0

2.
0

3.
0

Mean for Beta(2,5)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

Variance for Beta(2,5)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
00

0.
10

0.
20

Covariance for Beta(2,5)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
0

1.
0

2.
0

3.
0

Mean for Beta(2,5)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

Variance for Beta(2,5)

 

ab
so

lu
te

 e
rr

or

0 20 40 60 80

0.
0

1.
0

2.
0

3.
0

Error for Beta(2,5)

 
ab

so
lu

te
 e

rr
or

Figure 3.4: The solid (black) line is the error in the DS method, while the dashed
(red) line is t he error in Rosiński method. The x-axis represents k, the number of
terms in the sum

Overall, we could get similar patterns of Ek for all parameter values. Rosiński’s

method has less error for small values of k, but more for large values. We can also

see that at k = 100 the amount of error is fairly small in the DS method for all four

distributions, and is quite a bit higher for Rosiński’s method in all cases except when

α∗ = 1, β∗ = 1, i.e. the uniform case. Of course, Ek is a limited way of understanding

the error in the approximation, but it nevertheless gives a baseline for comparison.



CHAPTER 4: PARAMETER ESTIMATION AND DATA ANALYSIS

4.1 Methodology

In this section, we give the methodology to solve the parameter estimation problem.

Our approach is based on the method of characteristic functions similar to that de-

veloped for fitting multivariate stable distributions in [29]. Note that TSα(σ, b, γ) is a

semiparametric model since σ is an infinite dimensional parameter. To deal with this,

we approximate σ by a finitely supported measure σ∗k of the form (2.11). Here k is a

tuning parameter and the directions s1, s2, . . . , sk are chosen from the unit sphere Sd−1

or some relevant subset of it. For instance if all components of the data are known

to be nonnegative, say if we are directly modeling prices, then the direction would

be chosen to lie in the first quadrant. The remaining parameters a = (a1, a2, . . . , ak),

b = (b1, b2, . . . , bk), γ = (γ1, γ2, . . . , γd), and α need to be fit using the data. Thus

we must estimate 2k + d + 1 parameters. For simplicity, we sometimes denote the

(2k + d+ 1)-dimensional vector of all of these parameters by θ.

Our approach to parameter estimation is to find the parameters that minimize

the distance between the characteristic function of the multivariate TS distribution

and the empirical characteristic function. Specifically, let x1, x2, . . . , xn be a random

sample and note that each xi ∈ Rd. The empirical characteristic function is given by

µ̂E(z) =
1

n

n∑
j=1

ei〈z,Xj〉 =
1

n

n∑
i=1

cos(〈z,Xj〉) + i
1

n

n∑
i=1

sin(〈z,Xj〉), z ∈ Rd.

And then we need to find the real and imaginary parts of the multivariate TS distri-

bution’s characteristic function. From (2.1) and Lemma 13, we get another from of

this characteristic function.
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Proprtion 5. Let z ∈ Rd, X ∼ TSα(σ, b, γ), and there ∃ a finitely support measure

σ∗ shuch that TSα(σ, b, γ) ≈ TSα(σ∗, b, γ), then by equation (2.11), we have θ =

(α, b, a, γ) and the multivariate TS distribution’s characteristic function becomes

µ̂θ(z) = exp
{
Aα,b,a(z)

}(
cos
(
Bα,b,a,γ(z)

)
+ i sin

(
Bα,b,a,γ(z)

))
,

where

Aα,b,a(z) = Γ(−α)
k∑
j=1

aj

(
(b2
j + 〈sj, z〉2)α/2 cos

(
α arctan

(
〈sj, z〉
bj

))
− bαj

)

and

Bα,b,a,γ(z) = 〈γ, z〉 − Γ(−α)
k∑
j=1

aj(b
2
j + 〈sj, z〉2)α/2 sin

(
α arctan

(
〈sj, z〉
bj

))
.

Proof. Based on (2.1), we have

µ̂θ(z) = exp

{
i〈γ, z〉+ Γ(−α)

∫
Sd−1

((b(s)− i〈s, z〉)α − bα(s))σ∗k(ds)

}
= exp

{
i 〈γ, z〉+ Γ(−α)

k∑
j=1

aj((bj − i〈sj, z〉)α − bαj )

}

= exp

(
i 〈γ, z〉+ Γ(−α)

k∑
j=1

aj

(
(b2
j + 〈sj, z〉2)

α
2 cos

(
α arctan

(
〈sj, z〉
bj

))
−bαj − i(b2

j + 〈sj, z〉2)
α
2 sin

(
α arctan

(
〈sj, z〉
bj

))))
= exp

(
Γ(−α)

k∑
j=1

aj(b
2
j + 〈sj, z〉2)

α
2

(
cos

(
α arctan

(
〈sj, z〉
bj

))
− bαj

)

+i

(
〈γ, z〉 − Γ(−α)

k∑
j=1

aj(b
2
j + 〈sj, z〉2)

α
2 sin

(
α arctan

(
〈sj, z〉
bj

))))

= exp

(
Γ(−α)

k∑
j=1

aj(b
2
j + 〈sj, z〉2)

α
2

(
cos

(
α arctan

(
〈sj, z〉
bj

))
− bαj

))
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∗

(
cos

[
〈γ, z〉 − Γ(−α)

k∑
j=1

aj(b
2
j + 〈sj, z〉2)

α
2 sin

(
α arctan

(
〈sj, z〉
bj

))]

+i sin

[
〈γ, z〉 − Γ(−α)

k∑
j=1

aj(b
2
j + 〈sj, z〉2)

α
2 sin

(
α arctan

(
〈sj, z〉
bj

))])
,

where the third equation is followed Lemma 13. Then, we let

Aα,b,a(z) = Γ(−α)
k∑
j=1

aj(b
2
j + 〈sj, z〉2)

α
2

(
cos

(
α arctan

(
〈sj, z〉
bj

))
− bαj

)

and

Bα,b,a,γ(z) = 〈γ, z〉 − Γ(−α)
k∑
j=1

aj(b
2
j + 〈sj, z〉2)

α
2 sin

(
α arctan

(
〈sj, z〉
bj

))
.

Finally, we get

µ̂θ(z) = exp
{
Aα,b,a(z)

}(
cos
(
Bα,b,a,γ(z)

)
+ i sin

(
Bα,b,a,γ(z)

))
.

This completes the proof.

Next we choose z1, z2, . . . , zm ∈ Rd withm ≥ 2k+d+1 and estimate the parameters

by

argmin
θ

m∑
`=1

|µ̂E(z`)− µ̂θ(z`)|2

= argmin
θ

m∑
`=1

(
|<µ̂E(z`)−<µ̂θ(z`)|2 + |=µ̂E(z`)−=µ̂θ(z`)|2

)
, (4.1)

where µ̂θ is the characteristic function of a TS distribution with parameter vector θ.

Example 2. When d = 1, the characteristic function of TS is in equation 2.2. Then
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by the propsition 5, we have

Aα,b,a(z) = Γ(−α)a(b2 + z2)
α
2

(
cos

(
α arctan

(
z

b

))
− bα

)
,

and

Bα,b,a,γ(z) = γz − Γ(−α)a(b2 + z2)
α
2 sin

(
α arctan

(z
b

))
,

Then, we could easily get from of characteristic function in propsition 5.

4.2 Data analysis for the bivariate case

We first give a small-scale simulation study for methodology in section 4.1. We

consider the case where σ has k = 5 equally spaced direction, α = 0.6, the aj’s are

(1, 0.5, 1, 0.5, 1), the bj’s are (1, 2, 1, 2, 1), and the drift γ = (1, 1). We simulated

100 datasets each comprised of 5000 observations. We use the relative error (RE) to

measure the accuracy and it is a ratio of absolute error and the expected value, where

is the following equation

RE =
|estimated− true|

true
.

The following tables give the means and standard deviations of the relative errors for

each parameter.

Table 4.1: The results of siumlation study.

Parameter a1 a2 a3 a4 a5

Mean 0.1002 0.0832 0.1206 0.0977 0.1253

Standard Deviation 0.0928 0.0765 0.0908 0.0829 0.1283
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Parameter b1 b2 b3 b4 b5

Mean 0.0642 0.0446 0.0608 0.0371 0.0590

Standard Deviation 0.0623 0.0598 0.0473 0.0401 0.0459

Parameter α γ1 γ2

Mean 0.1270 0.1491 0.1319

Standard Deviation 0.0864 0.1149 0.1141

In this table, the mean of RE for all parameters is less than 0.15, and their standard

deviation of RE is less than 0.13. We say this table performs good results for all

parameters, which means our methodology of parameter estimation works well. In

the following part, we give four examples of data analysis based on a bivariate case.

For the first three examples, we consider σ to be discrete and set up the same true

values of all parameters and directions, then provide different choices of directions in

the unit circle when we simulate the fitted data. Our goal is to see the ability of our

model to capture the true directions and are interested in seeing their performances

when the directions chosen in the fitted data have a small angle and a large angle

different from the true directions. Under the bivariate case, as we mentioned in

Section 2.2, s = (cos(θ), sin(θ)) is a bijection function between s and θ. In these

examples, we consider the direction based on θ. The last example is based on the

continuous σ, our goal is to see the methodology’s performance of approximation by

discretizing the spectral measure.

4.2.1 Examples of data analysis with discrete sigma

This section includes three cases based on the same true model. We begin by

building the true model first. Let’s focus on the first quadrant on the unit sphere S1,

where 0 = d0 < d1 < · · · < dk = π/2 and θ1, . . . , θk ∈ (0,
π

2
) , and also consider the



31

case where σ has k = 8 equally spaced directions. we assume that σ is of the form

given in (2.14), hence dj =
πj

2k
and θj =

π(2j − 1)

4k
. Next we choose the first direction

and the last direction to be the true directions to build the dataset, which is s1 and

s8. Then we simulate X ∼ TSα(b, σ, γ) with parameters α = 0.6, γ = 0, b(s) ≡ 2

and aj’s are (1, 0, 0, 0, 0, 0, 0, 1). In each case, we use the same way to simulate the

training data and the testing data with sample size n = 5000.

The first case is using the same θj as the true model when we do the parame-

ter estimation and generate the fitted data. The direction in fitted model denoted

by θ′j, which is θ′j = θj. The plot of training data and the testing data for the

first case plot are in Figure 4.1(a) and Figure 4.1(b) separately. Based on the true

model, we need to estimate 17 parameters, so we took m = 17 as the number of

z`’s. Same as θj, we chose these to be evenly spaced in the first quadrant. We

then fit the parameters using the training data by minimizing the objective function

given in (4.1). To perform the optimization we first used differential evolution [40],

which is a global optimization method based on randomly exploring the parameter

space by randomly modifying pairs of vectors, as implemented in the DEoptim func-

tion of the “DEoptim” R package, to get initial values. These were then plugged

into the optim function in R with the L-BFGS-B option. When we do the opti-

mization, we set up the lower bound for aj is 0, for bj, α are 0.1 , also set up the

upper bound for aj, bj are 5 and α is 0.95. After optimization, we get the ob-

jective function was 2.582 ∗ 10−6. The â = (1.041, 0.082, 0.002, 0.038, 0, 0, 0, 1.098),

b̂ = (2.117, 2.457, 1.971, 2.507, 1.989, 2.502, 1.967, 2.085) and α̂ = 0.567. Plots of the

estimate values of the aj’s are given in Figure 4.2(a). Comparing with the true value,

we find that estimated parameters are close to the true value and the distance also

approaches zero. Based on these estimated parameters and θ′j, we simulated the 5000

observations from the fitted model, and it is plotted in Figure 4.1(c). Let’s call it

fitted data.
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Figure 4.1: Plot of three different 2 dimensional data sets. (a) is training data, (b) is
testing data and (c) is fitted data. All of these three data sets have the sample size,
which is 5000. In figures, xlab represents the first component and ylab represents the
second component.
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Figure 4.2: Xlab represents the direction, since in the first quadrant of unit circle,
the direction is from 0 to π/2 and ylab represents â.

We move to check the goodness-of-fit and try to show the fitted data have the

same distribution as the test data. Figure 4.3(a) and 4.3(b) are the plot of CDF of

testing data set vs fitted data in each component. And Figure 4.4(a) is the plot of join

CDF of testing and fitted data. All of these three figures show that the plot of CDF

between testing and fitted data is almost the same. Otherwise, Figure 4.3(c) and

4.3(d) are the Q-Q plots, which compare the quantiles of the testing and fitted data
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in each component. In these two plots, almost points are one the straight line y = x,

which indicates two empirical distributions coincide. Also, we performed Kolmogorov-

Smirnov (KS) test in each component of the testing and fitted data separately and

the hypothesis is H0 : Fitted data follow Testing data’s distribution and Ha : Fitted

data doesn’t follow Testing data’s distribution. For the first component, we get test

statistic D = 0.0138 and p-value = 0.728 and for the second component the test

statistic D = 0.019 and p-value = 0.340. Both two components’ in the KS test fail

to reject null hypothesis at 10% level. Next, we tested both components together,

using the kernel consistent density equality test, which was introduced in [41] and

is implemented in the npdeneqtest function of the R package “np”. This test is,

essentially, based on using kernel density estimators to estimate a certain distance

between two multivariate densities and see if this estimated distance is significantly

different from zero. In this case, the test statistic is Tn = −8.812 and the p-value =

0.556. Thus, we have the same results as Kolmogorov-Smirnov test in each component

and conclude the fitted data have the same distribution as the test data.
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Figure 4.3: Figure(a) is CDF plots between fitted data and testing data in the first
component. Figure(b) is CDF plots in the second component. The red line represents
fitted data, and black line represents testing data. Figure(c) is a Q-Q plot of testing
data and fitted data in the first component and Figure(d) is in the second component.
In these two plots, xlab is quantiles of test data and ylab is quantiles of fitted data,
also red line is y = x.
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Figure 4.4: ylab is the value of F (x = t, y = t), xlab is the value of t. Red line
represents joint CDF of fitted data and black line represents joint CDF of testing
data.

Then, let’s move to the second case. In this case, we begin to simulate the train-

ing data and the testing data, which are plotted in Figure 4.5(a) and Figure 4.5(b)

separately. Different from the first case, we added a small angle on the original θj

when we did the optimization and set up the fitted model. Let’s define the small

angle is 3◦ or
π

60
, then θ′j = θj +

π

60
=
π(2j − 1)

4k
+

π

60
and θ′1, . . . , θ′k ∈ (0,

π

2
+

π

60
).

Same as Case 1, we need to estimate 17 parameters, so we took m = 17 as the

number of z`’s. And we chose these based on θ′j to get z`. Although the true model

and fitted model have different directions, and the difference is small, we hope that

the estimated parameters could be close to the true parameters and the small an-

gle will not influence the results too much. We then fit the parameters using the

same method. Also, when we did the optimization, we set up the same lower bound

and upper bound for aj, bj and α. After optimization, we get the objective func-

tion was 9.098 ∗ 10−5. The â = (1.073, 0.135, 0.000, 0.000, 0.000, 0.026, 0.069, 0.922) ,

b̂ = (2.301, 2.178, 2.230, 1.820, 2.095, 2.457, 1.813, 2.102) and α̂ = 0.573. Plots of the
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estimate values of the aj’s is given in Figure 4.6(a). Comparing with the true value,

the estimated parameters are not influenced by the small angle, our model still can

capture the correct directions. Based on these estimated parameters and θ′j, we sium-

lated the 5000 observations from the fitted model, and it is plotted in Figure 4.5(c).

