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ABSTRACT 

 

 

ELIZABETH DIANE CLAYTON. Greater Than the Sum of Its Parts: Isomorphism in Measures 

of Team Constructs (Under the direction of DR. DAVID WOEHR) 

 

 

Work teams are an ever-growing structure as organizations seek to become more agile 

and achieve better outcomes (Bersin, 2016; Deloitte, 2018). Therefore, organizational 

researchers seek to accurately recognize and understand various aspects of team dynamics, 

which are often measured by capturing team-member perceptions. When these perceptions are 

shared among team members, team consensus constructs (e.g., team cohesion, conflict, 

psychological safety, satisfaction, task interdependence, liking, and viability) shed light on team 

functioning and performance. Researchers typically assess the psychometric properties of these 

measures at the individual level (e.g. factor analysis, covariance/variance matrices) without 

examining if the strength of and relationship among measures’ indicators vary at the between-

team level where the constructs theoretically operate (Carless & De Paola, 2000; Edmondson, 

1999; Jehn & Mannix, 2001; Van der Vegt et al., 2001).  

This misalignment between theory and measurement brings into question the quality of 

measures of team consensus constructs and the theoretical development based on the research 

associated with them. I examined the extent to which this misalignment is problematic and 

potential reasons for cross-level measurement and structural variance in and among measures. I 

used archival data to examine over 3,000 project-based teams using R and MPlus assessing 

measures in a multilevel factor analytic framework and examined for cross-level measurement 

and structural variance. The results demonstrated measurement quality should be assessed at the 

theoretically relevant level of analysis, the degree of psychometric isomorphism is in part a 

feature of within-team agreement and the wording of the measure, and there are consequences of 
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misalignment regarding convergent and discriminant validity. Future research needs to address 

the need for discriminant validity among some measures and the potential for construct 

proliferation. 
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INTRODUCTION 

 

 

As teams are vital to an organization’s ability to become more agile, enhance problem-

solving, and incorporate diverse perspectives (Horwitz & Horwitz, 2007; Kozlowski & Bell, 

2013; Somech & Drach-Zahavy, 2013), researchers seek to understand how team characteristics 

and dynamics influence team performance (Guzzo & Dickson, 1996; Jehn et al., 2008; Stewart, 

2006). Team characteristics, attitudes, behaviors, and cognitions operate in a multilevel context 

in which researchers often collect individual team-member perceptions and then transform them 

(e.g., aggregate) to reflect team-level phenomena (Chan, 1998). Despite advances in multilevel 

research (Bliese, 2000; Cole et al., 2011; Morgeson & Hofmann, 1999; Vandenberg & Lance, 

2000), a critical concern is the extent to which measures of team constructs accurately capture 

team phenomena (G. Chen et al., 2004). 

This concern stems from the implicit assumption that the nature and structure of 

measures capturing team phenomena (i.e., constructs) remain consistent from the level of data 

collection (e.g., individual) to the level at which the constructs operate (e.g., team). For example, 

when common measures of team constructs (e.g., team cohesion, conflict, psychological safety, 

satisfaction, and task interdependence) are assessed at the individual level, the nature and 

structure of these measures are assumed to remain consistent at the between-team (i.e., team) 

level of analysis (Carless & De Paola, 2000; Edmondson, 1999; Jehn & Mannix, 2001; Loughry 

& Tosi, 2008; Van der Vegt et al., 2001). This is problematic because both the strength of a 

measure’s indicators (e.g., items)1 to detect a construct (i.e., latent factor) and the relationships 

 
1  Survey items in a measure are often indicators of a latent factor (i.e., construct); thus, the terms are typically 

interchangeable. However, there are cases in which an indicator is not an item in a measure (e.g., an index, latent 

mean of an item). For example, the latent mean of an item can be an indicator when the construct resides at a higher 

level (e.g., team) than that of the of the data collection (i.e., individual; see Figure 4). 
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among indicators may vary across levels of analysis (Dedrick & Greenbaum, 2011; Huang et al., 

2015; Whitton & Fletcher, 2014).  Additional work needs to be done to understand the reasons 

for and potential consequences of such variation.  Although Chen and colleagues (2004) detailed 

a systematic validation process for measures that use aggregated scores (e.g., consensus 

constructs), assessing the structure and nature of these measures at the level of the grouping 

factor (e.g., team membership) is a critical step in the validation process that must be considered.  

While theoretically there is no construct at the individual level of analysis for team 

phenomena, measures of team consensus constructs are administered to individuals. Examining 

whether different conclusions can be drawn about the structure and nature of these measures at 

the individual versus the team level of analysis requires researchers to assess for isomorphism. In 

a multilevel context, isomorphism refers to the similarity in meaning, properties, and 

functionality of a construct (i.e., latent variable) across levels of analysis (Bliese et al., 2007; 

Zyphur et al., 2008). Researchers evaluate measures’ isomorphism in terms of the degree of 

measurement and structural invariance  (also referred to as cross-level measurement invariance 

or psycometric isomorphism and cross-level structural invariance, respectively; Byrne et al., 

1989; Zyphur et al., 2008).   

Although common measures of team constructs are implicitly assumed to be 

psychometrically isomorphic, researchers should not ignore the potential implications of whether 

the relationships among team-related variables differ at the individual and the team levels of 

analysis. Therefore, I assessed for psychometric isomorphism in measures of team consensus 

constructs from the individual to the team level of analysis and for structural invariance across 

these measures. I also tested the assumption of cross-level consistency and demonstrated how to 
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examine the nature and structure of these measures at the team level of analysis by applying 

measurement validation techniques designed for multilevel data.     

The need to examine for psychometric isomorphism in measures of team consensus 

constructs is still in dispute. According to Chen and colleagues (2005), measures should only be 

evaluated at the level of analysis at which a construct operates. However, the nature and structure 

of measures of team consensus constructs are not typically examined at the team level (see 

Figure 3). Tay and colleagues (2014) argue that psychometric isomorphism from the lower (e.g., 

individual) to the higher (e.g., team) level of analysis is a necessary prerequisite for collective 

constructs,  such as team consensus constructs– as it establishes similarity within a group. From 

either point of view, not knowing the nature or structure of a consensus measure designed to 

capture team phenomena is problematic.  

In the current study, psychometric isomorphism is required across both levels of analysis 

for common measures of team consensus constructs to substantiate the implicit assumption that 

the meaning, properties, and functionality of these measures are consistent whether examined at 

the individual or the team level. While the need for psychometric isomorphism in measures of 

team consensus constructs more broadly has not been resolved, this study explores potential 

reasons and consequences of cross-level variation psychometrically and structurally via seven 

measures of team consensus constructs that operate in a multilevel context (i.e., team cohesion, 

conflict, psychological safety, task interdependence, satisfaction, liking, and viability).    

 First, I examined for psychometric isomorphism in common measures of team constructs 

by considering the first three questions: (1) Are the current practices evaluating the measures of 

common team constructs’ psychometric properties sufficient? (2) Are there major differences in 

the psychometric properties for these measures from the individual to the team level of analysis? 
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and (3) Do the relationships among items (e.g., dimensionality) within these measures stay 

consistent from the individual to the team level of analysis? Answering these questions 

contributes to the broader literature on measuring team phenomena by describing best practices 

when assessing the measurement of team consensus constructs, providing practical examples for 

researchers to assess the psychometric properties of measures operating in a multilevel context in 

R and MPlus, and establishing norms for reporting and clarifying the psychometric properties of 

measures designed to capture higher-level constructs using data where observations are driven by 

a theoretically relevant grouping factor (e.g. team membership). 

 Second, I explored potential reasons and consequences for varying degrees of 

psychometric isomorphism from the individual to the team level of analysis for the seven 

measures of team consensus constructs by considering the next three questions: (4) How does a 

measure’s referent (e.g., “I” versus “team”) and target (e.g., member–member relationship versus 

team?) relate to a measure’s psychometric properties at different levels of analysis? (5) To what 

extent does team-member agreement influence a measure’s psychometric isomorphism? and (6) 

How do relationships among variables differ at various levels of analysis? This section links the 

construction of measures’ items to differences in their psychometric properties across levels of 

analysis, investigates whether team-members’ conceptualization of a construct is influenced by 

their shared perceptions of the teams’ standing on a construct, and examines the potential 

influence of structural invariance across levels of analysis on the relationships among team 

constructs.  

 As the theoretical development of a construct and its measurement are inherently 

intertwined, I linked measurement theory and the theory of team consensus constructs by 

applying the multilevel factor analytic framework in a manner consistent with the development 
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of the construct and its measurement. I also answered Chen and colleagues’ (2005) call for 

greater clarity on modeling within and between levels of analysis across statistical packages via 

conducting analysis in both R and MPlus. As the ability to understand phenomena is limited by 

the ability to measure them, the current study contributes to the larger body of research on teams 

by more thoroughly scrutinizing measures of team consensus constructs that operate in a 

multilevel context. 

Part I: Psychometric Isomorphism in Measures of Team Constructs 

 The accuracy of common measures of team constructs to capture team phenomena is 

vital to the development of theory, the confidence in conclusions drawn from research, and the 

real-world application of findings. I address the first question through a review of the current 

literature that reveals the extent to which the psychometric properties of common measures of 

team constructs are reported at the individual and the team levels of analysis.  Regarding the 

second question, I discuss how to classify the degree of psychometric isomorphism across levels 

of analysis within a measure and propose tests for cross-level differences.  For the third question, 

I review conflicting results in previous literature regarding the proposed dimensionality of the 

measures of team cohesion and conflict and propose how to assess theoretically relevant 

alternative measurement models for these measures at the team level of analysis.   

1. Review of the Current Literature: Are the current practices evaluating the measures of 

common team constructs’ psychometric properties sufficient? 

Making theoretical claims without addressing methodological concerns is not a new 

problem as “theory often precedes measurement” and research on teams is no exception (Kuhn, 

1961; Murphy & Ackermann, 2014, p. 17). While Muthén ’s (1994) multilevel factor analysis  

(MFA) provides necessary methodological advancement in examining the psychometric 
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properties of multilevel constructs, the large sample size requirement (i.e., 100 teams/groups and 

300 individual observations) exceeds  that which researchers typically use to test their 

hypotheses (Asparouhov et al., 2015; Dyer et al., 2005; Hox & Maas, 2001; Mok, 1995). 

Therefore, it is important to know the current practices that researchers use to examine the 

psychometric properties of measures of common team constructs.  

This review is limited to specific measures of team cohesion, conflict, psychological 

safety, satisfaction, and task interdependence;  it includes the articles in which the measure was 

initially published and other articles since 2005,  the year after Chen and colleagues’ (2004) 

review (Carless & De Paola, 2000; Edmondson, 1999; Jehn & Mannix, 2001; Loughry & Tosi, 

2008; Van der Vegt et al., 2001). Journals2 and dissertations were searched via the EBSCO 

library search database based on the name of the construct (e.g., team cohesion and team 

cohesiveness) and subconstructs (e.g., interpersonal cohesiveness, task attraction, and task 

commitment) for the period of 2005 to 2010. The articles (comprising 135 publications) are 

empirical studies that used at least one of the common measures of team constructs or its 

subdimensions, did not make major edits to the construction of the items (i.e., significant 

changes in the wording or number of items used), and reported at least one psychometric 

property of the measure (e.g., model fit index, factor loadings, residual variances, estimate of 

reliability).  A breakdown by measure is as follows: team cohesion (3 articles and 4 

dissertations); team conflict (16 articles and 13 dissertations); team psychological safety (46 

articles and 42 dissertations); and team task interdependence (11 articles). There were no 

publications for the measure of team satisfaction. 

 
2 [Organizational Science, Small Group Research, Organizational Research Methods, Journal of Management, 

Journal of Applied Psychology, Group and Organization Management, Leadership Quarterly, The Academy of 

Management Journal, Journal of Organizational Behavior, Journal of Occupational Behavior, Human Relations, 

Journal of Business Ethics, and Group Dynamics: Theory, and Research, Practice.] 
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 Following Chen and colleagues’ (2004) recommendations, each article  was examined 

based on four key areas researchers must address to draw conclusions regarding consensus 

measures’ psychometric properties: examine the factor structure, evaluate intermember 

agreement, assess the measure’s internal consistency, and ensure that within-team agreement 

justifies aggregation (p. 287-292). The first three areas directly relate to the measures’ 

psychometric properties while the last area focuses on how team dynamics influence team level 

phenomena.  

 First, I examined for whether the researcher tested the factor structure via a CFA (i.e., 

individual level factor analysis) versus an MCFA (multilevel CFA) and the range of factor 

loadings.  I then examined for the reporting of  intermember agreement/deviation indices (e.g., 

rWG(j) and average deviation [AD]) and whether the results met the recommended thresholds for 

those respective indices (Dunlap et al., 2003; James et al., 1993; Smith-Crowe & Burke, 2003). 

Intermember agreement/deviation indices reflect the amount of variation within a team for a 

specific measure. Third,  I examined for the reporting of the internal consistency of measures at 

the individual level (e.g., Cronbach’s alpha; Cronbach, 1951) and/or scale reliability at the 

aggregate level or a multilevel composite reliability (G. Chen et al., 2004; Geldhof et al., 2014). 

Fourth, I determined justification for aggregation  by examining the reporting of intra-class 

correlation coefficients (ICC(1); Bliese, 2000). ICC(1) captures the extent of influence team 

membership has on member scores and is an important piece of evaluating team consensus.  

 Of the scholarly publications examined, 16% reported conducting a CFA; only one 

article examined a measure using the MCFA framework, 12% reported either a range or a list of 

factor loadings associated with the measures’ items, 4% reported at least one model fit index, 

and 41% reported the interrater agreement index, rWG(j), and none reported AD. For estimates of 
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reliability, 97% of retained articles reported Cronbach’s alpha results from a CFA, 1% reported 

an aggregated alpha, and 0% reported a composite reliability. 22% of the publications reported 

ICC(1) as evidence of variation in team member scores due to team membership, which was 

used as a prerequisite for examining a higher-level phenomenon. (For a more detailed review, 

see Table 3.)  

The results of the literature review reveal that researchers typically evaluated measures at 

the individual rather than the team level of analysis. I was unable to find examples where any 

measure was fully evaluated at the team level based on the criteria as listed. Since the measures 

were designed in a consensus model, it was surprising that less than 52% reported any agreement 

indices. Based on these results, it is unclear if these common measures of team constructs truly 

capture team phenomena. Therefore, the current reporting practices on common measures of 

common team constructs’ psychometric properties are not sufficient. 

2. Psychometric Properties Across Levels of Analysis: Are there major differences in the 

psychometric properties for these measures from the individual to the between-team level of 

analysis? 

Differences in the psychometric properties from the individual to the team level of 

analysis are problematic in common measures of team constructs if they are not 

psychometrically isomorphic, which refers to the measurement invariance across levels of 

analysis. In the current study, the degree of psychometric isomorphism (e.g., partial configural, 

strong configural, weak metric, and strong metric) reveals the extent to which conclusions drawn 

from individual-level data are consistent with that found at the theoretically relevant level of 

analysis (i.e., team).   
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Differences between the individual and the team levels of analysis highlight the potential 

consequences of misalignment in theory and measurement and should be assessed and 

interpreted in an MCFA via model fit, factor variances and loadings, and residual variance (Dyer 

et al., 2005; Geldhof et al., 2014; Tay et al., 2014).  This misalignment is problematic if key 

assessments regarding a measure’s quality do not remain consistent across levels of analysis: 

model fit (i.e., overall ability to capture the latent construct), indicator’s strength (i.e., estimated 

factor loadings), factor variances (i.e., the communality of variance among items due to a 

common factor), and residual variance (i.e., unique variance due to a specific feature of the item 

and errors in measurement)3.  

In a multilevel context, these key assessments inform researchers as to a measure’s 

degree of psychometric isomorphism, which indicates the extent to which conclusions drawn 

from lower-level data (e.g., team members) are consistent at a higher level of analysis (e.g., 

team; Meredith, 1993; Ryu, 2014; Tay et al., 2014). This differs from examining the homologous 

nature of a broader construct in which the lower-level construct is similar to its higher-level 

counterpart (G. Chen et al., 2004).   

In the current study, the primary focus is the ability of these measures to capture team 

phenomena rather than lower-level individual differences. While theoretical meaning across 

levels of analysis is discussed (see Figures 1 and 2), comparisons across levels primarily focused 

on measures’ psychometric properties, not on theoretical meaning.  Cross-level comparisons 

were examined in terms of the consequences of misalignment in measurement and theory.  

Interpretation of construct meaning at the within-team and the within-person measurement 

 
3 See Appendix for a review of the equations and an in-depth discussion detailing the different parts of an MCFA. 
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models was investigated to a limited degree and only when deviation within a grouping factor 

(e.g., person, team) was of substantive theoretical interest.   

Degrees of Psychometric Isomorphism. Cross-level comparisons of measures’ 

psychometric properties are best understood via Tay and colleagues’ (2014) framework assessing 

the degree of psychometric isomorphism in measures where they make an important distinction 

between measurement invariance across groups and levels. Their framework is crucial for 

understanding whether measures designed to capture a lower-level construct (e.g., self-efficacy) 

are consistent in conceptual meaning and properties to measures capturing their higher-level 

counterpart (e.g., collective efficacy). Consistent with previous research on evaluating the degree 

of psychometric isomorphism, these increasingly stringent standards are broken into two broad 

categories (i.e., configural and metric isomorphism), which inform researchers as to the strength 

of their claims that a measure captures higher-level constructs when derived from lower-level 

data (Byrne et al., 1989; Ryu, 2014; Tay et al., 2014; Vandenberg & Lance, 2000; Widaman & 

Reise, 1997). Simply put, the more stringent the standard, the stronger the claim.  

While Tay and colleagues’ (2014) framework compares distinct measures of a construct 

(e.g., self-efficacy and collective efficacy) in a multilevel context, this framework can be applied 

to categorize the degree of psychometric isomorphism in a single measure.4 In the current study, 

the degree of psychometric isomorphism  reveals the extent to which conclusions drawn from 

individual-level data are consistent with that found at the theoretically relevant level of analysis 

(i.e., team)  in common measures of team constructs.  

 
4 In Table 1, the comparison between measurement invariance/equivalence across groups and levels (i.e., cross-level 

isomorphism) is included as a reference point to help researchers who are more familiar with that concept.  
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Configural Isomorphism. The least stringent form of psychometric isomorphism, 

configural isomorphism, refers to the conceptual similarities across levels of analysis in a 

construct. In other words, does the meaning of the construct vary as a function of the level of 

analysis? Configural isomorphism examines the extent to which a measure’s indicators relate to 

a factor. Within this broad category, there are three distinct types: partial, weak, and strong.  

Partial configural isomorphism occurs when some, but not all, theoretical dimensions are 

found at different levels of analysis in a measure via factor analysis (see Figures 4 and 7). Some 

researchers argue that a simplified factor structure occurring at a higher level of analysis with 

similar meaning to its lower-level counterpart is a form of configural isomorphism (D’Haenens 

et al., 2012; Ryu, 2014; Stapleton et al., 2016). In other words, at least one factor remains 

consistent across levels, and/or a more broadly defined construct at a higher level of analysis 

encompasses some or all the nuanced subdimensions (i.e., multiple factors) found at lower 

levels, thus maintaining a degree of similarity in construct meaning at both levels.  

 A factor structure for a measure that remains consistent across levels implies weak 

configural isomorphism; that is, the construct’s measure has the same number of dimensions 

across levels of analysis when using similar, but not necessarily the same, indicators and is also 

assessed via model fit indices and factor loadings.  I examined well-established measures in a 

CFA framework and assumed the indicators loaded onto the same factor at the individual and the 

between-team levels. Because I constrained factor loadings with a marker variable (as typical in 

the CFA framework) and expected items to load onto the same factors at both levels, I did not 

examine for weak configural isomorphism. 

