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ABSTRACT 

 

 

NDUBUEZE O CHUKU. Development and Evaluation of RSSI-Based Localization 

Schemes for Wireless Sensor Networks to Mitigate Shadowing Effects. (Under the 

direction of DR. ASIS NASIPURI) 
       
 

Received radio frequency (RF) signal strength provides a cost-effective mechanism for 

distance estimation that is popularly used for range-based localization in wireless sensor 

networks (WSN). The typical method of determining sensor location using range-based 

localization methods is multilateration and this involves combining RSSI (received signal 

strength indicator) information from a number of beacons that is greater than the minimum 

number required for localization using accurate distance estimates. Multilateration using 

RSSI-based distance estimates are severely affected by shadowing and result in erroneous 

sensor location estimation. As a result of this, there was the need to come up with ways to 

overcome the effects of these shadowed measurements. 

The objective of this research is to minimize the effects of shadowing in sensor location 

estimation. To address this problem, several methods were explored. First, a scheme that 

applies a spatial correlation mechanism to eliminate RSSI signals that are affected by 

obstructions (i.e. shadowed signals) is presented. It is shown that the scheme is effective in 

minimizing the adverse effects of shadowing on RSSI signals hence sensor node 

localization. Next, outlier detection schemes were explored as a method to minimize the 

effects of shadowing. The effectiveness of the correlation-based localization scheme and 

the outlier detection schemes are validated using simulations and experimental data and 

have been shown to improve on sensor localization compared to other popular localization 

schemes. 
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CHAPTER 1: INTRODUCTION 

 

In that last couple of decades, substantial amount of research has been carried out 

towards enabling Wireless Sensor Networks (WSNs) to be a sustainable and inexpensive 

solution for distributed monitoring tasks. WSNs are networks of many small low-cost 

wireless sensors, which are electronic devices with embedded hardware for sensing 

physical quantities of their immediate environment and a radio for transferring data through 

multi-hop routing to a data-aggregating device called a sink. Sensor technologies integrated 

in wireless sensor nodes include: humidity, infrared light, temperature, acoustic, pressure, 

vibration, radar etc. WSNs apply ad-hoc networking principles that enable self-

configuration and adaptations to changes such as addition and removal of wireless sensors. 

Typically, WSNs have a tree topology running from the data source (nodes that sense data) 

down to the data sink as shown in Fig. 1.1. WSNs are capable of applying distributed 

processing for applications monitoring employing multi-modal data got from onboard 

sensors to handle onboard processing. These applications include medical and health 

monitoring, environmental monitoring, logistics, agriculture, disaster relief, security etc. 

WSNs are also easily deployable and can be reprogrammed to adjust to changes in 

conditions. There are a wide range of WSN applications. However, in terms of 

communications requirements and network operations, they can be broadly classified into 

three broad groups [67]: 

 Periodic measurements – all wireless sensor nodes deployed are set to periodically 

measure values and report such measurements to the sink.  

 Tracking – sensor nodes measure the updated position of a mobile object or an 

event and report these updates to the sink. To achieve this the various sources have 

to cooperate prior to updates been transmitted to the sink.  

 Event detection – sensors detect the occurrence of a specific event and report such 

detection to the sink. Individual sensors can detect an event independently (e.g. 

presence of a person in a room) or can work collaboratively with neighbor sensors 

to detect more complex events. Communication occur only when events are 

detected. 
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Due to the vast range of application types that can utilize WSNs, no single realization 

of a WSN has the ability to handle all the application types. However, some common 

characteristics and mechanisms of these systems exist. Achieving the said characteristics 

using new mechanisms poses a key challenge in the realization of WSNs. A few of the 

common characteristics of most WSN applications include: Quality of Service, Type of 

Service, Lifetime, Scalability, programmability, Maintainability etc. These characteristics 

can be realized using the following mechanisms: Multi-hop wireless communication, 

Energy-efficient operation, collaboration, Data centric, Locality etc. 

The key problem affecting the development of long-term applications using WSNs lies 

in the fact that sensor nodes are resource constrained in terms of communication, energy 

resources and computational capabilities, and as such these constraints must be considered 

while designing tasks.  

Effective utilization of WSN has generated significant research in a large number of 

different areas which includes media access control, routing, application-based 

communications, collaboration etc. However, in this research, our focus is on position 

estimation of wireless sensor nodes, popularly termed as localization, which is an important 

aspect of WSN that has also generated a lot of research. 

Localization is a very important task required for most applications and also for helping 

networking protocols, such as routing, in WSNs. In many situations, it is very important 

for a wireless sensor node to know its position in the real-life environment. Let us consider 

Figure 1.1: A typical Wireless Sensor Network  
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a WSN deployed in an Intelligent Parking Lot to monitor free parking spots for cars. If a 

given sensor node raises an alert for a certain free parking space but that sensor node does 

not know its location within the Parking Lot, then the information/alert raised by the sensor 

node to alert drivers of a free parking spot is useless. This problem can be extrapolated to 

other WSN deployments and as such is a very important topic in WSN research. How can 

this sensor node position awareness be solved?  

The importance of Localization in WSN cannot be over-emphasized. Measurement data 

used in WSNs applications require the knowledge of the particular location in an 

environment where such measurements were taken. However, despite the remarkable 

progress achieved in the advancement of geographical positioning systems (GPS), node 

localization needs specialized solutions for WSNs because advanced positioning systems, 

like the GPS, are impractical for WSNs because of cost as well as energy limitations of 

sensor nodes. Also, GPS needs satellite signals and these signals may be unavailable for 

sensor nodes deployed in areas that have some form of covering over the deployment 

region. For most WSN deployments, it is prohibitive to manually deploy and record the 

locations of every sensor node because of the large number of sensor nodes involved. 

Consequently, a mechanism is needed by which the locations of deployed sensor nodes can 

be determined automatically post deployment. Hence, a lot of ongoing research work is 

ongoing in the development of cost-effective localization methods for WSNs that are able 

to function under the resources-limitations of the nodes.    

 

1.1. The Localization Problem in Wireless Sensor Networks 
 

A wide range of localization problems in WSN have been addressed in literature. The 

requirements for localization schemes in WSNs mostly hinge on the specific properties of 

the applications and also on the hardware and network infrastructure limitations. A few of 

the most important properties of localization in WSN include [12]: 

 Absolute vs. relative coordinates: GPS and other positioning systems determine 

absolute coordinates of objects on earth. Conversely, the requirement may simply 

be an arbitrary reference location at the application area, such as a conference room 

located inside an office building, and as such relative coordinates are used. With 
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relative coordinates, sensor nodes may have coordinates that are accurate in 

relation to one another but are unrelated to the absolute coordinates in earth 

coordinates.   

 Accuracy and precision of node localization: Localization accuracy may depend 

on several factors such as the mechanism or technology employed. Granularity of 

measurements of WSN localization methods depends on the application and may 

range from a few centimeters up to tens of meters or even greater. Precision on the 

other hand describes the consistency of the location estimates. An example use of 

precision is a system which estimates the location of a node with 15cm accuracy 

and 90% precision. 

 Mobility vs. Immobility of sensor nodes: With mobile sensor nodes, the 

localization schemes encounters the problem of continuously taking measurements 

in other to track the location of the nodes. The rate at which the measurements are 

taken depends on the dynamics of the sensor nodes. Most WSNs applications 

require the sensor nodes to be static after they are deployed. However, there are 

also dynamic cases whereby sensors embedded on robots are used. Therefore it is 

a requirement that a localization scheme for WSNs is capable of tracking the 

movement of sensor nodes where applicable. 

 Scale of measurements: The type of WSN application determines the scale of 

measurements used. A scale of measurement defines the farthest distance over 

which the localization scheme can cover. Different scales include: outdoor 

deployment such as a football field or an indoor deployment such as a school 

auditorium. 

 Communication requirements: Current systems differ in their communications 

requirements for estimating positions of objects. Some devices, e.g. a GPS 

receiver, does not transmit signals but simply implements localization employing 

radio frequency signals  obtained from a system of satellites. Conversely other 

systems such as cellular telephone localization methods depend on 2-way 

communication between the phone and the base stations. In WSNs, communication 
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between sensor nodes and beacon nodes or other sensor nodes offers such vital 

benefits like accuracy/precision improvements as well as time synchronization. 

Nevertheless, a fundamental problem in WSNs is the reduction in the 

communication requirements of the sensor nodes to extend battery life. Moreover, 

this presents unique considerations in the design of localization schemes.   

 Self-localization vs. remote localization: Some WSN localization schemes require 

the nodes to localize themselves using received beacons from location-aware nodes 

or devices. Conversely, some localization schemes may permit a remote device, 

for example a base station, to localize the sensors nodes using beacons received 

from the nodes. The main difference between self-localization and remote 

localization is where the computations occur and this may require the sensor nodes 

to communicate with the remote base station. Hence the disadvantages of 

communication cost and scalability issues experienced with remote localization 

schemes. 

 Cost: It is imperative that wireless sensor nodes do not have additional hardware, 

for localization, that will introduce increased cost in size and capital.  

 Form factor: A key requirement of wireless sensor nodes is that they must be small 

in size. The sensor node’s size therefore is highly important in the determination 

of an effective mechanism that can be employed for localization in WSNs.  

 Passive vs. active localization: In some localization systems, the UN may be 

required to actively participate in location estimations whereas in other schemes, 

no active participation is required of the UN. The role and level of participation of 

wireless sensor nodes in location estimation is dependent on the limitations caused 

by the nodes’ hardware and cost constraints. 

 

1.1.1. Challenges in Wireless Sensor Network localization 

 

The main challenges prevalent in the design of a localization scheme for WSNs come 

from the necessity to deal with the small node size, low hardware complexity, cost of 
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implementation of the sensor nodes, as well as their arbitrary deployment environments. 

The typical approach for estimating a sensor node’s location is triangulation, which 

involves estimating distances or angles from several fixed reference points. We will briefly 

describe the challenges inherent in determining these estimates in sensor networks.     

A. Ranging Issues: 

Using RF signals to measure time of flight (TOF) is very challenging for applications 

in WSNs because RF signals travel at the speed of light and measuring these very short 

flight times especially in the sensor network field poses a technical problem as it would 

need very accurate clock synchronization between the sensor node and the transmitter. 

Therefore, researchers have explored TOF measurements using ultrasonic and acoustic 

signals that have considerably slower speeds than the radio frequency. Acoustic range-

based measuring devices are commonly used because they are inexpensive and accurate 

when used indoors. They are capable of achieving accuracies within tens of centimeters. 

The relatively higher frequency ultrasonic signals (typically 24−40KHz) capable of 

achieving accuracies of less than 5 centimeters, have smaller range than the acoustic 

signals. Other challenges faced due to the use of acoustic or ultrasonic signals for ranging 

in WSNs include the following: 

 Acoustic sources and detectors are larger in size than the RF sources because of 

their larger wavelength hence are a problem for small sensor nodes. 

 Also due to their larger wavelength, they cannot travel through physical barriers.  

 The effect of severe multipath effects which makes it difficult to design a reliable 

range estimation system for arbitrarily deployed sensor nodes in unfamiliar 

environments.   

If the RF signal is received immediately, the corresponding delay of the considerably 

slower ultrasound signal provides the required range estimate. Using RSSI for range 

estimates needs the knowledge of the corresponding signal propagation model. However, 

even with extensive channel estimation and modeling, RSSI-based range estimates 

experiences inaccuracies caused by shadowing, scattering effects, refractions, and 
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multipath reflections. Consequently, due to the simplicity of implementation, significant 

amount of research has been carried out on RSSI-based localization schemes.   

 

A. Angle of Arrival (AOA) Estimation: 

An antenna array can be employed in the estimation of the direction of arrival of a 

wireless signal because of its capability to achieve extremely small beam width. 

However, this will be extremely big for use in small form factor wireless sensor nodes. 

Therefore, for AOA estimations for application in wireless sensor networks, alternative 

techniques are required. One of such approaches used in the reduction of antenna arrays 

is the use of ultrasound signals [69] and this can be used to calculate angles from phase 

and time difference of arrivals on an ultrasound pulse on several detectors positioned in 

a defined pattern in a very small area typically a few centimeters apart and has the ability 

to obtain the angle of arrival with a very high accuracy.  

A critical prerequisite for the realization of this mechanism is that a line of sight from 

the source must exit. Multipath and scattering are sources of problems in AOA 

estimation because they rely on phase differences.   

B. Other Technical Challenges: 

To reduce the errors experienced in distance or angle measurements, one may take 

several measurements at a sensor node or use measurements from neighboring nodes. 

This concept is termed collaboration. To achieve either of the above, optimization 

operations is required and these require extensive computations as well data 

transmission which is not ideal especially in resource constrained sensor nodes.   

A method popularly used in localization, which does not require additional hardware 

for the wireless sensor nodes, is the use of distance estimates of such sensor nodes from 

beacons with known locations using the radio frequency (RF) received signal strength 

indicator (RSSI). However, because of the irregularities of the RF signal propagation, 

RSSI is not an accurate measure of distance. Thus a greater part of the research work 

on RSSI based localization methods have focused on creating effective methods for 

minimizing errors of such distance estimates. A typical method of achieving this is by 
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multilateration, which involves combining RSSI measurements from a number of 

beacon nodes (BNs) more than the lowest number needed for localization when accurate 

distance estimates are used (in other words D+1 beacon nodes for a D-dimensional 

space). A major motivation of our research stems from the idea that multilateration using 

RSSI-based distance estimates is adversely affected by shadowing effects which results 

in some of the RSSI measurements being unusually more erroneous than others. Hence 

we propose an approach that utilizes a simple spatial correlation mechanism to choose 

a subset of a large number of beacon signals to perform multilateration. The thought 

behind this proposed approach is that for any sensor node in a typical WSN, some 

beacon signals will not be obstructed and therefore distances estimates from their RSSI 

values will have less errors than those from obstructed beacon signals. Consequently, 

multilateration using these RSSI measurements from the unobstructed beacon signals 

would yield greater accuracy of the location of the sensor node. 

We show from simulations that using such a scheme improves the localization accuracy 

more than the approach that applies multilateration to all the beacon signals together. We 

also show performance evaluations attained from experimental testbeds showing the 

effectiveness of this approach. 

 

1.1.2. Approaches to localization in Wireless Sensor Networks 

 

There are some localization schemes, depending on the application, that require 

accurate XY-coordinates and on the other hand there are those schemes than simply require 

proximity information. Localization approaches for WSNs can be broadly classified into 

range-free and range-based approaches. Range-free localization schemes do not utilize 

range measurements in the estimation of the location of a sensor node. However, the 

approaches do not try to offer accurate location estimates. For example, some range-free 

localization schemes employ RF-based proximity approach (i.e. use communication 

ranges) to estimate the area in an environment where a sensor node is located.  
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Range-based localization approaches use RSSI, time of arrival (TOA), time difference 

of arrival (TDOA) or angle-of-arrival (AOA) to measure the range or angle between a BN 

and a sensor node and then employ trilateration or triangulation to estimate the location of 

the sensor nodes. When the range or angle estimates are not highly erroneous, range-free 

localization approaches are effective. Range-based approaches are more accurate for 

localization but need additional hardware for AoA and TDoA: for example Acoustic 

Module for TDoA and Radio or array microphone for AoA. 