And let’s call it fitted data.
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Figure 4.5: Plot of three different 2 dimensional data sets. (a) is training data, (b) is
testing data and (c) is fitted data. All of these three data sets have the same sample
size, which is 5000. In figures, xlab represents the first component and ylab represents
the second component.
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Figure 4.6: Here xlab represents the direction, and the direction is from 0 to
π

2
+
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60
and ylab represents â.
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We then check the goodness of fit. Figure 4.8(a) and 4.8(b) are the plot of CDF

of testing data set vs fitted data in each component. And Figure 4.7(a) is the plot of

joint CDF of testing and fitted data. Figure 4.8(c) and 4.8(d) are the Q-Q plots, which

compare the quantiles of the testing and fitted data in each component separately.

Also, we performed KS test in each component of the testing and fitted data sepa-

rately. For the first component, we get test statistic D = 0.0134 and p-value = 0.744

and for the second component the test statistic D = 0.022 and p-value = 0.163. Next,

we tested both components together, using the kernel consistent density equality test

and the test statistic is Tn = 2.754 and the p-value = 0.111. Thus, we have the same

results as KS test in each component and conclude the fitted model has the same

distribution as the true model, and the small angle cannot influence the result.
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Figure 4.7: ylab is the value of F (x = t, y = t), xlab is the value of t. Red line
represents joint CDF of fitted data and black line represents joint CDF of testing
data
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Figure 4.8: Figure(a) is CDF plots between fitted data and testing data in the first
component. Figure(b) is CDF plots in the second component. The red line represents
fitted data, and black line represents testing data. Figure(c) is a Q-Q plot of testing
data and fitted data in the first component and Figure(d) is in the second component.
In these two plots, xlab is quantiles of test data and ylab is quantiles of fitted data,
also red line is y = x.

Next, let’s focus on the third case of discrete σ. In this case, again we simulate the

training data and the testing data first, which are plotted in Figure 4.9(a) and Figure

4.9(a) separately. Then we considered to add a large angle on original θj when we did

the optimization and set up the fitted model. Let’s define the large angle is 11.25◦

or
π

16
, then θ′j = θj +

π

16
=
π(2j − 1)

4k
+

π

16
and θ′1, . . . , θ

′
k ∈ (0,

π

2
+

π

16
). Same as

last two casses, we took m = 17 as the number of z`’s and chose these based on θ′j to

get z`. In this case, we interested in the fitted model performance when there existed
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a large different direction with the true model. We then fit the parameters using

the same method. Also, when we did the optimization, we set up the same lower

boundand upper bound for aj, bj and α. After optimization, we get the objective

function was 1.108 ∗ 10−4. The â = (1.181, 0.005, 0.024, 0, 0.013, 0.000, 0.109, 0.531) ,

b̂ = (2.215, 2.153, 1.970, 1.841, 2.186, 1.596, 1.947, 1.485) and α̂ = 0.609. Plots of the

estimate values of the aj’s is given in Figure 4.10(a). From Figure 4.10(a), we find the

â are not as good as before and the large angle may influence the model to capture the

correct directions as accurate as before cases. Based on these estimated parameters

and θ′j, we simulated the 5000 observations from the fitted model, and it is plotted

in Figure 4.9(c). Let’s call it fitted data.
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Figure 4.9: Plot of three different 2 dimensional data set. (a) is training data, (b) is
testing data and (c) is fitted data. All of these three data sets have the sample size is
5000. In figures, xlab represents the first component and ylab represents the second
component.
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Figure 4.10: Xlab represents the direction, and the direction is from 0 to
π

2
+
π

16
and

ylab represents â.

We then check the goodness of fit. Figure 4.11(a) and 4.11(b) are the plot of CDF

of testing data set vs fitted data in each component separately. And Figure 4.12(a)

is the plot of joint CDF of testing and fitted data. Figure 4.11(c) and 4.11(d) are

the Q-Q plots, which compare the quantiles of the testing and fitted data in each

component separately. Also, we performed KS test in each component of the testing

and fitted data separately. For the first component, we get test statistic D = 0.0142

and p-value = 0.695 and for the second component the test statistic D = 0.035 and

p-value = 0.004, but the null hypothesis is rejected at 10% level. Next, we tested

both components together, using the kernel consistent density equality test and the

test statistic is Tn = 12.730 and the p-value < 2.22 × 10−16. This also implies that

we reject to null hypothesis at 10% level. Thus we conclude that the fitted model has

different distribution than the true model, and the large angle influences our model

to capture the correct directions.
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Figure 4.11: Figure(a) and Figure(b) are CDF plots between fitted data and testing
data in the first component and the second component separately. The red line
represents fitted data, and black line represents testing data. Figure(c) is a Q-Q plot
of testing data and fitted data in the first component and Figure(d) is in the second
component. In these two plots, xlab is quantiles of test data and ylab is quantiles of
fitted data, also red line is y = x.
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Figure 4.12: ylab is the value of F (x = t, y = t), xlab is the value of t. Red line
represents joint CDF of fitted data and black line represents joint CDF of testing
data

4.2.2 Examples of data analysis with continuous sigma

In this section, we let X = (X1, X2) ∼ TSα(σ, b, γ), where σ′(dθ) = f(θ)dθ, such

that for some α∗, β∗ > 0

f(θ) =
1

C
θα
∗−1(2π − θ)β∗−1, θ ∈ [0, 2π),

where C = B(α∗, β∗)(2π)α
∗+β∗−1 and B(·, ·) is the beta function. Then σ′ is a beta

distribution on [0, 2π). Here, we chose α∗ = β∗ = 2 and then denote this distribution

by Beta(2, 2, 2π). In this case, we assume all directions are on the unit sphere S1,

so the σ is of the form given in (2.14) and the θj’s are as described just after that

equation. Since σ′ follows a continuous distribution, we need to choose a large value

of k to make sure all characteristics in this distribution could be captured. Hence, we

set k = 70, which means we discretized σ into 70 pieces evenly on S1. Next, we must

fit 143 parameters, so tookm = 143 as the number of z`’s and chose them to be evenly
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spaced on S1. To build the true model, all directions are considered in the model,

where true directions are s1, s2, ..., s70. Them we simulate X ∼ TSα(b, σ, γ) with

parameter α = 0.6, b(s) ≡ 1, γ = (2, 2) and σ′ ∼ Beta(2, 2, 2π). Similar as before, we

simulate the train dataset with and both of their sample size are 5000. One is train

dataset in Figure 4.13(a) and the other is testing dataset.in Figure 4.13(b). We then

fit the parameters using the same method. Also, when we did the optimization, we

set up the lower bounder for aj is 0, for bj, α are 0.1 , also set up the upper bound

for aj, bj are 5 and α is 0.95. After optimization, we get the objective function was

8.643 ∗ 10−3. The α̂ = 0.654, drift was γ̂ = (2.142, 2.115), the 70 âj’s were all in the

interval (0.001, 0.040) and the 70 b̂j’s were all in the interval (0.127, 2.100). Plots of

the estimated values for the âj’s and of the cumulative values for the estimated σ

are given in Figure 4.14(a) and 4.14(b). From these two plots, the performance of

them is not perfect since there exists obviously difference in some directions, while

the differences are accepted. Then we simulated the 5000 observations from the fitted

model, and it is plotted in Figure 4.13(c). Let’s call it fitted data.
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Figure 4.13: Plot of three different 2 dimensional data sets. (a) is training data, (b)
is testing data and (c) is fitted data. All of these three data sets have the sample
size is 5000. In figures, xlab represents the first component and ylab represents the
second component.
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Figure 4.14: Plots of the estimated aj’s is given in (a). A plot of the cumulative
function of the estimated spectral measure is given in (b). The x-axis in all plots
represents the direction from 0 to 2π.

Further, we check the goodness of fit. Figure 4.15(a) and 4.15(b) are the plot of

CDF of testing data set vs fitted data in each component separately. And Figure

4.16 is the plot of joint CDF of testing and fitted data. Figure 4.15(c) and 4.15(d)

are the Q-Q plots, which compare the quantiles of the testing and fitted data in each

component separately. Also, we performed KS test in each component of the testing

and fitted data separately. For the first component, we get test statistic D = 0.023

and p-value = 0.156 and for the second component the test statistic D = 0.019 and p-

value = 0.315. Next, we tested both components together, using the kernel consistent

density equality test and the test statistic is Tn = −24.931 and the p-value = 0.273.

All tests imply that we fail to reject the null hypothesis at 10% level. Thus, we

conclude that the fitted model has the same distribution as the true model and our

methodology has good performance in both discrete σ and continuous σ.
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Figure 4.15: In Figure(a) and Figure(b), red line represents CDF of fitted data, and
black line represents CDF of test data. Figure(c) and (d) are Q-Q plots of test data
set and fitted data in each component. In these two plots, xlab is quantiles of test
data and ylab is quantiles of fitted data, also red line is y = x.
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Figure 4.16: ylab is the value of F (x = t, y = t), xlab is the value of t. Red line
represents joint CDF of fitted data and black line represents joint CDF of test data.

4.2.3 Real data analysis for the bivariate case

In this section, we apply our methodology to the modeling of two real-world bivari-

ate financial datasets related to exchange rates. The first is comprised of the exchange

rates between the US Dollar (USD) and two standard currencies: the Canadian Dollar

(CAD) and the Euro (EUR). The second is comprised of the exchange rates between

USD and two common cryptocurrencies: Bitcoin (BTC) and Ethereum (ETH). All

of the data was downloaded from Yahoo Finance, http://finance.yahoo.com.

We begin by jointly modeling the exchange rates CAD/USD and EUR/USD. Our

data consists of the daily closing prices for the period from January 23, 2009 to

January 23, 2020 for each exchange rate. The prices are converted to log returns and,

to model dependence within each time series, an ARMA(1, 1)-GARCH(1, 1) filter is

applied to the log returns for each exchange rate separately. This is implemented

using the R package “rugarch”. The standardized residuals are then considered as

ordered pairs with the first component corresponding to CAD/USD and the second

to EUR/USD for the same day, and their time series plot of standard residuals for
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daily are shown in Figure 4.17. In total, the data consists of 2863 ordered pairs.

This data was randomly split into a training data set consisting of 1432 observations

and a testing dataset consisting of 1431 observations, which is shown in Figure 4.18.

Figure 4.19 gives normal Q-Q plots for each component based on the testing data.

We also performed an adjusted Jarque-Bera test for normality (using the function

ajb.norm.test in the R package “normtest”) on each component of the testing data.

In both cases, the p-value was less than 10−5. Clearly, the normal distribution is not

reasonable for either component. Instead, we follow our methodology for fitting a

bivariate TS distribution to the training data.
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Figure 4.17: Both of these plots have the same sample size 2863. The left is time
serise plot of CAD/USD standard residuals for daily. The right is time serise plot of
EUR/USD standard residuals for daily. In these two figures, xlab represents the time
and ylab represents the standard residuals.
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Figure 4.19: Normal Q-Q plots for the testing data. The plot in a) is for the first
component (CAD/USD) and the plot in b) is for the second component (EUR/USD).
The diagonal (red) line is the line passing through the first and third quartiles.
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Figure 4.18: The left plot shows train data set and its sample size is 1432. The right
plot shows test data and its sample size is 1431. These two figures’ xlab represents
the standard residuals of CAD/USD and ylab represents the standard residuals of
EUR/USD.

We discretized σ into k = 70 equally spaced directions. Thus, we assume that

σ is of the form given in equation (2.14) where the θj’s are as described just after

that equation. This means that we must fit 143 parameters. For this reason, we

took m = 143 as the number of z`’s. We chose these to be evenly spaced on the

unit sphere S1. We then fit the parameters using the training data by minimizing
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Figure 4.20: Estimated values for CAD/USD and EUR/USD data. Plots of the
estimated aj’s and bj’s are given in (a) and (b), respectively. A plot of the cumulative
function of the estimated spectral measure is given in (c). The x-axis in all plots
represents the direction from 0 to 2π.

the objective function given in equation (4.1). To perform the optimization, we first

used differential evolution to get initial values. These were then plugged into the

optim function in R with the L-BFGS-B option. After optimization, the value of the

objective function was 1.245× 10−4. The estimated value of α was α̂ = 0.240, the 70

estimated values of the aj’s were all in the interval (0.000, 0.325), the 70 estimated

values of the bj’s were all in the interval (0.953, 3.666), and the estimated drift was

γ̂ = (0.004,−0.153). Plots of the estimated values of the aj’s, the bj’s, and of the

cumulative values for the estimated σ are given in Figure 4.20. The plots suggest

that, in this case, the spectral measure is approximately a constant times a uniform

distribution and the values of the bj are approximately all equal.
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Figure 4.22: Fitted TS Q-Q plots for the (a) CAD/USD and (b) EUR/USD data.
These compare the quantiles of the testing data with the fitted data. The diagonal
(red) line is the line y = x.
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Figure 4.21: The sample size is 1432. In figures, x-axis represents the first component
CAD/USD and y-axis represents the second component EUR/USD.

We next check the goodness of fit. Since it is computationally intractable to eval-

uate the cdfs and pdfs of bivariate TS distributions, we instead use simulation-based

approaches. We simulated 1431 observations from the fitted model, which is the same

as the number of observations in the testing data. We call this the fitted data, and its

plot is shown in Figure 4.21. In Figure 4.22, we give Q-Q plots, which compare the
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Figure 4.23: Fitted CDF for the (a) CAD/USD and (b) EUR/USD data. These
compare the cdf of the testing data with the fitted data. Red line is Fitted TS CDF
and Black line is Test CDF.

quantiles of the testing and fitted data. In both (a) and (b), almost points lie on the

red line y = x, which means test data set and fitted data set’s empirical distribution

coincide. Figure 4.23, we give CDF of test data set and fitted data set, from these

two plots, we got the same result. We also performed formal goodness-of-fit testing.

First, we performed KS tests comparing each component of the testing and fitted

data separately. For the first component we obtained the test statistic D = 0.029

and the p-value = 0.600 and for the second component we obtained the test statistic

D = 0.034 and the p-value = 0.397. Next, we tested both components together, using

the kernel consistent density equality test, the test statistic is Tn = 10.396 and the

p-value = 0.111. Note that the samples compared by the hypothesis tests are inde-

pendent as the fitting was done using the training data, but the tests are performed

using the testing data. The results of our goodness-of-fit plots and tests suggest that

the bivariate TS distribution is a reasonable model for this data.