The most stringent standard, strong configural isomorphism, refers to consistency in a 

measure’s dimensionality and indicator quality across levels of analysis. Strong configural 
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isomorphism is assessed via an MCFA by which researchers determine whether there is evidence 

for a higher-level construct (see B. O. Muthén, 1994; Tay et al., 2014).  I examined psychometric 

isomorphism within a single measure.  The indicators were the same and the factor structure was 

assumed to hold at both levels.  That is, all indicators/items were expected to load on the same 

latent factor at both the individual and the team levels of analysis (see Tables 3 and 6). 

Therefore, at a minimum, I expected all measures of common team constructs to reveal strong 

configural isomorphism.   

Metric Isomorphism. A stricter category of psychometric isomorphism than configural, 

metric isomorphism refers to consistency in the pattern and/or magnitude of factor loadings and 

to residual variances at different levels of analysis (Tay et al., 2014). Metric isomorphism has 

two distinct types: weak and strong. Weak metric isomorphism describes measures in which the 

rank order (i.e., pattern) of factor loadings remains consistent across levels of analysis.  I 

expected that the measures’ items would remain consistent in their ability to capture aspects of a 

construct at the individual and the team levels of analysis. In other words, the general ability of a 

measure’s indicator to capture a latent factor is not influenced by the level of analysis.  

The most stringent test of psychometric isomorphism, strong metric isomorphism, refers 

to both the pattern and magnitude of factor loadings being consistent across levels of analysis.  

Researchers have found that magnitude of factor loadings is greater at the level of analysis in 

which the construct is hypothesized to operate; therefore, there are likely to be differences in the 

magnitude of factor loadings at the individual and the team levels (Byrne et al., 1989; Dyer et al., 

2005; B. O. Muthén, 1994). Whether these common measures of team-related constructs reveal 

strong metric invariance depends on whether the measure is designed to capture a team-related 

construct at a single level (e.g., team) or at multiple levels of analysis (e.g., individual, team).  
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There will likely be differences in the magnitude of factor loadings at the individual and the team 

levels for some of the measures of common team constructs as many are designed to solely 

capture team phenomena.   

Therefore, in line with Tay and colleagues’ (2014) framework, these measures are 

assumed, at a minimum, to have weak metric isomorphism from the individual to the team level. 

In other words, the pattern (i.e., rank order) of the factor loadings is expected to remain 

consistent at both levels but the magnitude of factor loadings may vary between levels.  

Regardless, weak metric isomorphism provides sufficient evidence of good quality measures of 

team phenomena, since the assumptions made about capturing a team construct based on the 

results of a CFA (as opposed to an MCFA) are, in large part, accurate.  

Hypothesis 1: Common measures of team constructs (i.e., team cohesion, conflict, 

psychological safety, task interdependence, satisfaction) reveal metric isomorphism from 

the individual to the between-team level of analysis.   

Hypothesis 1a: Team cohesion reveals metric isomorphism from the individual to the 

between-team level of analysis.   

Hypothesis 1b: Team conflict reveals metric isomorphism from the individual to the 

between-team level of analysis.   

Hypothesis 1c: Team psychological safety reveals metric isomorphism from the 

individual to the between-team level of analysis.   

Hypothesis 1d: Team satisfaction reveals metric isomorphism from the individual to the 

between-team level of analysis.   

Hypothesis 1e: Team task interdependence reveals metric isomorphism from the 

individual to the between-team level of analysis.     
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3. Examining for Cross-level Variation: Do the relationships among indicators (e.g., 

dimensionality) within these measures stay consistent from the individual to the team level of 

analysis? 

 Partial configural isomorphism occurs when fewer dimensions are found at a higher 

level of analysis. I expected partial configural isomorphism to occur if the multidimensional 

measures of team cohesion or conflict had fewer factors at the team versus the individual level.   

While a simplified factor structure implied a degree of similarity in the meaning of the construct 

across levels of analysis (e.g., overall sense of team cohesion or conflict), the indicators are 

loaded onto one or two factors, as opposed to three, at the team level. Psychometrically, partial 

configural isomorphism occurs when different factor structures best fit the data, via model fit 

indices and factor loadings, at different levels of analysis. This is consequential because if fewer 

dimensions/factors are found at the team level, researchers may need to refine the definition at 

this higher level of analysis to reflect the simplified factor structure (Tay et al., 2014). Therefore, 

it is important to test if multidimensional measures of team constructs operating in a multilevel 

context (e.g., people grouped in teams) reveal the same factor structure when examined at the 

theoretically relevant level of analysis (i.e., team). I expected that the three-factor models of team 

cohesion and conflict would hold when examined at the team level of analysis, as consistent with 

their theoretical development.   

Hypothesis 2: Measures of team cohesion and conflict have the same factor structure at 

the individual and the between-team levels of analysis.  

Factor Structure for Team Cohesion. Team cohesion reflects how well a team works 

together by assessing  overall commitment to reaching team-related goals (i.e., task commitment) 

and how much the team enjoys working together (i.e., interpersonal cohesiveness) on team-
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related tasks (i.e., task attraction; Jehn et al., 2008; Loughry & Tosi, 2008; Marks et al., 2001; 

Mullen & Copper, 1994). Team cohesion encompasses three theoretically distinct but related 

constructs. In a previous CFA, the current study’s measure of team cohesion revealed three latent 

factors at the individual level of analysis (Loughry & Tosi, 2008). To examine if this measure 

adequately captured these theoretically distinct dimensions, I examined alternative and 

theoretically relevant models (i.e., alternative factor structures) with varying latent factors at the 

team level of analysis that were not previously supported at the individual level via a CFA.  

 The current study examined model fit across levels of analysis in one-, two-, and three-

dimensional models of team cohesion5.  The one-dimensional model at the team level indicated 

that only a general latent factor operated at this level, suggesting that the interpersonal, task 

attraction, and task commitment dimensions were all heavily driven by an overall sense of team 

cohesiveness. Only the superordinate construct (e.g., team cohesion) was an identifiable factor at 

the team level (Johnson et al., 2011).  Although the subdimensions may have theoretical meaning 

as they capture various aspects of team cohesion, researchers would not be able to 

psychometrically distinguish dimensions of team cohesion as drivers or outcomes of team 

phenomena.  

 In the two-dimensional model, the dimensions of task attraction and commitment were 

collapsed into a task cohesion factor while interpersonal cohesiveness represented the second 

factor of team cohesion. Theoretically, team cohesion is thought to span both vertically (i.e., 

 
5 The three dimensions of team cohesion included in the current study (i.e., interpersonal cohesiveness, task 

commitment, and task attraction) were chosen as they are more relevant to the temporary project team context.  The 

dimension of interpersonal cohesiveness was included while the social cohesion dimension was not included.  While 

Beal et al. (2003) found that social cohesion was a distinct component of group cohesion (as hypothesized by 

Festinger’s theoretical development of the construct), social cohesion focuses more on group pride, which is less 

relevant in this context. Interpersonal cohesiveness is more appropriate as it focuses on whether  team members 

enjoy working together (Festinger et al., 1950). 
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individual and team levels) and horizontally (i.e., social- and task-related dimensions; Beal, 

Cohen, Burke, & McLendon, 2003; Braun et al., 2020). The current measure captures both social 

(i.e., interpersonal cohesiveness) and task-related (i.e., task attraction and commitment) 

dimensions. In this  model, the task-focused items  measured the extent to which team members 

feel connected due to the nature of the team’s work (i.e., team tasks; Schaffer & Manegold, 

2018). The interpersonal factor taps into the relationships/social dynamics among team members 

by measuring how much they like each other and how well they get along and work together 

(Braun et al., 2020; Mullen & Copper, 1994). If the two-dimensional model has a better fit at the 

team level versus the three-dimensional model at the individual level, this measure of team 

cohesion has a simpler factor structure at the team level (often found in an MCFA), making it 

difficult to psychometrically distinguish between task attraction and commitment at the team 

level.  If a simplified factor structure exists at the team level of analysis, then this measure of 

team cohesion would reveal partial configural isomorphism (see Figure 5 for an example of a 

measurement model with a simplified factor structure at the higher level of analysis). 

Consistent with previous research,  I tested for the three distinct factors found at the 

individual level of analysis (i.e., interpersonal cohesiveness, task attraction, and task 

commitment)  and expected that these dimensions would be found at both the individual and the 

team levels of analysis across samples (Loughry & Tosi, 2008; Mullen & Copper, 1994; Schaffer 

& Manegold, 2018). If true, researchers would be able to psychometrically distinguish between 

the dimensions of team cohesion at the -team level of analysis, allowing them to investigate 

nuanced differences between how well a team works together due to their interpersonal 

interactions (i.e., interpersonal cohesiveness), interest in the team-related tasks (i.e., task 

attraction), and how united they are to finish the tasks (i.e., task commitment). Therefore, 
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consistent with previous research via CFA, a three-factor model of team cohesion  should show 

superior model fit at the between-team level of analysis versus a one- or a two-factor model 

(Beal et al., 2003; Loughry & Tosi, 2008). 

Hypothesis 2a: The measure of team cohesion reveals a three-factor model (i.e., 

interpersonal cohesiveness, task attraction, and task commitment) versus a two-factor 

model (i.e., interpersonal and task-oriented cohesion) or a one-factor model (i.e., general 

team cohesion) at the between-team level of analysis. 

Factor Structure of Team Conflict. Similar to the measure of team cohesion, Jehn and 

Mannix’s (2001) multidimensional measure of team conflict contains subconstructs  representing 

three distinct types of team conflict  in which the factor model is typically assessed at the 

individual level via CFA (Jehn et al., 2008; Jehn & Mannix, 2001). Based on this three-factor 

model,  Jehn (1997)  found that people describe differences in team conflict by how team 

members interact with one another (i.e., relationship conflict); the extent to which people 

disagree on how to accomplish team goals, work delegation, and resource allocation (i.e., process 

conflict); and differences in opinions and disagreements regarding team tasks (i.e., task conflict). 

However, theoretical support and statistical evidence suggest that there is substantial overlap 

among the relationship, process, and task team conflict subconstructs, making it difficult to 

distinguish them psychometrically.  

 Task and process conflict are theoretically related and strongly intercorrelated, as both 

capture disagreements on team-related matters. Both process and relationship conflicts elicit 

negative feelings, with relationship conflict being more emotion-laden (Jehn et al., 2008; Wit et 

al., 2012). Latent profile analysis suggests that the relationship and process dimensions of team 

conflict tend to follow similar patterns while high/low levels of task conflict capture distinct 
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profiles of team conflict (O’Neill et al., 2018). Due to this overlap, researchers have hesitated to 

examine the influence of process conflict in team dynamics (Shaw et al., 2011). To evaluate the 

degree of overlap psychometrically, this measure needs to be examined for its ability to capture 

distinct dimensions of team conflict at the team level of analysis.  

Examining the factor structure of this measure at the team level can provide clarity on its 

ability to capture the theoretical dimensions of relationship, process, and task team conflict.  

Measures often have simpler factor structures at higher levels of analysis (Dedrick & 

Greenbaum, 2011; Dyer et al., 2005; Huang et al., 2015; Kim et al., 2016). If this were the case 

regarding team conflict, the influence of team membership would drive the similarity in team-

member perceptions of team task and process conflict or relationship and process conflict, 

thereby making them psychometrically indistinguishable at the team level. Therefore, 

distinctions between the factors at the individual level would not be evident at the team level of 

analysis. As team conflict is theorized to primarily reside at the team level, distinguishing 

between these dimensions of team conflict via a CFA may provide misleading results regarding 

the measure’s quality.  

While  a two-factor model of team conflict would explain some of the difficulties in 

isolating the influence of process conflict among teams, it is more likely that this carefully 

developed measure, through qualitative and quantitative methods, will reveal three distinct 

factors at the team level (Jehn, 1997; Jehn et al., 2008; Jehn & Mannix, 2001).  Researchers  

have found that different emergent states influence these distinct dimensions  differently; the 

influence of process conflict on team performance varies based on the team’s developmental 

stage and degree of relationship conflict within the team (Jehn et al., 2008; Wit et al., 2012).  
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Hypothesis 2b: The measure of team conflict reveals a three-factor model (i.e., 

relationship, process, and task conflict) versus a two-factor model (combining the process 

and task or process and relationship dimensions) at the between-team level of analysis. 

Part II: Potential Reasons and Consequences for Varying Degrees of Psychometric 

Isomorphism 

Part II explores potential reasons and consequences for varying degrees of psychometric 

isomorphism from the individual to the team level of analysis for measures of team consensus 

constructs (i.e., team cohesion, conflict, psychological safety, satisfaction, task interdependence, 

liking, and viability).  I discuss how a measure’s characteristics (i.e., referent, target) and degree 

of agreement in a sample could be linked to its degree of psychometric isomorphism and how 

relationships among variables may differ when examined at different levels of analysis.  

4. Measures’ Characteristics: How does a measure’s referent (e.g., “I” versus “team”) and 

target (e.g., member–member relationship versus team-member?) relate to a measure’s 

psychometric properties at different levels of analysis? 

  A measure’s characteristics likely influence its degree of psychometric isomorphism 

because its referent and target determine the focus of respondents to a one level of analysis 

minimizing the variance associated with the other level (van Mierlo et al., 2009). The referent 

focuses the respondents on themselves or toward something else (e.g., team) and the target 

provides the overarching context (e.g., member-member relationship and team). As these 

measures best reflect constructs that reside at the level of analysis of the referent and/or target, 

the degree of psychometric isomorphism from the individual to the team level is influenced by 

both the referent and the target.  
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Hypothesis 3: The characteristics of measures of common team constructs relate to their 

degree of psychometric isomorphism, such that stricter measurement invariance from the 

individual to the between-team levels of analysis occurs based on the measure’s referent 

and/or target.   

Referent’s Influence on Psychometric Isomorphism. Theoretically, measures designed 

in a referent-shift model primarily operate at the level of the referent regardless of the level of 

data collection. In the current study, measures of team constructs in a referent-shift consensus 

model (e.g., team cohesion, conflict, and psychological safety) reflect the latent factor primarily 

operating at the team level of analysis since the items encourage team members to report on 

team-level phenomena; measures in a direct consensus model (e.g., team satisfaction and task 

interdependence) encourage members to report their nuanced perceptions as a team member (van 

Mierlo et al., 2009).  Direct consensus models introduce additional variation in scores since  

team members are asked to assess their own attitudes, beliefs, and cognitions, whereas referent-

shift models ask members to describe aspects of the team (Arthur et al., 2007). Measures of team 

constructs in a referent-shift model primarily reside/operate at the team level; those in a direct 

consensus model are designed to reflect both individual- and team-level phenomena (Chan, 

1998). While there is theoretical justification for measures in a direct consensus model to capture 

meaningful variance at multiple levels of analysis, statistical evidence is also required.  

By linking theory and measurement, the MFA provides psychometric evidence for how 

measures in a referent-shift model differ psychometrically from those in a direct consensus 

model via model fit indices, factor loadings, and residual variance across levels of analysis. 

Superior model fit at one level of analysis over another is a psychometric indication of  the level 

at which the construct primarily operates (Dyer et al., 2005; Tay et al., 2014). Measures of team 
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cohesion, conflict, and psychological safety will reveal the best fitting model at the team level of 

analysis via evaluating the team level covariance matrix (SB). Running a factor analysis on the SB 

is akin to modeling variance based solely on the influence of team membership and is best 

visualized by the model of the shared cluster construct (see Figure 4).  

Measures in a direct consensus model (e.g., team satisfaction, team task interdependence) 

are theoretically capable of capturing distinct but related constructs at the individual and team 

levels of analysis. Both levels capture team-related constructs but they are theoretically distinct. 

For example, the current study’s measure of team satisfaction captures members’ general 

satisfaction with their team regardless of team membership at the individual level, and overall 

team satisfaction at the team level of analysis. The two-level factor model best represents a direct 

consensus model as both the individual and team level of analysis are theoretically relevant (see 

Figure 4). Since these measures are designed to capture phenomena at both levels, model fit 

indices will reveal good fit at the individual and team level of analysis. 

Differences in the magnitude of factor loadings across levels of analysis indicate the 

influence a measure’s referent has on its psychometric properties and may occur based on the 

item wording in the measure, which determines the type of consensus measurement model (Kim 

et al., 2016; Stapleton et al., 2016). Measures designed to capture a construct that primarily 

resides at the team level (e.g., a referent-shift consensus model in the current study) will likely 

exhibit greater factor loadings at the team level, since the items are designed to reflect variation 

in team-level phenomena versus measures that focus on the team member working in a team 

context, as found in direct consensus measurement models (e.g., team satisfaction, team task 

interdependence).  
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 Researchers have suggested that factor loadings  increase or decrease from the lower to 

the higher level of analysis; three studies showed an average increase of .23 in factor loadings 

(Dyer et al., 2005; Reise et al., 2005; Whitton & Fletcher, 2014) in an MCFA when investigating 

for higher-level constructs. Since common measures of team constructs are designed to primarily 

capture team phenomena, the difference in the magnitude of factor loadings between measures in 

a referent-shift and a direct consensus model will likely be smaller than .23.   

There is a lack of research on variation in the magnitude of factor loadings across levels 

of analysis and the nature of these measures. The current study takes a more tempered approach 

to the expectation that the factor loadings will increase by a minimum of .10 from the individual 

to the team level of analysis for measures in a referent-shift model and that a modest increase 

(ranging from .1 to .09) will occur in a direct consensus measurement model.  

 Residual variance, which identifies differences between referent-shift and direct 

consensus models, is influenced by the level of analysis. Residuals are likely greater in measures 

at the individual level in a referent-shift model because of variation due to individual differences 

not associated with higher-level team phenomena (Kim et al., 2016). The lower-level focus is on 

individual differences within the sample with the context being a team environment. These 

measures in a direct consensus model encourage substantive variation among team-members by 

asking them their individualized experience within a team minimizing the amount of residual 

variance at the individual level compared to measures in a referent shift model.   

Taking these indications of psychometric isomorphism into consideration, measures in a 

referent-shift model will reveal more measurement invariance from the individual to the team 

level of analysis, which is a greater indication that the construct being measured primarily 

operates at a higher level of analysis.  Measures in a direct consensus model that theoretically 
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capture phenomena at multiple levels will indicate less measurement variance across levels (i.e., 

greater psychometric isomorphism) at the level of the referent (i.e., individual) and the context 

(i.e., between-team).  

Hypothesis 3a: The referent of a measure’s items influences the degree of psychometric 

isomorphism among measures of common team constructs, such that measures that refer 

to the self (direct consensus measurement models) reveal stricter measurement invariance 

from the individual to the between-team level of analysis than measures that refer to the 

team (referent-shift consensus measurement models). 

Target’s Influence on Psychometric Isomorphism. Researchers have frequently 

employed measures designed to capture individual, dyadic, or team/group phenomena and 

related but distinct constructs at different levels of analysis (Gooty & Yammarino, 2011; 

Stapleton et al., 2016).  For example, a measure’s target is the context of the items such as a 

person, relationship, team, or workplace. In teams research, phenomena are investigated both 

where the primary target/context is the team (e.g., team task interdependence and satisfaction) 

and the more specific context/target of team member-member relationships (e.g., team member 

liking and viability; O’Neill et al., 2018; Robert et al., 2019; Tekleab et al., 2009). 

While a measure may capture theoretically related constructs at multiple levels of 

analysis, the way in which constructs are aggregated varies. For instance, common measures of 

team constructs typically require transformation (e.g., aggregation) of member perceptions to 

reflect team-level phenomena; measures such as member liking and viability are aggregated 

within individuals and across the team (i.e., overall team member liking and team viability; 

Thomas et al., 2019; Woehr et al., 2015). Researchers use these measures (aggregated 

differently) − to investigate related constructs across levels, enabling them to distinguish the 
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individual, the within-team, and the team level influences on other team-related phenomena. 