 

1.2. System Model 

 

The dissertation research was motivated by practical observations from the actual 

deployment of a WSN that was developed for monitoring the health of equipment at the 

TVA-operated power substation in Kentucky. The project, sponsored by EPRI and initiated 

in 2006, led to the deployment of a 122-node WSN called the ParadiseNet at the power 

substation and is shown in Fig. 1.2 [68]. The challenges experienced in manually recording 

and tracking the exact locations of the sensor nodes as well as the fact that several energy-

conserving protocols and algorithms being developed require the sensor nodes to be 

location-aware necessitated the development of a self-localization scheme for this network. 

For such a deployment site, utilizing a mobile robotic beacon transmitter can be an effective 

approach in realizing sensor self-localization. Although this approach is technically 

practical, it has the challenging problem given that a location like this contains large 

(a) (b) 

Figure 1.2: (a) Cross-section of the Paradise substation where the ParadiseNet was 

deployed. (b) a wireless sensor node for monitoring circuit-breakers. [68] 
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metallic objects like capacitor banks, transformers, circuit breakers, bus- bars etc. in the 

network area which causes large errors to the RSSI measurements due to shadowing. 

Therefore the use of a beacon mounted robotic platform in the localization system will 

yield better localization results if the sensor nodes  have the ability to select beacon signals 

that are not severely affected by shadowing, and in essence deselecting those adversely 

affected by shadowing. 

This type of deployments are common in real-life WSN applications. We hereby pose 

the localization problem thus. We assume that in a given environment, a set of wireless 

sensor nodes are randomly deployed. Also deployed are a set of “B” number of beacon 

nodes, with known locations, which will assist in the sensor nodes’ localization process. 

The BNs broadcast RF signals that contain their location. Several statically place BNS can 

be used to achieve this. Another effective approach for implementing beacon generation is 

the use of a mobile robot fitted with a GPS and communication hardware to transmit its 

locations periodically as it moves through the network area. Sensor nodes on receiving the 

RF signals from the BN estimate their distances, from RSSI measurements, by employing 

a path loss model that is assumed to be calculated from offline channel measurements. A 

sensor node can estimate its location by employing beacon signals transmitted from at least 

Figure 1.3: Wireless Sensor Network Layout showing beacon node positions, position 

of an unknown node and obstacles. 
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three non-collinear locations and can apply multilateration to a larger number of received 

beacon signals for improving this location estimate. In this research, we have concentrated 

on using RSSI-based distance estimation for sensor localization although other methods 

exist as earlier described. The main reason, as we have stated earlier, is that distance 

estimation using RSSI dos not require the sensor node to have additional hardware and 

hence does not add to the cost of the sensor node. The problem thus, is to design an RSSI-

based self-localization scheme for the sensor nodes such that they utilize a portion of the 

received beacon signals to achieve the least error of their location estimate from 

multilateration. 

 

1.2.1. Assumed network layout 

 

A typical network model used in our evaluation of the proposed localization approaches 

is shown in Fig. 1.3. A sensor network area of 40m x 40m is used. The red triangles depict 

beacon or anchor nodes, the blue circles depict the unknown nodes and the purple circles 

depict the obstacles that cause shadowing on the transmitted signals. 

 

1.2.2. Wireless channel model 

 

Here we describe the radio channel propagation model on which the localization scheme 

is based on. We assume that the deployment location include natural or man-made objects 

such as trees, pillars, and metallic objects that serve as obstacles in the path of beacon 

signals. To effectively model the radio channel propagation characteristics obtainable in 

these types of environments, we employed the lognormal shadowing model with added 

attenuation loss accounting for obstructions. 

The lognormal shadowing model is typically used to represent terrestrial path loss along 

with a random (Gaussian) long-term fading component. According to this model, the power 

of a received beacon signal at a sensor node that is located at a certain distance from a 

beacon node can be calculated using the equation below:       

   𝑃𝑟(𝑑)  =  𝑃𝑟(𝑑0) − 10𝑛log (
𝑑

𝑑0
)  + 𝑁[0, 𝜎]        (1.1) 
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where 𝑃𝑟(𝑑0) represents the received power at a reference distance 𝑑0, n represents the 

path loss exponent (usually between 2 and 4) and 𝑁[0, 𝜎] represents a zero-mean Gaussian 

random variable with σ standard deviation originating from the channel noise and 

shadowing effects.  

The radio channel can be modeled offline employing a small portion of RSSI 

measurements to determine parameters like n and 𝑃𝑟(𝑑0) and these parameters used as the 

input to any chosen localization scheme. Due to the spatio-temporal characteristics of the 

radio channel in the estimated model, these parameters are likely inaccurate representations 

of the true radio channel of the environment at any specific time, which introduce some 

errors in the RSSI and also in the distance estimation. Furthermore, in an environment 

containing obstacles, the received signal power is greatly perturbed because of obstacles 

located in the path between a beacon node and the unknown node. The unknown nodes can 

also dynamically acquire these channel parameters.  

The channel propagation model is described below: 

Received power from unobstructed beacon signals is calculated with the equation shown 

below: 

𝑃𝑟(𝑑) =  𝑃𝑟(𝑑0) − 10𝑛log (
𝑑

𝑑0
) + 𝑁[0,  𝜎𝑓]         (1.2) 

Received power from obstructed beacon signals is calculated with the equation shown 

below:  

  𝑃𝑟(𝑑) =  𝑃𝑟(𝑑0) − 10𝑛log (
𝑑

𝑑0
) + 𝑁[0,  𝜎𝑓] + 𝑆(𝜎𝑠)𝑁𝐿𝑂𝑆 (1.3) 

where 𝜎𝑓 and 𝜎𝑠 represent standard deviations of the fading component experienced in line 

of sight (LOS) and non-line of sight (NLOS) beacon signals respectively..  

 

1.3. Effect of erroneous distance estimates in Wireless Sensor Network Localization 

 

Distance estimates calculated from RSSI from beacon signals are used in calculating 

the location of an unknown node. As we stated earlier, the typical approach used in the 
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estimation of the location of an UN is the multilateration. Multilateration applies a 

minimum-mean-square-error (MMSE) technique employing range estimates from a large 

number of BNs. This approach normally uses a number of BNs which exceeds the 

minimum number needed for node localization when accurate range estimates are used (i.e. 

D+1 beacons for D-Dimensional space). 

1.3.1. Distance estimation from RSSI measurements 

 

In WSN localization, distance and angle measurements are measured in physical media 

which introduces errors such as time-varying and static error, environment-dependent 

errors [34]. Time-varying errors (e.g., errors from additive noise and interferences) can be 

minimized by taking an average of several measurements taken over time. Environment-

dependent errors, on the other hand, are the result of the real placements of objects (e.g., 

metallic objects, trees, and furniture) within a wireless sensor network environment. Since 

the environment, hence measurement errors are unpredictable, we have modelled them as 

random. However, in environments where objects are stationary and also most of the sensor 

nodes are stationary, environment-dependent errors as earlier described will be mostly 

constant over time. Distances used in estimating the location of an UN are calculated using 

the formula shown in equation 1.4. 

 

                                               𝑑𝐸𝑠𝑡 =  10(𝑃𝑡(𝑑0)−𝑃𝑟(𝑑))/10𝑛                                     (1.4) 
 

Where  𝑑𝐸𝑠𝑡 denotes the estimated distance between a BN and an UN and 𝑃𝑡(𝑑0) denotes 

path loss at reference distance 𝑑0.  

 

1.3.2. Effect of error in localization 

 

When all the distance estimates 𝑑𝐸𝑠𝑡, used in a multilateration problem are accurate, 

i.e. 𝑑𝐸𝑠𝑡 = 𝑑, the result of the sensor location estimate is also accurate. The challenge for 

localization using distances is that the distance measurements, as we described in the 

previous sub-section, are not perfect but mere estimates of the true distance. This can be 

illustrated with the figures in Fig. 1.4. With perfect distance estimates, depicted in Fig. 

1.4(a) all the circular rings formed by the RF propagation region, with centers at each of 

the beacon nodes, intersect at a point. Conversely, when at least one of the distance 
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estimates is inaccurate, the intersection of the rings will not be at a single point but rather 

be either a region as is shown in Fig. 1.4(b). 

    𝑑𝐸𝑠𝑡 = {
𝑑, for ideal situations

.
𝑑 + 𝜀, for real situations

       (1.5) 

 

  

The typical approach used for such a problem is to employ more than D + 1 number of 

BNs and redundant distance estimates in a D-dimensional scenario. The objective here is 

to minimize the effect of the errors in the distance estimates. To solve this mathematically, 

we set up a set of overdetermined system of equations and seek a solution that minimizes 

the mean square error. 

 

1.4. Research Outline 

The primary objective of the dissertation research is to minimize the effects of 

obstructed beacon signals used in sensor node localization. In Fig. 1.5, we illustrate a 

typical WSN deployment scenario using the multilateration method for estimating the 

location of an unknown node. When there are no obstructions to the beacon signal(s), the 

distance estimates used in the multilateration will be less erroneous and hence produce 

sensor node location estimate close to the true location of the sensor node. In contrast, 

Figure 1.4: Sensor node localization using (a) error-free distance estimates and (b) 

erroneous distance estimates. 

(a) (b) 
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when there are obstructions in some or all the beacon signals received by the sensor node, 

then the distance estimates will be inaccurate thereby inducing significant error in the 

sensor node location estimate. This is due to the fact that in multilateration, all received 

beacon signals used in estimating the location of the unknown node are given equal weight 

whether those signals are obstructed or not. What this means is that beacon signals that are 

obstructed introduce errors in the node location estimate. 

In this research, we have investigated three approaches that aim to solve the problem 

stated above. The three approaches are the Correlation region based Localization scheme, 

the Outlier Detection-Centroid and Outlier Detection-Mean Shift Clustering Localization 

schemes. The idea behind these approaches is that for any sensor node in a typical WSN 

deployment, some of the beacon signals will not be obstructed, and therefore distances 

estimated from their RSSI values will be less inaccurate than those from obstructed beacon 

signals. Therefore, multilateration with RSSI measurements from these unobstructed 

signals would yield better accuracy in estimating the location of the node. These design 

approaches are outlined below: 

Correlation region based Localization Algorithm (corrReg): The corrReg employs 

spatial correlation to several independent trilaterations and combining them to de-

(

a) 
Figure 1.5: Node Location estimate in a wireless sensor network area using 

multilateration: a) No obstacles present in the area and b) Obstacles present in the area. 

(

b) 

(a) (b) 
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emphasize the impact of the obstructed beacon signals to the sensor node localization. This 

approach minimizes the contribution of those obstructed beacon signals towards the 

localization of a sensor node. 

 

Outlier Detection - Centroid Algorithm (OD-CTRD): An N number of subsets of three 

BNs are employed to produce the same number of location estimates called candidate 

location estimates. These location estimates are produced using some beacon signals that 

are obstructed and other beacon signals that are unobstructed. We have assumed that 

candidate location estimates produced from distance estimates from unobstructed beacon 

signals will be less inaccurate and their corresponding locations will be spatially correlated 

and close to one another. However the location estimates produced from highly inaccurate 

beacon signals will be spatially uncorrelated and therefore be farther apart from each other 

and these we have called outliers. 

The goal of this localization scheme is to utilize the above assumption to systematically 

combine the spatially correlated candidate location estimates and thus remove the outliers. 

Then the residual and less erroneous candidate location estimates are used to determine the 

final estimate of the UN’s location. 

 

Outlier Detection – Mean Shift Clustering (OD-MSC): The idea and assumption made 

in proposing this algorithm is the same for corrReg and OD-CTRD methods. The OD-MSC 

scheme is a cluster-based localization algorithm that employs a sliding-window that aims 

to locate dense regions of the candidate location estimates (data points). It uses a centroid-

based mechanism to find the centers of every cluster and then updates candidates for 

centers to be the mean of the data points located in the sliding-window. The candidate 

windows undergo a post-processing filtering process to remove duplicates or near-

duplicates, yielding the final set of centers and their corresponding clusters. 

Fig. 1.6 shows a summary of the key design considerations we investigated and these will 

be outlined in depth in later sections. 
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1.5. Dissertation Organization 

 

The rest of the dissertation is organized as follows. In Chapter 2, we discuss related 

work. Chapter 3 analyzes the Simultaneous Localization and Mapping (SLAM), with 

emphasis on Range-Only SLAM (ROSLAM) with performance results. SLAM employs a 

weighting mechanism that can reduce the effects of obstructed beacons and this weighting 

mechanism is similar in principle to the mechanism used in our proposed localization 

scheme. Chapter 4 describes our correlation region based localization scheme which 

employs a Majority Rule mechanism that reduces the effect of obstructed beacons. We will 

show performance results from simulations and discuss the computation issues that arise 

as a result. In Chapter 5, we present our Outlier detection schemes: OD-CTRD and OD-

MSC with performance results. We show, in Chapter 6, performance comparison for all 

the localization schemes for simulations as well as experimental testbeds. We summarize 

our contributions in chapter 7 as well as lay out proposed recommendations for future work. 

 

 

 

Figure 1.6: Dissertation Research Outline 
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CHAPTER 2: RELATED WORK 

 

 

We will present a brief literature review of related work. To streamline this review, we 

first present a classification in taxonomy of relevant localization schemes for WSNs. WSN 

Localization schemes can be broadly grouped into two classes: distributed and centralized 

algorithms. Fig. 2.1 shows the classification of localization schemes used in wireless sensor 

networks. 

 

2.1. Centralized localization schemes 

 

In Centralized localization schemes, all computation is done at a central station thereby 

resolving the computational constraints of sensor nodes. However, in these schemes, there 

is a need for sensor nodes to communicate with the Base Station (BS) thereby consuming 

more energy than consumed in computation.  

A few of the centralized localization schemes include MDS-MAP [27], RSSI-based 

centralized localization scheme [28] and stochastic optimization localization scheme [25, 

26]. The authors in [27] introduced a 3-step centralized localization scheme which in the 

first step computes the shortest paths between all pairs of sensor nodes within the area of 

interest using such Shortest Path First (SPF) algorithms as the Dijkstra’s algorithm or 

Figure 2.1: Classification of wireless sensor localization schemes. 

Localization 
Algorithm

Distributed

Schemes

Range-based 
Schemes

Range-free

Schemes

Centralized  
Schemes



19 

 

Floyd-Warshall algorithm. Then the shortest path distances are then employed in the 

construction of the distance matrix. The second step involves the application of the MDS 

to the distance matrix and keeping the highest couple of eigenvalues and eigenvectors to 

create a 2-D or 3-D relative map which produces a location for every sensor node. The 

relative map is randomly flipped and rotated relative to the sensor nodes’ actual positions. 