We note that our estimates for the bj’s are all above 0.95 and many are above 2,

which suggests that a fairly large amount of tempering is needed. For comparison, we

also fit a multivariate stable distribution. The methodology is the same except that

now when we perform the optimization in (4.1), we do not optimize over the bj’s and
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instead fix these to all be 0. In this case, the minimum value of the objective function

was = 5.627× 10−3. The estimated value of α was α̂ = 0.914, the estimated drift was

γ̂ = (0.243,−0.064), and the 70 estimated values of the aj’s were all in the interval

(10−6, 2 × 10−2). Plots of the estimated values of the aj’s and of the cumulative

values for the estimated σ are given in Figure 4.24. It is interesting to note that

the shape of the spectral measure is similar to what was found when fitting the

tempered stable distribution, which suggests that the models find similar dependence

structures. However, we can see that the magnitude of the spectral measure is much

smaller, which suggests that the model is trying to compensate for the heavy tails

of the stable distribution by using, what is essential, a small scaling factor. This is

further emphasized by the fact that the estimated value of α is high and, of course,

the higher the value of α the lighter the tails for a stable distribution.

We again simulated 1431 observations from the fitted model and used it to check

the goodness of fit. From Figure 4.25, comparing with the test data set, we find there

exist some large-value points, which implies the tail may heavier than test data’s

empirical distribution. In Figure 4.26, we give Q-Q plots comparing the quantiles of

the testing and the fitted data. Also in Figure 4.27, we compare CDF of test data and

the fitted data. Next, we perform a KS tests for each component separately. For the

first component we obtained the test statistic D = 0.081 and the p-value < 10−3 and

for the second component we obtained the test statistic D = 0.077 and the p-value

< 10−3. We also performed the kernel consistent density equality test. However, the

test seemed to fail in this case, which may be due to the very heavy tails of the stable

distribution. However, from the Q-Q plots , the plot of CDF and the KS test, it

is clear that the tails of the stable distribution are too heavy and that it does not

provide a good fit.
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Figure 4.24: Stable fit. The plot of the estimated aj’s is given in (a), while the plot
of the cumulative function of the estimated σ is given in (b). The x-axis represents
the direction from 0 to 2π.
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Figure 4.25: The sample size is 1432. In figures, x-axis represents the first component
and y-axis represents the second component.
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Figure 4.26: Stable fit. These are the Q-Q plots for the (a) CAD/USD and (b)
EUR/USD data. These compare the quantiles of the testing data with the fitted
data. The diagonal (red) line is the line y = x.

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Fitted model vs Test Data

x

F
(x

)

(a)

−4 −3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Fitted model vs Test Data

y

F
(y

)

(b)

Figure 4.27: Stable fit. These are CDF for the (a) CAD/USD and (b) EUR/USD
data. Black lines represents test data and Red line represents fitted data.

We now turn to the joint modeling of the exchange rates BTC/USD and ETH/USD.

In both cases, we consider the daily closing prices from August 10, 2015 to July 20,

2020. We then convert these to log-returns, apply an ARMA(1, 1)-GARCH(1, 1) filter,

and pair the standardized residuals as before. And their time series plot of standard

residuals for daily are shown in Figure 4.28 We get 1290 bivariate observations, which

we randomly split into a training and a testing dataset, each with 645 observations,
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and the plots are in Figure 4.29.
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Figure 4.28: Both of these plots have the same sample size 1290. The left is time
serise plot of BTC/USD standard residuals for daily. The right is time serise plot of
ETH/USD standard residuals for daily. In these two figures, xlab represents the time
and ylab represents the standard residuals.

−8 −6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4

Train Data Set

BTC/USD

E
T

H
/U

S
D

(a)

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

Test Data Set

BTC/USD

E
T

H
/U

S
D

(b)

Figure 4.29: Both of these plots have the same sample size 645. The left plot shows
train data set. The right plot shows test data. These two figures’ xlab represents
the standard residual of BTC/USD and ylab represents the standard residual s of
ETH/USD.

To check for normality, normal Q-Q plots for each component of the testing data

are given in Figure 4.30 and an adjusted Jarque-Bera test was performed on each

component of the testing data separately. In both cases the p-value was less than 10−5.
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Figure 4.30: Normal Q-Q plots for the testing data. The plot in a) is for the first
component (BTC/USD) and the plot in b) is for the second component (ETH/USD).
The diagonal (red) line is the line passing through the first and third quartiles.

Clearly, the normal distribution is not reasonable for either component. Instead, we

follow our methodology for fitting a bivariate TS distribution to the training data.

We chose the same discretization and the same values for the z`’s as in the previous

example and we apply the same procedure for fitting the data. After optimization,

the value of the objective function was 4.612 × 10−3. The estimated value of α was

α̂ = 0.010, the 70 estimated values of the aj’s were all in the interval (0.000, 0.402),

the 70 estimated values of the bj’s were all in the interval (0.958, 3.524), and the

estimated drift was γ̂ = (0.466, 0.144). Plots of the estimated aj’s, the estimated bj’s,

and the cumulative curve for the estimated σ are given in Figure 4.31.
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Figure 4.31: Estimated values for BTC/USD and ETH/USD data. Plots of the
estimated aj’s and bj’s are given in (a) and (b), respectively. A plot of the cumulative
function of the estimated spectral measure is given in (c). The x-axis in all plots
represents the direction from 0 to 2π.
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Figure 4.32: In figures, x-axis represents the first component BCT/USD and y-axis
represents the second component ETH/USD.

Next, we check the goodness of fit. We begin by simulating 645 observations from

the fitted model in Figure 4.32. In Figure 4.33, we give Q-Q plots comparing the

quantiles of the testing and fitted data. And the plots of CDF of test data and fitted

data in each component are shown in Figure 4.34. Next, we perform a KS test for each

component separately. For the first component we get the test statisticD = 0.057 and

the p-value = 0.239. For the second component we get the test statistic D = 0.065
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Figure 4.33: Fitted TS Q-Q plots for the (a) BTC/UDS and (b) ETH/USD data.
These compare the quantiles of the testing data and the fitted data. The diagonal
(red) line is the line y = x.

and the p-value = 0.130. We then test the two components together with the kernel

consistent density equality test, which gives the test statistic Tn = −10.120 and the

p-value = 0.111. While the fit is not as good as in the previous example, it is much

better than the normal distribution and we cannot reject the assumption that the

data comes from a bivariate tempered stable distribution.

For comparison, we again fit a multivariate stable distribution. Here, the minimum

value of the objective function was = 7.436 × 10−3, the estimated value of α was

α̂ = 0.916, the estimated drift was γ̂ = (−0.031, 0.010), and the 70 estimated values

of the aj’s were all in the interval (0, 3× 10−2). Plots of the estimated values of the

aj’s and of the cumulative values for the estimated σ are given in Figure 4.35. The

shape of the spectral measure is again similar to what was found when fitting the

tempered stable distribution, but with a much smaller magnitude. The estimated

value of α is again much higher than for the TS distribution.
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Figure 4.34: These are CDF for the (a) BTC/USD and (b) ETH/USD data. Black
lines represents test data and Red line represents fitted data.
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Figure 4.35: Stable fit. The plot of the estimated aj’s is given in (a), while the plot
of the cumulative function of the estimated σ is given in (b). The x-axis represents
the direction from 0 to 2π.

We again simulated 645 observations from the fitted stable model, which is shown

in Figure 4.36, and used it to check the goodness-of-fit. In Figure 4.37 we give Q-Q

plots, which compare the quantiles of the testing and the fitted data. Also, in Figure

4.38, we compare CDF of test data and the fitted data. Next, we perform a KS test

for each component separately. For the first component we obtained the test statistic

D = 0.092 and the p-value 0.007 and for the second component we obtained the test

statistic D = 0.114 and the p-value < 10−3. We also performed the kernel consistent
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density equality test, but it again seems to fail possibly due to the very heavy tails

of the stable distribution. From the Q-Q plots, the plot of CDF and the KS test it is

clear that the tails of the stable distribution are too heavy and that the model does

not provide a good fit.
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Figure 4.36: Stable fit. The plot of the estimated aj’s is given in (a), while the plot
of the cumulative function of the estimated σ is given in (b). The x-axis represents
the direction from 0 to 2π.
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Figure 4.37: Stable fit. These are the Q-Q plots for the (a) BTC/USD and (b)
ETH/USD data. These compare the quantiles of the testing data with the fitted
data. The diagonal (red) line is the line y = x.
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Figure 4.38: Stable fit. These are CDF for the (a) BTC/USD and (b) ETH/USD
data. Black lines represents test data and Red line represents fitted data.



CHAPTER 5: OPTION PRICE

In this chapter, we discuss the application of multivariate TS distribution in the

basket option. We consider the return from stocks to follow TS distribution and use

TS process to derive the efficient pricing procedures for European call option under

arbitrage-free. Hence, we show the existence of equivalent martingale measure first,

then use the diagonal model to improve our methodology of parameter estimation,

which leads to more effective computation. Then, we combine this with our model for

the DS method for simulation to model real-world bivariate financial datasets related

to the stock market. Towards the end, we give the pricing of European call options

with different strikes and the pricing of the Multi-asset rainbow option. Here, we

choose Google (GOOGL) and Facebook (FB) in here. All of the data was downloaded

from Yahoo Finance, http://finance.yahoo.com.

5.1 Risk-neutral Measure

Fixed d ≥ 1, and let Ω = D([0, T ],Rd) be a canonical probability space of càdlàg

function from [0, T ] into Rd and it is right continuous with left limits, where T is a

fixed final time. Let Xt is a lévy process as {Xt : t ≥ 0} define on a this space, let

{St : t ≥ 0} be the price process of a dividend paying stock with dividend rate q ≥ 0.

We assume the stock process is St = S0e
Xt , where S0 > 0, and it is the stock price

at time t = 0. Then let F = σ(Xt : t ∈ [0, T ]), further Ft = σ(Xs : s ∈ [0, t]),

and (Ft)t≥0 is a filtration, which means the information based on St, so there is no

information in F0 and FT = F .

We assume probability measure P on the space (Ω,F ), for here the P is estimated

using historical return data from stock, we call it market measure or physical measure.
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Under physical measure P, the process {Xt : t ≥ 0} is a tempered stable process with

X1 ∼ TSα(σ, b, γ). Since Xt+1 − Xt
d
= X1, then log-returns log(St+1

St
) = Xt+1 − Xt

which also follows TSα(σ, b, γ). According to Theorem 2 in [31], and also arbitrage-

free claim prices and market completeness, there exists a probability measure Q on

(Ω,F ), which is equivalent to P. Let r be the interest rate with r ≥ 0, then under

assumption of r ≥ q ≥ 0, if the discounted price process (e−(r−q)tSt)t∈[0,T ] under

measure Q is a martingale, like

e−(r−q)tSt = EQ[e−(r−q)uSu|Ft], 0 ≤ t ≤ u ≤ T, (5.1)

we call measure Q is a risk-neutral probability measure.

We know probability measure Q ∼ P is equivalent, next we need to show how to

use P to represent Q. Here, we consider Esscher transfer to build Radon-Nikodym

derivatives process to change Q to P, its univariate form is defined in [31], and then

extend it to high dimensional, which is

dQη

dP

∣∣∣∣
Ft

=
e〈η,Xt〉

E[e〈η,Xt〉]

where η = (η1, η2, ..., ηd) ∈ Rd. Following this, we show that Xt, which under proba-

bility measure Q, also is Tempered stable process.

Theorem 3. Under Qη measure, let S = (s1, s2, ..., sd) ∈ Sd−1 and η = (η1, η2, ..., ηd) ∈

Rd s.t b(s) − 〈s, η〉 ≥ 1 ∀s ∈ Sd−1. Then {Xt : t ≥ 0} is a Tempered stable with

X1 ∼ TSα(σ, b(s)− 〈s, η〉 , γ).

Proof. We begin to change of measure, and have EQη [g(Xt)] = EP[g(Xt)Zt], hence

EQη(e
〈z,Xt〉) = EP(e〈z,Xt〉Zt)

= EP

(
e〈z,Xt〉

e〈η,Xt〉

EP(e〈η,Xt〉

)
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=
1

EP(e〈η,Xt〉
EP(e〈z,Xt〉+〈η,Xt〉)

= exp

{
t

[
〈γ, z + η〉+

∫
Sd−1

∫ ∞
0

(e〈s,z+η〉x − 1)
e−b(s)x

x1+α
dxσ(ds)

−〈γ, η〉 −
∫
Sd−1

∫ ∞
0

(e〈s,η〉x − 1)
e−b(s)x

x1+α
dxσ(ds)

]}
= exp

{
t

[
〈γ, z〉+

∫
Sd−1

∫ ∞
0

(e〈s,z+η〉x − e〈s,η〉x)e
−b(s)x

x1+α
dxσ(ds)

]}
= exp

{
t

[
〈γ, z〉+

∫
Sd−1

∫ ∞
0

(e〈s,η〉x+〈s,z〉x − e〈s,η〉x)

e−b(s)x

x1+α
dxσ(ds)

]}
= exp

{
t

[
〈γ, z〉+

∫
Sd−1

∫ ∞
0

(e〈s,z〉x − 1)
e−(b(s)x−〈s,η〉x)

x1+α
dxσ(ds)

]}
,

gives the result.

Next, we give the condition to always keep the probability measure Q to be the

risk neutral measure since the risk neutral measure may not exists.

Theorem 4. Let X(t) = (X1,t, X2,t, ..., Xd,t) be a d-dimensional random variable,

which follows TSα(σ, b(s) − 〈s, η〉 , γ). Under probability measure Qη, Qη is a risk-

neutral measure if and only if

r − q = γj +

∫
Sd−1

Γ(−α)[((b(s)− 〈s, η〉)− sj)α − (b(s)− 〈s, η〉)α]σ(ds),

where j = 1, 2, ..., d.

Proof. Let St = (S1,t, S2,t, ..., Sd,t) be d−dimensional vector, which represent d dif-

ferent stocks’ price at time t. Since St = S0e
Xt , considering the jth stock price Sj,t,

which is Sj,t = S0e
Xj,t . So,

EQη(e
−(r−q)uSj,u|Ft) = e−(r−q)uEQη(Sj,u|Ft) = e−(r−q)uEQη(S0e

Xj,u |Ft)

= e−(r−q)uS0EQη(e
Xj,u−Xj,t+Xj,t |Ft)
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= e−(r−q)uS0e
XtEQη(e

Xj,u−Xj,t |Ft)

= e−(r−q)uSj,tEQη(e
Xj,u−Xj,t)

If probability measure Qη is a risk-neutral measure, for any 0 ≤ t ≤ u ≤ T , the

equation (5.1) exists, which indicates that e−(r−q)tSj,t = EQη [e
−(r−q)uSj,u|Ft] exists.

Furthermore, EQη(e
−(r−q)uSj,u|Ft) = e−(r−q)uSj,tEQη(e

Xj,u−Xj,t) = e−(r−q)tSj,t, which

implies that E(eXj,u−Xj,t) = e(r−q)(u−t).