However, these measures’ ability (i.e., measure quality) to capture constructs at various levels of 

analysis will likely differ.  

 Researchers should be aware of how a lack of isomorphism reduces the ability to capture 

a construct when the measure’s target differs from the level of analysis. Measures in a direct 

consensus model will differ in their degree of isomorphism based on the specificity of the 

measure’s target because the amount of variation associated with the level of analysis will 

coincide with the level of the referent and the target.  However, this assumption about the 

relationship between the measure’s target and the measure’s ability to capture a phenomenon at 

different levels of analysis has yet to be examined psychometrically regarding measures of team 

consensus constructs.  

To test this assumption in the current study, the influence of the target on isomorphism 

was examined by comparing measures in a direct consensus model (e.g., team satisfaction and 

task interdependence, and team member liking and viability) that are theoretically capable of 

capturing constructs at multiple levels of analysis (e.g., within-person, individual, between-

team). Measures with a member-to-member target should reveal superior model fit, factor 

loadings, residual variance, and estimate of reliability at the within-person and the between-team 

levels versus the between-person or within-team level; those with a team target (e.g., team 

satisfaction and task interdependence) should reveal superior metrics at the individual and the 

team levels of analysis. Therefore, indications of isomorphism across levels provide 

psychometric evidence for the link between the wording in a measure (e.g., a measure’s target) 

and the ability of the measure to capture phenomena at various levels of analysis.  
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Hypothesis 3b: In direct consensus models, a measure’s target influences the level of 

psychometric isomorphism such that measures with a target of member-member 

relationships (e.g., team member liking and viability) have poorer model fit, reduced 

factor loadings, and greater residual variance  at the between-team level versus the 

within-team and the individual levels of analysis compared to measures with a team 

target, which will reveal superior indicators of psychometric isomorphism at the 

individual and the between-team levels of analysis. 

5. Team-member Agreement and Psychometric Isomorphism: To what extent does team-

member agreement influence a measure’s psychometric isomorphism?  

 For researchers to claim the presence of a team consensus construct, team members must 

experience a degree of consensus regarding the phenomenon; for example, agreeing on how 

satisfied they are with their team (team satisfaction) to be examined as a team-level 

phenomenon. Common team constructs exist in a sample only when sufficient agreement among 

team members is present via ICC(1) cutoff scores relative to the specific measure (Woehr et al., 

2015). The sample-specific index of ICC(1) indicates that the amount of variation in observed 

scores is due to group membership (Bliese, 2000). An essential step in MCFA, ICC(1) provides 

evidence for the presence of a higher-level construct and has implications regarding biased 

estimates in factor loadings and a measure’s reliability (Can et al., 2015; Geldhof et al., 2014; 

Hox & Maas, 2001). However, the psychometric assessment of whether a common 

understanding/perception has emerged in a team is not sample-specific, but team-specific. 

Therefore, whether the presence of a consensus influences the degree of psychometric 

isomorphism must be assessed via a team-specific index (e.g., rWG(j) and AD) as opposed to a 
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sample specific index (e.g., ICC(1) (Bliese, 2000; Burke, Finkelstein, & Dusig, 1999; James, 

Demaree, & Wolf, 1993).  

While ICC(1) evaluates the viability of the sample in examining a higher-level construct, 

the rWG(j) and  AD indices of interrater agreement allow researchers to uncover how teams shape 

members’ views on team-level phenomena (B. O. Muthén, 1994). For example, low ICC(1) 

values likely bias factor loadings because teams that do not agree on how to describe their team 

do not share a similar conceptualization of  team phenomena (Can et al., 2015; Hox & Maas, 

2001). The degree of psychometric isomorphism (i.e., amount of variance across levels of 

analysis) will be linked to the degree that team members share a common understanding 

regarding a team construct. In the current study, this common understanding is operationalized 

via team-specific agreement indices Thus, a higher level of agreement within a team on a team 

construct influences a measure’s degree of psychometric isomorphism.   

Hypothesis 4: Team member agreement influences a measure’s level of psychometric 

isomorphism such that measures reveal a stricter standard of measurement invariance 

across levels of analysis when there is greater agreement among members. 

6. Psychometric Isomorphism and Relationships Among Team Consensus Constructs: How do 

relationships among variables differ at various levels of analysis? 

While psychometric isomorphism refers to the internal properties of a measure (i.e., 

regression intercepts, factor loadings/regression slopes, and residual variance), structural 

invariance refers to consistency in factor/latent means and variance/covariance structures (Byrne 

et al., 1989). Researchers have found that a measure’s degree of psychometric isomorphism   

influences its structural invariance (Byrne et al., 1989; Zyphur et al., 2008); that is, when 

variance in factor structures or loadings occurs across levels of analysis, the correlations among 
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latent variables will also differ across levels. These patterns and magnitudes of correlations  

provide important evidence of discriminant validity among latent variables (Gerbing & 

Anderson, 1988; Malhotra et al., 2014). In the current study two questions emerge regarding 

measures of team constructs and structural invariance: to what degree does psychometric 

isomorphism influence structural invariance in team measures, and do the patterns and 

magnitudes of correlations among team variables still offer evidence for discriminant validity 

when accounting for the nested nature of the data? 

 When measures capture multidimensional constructs (e.g., team conflict and cohesion), 

structural invariance is more narrowly investigated in terms of configural isomorphism (Tay et 

al., 2014; Zyphur et al., 2008). The current study investigates structural invariance among 

measures by examining how the relationships among latent factors may vary across levels of 

analysis. Here, configural isomorphism refers to assessing the internal structure of a measure 

while structural invariance refers to assessing the relationship of latent factors of theoretically 

distinct constructs.  

Psychometric Isomorphism as a Constraining Force. Based on the different degrees of 

psychometric isomorphism (e.g., partial configural, weak configural, strong configural, weak 

metric, and strong metric; Tay et al., 2014), common measures of team constructs may vary in 

the pattern and magnitude of the factor loadings across levels of analysis and still be considered 

psychometrically isomorphic, to a degree. If the relationship between the indicators and the 

latent factors is different at the team versus the individual level of analysis for any of the 

measures of team constructs, the relationships among these constructs may also vary across 

levels of analysis (Byrne et al., 1989). By examining how/if the degree of psychometric 

isomorphism within a measure influences structural invariance across levels of analysis among 
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team measures, I hope to establish the extent to which relationships among team-related 

variables identified at the individual level remain consistent at the team level of analysis. 

The measures are expected to have some degree of metric isomorphism. Weak metric 

isomorphism refers to consistency in the relative ordering of factor loadings across levels of 

analysis, and strong metric refers to the consistency in both the relative ordering and magnitude 

of factor loadings at the individual and the between-team levels of analysis. Therefore, it is 

important to understand if the consistency in the relative ordering and/or magnitude of factor 

loadings across levels of analysis (i.e., weak and/or strong metric isomorphism) constrains the 

degree of structural invariance among measures of team constructs. 

Regarding the current study, structural invariance among common team measures means 

that the covariance/variance matrix between variables does not differ at the individual versus the 

between-team level of analysis. At the individual level, variance does not account for the nested 

nature of the data; at the between-team level the variance reflects the association between two 

variables based on the constructs’ latent factor means (Byrne et al., 1989).  

  According to previous meta-analytic research, the type of consensus model (i.e., 

referent-shift and direct consensus) influences relationships among constructs (Wallace et al., 

2016). The current study dives deeper by examining if the degree of psychometric isomorphism 

may be the root cause of this finding (Wallace et al., 2016); that is, if measures of team 

constructs that reveal metric isomorphism also hold in how they relate to each other across levels 

of analysis, then structural invariance may be inherently linked to the degree of measures’ 

psychometric isomorphism.  I attempt to provide more insight into the link between the 

psychometric properties within a measure and structural invariance among measures across 

levels of analysis by posing the following question:  
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Research Question 1: Does the degree of psychometric isomorphism constrain the degree 

of structural invariance among measures of team cohesion, conflict, interdependence, 

psychological safety, satisfaction, general member liking, and viability? 

Psychometric Isomorphism and Discriminant Validity. As team phenomena operate in 

a dynamic environment in which constructs such as team conflict, cohesion, psychological 

safety, and satisfaction all influence each other across the team’s life cycle, establishing they are 

distinct constructs (i.e., discriminant validity) is essential (Ilgen et al., 2005; Marks et al., 2001). 

For example, to provide evidence for discriminant validity, the extent to which latent variables 

relate to one another should be assessed via the covariance/variance matrix (i.e., Phi matrix, Φ; 

Gerbing & Anderson, 1988; Malhotra et al., 2014). However, because researchers often examine 

the relationships among variables at the individual level (ΦI) rather than at the team level of 

analysis (ΦB), the team’s influence on perceptions of team phenomena is not incorporated in the 

variance/covariance matrix among latent variables (ΦI, see Figure 2).  

Regarding the current study, all the measures of team constructs are reflective constructs 

in that the observed variable is influenced by the latent variable (Edwards & Bagozzi, 2000). 

When establishing discriminant validity in reflective constructs, the variances/covariances 

among latent variables should be  less than 1.00 and “greater than twice their respective standard 

error” (Bagozzi et al., 1992, p. 668). I investigated whether there was still evidence for 

discriminant validity at the team level of analysis by examining if the relationship among these 

reflective constructs remained consistent (i.e., structurally invariant) at the individual and the 

team levels of analysis and/or maintained commonly held standards for discriminant validity.  
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Research Question 2: Does the level of analysis relate to the degree of differentiation 

among measures of team cohesion, conflict, interdependence, psychological safety, 

satisfaction, general member liking, and viability? 

METHOD 

 

 

Answering these hypotheses and research questions is accomplished by conducting 

analysis of an archival data set. The data analysis focuses on an empirical examination of 

measures to test this study’s hypotheses with subsequent analysis to address the research 

questions.  

Participants 

 Participants were U.S. college/university students who were part of course-related 

project teams whose work contributed to their final course grade. These students were enrolled in 

a 15-week, semester-long course in either the fall or spring terms (i.e., regular academic terms) 

between 2006 and 2020 using the Comprehensive Assessment of Team Member Effectiveness 

(CATME) system. Teams were composed of three to ten team members working together for a 

minimum of 90 days over the course of the semester. Participants completed measures assessing 

perceptions on their team (e.g., team cohesion, conflict, psychological safety, satisfaction, and/or 

task interdependence) and/or team members (e.g., team-member liking and viability) at one point 

in time from midway through the end of the semester, keeping the last time point in the final 

dataset.  

There are three important features about these project teams. First, the performance of 

these teams had real-life consequences to participants (e.g., contributed to the final course 

grade). Second, these teams all reported on team emergent states and processes midway through 

the end of the semester giving team members enough time to report on the dynamics and 
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characteristics of the team. Third, these teams worked together over similar lengths of time 

ranging from 12 to 15 weeks over the course of the semester.  

Materials 

Estimates were calculated using full-information likelihood and maximum likelihood 

with robust standard errors that accounted for clustered data via R and MPlus, as recommended 

by Yuan and Bentler (2000) when evaluating multilevel and/or non-normally distributed data. 

MPlus does this by default when specifying multilevel models; it must be specified using the 

lavaan package in R. The exception is estimates based on covariance matrices which inherently 

do not allow for specifying robust estimation and are not structured in a multilevel format.  

Measures 

All measures of team dynamics were assessed on a Likert-type scale. These measures and 

their subscales were aggregated across the team for each measure’s item and included team 

cohesion, conflict, psychological safety, satisfaction, and task interdependence. Item scores were 

aggregated across individuals’ assessments of their team members, then across the team to reflect 

general liking and relationship viability among team members. Referent-shift consensus 

measures included team cohesion, conflict, and psychological safety, while direct consensus 

measures included team satisfaction, task interdependence, general team member liking, and 

overall team member relationship viability. (See Table 5.)  

Team Cohesion. Overall team cohesion was a nine-item measure with three subscales 

developed from combining two existing measures capturing interpersonal cohesiveness among 

team members and attraction and commitment to team tasks (Carless & De Paola, 2000; Loughry 

& Tosi, 2008). The abbreviated task commitment subscale (Loughry & Tosi, 2008) containing 

the three items with the highest factor loading was used instead of the original four-item Carless 
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& De Paola’s (2000) measure. Example items include: “Team members get along well,” “Team 

members like the work that the group does,” and “I'm unhappy with my team's level of 

commitment to the task” [reverse coded]. Responses ranged from strongly disagree (1) to 

strongly agree (5).   

Team Conflict. This nine-item measure assessed team conflict along three dimensions: 

task, relationship, and process conflict (Jehn & Mannix, 2001). Examples include: “How much 

conflict of ideas is there in your work group?” “How much relationship tension is there in your 

work group?” and “How much conflict is there in your group about task responsibilities?” 

reflecting task, relationship, and process conflict, respectively. Responses ranged from none or 

not at all (1) to very often (5).    

Team Psychological Safety. Edmondson’s (1999) seven-item measure was used to 

assess psychological safety within a team. Examples include: “Members of this team are able to 

bring up problems and tough issues” and “It is safe to take a risk on this team.” Responses 

ranged from very inaccurate (1) to very accurate (7). 

Team Satisfaction. Team satisfaction was assessed on a three-item measure; for 

example: “I am satisfied with my present teammates” (Van der Vegt et al., 2001). Responses 

ranged from strongly disagree (1) to strongly agree (5). 

Team Task Interdependence. Five items captured the degree to which team members 

were required to work together to complete tasks. Examples include: “I have to work closely 

with my teammates to do my work properly” and “I depend on my teammates for the completion 

of my work.” Responses ranged from strongly disagree (1) to strongly agree (5). 

Team Member Liking and Viability.  Team member liking and viability were measured 

with Thomas and colleagues (2019) six-item measure capturing team members’ perceptions of 
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each other. Three items assessed liking and the other three assessed the desire to work with each 

other again (i.e., team-member viability). Examples include: “I like this person as an individual” 

and “I would gladly work with this individual in the future.” Responses ranged from strongly 

disagree (1) to strongly agree (5).  

Hypothesis Testing and Research Questions 

Hypotheses 1-1e  

The first hypothesis proposes that common measures of team constructs (e.g., team 

cohesion, conflict, psychological safety, satisfaction, and task interdependence) are 

psychometrically isomorphic and represent quality measures at the between-team level of 

analysis. The psychometric properties of a measure are typically inspected in a factor analytic 

framework via exploratory factor analysis (EFA) and CFA (F. B. Bryant & Yarnold, 1995; 

Crocker & Algina, 1986). In a multilevel context, the FA framework inspects a measure’s 

properties across levels (e.g., individual, within-team, and between-team) via an MFA. The 

current study examined well-established measures using MCFA to inspect for psychometric 

isomorphism, as opposed to an EFA which is used for the development of measures (Kim et al., 

2016; L. K. Muthén & Muthén, 2017). I chose MCFA techniques instead of an aggregated CFA 

to inspect team phenomena due to estimation  problems (see Pornprasertmanit et al., 2014, for a 

review).   

The psychometric properties of each measure were examined via measure reliability 

estimates and an MCFA. A measure’s reliability was estimated with Cronbach’s alpha (α) at the 

individual level for purposes of comparison with previous research;  reliability at higher levels of 

analysis was estimated via a composite (ω) (Geldhof et al., 2014). The MCFA was conducted in 

a five-step process in R using the lavaan package and MPlus software;  R syntax is available in 
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the Appendix, with the exception of a three-level analysis conducted only in MPlus due to 

limitations in lavaan (Dyer et al., 2005; Huang, 2017; B. O. Muthén, 1994). The degree of 

psychometric isomorphism was established by following Muthén’s (1994) five-step procedure: 

• Step 1: Conduct a CFA to examine the factor structure at the individual level of 

analysis.  

• Step 2: Examine whether it is appropriate to justify aggregation for a team-level 

construct via examining ICC(1). 

• Step 3: Calculate the within-group covariance matrix (SPW) and associated 

within-level CFA (appropriate for a deviation construct).  

• Step 4: Calculate the between-group covariance matrix (SB) and the associated 

between-level CFA (appropriate for a shared [e.g., team] construct).  

• Step 5: Conduct the MCFA by combining within- and between-group covariance 

matrices to model the higher levels of analysis (appropriate for a two-level 

construct with a theoretically relevant deviation and shared construct). 

After conducting these analyses, key indications regarding a measure’s quality that must 

remain consistent for the measure to be considered psychometrically isomorphic were reviewed, 

such as model fit (i.e., measure’s overall ability to capture the latent construct),  indicator’s 

strength (i.e., estimated factor loadings), factor variances (i.e., the communality of variance 

among items due to a common factor), and unique variance (i.e., item variance due to a specific 

feature of the item and errors in measurement; G. Chen et al., 2004). Regarding model fit, 

different indices were appropriate based on the level of analysis in a multilevel context. Model fit 

was estimated by various indices that collectively assess an indicator’s ability to capture a latent 

variable.  
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In CFAs, a variety of fit indices are appropriate (e.g., X2, CFI, TLI, RMSEA, and SRMR). 

However, Hsu and colleagues (2015) found that common fit indices are not sensitive to model 

misspecification at the within-group and between-group levels for a two-level factor model. 

Therefore, only appropriate model fit indices for these measures were examined in the MCFA. 

Although a variety of model fit indices are capable of detecting within-group model 

misspecification (e.g., CFI, TLI, RMSEA, and SRMR-W), only SRMR-B is appropriate for 

between-group  assessments  (Hsu et al., 2015). Table 2 reflects the level of the factor analysis in 

two-level models with the appropriate model fit indices and index description as relevant in an 

MCFA. While a CFA on the SB is theoretically appropriate for shared constructs (e.g., common 

team constructs), the within-level CFA via SW and two-level factor models via a covariance 

matrix combining the SB and SW were estimated for comparison purposes and to investigate the 

ability of these measures to capture deviation constructs (e.g., disagreement on the level of 

cohesiveness within a team). 

All comparisons across levels of analysis for Hypotheses 1 and 2 used the results from 

Step one and Step four in an MCFA representative of Figure 3 and a shared construct in Figure 

4, respectively. Step one consisted of a CFA modeling the individual level not accounting for 

team membership (ST) and Step 4 consisted of a CFA modeling the team level (SB), which is 

theoretically appropriate for shared consensus constructs such as team cohesion, conflict, 

psychological safety, satisfaction, and task interdependence. 

Hypotheses 2-2b 

Regarding the multidimensional measures of team cohesion and conflict, a three-factor 

model should reveal good fit at both the individual and the between-team levels of analysis 

consistent with the development of the constructs. However, if a simpler factor structure is found 
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at the between-team level, the residual covariances should be examined. Differences in residual 

covariances across levels of analysis occur because the commonality among indicators is not 

always a result of the influence of the hypothesized latent factor. In a structural equation model 

(SEM), residual variance accounts for shared variance among the indicators that is a function of 

the item’s wording or context and is not an aspect of the latent factor (Asparouhov et al., 2015).  

Therefore, residual variance was examined among hypothesized factor structures for measures of 

team cohesion and conflict. I expected that the residual variance would be minimized, resulting 

in greater reliability in the three-factor models and at the team level versus the more simplified 

factor structures, which is consistent with the theoretical development of the constructs. 

 For the multidimensional constructs (i.e., team cohesion, team conflict), after performing 

an MCFA, it is important to examine if the correlation among latent factors is small enough to 

support distinct constructs across the subdimensions (i.e., |r| < .75; Schmitt et al., 2018). By 

examining the correlations among latent factors represented by each respective subdimension, 

researchers can determine whether any moderate improvements in model fit, factor loadings, and 

residual variance were due to increasing the complexity of the model or if a distinct factor (e.g., 

team process conflict) explained substantive variance not explained by another factor (e.g., team 

relationship conflict).  