Finally the relative map is transformed to an absolute map which is based on the BNs’ 

absolute positions in other to reduce the sum of squares of the deviation between the 

transformed positions in the MDS map and the true positions of the BNs. A benefit of the 

MDS approach is that BNs are not required in other to commence because it has the 

capability to build a relative map of the nodes with no BNs. Then with 3 or more BNs, the 

relative map is transformed into absolute coordinates. The MDS approach is effective in 

scenarios where there are low BNs ratios. A major drawback of the MDS-MAP is that the 

approach needs global information of the sensor network as well as the fact that 

computation is done centrally. 

The authors in [29] proposed a Simulated Annealing approach to sensor nodes’ 

localization in a centralized fashion. This is a 2-stage approach which minimizes the issue 

of flip ambiguity. First, simulated annealing is applied in other to find location estimates 

of the localizable sensor nodes utilizing distance limitations. Secondly, error caused by flip 

ambiguity is eliminated. 

The RSSI-based centralized localization scheme [28] estimates of sensor nodes’ 

locations through RF beacon attenuation in Electromagnetic (EM) waves. The three stages 

of the scheme comprises:  

1. RF mapping of the network created by transmitting short packets at different power 

levels through the network and then the average RSSI value of the received packets 

is stored in memory tables. 

2. Ranging model is created by recording the entire ordered pair between the two BNs 

which are then processed at the central device to correct the non-linearity and also 

for model calibration. 

3. The optimization problem is then solved resulting in the sensor node’s location 

using the Centralized localization model. 
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This scheme has the advantage of being both practical as well as self-organizing and 

can be used for any outdoor environment. Its drawback is its high level of power-

consumption as it needs vast packet generation and must transmit significant amount of 

data to the central device. 

 

2.2.  Distributed localization scheme 

 

In distributed localization schemes, computation is distributed among sensor nodes 

resulting in less energy being consumed as only inter node communication takes place 

unlike in the centralized schemes. We will further classify the various distributed 

localization schemes into range-based and range-free localization schemes. 

 

2.2.1.  Range-free Schemes 

 

Range-free localization schemes [3, 5, 30, 70] do not employ range measurements in 

the estimation of location of a sensor node. These localization schemes are used in 

applications where there is no requirement to provide accurate estimates of a node’s 

location. Some range-free schemes employ communication ranges to estimate the area in 

an environment that may hold a sensor node.  

The authors in [30] employed a mechanism called the expected hop progress which 

involves a study of the hop progress from a WSN model, in other to determine the location 

estimate of a node in a network region. This scheme realizes better localization results and 

also has less communication overhead compared to other schemes like the RAW and the 

DV-Hop schemes. 

The authors in [70] introduced an area-based range-free localization scheme known as 

Approximate Point in Triangle (APIT) which needs a heterogeneous network of sensor 

nodes where a subset of the devices, called anchors, are fitted with powerful transmitters 

and positioning information. In this approach, beacons from the anchors are used in 

isolating the network environment into triangular areas between beaconing nodes as shown 

in Fig. 2.2. A sensor node chooses three anchors from all the anchors it hears beacons from 

and tests whether or not it is located within the triangle formed by connecting to the three 

anchors. The algorithm repeats these tests using all combinations of three of the audible 

anchors. Hence the sensor node’s presence within or outside the triangular regions created  
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from the different combinations of three anchors, estimates the region in which it can likely 

be in. 

 

We will illustrate the idea using Fig. 2.3. Assuming the sensor node has learned that it 

is located within the triangles BDE, BDF and CDF, it can estimate that it is located within 

the dark shaded area in Fig. 2.3. To determine whether a sensor node is located within or 

outside a triangle formed by three anchors, a test is carried out which utilizes the intuition 

that when a node located within a triangle is moved in any direction, the node must come 

closer to at least one of the corners of the triangle more than it was prior to its movement. 

Conversely, if the sensor node is outside the triangle, there must exist at least a single 

direction for which the node’s distance to all the corners of the triangle increases. Mobile 

sensor nodes within imaginary triangles is not practical in real-life situations. A practical 

way of achieving this is for the sensor node to determine from its neighboring nodes their 

distance to the same set of three anchors and compare the distances with the probing node’s 

distance. Checking distances of all its neighbors, if there exists at least one corner where 

the neighbor is closer to the corner than the probing node, one assumes that the node is 

located within the triangle, otherwise it is assumed to be outside the triangle. 

Figure 2.2 Overview of the Area-based APIT Algorithm [70]  

Figure 2.3 Position estimates using overlapping triangles [36] 
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APIT has the advantage of being simple in its implementation but needs a high anchor-

to-sensor node ratio and also needs longer range beacons to achieve more accurate position 

estimates. With low beacon density, APIT has shown not to achieve accurate results. 

 The authors in [5] present a scheme using the Overlapping connectivity approach, where 

they used only the availability of connectivity to a group of anchors or beacon nodes to 

estimate a sensor node’s location as shown in Fig. 2.4. They authors have made the 

assumption that beacon signals transmitted using a pre-determined radio transmit power 

can be received within a certain circular region of known radius. A sensor node on 

receiving beacons from anchors, determines that it is located at the center of the area where 

the circles around these anchors overlap. Assuming the sensor node is aware of all deployed 

anchors, the fact that the nodes do not receive some beacon signals may indicate that the 

sensor node is outside these circles and this further narrows the possible position of the 

node. The accuracy level of this approach is dependent on the number of anchors used. 

Higher percentage of anchors used in a network area results in a better location estimation. 

 

2.2.2. Range-based Schemes 

 

Range-based localization schemes [2, 32, 33, 34] use RSSI, time of arrival (TOA), 

angle-of-arrival (AOA), or time difference of arrival (TDOA) to estimate the 

range/distance or angle between a BN and a sensor node. Then they use trilateration or 

triangulation to estimate the sensor node’s position. When the distance or angle estimates 

Figure 2.4 Positioning using connectivity information to multiple beacon nodes [5]  
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are relatively accurate, these methods prove to be effective. Range-based techniques 

provide more accurate localization results but need additional hardware for AoA and 

TDoA. 

 

Another class of beacon nodes popularly used in many sensor localization schemes is 

mobile beacons. A single mobile beacon node can be used instead of several static beacon 

nodes. The mobile node is used in obtaining the required distance or angle estimates for 

node position estimates. The authors in [6] introduced a distributed localization algorithm 

which employs a mobile BN where they have assumed that a sensor node is in an area 

termed the Arrival and Departure Overlap (ADO). The ADO is created by the intersection 

of the arrival constraint area and departure constraint area which is formed by beacon 

signals as the BN approaches and leaves the sensor nodes sensing range. The authors in [9] 

introduced the MRTP scheme which leverages the distance upper bound constraints to 

obtain accurate sensor location estimates in obstructed environments. Their approach is 

similar to that of the Centroid technique [10], however they apply the distance upper bound 

constraints in other to achieve additional further localization accuracy. In [2], the grid-

based MLE method is used to perform localization. To perform error detection, the authors 

employed the MinMax scheme to overcome significant attenuation measurement errors 

caused by the obstructions and then use the compensated RSS measurements to further 

reduce the localization error.  

Researchers have also studied other range-based localization schemes that combine 

range estimates from multiple beacons in estimating sensor nodes’ locations. These 

approaches include the convex optimization [14], systems of complex equations [15], and 

the Kalman filters [16]. These schemes have the disadvantage of requiring substantial cost 

in computation and communications. 

Probabilistic approaches [7, 8, 9, 10] have also been proposed. The authors in [7] 

presented a distributed scheme for outdoor deployments that recognizes distance 

measurement errors. They first collect and process measurement data and then create a map 

of the probability distribution of individual signal strength value versus the distance. At 

first every node in the network area is assumed to exist everywhere in the network region 

with equal probability and then repeatedly refines their location estimates by incorporating 
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their current location estimates with calculated positive and negative constraints. This 

algorithm is novel as well as practical but has the drawback of requiring the tedious task 

of taking offline calibration of measured data and can also result in sensor nodes unable to 

self-localize. As far we know, there has not been an indoor implementation of this scheme. 

Authors in [9] introduced an RSSI-based object tracking algorithm used to assess the extent 

a sensing field is covered or observed. The authors made the assumption that the sensor 

node’s location is known and also they computed probabilities that the network will detect 

a node’s location. However, the authors have not stated whether their algorithm can be 

implemented on sensor nodes to self-localize. In [10], they authors presented a method for 

estimating a node’s location using several sample power measurements from beacon nodes. 

They compute the expected value of the received power and using a steepest descent 

approach, they combine the computed expected value with the mean and standard deviation 

of the measurement samples. 

 

2.2.2.1. Multilateration scheme 

A very popular method of estimating sensor node location is the multilateration. 

Multilateration determines the estimated location of the node that minimizes the mean error 

leveraging range or angle measurements from all BNs or anchors. It is an effective method 

for reduction of errors in range-based localization methods. To further reduce the level of 

errors, the number of beacons used should be increased.  

The mathematical basics for the multilateration problem is outlined below [36]. We 

assume a sensor network of three beacon nodes at known positions (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . , 3, a 

sensor node at an unknown position (𝑥𝑢, 𝑦𝑢) and precise distances (𝑟𝑖), 𝑖 = 1, . , 3 from the 

sensor node to the beacon nodes. A depiction of such a scenario is shown in Fig. 1.4a.  

The set of equations can be derived using Pythagoras theorem: 

(𝑥𝑖 − 𝑥𝑢)
2 + (𝑦𝑖 − 𝑦𝑢)

2 = 𝑟𝑖
2 for 𝑖 = 1, . ,3   (2.1) 

Setting equations 2.1 as a set of linear equations in 𝑥𝑢 and 𝑦𝑢, and removing the quadratic 

terms 𝑥𝑢
2 and 𝑦𝑢

2 by subtracting equations 3 from equations 1 and 2, yields the following 

equations: 
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(𝑥1 − 𝑥𝑢)
2 − (𝑥3 − 𝑥𝑢)

2+ (𝑦1 − 𝑦𝑢)
2 − (𝑦3 − 𝑦𝑢)

2 = 𝑟1
2 − 𝑟3

2   (2.2) 

(𝑥2 − 𝑥𝑢)
2 − (𝑥3 − 𝑥𝑢)

2+ (𝑦2 − 𝑦𝑢)
2 − (𝑦3 − 𝑦𝑢)

2 = 𝑟2
2 − 𝑟3

2   (2.3) 

Then rearranging the terms yields the set of equations: 

2(𝑥3 − 𝑥1)𝑥𝑢 + 2(𝑦3 − 𝑦1)𝑦𝑢 = (𝑟1
2 − 𝑟3

2) − (𝑥1
2 − 𝑥3

2) − (𝑦1
2 − 𝑦3

2)  (2.4) 

2(𝑥3 − 𝑥2)𝑥𝑢 + 2(𝑦3 − 𝑦2)𝑦𝑢 = (𝑟2
2 − 𝑟3

2) − (𝑥2
2 − 𝑥3

2) − (𝑦2
2 − 𝑦3

2)   (2.5) 

Rewriting the above set of equations as a linear matrix equation yields: 

2 [
𝑥3 − 𝑥1 𝑦3 − 𝑦1
𝑥3 − 𝑥2 𝑦3 − 𝑦2

] [
𝑥𝑢
𝑦𝑢
] = [

(𝑟1
2 − 𝑟3

2) − (𝑥1
2 − 𝑥3

2) − (𝑦1
2 − 𝑦3

2)

(𝑟2
2 − 𝑟3

2) − (𝑥2
2 − 𝑥3

2) − (𝑦2
2 − 𝑦3

2)
]  (2.6) 

The matrices on the left and right sides contains only known constants. Hence the unknown 

variables 𝑥𝑢 and 𝑦𝑢 can be calculated easily. Hence the accurate position of the sensor node 

can be computed assuming accurate distance estimates are known as has been described. 

However getting accurate distance estimates without sophisticated distance measuring 

tools is not feasible in real life situations. So distance estimates �̃� with an unknown error 𝜀 

are used for the multilateration as shown in Fig.1.4b. Solving equation 2.6 using 𝑟�̃� = 𝑟𝑖 +

 𝜀 will typically not produce the accurate position (𝑥𝑢, 𝑦𝑢) of the sensor node.  

The popular approach to solving this is to use an overdetermined system of equations 

as shown in equation 2.7, which entails using greater than the required minimum number 

of BNs and distance estimates. In the above example scenario given, we will have to use 

more than 3 beacon nodes and distance estimates.  

2 [
𝑥𝑛 − 𝑥1 𝑦𝑛 − 𝑦1

⋮ ⋮
𝑥𝑛 − 𝑥𝑛−1    𝑦𝑛 − 𝑦𝑛−1

] [
𝑥𝑢
𝑦𝑢
] = [

(𝑟1
2 − 𝑟𝑛

2) − (𝑥1
2 − 𝑥𝑛

2) − (𝑦1
2 − 𝑦𝑛

2)
⋮

(𝑟𝑛−1
2 − 𝑟𝑛

2) − (𝑥𝑛−1
2 − 𝑥𝑛

2) − (𝑦𝑛−1
2 − 𝑦𝑛

2)

] (2.7) 

To solve the overdetermined system of equations, a solution of (𝑥𝑢, 𝑦𝑢) can be 

calculated that minimizes the mean square error (MSE),  ‖AX − b‖2 where A, X and b 

represent the matrices as depicted in equation 2.7. 

A X b 
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To minimize the mean square error, we utilize the square of the Euclidean norm above. 

For any given vector v, ‖v‖2
2 = v𝑇v. This yields the equation below: 

 

 ‖AX − b‖2
2 = (AX − b)𝑇(AX − b) = X𝑇A𝑇𝐴𝑋 − 2X𝑇A𝑇𝑏 + b𝑇b  (2.8) 

 

Minimizing the mean square error, i.e. getting the directive of the expression with 

respect to x and setting it equal to zero yields the normal equation below: 

2A𝑇𝐴𝑋 − 2A𝑇𝑏 = 0 
.
⇔  A𝑇𝐴𝑋 =  A𝑇𝑏    (2.9) 

Equation 2.9 has a unique solution if matrix A has full rank. However other methods, 

such as the Cholesky or QR factorization, can yield a solution to the equation. 

To find a solution to the issue of computationally complex minimum mean square error 

(MMSE) especially when all the multiple range estimates may not be available at every 

sensor node, other approaches like iterative and collaborative multilateration [1] have been 

identified for sensor network. 