Since Xj,u −Xj,t
d
= Xj,u−t and,

µ̂Xj,u−t(z) = exp

[
(u− t)

(
iγjzj +

∫
Sd−1

Γ(−α)((b(s)− 〈s, η〉)− isjzj)α

−(b(s)− 〈s, η〉)α
)
σ(ds)

]
.

We have

E(eXj,u−t) = µ̂Xj,u−t(−i),

then

E(eXj,u−t) = exp

[
(u− t)

(
γj +

∫
Sd−1

Γ(−α)((b(s)− 〈s, η〉)− sj)α

−(b(s)− 〈s, η〉)α
)
σ(ds)

]
,

which is equal to e(r−q)(u−t). Finally, we get,

r − q = γj +

∫
Sd−1

Γ(−α)[((b(s)− 〈s, η〉)− sj)α − (b(s)− 〈s, η〉)α]σ(ds),

which is the condition of Qη is a martingale measure.
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5.2 Methodology of Option Pricing

After getting the equivalent martingale measure, we move to the model of parame-

ter estimations. The real data analysis in Section 4.2, we choose the tuning parameter

k = 70, which exists a high computation burden, since the cost is very expensive when

the number of directions is large. Hence, we want to improve our methodology by

reducing the number of required estimated parameters. We consider the Diagonal

model here and combine this with our moethodology mentioned in Chapter 4.1 to do

the parameter estimation. Let’s see the Diagonal model first.

“Its assumption is that the common movement in all assts is due to one

common factor only in the market ” Value at risk: the new benchmark for

managing financial risk (page 169 in [42])

Diagonal model is proposed by Sharpe [43] in 1963. Formally, the model is

Ri = αi + λiRm + εi,

where Ri is the return on asset i, Rm is the return to the market portfile, αi is the

abnormal return and λi is responsiveness to the market return and εi is residual

returns. The model means that the return on asset i is driven by the market return

Rm and εi, which is not correlated with the market. The diagonal model is a simple

asset pricing model to measure both the risk and the return of assets. Also, it could

be vastly reduced the number of estimated parameters and lead to the pricing model

more efficiently.

To set up our model, we let S1, ..., Sd are return process, X1 − X2, X3 − X4, . . . ,

X2d−1 − X2d are individual risk factors, and X2d+1 − X2d+2 is a market risk factor.

Since the random variable from TS distributions are always positive, to let the model
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more flexible, we then extend the Diagonal model to a negative part, as follows

S1 = γ1 + (X1 −X2) + β1(X2d+1 −X2d+2)

S2 = γ2 + (X3 −X4) + β2(X2d+1 −X2d+2)

: : : : : : : :

Sd = γd + (X2d−1 −X2d) + βd(X2d+1 −X2d+2)

where Xi−Xi+1 are the excess return on the asset i and X2d+1−X2d+2 are the excess

return on the market, γi is a constant depend on the asset i , βi is a coefficient of

X2d+1 −X2d+2.

Then based on the diagonal model and theorem 2, given Y = SX + γ, let Y be a

d−dimensional TS variable. Let S be a d× (2d+ 2) matrix and

S =



1 −1 . . . 0 0 β1 −β1

0 0 . . . 0 0 β2 −β2

: :
. . . : : : :

0 0 · · · 1 −1 βd −βd


S is composed of two parts. There are diagonal matrix and parameters β = (β1, . . . , βd)

T .

For the aspect of diagonal matrix part, there is a little different with the traditional

diagonal matrix, the matrix S extends to the negative, as the random variables of

tempered stable could up and down like stock price’s path. The other part, pa-

rameter β ∈ Sd−1 and β should satisfy |β| = 1. Also, let X = (X1, . . . , X2d+2)T ,

where X1, . . . , X2d+2 are independent random variables with Xj ∼ STSα(aj, bj) and

bj = b(sj). By Theorem 2, we then have Y ∼ TSα(σ, b, γ), where γ = (γ1, . . . , γd)
T is

drift. We give an example of bivariate case.

Example 3. When d = 2, let S =

1 −1 0 0 β1 −β1

0 0 1 −1 β2 −β2

, X = (X1, X2, . . . , X6)T ,



68

Y =

Y1

Y2

. Then we have

Y1

Y2

 =

1 −1 0 0 β1 −β1

0 0 1 −1 β2 −β2




X1

X2

:

X6


=

X1 −X2 + β1(X5 −X6)

X3 −X4 + β2(X5 −X6)

.

If we consider that Y1 and Y2 are return of assets, X1 −X2, X3 −X4 and X5 −X6

are independent and β1(X5 −X6) and β2(X5 −X6) correspond on the market.

Followed by Diagonal model, our directions has already reduced to 6d+5, included

(2d+ 2)’s aj and bj, α, d’s γj and d’s βj. To further reduce the number of estimated

parameters, we consider using following equation to estimate the drift.

E[X] = γ + Γ(1− α)

∫
Sd−1

(b(s))α−1sσ(ds), (5.2)

If we normalized data, then the dataset has zero mean and variance of one, then

based on equation (5.2) we get

γ = −Γ(1− α)

∫
Sd−1

(b(s))α−1sσ(ds), (5.3)

hence, we only need to estimate 5d+5 parameters. And in bivariate case, regularly, we

consider the β = (cos θ, sin θ), indicated that we only need to find the θ. In the end,

under the bivariate case, there are only reminders 14 parameters needed to estimate,

which is much less than 143.

Since we consider normalizing the data first during data analysis, here we provide

the theoretical result about how to transfer between the normalized data and the

original data set. We assume Y ∼ TSα(σ, b, γ), then X = ΣXY + µX , where ΣX is a
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covariance matrix of X and µX is the mean of X. To find X’s distribution, we have

E[ei〈z, X〉] = exp

[
i 〈γ,ΣXz + µX〉+

∫
Sd−1

∫ ∞
0

(
eit〈ΣXz, s〉 − 1

)
t−1−αe−tb(s)dtσ(ds)

]
= exp [i 〈ΣXγ + µX , z〉

+

∫
Sd−1

∫ ∞
0

(
e
iu
〈
z,

ΣXs

|ΣXs|

〉
− 1

)
u−1−αe

−ub(s)
|ΣXs| du |ΣXs|α σ(ds)

]
= exp

[∫
Sd−1

∫ ∞
0

(
eiu〈z, s

′〉 − 1
)
u−1−αe

−ub(s)
|ΣXs| du |ΣXs|α σ′(ds′)

+i 〈ΣXγ + µX , z〉]

where in the second line, let u = t|ΣXs|, then du = dt|ΣXs|. In the last line, let

s′ =
ΣXs

|ΣXs|
, since σ(ds) =

∑k
n=1 δsi(ds), then we have σ′(ds′) =

∑k
n=1 δ ΣXs

|ΣXs|
(ds′).

Hence, we get X ∼ TSα(|ΣXs|ασ′, b(s)ΣXs
,ΣXγ + µX).

Next, we will give a brief introduction to our model for the pricing of the bivariate

basket option. We first get the data set of log returns from real data and randomly

split raw data into two halves. The first is the training data, which will be used to fit

the model, while the second is the testing data, which will be used for analyzing the

goodness of fit. To easily and effectively get the parameters, let X be the training

data or testing data. Then we normalize the training data and testing data separately

in each component by
Xi − µXi
σXi

to get the new training data and testing data, where

σXi is a variance of Xi and µXi is the mean of Xi with i = 1, 2. Let’s call them

transferred training data and transferred testing data. Based on the transferred

datasets, combing the Diagonal model with our model for parameter estimation in

Section 4.1 and the DS method for simulation, we get the estimated parameters and

do the goodness-of-fit. Further, followed results X ∼ TSα(|ΣXs|ασ′, b(s)ΣXs
,ΣXγ + µX),

we get the distribution of the training data. After that, we do the goodness of fit with

the testing data to verify whether TS distribution is a reasonable model or not. If the

estimated parameters work, according to the Theorem 4, we get the parameter η to
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find another equivalent TS distribution under the measure Q and keep the measure Q

is a risk-neutral measure. Followed that, we generate Xt and develop a Monte Carlo

based method for option pricing and apply it to the pricing of European call options

with different strikes by equation (5.4). The formula of European call option is as

follows,

π = e−rTEQ[ST −K+], (5.4)

where ST = S0e
Xt and S0 is the stock price at t = 0. And we can estimate equation

(5.4) using the following algorithm [44],

Monte Carlo Algorithm for Option Pricing.

for i = 1, . . . , n

generate X(i)
T

iid∼ TSα̂(T σ̂, ˆbest, T γ̂′) with i = 1, 2, . . . , n

Set S(i)
T = S0e

X
(i)
T

Set πi = e−rT (S
(i)
T −K)+

π =
1

n

∑n
i=1 πi

Also, we do the pricing of the Multi-asset rainbow option. We consider the call

option on the minimum of two assets payoff, based on Equation (5.5) and the call

option on the maximum of two assets payoff, based on Equation (5.6)

πmin = max(min(S
[1]
T , S

[2]
T )−K, 0) (5.5)

πmax = max(max(S
[1]
T , S

[2]
T )−K, 0), (5.6)

where S[i]
T with i = 1, 2 is the stock price at time T and K is a strike price.
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5.3 Real data analysis for the bivariate case

Similar to Section 4.2.3, we did the parameter estimation first. We begin by jointly

modeling FB and GOOGL. The data consists of the daily closing prices for the period

from May 31, 2012 to March 25, 2021 for each stock. The prices are converted to

log returns by taking Rt, where Rt = log(Pt/Pt−1) and Pt is the price at time t, are

then considered as ordered pairs with the first component corresponding to FB and

the second to GOOGL for the same day. In total, the data consists of 2516 ordered

pairs. Then we randomly split raw data into two halves: training data and testing

data, each consisting of 1109 data points. The first question is to see if a multivariate

normal model will work for this data. For this reason, Figure 5.1(a) and 5.1(b) give

normal Q-Q plots for each component separately in the testing data. We also per-

formed an adjusted Jarque-Bera test for normality on each component of the testing

data. In both cases, the p-value was less than 10−16. Clearly, the normal distribu-

tion is not reasonable for either component. Instead, we follow our methodology for

fitting a bivariate TS distribution. After normalized in each component, we have the

transferred training data, which plots in Figure 5.2(a) and transferred testing data,

which plots in Figure 5.2(b).
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Figure 5.1: Normal Q-Q plots for the testing data. The plot in a) is for the first
component FB and the plot in b) is for the second component GOOGL.
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Figure 5.2: Both of these plots have the same sample size 1258. The left plot shows
train data set. The right plot shows test data. These two figures’ xlab represents
the normalized log returns of FB and ylab represents the normalized log returns of
GOOGL.

Based on diagonal model, we discretized σ into k = 6 pieces on S1, which im-

plies S =

1 −1 0 0 β1 −β1

0 0 1 −1 β2 −β2

, and β1 = cos 2πθ, β2 = sin 2πθ, then S =

1 −1 0 0 cos 2πθ − cos 2πθ

0 0 1 −1 sin 2πθ − sin 2πθ

 and we must fit 14 parameters. For this rea-

son’s, we took m = 14 to be the number of zl’s. We chose these to be evenly spaced

on S1. Next, we fitted the parameters using the transferred training data by minimiz-

ing the objective function given in (4.1). The perform the optimization we first used

Particle Swarm Optimization [45] as implemented in the hydroPSO function of the

“hydroPSO” R package, to get initial values. These were then plugged into the optim

function in R with the L-BFGS-B option. During the optimization, we set up the lower

bound for a, b are 0, for α is 0.01, and for θ is 0, also set up the upper bound for a, b,

are 6, α is 0.99, and θ is 1. After optimization, the value of the objective function was

9.330 ∗ 10−5. The estimated value of aj is â = (1.644, 1.317, 0.460, 0, 0.485, 0.750),

the estimated value of bj is b̂ = (2.391, 2.692, 1.613, 1.731, 1.119, 1.042), α̂ is 0.014

and θ̂ = 0.992. Plots of the estimated values of the aj’s, the bj’s, and of the cu-
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Figure 5.3: Estimated values for FB and GOOGL data. Plots of the estimated aj’s
and bj’s are given in (a) and (b), respectively. A plot of the cumulative function of
the estimated spectral measure is given in (c). The x-axis in all plots represents the
direction from 0 to 2π.

mulative values for the estimated σ are given in Figure 5.3. Followed by equation

(5.3), then we get γ̂ = (−0.044, −0.048). Besides, based on the value of θ̂, we get

β1 = 0.547, β2 = 0.837. Hence,

S =

1 −1 0 0 0.547 −0.547

0 0 1 −1 0.837 −0.837


.
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Figure 5.4: The same sample size 1258. In figures, x-axis represents the first compo-
nent FB and y-axis represents the second component GOOGL.
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Next, we check the goodness of fit. We simulated 1258 observations from the fitted

model, which is the same as the number of observations in the transferred testing

data. We call this the transferred fitted data, which is plotted in Figure 5.4. In

Figure 5.5 we gave several diagnostic plots, which compare cdfs and quantiles of the

transferred testing and transferred fitted data. We also performed formal goodness-of-

fit testing. First, we performed KS tests comparing each component of the transferred

testing and transferred fitted data separately. For the first component we obtained

the test statistic D = 0.039 and the p-value = 0.375 and for the second component

we obtained the test statistic D = 0.026 and the p-value = 0.843. Next, we tested

both components together, using the kernel consistent density equality test and the

test statistic is Tn = −35.534 and the p-value = 0.778. The results of our goodness

of fit plots and tests suggest that the bivariate TS distribution is a reasonable model

for this data.
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Figure 5.5: TS CDF plots for the (a) FB and (b) GOOGL data, red line represents
CDF of transferred fitted data, and black line represents CDF of the transferred
testing data. Figure(c) and (d) are fitted TS Q-Q plots for the (a) FB and (b)
GOOGL data. These compare the quantiles of the transferred testing data with the
transferred fitted data. The diagonal (red) line is the line y = x.

To find FB and GOOGL log-returns’ distribution, we need to transfer the trans-

ferred testing data and training data back to log return’s status. Since we have

X ∼ TSα(|ΣXs|ασ′, b(s
′)

ΣXs
,ΣXγ + µX), and knew the estimated value of α, b, σ, and

γ, which denoted by α̂, â, b̂ and γ̂, we get the estimated parameter of X’s distribu-

tion. We notate X ∼ TSα̂(σ̂′, b̂′, γ̂′), â′ = |ΣXs|α̂â, b̂′ =
b̂

ΣXs
and γ̂′ = ΣX γ̂ + µX ,

then we get the parameter â′ = (1.560, 1.250, 0.434, 0.000, 0.461, 0.713); b̂′ =

(105.465, 118.740, 102.327, 109.843, 43.709, 40.720) and γ̂′ = (−9.470∗10−5, 3.816∗

10−5). The cumulative estimated â′ is shown in Figure 5.6, comparing with Figure
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Figure 5.6: Estimated values for FB and GOOGL data. Plots of â′ and b̂′ are given in
(a) and (b), respectively. A plot of the cumulative function of the estimated spectral
measure is given in (c). The x-axis in all plots represents the direction from 0 to 2π.