Hypotheses 3-3b  

Hypotheses 3a and 3b seek to understand how a measure’s characteristics influence its 

degree of isomorphism. To test hypothesis 3a, I used the results of the MCFAs to compare the 

degree of psychometric isomorphism in referent-shift consensus measures (i.e., team cohesion, 

conflict, and psychological safety) and direct consensus measures (i.e., team satisfaction and task 

interdependence). I expected that the equality constraints (i.e., identical factor loadings and 
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residual variance across teams) placed on the individual level of analysis in a CFA for referent-

shift measures would result in poorer fitting models and reliability estimates compared to the 

team level, which accounts for the nested structure of the data, and that direct consensus 

measures would show a negligible difference. I also expected that referent-shift consensus 

measures would reveal higher factor loadings at the team versus the individual level of analysis 

compared to direct consensus measures, which would show similar factor loadings at the two 

levels. That is, referent-shift consensus measures should reveal strong metric isomorphism, while 

direct consensus measures should reveal only weak metric isomorphism.  

Hypothesis 3b seeks to test whether a measure’s target also influences its degree of 

isomorphism. I tested this hypothesis by conducting an MCFA and calculating reliability 

estimates on the measures of team-member liking and viability and then compared those results 

with those of common measures of team constructs designed as direct consensus measures (e.g., 

team satisfaction and task interdependence). I expected that measures with a team target would 

show greater psychometric isomorphism from the individual to the team level of analysis than 

those with a member-member relationship target from the within-person to the team level via a 

CFA at each respective level. Measures with a member-member relationship target should show 

meaningful variance at the lowest level of analysis (i.e., within-person), the level the measure 

was designed to capture, and the highest level (i.e., team), the level of the larger context (i.e., the 

team). 

The measures with a team-member target are multilevel but have three levels of analysis 

(within-person, between-person, and between-team) with specific factors that need to be 

modeled (see Figure 2). Observations with one grouping factor (e.g., people grouped in teams) 

have two distinct levels of analysis (e.g., within-team and team); observations with two relevant 
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grouping factors (e.g., multiple observations from a person and people grouped in teams) have 

three levels of analysis. These three levels have an associated variance/covariance matrix (e.g., 

SWP = within-person, SBP = between-person, SBT = between-team). (See Figure 9 for the three-

level factor model.) As with the two-level model, each level in the three-level model was 

examined via its relative variance/covariance matrix before the final multilevel model structure 

was assessed. In the MCFA examining three levels for the measures of team-member liking and 

viability, the ICC(1) scores were determined for each item at both the between-person and the 

team levels. An additional step with a CFA on the additional covariance matrix was conducted 

before the final step of examining a multilevel factor structure.   

For measures of liking and viability, the within-person and the team levels and multilevel 

factor model were assessed and compared. Comparing these levels aligns with the theoretical 

examination of deviation and shared constructs (associated with the within-person and the team 

levels, respectively). There is no relevant theoretical construct using a traditional CFA on the 

lowest level of data (i.e., CFA on ST) without accounting for a grouping factor for the measures 

of liking and viability. (See Figure 2 for a more detailed description.) These measures were 

originally designed to capture different perceptions people have of other team members; 

therefore, the measures’ ability to model within-person variance is of substantive interest 

(Thomas et al., 2019).  

 Examining these measures’ degree of psychometric isomorphism was achieved by 

comparing the within-person level (via CFA on the SWP) and the team level (via CFA on the 

SBP).  Examining the between-team level via a CFA evaluated the ability of this measure to 

capture a shared construct typical of team phenomena. Comparing the within-person level to a 

multilevel factor model (i.e., the last step in a MCFA) differs in that a multilevel factor 
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simultaneously models the variance due to differences in ratings within a person and to team 

membership. This multilevel modeling implies that this measure captures theoretically distinct 

but related constructs in which both a deviation and shared construct should be estimated (i.e., 

shared configural model; see Stapleton et al., 2016 for a review).  

 Differences in psychometric properties at the individual and the team levels were 

compared in the measures of team satisfaction and task interdependence to differences between 

the within-person and the team levels of analysis for the measures of liking and viability. I 

expected that the differences would be greater in measures with a “team-member” target. Based 

on the first steps in an MCFA, a multilevel factor model for measures in a direct consensus 

model was considered as a point of comparison, following recommendations by Muthén (1994),  

as measures in a direct consensus model inherently invite participants to introduce variation 

based on their own distinct perceptions as opposed to describing the team as a whole.  

 

 Hypothesis 4  

 Hypothesis 4 refers to whether a shared understanding among team members influences 

the conceptualization of a team construct. It tests whether agreement on the presence/magnitude 

of a common team construct influences the measure’s degree of psychometric isomorphism.  

First, the data was split into two separate datasets representing those teams that met the threshold 

for strong agreement and those teams that fell below. Determining the level of agreement was 

based on an interrater agreement/disagreement index calculated for each team; the process was 

conducted for both rWG(j) and AD. Following Woehr and colleagues’ (2015) recommendations, 

cutoff scores for rWG(j) and AD representing strong agreement for each measure were determined 

based on previous estimates (found during the literature review). 



40 

 Second, the two groups were examined within a CFA framework for measurement 

invariance across groups at the individual level of analysis along the six increasingly stringent 

standards described by Vandenburg and Lance (2000). If measurement invariance across groups 

was not present, then Hypothesis 4 would be supported because the presence of a shared 

understanding (i.e., strong interrater agreement) influences the conceptualization of the measure. 

However, if at minimum the CFA model held across groups, I then examined the factor structure 

at the team level of analysis.  

In a third step, I determined the degree of psychometric isomorphism for each group 

following MCFA procedures. If the level of agreement influenced the degree of isomorphism 

(e.g., partial, weak, and strong configural; weak and strong metric isomorphism), then 

Hypothesis 4 would be supported.  

Research Questions  

To understand how the relationships among measures of team constructs relate to 

isomorphism, I created variance/covariance matrices (i.e., Phi matrix, Φ) at every level of 

analysis (e.g., individual, within-team, and team). For the first research question, these matrices 

were examined to see if measures that are less/more isomorphic relate to each other differently at 

various levels of analysis; that is, if measures revealing strong metric isomorphism maintained 

similar relationships while measures with weaker forms of isomorphism had varying 

relationships.  

Following Bagozzi et al.’s (1992) recommendations to examine for discriminant validity, 

I addressed the second research question  by comparing the variance/covariance at the team level 

between two latent variables and their standard errors. If the variance/covariance was less than 1 

but was two times the standard error for each construct, then there was evidence of discriminant 
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validity at the level of analysis at which the construct is hypothesized to operate. I constructed 

correlation matrices across levels of analysis for the covariance/variance matrices from the 

respective levels to ease interpretation of cross-level variance/invariance; correlations ranged 

from 0 to 1 (Jak, 2019). 

RESULTS 

 

 

The results are broken down into two parts. The first focuses on the internal properties of 

the common measures of team constructs. It addresses Hypotheses 1 and 2 via an empirical study 

on archival data that examined these measures in an MCFA framework. Using the same data, the 

second part addresses Hypotheses 3 and 4 and both research questions. It consists of an empirical 

examination of what influences the degree of psychometric isomorphism within measures and if 

variance across levels of analysis within a measure relates to relationships among other measures 

of team constructs across levels of analysis.   

Sample and Participants  

After applying the inclusion criteria on the archival data, the sample retained for each 

respective measure is described in Table 32. Samples among the measures ranged from having 

3,275 – 19,105 teams, 13,341 – 74,852 team-members, and 3.92 – 4.24 mean team size. Every 

sample reported to be predominantly male over female and White/Caucasian followed by Asian, 

Hispanic/Latino, Black/African American, Other, and Native American.   

While only a portion of participants reported demographic information, there is no 

theoretical reason as to why there should be differences in the conceptualization of the measures 

in the current study based on such information. Therefore, participants who did not report 

demographic characteristics were retained. This robust sample is more than adequate to examine 

the conceptualization of team phenomena among project-based teams.  



42 

Part 1 Results: Examination of Psychometric Properties 

 Hypotheses 1 and 2 seek to confirm the factor structure at the team level of analysis 

(consistent with the theory of the constructs), provide psychometric evidence that the measure 

primarily captures team phenomenon, and highlight any measurement variance between the 

individual and the between-team levels of analysis.  

Hypothesis 1: Metric Isomorphism and Measures of Common Team Constructs.  

 Hypotheses 1a – 1e test for metric isomorphism in measures of common team constructs 

via Steps 1 – 4 in an MCFA6. For simplicity, cross-level comparisons at the individual and the 

team levels of analysis are discussed in depth under their respective sub-hypotheses concerning 

model fit, factor loadings, residual variance, and reliability. Steps 2 and 3 in the MCFA are 

discussed across the measures of common team constructs before proceeding to the specific sub-

hypotheses.  

Step 2 calculated the variation in scores due to team membership in the sample via 

ICC(1); results  are reported in Tables 10, 12, 14, 15, and 16. Before examining for a higher-

level construct, there needs to be enough variation between teams before a factor structure can be 

estimated at the between-team level of analysis (B. O. Muthén, 1994). All measures’ items, on 

average, had enough variation due to team membership in their respective samples ( ≥ .10), 

except for team task interdependence (range of .05 - .08) and one item on the team psychological 

safety measure (= .08). While this ICC(1) is typically considered too low to investigate for a 

higher-level construct, an MCFA was conducted for the purpose of comparison in later analyses. 

Testing of Hypothesis 4, which separates the sample into high and low levels of agreement, will 

 
6 As discussed in the Methods section, Step 5 in an MCFA models a two-level factor model. As these measures are 

designed to capture team phenomena, a one-level factor model at the team level of analysis modeling a between-

team factor, results of Step 4 in an MCFA, were compared with those of Step 1, which models an individual-level 

factor.  
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examine the consequences of within-team agreement on the psychometric properties of the 

measure of team task interdependence.  

Step 3 is not discussed in the respective sub-hypotheses as it is not directly related to the 

hypotheses. As expected, the results from Step 3 consistently reveal poor model fit, reduced 

factor loadings, increased residual variance, and lower reliability. Modeling a factor based on 

within-team variance provided evidence that a measurement model based on variation due to 

team membership was more suitable (see Tables 6 – 8 and 10 – 16).  

Hypothesis 1a: Metric Isomorphism and Team Cohesion. Hypothesis 1a tests for 

cross-level variation at the individual and the team levels of analysis for the three-factor model 

of team cohesion (i.e., team task, relationship, and process conflict).  

Model fit. The results indicate that, overall, there is consistency in estimating model fit 

for the individual-level factor structure (X2 =5,972.72, p < .05; CLI = .94; TLI = .93; RMSEA = 

.10; and SRMR - .04) and the between-team factor structure in Step 4 of MCFA (X2 = 2,962.17, p 

< .05; CLI = .96; TLI = .94; RMSEA = .12; and SRMR = .04). When comparing each proposed 

factor structure at the individual and the team levels of analysis, CFI, TLI, RMSEA, and SRMR 

did not vary more than .02. While the three-factor solution revealed the overall best fit at the 

between-team level of analysis, it missed the recommended threshold for TLI, which rewards 

more parsimonious structures, and RMSEA, which is more sensitive to badness of fit (see Table 

6).  

Factor loadings. The pattern (i.e., structure) of factor loadings at the individual and the 

team levels of analysis remained consistent. The strongest indicators (i.e., latent mean structure 

of the measure’s items) at the team level of analysis also had greater factor loadings at the 

individual level (i.e., observed scores); across both levels the measure’s indicators followed the 



44 

same rank order (see Table 10). The magnitude of the factor loadings was greater at the team 

versus the individual level of analysis with a mean increase of .08. Therefore, model fit indices 

and the pattern and magnitude of factor loadings provided evidence for weak metric 

isomorphism.  

Residual variance and reliability. Residual variance across all items was greater at the 

individual versus the team level of analysis, with a mean difference of .12 (see Table 11). As an 

estimate of composite reliability, (ω) is a function of residual variance. Cross-levels differences 

followed the same pattern as residual variance: ω ranged from .66 – .88 at the individual level 

and from .79 – .94 at the team level across all subscales (see Table 6). These cross-level 

differences are consistent with weak but not strong metric isomorphism.  

Taken together, model fit indices, factor loadings, residual variance, and estimates of 

reliability for the measure of team cohesion provide sufficient evidence for weak metric 

isomorphism but not strong metric isomorphism. Thus, Hypothesis 1a was supported as team 

cohesion revealed a form of metric isomorphism. 

Hypothesis 1b: Metric Isomorphism and Team Conflict. Hypothesis 1b proposes 

minimal cross-level variation at the individual and the team levels of analysis when examining 

the three-factor model of team conflict (i.e., interpersonal cohesiveness, task attraction, and 

commitment).  

Model fit. The results are relatively consistent across model fit indices at the individual 

level as calculated in Step 1 of the MCFA (X2 = 1842.00, p < .05; CLI = .98; TLI = .97; RMSEA 

= .04; and SRMR - .02) and Step 4, which examined the team factor structure (X2 = 2092.22, p < 

.05; CLI = 98; TLI = .96; RMSEA = .09; and SRMR - .03). There was a cross-level difference in 

RMSEA (assessing badness of fit), which did not meet the recommended threshold of ≤ .06 when 
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modeling the between-team factor structure. However, the general consistency in model fit 

indices at the individual and the team levels of analysis provides support for weak metric 

isomorphism.   

Factor loadings. The pattern (i.e., structure) of factor loadings at the individual and the 

team levels of analysis remained consistent (see Table 12). While some items had equivalent 

factor loadings at the team but not at the individual level of analysis (e.g., items 4 and 5), this 

does not change the pattern (i.e., rank order) of loadings. Factor loadings were greater at the team 

level of analysis (an average of .09 increase across all items) versus the individual level. The 

consistency in the pattern of factor loadings combined with cross-level differences in the 

magnitude of factor loadings add additional support for weak metric isomorphism.   

Residual variance and reliability. The average decrease in residual variance from the 

individual to the team level of analysis across all items was .14.  This decrease accompanied an 

increase in ω from the individual to the between-team level of analysis across all subscales (task 

ω = .83, process ω = .82, and relationship ω = .85 at the individual level; task ω = .91, process ω 

= .89, and relationship ω = .92 at the team level).  

These decreases in residual variance and increases in estimates of reliability for team 

conflict are evidence of weak metric isomorphism.  Therefore, Hypothesis 1b (the presence of 

metric isomorphism) was supported.  

Hypothesis 1c: Metric Isomorphism and Team Psychological Safety.  Hypothesis 1c 

tests the unidimensional measure of psychological safety for metric isomorphism at the 

individual and the between-team levels of analysis.  

Model fit.  The model fit indices CFI, TLI, and RMSEA did not meet the recommended 

thresholds at the individual or the between-team levels of analysis (CFI = .85, TLI = .77, RMSEA 
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= .09 and CFI = .91, TLI = .86, RMSEA = .13, respectively), bringing into question the quality of 

this measure. There were moderate increases from the individual to the between-team level (.06 

– .09) in the goodness of model fit indices (CFI and TLI) and minimal increases of .04 in the 

badness of model fit indices (RMSEA and SRMR). These contrary results reflect a small 

improvement in goodness of fit and worsening fit in the badness of fit indices. As many of the 

model fit indices did not meet the recommended threshold across levels of analysis, there were 

no meaningful cross-level differences in model fit, providing support for Hypothesis 1c of metric 

isomorphism.   

Factor loadings. The factor loadings followed the same pattern at the individual and the 

team levels of analysis across the indicators; however, the individual-level loadings only 

moderately tapped the latent factor (range of .51 to .64) across the items (see Table 14)7. At the 

team level, factor loadings calculated from estimating the latent mean of each item revealed two 

items with a strong association y while the rest revealed a moderate association (λ = .61 – .73; 

see Table 14). The consistency in the pattern of factor loadings across levels and the mean 

difference across factor loadings from the individual to the team level of .10 provides support for 

Hypothesis 1c revealing weak metric isomorphism. 

Residual variance and reliability. Residual variance was greater at the individual versus 

the team level of analysis (δ = .53 – .74 and ε = .46 – .63, respectively). Consistent with residual 

variance, ω was greater at the team level (.84) versus the individual level (.84), providing further 

support for Hypothesis 1c.  

 
7 Research on drawing conclusions about the ability of items in a scale to tap a latent factor by examining the 

magnitude of factor loadings in a factor analysis is discussed in more depth in the Appendix B. 
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Taken together, psychological safety reveals weak metric isomorphism based on model 

fit indices, factor loadings, residual variance, and reliability. Therefore, Hypothesis 1c was 

supported.  

Hypothesis 1d: Metric Isomorphism and Team Satisfaction. Hypothesis 1d tests for 

metric isomorphism at the individual and the team levels of analysis. The results of running an 

MCFA revealed that team satisfaction was underidentified and, therefore, unable to accurately 

estimate residual variance. I conducted an MCFA on the team satisfaction and task 

interdependence measures simultaneously to overidentify the parameters. The factor structure 

was specified as a two-factor model, with the team satisfaction items loading onto the first factor 

and the team task interdependence items loading onto the second.  

Model fit. As detailed in Table 8, team satisfaction revealed good model fit across 

indices. While there were no differences in CFI and TLI at the individual and the team levels, 

there was a slightly worse fit at the individual versus the team level of analysis (RMSEA = .06 

versus .08, SRMR = .05 versus .03). The inconsequential differences in model fit across levels 

provide support for metric isomorphism.  

Factor loadings. The patterns of factor loadings remained consistent at the individual (λ 

= .92 – .95) and the team (λ = .96 – .97) levels of analysis. There was a modest mean increase 

from the individual to the team level of analysis (x̄ = .03).  

Residual variance and reliability. Concerning residual variances, the mean difference 

across items from the individual to the team level of analysis was .06. Composite reliability also 

improved slightly at the team versus the individual level (ω = .97 versus ω .95).  
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Therefore, the minimal cross-level differences in residual variance, factor loadings, and 

model fit for team satisfaction means that Hypothesis 1d (the presence of metric isomorphism) 

was supported.  

Hypothesis 1e: Metric Isomorphism and Team Task Interdependence. A one-factor 

model was used to examine for metric isomorphism (via an MCFA) at the individual and the 

team levels of analysis. The model fit indices for TLI and RMSEA did not meet the recommended 

threshold at the individual or the team level (TLI = .89, RMSEA = .11 and TLI = .90, RMSEA = 

.12, respectively). Unlike the other measures where X2 was consistently smaller at the team level 

of analysis, X2 was greater at the individual versus the team level (X2 = 1281.41 versus X2 = 

1531.22). This was likely a result of a low ICC(1) ranging from .05 – .08, which is also lower  

compared to the other measures. Examining the ICC(1) is part of Step 2 in an MCFA. If the 

ICC(1) is too low, a researcher should not continue with the rest of the steps as there is not 

enough meaningful variation to distinguish between group differences. Therefore, factor 

loadings, residual variance, and reliability were not further examined. There was insufficient 

evidence to support Hypothesis 1e.  

Regarding the overarching Hypothesis 1, common measures of team constructs revealed 

weak metric isomorphism in that model fit, rank order of the factor loadings, residual variance, 

and reliability estimates were consistent from the individual to the team levels of analysis, except 

for team satisfaction, which had low ICC(1) values. This consistency across most measures 

means that Hypothesis 1 was partially supported (that is, common measures of team constructs 

reveal metric isomorphism). 
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Hypothesis 2: Factor Structure of Multidimensional Measures  

Hypothesis 2 examines if the multidimensional structure of the measures of team 

cohesion and conflict hold when examined at the team level of analysis. The results compared 

theoretically relevant alternative measurement models at the team level of analysis that may not 

have been evident when examining the psychometric properties (e.g., model fit, factor loadings, 

residual variance, reliability, and correlations among subscales) of these measures at the 

individual level.  