 Iterative and collaborative multilateration 

The typical multilateration approach estimates distances between unknown nodes (UNs) 

and BNs (or anchors) in order to apply multilateration on the BNs. As introduced in the 

previous subsection, there may arise situations where there are insufficient number of BNs 

for node location estimate. In such situations, normal or unknown nodes after being 

localized, can be used as “Pseudo beacon nodes” and act as BNs in the location estimates 

process. We have an example scenario in Fig. 2.5 [36-37] which shows 3 UN: A, B and C 

which do not know their positions. Node A can determine its position using 3 of the 

available BNs and after Node A localizes, then node B can uses the now localized node A 

and 2 other BNs to localize itself and then be available for node C to localize itself.  
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The accuracy of this iterative process depends on the following: 

 Accuracy of the range estimation – the more accurate the range measurements are, 

the better the position estimate of the UNs. 

 The initial position estimate – if the position estimate of the first UN that becomes 

a pseudo BNs is erroneous, the subsequent UNs will be using a pseudo BN whose 

position is inaccurate and this will result in other UNs’ positions being inaccurate 

and the inaccuracies are propagated down to the last UN localized. 

 Average number of neighbors – this is very critical as if at any step in the iterative 

multilateration process, then some UNs may not have sufficient BNs and/or pseudo 

BNs to use for localization. 

 Number of BNs – If there are insufficient BNs in the initial location estimate of the 

first UN, then there will not be pseudo BNs to be used for other localizations down 

the iterative multilateration process. 

Figure 2.5 Iterative multilateration showing UNs A, B and C that can find their 

positions in multiple iterations. The thick arrows depict the beacon signals whose 

distance estimates are employed in a given iteration [36]. 
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 The problem of insufficient BNs for location estimation can be addressed using the 

process of collaborative multilateration to estimate some of the UNs that ordinarily could 

not have been localized. Basic guidelines of the collaborative multilateration process 

include: ensure high connectivity, use a minimum of 5% BNs and to place BNs toward the 

perimeter of a network [37].  

Collaborative multilateration can be effective in assisting the iterative multilateration in 

areas of the network where the number of BNs is low and the atomic multilateration 

requirement is not met [37]. The advantage of the iterative- and collaborative- 

multilateration methods is that they can be employed in the localization of nodes in areas 

of the network area where there are insufficient BNs or nodes who can act as pseudo nodes. 

Their drawback is that of error propagation across the node localization process. 

Drawbacks of multilateration 

Multilateration method of sensor node localization has inherent disadvantages in that 

they utilize distance estimates from beacons received from all BNs, shadowed and 

unshadowed beacons in localizing nodes. This results in the sensor node location estimate 

often being severely inaccurate. The intuition will be that any scheme that identify and 

deselect those distance estimates calculated from shadowed beacon signals, then the 

resultant node location estimate will be significantly less inaccurate. Substantial amount of 

study in this area has been conducted by researchers in designing algorithms that will 

mitigate the effects of shadowed beacons [43, 44]. 

 

2.2.2.2.   Majority Rule in Wireless Sensor Localization 

To counteract the challenge experienced with using multilateration in sensor 

localization due to erroneous distance estimates caused by shadowed beacon signals, 

researchers have developed various techniques to deal this. One of such techniques is called 

the majority rule method.  

The authors in [45] proposed a majority rule-based sensor fusion system with particle 

filter to filter and suppress noisy sensor measurements. In their scheme, the authors have 

made the assumptions that biased distributions, which are different from distributions from 
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other low noise sensors, are detected and subsequently removed using a majority rule 

approach.  

 

2.2.2.3.   Outlier detection in Wireless Sensor Localization 

The other approach that has attracted significant work in the wireless sensor localization 

research community is the detection, elimination and suppression of outlier sensor 

measurements. Outlier measurements can be considered to be those measurements that 

greatly differ from the typical pattern of sensed data. 

Several methods have been developed by researchers to detect, remove or suppress 

outlier beacon signals caused by noisy measurements [45,46]. The authors in [45] 

employed the graph embeddability employing rigidity theory to detect and filter outlier 

range measurements. The authors made the assumptions that measurements unaffected by 

noise are accurate and this is not practical with RF RSSI measurements. They also did not 

state whether there is an outdoor implementation of their scheme. In [46], the authors 

leveraged the closeness of sensor nodes in a network, employing the term called Closeness 

Centrality (CC) to represent the significance of a node within the network compared to 

other nodes. They then used the CC to remove those nodes with noisy measurements from 

being used in the estimation of the UNs’ locations. The drawbacks of the algorithm are that 

it needs training data and also there was no explanation by the authors whether or not the 

clusters formed using the CC reduces or removes the adverse effect of obstructed signals. 

2.2.2.4.   Simultaneous Localization and Mapping (SLAM) 

A robot can be tasked to estimate its position in an environment using a map of 

landmarks and inbuilt sensors that takes measurements of these landmarks. This is termed 

Localization. Also, if given accurate positions of the robot within the environment, a map 

of the landmarks can be obtained. This is termed Mapping. Then localizing the robot 

positions and at the same time build a map of the landmarks is termed Simultaneous 

Localization and Mapping (SLAM). The SLAM algorithm is a very important localization 

method in Robotics as can be seen in the works shown in [17, 19, 20, 22, 23]. When the 
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inbuilt robot sensor described above can take only range measurements, a special case of 

range-only SLAM emerges [18, 21, 47, 48]. Researchers have varying implementations of 

the SLAM using mechanisms like the Extended Kalman Filter (EKF), sparse graphs, 

Sparse extended information filter (SEIF) and particle filter (PF). 

The EKF SLAM algorithm has a number of limitations namely its quadratic 

computational complexity as well as the linearization technique. With the GraphSLAM 

[50], it accumulates information and is basically an offline algorithm. To develop an online 

filter algorithm that incorporates the benefits of the information filters, the SEIF was 

introduced. The SEIF SLAM maintains an information view of all knowledge making it 

run online as well as be computationally more efficient than the EKF and GraphSLAM. In 

FastSLAM [42, 49], particle filter is used in estimating the robot path and the map features 

are estimated by EKFs but using separate low-dimensional EKF for each feature. The 

advantages of FastSLAM include its logarithmic time complexity in the number of features 

and data association can be made on a per-particle basis. Another very important advantage 

is that, unlike the other techniques that require approximations of the non-linear motion 

model using linear functions, particle filters can handle non-linear robot motion models. 

Our correlation-based localization approach is different from the described schemes 

because it uses the idea that not all beacon signals are adversely affected by obstructions 

located in the network area. It improves on the linear least square method by removing the 

effects of the obstructed beacon signals. It attempts to combine the RSSI measurements 

that contribute to a high degree of agreement towards the final location estimate. It achieves 

this by utilizing spatial correlation of candidate sensor location estimates that are computed 

using different combinations of a subset of all beacon signals in a trilateration process. 

Furthermore, our approach does not depend on the deployment environment as the nodes 

can dynamically calculate path loss exponent of the sensing region using beacon signals 

received from BNs. 
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CHAPTER 3: PERFORMANCE OF SLAM IN THE PRESENCE OF SHADOWING 

 
 

A very popular sensor localization approach that has a similar weighting mechanism 

(Kalman Gain) for node position estimation is the simultaneous localization and mapping, 

popularly called SLAM. The SLAM has seen a rapid progress over the past decade. The 

problem of learning maps is a fundamental problem in mobile robotics. SLAM involves 

building a map of an environment using a mobile robot or platform and at the same time, 

localize the mobile robot in the environment. SLAM is a Chicken-or-Egg problem: a map 

of the environment is required to localize the robot and also knowledge of the robot poses 

is required to build a map of the environment. Hence, SLAM is regarded as a hard problem 

in robotics. Figure 3.1 illustrates the essential SLAM problem.  

 

Before delving in depth of the SLAM problem, we will describe the following problems 

that often times are the objectives of SLAM algorithms, i.e. the problem that the SLAM 

algorithm wants to address: 

 Localization – determine the position(s) of a robot/mobile node given a map. 

 Mapping – determine the map (i.e. sensor nodes’ locations) given the robot/mobile 

node’s locations. 

 SLAM – determine the map and at the same time the positions of the robot. 

Figure 3.1: The true positions are unknown and are not measured directly but 

information from observations made between true robot and landmark (sensor node) 

positions are used to determine a simultaneous estimate of the robot and sensor node’s 

positions. [17] 
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3.1. SLAM: Overview 

 

With sensor localization, the positions or path of the mobile robot are determined using 

the known locations of the map/landmarks/sensor nodes. The converse is the case whereby 

the locations of sensor nodes within a sensor region are determined given that the positions 

or path of the robot within that sensor region are known.  

Mapping is more relevant to the correlation-based localization scheme we have 

proposed. In SLAM using the EKF filter, a mechanism called the Kalman Gain is applied 

to reduce the effect of obstructed beacon signals by determining the contribution of such 

beacon signals to the state space estimation. This is similar, in principle, to our proposed 

localization scheme where the spatial-correlation mechanism is used to reduce the effect 

of obstructed beacon signals. The spatial-correlation applies a weighting function to give 

higher significance to those candidate estimates that are spatially correlated while giving 

less significance to those that are spatially uncorrelated. This is the motivation for our 

choosing to explore SLAM and compare it to our proposed scheme. 

 

Let us take a scenario where a mobile robot with an onboard sensor is traversing an 

environment and taking measurements of some unknown landmarks or unknown nodes as 

shown in Fig. 3.1. At a time instance k, the following quantities are defined:  

 𝑥𝑘 − The state vector containing the robot’s location and orientation.  

 𝑢𝑘 −  The control vector.  

 𝑚𝑖 −  A vector containing the location of the 𝑖𝑡ℎ landmark.  

 𝑧𝑖𝑘:  An observation of the 𝑖𝑡ℎ  landmark measured from the robot at time 

instance k. 

 

Representations of the observation model as well as the motion model are achieved by 

computing the prior and posterior distributions using probabilistic approaches. These 

algorithms are greatly affected by both measurement data and data association.  

The two main forms of the SLAM problem in the probabilistic perspective are the full 

SLAM and the online SLAM. The full SLAM aims to estimate the entire path of the robot 

and also the map of the environment provided that all the control inputs and all the 
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measurements are known. The full SLAM calculates the posterior over the entire robot 

path and the map instead of the current pose of the robot.  

 

𝑏𝑒𝑙(𝑥0:𝑘, 𝑚) = 𝑝(𝑥0:𝑘 , 𝑚 | 𝑧0:𝑘, 𝑢0:𝑘)         (3.1) 

 

The graphical representation of the full SLAM is shown in Figure 3.2. 

 

 

Due to the growth in complexity as a result of the number of variables considered, the 

full SLAM problem can become very challenging to deal with in real time. To forestall the 

complexity growth problem of the full SLAM, the online SLAM is used. The online SLAM 

estimates the current position of the robot, given that the previous measurement 

information is known. Fig. 3.3 illustrates the graphical illustration of the online SLAM.  

 

The Bayes’ rule can be used to show the incremental nature of the problem as shown in 

below: 

 

𝑏𝑒𝑙(𝑥𝑘, 𝑚) = 𝑝(𝑥𝑘, 𝑚 | 𝑧0:𝑘, 𝑢0:𝑘) 

                      ∝   𝑝(𝑧𝑘 | 𝑥𝑘,𝑚) ∫ 𝑝(𝑥𝑘 | 𝑥𝑘−1, 𝑢𝑘)𝑥𝑘−1
𝑏𝑒𝑙(𝑥𝑘−1,𝑚) 𝑑𝑥𝑘−1        (3.2) 

 

Figure 3.2: Graphical representation of the full SLAM problem [23]. 
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There are two main categories of the estimation techniques used in SLAM. One is the 

filter-based method which we will discuss here. The other category, which we will not 

discuss in this dissertation, is the optimization-based method. 

 

Filter-based SLAM 

Filter-based SLAM methods are Bayesian filters and involve two-step iterative 

processes described below:  

 Prediction phase: The prediction phase involves predicting the robot and map 

states. The prediction is made using the motion model as well as the control 

inputs 𝑢𝑘. 

 Update/correction phase: In this phase, the current sensor observation 𝑧𝑘  is 

compared to the map in other to correct the prediction made in the first phase. The 

model that relates the observation to the map is known as the observation model.  

The prediction and update steps continue iteratively, incorporating measurement data as 

the robot moves along its path, to finally estimate the robot position as well as the map of 

the environment. A few of the filters used in filter-based SLAM are the Extended Kalman 

Filter (EKF), Unscented Kalman Filter (UKF) , Particle Filter (PF), Information Filter (IF) 

etc. The EKF, UKF and IF are examples of Gaussian Filters which are an essential family 

of recursive state estimators. On the other hand the PF belongs to the Non-Parametric 

family of filters. 

Figure 3.3: Graphical representation of the online SLAM problem [23] 
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We will discuss the EKF and PF variants in more detail. To describe the EKF, UKF and 

IF filters, we will introduce and describe the Kalman Filter (KF) which is the best studied 

technique for the implementation of Bayes filters. The KF is a recursive Bayes filter with 

prediction and correction steps but implements belief computation for non-discrete as well 

as non-hybrid state spaces. A mathematical representations of the 2 steps of the KF are 

shown in equations 3.3 and 3.4. 

1. Prediction:  

𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) =  ∫ 𝑝( 𝑥𝑘|𝑢𝑘, 𝑥𝑘−1)𝑏𝑒𝑙(𝑥𝑘−1) 𝑑𝑥𝑘−1   (3.3) 
 

2. Measurement Update/Correction: 

      𝑏𝑒𝑙(𝑥𝑘) =  𝜂 𝑝(𝑧𝑘|𝑥𝑘) 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘−1)               (3.4) 
 

 

In the KF algorithm, the posterior must be Gaussian and the state transition probability 

must be a linear function in its argument but with added Gaussian noise. Table 3.1 shows 

a depiction of the KF algorithm. 

 

Algorithm 1 shows the steps of the KF Algorithm: 

Algorithm 1: 𝐾𝑎𝑙𝑚𝑎𝑛_𝐹𝑖𝑙𝑡𝑒𝑟(𝜇𝑘−1, Σ𝑘−1, 𝑢𝑘, 𝑧𝑘):  
1:    KF_Prediction: 

     2:    �̅�𝑘 =  𝐴𝜇𝑘−1 +  𝐵𝑢𝑘   
     3:    Σ̅𝑘 = 𝐴𝑘Σ𝑘−1𝐴𝑘

𝑇 + 𝑅𝑘            
     4:   KF_Measurement: 

     5:    𝑆𝑘 = Σ̅𝑘𝐶𝑘
𝑇 (𝐶𝑘Σ̅𝑘𝐶𝑘

𝑇 + 𝑄𝑘)
−1            

     6:    𝜇𝑘 =  �̅�𝑘 + 𝑆𝑘 (𝑧𝑘− 𝐶𝑘�̅�𝑘)             
     7:    Σ𝑘 =  (𝐼 −  𝑆𝑘𝐶𝑘) Σ̅𝑘 

     8:    𝒓𝒆𝒕𝒖𝒓𝒏 𝜇𝑘, Σ𝑘 

 

 
To better understand the KF, we will define some common and vital parameters of the KF 

shown in the algorithm above: 

 Kalman Gain – This parameter represented by the variable 𝑆𝑘 in line 5 of the KF 

algorithm specifies the degree to which the measurement influences the estimation 

of the new state. The mean is manipulated, adjusting it in proportion to the Kalman 

Gain and the deviation between the predicted and actual measurements. 