5.3 they are really similar. And currently, S ′ =
ΣXs

|ΣXs|
, then

S ′ =

1 −1 0 0 0.485 −0.485

0 0 1 −1 0.515 −0.515


Using these new parameters, we simulated 1258 observations from the fitted model,

which is the same as the number of observations in the testing data, which is plotted

in Figure 5.8. Then we move on to check the goodness-of-fit. Again, in Figure 5.7,

we gave several diagnostic plots, which compare cdfs and quantiles of the testing and

fitted data. While the Q-Q plots exist some extreme points formed heavier tails, in

contrast to normal distribution, bivariate TS distribution more lightly underestimates

the chance of extreme value. We also performed formal goodness-of-fit testing. For

the first component we obtained the test statistic D = 0.050 and the p-value = 0.118

and for the second component we obtained the test statistic D = 0.038 and the p-

value = 0.404. Next, we tested both components together, using the kernel consistent

density equality test. In this case, the test statistic is Tn = −33.823 and the p-value

= 0.778. The results of our goodness-of-fit plots and tests are the same as before and

have the same suggestion that the bivariate TS distribution is a reasonable model for

this data.
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Figure 5.7: TS CDF plots for the (a) FB and (b) GOOGL data, red line represents
CDF of fitted data, and black line represents CDF of the testing data. Figure(c) and
(d) are the fitted TS Q-Q plots for the (a) FB and (b) GOOGL data. These compare
the quantiles of the testing data with the fitted data. The diagonal (red) line is the
line y = x.
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Figure 5.8: The same sample size 1258. In figures, x-axis represents the first compo-
nent FB and y-axis represents the second component GOOGL.



78

Now we have got a suitable model to fit the Rt, then to price the options, we need

to set up the risk-neutral measure first. We have known that under the real-world

probability measure P the process Rt is TS process with the estimated parameter

TSαest(σ̂, b̂
′, γ̂′). Also, we let the time t is measured in trading days, r is the daily

interest rate and q is the dividend rate. Since we choose Facebook and Google in this

case, both of their dividend rates are 0.

Then, we followed the Theorem 4 to transform the real-world probability measure P

to risk-neutral measure Q. To satisfy the equation existence, we set a new parameter

ηest and ˆbest, which is ˆbest = b̂′ − 〈ηest, S ′〉. Hence, the process Xt ∼ TSαest(σ̂, ˆbest, γ̂)

which is under the risk-neutral measure.

Before we find the parameter ηest, we chose Oct 22, 2021 to Oct 29, 2021 to be the

period of option, so the maturity date T = 5. And we use 13-week treasury bill to

be annualized interest rate, the closed price on Oct 22, 2021 is $0.05. Due to require

daily interest rate in our experiment, r = 0.05/252 = 1.984× 10−4. Now, we use the

Theorem 4 again to calibrate the parameter ηest. Let’s rewrite the equation, then the

objective function becomes

argmin
d∑
j=1

∣∣∣∣r −{γj +

∫
Sd−1

Γ(−α)[((b(s)− 〈s, η〉)− sj)α − (b(s)− 〈s, η〉)α]σ(ds)

}∣∣∣∣ .
In this equation, α = α̂, b(s) = b̂′, γ = γ̂′, s = S ′, σ = σ̂. We used hydroPSO to

optimize it, and set the boundary of η is from −50 to 50. The final result is ηest =

(−2.546,−2.488), at the same time, the value of objective function is 2.229 ∗ 10−15,

which means that the equation exists, also we think that the risk-neutral measure ex-

ists. Then the parameter b became ˆbest = (108.012, 116.194, 104.814, 107.355, 46.225,

38.204). For here, we know all parameters of TSα̂(σ̂, ˆbest, γ̂′), and then drive process

Xt, which is under the martingale measure Q. In this process, by [35] Definition 1.6,

we get X1 ∼ TSα̂(σ̂, ˆbest, γ̂′), then Xt ∼ TSα̂(tσ̂, ˆbest, tγ̂′). We simulate 5000 obser-



79

Table 5.1

Case 1

Stock
S0 Real time Closed Price Low Price High Price True Value

FB (K=210) $115.90 $113.72 $110.67 $119.11 $114.3
GOOGL (K=2250) $507.63 $522.04 $492.98 $581.18 $508

Table 5.2

Case 2

Stock
S0 Real time Closed Price Low Price High Price True Value

FB (K=250) $73.74 $73.76 $70.71 $79.15 $72.17
GOOGL (K=2500) $277 $272.5 $243.64 $331.47 $279

vations to be Xt. Same as the training data, the first component corresponds to FB

and the second component corresponds to GOOGL. Since from yahoo finance, each

option has the last trade date and it is accurate to time, to find the fair option price,

we consider different stock prices S0 to calculate. The choices are the real time stock

quotes at t0, the closed price, the lowest price and the highest price, where t = 0 is

the first day in period which is Oct 22, 2021. Under the same strike price K, we use

Algorithm of Monte Carlo in 5.2 to get the price of European call option π.

We consider one dimensional case first, and then get each stock’s option price.

Our final results are in Table 5.1 and 5.2. The real time stock quotes are S0 =

($326.35, $2758.07); the closed price are S0 = ($324.16, $2772.5); the low price are

S0 = ($321.11, $2743.41) and the high price are S0 = ($329.56, $2831.17) of FB and

GOOGL.

Comparing with the marketing price, our option price is closed to the marketing

value. Both of FB and GOOGL, the marketing price between the option price based

on low price and high price of stocks. Also, we find that our option price based the

real time stock quotes is the closest to the marketing price. Next, let’s turn to price

the multivariate assets. Followed equation (5.5) and (5.6), we provide the pricing of
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Table 5.3

Min Rainbow Option
K $270.98 $275.98 $280.98 $285.98 $290.98 $295.98 $ 300.98 $305.98

Price $54.98 $49.98 $44.99 $40.01 $35.04 $30.11 $ 25.26 $20.57
K $310.98 $315.98 $320.98 $325.98 $330.98 $335.98 $340.98 $345.98

Price $16.13 $12.11 $8.61 $5.80 $3.71 $2.26 $1.32 $0.73
K $350.98 $355.98 $360.98 $365.98 $370.98 $375.98 $380.98 $385.98

Price $0.39 $0.19 $ 0.09 $0.047 $0.024 $ 0.01 $0.005 $0.003

Table 5.4

Max Rainbow Option
K $2393.32 $2433.32 $2473.32 $2513.32 $2553.32 $2593.32 $ 2633.32

Price $364.37 $324.45 $284.61 $244.93 $205.48 $166.57 $129.07
K $2673.32 $2713.32 $2753.32 $2793.32 $2833.32 $2873.32 $ 2913.32

Price $94.19 $63.65 $39.06 $21.57 $10.85 $5.07 $2.25
K $2953.32 $2993.32 $3033.32 $3073.32 $ 3113.32 $ 3153.32 $ 3193.32

Price $0.98 $0.44 $0.21 $0.09 $0.05 $0.031 $0.015

rainbow option. We consider the real time stock quotes to be S0, and give 24 different

strike prices, then the results are in Table 5.3 and 5.4.



CHAPTER 6: GENERAL MULTIVARIATES TS DISTRIBUTIONS

The class of multivariate TS distributions introduced in Chapter 2 has a simple,

yet flexible structure. It is a generalization to the multivariate setting of the so-called

class of classical TS distributions, see [16]. However, there are many other classes

of TS distributions available in the literature see, e.g. [16], [19], [20], [21], [22], [46],

[47], and the references therein. Our theoretical results hold for many of these other

classes and much of our methodology can be modified to work with them as well. For

this reason, we extend our main results to a more general context. We begin with a

definition.

A distribution µ on Rd is said to be a generalized tempered stable (GTS) distribu-

tion if its characteristics function can be written in the form

µ̂(z) = exp

[
i〈γ, z〉+

∫
Sd−1

∫ ∞
0

l`(s, x, z)
q(s, x)

x1+α
dxσ(ds)

]
, z ∈ Rd, (6.1)

where

l`(s, x, z) = ei〈s,z〉x − 1− i 〈s, z〉xh`(x),

α ∈ (−∞, 2), γ ∈ Rd, σ is a finite Borel measure on Sd−1, and q : Sd−1 × (0,∞) 7→

[0,∞) is a Borel function satisfying conditions that are described below. The pa-

rameter ` ∈ {0, 1, 2} determines which parametrization we are using. Specifically, it

determines the choice of function h` : Rd 7→ R, where h0 ≡ 0, h1 ≡ 1, and h2 is given

by h2(x) = 1[|x|≤1]. Depending on the properties of q we may be able to use one or

more of these parametrizations. We denote the distribution with characteristic func-

tion given in (6.1) by µ = GTSα(σ, q, γ)`. This is an infinitely divisible distribution
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with Lévy measure

L(B) =

∫
Sd−1

∫ ∞
0

1B(sx)x−1−αq(s, x)dxσ(ds), B ∈ B(Rd).

We refer to q as the tempering function. Many parametric forms for q have appeared

in the literature, see e.g. [22], [48] or [49]. We assume that q satisfies the property:

Q1. There exist an A ∈ B((0,∞)) with Lebesgue measure 0 and a B ∈ B(Sd−1)

with σ(B) = 0 such that for all x ∈ Ac the function q(·, x) is continuous for all s ∈ Bc.

We further assume that there exists a Borel function qU : (0,∞) 7→ [0,∞) satisfying:

U1. q(s, x) ≤ qU(x) for every s and Lebesgue a.e. x;

U2.
∫ 1

0
x1−αqU(x)dx <∞;

U3.
∫∞

1
x−1−αqU(x)dx <∞.

If qU satisfies U1-U3, then we can take ` = 2. Further, if, instead of U2, qU satisfies

the stronger condition

U2’.
∫ 1

0
x−αqU(x)dx <∞,

then we can take ` = 0. Similarly, if, instead of U3, qU satisfies the stronger condition

U3’.
∫∞

1
x−αqU(x)dx <∞,

then we can take ` = 1. We call qU the upper bounding function. When α ∈ (0, 2),

if q is a bounded function, i.e. if there exists a K > 0 such that q(s, x) ≤ K, then we

can take qU(x) ≡ K. We now give our first main result for GTS distributions.

Theorem 5. Fix α ∈ (−∞, 2), let µ = GTSα(σ, q, γ)`, assume that Q1 holds and that

an upper bounding function qU satisfying appropriate conditions to use parametriza-

tion ` exists. Then, there exists a sequence of Borel measures σn on Sd−1 with finite

support, such that, if µn = GTSα(σn, q, γ)`, then µn
w→ µ as n→∞.

For certain special cases, related results are given in [22] and [50]. Next, we give a

local version of this result. In this case, we need the distribution to have a bounded

density. When α ≤ 0, this does not hold in general even when the distribution
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is full, see [22]. For this reason, we focus on the case where α ∈ (0, 2). Further,

we assume that q has a lower bounding function qL. Specifically, we assume that

qL : (0,∞) 7→ (0,∞) is a Borel function satisfying:

L1. q(s, x) ≥ qL(x) for σ-a.e. s and Lebesgue a.e. x;

L2.
∫ 1

0
x1−αqL(x)dx > 0;

L3.
∫∞

0
(1− cos(x))x−1−αqL(x)dx > 0; and

L4. qL is bounded and monotonely decreasing.

Theorem 6. Fix α ∈ (0, 2), let µ = GTSα(σ, q, γ)`, and assume that Q1 holds.

Assume further that there exists an upper function qU satisfying appropriate conditions

to use parametrization ` and a lower bounding qL satisfying L1-L4. If σ is full, then

µ has pdf p and for any ε > 0, there exists a finite measure σ∗ on Sd−1, having a

finite support, such that the distribution µ∗ = GTSα(σ∗, q, γ)` has a density p∗, which

satisfies

sup
x∈Rd
|p(x)− p∗(x)| ≤ ε.

For stable distributions (i.e. when q ≡ 1) a version of this result is given in [27].

Remark 1. The TS distributions introduced in Section 2 are an important class of

GTS distributions. Specifically, for α ∈ (0, 1), TSα(σ, b, γ) = GTSα(σ, q, γ)0, where

q(s, x) = e−b(s)x and b(·) is continuous except, perhaps, on a set of σ measure 0. In

this case we can take qU(x) ≡ 1 and if there exists an M > 0 with b(s) ≤M , then we

can take qL(x) = e−Mx. Thus, Theorem 1 is a special case of Theorem 6.

Further, we verify L1-L4 under q(s, x) = e−b(s)x, which we really interesting in

this dissertation, with b(s) ≥ 0. Let’s assume there ∃M , such that b(s) ≤ M ,

then q(s, x) = e−b(s)x ≥ e−Mx = qL(x), which satisfies L1. For L2, we consider∫ 1

0
x1−αqL(x)dx =

∫ 1

0
x1−αe−Mxdx. By changing variable u = Mx and following
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gamma function

∫ 1

0

x1−αe−Mxdx = Mα−2

∫ 1

0

u1−αe−udu

≥ Mα−2

∫ 1

0

u1−α(1− u)du

= Mα−2 1

(2− α)(3− α)
> 0,

where the second linefollows 4.2.29 in [51]. So L2 is satisfied. Next, for L3

∫ ∞
0

(1− cos(x))x−1−αqL(x)dx =

∫ ∞
0

(1− cos(x))x−1−αe−Mxdx

= −
∫ ∞

0

(cos(x)− 1)x−1−αe−Mxdx

≥ 11

24

∫ 1

0

x1−αe−Mxdx > 0,

where the third line follows by Lemma 4.13 [22] and the fourth line follows by L2.

For L4, we consider q′L(x), where q′L(x) = (e−Mx)′ = −Me−Mx. Since x ∈ (0,∞),

0 ≤ b(s) ≤ M , we have q′L(x) < 0. Hence, L4 is satisfied. Hence, function of

q(s, x) = e−b(s)x satisfies all 4 conditions.

We use the same function of q(s, x) to verify U1, U2’ and U3 under ` = 2, such that

q(s, x) = e−b(s)x. Here, we take qU(x) ≡ 1, then e−b(s)x ≤ 1 = qU(x), which satisfies

U1. For U2’,
∫ 1

0
x−αqU(x)dx =

∫ 1

0
x−αdx =

1

1− α
< ∞, so U2’ is satisfied. For

U3,
∫∞

1
x−1−αqU(x)dx =

∫∞
1
x−1−αdx =

1

α
< ∞. Then, function of q(s, x) = e−b(s)x

satisfies U1, U2’ and U3. The verification of ` = 1 and ` = 0 are the similar.



CHAPTER 7: PROOFS of MAIN THEOREMS

7.1 Proof of Theorem 5

Before giving the proof, we recall a definition. If σ and σn are finite measures on

Sd−1, then we write σn
w→ σ if for any continuous and bounded function f : Sd−1 7→ R,

lim
n→∞

∫
Sd−1

f(x)σn(dx) =

∫
Sd−1

f(x)σ(dx). (7.1)

Lemma 2. Let f : Sd−1 7→ R be a bounded Borel function and let Df be its set of

discontinuities. If σn
w→ σ and σ(Df ) = 0, then (7.1) holds.