Hypothesis 2a: Between-team Level Factor Structure for Team Cohesion. While 

Hypothesis 1a examines for metric isomorphism, Hypothesis 2a tests if the three-factor structure 

holds at the team level of analysis when testing theoretically plausible alternative factor 

structures. That is, does psychometric evidence support a three-factor structure over theoretically 

alternative one- and two-factor models.   

Model fit. At the team level, the three-factor model distinguished between task 

commitment, task attraction, and interpersonal cohesiveness; the two-factor model examined 

task-oriented and interpersonal cohesiveness as distinct factors; and the one-factor model 

represented an overall sense of team cohesion factor. In the three-factor model, model fit was 

superior across all indices compared to the one- or two-factor models (see Table 6). Only the 

three-factor model was close to or exceeded the recommended thresholds for the model fit 

indices (X2 = 2,96.17, p < .05; CFI = .96; TLI = .94; RMSEA = .12; SRMR = .04). While all were 

statistically significant (p < .05), X2 substantially improved with great model complexity (i.e., 

greater number of factors), which is typical for that index (1-factor = 7,390.26; 2-factor = 

5,041.21; and 3-factor = 2,962.17). SRMR, which examined model misfit ̶ (and not a function of 
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X2) met the recommended threshold across all factor models (1-factor = .06, 2-factor = .06, 3-

factor = .04). Overall, model fit indices supported a three-factor model of team cohesion.  

Factor loadings. The magnitude of the factor loadings increased with the complexity of 

the factor structure: one-factor (λ = .52 – .89), two-factor (λ = .53 – .94), and three-factor (λ = 

.62 – .94). (See Table 11.) The increased factor loadings add further evidence for a three-factor 

model supporting Hypothesis 2a.  

Residual variance and reliability. Following the same pattern, residual variance 

decreased with greater model complexity: one-factor (ε = .23 – .73), two-factor (ε = .12 – .72), 

and three-factor (ε = .12 – .62). (See Table 11.) Across all models, the residuals for the two 

reverse-coded items were substantially larger (ε > .44 versus ε < .35). These patterns provide 

additional support for a three-factor model. The estimates of composite reliability revealed that 

the one-factor model of team cohesion and the interpersonal cohesiveness and task attraction 

subscales had high reliability estimates (ω = .94, ω = .94, and ω = .91, respectively). The task 

commitment subscale, which contains the reverse-coded items, was lower (ω = .79). The ω for 

the combined subscales of task commitment and attraction representing the task-oriented factor 

was .89. The improved reliability in the two-factor model may address some of the problems 

associated with variance due to the reverse-coded items. The support for a three-factor model 

based on model fit, factor loadings, and residual variance is likely due to the task commitment 

scale containing reverse-coded items. To get a clearer picture of the measure of team cohesion’s 

dimensionality, correlations among subscales were examined.  

Correlations among factors. In the two-factor model of team cohesion at the individual 

level of analysis, the team interpersonal and task-oriented cohesion factors were heavily 

correlated (r = .89); in the three-factor model, latent factors were also heavily correlated (task 
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attraction and task commitment: r = .78, task attraction and interpersonal cohesion: r = .86, and 

task commitment and interpersonal cohesion: r = .78). At the team level, the correlations among 

latent factors were even greater (two-factor model: team task-oriented and interpersonal 

cohesion: r = .92; three-factor model: task attraction and interpersonal cohesion: r = .89; task 

attraction and task commitment: r = .85; and interpersonal cohesion and task commitment: r = 

.85). The intercorrelations among latent factors exceeded the recommendations of Schmitt and 

colleagues (2018) of interfactor correlations being <.75. When examining the theoretically 

relevant level of analysis (i.e., team) for the measure of team cohesion, the high intercorrelations 

did not support a two- or a three-factor model.  

 There was not enough variation at the team level of analysis to investigate two or three 

distinct dimensions of team cohesion using the measure in the current study. Therefore, contrary 

to what was expected, Hypothesis 2a was not supported. 

Hypothesis 2b: Between-team Level Factor Structure for Team Conflict. Hypothesis 2b 

examines if the psychometric properties at the between-team level of analysis for the measure of 

team conflict support three distinct factors (i.e., team task, relationship, and process conflict) 

over two-factor models (i.e., a team emotionally laden factor and team task conflict factor, or a 

team disagreements factor and team relationship conflict factor).   

Model fit. The three-factor model revealed better model fit across all indices over both of 

the two-factor models in Step 4 of an MCFA that examined the team level of analysis (three-

factor: X2 = 2429.50, p < .05; CFI = .98; TLI = .96; RMSEA = .09; and SRMR = .03 versus the 

two-factor task  and emotionally laden: X2 =5178.78, p < .05; CLI = .94; TLI = .92; RMSEA = 

.14; and SRMR = .05 or the two-factor disagreements and relationship: X2 =7641.72, p < .05; CLI 

= .91; TLI = .88; RMSEA = .17; and SRMR = .05). The two-factor model (task and emotionally 
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laden) revealed better fit than the disagreements and relationship factor model. The former 

exceeded or came relatively close to the recommended cut-off values, with the exception of 

RMSEA, as opposed to the latter. Overall, the superior model fit in the three-factor model 

supports Hypothesis 2b.  

Factor loadings. At the team level of analysis, the average magnitude of the factor 

loadings across the three- and the two-factor models of team conflict did not vary greatly (three-

factor = .85, two-factor task and emotionally laden = .84, and two-factor disagreements and 

relationship = .87; see Table 12). As the magnitude of the factor loadings was similar, there was 

no evidence to support or reject the three-factor over the two-factor models of team conflict.   

Residual variance and reliability. For the measure of team conflict, residual variance, on 

average, was smaller in the three-factor model (task, relationship, and process conflict: ̄x̄ = .23) 

versus the two-factor task and emotionally laden conflict model (x̄ = .27) or the two-factor 

disagreements and relationship conflict model (x̄ = .30). (See Table 11.) The reliability estimates 

were minimally better when combining subscales into a more general factor (task ω = .91, 

relationship ω = .92, and process conflict: ω = .89 versus emotionally laden conflict ω = .94 and 

disagreements ω = .92). The minimal differences across the different factor models did not 

clearly support one factor model over another for the measure of team conflict.  

Correlations among factors. Across the multifactor models of team conflict, the 

intercorrelations among latent factors were high. At the individual level, the two-factor models 

were strongly correlated (emotionally laden and task conflict: r = .80, team-focused 

disagreements and relationship conflict: r = .83); the three factors were highly correlated 

(relationship and process conflict: r = .84, relationship and task conflict: r = .72, and process and 

task conflict: r = .80). At the team level, the two-factor models were strongly correlated 
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(emotionally laden and task conflict: r = .81 and team focused disagreements and relationship 

conflict: r = .87). The three-factor model revealed greater distinction among factors (relationship 

and process conflict: r = .82, relationship and task conflict: r = .36, and process and task conflict: 

r = .67).  

While the intercorrelations in the two-factor model of emotionally laden and task conflict 

exceeded the recommended threshold of r < .75, the low intercorrelation for relationship and task 

conflict in the three-factor model provided additional support that task conflict is 

psychometrically distinguishable from relationship conflict (Schmitt et al., 2018). Based on these 

psychometric properties at the team level of analysis, there was greater evidence for a distinct 

team task conflict factor but not for a distinct process and relationship conflict factor at the team 

level of analysis. As there was more evidence to support a two-factor model of team conflict, 

Hypothesis 2b was not supported.  

Part II Results: Influences of Psychometric Isomorphism and Relationships Among Team 

Constructs 

Hypothesis 3: Psychometric Isomorphism and a Measure’s Characteristics 

Hypothesis 3a: Influence of the Referent. The influence of a measure’s referent on its 

degree of psychometric isomorphism was examined by comparing the model fit, factor loadings, 

and residual variances across levels of analysis for measures intended to capture team 

phenomenon in a referent-shift versus direct consensus model. While Hypothesis 1 examined for 

evidence of psychometric isomorphism via model fit indices, Hypothesis 3a examined for 

systematic differences in model fit indices at the individual and the team levels of analysis and if 

these differences are the result of a measure’s referent. There were no consistent differences in 

model fit based on the level of analysis in the measures of common team constructs.  
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Concerning the factor loadings, measures of team cohesion and conflict revealed that the 

team level of analysis had consistently greater factor loadings; increases ranged from .05 to .16, 

with a mean increase of .09. This mean increase is slightly lower than expected (i.e., ≥ .10). 

However, the measures of team satisfaction and task interdependence showed much smaller 

increases from the individual to the team level as expected, ranging from .03 to .05 among their 

items, with an average increase across items of .04.  

As there is less literature on differences in residual variance across levels of analysis in a 

measure, the current study did not propose a specific range or cutoff scores to compare the 

measures in a referent-shift versus a direct consensus model. Therefore, these results were 

examined for more general patterns. The measures (i.e., team cohesion, conflict, and 

psychological safety) in a referent-shift model’s residual variance across items decreased at the 

team level from the individual level, with a range from .08 to .17 across all proposed factor 

structures. The measures (i.e., team satisfaction and task interdependence) in a direct consensus 

model’s residual variance also decreased at the team level from the individual level, with a range 

from .04 to .07. There was a mean decrease across items of .06 for team satisfaction and -.05 for 

team task interdependence.  

Directly related to a measure’s residual variance, composite reliability increased 

consistently across all measures at the between-team versus the individual level of analysis.  

However, there were no meaningful differences between measures in a referent-shift versus a 

direct consensus model. (See Tables 6 – 8.) Therefore, based on a lack of meaningful cross-level 

differences from the results of the MCFA, Hypothesis 3a was not supported. 

Hypothesis 3b: Influence of the Target. The influence that a measure’s target has on its 

degree of psychometric isomorphism was examined in a direct consensus model (i.e., team 
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satisfaction, task interdependence, general liking among team members, team viability). Team 

satisfaction and task interdependence had a “team” target; that is, items referred to members’ 

personal perceptions about working in their team. General liking and team viability had a “team-

member” target; that is, items referred to members’ personal perceptions about working with 

specific members of their team. Unfortunately, the sample in the current study for the measure of 

team task interdependence had a low ICC(1); so, examining the degree of psychometric 

isomorphism was not warranted. The measure of team satisfaction, which had a “team” target, 

revealed metric isomorphism, where model fit indices, factor loadings, and residual variance 

were consistent at the individual and the team levels (see Tables 8, 15, and 16).  

 Measures of liking and viability were examined by comparing the within-person 

(modeling the deviation construct), the between-team (modeling the shared construct), and the 

three-level multilevel (modeling the shared configural construct) factor models (see Figure 8).8 

ICC(1) scores showed that at least 10% of the variance was due to between-team variance for all 

items which supported considering team-level phenomena. Model fit indices at the within-

person, between-team, and multilevel factor models revealed good fit, with the exception of 

RMSEA (an index of badness of fit) at the team level via CFA on the SBT (RMSEA = .15). The 

difference in factor loadings ranged from .03 – .20, with a mean difference of .07 across the 

items comparing the within-person and the between-person factor models. However, the reverse-

coded item had more variance across levels (.20) than the other items (.03 – .08). The difference 

in residual variance ranged from .01 – .22, with a mean of .07 across the items. The reverse-

coded item revealed greater residual variance than the other items (.22 versus a range of .01 – 

 
8 While a one-factor model for a general feeling about team members was examined, consistent with previous 

research a two-factor model was supported, with liking and viability items loading onto distinct factors.  It is 

discussed in the results from this point forward. See Tables 9, 17, and 18. 
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.06). The residual variance remained when comparing the CFA on the SWP and that estimated at 

the within-person level in a multilevel factor model (δ = .10 – .21 and ε = .09 – .21, 

respectively). However, the residual variance from the CFA on the SBT and that estimated at the 

between-team level in a multilevel factor model varied greatly (.10 – .28).  

 These results support a within-person construct, which is consistent with the theoretical 

development of the measure, but do not support a shared construct model of general team liking 

and viability. (See Figure 4.) However, modeling a multilevel factor structure with meaningful 

variance at the within-person, the between-person, and the team levels for the measures of liking 

and viability was supported. (See Figure 9.) As hypothesized, measures with a “team” target 

revealed a stricter degree of psychometric isomorphism across theoretical relevant levels of 

analysis (i.e., individual and team); measures with a “team-member” target revealed 

measurement variance in the pattern and factor loadings, residual variance across levels, and a 

poorer fit at the team level when not modeling them as multilevel factors. However, the measure 

of team task interdependence was unable to be included in the analysis due to a low level of 

agreement. Therefore, Hypothesis 3b was partially supported.    

Hypothesis 4: Psychometric Isomorphism and Team-member Agreement 

Splitting the data between high and low team-member agreement by rWG(j) resulted in a 

smaller sample for low agreement versus the high agreement group across all measures. Splitting 

the groups by average deviation from median score across all items in the measure (ADmd) 

resulted in relatively even groups according to sample size. (See Tables 25 – 31.) Across all 

measures split by high and low rWG(j), none revealed metric measurement invariance; the 

measures of team cohesion and conflict failed to converge when testing for configural 

invariance. Upon further inspection, the one-factor model for team cohesion and the two-factor 
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model for team conflict was not identified in the low rWG(j) groups. To inspect the severity 

regarding the lack of measurement invariance across low and high rWG(j) groups, the results 

restricting the residuals to be equal across groups (i.e., strict measurement invariance) caused the 

largest decreases in CFI (.03 – .31) across all measures. As team-member scores should be 

theoretically interchangeable when measuring team phenomena, greater residual variance in the 

low agreement groups indicated greater residual error as team-members failed to coalesce on a 

shared understanding of their team.  

Splitting the samples by high and low ADmd had slightly different results. The high and 

low ADmd groups for the measure of team cohesion were scalar-measurement invariant. The 

measures of team satisfaction, task interdependence, and psychological safety did not reveal 

metric invariance but did reveal scalar invariance. While scalar invariance is a stricter form of 

measurement invariance than is metric, the high and low groups were not statistically different. 

This is likely due to the increases in degrees of freedom from the metric to the scalar invariance 

and the fact that team intercepts did not differ greatly in either group. Therefore, minor 

differences in factor loadings became inconsequential with the increase in degrees of freedom. 

As with rWG(j), for high and low ADmd groups, the range of differences in CFI from the 

configural model when restricting factor loadings, intercepts, and residuals (i.e., strict invariance) 

ranged from .00 – .12 versus the other forms (i.e., metric and scalar invariance), which  differed 

by < .02. As the factor models across measures were not comparable across groups at the team 

level of analysis, further investigation into the degree of psychometric isomorphism between 

high and low agreement groups at the individual level of analysis was unwarranted. 

 The differences in the ADmd groups were less meaningful than the rWG(j) groups. The 

differences in the rWG (j) groups were consequential, as the factor models were either not 
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identified among teams with low agreement or the other psychometric properties (i.e., factor 

loadings, residual variance) of the measures differed significantly. Therefore, Hypothesis 4 was 

partially supported based on teams with low agreement via rWG (j) values.  

Research Questions: Relationships Among Variables 

Two research questions examined relationships among variables at the individual and the 

team levels of analysis. To estimate these relationships, a subset of the current study’s sample 

was used in which each team was administered all measures (n = 2,332 individuals, 541 teams). 

The only substantive difference between the larger sample and its subset in the initial hypotheses 

and the research questions was that the ICC(1) values were substantially higher across all items 

for every measure, ranging from .23 – 44. While the results are not reported, an MCFA was 

conducted specifying all latent factors found in earlier MCFA results using the subset. There 

were no meaningful differences in the psychometric properties across levels of analysis between 

the larger sample and its subset. 

Research Question 1: Psychometric Isomorphism as a Constraining Force.  All 

measures in the current study were categorized by the degree of psychometric isomorphism 

followed by a comparison of the covariance/variance matrices across levels of analysis. 

Concerning the degree of psychometric isomorphism, all measures of common team constructs 

had the same number of factors and were consistent in the pattern of zero and nonzero factor 

loadings at the individual and the team levels of analysis, giving support for strong configural 

isomorphism (see Tables 6 – 8 and 10 - 16). For the measures of team cohesion and conflict, the 

relative ordering of factor loadings remained consistent across levels of analysis. The magnitude 

was greater at the team versus the individual level of analysis, providing support for weak metric 

isomorphism.  
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For the measures of team satisfaction and task interdependence, the relative ordering 

remained consistent across the individual and the team levels. The minimal increase (< .03) 

suggests that these measures are best characterized by strong metric isomorphism. Regarding the 

measure of team psychological safety, many of the model fit indices did not meet the 

recommended cut-off criteria (e.g., CFI, TLI, RMSEA). The relative ordering of the factor 

loadings at the individual and the team levels was not consistent; however, the magnitude of 

factor loadings was greater at the team versus the individual level of analysis. Therefore, this 

measure did not adequately meet the quality standards in a CFA framework to categorize its 

degree of psychometric isomorphism with this sample.  

For the measures of team-member liking and viability, general model fit indices were 

good for a two-factor model at the within-person (CFI = 1.00, TLI = 1.00, RMSEA = .04, SRMR 

= .01) and the team levels of analysis (CFI = .96, TLI = .95, RMSEA = .15, SRMR = .04), which 

supports strong configural isomorphism. A three-level multilevel factor model was supported as 

well (SRMR-wp = .02, SRMR-bp = .06, SRMR-bt = .06; see Table 9). The pattern and the relative 

ordering of factor loadings remained consistent at the within-person and the team levels of 

analysis; however, the magnitude of factor loadings was greater at the team level. This pattern 

followed suit in the multilevel factor model as well. Therefore, there was sufficient evidence for 

weak metric isomorphism in measures of team-member liking and viability.  

The covariance/variance matrices at the team level of analysis via SB and the MCFA 

differed slightly but followed the same pattern regarding model fit and factor loadings due to 

how residual variation was modeled in the respective factor structures (see Figure 4). As the 

current study primarily examined for shared constructs, the results focus on the differences in 

relationships among constructs at the individual (via ST) versus the team (via SB) levels of 
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analysis. Relationships among variables differed greatly at the individual and the team levels of 

analysis, with consistently stronger correlations at the team level. However, there was no pattern 

of differences based on whether the measures revealed weak or strong metric isomorphism. For 

example, cohesion correlated differently at the individual versus the team level for emotionally 

laden conflict (r = -.58 versus -.72) and team viability (r = .79 versus .87). Also, the differences 

in satisfaction correlates at the individual versus the team level of analysis were smaller for 

liking (r = .66 versus .70) and task interdependence (r = .37 versus .40).  

Research Question 2: Psychometric Isomorphism and Discriminant Validity. The 

second research question examined for evidence of discriminant validity by comparing 

relationships among variables at the individual and the team levels of analysis. Based on the 

observed scores at the individual level of analysis, six relationships among variables were greater 

than .75 (emotionally laden and task conflict: r = .80, cohesion and satisfaction: r = .84, cohesion 

and viability: r = .79, cohesion and liking: r = .77, satisfaction and viability: r = .85, viability and 

liking: r = .77). Ten correlations at the team level of analysis exceeded the recommended 

threshold for correlations among distinct variables (emotionally laden and task conflict: r = .82, 

cohesion and satisfaction: r = .91, cohesion and viability: r = .85, cohesion and liking: r = .82 

satisfaction and viability: r = .89, viability and liking: r = ..79, psychological safety and 

cohesion: r = .85, satisfaction and psychological safety: r = .82, cohesion and psychological 

safety: r = .85, viability and psychological safety: r = .82.). At the team level there were three 

relationships among variables in which the residual error in comparison to the magnitude of  

correlation revealed a lack of discriminant validity, (see Table 22.), which can be further 

understood by examining interitem relationships (Prudon, 2015). As seen in Tables 23 and 24, 

the interitem correlations among measures of team constructs reveal that modeling individual 
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perceptions resulted in different correlations among measures’ items compared to the team level, 

which modeled the influence of team membership. Therefore, there were differences in the 

relationships among measures at the individual and the team levels of analysis. 
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DISCUSSION 

 

 

The overarching purpose of the current study is to connect measurement theory and 

theory on team phenomenon operating in a multilevel context. First, using archival data, I 

applied a multilevel factor analytic framework to measures of common team constructs to 

examine the internal properties of these measures via an empirical study at the individual and the 

team levels of analysis.  Second, I examined what influences a measure’s psychometric 

properties across levels of analysis and how relationships among measures of team constructs 

may vary across levels.   