 Innovation – This is the deviation between the predicted measurement 𝐶𝑘�̅�𝑘 and 

the actual measurement taken 𝑧. 
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One of the critical and essential attributes that must exist for a KF to be complete is 

that observations are linear functions of the state and are linear functions of the previous 

state. However, in real life situations, state transitions and observations are mostly non-

linear. As a result of this reality check and also the assumption of unimodal beliefs, the KF 

is really in applicable in most applications. 

To forestall the linearity requirement of the KF, the EKF was introduced whereby the 

state transition probability as well as the measurement probabilities are ruled by nonlinear 

functions. The EKF approximates the basic belief representation of the KF and uses 

linearization to approximate the non-linear function.  

 

We will now describe the EKF in more detail.  

 
i. Extended Kalman Filter (EKF)  

At its basic form KFs are developed to tackle linear systems and even though 

they have remarkable convergence properties, they are hardly used in SLAM 

because of that fact that real live processes are usually not linear in nature. On the 

other hand, the EKF is commonly used in non-linear filtering and so is used in 

SLAM. To overcome non-linear models, the EKF linearizes non-linear models. The 

linearization is done around the current estimate using a first order Taylor 

expansion. The EKF is effective provided the linearization is done around the true 

value of the state vector.  

The various steps of the EKF SLAM are: state prediction, measurement prediction, 

 measurement reading, data association and update. 

 

Algorithm 2 shows the steps of the EKF Algorithm: 

Algorithm 2: 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑_𝐾𝑎𝑙𝑚𝑎𝑛_𝐹𝑖𝑙𝑡𝑒𝑟(𝜇𝑘−1, Σ𝑘−1, 𝑢𝑘, 𝑧𝑘):  
1:    EKF_Prediction: 

     2:    �̅�𝑘 =  𝑔( 𝑢𝑘, 𝜇𝑘−1)            
     3:    Σ̅𝑘 = 𝐺𝑘Σ𝑘−1𝐺𝑘

𝑇 + 𝑅𝑘            
     4:   EKF_Measurement: 

     5:    𝑆𝑘 = Σ̅𝑘𝐻𝑘
𝑇 (𝐻𝑘Σ̅𝑘𝐻𝑘

𝑇 + 𝑄𝑘)
−1            

     6:    𝜇𝑘 =  �̅�𝑘 + 𝑆𝑘 (𝑧𝑘− ℎ(�̅�𝑘))             
     7:    Σ𝑘 =  (𝐼 −  𝑆𝑘𝐻𝑘) Σ̅𝑘 

     8:    𝒓𝒆𝒕𝒖𝒓𝒏 𝜇𝑘, Σ𝑘 
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ii. Particle Filter (PF) 

The PF is a nonparametric and major approach in filtering SLAM algorithms. 

Particle filtering is an approach used for implementing recursive Bayesian filtering 

by Monte Carlo sampling. The major idea is to represent the posterior density at 

time 𝑘 𝑝(𝑥𝑘|𝑧1:𝑘) by a set of independent and identically distributed (i.i.d.) random 

particles {𝑥𝑘
(𝑖)
} according to the distribution. Every particle is paired with a 

weight 𝑤𝑘
(𝑖)

. Successive measurements and model-based predictions are then used 

to update the weights and particles.  

 

Unlike for the EKF, the PF is very effective for non-Gaussian stochastic 

processes with non-linear dynamics and especially beneficial when the posterior 

𝑝(𝑥𝑘|𝑧1:𝑘) does not have any parametric form or that the form is not known.  

 

The PF algorithm involves the following steps: 

 Filter initialization (The prior model) 

The filter is initialized on the reception of the first beacon signal from the robot. 

An initial distance and a corresponding variance on the distance are estimated 

from RSSI values. The prior considered is thus a uniform distribution on a 

spherical annulus, where the inner and outer radii are dependent on the 

estimated mean and variance. 

 

 Prediction step 

The probability that at time step k, the unknown node is at position Pk given 

that it was at position Pk-1 at the time step k-1. If static unknown nodes are 

employed, then the prediction step might be omitted (that is, with probability 1 

each node is in the same position at time steps 𝑘 and 𝑘−1). If that is the case, 

since there is a limited number of particles over the state space, a random move 

is introduced to the particles in order to search locally around the position of 

the previous time step. 

 

 Update step 
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The functions 𝜇(𝑑) and 𝜎(𝑑) are applied in the estimation process. Every time 

a new measurement is received, the weights of each particle is updated putting 

into consideration the likelihood of the received measurement. 

 Resampling 

In particle filter localization, the weights of particles with high likelihood 

increases and those particles with low likelihood do not. Since the number of 

particles are limited, a resampling step is introduced in order to replicate 

particles with high weights and remove those with low weights. Doing so, 

particles with high likelihood (high weights) contribute towards the final 

estimation of the unknown node while ignoring particles with low likelihood 

(low weights). 

To deal with some of the obvious issues of the resampling step, two 

considerations are made: first, resample only when the effective number of 

particles 𝑁𝑒𝑓𝑓 goes below a threshold. The effective number is calculated using 

equation 3.5:  

   𝑁𝑒𝑓𝑓 = [∑ (𝑤𝑘
(𝑖))

2𝐿
𝑖=1 ]

−1

                    (3.5) 

   

The second consideration is to use a low variance sampler which allows the 

spread of the particles over the areas of highest likelihood. 

 

 Mean and standard deviation estimation  

The mean and standard deviation from the particle filter is computed as follows: 

 

     𝜇𝑘 = ∑ [𝑥𝑘
(𝑖)
𝑤𝑘
(𝑖)
]𝐿

𝑖=1                               (3.6) 

 

     𝜎𝑘
2 = ∑ (𝐿

𝑖=1 𝑥𝑘
(𝑖)
− 𝜇𝑘)

2𝑤𝑘
(𝑖)

                  (3.7) 

 

The key advantage of the particle filter is that it can be used for multi-modal or 

nonparametric distributions. While the posterior distribution depends on the 

measurements during the transient state, the filter approximately converges to a 

Normal distribution at the position of the node. It can be considered that the filter 

converges when 𝜎𝑘 is below a certain threshold during a period of time.  
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There are several approaches to solving the SLAM problem:  

 Range-bearing SLAM - Range and bearing measurements are used as parameters 

to localize an unknown node. 

 Range-only SLAM – Range measurements only are used.  

 Bearing-only SLAM - Bearing (or angle) measurements are used. 

 

Since RSSI used in range estimation is the only measurement data the sensors we have 

investigated take, we will focus on the solution of the localization problem using range-

only SLAM in this dissertation, 

 

3.2. Range-Only SLAM (ROSLAM) 

 

Range-Only SLAM, popularly known as ROSLAM, is an approach to the solution of 

the SLAM problem [18, 21, 41, 47, 48]. In scenarios whereby the embedded sensor on a 

robot can only detect range to landmarks, the special case of ROSLAM, whereby only 

range measurement is used as parameter in estimating the robot path and also localizing a 

landmark. This is unlike the more popular Range-bearing SLAM which requires not only 

range measurements but bearing measurements as well. 

The ROSLAM is a very challenging SLAM problem and this is attributed to these 

characteristics: the presence of outliers due to the types of sensors used (typically radio 

pulses or sonar), and more notably the high ambiguity of the measurements [18]. Fig. 3.4 

illustrates this issue. Here a robot determines the distance to the beacon shown from three 

separate positions moving along a straight path. For every position the beacon node takes 

measurement at, an annular-shaped region of the estimated position of the beacon exists 

given the measurement. The problems that arise with the sensors are: 

i. The large area in the network environment where the BN could be located, given 

only a single measurement observation. 

ii. Multiple measurements are required to fully initialize a BN’s position in the state 

vector of the filter [66]. 

iii. The possibility of multiple locations that the beacon node could be as in Fig. 3.4.  
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A few of the advantages of the ROSLAM approach include:  

 There is no data association problem, since the beacon nodes are capable of 

identifying themselves.  

 Depending on the technologies, there is no need for line-of-sight (LOS) between 

beacon node and landmark. 

 

To clearly describe the ROSLAM localization algorithm, we will discuss the EKF 

ROSLAM [66]. EKF-SLAM algorithm uses RF beacons with no prior knowledge of their 

position in the sensor network area. Here, the BNs provide only range information, hence 

estimating their positions is a challenging task.  

In SLAM problems, one of the very crucial steps of the filter mechanism (EKF in this 

case) is to initialize the filter with an initial position of the landmark (unknown node in this 

case). With Range-bearing SLAM, it is easy to initialize an unknown node because the 

measurement function is bijective for range-bearing. Initialization can be achieved using 

equation (3.8).  

  (
�̅�𝑗,𝑥
�̅�𝑗,𝑦

) =  (
�̅�𝑘,𝑥
�̅�𝑘,𝑦

) + (
𝑟𝑘
𝑖 cos( 𝜙𝑘

𝑖 + �̅�𝑘,𝜃)

𝑟𝑘
𝑖 sin( 𝜙𝑘

𝑖 + �̅�𝑘,𝜃)
)             (3.8) 

 
Observed position 

of landmark j 
Estimated position 

of the robot 
Relative 

measurement 

position of the 

robot 

Figure 3.4: Range-Only SLAM: Map estimates may result in multi-modal densities [18]. 
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However, for ROSLAM, to be able to estimate the initial position of the UN, multiple 

range measurements have to be taken. For example, two range measurements from two 

robot’s positions can be used to initialize two hypotheses for the BN’s location, and are 

then entered into the filter as a Gaussian mixture. A detailed description of the ROSLAM 

implementation will be outlined in the next section. 

 

3.3. ROSLAM Implementation  

 

In this section, the ROSLAM implementation using simulations is outlined. 

A. System Overview 

In this ROSLAM implementation, we considered a mobile robot moving in a 40m x 

40m outdoor environment. The robot is equipped with wheel encoders and gives travelled 

distance Δ𝑢 (in meters) as well as change in orientation Δθ (in rad) between two time steps. 

However, the odometry measurement is perturbed with Gaussian noise. 

The mobile robot travels in a circular region round the network region and only stops at 

certain locations to transmit beacon signals before continuing in its circular path. For the 

simulations, we considered different number of locations (6, 8, 10 and 12) from where the 

robot sent beacon signals. An unknown node is placed at an unknown location within the 

network area, x = (x, y)T. 

i. State vector Initialization: 

The state vector at time k where every beacons are initialized is of the form: 

                   𝑋𝑘 = (𝑥𝑘, 𝑦𝑘, 𝑥𝑘, 𝐱) 
𝑇                                (3.9) 

Where (𝑥𝑘 , 𝑦𝑘, 𝑥𝑘) 
𝑇  is the pose of the robot at time step, k. 

After filter initialization, the next step is the prediction step and is described next. 

ii. Prediction step: 

Only the state variables of the robot are affected by the prediction. Equation 3.10 

describes this step: 
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{
 

 𝑥𝑘+1 =  𝑥𝑘 +  Δ𝑢𝑐𝑜𝑠(𝜃𝑘 +
Δ𝜃

2
)

𝑦𝑘+1 = 𝑥𝑘 +  Δ𝑢𝑠𝑖𝑛(𝜃𝑘 +
Δ𝜃

2
)

 𝜃𝑘+1 =  𝜃𝑘 +  Δ𝜃                         

                                   (3.10) 

The measurement noise matrix in an EKF ROSLAM 

𝑄 = (
𝐾Δ𝑢|Δ𝑢| 0

0 𝐾Δ𝜃|Δ𝜃|
) 

Since the specific locations where the robot sends beacons is known in our 

implementation, the noise matrix will an 2 x 2 all zeros matrix. 

iii. Update step: 

When the beacon’s position converges to a unique solution, a Mahalanobis test is 

done before the update in order to drop those range measurements that are farther 

away from the prediction. The prediction is then computed. Also the covariance 

matrix for the Mahalanobis distance is calculated using the filter’s innovation 

covariance matrix [66]. 

 

3.4.   ROSLAM: Performance results in the presence of shadowing 

 

We now present the performance results we achieved of simulating the ROSLAM 

algorithm in the assumed WSN environment that is characterized by unknown 

obstructions. We evaluate the performance results of the ROSLAM algorithm in compared 

with that of multilateration, in our assumed system model which is a WSN characterized 

by obstruction. When there is an obstruction blocking a BN’s path to an UN, we add an 

additional attenuation is given in equation 1.3. We evaluated for varying degree of 

attenuation caused by obstructions as well as for varying number of obstructions.  

We have also evaluated the ROSLAM using varying number of robot steps to show 

that with increased number of robot steps, the ROSLAM performance improves. By 

“number of robot steps”, we refer to the number of unique positions in the network area 

where the robot transmits beacon signals. This is different from the number of beacon 
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signals transmitted by a robot as the later may involve beacon signals transmitted by a robot 

from the same spot. 

Table 3.1: ROSLAM Simulation Parameters. 

Simulation Parameters 

Network Region 40m x 40m 

Number of Beacon node positions 10 

Position of unknown node {20,20} 

Number of obstructed beacon nodes 1, 2 and 3 

Line of sight (LOS) fading factor 1 dB 

Additional attenuation due to obstructions 4 dB 

Transmit Frequency 900 MHz 

Path Loss Exponent (n) 2.3 

Number of trials (or runs) 10 

 

The simulation parameters are shown in Table 3.1 and we have simulated a 40m x 40m 

wireless sensor network area, with 1 mobile BN transmitting at 10 different positions, and 

one UN placed position {20,20}. We have assumed the network region contains one, two 

and three obstacles. These obstacles obstruct RF beacon signals and we have modeled these 

as describe in section 1.2.2.  
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i. Error performance of ROSLAM compared with Multilateration:  

Figure 3.5: Localization accuracy comparison Multilateration versus 

ROSLAM using varying number of obstacles: 1, 2 and 3. 
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   ii:      Effect of number of robot steps on ROSLAM localization accuracy: 

 

As we stated earlier, to evaluate the effect of the number of robot steps in ROSLAM, we 

simulated the robot steps as the number of unique positions from which the robot transmits 

beacon signals. The robot moves from location to location and at each location, it transmits 

beacon signals containing its location. So for 100 number of steps, the robot transmits 

beacons from 100 unique locations in the network area. This is same for 200 up to 500 

number of steps. 