Proof. Let cn = σn(Sd−1) =
∫
Sd−1 σn(dx) and c = σ(Sd−1) =

∫
Sd−1 σ(dx). Note that

(7.1) implies that cn → c. If c = 0 then the result follows easily from the fact that f

is bounded. Henceforth assume c > 0. Let σ′n = σn/cn, let σ′ = σ/c, and note that

these are probability measures. The fact that cn → c implies that σ′n
w→ σ′. Thus,

from a version of the Portmanteau Theorem, see e.g. Theorem 13.16 in [52], it follows

that c−1
n

∫
Sd−1 f(x)σn(dx)→ c−1

∫
Sd−1 f(x)σ(dx). The fact that cn → c completes the

proof.

Lemma 3. When ` = 2, then h2(x) = 1[x≤1]. For every ε > 0, there exists a δ > 0

such that if s, s′ ∈ Sd−1 with |s− s′| ≤ δ, then for each x and fixed z ∈ Rd,

|l2(s, x, z)− l2(s′, x, z)| ≤ ε.

Proof. Let’s begin with

|l2(s, x, z)− l2(s′, x, z)| = |ei〈s,z〉x − 1− i 〈s, z〉x1x≤1
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−(ei〈s
′,z〉x − 1− i 〈s′, z〉x1x≤1)|

= |ei〈s,z〉x − i 〈s, z〉x1[x≤1] − ei〈s
′,z〉x + i 〈s′, z〉x1[x≤1]|

= |ei〈s,z〉x − ei〈s′,z〉x + i 〈s′ − s, z〉x1[x≤1]|

= |1− ei〈s′−s,z〉x + e−i〈s,z〉xi 〈s′ − s, z〉x1[x≤1]| (7.2)

If under the case of 0 ≤ x ≤ 1,

|l2(s, x, z)− l2(s′, x, z)| = |1− ei〈s′−s,z〉x + e−i〈s,z〉xi 〈s′ − s, z〉x|

= |1− ei〈s′−s,z〉x + i 〈s′ − s, z〉x

+i 〈s′ − s, z〉x(e−i〈s,z〉x − 1)|

≤ |1− ei〈s′−s,z〉x + i 〈s′ − s, z〉x|

+| 〈s′ − s, z〉x||e−i〈s,z〉x − 1|

≤ 1

2
|x|2| 〈s′ − s, z〉 |+ | 〈s′ − s, z〉 ||x|2| 〈s, z〉 | (7.3)

= |x|2| 〈s′ − s, z〉 |
(

1

2
| 〈s′ − s, z〉 |+ | 〈s, z〉 |

)
≤ |x|2||s′ − s||z|

(
1

2
| 〈s′ − s, z〉 |+ | 〈s, z〉 |

)
, (7.4)

where equation (7.3) follows 26.40 and 26.41 in [53].

Since |s− s′| ≤ δ, by equation (7.4), we have

|l2(s, x, z)− l2(s′, x, z)| ≤ |x|2|δ|z|
(

1

2
| 〈s′ − s, z〉 |+ | 〈s, z〉 |

)
= ε.

If under the case of x > 1,

|l2(s, x, z)− l2(s′, x, z)| = |1− ei〈s′−s,z〉x|

≤ min {| 〈s′ − s, z〉 ||x|, 2}

≤ min {|s′ − s||z||x|, 2}
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= min {δ|z||x|, 2} = ε,

where the second line follows 26.40 in [53]. From here the result follows.

Lemma 4. Assume that q satisfies Q1 and that an upper bounding function qU sat-

isfying conditions U1.-U3., then
∫∞

0
l`(s, x, z)

q(s, x)

x1+α
dx is continuous in s for each x

and bounded for each fixed z ∈ Rd.

Proof. It is enough to show the proof when ` = 2. Other cases’ proof is similar. So,

let’s consider
∫∞

0
l2(s, x, z)

q(s, x)

x1+α
dx is continuous in s for each x. By equation (8.9)

in [35], we have

|l2(s, x, z)| ≤ 1

2
|z|2|x|21[x≤1] + 21[x>1].

Thus,

∣∣∣∣l2(s, x, z)
q(s, x)

x1+α

∣∣∣∣ ≤ (1

2
|z|2|x|21[x≤1] + 21[x>1]

)
q(s, x)

x1+α
.

Since q(s, x) ≤ qU(x),

∣∣∣∣l2(s, x, z)
q(s, x)

x1+α

∣∣∣∣ ≤ (1

2
|z|2|x|21[x≤1] + 21[x>1]

)
qU(x)

x1+α
= g(x, z), (7.5)

where g(x, z) is bounded for each fixed z ∈ Rd and integrable.

From the Lemma 3, we have l2(s, x, z) is continuous in s, and under Q1 q(s, x) is

also continuous in s, then we get l2(s, x, z)
q(s, x)

x1+α
is continuous in s. Thus, following

Theorem 16.8 in [53],
∫∞

0
l2(s, x, z)

q(s, x)

x1+α
dx is continuous in s for each x.

Next, let’s show
∫∞

0
l2(s, x, z)

q(s, x)

x1+α
dx is bounded for each fixed z ∈ Rd.

∣∣∣∣∫ ∞
0

l2(s, x, z)
q(s, x)

x1+α
dx

∣∣∣∣ ≤ ∫ ∞
0

∣∣∣∣l2(s, x, z)
q(s, x)

x1+α

∣∣∣∣ dx
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≤
∫ ∞

0

(
1

2
|z|2|x|21x≤1 + 21[x>1]

)
qU(x)

x1+α
dx

=

∫ 1

0

1

2
|z|2|x|2 qU(x)

x1+α
dx+ 2

∫ ∞
1

qU(x)

x1+α
dx

=
1

2
|z|2

∫ 1

0

x1−αqU(x)dx+ 2

∫ ∞
1

x−1−αqU(x)dx <∞,

where the last inequality based on the conditionU2. and U3. of qU(x). From here

the results follows.

Lemma 5. Fix α ∈ (−∞, 2), let σ and σn be finite Borel measures on Sd−1, let µ =

GTSα(σ, q, γ)`, and let µn = GTSα(σn, q, γ)`. Assume that q satisfies Q1 and that an

upper bounding function qU satisfying appropriate conditions to use parametrization

` exists. If σn
w→ σ, then µn

w→ µ.

Proof. It suffices to show that the characteristic function of µn converges to that of

µ. Toward this end let ψ(s, z) =
∫∞

0
l`(s, x, z)

q(s, x)

x1+α
dx. From (6.1), the fact that

σn
w→ σ, and Lemma 2, it suffices to show that for each fixed z ∈ Rd, the function

ψ(·, z) is bounded and that the set of its discontinuities has σ measure 0.

We begin with boundedness. By (26.4) in [53] and (8.9) in [35] we have

|l`(s, x, z)| ≤ 2


|z|x1[x≤1] + 1[x>1] if ` = 0

|z|2x21[x≤1] + |z|x1[x>1] if ` = 1

|z|2x21[x≤1] + 1[x>1] if ` = 2

.

Letting g`(x, z) be this upper bound on |l(s, x, z)|, it follows that for every s, every

z, and Lebesgue a.e. x > 0

∣∣∣∣l(s, x, z)
q(s, x)

x1+α

∣∣∣∣ ≤ g`(x, z)
qU(x)

x1+α
. (7.6)

This is integrable by the assumptions on qU needed to use representation `. Thus, for

each s and z we have |ψ(s, z)| ≤
∫∞

0
g`(x, z)

qU(x)

x1+α
dx < ∞. We showed the detailed
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proof in Lemma 4.

Next, note that for fixed z and x, l`(·, x, z) is continuous. It follows that for all z and

all x ∈ Ac the set of discontinuities of the function mapping s to l`(s, x, z)
q(s, x)

x1+α
is

contained in set B. Now applying the dominated convergence theorem for continuity,

see e.g. Theorem 16.8 in [53] shows that for fixed z the set of discontinuities of ψ(·, z)

is contained in B, which has σ measure 0.

Lemma 6. Fix β > 0. For every ε > 0 there exists a δ > 0 such that, if s, s′ ∈ Sd−1

with |s− s′| ≤ δ, then for every ξ ∈ Sd−1,

∣∣∣∣|〈s, ξ〉|β − |〈s′, ξ〉|β∣∣∣∣ ≤ ε.

Proof. We begin with the case when β ∈ (0, 1]. Let δ = ε
1
β and note that

∣∣| 〈s, ξ〉 |β − | 〈s′, ξ〉 |β∣∣ ≤ ∣∣| 〈s, ξ〉 | − | 〈s′, ξ〉 |∣∣β
= | 〈s− s′, ξ〉 |β

≤ |s− s′|β|ξ|β ≤ δβ = ε,

where the first inequality follows from the fact that, for such β, |xβ − yβ| ≤ |x− y|β

for x, y ∈ [0, 1], see e.g. the proof of Lemma 2 in [?]. We now turn to the case when

β ∈ (1,∞). Let δ =
ε

β
and note that

∣∣| 〈s, ξ〉 |β − | 〈s′, ξ〉 |β∣∣ ≤ β| 〈s, ξ〉 − 〈s′, ξ〉 |

= β| 〈s− s′, ξ〉 |

≤ β|s− s′||ξ| ≤ βδ = ε,

where the first inequality follows from the fact that, for such β, |xβ − yβ| ≤ β|x− y|β

for x, y ∈ [0, 1], which itself follows from a standard application of the mean value
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theorem.

Lemma 7. For any finite Borel measure σ on Sd−1, there exists a sequence {σn} of

finite Borel measure on Sd−1, each having finite support, such that σn
w→ σ and for

any β > 0

lim
n→∞

inf
ξ∈Sd−1

∫
Sd−1

|〈s, ξ〉|βσn(ds) = inf
ξ∈Sd−1

∫
Sd−1

|〈s, ξ〉|βσ(ds).

Further, σn is full for each n.

Note that a part of the result is that we can take each σn to be full even if σ is not

full.

Proof. Fix n ∈ N and consider the open cover of Sd−1 comprised of open balls of

radius 1/n centered at each point of Sd−1. Since Sd−1 is compact, there exists a

finite subcover B1, B2, ..., BMn , where Mn is the number of ball in the subcover. Let

s1, s2, . . . , sMn ∈ Sd−1 be the centers of these balls. Without loss of generality, we

assume that these vectors span Rd, as otherwise we can add a finite number of balls

to the subcover to insure thus. Now construct a disjoint cover A1, A2, . . . , AMn , where

Aj = (Bj \
⋃
i<j Ai) ∩ Sd−1 for j = 1, ..,Mn. Next, define

σn =
Mn∑
j=1

(
σ(Aj) ∨

1

nMn

)
δsj ,

where δsj is the pointmass at sj. Note that sj ∈ Sd−1 may not be in Aj. Note further

that since s1, s2, . . . , sMn span Rd and
(
σ(Aj) ∨ 1

nMn

)
> 0, this measure if full.

We now show that σn
w→ σ. Toward this end, let f : Sd−1 7→ R be a continuous

function that is bounded by some K > 0. Since Sd−1 is compact, f is uniformly

continuous. Thus, for any ε > 0, there exists a δ > 0 such that if s, s′ ∈ Sd−1 and

|s− s′| ≤ δ, then

|f(s)− f(s′)| ≤ ε

2σ(Sd−1)
.
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Next, note that for any n ≥
(

1

δ
∨ 2K

ε

)
∣∣∣∣ ∫

Sd−1

f(s)σ(ds)−
∫
Sd−1

f(s)σn(ds)

∣∣∣∣
≤
∣∣∣∣ ∫⋃Mn

j=1 Aj

f(s)σ(ds)−
Mn∑
j=1

f(sj)σ(Aj)

∣∣∣∣+
Mn∑
j=1

|f(sj)|
nMn

≤
∣∣∣∣ Mn∑
j=1

∫
Aj

(f(s)− f(sj))σ(ds)

∣∣∣∣+ ε/2

≤
Mn∑
j=1

∫
Aj

|f(s)− f(sj)|σ(ds) + ε/2

≤
Mn∑
j=1

∫
Aj

ε

2σ(Sd−1)
σ(ds) + ε/2 = ε, (7.7)

where the last line follows from the fact that if s ∈ Aj, then s, sj ∈ Bj and hence

|s− sj| < 1/n ≤ δ.

We now turn to the last part. Fix ε > 0. By Lemma 6 there exists a δ > 0, such

that if s, s′ ∈ Sd−1 with |s− s′| ≤ δ then for every ξ ∈ Sd−1,

∣∣∣∣|〈s, ξ〉|β − |〈s′, ξ〉|β∣∣∣∣ ≤ ε

2σ(Sd−1)
.

Note that for any s, ξ ∈ Sd−1, |〈s, ξ〉|β ≤ 1. Thus, if n ≥
(

1

δ
∨ 2

ε

)
, then by (7.7), for

every ξ ∈ Sd−1, we get

∣∣∣∣ ∫
Sd−1

|〈s, ξ〉|βσn(ds)−
∫
Sd−1

|〈s, ξ〉|βσ(ds)

∣∣∣∣ ≤ ε

and hence

∫
Sd−1

|〈s, ξ〉|βσ(ds)− ε ≤
∫
Sd−1

|〈s, ξ〉|βσn(ds) ≤
∫
Sd−1

|〈s, ξ〉|βσ(ds) + ε.

Taking infimums over this inequality gives the result.
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Proof of Theorem 5. The result follows immediately from Lemmas 7 and 5.

7.2 Proof of Theorem 6

Lemma 8. Fix α ∈ (0, 2) and assume that q has a lower bounding function qL

satisfying L1-L4. There exists a constant C = C(α, qL) > 0, such that for σ-a.e s,

∫ ∞
0

(cos(〈s, z〉x)− 1)x−1−αq(s, x)dx ≤ −C(|〈s, z〉|2 ∧ |〈s, z〉|α).

Proof. When |〈s, z〉| ≤ 1, arguments similar to those in the proof of Lemma 4.13 in

[22] imply that for σ-a.e s

∫ ∞
0

(cos(〈s, z〉x)− 1)x−1−αq(s, x)dx ≤ −11

24
|〈s, z〉|2

∫ 1

0

x1−αq(s, x)dx

≤ −11

24
|〈s, z〉|2

∫ 1

0

x1−αqL(x)dx.