Part 1 Discussion: Psychometric Isomorphism in Measures of Team Constructs 

To address the lack of clarity on the psychometric properties of common measures of 

team constructs discussed in the literature review, Hypotheses 1and 2 evaluated the degree of 

psychometric isomorphism in common measures of team constructs by categorizing the 

differences in model fit, factor loadings, and residual variance at the individual and the team 

levels of analysis and the factor structure at the team level of analysis in multidimensional 

measures. With the exception of the measure of team task interdependence, which was not 

examined due to a low ICC(1), all measures revealed some degree of metric isomorphism in that 

model fit estimates led to similar conclusions at both levels. However, the factor loadings were 

higher and residual variance was lower at the team versus the individual level of analysis across 

all measures, while estimates of reliability were higher at the team level across all measures. 

These difference across levels were smaller for team satisfaction;  therefore, team satisfaction is 

best characterized as having revealed strong metric isomorphism while measures of team 

conflict, cohesion, and psychological safety revealed weak metric isomorphism.  
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There are two consequences of modeling variance in scores due to individual differences 

typical in a traditional CFA as opposed to modeling variance due to team membership. First, the 

measure’s estimate of reliability was downwardly biased. Second, differing factor loadings and 

residual variance across levels means that the relationships among dimensions in the measures of 

team cohesion and conflict varied at the team versus the individual level. For team cohesion, the 

correlations increased from the individual to the team level of analysis to the extent that the 

dimensions were practically indistinguishable at the team level. Concerning the measure of team 

conflict, the strong correlation between relationship and process at the team level supported a 

two-factor solution, with task conflict on the second factor. These results are consistent with  

those of researchers who found simplified factor structures at higher levels of analysis and biased 

estimates at lower levels of analysis (Dedrick & Greenbaum, 2011; Dyer et al., 2005; Hsu et al., 

2015).  

Part 2 Discussion: Reasons and Consequences for Varying Degrees of Psychometric 

Isomorphism  

Hypotheses 3a and 3b investigated if characteristics of measures, such as their referent 

and target, influenced their degree of psychometric isomorphism. Common measures of team 

constructs in a referent-shift versus a direct consensus model did not show systematic differences 

across levels of analysis. (See Tables 6 – 8.) Using “team” as a measure’s referent versus “I” 

revealed only small differences in the item’s factor loadings between the two models, and not to 

the extent hypothesized. Therefore, it is unlikely that a measure’s referent influenced the degree 

of psychometric isomorphism when the context of the items was a team.    

While measures in the direct consensus model in the current study all used “I” as the 

referent, they can be characterized further by their target (e.g., team-member, team). Measures 
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using a “team-member” target (i.e., team-member liking and viability) revealed greater 

measurement variance in model fit, factor loadings, and residual variance than measures using a 

“team” target (i.e., team satisfaction) from the individual to the team level of analysis. This 

cross-level variance arose from not modeling meaningful variance due to distinct relationships 

among team members (i.e., within-person) in a traditional CFA. Therefore, when lower- and 

higher-level variance is of theoretical interest, it needs to be modeled to accurately assess the 

psychometric properties of the measure. 

 Extending beyond measures’ characteristics, Hypothesis 4 examined if team-member 

agreement influenced a measure’s degree of psychometric isomorphism. By including teams 

with low agreement via rWG(j), measurement quality was underestimated and the ability to model 

the factor structure was constrained by the number of teams with low agreement in a sample. The 

difference was not as strong when using ADmd because splitting the sample based on an average 

included teams with sufficient team-member agreement. Therefore, low agreement should be 

estimated with rWG(j), not ADmd.  

While ICC(1) estimates addressed the overall ability of the sample to measure for a 

higher-level construct, teams with very low agreement should still be eliminated from the sample 

to improve the measure’s ability to detect variation in the latent factor by reducing the residual 

variance. Low agreement is problematic because team-member perceptions describing the 

attributes, beliefs, characteristic, and cognitions of the team should be relatively interchangeable; 

variation in team-member perceptions can cause residual error. Including teams with very low 

agreement contradicts current understanding of team consensus constructs and introduced 

unnecessary error in the measurement of team constructs in the sample. Researchers should 

remove teams with low rWG(j) before further investigating the respective team construct. 
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Including teams with low agreement via rWG(j) in analyses with higher-level constructs may lead 

to misleading results, as the measures’ quality is underestimated by introducing error via team-

member lack of agreement.       

A final consideration regarding psychometric isomorphism is the differentiation among 

variables across levels of analysis, which was investigated via the research questions. For the 

first question, there were no systematic differences in the correlations among variables based on 

their degree of psychometric isomorphism, perhaps because the measures revealed weak to 

strong metric isomorphism at the individual and the team levels of analysis. 

 The second question compared the differences in the correlations among variables, in 

general, at the individual and the team levels of analysis. There were differences in relationships 

among latent variables at the between-team level,  which is problematic as ten relationships 

among latent variables failed to provide evidence for discriminant validity (i.e., correlations 

greater than .75; Schmitt et al., 2018). A lack of differentiation among variables can occur for 

multiple reasons. First, the dynamic team environment makes it difficult to distinguish between 

measures, as variables continue to influence each other over performance cycles. Second, team 

members may report on general positive and negative feelings of their team, making it difficult 

to tease apart theoretically distinct team phenomena. If positive/negative feelings about a team 

are driving differences among measures of team constructs, then researchers need to refine these 

measures like researchers did  in order to tease apart the difference between positive and 

negative affect and other individual differences (Weiss, 2002).  

Theoretical Implications 

 The current study contributes to measurement theory by demonstrating how to correctly 

model consensus constructs based on the theory of the construct in an MCFA framework. By 
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linking theory on team phenomena and Classic Test Theory in a SEM framework, the current 

study clarifies the appropriate measurement model for common measures of team constructs and 

gives recommendations for when researchers should adopt alternative models (Crocker & 

Algina, 1986; Ilgen et al., 2005; Marks et al., 2001).  

By linking measurement and theory, this study addressed the concerns of Chen and 

colleagues (2005) about the lack of understanding regarding how various statistical packages 

standardize variables at the within and the between levels of analysis in a SEM framework. This 

clarification was accomplished by detailing best practices for conducting an MCFA and 

reporting results, conducting analyses in both R (via the lavaan package) and MPlus, and linking 

the analysis and interpretation of results to the theory of the construct and the measure’s 

measurement model.  

Third, regarding theory on team phenomena, this study questioned if there are substantial 

differences in relationships among variables at different levels of analysis for measures of team 

constructs. Differences were found and the high correlations could be a result of problematic 

measures or construct proliferation not detected because of a misalignment between 

measurement and theory. Because team variables such as team cohesion, psychological safety, 

and satisfaction showed strong correlations, team psychological safety and satisfaction may be 

intertwined, and their strongly correlated relationship at later stages in team development may be 

a result of the cyclical manner in which team constructs influence each other. However, the story 

is less clear on team cohesion. Are teams inherently cohesive when they are satisfied or feel 

psychologically safe to interact? Are teams that want to work together again (i.e., team viability) 

or that like each other (i.e., team liking) really distinct from teams that cohesively work together? 
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Researchers need to investigate the extent to which team cohesion is a distinct construct or one 

that simply taps more broadly into a general positive feeling about the team.  

Practical Implications 

This study provides researchers with the tools and knowledge to investigate team 

phenomena in both R and MPlus by providing MCFA syntax for both software packages (see 

Appendix B). Consistency in results is vital across statistical software. The current study 

describes the analytical choices in depth to give researchers the ability to conduct their own 

analyses when dealing with multilevel data.     

While the consequences of misalignment in theory and measurement are evident when 

evaluating the quality of measures for team constructs, the focus is understanding the true quality 

of these measures. To examine measures via an MCFA is not always feasible due to the large 

sample size requirement/recommendation (e.g., ≥ 100 teams and 3 observations per team; B. O. 

Muthén, 1994). Researchers should initially conduct an MCFA when theoretically necessary 

during the validation process of measure development. Once the degree of psychometric 

isomorphism in the measure is established (e.g., configural, metric), the consequences for 

examining the quality of the measure at the lower level of analysis can be estimated. Therefore, 

the likelihood of upward or downward biased estimates can be noted, which will limit the need 

for a large sample size across all studies using multilevel data and allow researchers to move 

forward in their understanding of the dynamic team environment.  

While not a main focus of the current study, the results in the MCFA highlight 

differences across levels of analysis and measurement models. Researchers can use this 

knowledge to investigate deviation, shared, and multilevel constructs with more confidence and 

compare their results to those in the current study. For example, researchers can compare MCFA 
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for measures designed to capture deviation constructs with the results here that focus on 

measures in a shared construct model. Therefore, the current study contributes to the literature by 

providing results that can be compared across multilevel factor analytic studies. 

Limitations and Future Research 

The current study’s sample population consisted of student work groups examined over a 

15-week time span. While there is no theoretical reason for the factor structure of team variables 

to vary in university student work groups and professional work groups, it should be noted as a 

potential limitation since subpopulations can differ. This population was based in the United 

States. Because cross-cultural differences regarding team conflict and team-related outcomes 

may exist (Wit et al., 2012), researchers should also investigate (via MCFA) how different 

cultures view team phenomena such as cohesion, conflict, and psychological safety.   

 Changes across the stages of team development need to be addressed. As the measures of 

team constructs in the current study were inherently derived from a reflective perception of 

people’s experiences, the factor structure was examined in established teams.   Team emergent 

states that are more susceptible to status cues, such as team psychological safety (Nembhard & 

Edmondson, 2006), can be  antecedents to other emergent states that may take longer to establish 

through interactions in project-based work. Differences across stages of team development in 

how team constructs are measured and evaluated means that strongly correlated variables at later 

stages of team development may not be theoretically relevant to compare in early stages.  

Therefore, researchers should disentangle the idea of construct proliferation and the theoretical 

value of distinct constructs at different stages of team development. 

 A longitudinal approach in which variation in latent factors is modeled over time to 

assess discriminant validity represents another research opportunity. Such an examination of 
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constructs is an important piece of measures’ validation process. For example, resilience, 

optimism, and hardiness are highly correlated but have distinct relationships with outcomes as 

they tap into slightly different aspects of the human condition (Lee et al., 2011). Therefore, 

researchers need to investigate whether measures of common team constructs tap into a higher-

order factor or if they provide meaningful information on the dynamic team environment across 

the stages of team development.     

Conclusion 

The current study addressed six overarching questions regarding consequences of 

misalignment in theory and measurement in common measures of team construsts resulting in 

six key takeaways. First, current practices were found to be insufficient as most researchers did 

not fully examine the nature and structure of measures at the team level of analysis. Second, 

overall, these measures revealed to have metric isomorphism. Third, there was more support for 

simpler factor structures at the team level for the multidimensional measures of team cohesion 

and conflict. Fourth, regarding measures’ characteristics, there was no evidence that a measure’s 

referent influenced its degree of psychometric isomorphism; however, there was some evidence 

that a measure’s target influences the degree of psychometric isomorphism across levels of 

analysis. Fifth, findings also suggest that the level of team agreement constrains the ability to 

accurately model the latent factor. Sixth, relationship among team variables must be examined at 

the theoretically relevant level of analysis as the relationships vary from the individual to the 

team level of analysis.  

The current study fills important gaps in our knowledge by providing best practices and 

guidelines for how to evaluate measures of team constructs in a multilevel context and gives 

practical examples of how to conduct an MCFA (using both R and MPlus) that aligns the theory 
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of the construct with its measurement. Failure to accurately model the factor structure in 

measures of common team constructs leads to misleading results in how team variables relate to 

each other and in the overall quality of the measure. In other words, the Gestalt idiom applies to 

the current study since the whole (i.e., team) is greater than the sum of its parts (i.e., team  

members; Islam et al., 2006). This study lays the groundwork for researchers who seek to 

understand higher-level team phenomena by addressing practical and theoretical considerations 

and challenges that arise when working with multilevel data.  
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 c
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 c
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 c
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d
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b
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 b

e 
th

e 
m

ea
n
 o

r 
m

ed
ia

n
 o

f 
al

l 
te

am
s’

r W
G

(j
).
 C

o
n
fl

ic
t 

re
fe

rs
 t
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Figure 3. Measurement model for one factor and two factor solution. Φ = (i.e., Phi) covariance 

matrix of latent factors. ξ = latent factor. x = observed variable. λ = (i.e., lambda) factor loadings. 

λX1,1 - λX6,1 represent the respective factor loadings on each of the indicators/observed variables 

(x1 – x6); while δ1 - δ6 represent the unique and error variance (i.e., residual variance) associated 

with each observed variable in a CFA. 
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Figure 4. Measurement models of multilevel factor models at the between and within group level 

of analysis. The shared cluster construct model specifies the lower level as residual variance, 

whereas, the two-level factor model specifies latent factors at the within- and between-team 

levels. ζ = (i.e., Zeta) indicates the residual variance associated with a level of analysis. η = (i.e., 

eta) the higher levels of analysis as a latent factor. λ = (i.e., lambda) factor loadings. ε = (i.e., 

varepsilon) residual variance for each indicator mean or observed variable. B = between group 

level of analysis. W = within group level of analysis. yB1 – yB9 = group means for each indicator. 

y1 – y9 = observed variable for each indicator. 

  

Two-level Factor Model Shared Cluster Construct Model 



133 

 

Figure 5. Measurement model of a multilevel factor revealing a general latent factor at the 

between group level and 3 factors at the within group level of analysis. Φ = (i.e., Phi) covariance 

matrix of latent factors. ζ = (i.e., Zeta) indicates the residual variance associated with a level of 

analysis. η = (i.e., eta) the higher levels of analysis as a latent factor. λ = (i.e., lambda) factor 

loadings. ε = (i.e., varepsilon) residual variance for each indicator mean or observed variable. B = 

between group level of analysis. W = within group level of analysis. yB1 – yB9 = group means for 

each indicator. y1 – y9 = observed variable for each indicator. 
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Figure 6. Measurement model of a shared construct with three factors at the higher level and the 

lower level is modeled as residual variance. Φ = (i.e., Phi) covariance matrix of latent factors. ζ = 

(i.e., Zeta) indicates the residual variance associated with a level of analysis. η = (i.e., eta) the 

higher levels of analysis as a latent factor. λ = (i.e., lambda) factor loadings. .ε = (i.e., varepsilon) 

residual variance for each indicator mean or observed variable. B = between group level of 

analysis. W = within group level of analysis. yB1 – yB9 = group means for each indicator. y1 – y9 = 

observed variable for each indicator. 
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Figure 7. Measurement model of a multilevel factor revealing partial configural isomorphism 

with a simplified factor structure at the higher level. This model reflects both the between- and 

within- level of analysis with 2-factors at the team level, 3-factors at the within level, and cross-

loading at the team level for an indicator (i.e., y4) in bold. Φ = (i.e., Phi) covariance matrix of 

latent factors. ζ = (i.e., Zeta) indicates the residual variance associated with a level of analysis. η 

= (i.e., eta) the higher levels of analysis as a latent factor. λ = (i.e., lambda) factor loadings. ε = 

(i.e., varepsilon) residual variance for each indicator mean or observed variable. B = between 

group level of analysis. W = within group level of analysis. yB1 – yB9 = group means for each 

indicator. y1 – y9 = observed variable for each indicator. 
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Figure 9. Three-level multilevel factor model revealing at a minimum strong configural 

isomorphism. This model reflects within-person, between-person, and between-team levels of 

analysis with two factors at the within-person and between-person levels. η = (i.e., eta) latent 

factor. λ = (i.e., lambda) factor loadings. BT = between team level of analysis. BP = between 

person level of analysis. W = within group level of analysis. yB1 – yB9 = means for each indicator 

at the respective level of analysis. y1 – y9 = observed variable for each indicator. 
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APPENDIX A 

 

 

To categorize the degree of psychometric isomorphism (e.g., partial configural, strong 

configural, weak metric, and strong metric isomorphism) for each measure of a common team 

construct, the following aspects of a multilevel confirmatory factor analysis (MCFA) is assessed 

and interpreted: ICC(1), model fit, factor variances and loadings, and residual variance (Dyer et 

al., 2005; Geldhof et al., 2014; Tay et al., 2014). Each psychometric assessment of these 

measures and their indicators provides evidence for which level of analysis the construct 

primarily operates and how/if the measure operates at different levels. The current study 

examined well-established measures of constructs; therefore, the focus is on confirmatory as 

opposed to exploratory factor analytic techniques (See Dedrick & Greenbaum, 2011 for a 

review). The following section briefly reviews the equations associated with CFA and MCFA, 

compares CFA and MCFA techniques, and provides an in-depth discussion detailing the 

different parts of an MCFA in relation to measures of consensus constructs. 

CFA & MCFA Equations 

For single level of analysis, a measure’s quality is examined within the factor analytic 

framework via an EFA and a CFA (Bryant & Yarnold, 1995; Crocker & Algina, 1986). In a 

multilevel context, FA is conducted in a structural equation modeling framework via an MEFA 

and a MCFA to inspect a measure’s properties across levels of analysis (e.g., individual, within-

team, and between-team; B. O. Muthén, 1994). For clarity purposes, standard notations are used 

for a CFA following Bryant & Yarnold (1995) and MCFA notations are derived from Muthén & 

Muthén’s work (B. O. Muthén, 1994; L. K. Muthén & Muthén, 1998-2017). (See Figure 3 and 

4.) 
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A MCFA allows researchers to compare levels of analysis by assessing a measure’s latent 

factor(s)’s overall model or component parts, evaluate the degree of psychometric isomorphism, 

examine for evidence of convergent validity, and establish reliability estimates. This is achieved 

by decomposing the variance in observed scores. The above explanations and related figures 

(Figures 3 – 9) can also be expressed in equation form. Specifically, the observed scores (x) in a 

CFA is a result of the ability of indicators (λ, factor loadings) to assess a construct (ξ, latent 

factor) plus any random or measurement error (δ, residual error): 

x = λξ + δ 

In an MCFA, the variance in observed scores is broken down further by accounting for 

influences from the within (ηW) and between (ηB) team level of analysis. In other words, 

observed scores are explained by the amount of deviation within a team and the influence of 

team membership: 

x = ηW + ηB 

Breaking down this equation further, we see how the factor loadings and residual error 

associated with each level of analysis influence the observed scores. Specifically, observed 

scores are the result of the indicators’ ability to capture within (λWξW) and between (λBξB) level 

variance associated with a latent factor is estimated, and the residual error at each respective 

level of analysis (εW and εB):  

x = (λWξW + εW) + (λBξB + εB) 

As seen in the formulas above, all sources of variance are not accounted for if the grouping 

factor (e.g., team membership) in the data is not modeled in an FA (see Li et al., 1998; B. O. 

Muthén, 1994; Stapleton et al., 2016 for a more indepth review of equations). Therefore, 
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measures of team consensus constructs which aggregate members scores in teams need to be 

analyzed multilevel factor analytic framework. 

Theory and measurement intertwine as this study seeks to uncover if the pattern of 

people’s responses due to team membership (i.e., between-team level) explains variance 

differently in a latent variable’s factor structure and loadings than people’s responses in general 

regardless of team membership (i.e., individual level). The within-team level of analysis is not of 

theoretical interest for comparison in common measures of team constructs because, as shown in 

Figure 1, the within-team level models deviations from the average of team members’ responses 

which is different from modeling people’s general tendency regardless of what team in which 

they are a member (i.e., individual level). 