The performance results in Fig. 3.5(a) show that ROSLAM outperforms the 

multilateration scheme for all values of additional attenuation factor evaluated for the 1-

obstacle case. However, for the 2-obstacles and 3-obstacles cases, the multilateration 

method performs worse than the ROSLAM but for the case where there are obstructed 

beacon nodes and the added attenuation reaches 5dB as shown in Fig. 3.5(b)-(c). The cause 

of the dismal performance of the ROSLAM is that the small number of unique steps taken 

by the robot (BN) is not sufficient to effectively localize the unknown node. With increase 

in the number of unique steps taken by the robot (e.g. 200 and above), the localization 

accuracy of the ROSLAM will improve. Fig. 3.6 shows that the localization accuracy 

improves when the total number of unique steps taken by the robot grows from 100 to 500.  

 

Figure 3.6: Shows the effect of the number of robot steps 

on ROSLAM localization accuracy 
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3.5.   Performance Evaluation: Conclusion 

A summary of our findings from simulations shows the following: ROSLAM scheme 

outperforms the multilateration method as the added attenuation fading factor increases. 

However, with a small number of unique positions where measurement data is transmitted 

and with a high number of obstacles, ROSLAM localization performance deteriorates.  

However, increasing the number of unique robot steps improves the localization 

accuracy of the ROSLAM. The reason for the improvement in performance with increased 

number of BN/robot steps is that an increase in the number of steps introduces more unique 

measurement data to be used in refining the UN’s location estimates until the system 

converges.  
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CHAPTER 4: SENSOR LOCALIZATION USING MAJORITY RULE 

 

Our work is motivated by the knowledge that multilateration using RSSI-based distance 

estimates is extremely affected by shadowing effects that adversely affects some of the 

RSSI measurements more than others. This results in highly erroneous location estimates 

of an UN’s position in a sensor region. The main problem of the use of multilateration in 

sensor localization is that multilateration uses beacon signals from all BNs, obstructed and 

unobstructed beacon signals alike. It will be very useful if there was a way to identify and 

discard those beacon signals that are shadowed and use only unshadowed beacon signals 

in sensor localization. However, it is overly challenging or even downright impractical to 

identify which received beacon signals by an UN are shadowed and those that are not. To 

address this issue, in this chapter we present an approach that uses a spatial correlation 

mechanism to select a fraction of a large number of received beacon signals to implement 

multilateration. The spatial correlation mechanism introduces the concept of Majority Rule 

in sensor node localization [6, 45, 46]. Majority rule (or Consensus) approach has 

engendered tremendous research interest as it has shown great promise in its effectiveness 

in sensor location estimation. This is especially the case in WSNs that experience 

shadowing due to obstacles present in the sensor region. This approach uses spatial 

correlation concept to remove those RSSI beacon signals that are adversely affected by 

obstructions. 

The idea behind the Majority Rule approach is to use those beacon signals that 

contribute to a location estimate matching the majority of the beacons completely 

disregarding the beacons that tend to disagree with the majority. This is fundamentally 

different from the multilateration approach that considers all beacons as equally significant 

and generates a location estimate that is the minimum mean square error location calculated 

from all the beacon signals. It is beneficial to observe that the proposed approach is likely 

to work if two conditions are met. First, if the number of erroneous or NLOS beacons is 

not too large so that the majority is evident. Second, since all beacon signals have some 

error due to fading, a mechanism to determine the agreement with other beacons signals 

within a given margin of error exists.  
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In this chapter, we will propose a spatial correlation mechanism that uses location 

estimates from small subsets of beacon signals and applies a majority rule on these location 

estimates.  

4.1. Approach for imparting spatial correlation  

 

As discussed in the earlier section, the reason for the introduction of the spatial 

correlation concept is to solve the problem of deselecting or removing those beacon signals 

that we do not want to have high significance in the solution of the UN localization 

problem. 

We illustrate the spatial correlation concept using Fig. 4.1. We assume there are B 

number of BNs deployed in the sensor network area and these BNs will be used in 

localizing the unknown nodes (UNs). The BNs transmit RF beacon signals, and each of 

these beacon signals contain the ID as well as the location of the BN from which it was 

transmitted. The scheme takes subsets of 𝑀 BNs (𝑀 ≪ 𝐵) and implements multilateration 

to every subset to achieve as many as (𝐵
𝑀
) multilaterations for each UN. The scheme then 

applies a spatial correlation mechanism to choose the location where a majority of the 

multilateration results are in agreement. This phenomenon is termed Majority rule. 

Figure 4.1: Depiction of our correlation based localization approach: (a) Network 

topology where blue circles represent obstructions, triangles represent beacon nodes’ 

positions, and diamonds represent corresponding candidate location estimates from 

subsets of 3 beacons; (b) bivariate Gaussian pdfs with mean centered at the candidate 

location estimates; and (c) summation of the Gaussian pdfs, shows final estimate of 

node’s location [6]. 

(a) (b) (c) 
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Fig. 4.1(a) illustrates an example of a network area that is 100m x100m square and is 

served by 11 BNs deployed in an L-shaped manner and 20m apart from each other. We 

consider 2 obstacles and 1 UN in locations as indicated. We have made the assumption that 

the RF signals transmitted by the BNs experience lognormal fading and the RF signals 

from BNs that are obstructed by obstacles experience shadowing effect in addition to 

fading.  Assuming 𝑀 = 3, there can be (11
3
) = 165 distinct subsets of BNs, and the 

corresponding multilateration results, as obtained from simulations, are depicted by the red 

diamonds in Fig. 4.1 (a). Note that each of these multilaterations generate an estimated 

location of the UN that is expected to have an error that depends on the errors in the 

estimated distances from the BNs used in the corresponding subset. To illustrate these 

errors, we represent each location estimate by a bivariate Gaussian pdf of the estimated 

location centered at the corresponding location (Fig. 4.1(b)). The variance of the Gaussian 

pdfs will depend on the error in the distance estimates, i.e. a high fading rate will lead to a 

wider Gaussian pdf. It is expected that the location estimates that are obtained from 

unshadowed or LOS BN signals would be relatively consistent, i.e. located close to each 

other. Moreover, those location estimates from any subset that includes one or more 

shadowed BN signals will have much higher errors and will be widely dispersed on the 2-

dimesional plane. This phenomenon is evident in the simulation results illustrated in 

Figures 4.1(a) and 4.1(b), where a number of location estimates are found to be close to 

the UN and several others, potentially from subsets of BN of which at least one BN is 

shadowed, are further away. Consequently, taking the summation of all the bivariate 

Gaussian pdfs result in superposition of the pdf that are close together (agree) while those 

pdfs that do not superimpose (disagree) can be ignored. This results in achieving spatial 

correlation of these multilaterations is obtained by a superimposition of a set of bivariate 

Gaussian distributions with centers located at the multilateration results (Fig. 4.1(b)). 

Summing these bivariate Gaussian distributions, shown in (Fig. 4.1(c)) and the final 

location estimate of the UN is determined by choosing the {X,Y} position of the peak of 

the resultant sum of pdfs. 

Design considerations of the spatial correlation mechanism include: 

1. Shape of the superposition pdf  
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The Gaussian pdf as shown in Fig. 4.1 is one of the most effective pdfs that can be used 

because of their effectiveness in capturing Gaussian noise. However, computing and 

adding Gaussian pdfs is computationally complex to implement, especially on resource 

constrained sensor motes. To reduce such computation complexity, simpler shapes can 

be used like rectangular or cylindrical pdfs as depicted in Figs. 4.2(b) and (c) 

respectively.  

 

2. Size of the footprint of the selected superposition pdf 

The size of the pdf superposed at any location estimate represents the error variation of 

the distance estimates used in calculating that location estimate. A very small CR size 

has adverse effect in the majority rule voting mechanism in that the individual pdfs will 

have minimal total overlap and as such may not effectively localize the UN while the 

converse is the case whereby a very large CR size may introduce erroneous location 

estimates which in turn will result in an erroneous final solution to the location of the 

UN. There has to be a tradeoff between reducing the number of erroneous location 

estimates in one hand and not having a reasonable total overlap of majority location 

estimates on the other. 

 

 

Figure 4.2: Shows several pdfs considered in the implementation of the spatial 

correlation mechanism: (a) a bivariate Gaussian pdf, (b) rectangular pdf [63] and (c) 

cylindrical pdf [64]. 

(a) (b) (c) 
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To further illustrate our proposed correlation-based sensor localization scheme, we have 

used 2D depictions of the correlation regions as depicted in Fig. 4.3(a) and (b). We will us 

consider a sensor localization scenario, as described earlier in this section, comprising a 

static sensor node, known as an UN, using a set of  𝐵 number of 

BNs: BN1, BN2, BN3, … . , BNB. These BNs are located at certain known reference points 

(𝑅1, 𝑅2, 𝑅3, … . , 𝑅𝐵), respectively in a wireless sensor region. The correlation-based 

localization approach takes random subsets of M beacons, performs multilateration to each 

of the subsets to achieve (𝐵
𝑀
) location estimates. Note that multilateration over a 2-

dimensional plane requires ≥ 3 . Then employing the spatial correlation concept, the 

correlation-based localization scheme uses the majority rule approach to agree on a single 

location of majority agreement as the final estimation location of the UN. The idea behind 

this proposed approach is that for those subsets of beacon signals that include beacon 

signals severely affected by shadowing, their location estimates would be spatially 

uncorrelated. On the other hand, those subsets of beacon signals obtained from 

unobstructed beacon signals, would have a high degree of spatial correlation and will be 

reasonably close to the true position of the UN. Combining these spatially correlated 

location estimates as described above, will greatly reduce the effect of beacon signals 

shadowing, with their resultant errors in sensor location estimates.  

Figure 4.3: Depictions of simple approaches of realizing spatial correlation of several 

location estimates. In (a), correlation regions are depicted as squares, and in (b),  

correlation regions are depicted as circles. The region of highest overlap, depicted as 

the area shaded in green in both cases, is the solution [38]. 

(a) (b) 
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Typical environments showing obstacles such as trees, metallic tanks, air-conditioning 

units etc. which severely affect beacon signals are shown in Fig. 4.4. To effectively model 

the radio channel propagation characteristics of these environments in simulations, we used 

the log normal shadowing model given in equation 1.1. As we pointed out earlier in the 

section, in our correlation-based localization approach, the radio channel parameters (n, σ) 

are determined offline with a small number of RSSI measurements. However, UNs can 

also determine these parameters dynamically and values used to perform localization in an 

online manner.  

 

4.2 Proposed Correlation Based Localization Scheme  

 

We will describe our proposed correlation-based localization scheme in three stages:                           

Stage 1: Data gathering 

 

As the UN receives beacon signals from BNs, it forms 𝑁 subsets of non-collinear BNs it 

receives signals from as calculated from the BNs’ locations which are imbedded in the 

received beacon messages. The unknown node stores the distance estimates computed from 

all the beacons from their corresponding RSSI measurements using the channel model 

described in equations 1.2 and 1.3 of section 1.2.2. These stored distances will be used in 

the next stage of the scheme. 

 

(a) (b) 

Figure 4.4: Typical examples of an obstructed WSN area (a) Wooded environment, (b) 

Outdoor environment with metallic obstacles [6]. 
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Stage 2: Multilaterations  

 

The UN uses a linear least square approach to calculate a location estimate using 

multilateration from each of the N subset of 𝑀 BNs (trilateration for 𝑀 = 3) formed in 

stage 1. The multilateration results in a total of 𝑁 location estimates. Each of the location 

estimates is obtained as �̂� = (𝐴𝑇𝐴)−1𝐴𝑇�̃�, where  

 

                         𝐴 =  [
2(𝑥1 − 𝑥2 )

⋮
2(𝑥1 − 𝑥𝑀)

  
  2(𝑦1 − 𝑦2)

⋮
  2(𝑦1 − 𝑦𝑀)

]                    (4.1) 

 

and 𝑏 ̃ is given by:  

                        [
𝑏 ̃1
⋮
𝑏 ̃𝑀

 ] =  [

(�̃�1
2
− �̃�𝑖

2
) − (𝑥1

2 − 𝑥𝑖
2) − (𝑦1

2 − 𝑦𝑖
2)

⋮

(�̃�1
2
− �̃�𝑀

2
) − (𝑥1

2 − 𝑥𝑀
2) − (𝑦1

2 − 𝑦𝑀
2)

  ]   (4.2) 

 

In equations 4.1 and 4.2, �̃�𝑖 represents the distance estimate from the UN to  BN𝑖 that is 

considered in the BN subset, and (𝑥𝑖 , 𝑦𝑖) represents the location of BN𝑖 .   

 

Stage 3: Correlation 

In the third and final stage of the scheme, the UN determines which of the 𝑁 location 

estimates computed in stage 2 have the highest agreement using the spatial correlation 

mechanism termed majority rule. The location estimates will be describe by �̂�𝑖  ∀ 𝑖 ∈

(1,… ,𝑁). To achieve spatial correlation, we consider correlation regions (CRs). A CR is 

the region around a location estimate whereby the center of the CR is centered at that 

location estimate. The size of a CR represents the margin of error of the individual location 

estimates. The larger the CR size, the larger the margin of error and vice versa. With the 

considered CRs with their centers located at each of the location estimates �̂�𝑖, we find the 

areas that have the highest overlap of CRs. We then consider this area of highest overlap 

as the solution to the localization problem.  
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To determine this location of highest agreement, we represent each individual position 

estimates �̂�𝑖 by a pdf of corresponding estimate centered at that position estimates as we 

have shown in Fig. 4.3. The dimension and shape of the pdf represent the error from each 

location estimate. Since the Gaussian pdf is complex in implementation on resource 

constrained sensor motes, we have used simpler shapes like squares or circles. We also 

shown in Fig. 4.3 the CR concept using circular and square CRs around four multilateration 

results achieved from four different subsets of BNs. The overlap of multiple such pdfs will 

clearly indicate the agreement of such position estimates. These pdfs are added and the 

peak point of the resultant sum we have assumed is the final location estimation of the UN. 

Fig. 4.5(a) shows the square pdf centered at of the individual position estimates and Fig 

4.5(b) shows the sum of the individual square pdfs. 

Figure 4.5: Shows (a) a pdf constructed with center at each of the candidate 

location estimates and (b) sum of the pdfs from a: signifying consensus in the 

sensor localization. 
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4.3.  Numerical Analysis 

 

To effectively describe and analyze the scenario, we first present a numerical analysis 

of the proposed scheme using a small number of BNs. We use the example network region 

broken up into L x L grid elements as shown in Fig. 4.6 [38]. We also consider a subset of 

BNs, 𝑆𝑖 = {𝐵𝑁𝑥, 𝐵𝑁𝑦, 𝐵𝑁𝑧} of BNs to be used in determining a candidate solution using 

the trilateration method. To obtain a solution to the trilateraion, we will denote the distance 

estimates from the UN located at ℎ to the 𝐵𝑁𝑠 as 𝑑𝑠, where 𝑆 ∈ {𝑥, 𝑦, 𝑧}. 