When |〈s, z〉| > 1, then for σ-a.e s

∫ ∞
0

(cos(〈s, z〉x)− 1)x−1−αq(s, x)dx

≤ −
∫ ∞

0

(1− cos(〈s, z〉x))x−1−αqL(x)dx

≤ −|〈s, z〉|α
∫ ∞

0

(1− cos(x))x−1−αqL

(
x

|〈s, z〉|

)
dx

≤ −|〈s, z〉|α
∫ ∞

0

(1− cos(x))x−1−αqL(x)dx,

where the second line follows by change of variables and the third from the fact that

qL(x) is monotonously decreasing. Now, taking

C = C(α, qL) = min

{
11

24

∫ 1

0

x1−αqL(x)dx,

∫ ∞
0

(1− cos(x))x−1−αqL(x)dx

}

gives the result.
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Lemma 9. Let α ∈ (0, 2), µ = GTSα(σ, q, γ)`, u2 = inf
ξ∈Sd−1

∫
Sd−1 |〈s, ξ〉|2σ(ds), and

assume that a lower bounding function qL satisfying L1-L4 exists. If σ is full, then

there exists a constant C = C(α, qL) > 0 such that

|µ̂(z)| ≤ exp
[
−C(|z|2 ∧ |z|α)u2

]
(7.8)

and ∫
Rd
|µ̂(z)|dz ≤ 2π

d
2

Γ(d
2
)

∫ ∞
0

exp
[
−C(r2 ∧ rα)u2

]
rd−1dr <∞.

Proof. From equation (6.1) and Lemma 8 it follows that there exists a C > 0 with

|µ̂(z)| = exp

[
<
(
i〈γ, z〉+

∫
Sd−1

∫ ∞
0

l`(s, x, z)
q(s, x)

x1+α
dxσ(ds)

)]
= exp

[∫
Sd−1

∫ ∞
0

(cos(〈s, z〉x)− 1)
q(s, x)

x1+α
dxσ(ds)

]
≤ exp

[
−C

∫
Sd−1

(|〈s, z〉|2 ∧ |〈s, z〉|α)σ(ds)

]
.

Next, for z 6= 0, let ξz =
z

|z|
, and note that, for such z

|µ̂(z)| ≤ exp

[
−C

∫
Sd−1

(
(|z|2|〈s, ξz〉|2) ∧ (|z|α|〈s, ξz〉|α)

)
σ(ds)

]
≤ exp

[
−C

∫
Sd−1

((
(|z|2 ∧ |z|α)|〈s, ξz〉|2

)
∧
(
(|z|α ∧ |z|2)|〈s, ξz〉|α

))
σ(ds)

]
≤ exp

[
−C(|z|2 ∧ |z|α) inf

ξ∈Sd−1

∫
Sd−1

(|〈s, ξ〉|2 ∧ |〈s, ξ〉|α)σ(ds)

]
= exp

[
−C(|z|2 ∧ |z|α) inf

ξ∈Sd−1

∫
Sd−1

| 〈s, ξ〉 |2σ(ds)

]
= exp

[
−C(|z|2 ∧ |z|α)u2

]
,

where the last two linse follows from the fact that s, ξ ∈ Sd−1 and α ∈ [0, 2), then

| 〈s, ξ〉 | ≤ 1, and | 〈s, ξ〉 |α > | 〈s, ξ〉 |2. This gives (7.8) for z 6= 0, and since µ̂(0) = 1,

the result holds for z = 0 as well. Now, converting to polar coordinates (see e.g.
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Theorem 5.1.8 in [54]) gives

∫
Rd
|µ̂(z)|dz ≤

∫
Rd

exp
[
−C(|z|2 ∧ |z|α)u2

]
dz

=

∫
Sd−1

∫ ∞
0

exp
[
−C(r2 ∧ rα)u2

]
rd−1drλSd−1(dω)

=
2π

d
2

Γ(d
2
)

∫ ∞
0

exp
[
−C(r2 ∧ rα)u2

]
rd−1dr <∞,

where the finiteness follows by the fact that σ is full and thus that u2 > 0 by Lemma

1. Here λSd−1 is the surface measure on Sd−1 and λSd−1(Sd−1) =
2π

d
2

Γ(d
2
)
, see [54].

Lemma 10. Let σn be a discretization of σ as defined in Lemma 7 and µ follows

GTSα(σ, q, γ)` with α ∈ (0, 2). If σ is full, then for large enough n

∫
Rd
|µ̂n(z)|dz <∞. (7.9)

Proof. Applying Lemma 7 with β = 2 gives

lim
n→∞

inf
ξ∈Sd−1

∫
Sd−1

|〈s, ξ〉|2σ∗n(ds) −→ inf
ξ∈Sd−1

∫
Sd−1

|〈s, ξ〉|2σ(ds) > 0.

Thus, for large enough n, σn satisfies Lemma 1. From here the result follows by

Lemma 9.

Proof of Theorem 6. Let µ̂(z) be the characteristic function of GTSα(σ, q, γ) and let

µ̂n(z) be the characteristic function of GTSα(σn, q, γ). By Lemma 10, there is an

N0 ≥ 1 such that if n ≥ N0, then (7.9) holds. For such n, by the inversion formula,

see e.g. Proposition 2.5(xii) in [35], we get

|p(x)− pn(x)| = (2π)−d
∣∣∣∣∫

Rd
e−i〈x,z〉(µ̂(z)− µ̂n(z))dz

∣∣∣∣
≤ (2π)−d

∫
Rd
|e−i〈x,z〉(µ̂(z)− µ̂n(z))|dz
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= (2π)−d
∫
Rd
|µ̂(z)− µ̂n(z)|dz. (7.10)

Lemma 7 implies that there exists an N1 ≥ N0 such that un ≥ u/2. Taking n ≥ N1

and applying (7.8) gives

|µ̂(z)− µ̂n(z)| ≤ exp[−C(|z|2 ∧ |z|α)u] + exp[−C(|z|2 ∧ |z|α)un]

≤ exp[−C(|z|2 ∧ |z|α)u] + exp[−.5C(|z|2 ∧ |z|α)u2]

≤ 2 exp[−.5C(|z|2 ∧ |z|α)u2].

Thus,

lim
L→∞

sup
n≥N1

∫
|z|>L
|µ̂(z)− µ̂n(z)|dz ≤ lim

L→∞
2

∫
|z|>L

exp[−.5C(|z|2 ∧ |z|α)u]dz = 0,

where the final equality follows by the dominated convergence theorem. It follows

that there is an L′ > 0 such that supn≥N1

∫
|z|>L′ |µ̂(z)− µ̂n(z)|dz < (2π)dε

2
.

Since µ̂n
w−→ µ̂, following Proposition 2.5(vi) in [35], we have µ̂n(z) −→ µ̂(z)

uniformly on any compact set. This implies that, ∀ε > 0,∀k > 0, L = L′ > 0,∃N2 s.t

n ≥ N2, then sup
|z|≤L′

|µ̂(z)− µ̂n(z))| < ε

k
.

Hence, for n ≥ N2 and L = L′,

∫
<d
|µ̂(z)− µ̂n(z)|dz =

∫
|z|≤L′

|µ̂(z)− µ̂n(z)|dz +

∫
|z|>L′

|µ̂(z)− µ̂n(z)|dz

≤ ε

k

∫
|z|≤L′

dz +

∫
|z|>L′

|µ̂(z)− µ̂n(z)|dz (7.11)

≤ ε

k

∫
|z|≤L′

dz +
(2π)dε

2

=
ε

k
∗ π

d
2

Γ(d
2

+ 1)
∗ (L′)d +

(2π)dε

2

=
(2π)dε

2
+

(2π)dε

2
= (2π)dε
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For the fouth line,
π
d
2

Γ(d
2

+ 1)
is the volume of {z ∈ Rd : |z| ≤ L′}, and let k =

21−dπ−
d
2 (L′)d

Γ(d
2

+ 1)
.

Thus, going back to the equation (7.10), we have

|p(x)− pn(x)| ≤ (2π)−d
∫
Rd
|µ̂(z)− µ̂n(z)|dz

= (2π)−d ∗ (2π)dε = ε.

From here the results follows from equation (7.10) by taking p∗ = pn for any n ≥

N2.



97

REFERENCES

[1] L. Cao and M. Grabchak, “Smoothly truncated levy walks: Toward a realistic
mobility model,” in 2014 IEEE 33rd International Performance Computing and
Communications Conference (IPCCC), pp. 1–8, IEEE, 2014.

[2] S. Thananjeyan, C. A. Chan, E. Wong, and A. Nirmalathas, “Deployment and
resource distribution of mobile edge hosts based on correlated user mobility,”
IEEE Access, vol. 7, pp. 148–159, 2018.

[3] P. S. Griffin, R. A. Maller, and D. Roberts, “Finite time ruin probabilities for tem-
pered stable insurance risk processes,” Insurance: Mathematics and Economics,
vol. 53, no. 2, pp. 478–489, 2013.

[4] M. L. Zuparic and A. C. Kalloniatis, “Analytic solution to space-fractional
fokker–planck equations for tempered-stable lévy distributions with spatially lin-
ear, time-dependent drift,” Journal of Physics A: Mathematical and Theoretical,
vol. 51, no. 3, p. 035101, 2017.

[5] X. Yu, Y. Zhang, and H. Sun, “Modeling covid-19 spreading dynamics and un-
employment rate evolution in rural and urban counties of alabama and new york
using fractional derivative models,” Results in Physics, vol. 26, p. 104360, 2021.

[6] K. J. Palmer, M. S. Ridout, and B. J. Morgan, “Modelling cell generation times by
using the tempered stable distribution,” Journal of the Royal Statistical Society:
Series C (Applied Statistics), vol. 57, no. 4, pp. 379–397, 2008.

[7] Y. Liu, P. M. Djurić, Y. S. Kim, S. T. Rachev, and J. Glimm, “Systemic risk
modeling with lévy copulas,” Journal of Risk and Financial Management, vol. 14,
no. 6, p. 251, 2021.

[8] S. Asmussen and M. Bladt, “Gram–charlier methods, regime-switching and
stochastic volatility in exponential lévy models,” Quantitative Finance, pp. 1–15,
2021.

[9] J. Choi, Y. S. Kim, and I. Mitov, “Reward-risk momentum strategies using
classical tempered stable distribution,” Journal of Banking & Finance, vol. 58,
pp. 194–213, 2015.

[10] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” The
Journal of political economy, vol. 81, no. 3, pp. 637–654, 1973.

[11] J. P. Nolan, “Fitting data and assessing goodness-of-fit with stable distributions,”
Applications of Heavy Tailed Distributions in Economics, Engineering and Statis-
tics, Washington DC, 1999.

[12] M. Grabchak and G. Samorodnitsky, “Do financial returns have finite or infinite
variance? a paradox and an explanation,” Quantitative Finance, vol. 10, no. 8,
pp. 883–893, 2010.



98

[13] M. C. Tweedie, “An index which distinguishes between some important exponen-
tial families,” Statistics: Applications and new directions: Proc. Indian statistical
institute golden Jubilee International conference, vol. 579, pp. 579–604, 1984.

[14] J. Poirot and P. Tankov, “Monte carlo option pricing for tempered stable (cgmy)
processes,” Asia-Pacific Financial Markets, vol. 13, no. 4, pp. 327–344, 2006.

[15] Y. S. Kim, S. T. Rachev, D. M. Chung, and M. L. Bianchi, “The modified
tempered stable distribution, garch-models and option pricing,” Probability and
Mathematical Statistics, vol. 29, no. 1, pp. 91–117, 2009.

[16] S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi, Financial models
with Lévy processes and volatility clustering, vol. 187. John Wiley & Sons, 2011.

[17] J. Li, C. Favero, and F. Ortu, “A spectral estimation of tempered stable stochastic
volatility models and option pricing,” Computational Statistics & Data Analysis,
vol. 56, no. 11, pp. 3645–3658, 2012.

[18] U. Küchler and S. Tappe, “Exponential stock models driven by tempered stable
processes,” Journal of Econometrics, vol. 181, no. 1, pp. 53–63, 2014.

[19] J. Rosiński, “Tempering stable processes,” Stochastic processes and their appli-
cations, vol. 117, no. 6, pp. 677–707, 2007.

[20] J. Rosinski and J. L. Sinclair, “Generalized tempered stable processes,” Stability
in Probability, vol. 90, pp. 153–170, 2010.

[21] M. Grabchak, “On a new class of tempered stable distributions: moments and
regular variation,” Journal of Applied Probability, vol. 49, no. 4, pp. 1015–1035,
2012.

[22] M. Grabchak, Tempered Stable Distributions Stochastic Models for Multiscale
Processes. Springer, 2016.

[23] Y. S. Kim, “The fractional multivariate normal tempered stable process,” Applied
Mathematics Letters, vol. 25, no. 12, pp. 2396–2401, 2012.

[24] Y. S. Kim, “Multivariate tempered stable model with long-range dependence and
time-varying volatility,” Frontiers in Applied Mathematics and Statistics, vol. 1,
p. 1, 2015.

[25] Y. S. Kim, H. Kim, J. Choi, and F. J. Fabozzi, “Multi-asset option pricing using
normal tempered stable processes with stochastic correlation,” Available at SSRN
3927399, 2021.

[26] M. Scherer, S. T. Rachev, Y. S. Kim, and F. J. Fabozzi, “Approximation
of skewed and leptokurtic return distributions,” Applied Financial Economics,
vol. 22, no. 16, pp. 1305–1316, 2012.



99

[27] T. Byczkowski, J. P. Nolan, and B. Rajput, “Approximation of multidimensional
stable densities,” Journal of Multivariate Analysis, vol. 46, no. 1, pp. 13–31, 1993.

[28] R. Modarres and J. P. Nolan, “A method for simulating stable random vectors,”
Computational Statistics, vol. 9, no. 1, pp. 11–19, 1994.

[29] J. P. Nolan, A. K. Panorska, and J. H. McCulloch, “Estimation of stable spectral
measures,” Mathematical and Computer Modelling, vol. 34, no. 9-11, pp. 1113–
1122, 2001.

[30] M. Mohammadi, A. Mohammadpour, and H. Ogata, “On estimating the tail
index and the spectral measure of multivariate α-stable distributions,” Metrika,
vol. 78, no. 5, pp. 549–561, 2015.

[31] R. Cont and P. Tankov, Financial modelling with jump processes. Chapman and
Hall/CRC, 2004.

[32] F. Hubalek and C. Sgarra, “Esscher transforms and the minimal entropy martin-
gale measure for exponential lévy models,” Quantitative finance, vol. 6, no. 02,
pp. 125–145, 2006.

[33] Y. Xia and M. Grabchak, “Estimation and simulation for multivariate tempered
stable distributions,” Journal of Statistical Computation and Simulation, vol. 92,
no. 3, pp. 451–475, 2022.

[34] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance: Stochastic Modeling. Routledge, 2017.

[35] S. Ken-Iti, Lévy processes and infinitely divisible distributions. Cambridge uni-
versity press, 1999.

[36] D. N. Joanes and C. A. Gill, “Comparing measures of sample skewness and
kurtosis,” Journal of the Royal Statistical Society: Series D (The Statistician),
vol. 47, no. 1, pp. 183–189, 1998.

[37] L. Devroye, “Random variate generation for exponentially and polynomially
tilted stable distributions,” ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS), vol. 19, no. 4, pp. 1–20, 2009.

[38] R. Kawai and H. Masuda, “On simulation of tempered stable random variates,”
Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2873–
2887, 2011.

[39] M. Hofert, “Sampling exponentially tilted stable distributions,” ACM Transac-
tions on Modeling and Computer Simulation (TOMACS), vol. 22, no. 1, pp. 1–11,
2011.