Comparing Figure 3 and 4 highlights the differences in modeling the variation at different 

levels of analysis and based on the theoretical development of the construct. As discussed 

previously, Figure 3 reflects a traditional CFA model in which no grouping factor is modeled as 

an influence of variation on observed scores. Alternatively, Figure 4 represents two models in 

which the examination of variation among indicators is due to the within- and between-team 

level of analysis for a single factor model. The first model is a shared cluster construct model in 

which the latent factor is modeled at the between level and variation at the within level is 

modeled as residual error. There are six indicators for the lower level of analysis representing the 

observed scores of the measure’s items as influenced by team membership and individual 

differences (i.e., y1 – y6) and six indicators for the between-team level of analysis representing 

the latent mean of the measure’s items as influenced by team membership (y B1 – y B6). For team 

consensus constructs, a shared cluster construct model is appropriate as it models differences 

among team members as part of error. (See Stapleton et al., 2016 for a review of MCFA models). 
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In the second model − a two-level factor model, the within (ηW) and between (ηB) level 

of analysis become latent factors. The within level portion (ηW) is similar to a typical CFA model 

but reflects the influence of the deviation within a team on the observed variables (y1 - y6). The 

between level factor (ηB) represents the influence of team membership on indicator latent means 

(yB1 - yB6) which, in turn, influences the observed scores (y1 - y6). The two-level factor model in 

Figure 4 models a between-team latent factor (e.g., team construct) and a within-team factor 

(e.g., deviation construct) simultaneously.  

CFA & MCFA Results 

As made evident in the equations above, misalignment in theory and measurement is 

problematic in teams’ research when a measure’s ability to capture a construct is evaluated based 

on team-member perceptions rather than how team membership influences the patterns of 

people’s responses because team constructs are meant to capture an aspect of the team not 

people’s perceptions in a team. Understanding the cross-level differences in measures’ 

psychometric properties is examined via model fit, factor loadings, and residual variances in a 

factor analytic framework.  

Model Fit. When evaluating measures of team constructs collected with data from 

individuals, researchers use factor analysis to assess the overall ability of the measure to capture 

team phenomenon via model fit indices; however, model fit is not typically assessed at the 

between-team level. Specifically, at the individual level via a CFA researchers use a variety of 

model fit indices assessing the hypothesized relationships between the observed and latent 

variables (Hsu et al., 2015; Marsh et al., 1988; Schreiber et al., 2006). In other words, model fit 

indices reflect the extent the proposed model fits the observations in the data. These indices (e.g., 

X2, TLI, RMSEA, CFI, SRMR-W, and SRMR-B) provide insight as to the number of factors (i.e., 

latent variables) and helps researchers compare theoretically relevant alternative measurement 
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models of latent variables (P. Bentler, 1990; Satorra & Bentler, 2010; Steiger, 1998; Tucker & 

Lewis, 1973). While a variety of model fit indices are appropriate in a CFA, Hsu and colleagues 

(2015) find common fit indices are not sensitive to model misspecification at the within-group 

and between-group levels. Therefore, it is not appropriate to report model fit indices in a MCFA 

that are typically reported in a CFA for measures designed to capture multilevel phenomena. 

Table 2 reflects the level of analysis, appropriate model fit indices, and index description as 

relevant to a MCFA. 

When comparing alternative measurement models, the model with the best fit 

psychometrically is assumed to more accurately capture a latent variable (i.e., construct). For 

example, in a CFA framework Figure 3 reflects two potential models based on six different 

indicators at a single level of analysis. The first model has all indicators (x1 - x6) being influenced 

by one latent factor (ξ); whereas, the second model has two distinct factors (ξ1 & ξ2) explaining 

the shared variance for three indicators each (x1 - x3 and x4 - x6, respectively). Model fit indices 

help researchers uncover which factor model more accurately reflects the construct’s factor 

structure based on the observations in their data. When the data contains a theoretically relevant 

grouping factor (e.g., within person, team, or organization), higher levels of analysis are modeled 

in an MFA framework (Stapleton et al., 2016). In this scenario, model fit indices via an MFA are 

examined at each level of analysis (e.g., individual, within-team, between-team) and compared 

with a model that includes both the influence of the lower level (e.g., within-team) and higher 

level (e.g., between-team; See Figure 4). 

Factor Loadings and Variances. Factor loadings provide insight regarding the ability of 

a measure’s item to capture a construct and evidence for convergent validity. Specifically, the 

pattern and magnitude of factor loadings clarify the ability of items to capture constructs at 
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different levels of analysis while the relationship between the indicators and a latent factor(s) 

relates to convergent validity (Asparouhov et al., 2015; Gerbing & Anderson, 1988; Jak, 2019; 

Reise et al., 2005). The next section covers what factor loadings are, their role in understanding 

team phenomenon, and how they relate to convergent validity in a multilevel context.  

The factor loadings (lambda, λ) of a measure’s indicators reflect the strength of a 

relationship between an indicator and a latent factor (F. B. Bryant & Yarnold, 1995; Crocker & 

Algina, 1986; Dyer et al., 2005). In Figure 3, λX1,1 - λX6,1 represent the respective factor loadings 

on each of the indicators/observed variables (x1 – x6) in a CFA. In a MCFA, factor loadings are 

also calculated to reflect the influence of the within (e.g., λWj1 - λWj6) and between (e.g., λBj1 - 

λBj6) level of analysis (See Figure 4). Specifically, the degree to which the ηW influences 

observed scores is estimated via λWj1 - λWji; while the influence of ηB on the latent means of the 

observed scores is estimated via λBj1 - λBji (see Figure 4 – 6). The factor loadings associated with 

each level of analysis are examined via their respective factor matrix. 

A factor matrix (Lambda, Λ) contains the pattern of factor loadings (i.e., the “matrix of 

coefficients regressed from the latent factor to observed variables” in a CFA; Byrne et al., 1989, 

p. 457). In a MCFA, a factor matrix is created for each level of analysis in which the individual 

level factor matrix (ΛI) is derived from the factor loadings from a CFA (e.g., λX1,1 - λX6,1; see 

Figure 2), within matrix (ΛW) contains the factor loadings influenced by the deviation in scores 

within a team (e.g., λWj1 - λWj6), and the between matrix (ΛB) represents the factor loadings 

influenced by aspects of team membership (e.g., λBj1 - λBj6; see Figure 3). If the factor loadings 

are consistent across levels, then the level of analysis does not influence an indicator’s ability to 

capture a latent factor. More specifically, comparing the factor matrices at different levels of 

analysis reveals the degree to which factor loadings (λ) can vary across levels and how this 
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differs among indicators. Variation across levels occurs when the strength of an indicator(s) is 

driven by one level of analysis over another or due to spurious effects (D’Haenens et al., 2012; 

B. O. Muthén, 1994; Ryu, 2014; Stapleton et al., 2016). In other words, the structure, pattern, 

and magnitude/strength of the factor loadings can vary as a function of the level of analysis and 

is examined via the factor matrices (e.g., ΛI, ΛW, and ΛB).  

For measures of team consensus constructs, understanding how a measure’s items 

functions in a multilevel context is established by comparing the factor loadings across levels of 

analysis via examining the factor matrices at the individual (ΛI) and between-team (ΛB) levels as 

there is not theoretical reason for the loadings to be relevant at the within-team level. In other 

words, these measures inherently require a degree of consistency in scores among team 

members, not deviation in scores within the team. Therefore, the ability of a measure’s items to 

capture team phenomenon via factor loadings at the between-team level of analysis is evaluated 

and compared to what is found at the individual level. This comparison will shed light on any 

potential consequences of misalignment in measurement and theory when drawing conclusions 

about item quality using data collected from individuals for team phenomena.  

Differences in factor loadings at the individual and between-team level of analysis are 

categorized by the degree of psychometric isomorphism (See Table 1). The less stringent the 

standard, the greater chance for potential consequences of misalignment in measurement and 

theory. Partial configural isomorphism is mainly examined via model fit indices and is further 

investigated by examining the factor matrix for potential cross-loadings at the between-team 

level that do not occur at the individual level (See Figure 4). In this scenario, an indicator may 

tap two related constructs at a higher but not a lower level of analysis. Strong configural 

isomorphism indicates that the factor structure is consistent across levels and the measure’s items 
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adequately capture relevant aspects of the latent factor. Evidence of weak metric isomorphism is 

established by comparing the relative ordering of factor loadings via examining the ΛI and ΛB; 

while, strong metric isomorphism is established by examining if the magnitude of these factor 

loadings are consistent in the ΛI and ΛB  (B. O. Muthén, 1994; Tay et al., 2014). 

Specifically, a measure of a common team construct has weak metric isomorphism when 

the factor matrices (i.e., ΛI and ΛB) reveal the indicators have the same rank order (i.e., relative 

ordering) from least to greatest factor loadings at the individual and between-team levels. Strong 

metric invariance occurs when a measure reveals the same relative order and magnitude of factor 

loadings at the individual λX1,1 - λXi,i) and between-team (λBj1 - λBji) level of analysis. In other 

words, the degree of psychometric isomorphism in these measures of common team constructs is 

reflected in the consistency of their factor loadings (i.e., structure/pattern, magnitude, and 

relative ordering) at the individual and team levels. It is important to note that theoretically a 

measure can capture higher-level phenomenon adequately with weaker factor loadings at lower 

levels of analysis (D’Haenens et al., 2012; Sorra & Dyer, 2010). Therefore, the magnitude of the 

factor loadings may not be consistent across levels of analysis in measures of common team 

constructs.  

This means that even if factor loadings are in the acceptable range in a CFA, the strength 

of these indicators/items to capture team level phenomenon is not accurately assessed unless the 

between-team level − in which the construct primarily operates − is taken into account. This 

occurs because the between-team level factor loadings reflect how the latent factor (i.e., ηB) 

influences scores on the indicator latent means (e.g., yB1 – yB9) as opposed to the individual level 

in which the factor loadings reflect the relationship between the observed scores and latent factor 
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(B. O. Muthén, 1994). However, there are important norms to keep in mind when evaluating the 

magnitude of factor loadings discussed below. 

Regarding their magnitude, researchers typically retain indicators (i.e., keep the item in 

the final measure) in an EFA with a factor loading between .30 and 1. While there are other 

things to consider when assessing a measure’s indicator theoretically and psychometrically, 

indicators with a .30 factor loading are assumed to weakly tap a latent factor while .70 reveals a 

strong association with a factor (Schmitt & Sass, 2011). In the current study, it would be 

problematic if factor loadings dropped below .30 at the team level of analysis but not unexpected 

if they increase at the team level as I am examined team level constructs.  

In addition to indicating the degree of psychometric isomorphism, factor loadings provide 

evidence for convergent reliability. Specifically, Gerbing and Anderson (1988) recommend 

examining the factor matrix among indicators in a CFA as it provides more stringent test of 

convergent validity. Specifically, to establish convergent validity each indicator should load onto 

a specific factor, not multiple factors. This remains true in a multilevel context. Therefore, it is 

vital the relationship between observed and latent variables at the level of analysis the construct 

theoretically operates is psychometrically evaluated. In other words, we don’t know how valid 

our measures are if we do not examine the factor matrix at the appropriate level of analysis. 

For example, Figure 7 reveals a simplified factor structure at the between-team level of 

analysis with two factors (ηB1 and ηB2) influencing the latent mean of one indicator (yB3). As 

some cross-loading is likely to occur in related constructs (e.g., subdimensions of team cohesion 

or conflict), Asparouhov, Muthén, & Morin (2015) argue that this is not adding ‘noise’ in 

measurement but rather provides information as to how a construct influences an indicator. 

Therefore, if the cross-loading becomes too great (i.e., ≥ .30 on a factor loading for more than 
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one distinct factor) then the indicator would likely be removed in an EFA. That is because, an 

indicator needs to clearly identify the construct of interest without significantly tapping into a 

distinct but related construct. While cross-loading items is typically addressed in an EFA, cross-

loading in a CFA framework can also be addressed by examining the correlations among 

measures’ indicators (Prudon, 2015).  

Residual Variance. Another important aspect in examining the quality of a measure is 

residual variance. Residuals are the “element-wise difference between observed and model-

implied covariance matrix” and estimated at the individual, within-team, and between-team level 

in a MCFA (see Figure 2; Kim et al., 2016, p. 887). In other words, residual covariances in a 

factor analysis highlight the discrepancy in the observed and estimated model. As with the 

current study, the ability of a CFA & MCFA to fully decompose sources of variance not related 

to a latent factor (i.e., residual variance) is limited without a longitudinal approach (Marsh & 

Grayson, 1994). This is because without a longitudinal approach, the two components of residual 

error (i.e., random and item specific measurement error) cannot be untangled (Lubke & Dolan, 

2003). Regardless, even when investigated at a single time point this ‘noise’ in measurement can 

be of substantive interest in consensus models as residual covariance differs across levels of 

analysis and influences a measure’s reliability in a multilevel context (Geldhof et al., 2014). 

In a CFA, residuals (delta, δ) refer to variance due to both item specific and random 

measurement error that is not associated with the latent factor at the level of data collection (See 

Figure 2; Crocker & Algina, 1986; Marsh & Grayson, 1994). In other words, residuals in a CFA 

reflect the difference between the observed value and the variation not associated with the latent 

factor for each indicator. In a MCFA, residuals (varepsilon, ε) at the within and between level of 

analysis (εW, and εB, respectively) reflect the amount of variation not associated with that specific 
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level of analysis (See Figures 4 – 8). At the within-team level, residuals (εW) represent the 

variation in observed scores not explained by the within-team latent factor (ηW). At the between-

team level, residuals (εB) represent the variation in indicators not explained by their respective 

latent means (yB). Additionally, MCFA assesses the residual variance associated with the 

individual (Zeta, ζ), the within-team (ζ W), and between-team (ζ B) levels of analysis. In MCFA, 

residuals for each indicator and level of analysis should be reported along with the factor 

loadings as residual variance provides information as to systematic error variance regarding the 

level of analysis and is essential in calculating the measure’s composite reliability (Geldhof et 

al., 2014; Kim et al., 2016).  

Residuals provide two important pieces of information in the current study. First, factor 

models can be incorrectly specified without properly accounting for residual variance at higher 

levels of analysis (Lubke & Dolan, 2003; Meredith, 1993). In this scenario, the factor models 

based on a CFA would be incorrect if the residuals varied from the individual to between level of 

analysis because variance associated with the lower level is minimized at the higher level (van 

Mierlo et al., 2009). In other words, by examining residual variance across levels of analysis 

researchers can uncover sources of systematic variance associated with a specific level of 

analysis. 

Second, reliability estimates using Chronbach’s alpha leads to false conclusions 

regarding the measures’ quality if they operate in multilevel context. A measure’s reliability 

must be estimated at the level the construct is hypothesized to operate (e.g., between-team for 

team consensus constructs) not at the level in which data is collected (e.g., individual). This is 

problematic as previous research estimating the reliability of team consensus constructs often do 

not account for differences in residual variance from the individual to the between-team level of 
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analysis (Edmondson, 1999; Jehn & Mannix, 2001; Loughry & Tosi, 2008; Van der Vegt et al., 

2001). Specifically, previous research likely underestimates the quality of the measure when 

evaluating these measures at the individual level (Geldhof et al., 2014). This is important 

because residual variance at different levels of analysis provides insight as to how model 

misspecification at various levels can occur and informs the measure’s estimate of reliability 

(Bollen & Arminger, 1991; Geldhof et al., 2014). In summary, the residual variance and 

composite reliability will differ at the individual and between level of analysis due to how the 

variance is modeled. 
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APPENDIX B 

 

 

MCFA Cohesion Syntax in R 

 

Step 1: CFA of sample total covariance matrix at the individual level 

 

1 factor individual level 

library(lavaan) 

library(semTools) 

 

onefactor <- ' 

Cohesion =~  Coh1_TA  + Coh2_TA  +  Coh3_TA  + Coh4_IC  + Coh5_IC  + Coh6_IC 

  + Coh7_TC  + Coh8_TCr  + Coh9_TCr ' 

 

#fiml - full information liklihood; mlr = ""MLR" for maximum likelihood esti

mation with robust ‘Huber-White’ standard errors and a scaled test statistic 

which is asymptotically equivalent to the Yuan-Bentler T2-star test statisti

c 

fit1 <- sem(onefactor, data = Data_T2_Coh2, missing = "fiml", estimator = "m

lr") 

 

summary(fit1, fit.measures=TRUE,rsquare=TRUE,standardized=TRUE) 

 

# Obtain Omega 

reliability(fit1) 

= "tree") 

 

2 factor individual level 

library(lavaan) 

library(semTools) 

 

#Two factor cohesion combining task attraction and commitment onto one task-

oriented factor 

twofactor <- ' 

Task=~Coh1_TA  + Coh2_TA  +  Coh3_TA  + Coh7_TC  + Coh8_TCr  +    Coh9_TCr 
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Interpersonal=~Coh4_IC  + Coh5_IC  + Coh6_IC' 

 

#fiml - full information liklihood; mlr = ""MLR" for maximum likelihood esti

mation with robust ‘Huber-White’ standard errors and a scaled test statistic 

which is asymptotically equivalent to the Yuan-Bentler T2-star test statisti

c 

fit2 <- sem(twofactor, data = Data_T2_Coh2, missing = "fiml", estimator = "m

lr") 

 

summary(fit2, fit.measures=TRUE,rsquare=TRUE,standardized=TRUE) 

 

lavInspect(fit2,"cor.lv") 

 

# Obtain Omega 

reliability(fit2) 

3 factor individual level 

library(lavaan) 

library(semTools) 

 

#Three factor model 

threefactor <- ' 

TaskAttract=~Coh1_TA  + Coh2_TA  +  Coh3_TA  

TaskCommit=~Coh7_TC  + Coh8_TCr  +    Coh9_TCr 

Interpersonal=~Coh4_IC  + Coh5_IC  + Coh6_IC' 

 

#fiml - full information liklihood; mlr = ""MLR" for maximum likelihood esti

mation with robust ‘Huber-White’ standard errors and a scaled test statistic 

which is asymptotically equivalent to the Yuan-Bentler T2-star test statisti

c 

fit3 <- sem(threefactor, data = Data_T2_Coh2, missing = "fiml", estimator = 

"mlr") 

 

summary(fit3, fit.measures=TRUE,rsquare=TRUE,standardized=TRUE) 

 

lavInspect(fit3,"cor.lv") 

 

# Obtain Omega. 
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reliability(fit3) 

Step 2: Estimate between-group level variation 

 

 Lavaan’s code has the same results as MPlus in the multilevel factor analysis in Step 5. 

library(multilevel) 

mult.icc(Data_T2_Coh[, c("Coh1_TA","Coh2_TA", "Coh3_TA","Coh4_IC","Coh5_IC",

"Coh6_IC","Coh7_TC","Coh8_TCr", "Coh9_TCr")], Data_T2_Coh$TeamIDUnique) 

Step 3: Within-group factor structure 

St = Individual-level covariance matrix Sw = Within-covariance matrix Sb = Between-covariance 
matrix #### Calculate means of items within group Single-level CFA model is tested, this time 
using the covariance matrix (SPW) based on individual-level scores, adjusted for their respective 
group means 

library(dplyr) 

#Create group means of Items 

Data_T2_Coh_CFA <- Data_T2_Coh %>% 

  group_by(TeamIDUnique) %>% 

  summarise(Coh1_TA_TM = mean(Coh1_TA, na.rm = TRUE)) %>% 

  ungroup() 

 