 

We will denote the trilateration operation as a mapping shown below: 

 

𝑇: { 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 } →  �̂�𝑙           (4.3) 

 

 

The mapping implies that each location estimate �̂�𝑙  is mapped to a grid element 𝑘 located 

at position (𝑥𝑖 , 𝑦𝑖), which contains the candidate location estimate �̂�𝑙. We then introduce 

the corresponding correlation region, 𝐶𝑅(𝑘) to the mapped position estimate by 

constructing a (2𝑞 + 1) × (2𝑞 + 1)  region comprising of grid elements who are 2𝑞 hop 

neighbors of the grid element centered at position (𝑥𝑖 , 𝑦𝑖). 

 

Figure 4.6: Illustration of Network area divided into grids, with four BNs and one UN. 

Location estimate {𝒙𝒊, 𝒚𝒊} is mapped to grid, {5, 7}. The CR shown here involves 
(𝟐𝒒 + 𝟏) × (𝟐𝒒 + 𝟏) grid elements where 𝒒 is the number of hop grid elements from the 

grid that contains the location estimate [38]. 

Location estimate, �̂�𝑙  

Type equation here.

Grid element (𝑥𝑖, 𝑦𝑖) containing 

the location estimate 𝑥𝑙 

CR comprising of (2𝑞 + 1) x (2𝑞 + 1) 
grid elements centered at (𝑥𝑖, 𝑦𝑖) 
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For this numerical analysis, we will consider four BNs with subsets of M=3 BNs in 

other to keep the computations simple. Using four BNs and choosing subsets of three BNs 

from the four BNs considered will yield four different subsets. We then aim to find the 

probability distributions 𝑃𝑖(𝑘), where 𝑖 ∈ {1,2,3,4} and, 

 

  𝑃𝑖(𝑘) = 𝑃𝑟𝑜𝑏[𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑆𝑖 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑘]         (4.4) 

 

Since the environment we are analysis is best modeled using lognormal fading model, we 

represent the distance estimate 𝑑𝑠 by a Gaussian random variable with 

pdf 𝑓𝑠(𝑑𝑠)~𝑁[�̅�𝑠, 𝜎], where �̅�𝑠 depicts the true value of 𝑑𝑠 and 𝜎 depicts the standard 

deviation of the lognormal fading. Each joint probability 𝑃𝑖(𝑘) can then be expressed as 

shown below: 

 

           𝑃𝑖(𝑘) =   ∭ 𝑓𝑥(𝑑𝑥)𝑓𝑦(𝑑𝑦)𝑓𝑧(𝑑𝑧)𝑑𝑑𝑥𝑑𝑑𝑦𝑑𝑑𝑧𝑑𝑥 𝑑𝑦 𝑑𝑧∈𝜒
       (4.5) 

 

where 𝜒 depicts the 3-dimensional space of the values of 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧  whose trilateration 

solution �̂�𝑙 maps to a grid element.  

 

To determine the final solution, we considered any grid element whereby trilateration 

results from all the four subsets agree on that specific grid element. Our decision to 

determine the final solution this way is borne out of the need to keep computations at a 

minimum as against using the region of maximum overlap of the four CRs. Having laid 

out the model for this numerical analysis, we then consider the result that determines that 

the final solution is located at element 𝑘  as:      

 

𝑃𝐿(𝑘) =  ∏ 𝑃𝑖(𝑘)
4
𝑖=1              (4.6) 

 

We performed numerical calculations, using the example scenario described below, to 

evaluate the average localization error of our correlation-based scheme in comparison with 

that obtained from multilateration [38]. Table 4.1 shows the parameters of the network 

region considered:    
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Table 4.1: Numerical performance analysis parameters 

Parameter description Values 

Network Region 50m x 50m 

Number of beacon nodes (or Anchors) 4 

Position of beacon nodes {0,0}, {10,40}, {30,0}, {40,30} 

Position of unknown node, h {15,20} 

 

We have considered 𝐿 = 50 which means that each grid is considered to be 1𝑚2 area. In 

other to compute equation 4.5 numerically, we discretized each of the distance estimates 

𝑑𝑥 into random variables with values {�̃�𝑥1, �̃�𝑥2, … . , �̃�𝑥𝑆} whose probabilities are derived 

from their Gaussian pdfs. Our numerical analysis is outlined in the flow chart in Fig. 4.7. 

 

 



58 

 

 

 

 

Figure 4.7: Flowchart of numerical analysis of the proposed scheme. 
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To calculate localization error for our proposed localization scheme, we simply use the 

Euclidean distance between the actual location of the UN and the grid element 𝑘. We show 

the results of the localization error distribution for varying values of the shadowing 

parameter in Fig. 4.8. The plots show that while the localization error increases as the 

values of 𝜎 increases, our localization scheme has much lower error on average compared 

to the multilateration. This is because while the multilateration uses distance estimates from 

all the BNs, our proposed localization scheme uses spatial correlation mechanism to 

deselect certain candidate location estimates. 

 

 

 

 

 

 

 

 

Figure 4.8 (a)-(e):  Distribution of localization error for correlation-based localization 

and multilateration approaches using varying values of σ. (f) Shows average 

localization error for the two approaches with varying σ [6]. 
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4.4. Simulation-based Performance Results 

 

We also evaluated the performance of our correlation-based localization scheme in an 

environment containing varying number of obstacles. These obstacles obstruct RF beacon 

signals and we have modeled the channel characteristics of this environment as shown in 

section 1.2.2 in the following way: 

 For unobstructed beacons, the RSSI measurements is modeled as in equation 1.2. 

 For the obstructed beacons, the RSSI measurements is modeled as in equation 1.3 

whereby further attenuation is added as a result of the shadowing introduced by the 

obstacle(s). 

 

Table 4.2: Correlation Based localization scheme: Simulation Parameters. 

Parameter description Values 

Network Region 40m x 40m 

Number of beacon nodes  10 

Position of unknown node {20,20} 

Number of obstructed beacon nodes 1, 2 and 3 

Line of sight (LOS) fading factor 1 dB 

Additional attenuation due to obstructions 4 dB 

Transmit Frequency 900 MHz 

Transmit Power 0 dBm 

Path Loss Exponent (n) 2.3 

 

 

4.4.1. Error performance: proposed scheme versus multilateration 

 

For the simulations, we used the network environment as depicted in Fig. 1.4 and 

modeled the channel using a log-normal shadowing model with a path loss exponent of 2.3 

and the standard deviation (σ) of the additional attenuation due to shadowing is assumed 

to range from 1 to 5 dB.  We used varying number of obstacles: 1, 2 and 3 in the simulations 

and the radio transmit power of the BNs are 0 dBm. A list of the simulation parameters 

used for our simulations is shown in Table 4.2. We have evaluated the schemes for 

scenarios where the network region contains 1 obstacle, 2 obstacles and 3 obstacles. We 
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compared our scheme’s performance with those of multilateration thereby showing the 

benefits of using our scheme instead of the typical multilateration method. Fig. 4.9(a)-(c) 

show the average localization error achieved using our proposed localization algorithm and 

that achieved from the multilateration algorithm which uses all the beacon signals together 

(linear least square estimate) for varying degree of noise. One can observe that our 

correlation-based localization algorithm minimizes localization errors especially when 

there are obstacles than in the multilateration method and this we have shown in separate 

line plots for scenario where there are one, two as well as three obstacles in the network 

area. This can be attributed to the fact that multilateration uses much more than three 

beacons signals, unlike in our correlation-based localization algorithm, to determine the 

UN’s location. 
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 Figure 4.9: Localization accuracy comparison: Multilateration vs Correlation based (corrReg) 

using added attenuation of 1-5dB, 10 beacon nodes and varying number of obstacles. 
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4.4.2. Effect of number of beacon nodes on performance results  

 

We have shown the localization performance improved for the correlation-based 

localization scheme over that of the multilateration. In the performance results shown in 

Fig. 4.9, the evaluation was done using ten beacon nodes or anchors. Using lower number 

of BNs in the multilateration will result in less accurate localization result. The reverse will 

be the case when higher number of BNs are used. The reason behind this is that the 

multilateration employs the linear least square approach and using higher number of 

beacon signals improves the UN location estimate. This assertion we have shown to be true 

in Fig. 4.10 with performance plots using varying number of obstacles present in the sensor 

network region. 

Improvement in localization accuracy as a result of increase in the number of BNs used 

comes with a cost in computation time. Fig. 4.11 shows how the number of BNs affects 

the algorithm’s computation time. In evaluating computation time, we have used the 

execution time of the algorithms using an Intel(R) Core(TM) i5-7200U @ 2.70GHz laptop 

system with 8 GB of RAM, 64-bit Operating system, x64-based processor. We evaluated 

the computation time for the localization algorithm for three different number of obstacles: 

1, 2 and 3 located in the sensor region. The channel propagation model is consistent with 

Figure 4.10: Effect of number of beacon nodes on Localization accuracy. 
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that used in the previous chapter and we used an additional attenuation (due to obstructions) 

of 5dB.  

 

Fig. 4.11 shows computation time for our correlation-based localization algorithm and 

it shows that as the number of BNs or anchors used in the simulation increases, the 

computation time increases as well. A tradeoff will have to be made between creating an 

algorithm that produces reasonably accurate results on one hand and one that is 

computationally efficient on the other.  

 

4.4.3.   Effect of correlation size on localization scheme performance 

The main mechanism of our proposed localization scheme is the spatial correlation 

concept which uses the correlation region mechanism to facilitate consensus or majority 

rule in all the candidate location estimates. As discussed in the previous subsequent 

sections in this chapter, our scheme considered using various shapes of correlation regions, 

summing them and then taking the peak of the resultant sum as the location of the UN. 

Figure 4.11: Computation time versus the number of beacon nodes used for localization. 
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Figure 4.12: Figures above show how correlation region size (CR-size): (a) 1 x 1 (b) 3 

x 3 and (c) 5 x 5, influences consensus in sensor localization 
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However, we have not introduced the effect of the size of these CRs can have on the 

following: the localization error as well as probability of localization success (the 

probability of localizing an UN). Before we present the effect of the CR size using 

simulations of an example network scenario, we will illustrate using Fig. 4.12 the need for 

carefully choosing the CR size used in the correlation region concept of our scheme.  

 

Fig. 4.13 below shows the effect of the CR size to the performance evaluation criteria. As 

discussed earlier in this section, a very small CR size has adverse effect in the majority rule 

voting mechanism in that the individual pdfs as shown in Fig. 4.12(a) will have minimal 

total overlap and as such may not effectively localize the UN. On the other hand, a very 

large CR size, as depicted in Fig. 4.12(c), would increase the probability of overlapping of 

CRs, but may introduce erroneous candidate location estimates which in turn will result in 

an erroneous final solution to the location of the UN. Fig. 4.12(b) is a tradeoff between the 

two CR sizes discussed and may offer advantages from these two. 

 

 

 

 

Figure. 4.13: Effect of correlation region size on Probability Of 

localization success and localization accuracy. 
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4.4.4.   Computation considerations 

 

Our proposed correlation-based localization scheme overcomes problems caused by 

obstructed signals in sensor location estimation by employing spatial correlation. As 

pointed out in our correlation-based localization scheme we considered that a bivariate 

Gaussian function is placed at every location estimate �̂�𝑖, which are then summed and the 

peak position of the sum of bivariate Gaussian functions is deemed to be the final location 

estimate of the UN.  

However, a sum of bivariate Gaussian functions is computationally expensive. To lower 

this complexity, we considered simpler functions that can be easily computed especially in 

sensor nodes that are resource constrained. Another criteria we considered is the size of the 

number of BNs in each subset of selected BNs. In our scheme, we chose M = 3 for the 

following reasons: 

i. To reduce the computational complexity of multilateration as this is critical 

especially for low-power sensor nodes with low processing capabilities.  

ii. Using M = 3 provides a large number of possible location estimates and this 

aids in achieving a good CR function summation density.  

 

4.4.5.   Performance Evaluation: Conclusion 

A summary of our findings from the simulations shows the following: our proposed 

localization scheme outperforms the multilateration method as the added attenuation fading 

factor increases. With little or no shadowing, the multilateration performs reasonably well 

but its performance dips as the attenuation increases. We have also shown that increasing 

the number of BNs (or robot positions) used in sensor localization helps in improving the 

localization accuracy of the proposed scheme. The reason for the improvement in 

performance with increased number of BNs is that an increase in the number of BNs 

introduces a large number of possible location estimates which in turn helps in achieving 

a good CR function summation density hence better location estimate(s).  

Another crucial finding that the correlation-based localization scheme simulations have 

revealed is the effect of the CR size to the localization accuracy of the scheme. Very small 
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CR size on one hand and very large CR size on the other hand have adverse effects on the 

UN location estimation. With CR size of 1x1, the probability of plurality of candidate 

location estimates being agreement is very minimal and may result in the UN(s) not been 

localized as shown in Fig. 4.13. As shown, as the CR size is increased to 3x3, 5x5 and 

above, the probability of this agreement increases. However, the localization error also 

increases. Fig. 4.13 also shows that correlation size 3x3 localizes the UN 80% of the time 

(as against 100% for 5x5 and 7x7), however 3x3 has the least localization error. So in 

essence, as the probability of localization success increases, localization error tends to 

increase as well. A tradeoff has to be made between increasing the probability of localizing 

an UN on one hand and keeping the localization error relatively low on the other. 
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CHAPTER 5: SENSOR LOCALIZATION USING OUTLIER DETECTION 

 

In chapter 4, we introduced a correlation-based localization scheme which applies 

spatial correlation to minimize the effect of shadowing in range based sensor node 

localization. In this chapter, we introduce a localization approach that applies clusterization 

of candidate location estimates to determine an agreement in the location estimation while 

removing the effects of shadowed beacon signals. In effect, the clusterization scheme helps 

in removing outliers from candidate location estimates: hence we term this approach as an 

outlier detection scheme. We consider two different clusterization algorithms for this 

approach and evaluate their performances.  

 

5.1. Approach for Sensor Localization using Outlier Detection 

 

There is a similarity between this set of schemes and our correlation-based localization 

discussed earlier in that they employ the spatial correlation concept on a large number of 

candidate location estimates. Some of these candidate location estimates are results of 

subsets of N number of BNs with one or more of the BNs’ signals being shadowed and 

thereby introducing error to the distance estimates. Like our underlying assumption in our 

research has clearly stated, those candidate location estimates resulting from unshadowed 

beacon signals will exhibit spatial correlation and be close to each other while those 

estimates resulting from shadowed beacon signals will be spatially uncorrelated and hence 

not be close to each other. The later location estimates, i.e. resulting from shadowed range 

estimates, we have termed “Outliers” and the main objective of these localization schemes 

is to effectively filter out these outliers by employing a clustering mechanism to reduce the 

effect of the aforementioned outliers in the final estimation of the UN location estimate. 

Clustering is a technique that identifies groups of data points that have well-defined 

similarities. It is heavily used in data science to gain valuable insights from large sample 

sets of data points, which is an important consideration for machine learning applications 

[51, 52, 53, 54, 55, 56].  