[40] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a practical
approach to global optimization. Springer Science & Business Media, 2006.



100

[41] Q. Li, E. Maasoumi, and J. S. Racine, “A nonparametric test for equality of distri-
butions with mixed categorical and continuous data,” Journal of Econometrics,
vol. 148, no. 2, pp. 186–200, 2009.

[42] J. Philippe, Value at risk: the new benchmark for managing financial risk. NY:
McGraw-Hill Professional, 2001.

[43] W. F. Sharpe, “A simplified model for portfolio analysis,” Management science,
vol. 9, no. 2, pp. 277–293, 1963.

[44] P. Glasserman, Monte Carlo methods in financial engineering, vol. 53. Springer,
2004.

[45] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceedings of
the IEEE international conference on neural networks, vol. 4, pp. 1942–1948,
Citeseer, 1995.

[46] M. L. Bianchi, S. T. Rachev, Y. S. Kim, and F. J. Fabozzi, “Tempered infinitely
divisible distributions and processes,” Theory of Probability & Its Applications,
vol. 55, no. 1, pp. 2–26, 2011.

[47] M. Grabchak, “An exact method for simulating rapidly decreasing tempered
stable distributions in the finite variation case,” Statistics & Probability Letters,
vol. 170, p. 109015, 2021.

[48] G. Terdik and W. Woyczynski, “Rosinski measures for tempered stable and
related ornstein-uhlenbeck processes,” Probability and Mathematical Statistics,
vol. 26, no. 2, p. 213, 2006.

[49] A. Dassios, J. W. Lim, and Y. Qu, “Exact simulation of a truncated lévy subordi-
nator,” ACM Transactions on Modeling and Computer Simulation (TOMACS),
vol. 30, no. 3, pp. 1–17, 2020.

[50] O. E. Barndorff-Nielsen, M. Maejima, and K.-i. Sato, “Some classes of multi-
variate infinitely divisible distributions admitting stochastic integral representa-
tions,” Bernoulli, pp. 1–33, 2006.

[51] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied
Mathematics Series 55. Tenth Printing. ERIC, 1972.

[52] A. Klenke, Probability theory: a comprehensive course. Springer Science & Busi-
ness Media, 2014.

[53] P. Billingsley, Measure and probability. John Wiley & Sons, 1995.

[54] D. W. Stroock et al., Essentials of integration theory for analysis. Springer, 2011.

[55] G. B. Folland, Real analysis: modern techniques and their applications, vol. 40.
John Wiley & Sons, 1999.



101

APPENDIX A: PROOFS of THEOREMS IN CHAPTER 2

A.1 Proof of Proprtion 2

Proof of Proprtion 2. Let’s begin to show the expectation of Xj,

c1 = E[Xj] = (−i)∂Cµ(z)

∂zj

∣∣∣∣
z=0

= (−i)

[
iγj +

∫
Sd−1

Γ(−α)α(b(s)− i
d∑
i=1

sjzj)
α−1(−isj)σ(ds)

] ∣∣∣∣
z=0

= γj −
∫
Sd−1

Γ(−α)αbα−1(s)sjσ(ds)

= γj + Γ(1− α)

∫
Sd−1

bα−1(s)sjσ(ds)

where the last line followed by Γ(−α) = −Γ(1− α)

α
.

Next, we derive the variance of Xj as follow

c2 = Var(Xj) = (−i)2∂
2Cµ(z)

∂2zj

∣∣∣∣
z=0

= −
∂
[
iγj +

∫
Sd−1 Γ(−α)αbα−1(s)(−isj)σ(ds)

]
∂zj

∣∣∣∣
z=0

= −

[∫
Sd−1

Γ(−α)α(α− 1)(b(s)− i
d∑
j=1

sjzj)
α−2(isj)

2σ(ds)

] ∣∣∣∣
z=0

=

∫
Sd−1

Γ(−α)α(α− 1)bα−2(s)s2
jσ(ds)

= Γ(1− α)(1− α)

∫
Sd−1

bα−2(s)s2
jσ(ds)

= Γ(2− α)

∫
Sd−1

bα−2(s)s2
jσ(ds),

where the laset line since Γ(n) = (n− 1)Γ(n− 1).

Similiarly, we get the third central moment of Xj

c3 = E[(Xj − E(Xj))
3] = (−i)3∂

3Cµ(z)

∂3zj

∣∣∣∣
z=0
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= i
∂2
[
iγj +

∫
Sd−1 Γ(−α)αbα−1(s)(−isj)σ(ds)

]
∂2zj

∣∣∣∣
z=0

= i
∂
[∫

Sd−1 Γ(−α)α(α− 1)(b(s)− i
∑d

j=1 sjzj)
α−2(isj)

2σ(ds)
]

∂zj

∣∣∣∣
z=0

= −
∫
Sd−1

Γ(−α)α(α− 1)(α− 2)bα−3(s)s3
jσ(ds)

=

∫
Sd−1

Γ(1− α)(α− 1)(α− 2)bα−3(s)s3
jσ(ds)

= Γ(3− α)

∫
Sd−1

bα−3(s)s3
jσ(ds).

And for the fourth cumulan of Xj,

c4 = E[(Xj − E(Xj))
4]− 3E2[(Xj − E(Xj))

2] = (−i)4∂
4Cµ(z)

∂4zj

∣∣∣∣
z=0

=
∂2
[∫

Sd−1 Γ(−α)α(α− 1)bα−2(s)(−isj)2σ(ds)
]

∂2zj

∣∣∣∣
z=0

=
∂
[∫

Sd−1 Γ(−α)α(α− 1)(α− 2)(b(s)− i
∑d

j=1 sjzj)
α−3i(sj)

3σ(ds)
]

∂zj

∣∣∣∣
z=0

=

∫
Sd−1

Γ(−α)α(α− 1)(α− 2)(α− 3)bα−4(s)s4
jσ(ds)

= Γ(4− α)

∫
Sd−1

bα−4(s)s4
jσ(ds).

Then, let’s see the covariance between Xi and Xj

c11 = Cov(Xi, Xj) = (−i)2∂
2Cµ(z)

∂zi∂zj

∣∣∣∣
z=0

= −
∂
[
iγi +

∫
Sd−1 Γ(−α)αbα−1(s)(−isi)σ(ds)

]
∂zj

∣∣∣∣
z=0

=

∫
Sd−1

Γ(−α)α(α− 1)(b(s)− i
d∑
i=1

sizi)
α−2sisjσ(ds)

∣∣∣∣
z=0

=

∫
Sd−1

Γ(−α)α(α− 1)bα−2(s)sisjσ(ds)

= Γ(2− α)

∫
Sd−1

bα−2(s)sisjσ(ds)
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Last, we could easy to get the skewness and kurtosis by equation (2.5), (2.6) and

(2.7).

A.2 Proof of Lemma 1

Lemma 11. Let {un} be a sequence in Rd. If for every v ∈ Rd, 〈v, un〉 → 0 as

n→∞, then un → 0 as n→∞.

Proof. First, we show there no subsequences diverges to infinite. Assume for the sake

of contradiction that there is a subsequence {unk}, with |unk | → ∞. For large enough

k, unk 6= 0 and we can write unk = |unk |
unk
|unk |

. Since
unk
|unk |

∈ Sd−1, every component

of this vector is bounded, and thus there exists a further subsequence {unki} and

a ξ ∈ Sd−1 with
unki
|unki |

→ ξ. It follows that for every v ∈ Rd,
〈
v, unki/|unki |

〉
→

〈v, ξ〉, which equals 0 since |unk1
| → ∞ while |unki |

〈
v, unki/|unk1

|
〉

=
〈
v, unki

〉
→ 0.

This means that ξ is orthogonal to every v ∈ Rd, and hence that that ξ = 0, but

ξ ∈ Sd−1, which gives the contradiction. Now, consider any convergent subsequence

{unk}. Thus, there is a u ∈ Rd with unk → u. It follows that for every v ∈ Rd,

〈v, u〉 = limk→∞ 〈v, unk〉 = 0. Thus u is orthogonal to every vector in Rd and, hence,

u = 0. Thus every subsequence converges to 0 and the result holds.

Proof of Lemma 1. For β > 0 and ξ ∈ Sd−1, let uβ(ξ) =
∫
Sd−1 |〈s, ξ〉|βσ(ds). Note

that uβ = inf
ξ∈Sd−1

uβ(ξ). We begin by showing that the first condition implies the

second. Assume, for the sake of contradiction, that σ is full and that uβ = 0 for some

β > 0. It follows that there is a sequence ξ1, ξ2, · · · ∈ Sd−1 with uβ(ξn) → 0. By a

version of Chebyshev’s inequality (see e.g. Section 6.3 in [55]) we have, for any h > 0,

σ({s ∈ Sd−1 : |〈s, ξn〉| > h}) ≤ h−βuβ(ξn)→ 0.

It follows that the sequence of function fn : Sd−1 7→ R given by fn(s) = 〈s, ξn〉

converges to 0 in measure σ. From here, Theorem 2.30 in [55] implies that there is a
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subsequence with

lim
k→∞
〈s, ξnk〉 = 0 for σ − a.e. s

Let A ∈ B(Sd−1) be the set on which this convergence holds and note that σ(Ac) = 0.

Let Ā be the closure of A and note that the support of σ is contained in Ā. Since the

support of σ is assumed to contain d-linearly independent vectors, it follows that Ā

does as well, and by properties of closures so does A. Thus, A is not contained in a

proper subspace of Rd. This implies that there are distinct vectors s1, s2, . . . , sd ∈ A

that span Rd. It follows that for any vector y ∈ Rd, we have y =
∑d

j=1 ajsj for some

a1, a2, . . . , ad ∈ R. Hence

〈y, ξnk〉 =
d∑
j=1

aj〈sj, ξnk〉 → 0.

From here, Lemma 11 implies that ξnk → 0, which contradicts the fact that ξnk ∈ Sd−1

for each k.

It is immediate that the second condition implies the third. We now show that the

third implies the first. Our proof is by contrapositive. Assume that there are less

than d linearly independent vectors in the support of σ. It follows that there exists

a ξ∗ ∈ Sd−1 with 〈s, ξ∗〉 = 0 for each s in the support of σ. Hence, uβ(ξ∗) = 0 and

uβ = 0.

A.3 Proof of Lemma 12 and Lemma 13

Lemma 12. Fix α ∈ (0, 1), γ ∈ Rd, let b : Sd−1 7→ (0,∞) be a Borel function, and

let σ be a finite Borel measure on Sd−1. Let’s µ
∑

TSα(σ, b, γ) and its characteristic

function is given, for any z ∈ Rd,

µ̂(z) = exp

[
i〈γ, z〉+

∫
Sd−1

Γ(−α)((b(s)− i〈s, z〉)α − bα(s))σ(ds)

]

.
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Proof. By equation (1), we know

µ̂(z) = exp

[
i〈γ, z〉+

∫
Sd−1

∫ ∞
0

(ei〈s,z〉x − 1)
e−b(s)x

x1+α
dxσ(ds)

]
,

so for this lemma, we will show these two expressions are equivalent. We have

µ̂(z) = exp

[
i〈γ, z〉+

∫
Sd−1

∫ ∞
0

(ei〈s,z〉x − 1)
e−b(s)x

x1+α
dxσ(ds)

]
= exp

[
i〈γ, z〉+

∫
Sd−1

∫ ∞
0

(
∞∑
k=0

(i〈s, z〉x)k

k!
− 1

)
e−b(s)x

x1+α
dxσ(ds)

]

= exp

[
i〈γ, z〉+

∫
Sd−1

∫ ∞
0

∞∑
k=1

(i〈s, z〉x)k

k!

e−b(s)x

x1+α
dxσ(ds)

]

= exp

[
i〈γ, z〉+

∫
Sd−1

∞∑
k=1

(i〈s, z〉)k

k!

∫ ∞
0

xk−1−αe−b(s)xdxσ(ds)

]
,

where the second line follows by ex =
∑∞

k=0
xk

k!
. By change of variable,

µ̂(z) = exp

[
i〈γ, z〉+

∫
Sd−1

∞∑
k=1

(i〈s, z〉)k

k!

∫ ∞
0

(
x

b(s)

)k−1−α

e−x
1

b(s)
dxσ(ds)

]

= exp

[
i〈γ, z〉+

∫
Sd−1

∞∑
k=1

(i〈s, z〉)k

k!
bα−k(s)Γ(k − α)σ(ds)

]

= exp

[
i〈γ, z〉+

∫
Sd−1

∞∑
k=1

(i〈s, z〉)k

k!
bα−k(s)Γ(−α)

k−1∏
u=0

(u− α)σ(ds)

]

= exp

[
i〈γ, z〉+

∫
Sd−1

Γ(−α)bα(s)
∞∑
k=1

(
(i〈s, z〉)
b(s)

)k
(−1)k

k∏
u=1

α− u+ 1

u
σ(ds)

]
,

where the second line follows by the definition of the gamma function, the third line

follows by Γ(1 + a) = aΓ(a). Then,

µ̂(z) = exp

[
i〈γ, z〉+

∫
Sd−1

Γ(−α)bα(s)
∞∑
k=1

(
α

k

)(
−i〈s, z〉
b(s)

)k
σ(ds)

]

= exp

[
i〈γ, z〉+

∫
Sd−1

Γ(−α)bα(s)

((
1− i〈s, z〉

b(s)

)α
− 1

)
σ(ds)

]
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= exp

[
i〈γ, z〉+

∫
Sd−1

Γ(−α)((bα(s)− i〈s, z〉)α − bα(s))σ(ds)

]
,

where the second line follows by the binomial theorem.

Lemma 13. Let w = (b(s)− i〈s, z〉)α, then

<(w) = (b2(s) + 〈s, z〉2)
α
2 cos

(
α arctan

(
〈s, z〉
b(s)

))
(5)

and

=(w) = −(b2(s) + 〈s, z〉2)
α
2 sin

(
α arctan

(
〈s, z〉
b(s)

))
(6)

Proof.

w = (b(s)− i〈s, z〉)α = exp[α log(b(s)− i〈s, z〉)]

= exp

[
α

(
log(|b(s)− i〈s, z〉|) + i arctan

(
−〈s, z〉
b(s)

))]

= exp
[α

2
log
(
b2(s) + 〈s, z〉2

)]
∗ exp

[
i ∗ α arctan

(
−〈s, z〉
b(s)

)]
= (b2(s) + 〈s, z〉2)

α
2

(
cos

(
α arctan

(
−〈s, z〉
b(s)

))
+ i sin

(
α arctan

(
−〈s, z〉
b(s)

)))

= (b2(s) + 〈s, z〉2)
α
2 cos

(
α arctan

(
〈s, z〉
b(s)

))
− i(b2(s)

+ 〈s, z〉2)
α
2 sin

(
α arctan

(
〈s, z〉
b(s)

))
,

where the third equality follows by the 4.1.2 and 4.1.3 in [51], and the last equality

follows by the fact that the function arctan(.) and sin(.) are odd functions and cos(.)

is an even function.