Data_T2_Coh<-merge(Data_T2_Coh,Data_T2_Coh_CFA[,c("TeamIDUnique","Coh1_TA_TM

")], 

                 by=c("TeamIDUnique"),all.x =TRUE) 

 

Data_T2_Coh_CFA <- Data_T2_Coh %>% 

  group_by(TeamIDUnique) %>% 

  summarise(Coh2_TA_TM = mean(Coh2_TA, na.rm = TRUE)) %>% 

  ungroup() 

 

Data_T2_Coh<-merge(Data_T2_Coh, Data_T2_Coh_CFA[,c("TeamIDUnique","Coh2_TA_T

M")], 

                 by=c("TeamIDUnique"),all.x =TRUE) 

 

 

Data_T2_Coh_CFA <- Data_T2_Coh %>% 

  group_by(TeamIDUnique) %>% 
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  summarise(Coh3_TA_TM = mean(Coh3_TA, na.rm = TRUE)) %>% 

  ungroup() 

 

Data_T2_Coh<-merge(Data_T2_Coh, Data_T2_Coh_CFA[,c("TeamIDUnique","Coh3_TA_T

M")], 

                 by=c("TeamIDUnique"),all.x =TRUE) 

 

Data_T2_Coh_CFA <- Data_T2_Coh %>% 

  group_by(TeamIDUnique) %>% 

  summarise(Coh4_IC_TM = mean(Coh4_IC, na.rm = TRUE)) %>% 

  ungroup() 

 

Data_T2_Coh<-merge(Data_T2_Coh,Data_T2_Coh_CFA[,c("TeamIDUnique","Coh4_IC_TM

")], 

                 by=c("TeamIDUnique"),all.x =TRUE) 

 

 Data_T2_Coh_CFA <- Data_T2_Coh %>% 

  group_by(TeamIDUnique) %>% 

  summarise(Coh5_IC_TM = mean(Coh5_IC, na.rm = TRUE)) %>% 

  ungroup() 

 

Data_T2_Coh<-merge(Data_T2_Coh,Data_T2_Coh_CFA[,c("TeamIDUnique","Coh5_IC_TM

")], 

                 by=c("TeamIDUnique"),all.x =TRUE) 

 

 Data_T2_Coh_CFA <- Data_T2_Coh %>% 

  group_by(TeamIDUnique) %>% 

  summarise(Coh6_IC_TM = mean(Coh6_IC, na.rm = TRUE)) %>% 

  ungroup() 

 

Data_T2_Coh<-merge(Data_T2_Coh,Data_T2_Coh_CFA[,c("TeamIDUnique","Coh6_IC_TM

")], 

                 by=c("TeamIDUnique"),all.x =TRUE) 

 

 Data_T2_Coh_CFA <- Data_T2_Coh %>% 

  group_by(TeamIDUnique) %>% 
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  summarise(Coh7_TC_TM = mean(Coh7_TC, na.rm = TRUE)) %>% 

  ungroup() 

 

Data_T2_Coh<-merge(Data_T2_Coh,Data_T2_Coh_CFA[,c("TeamIDUnique","Coh7_TC_TM

")], 

                 by=c("TeamIDUnique"),all.x =TRUE) 

 

 Data_T2_Coh_CFA <- Data_T2_Coh %>% 

  group_by(TeamIDUnique) %>% 

  summarise(Coh8_TCr_TM = mean(Coh8_TCr, na.rm = TRUE)) %>% 

  ungroup() 

 

Data_T2_Coh<-merge(Data_T2_Coh,Data_T2_Coh_CFA[,c("TeamIDUnique","Coh8_TCr_T

M")], 

                 by=c("TeamIDUnique"),all.x =TRUE)  

   

Data_T2_Coh_CFA <- Data_T2_Coh %>% 

  group_by(TeamIDUnique) %>% 

  summarise(Coh9_TCr_TM = mean(Coh9_TCr, na.rm = TRUE)) %>% 

  ungroup() 

 

Data_T2_Coh<-merge(Data_T2_Coh,Data_T2_Coh_CFA[,c("TeamIDUnique","Coh9_TCr_T

M")], 

                 by=c("TeamIDUnique"),all.x =TRUE) 

 

#Adjust ind scores by mean of team 

Data_T2_Coh$Coh1_TA_FA <-  Data_T2_Coh$Coh1_TA - Data_T2_Coh$Coh1_TA_TM 

Data_T2_Coh$Coh2_TA_FA <-  Data_T2_Coh$Coh2_TA - Data_T2_Coh$Coh2_TA_TM 

Data_T2_Coh$Coh3_TA_FA <-  Data_T2_Coh$Coh3_TA - Data_T2_Coh$Coh3_TA_TM 

Data_T2_Coh$Coh4_IC_FA <-  Data_T2_Coh$Coh4_IC - Data_T2_Coh$Coh4_IC_TM 

Data_T2_Coh$Coh5_IC_FA <-  Data_T2_Coh$Coh5_IC - Data_T2_Coh$Coh5_IC_TM 

Data_T2_Coh$Coh6_IC_FA <-  Data_T2_Coh$Coh6_IC - Data_T2_Coh$Coh6_IC_TM 

Data_T2_Coh$Coh7_TC_FA <-  Data_T2_Coh$Coh7_TC - Data_T2_Coh$Coh7_TC_TM 

Data_T2_Coh$Coh8_TCr_FA <-  Data_T2_Coh$Coh8_TCr - Data_T2_Coh$Coh8_TCr_TM 

Data_T2_Coh$Coh9_TCr_FA <-  Data_T2_Coh$Coh9_TCr - Data_T2_Coh$Coh9_TCr_TM 
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#remove dataset 

rm(Data_T2_Coh_CFA) 

Covariance Matrices 

A variance–covariance matrix is then created and its values corrected to reflect division by the 

appropriate denominator. (The typical devisor for the covariance matrix is N-1, but for the 

current purposes it should be N-G, where G=the number of groups. Thus, each element of the 

matrix needs to be transformed by multiplying by N-1 and then dividing by N-G.) 

 

#Subset for Ind CFA 

Coh_Ind_CFA <- subset(Data_T2_Coh, select = c("Coh1_TA","Coh2_TA", "Coh3_TA"

,"Coh4_IC","Coh5_IC","Coh6_IC","Coh7_TC","Coh8_TCr",   "Coh9_TCr"))  

 

#Subset for within group analysis 

Coh_WI_CFA<-Data_T2_Coh [ , c( "Coh1_TA_FA","Coh2_TA_FA", "Coh3_TA_FA","Coh4

_IC_FA","Coh5_IC_FA", "Coh6_IC_FA","Coh7_TC_FA","Coh8_TCr_FA",   "Coh9_TCr_F

A")] 

 

#Subset for between group analysis 

Coh_BW_CFA<-Data_T2_Coh [ , c("Coh1_TA_TM","Coh2_TA_TM", "Coh3_TA_TM","Coh4_

IC_TM","Coh5_IC_TM", "Coh6_IC_TM","Coh7_TC_TM","Coh8_TCr_TM",   "Coh9_TCr_TM

")] 

 

#Count number of observations for GrpSize to know how many groups there are 

##Subset data 

Grp<-Data_T2_Coh [ , c( "TeamIDUnique", "Coh1_TA_FA","Coh2_TA_FA", "Coh3_TA_

FA","Coh4_IC_FA","Coh5_IC_FA", "Coh6_IC_FA","Coh7_TC_FA","Coh8_TCr_FA",   "C

oh9_TCr_FA")] 

#Remove duplicate observations so only on observation per group 

GrpSize<-Grp[!duplicated(Grp[,c('TeamIDUnique')]),] 

 

#matrices 

##Creates covariance matrix for individual-level 

St_Ind <- cov(Coh_Ind_CFA) 

##Creates covariance matrix for within analysis 

###variance–covariance matrix is then created and its valuescorrected to ref

lect division by the appropriate denominator. (The typical devisor for the c

ovariance matrix is N-1, but for the current purposes it should be N-G, wher
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e G=the number of groups. Thus,each element of the matrix needs to be transf

ormed by multiplying by N-1 and then dividing by N-G.) 

  Cov <- cov(Coh_WI_CFA) 

###Corrects covariance matrix 

Sw_Grp<- (Cov*(34400-1))/(34400 - 8361) 

 

##Between covariance matrix - first obtaining the variance–covariance matrix 

of the group means. This matrix must also be corrected to reflect the approp

riate denominator or divisor. To do this, one should multiple the elements o

f the matrix by the default divisor (N-1) and then divide the appropriate di

visor, in this case, the between-group level, G-1 (where G=the number of gro

ups). This corrected matrix is then used to assess the between-group factor 

structure 

  Cov <- cov(Coh_BW_CFA) 

Sb_Grp <- (Cov*(34400-1))/(8361-1) 

Combine matrices 

This is essentially telling lavaan to compare two groups by combining the within and between 
covariance matrices. However, these are just one group, we are treating it like 2. The combined.n 
syntax lets you specify the sample size for each covariance matrix. 

#Combine covariance matrices 

combined.cov <- list(within = Sw_Grp, between = Sb_Grp) 

#Specify the sample size for each matrix 

combined.n <- list(within = 34499 - 8460, between = 8460) 

Specify Within Model - 1 factor 

library(lavaan) 

library(semTools) 

 

Cohesion.model <- ' 

#latent variables 

Cohesion=~ Coh1_TA_FA + Coh2_TA_FA + Coh3_TA_FA  +Coh4_IC_FA + Coh5_IC_FA  + 

Coh6_IC_FA  +Coh7_TC_FA + Coh8_TCr_FA + Coh9_TCr_FA' 

         

#regressions 
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#The covariance structure created to capture within group variance from devi

ation scores is used here 

fitw1 <- sem(Cohesion.model, sample.cov = Sw_Grp,  

           sample.nobs = 34400) 

 

summary(fitw1, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE) 

 

# Obtain Omega 

reliability(fitw1) 

Specify Within Model - 2 factor 

Cohesion.model <- ' 

#latent variables 

Task=~ Coh1_TA_FA + Coh2_TA_FA + Coh3_TA_FA +  Coh7_TC_FA + Coh8_TCr_FA + Co

h9_TCr_FA 

Interpersonal=~Coh4_IC_FA + Coh5_IC_A + Coh6_IC_FA  

 

# 

#correlated residuals 

Interpersonal ~ Task 

 ' 

#The covariance structure created to capture within group variance from devi

ation scores is used here 

fitw2 <- sem(Cohesion.model, sample.cov = Sw_Grp,  

           sample.nobs = 34400) 

 

summary(fitw2, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE) 

 

# Obtain Omega 

reliability(fitw2) 

Specify Within Model - 3 factor 

 

Cohesion.model <- ' 

#latent variables 
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TaskAttract=~ Coh1_TA_FA + Coh2_TA_FA + Coh3_TA_FA 

TaskCommit=~Coh7_TC_FA + Coh8_TCr_FA + Coh9_TCr_FA 

Interpersonal=~Coh4_IC_FA + Coh5_IC_FA + Coh6_IC_FA  

 

 

#regressions 

 

#correlated residuals 

TaskAttract ~ Interpersonal 

Interpersonal ~ TaskCommit 

TaskCommit ~ TaskAttract 

 ' 

#The covariance structure created to capture within group variance from devi

ation scores is used here 

fitW3 <- sem(Cohesion.model, sample.cov = Sw_Grp,  

           sample.nobs = 34400) 

 

summary(fitW3, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE) 

 

# Obtain Omega. 

reliability(fitW3) 

Step 4: Between-group factor structure 

St = Individual-level covariance matrix Sw = Within-covariance matrix Sb = Between-

covariance matrix ##### Specify Between Model - 1 factor 

Cohesion.model2 <- ' 

#latent variables 

Cohesion=~ Coh1_TA_TM + Coh2_TA_TM + Coh3_TA_TM + Coh4_IC_TM + Coh5_IC_TM + 

Coh6_IC_TM + Coh7_TC_TM + Coh8_TCr_TM + Coh9_TCr_TM  

 

#regressions 

 

 ' 
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fitB1 <- sem(Cohesion.model2, sample.cov = Sb_Grp,  

           sample.nobs = 8361) 

summary(fitB1, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE) 

 

lavInspect(fitB1,"cor.lv") 

 

# Obtain Omega 

reliability(fitB1) 

2 factor – between group 

Cohesion.model2 <- ' 

#latent variables 

Task=~ Coh1_TA_TM + Coh2_TA_TM+  Coh3_TA_TM + Coh7_TC_TM + Coh8_TCr_TM + Coh

9_TCr_TM 

Interpersonal=~Coh4_IC_TM + Coh5_IC_TM + Coh6_IC_TM  

 

#regressions 

 

#correlated residuals 

Interpersonal ~ Task 

 ' 

fitB2 <- sem(Cohesion.model2, sample.cov = Sb_Grp,  

           sample.nobs = 8361) 

 

 

summary(fitB2, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE) 

 

lavInspect(fitB2,"cor.lv") 

 

# Obtain Omega 

reliability(fitB2) 

3 factor - between group 

Cohesion3.model <- ' 

#latent variables 
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TaskAttract=~ Coh1_TA_TM + Coh2_TA_TM + Coh3_TA_TM 

Interpersonal=~Coh4_IC_TM + Coh5_IC_TM + Coh6_IC_TM  

TaskCommit=~Coh7_TC_TM + Coh8_TCr_TM + Coh9_TCr_TM 

 

#regressions 

 

#correlated residuals 

Interpersonal ~ TaskCommit 

TaskCommit ~ TaskAttract 

TaskAttract ~ Interpersonal 

 ' 

fitB3 <- sem(Cohesion3.model, sample.cov = Sb_Grp,  

           sample.nobs = 8361) 

 

summary(fitB3, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE) 

 

lavInspect(fitB3,"cor.lv") 

 

# Obtain Omegase two formulas assume that the model-implied covariance matri

x explains item relationships perfectly. The residuals are subject to sampli

ng error. The third formula use observed covariance matrix instead of model-

implied covariance matrix to calculate the observed total variance. This for

mula is the most conservative method in calculating coefficient omega. 

reliability(fitB3) 

Step 5: MCFA 

2 LEVELS, 3_1 FACTOR 

Examining for a general team cohesion factor at higher level of analysis 

library(lavaan) 

library(semTools) 

 

twolevel3_1factor <- ' 

level: 1 

  Coh_TA_W =~ Coh1_TA  + Coh2_TA  + Coh3_TA   

  Coh_IC_W =~ Coh4_IC  + Coh5_IC  + Coh6_IC    
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  Coh_TC_W =~ Coh7_TC  + Coh8_TCr  + Coh9_TCr   

level: 2 

  Coh_B =~ Coh1_TA  + Coh2_TA  + Coh3_TA + Coh4_IC  + Coh5_IC  + Coh6_IC + C

oh7_TC  + Coh8_TCr  + Coh9_TCr   ' 

 

#fiml - full information liklihood; mlr = ""MLR" for maximum likelihood esti

mation with robust ‘Huber-White’ standard errors and a scaled test statistic 

which is asymptotically equivalent to the Yuan-Bentler T2-star test statisti

c. This is why  

fit3_1 <- sem(twolevel3_1factor, data = Data_T2_Coh2, cluster = 'TeamIDUniqu

e', missing = "fiml", estimator = "mlr") 

 

summary(fit3_1, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE) 

 

#ICC identical to Mplus, Bliese's package is not 

lavInspect(fit3_1, "icc") 

lavInspect(fit3_1,"cor.lv") 

# Obtain Omega 

reliability(fit3_1) 

2-level 2-factor conflict 

 

twolevel3_2factor <- ' 

level: 1 

  Coh_TA_W =~ Coh1_TA  + Coh2_TA  + Coh3_TA   

  Coh_IC_W =~ Coh4_IC  + Coh5_IC  + Coh6_IC    

  Coh_TC_W =~ Coh7_TC  + Coh8_TCr  + Coh9_TCr   

level: 2 

  Coh_TO_B =~ Coh1_TA  + Coh2_TA  + Coh3_TA + Coh7_TC  + Coh8_TCr  + Coh9_TC

r    

  Coh_IC_B =~  Coh4_IC  + Coh5_IC  + Coh6_IC   

' 

#fiml - full information liklihood; mlr = ""MLR" for maximum likelihood esti

mation with robust ‘Huber-White’ standard errors and a scaled test statistic 

which is asymptotically equivalent to the Yuan-Bentler T2-star test statisti

c. This is why  

fit3_2 <- sem(twolevel3_2factor, data = Data_T2_Coh2, cluster = 'TeamIDUniqu

e', missing = "fiml", estimator = "mlr") 
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#SRMR_between does not use the identical formula as MPlus. See documentation 

in MPlus for equation differences. 

summary(fit3_2, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE) 

 

#ICC identical to Mplus, Bliese's package is not 

lavInspect(fit3_2, "icc") 

 

lavInspect(fit3_2,"cor.lv") 

 

# Obtain Omegase two formulas assume that the model-implied covariance matri

x explains item relationships perfectly. The residuals are subject to sampli

ng error. The third formula use observed covariance matrix instead of model-

implied covariance matrix to calculate the observed total variance. This for

mula is the most conservative method in calculating coefficient omega. 

reliability(fit3_2) 

2-level 3-factor conflict 

 

twolevel3factor <- ' 

level: 1 

  Coh_TA_W =~ Coh1_TA  + Coh2_TA  + Coh3_TA   

  Coh_IC_W =~ Coh4_IC  + Coh5_IC  + Coh6_IC    

  Coh_TC_W =~ Coh7_TC  + Coh8_TCr  + Coh9_TCr  

level: 2 

  Coh_TA_B =~ Coh1_TA  + Coh2_TA  + Coh3_TA    

  Coh_IC_B =~ Coh4_IC  + Coh5_IC  + Coh6_IC   

  Coh_TC_B =~ Coh7_TC  + Coh8_TCr  + Coh9_TCr 

' 

#fiml - full information liklihood; mlr = ""MLR" for maximum likelihood esti

mation with robust ‘Huber-White’ standard errors and a scaled test statistic 

which is asymptotically equivalent to the Yuan-Bentler T2-star test statisti

c. This is why  

fit3_3 <- sem(twolevel3factor, data = Data_T2_Coh2, cluster = 'TeamIDUnique'

, missing = "fiml", estimator = "mlr") 

 

#ICC identical to Mplus  

lavInspect(fit3_3, "icc") 
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lavInspect(fit3_3,"cor.lv") 

summary(fit3_3, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE) 

# Obtain Omega 

reliability(fit3_3) 

MCFA Step 5 in MPlus 
 

TITLE: MCFA Cohesion; 

DATA: FILE IS MPlus_Cohesion.csv; 

 

VARIABLE: NAMES ARE 

  Coh1 Coh2 Coh3 Coh4 Coh5 Coh6 Coh7 Coh8 Coh9 TmNm;  

    USEVARIABLES ARE Coh1-Coh9; 

    CLUSTER = TmNm;  

  

ANALYSIS:   

    TYPE = TWOLEVEL; 

   !Note: with missing data estimator=mlr is used to obtain robust estimates 

(Yuan & !Bentler, 2000), if non-robust estimates are desired use estimator=m

l; 

 ! Missing data estimation is now the default in Version 5 and higher; 

    ESTIMATOR IS MLR; 

    H1iterations = 10000; ! This allows the model to  

    ! converge as the default is 1000 iterations 

MODEL: 

      %WITHIN% 

      CohTAw by Coh1 Coh2 Coh3; 

      CohICw by Coh4 Coh5 Coh6; 

      CohTCw by Coh7 Coh8 Coh9; 

 

      %BETWEEN% 

      Cohb by Coh1 Coh2 Coh3 Coh4 Coh5 Coh6 Coh7 Coh8 Coh9; 

 

OUTPUT: STDYX;  !YX is for continuous variables 

        sampstat; !will display sample means, variances,  

        !covariances and correlations for continuous variables 

        !MPlus uses full info max liklihood  

 