Numerous clustering algorithms have been developed to employ the 

grouping/clustering technique to effectively classify groups of objects based on defined or 

learned criteria.  
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Different types of clustering methods include:  

 

1. Partitioning clustering 

 

These are clustering techniques that divide a data set into k number of pre-defined 

groups. Various types of partitioning clustering methods exist, the most popular is 

the K-means clustering [51]. In K-means clustering algorithm, every cluster is 

represented by the center or mean of the cluster’s data points. A drawback of the 

K-means clustering technique is that it is sensitive to outlier data points. 

 

2. Hierarchical clustering 

 

In contrast to the Partitioning clustering method, the Hierarchical clustering does 

not require the number of clusters for the data sets to be defined apriori. The 

hierarchical clustering method results in a tree-based depiction of the objects and 

this is generally referred to as a dendrogram. There are two versions of the 

dendrograms namely proximity and threshold dendrograms. The proximity 

dendrogram retains information on the clusters they represent while the threshold 

dendrograms do not. A very popular hierarchical clustering algorithm is the Mean 

shift clustering algorithm [60].  

Mean shift clustering involves shifting a chosen kernel iteratively through the set 

of data points to regions of higher density until the system convergences. So, every 

shift of the Mean shift clustering kernel is defined by a Mean shift vector which 

always points in the direction of the maximum density. 

 

3. Density-based clustering 

 

In this method of clustering, clusters are differentiated from other clusters by their 

different densities. A cluster with a dense group of data points may be surrounded 

by other groups of low density data points.   

A very important Density-based clustering algorithm is the Density-Based Spatial 

Clustering and Application with Noise (DBSCAN) [55]. DBSCAN needs only a 

single input parameter and even helps in obtaining an appropriate value for the 



71 

 

parameter. It determines clusters with arbitrary shapes and is effective for various 

sizes of databases. 

 

4. Model-based clustering 

 

This clustering method considers the source of the data set to be from a distribution 

that is a mixture of multiple clusters and tries to recover the distribution model from 

that data set. This method employs a concept whereby every data point is assigned 

a probability or maximum likelihood of being a member of each cluster. Important 

work done by early researchers of model-based clustering is shown in [52, 53]. The 

K-means clustering is also a special case of the model-based clustering with all the 

distributions assumed to be Gaussians of equal variance. 

The drawbacks of the model-based clustering include: false assumption made that 

the data sets originates from particular probability distributions, slow execution 

time especially in large data sets and the requirement to specify basic models for 

mixture. 

 

5. Fuzzy clustering 

 

In the Fuzzy clustering technique, each data point belongs to more than one cluster. 

Every data point is assigned a probability of being an element in each of the clusters 

[57, 58, 59]. This is in contrast to the K-means or K-medoids clustering where every 

data point can belong to only a single cluster and this is referred to as hard or non-

fuzzy clustering. Fuzzy clustering on the other hand is referred to as soft clustering. 

The extent to which a data point belongs to a cluster is assigned a numerical value 

ranging from 0 to 1. A very popular fuzzy clustering algorithm is the fuzzy c-means 

(FCM) algorithm where the centroid of a cluster is computed as the mean of all data 

points and weighted by the degree to which they belong to the cluster. 

 

Our main criteria for choosing the clustering algorithms is not to classify data points 

but to identify a region in the network area where data points are dense. The Mean shift 

clustering as well as the Centroid clustering method meet this criteria. 
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5.2. Proposed Clustering Based Localization Schemes 

 

We will now introduce our pair of outlier detection localization schemes and the steps 

by which they achieve the filtering of outliers in other to effectively estimate the location 

of an UN. 

5.2.1. Centroid Method 

The first of the two outlier detection localization schemes is the Outlier Detection-

Centroid localization scheme herein called the OD_CTRD. We will describe this 

localization scheme using the example network scenario shown in Fig. 5.1. In this scenario, 

we have considered a 40m x 40m network area, eight BNs deployed in a circular area of 

20m radius and an UN. The network region also contains some obstacles which obstruct 

beacon signals transmitted from some BNs to the UN.   

 

 

From Fig. 5.1, the red triangle represents static BNs or can be used to represent locations 

where a mobile robot sends beacon signals. The blue circle is the true location of the UN. 

The purple circle represents obstacles in the network region. The red dots represent 

Figure 5.1: Illustration of the 40m x 40m Network area containing one UN, eight 

BNs (or anchors) and obstacles [39]. 
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candidate location estimates which are results of the individual multilaterations using 

subsets of BNs. And finally, the black plus sign represents the final estimated location of 

the UN.  

Beacon nodes 1 and 2 are obstructed by the obstacles as shown in the Fig 5.1 and beacon 

signals sent from these BNs to the UN will be shadowed. Consequently, those 

multilateration results calculated using distance estimates from beacon signals from any 

one or both of these obstructed BNs will be erroneous and spatially uncorrelated and will 

be widely dispersed. Conversely, those multilaterations that do not include distance 

estimates from beacon signals from either of these two obstructed BNs will yield more 

accurate and spatially correlated location estimates. These spatially correlated location 

estimates, though small in number, will be close to each other. Our goal is to employ an 

effective clustering mechanism to focus on those areas of high density and discard areas of 

lower density. The objective here is to find the location of the UN in the network region 

and we will now outline the approach of the schemes. The UN on receiving beacon signals 

from the BNs, obtains the RSSI of the signals and based on these, estimates its distance 

from the BNs it received signals from using a channel propagation model. This localization 

approach takes subsets of N beacons selected B beacons each time. Then multilateration is 

applied to each of these subsets using their respective estimated distances resulting in a 

total of (𝑁
𝐵
) location estimates. These location estimates, referred to here as candidate 

location estimates, are obtained using some shadowed beacon signals and others from 

unshadowed beacon signals. The scheme then applies a clustering mechanism to efficiently 

choose the most probable location in the network region where a majority of the candidate 

location estimates have a consensus on or are in agreement with. We have made the 

assumption that the RSSI of the beacon signals received from all the BNs at the UN 

experience lognormal fading. We have used the same channel propagation model described 

in section 1.2.2 with equations 1.1 to 1.3 whereby beacon signals from unobstructed BNs 

follow equation 1.2 and beacon signals from obstructed BNs follow equation 1.3 where 

they experience further shadowing.  
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To properly illustrate this scheme, we have shown trilateration results from all subsets 

of B, (B=3) BNs at the sensor nodes are depicted by the red dots in Fig. 5.2. The candidate 

location estimates are fed into a clustering mechanism which utilizes the spatial correlation 

of the location estimates to deselect outlier location estimates. The output of the clustering 

algorithm is considered to be the final location estimate of the UN and is obtained by 

choosing the centroid of the grid containing the highest number of location estimates. 

The network region shown in Fig. 5.2 is broken into a 5 x 5 grids. A grid element 

occupancy counter is initialized, i.e. every grid element initial occupancy count is set to 

zero. Then each of the candidate location estimates is mapped to the grid element where 

they fall into. We describe the mapping operation done here with the expression shown in 

equation 5.1.  

𝑇𝑖: { 𝑑1, 𝑑2, 𝑑3 } → < 𝑥, �̂� >𝑗  {
𝑖 ∈ (1, (𝑁

𝐵
))

𝑗 ∈ (1, 𝐿2)
                        (5.1) 

 

Figure 5.2: showing the OD_CTRD process. A 40 x 40 network region broken into 5 x 

5 grids. Red dots represent the mapped trilateration results and green box shows the grid 

with the highest number of mapped location estimates. The centroid of the grid box is 

assumed to be the final location of the UN. 
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This mapping means that every candidate location estimate resulting from the trilateration 

𝑇𝑖: { 𝑑1, 𝑑2, 𝑑3 }  is mapped to a grid element located at position < 𝑥, �̂� >𝑗. 

 

As the candidate locations estimates are mapped, a count of the number of location 

estimates contained in each grid is kept. On mapping all the candidate location estimates 

to grids, the grid element that contains the maximum number of mapped location estimates 

is chosen as the grid containing the location of the UN. The clustering algorithm outputs 

the grid ID of this selected grid and the centroid of the selected grid is considered as the 

final location estimate of the UN. However there may arise special cases whereby more 

than one grid has the same number of maximum mapped location estimates. In such special 

cases, further processing is done to select one grid as the chosen grid. One way of choosing 

this grid is to check amongst the selected grid elements and determine the degree of spread 

of the constituent candidate location estimates in each of the selected grids and the grid 

with the tightest spread is the winner and becomes the chosen grid. These special cases will 

not be explored further in this dissertation. The flowchart shown in Fig. 5.3 outlines the 

steps of the localization scheme described. In the next subsection, we will describe the 

other outlier detection localization scheme called Outlier Detection_Mean Shift Clustering. 
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Figure 5.3: Flowchart of the OD_CTRD Outlier detection localization scheme
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5.2.2. Mean Shift Clustering Method 

 

The Outlier Detection_Mean Shift Clustering (OD_MSC) is the second outlier 

detection localization scheme we have proposed. The candidate location estimates 

generation phase of the scheme is similar to that of the OD_CTRD. The unique part of the 

OD_MSC localization scheme is that the candidate location estimates generated are fed 

into the mean-shift clustering mechanism. 

Mean shift clustering is a non-parametric sliding-window-based algorithm that is used 

to find dense regions of data points and also used to locate the center points of each of these 

regions. The algorithm works by incrementally updating candidate data points for center 

points to be the mean data points within a chosen sliding-window. A post processing 

procedure is initiated in other to filter the candidate windows and this is done to eliminate 

duplicates or near duplicates and finally forming the final set of center points and group 

tuples. Mean shift clustering was proposed by Fukunaga, K. & Hostetler, L. in 1975 and 

later adapted by Cheng for use in image analysis. It is very popular in the computer vision 

research community and have been found to be beneficial in other disciplines as well. 

 

Mean shift is built on the concept of the Kernel Density Estimation (KDE) which is a 

method used to estimate the probability density function of a given set of data. A kernel is 

placed on each data point in the data set and the individual kernels are summed up to 

generate a new probability density function which may vary depending on the kernel 

bandwidth used. The Mean shift clustering process does not require that the number of 

clusters is specified prior as this is determined by the algorithm and the data being 

processed. Two of the popular kernel functions used in Mean shift clustering are the Flat 

or uniform kernel and the Gaussian [61]. 
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Fig. 5.4 shows an illustration of the Mean shift process. The first step is to represent the 

data set as data points as shown in the figure. The algorithm process starts at any chosen 

data point 𝑋𝑖, then finds the stationary points of the density function. The superscripts 

shown in Fig. 5.4 represent the Mean shift process iteration, the shaded dots represent the 

input data points and the black dots represent the successive centers of the windows. The 

dotted circles represent the density estimation windows.  

 

Advantages of the Mean shift clustering algorithm include: 

 Requires only one parameter, window size or bandwidth 

 It is robust to outliers 

 It is independent of the type of model used 

 Ability to find different number of modes 

Disadvantages of the Mean shift clustering algorithm include: 

 Result of the Mean shift cluster is dependent on the bandwidth and its selection is 

not trivial 

 Can be computationally expensive, O(n2)  

Figure 5.4: showing the Mean shift process [62]. 
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o This can be overcome by employing certain special steps like lowering the 

number of data points search without adversely affecting the output of the 

scheme. 

With the knowledge of the benefits of the Mean shift clustering and its success in the 

computer vision research community, we decided to introduce the concept to the sensor 

localization problem in other to filter out the outlier location estimates generated using 

erroneous distance estimates caused by shadowed beacon signals. Due to spatial correlation 

of candidate location estimates, the mean shift clustering mechanism systematically moves 

through these location estimates moving from regions of low density, i.e. low agreement 

by individual location estimates to regions of higher density, i.e. higher agreement. 

 

To illustrate the OD_MSC localization scheme, we will outline the implementation steps 

using the flowchart in Fig. 5.5: 
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Figure 5.5: Flowchart of the OD_MSC Outlier detection localization scheme
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5.3.  Performance results 

 

We present our simulation evaluation of the OD_CTRD and OD_MSC localization 

schemes. We considered the network area shown in Fig. 5.1. For the simulation, we have 

employed a channel propagation model as outlined in section 1.2.2 whereby a lognormal 

shadowing model comprising fading factor is used for LOS beacons signals and additional 

attenuation factor for obstructed or NLOS beacon signals. Just as the other localization 

schemes earlier discussed, we have evaluated this scheme for scenarios with 1 obstacle and 

multiple obstacles present in the network area.  

 

Table 5.1 shows the network parameters we have used in simulating the outlier detection 

localization schemes. Obstacles in the network region is modeled in the following manner. 

For LOS beacon signals, we used lognormal fading factor parameter 𝜎𝑓 = 1dB and for 

NLOS beacon signals, we have introduced an added attenuation factor due to shadowing 𝜎𝑠 

for which we have used varying values ranging from 1dB to 5dB. We evaluated the 

schemes using average localization error in meters and also evaluated the how the number 

of BNs affects the localization accuracy for the two outlier detection schemes in the 3- 

obstacle scenarios. 

 

Table 5.1: Outlier detection schemes: Simulation Parameters 

Parameter description Values 

Network Region 40m x 40m 

Number of grids 40 x 40 

Number of beacon nodes  8 

Position of unknown node {20,20} 

Number of obstructed beacon nodes 1, 2 and 3 

Line of sight (LOS) fading factor 𝝈𝒇 1 dB 

Additional attenuation due to obstructions 1dB - 5 dB 

Transmit Frequency 900 MHz 

Transmit Power 0 dBm 

Path Loss Exponent (n) 2.3 

Bandwidth (for OD_MSC) 5 
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5.3.1 Design considerations for the Outlier detection localization schemes 

For the OD_CTRD method, the following design considerations were taken: 

 Number of BNs in every BN subset – To have a reasonable number of location 

estimates to be used for the UN localization, we used  

 Size of network grids 

For the OD_MSC method, the following design considerations were taken: 

 The window-size or bandwidth - This is the only parameter required for the 

OD_MSC clusterization mechanism and our consideration of the size of window we 

selected for our evaluation was through a trial run of several window sizes: 1, 3, 5, 7 

and 9. Selection of a very small window-size results in increase in computation time as 

it will take the mechanism more time to loop through all location estimates (or data 

points) and using a very large window-size will result in degraded clustering. 

From the various window-sizes evaluated, window-size 5 gave the best result given the 

execution time. 

 

5.3.2. Localization Error performance compared with multilateration 

 

Fig. 5.6 shows the performance of the OD_CTRD and the OD_MSC compared with 

multilateration with varying added attenuation. Fig 5.5(a) was simulated for a network 

region that has one obstacle within it while Fig 5.5(b) and Fig 5.5(c) are two and three 

obstacles respectively. 

 

We can observe that for all 3 scenarios, the average localization for all schemes increase 

as the added attenuation increases. It is also evident from the plots that our pair of outlier 

detection schemes perform better than the multilateration scheme. 
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Figure 5.6: Localization accuracy comparison: Multilateration vs Outlier Detection 

Methods for 1, 2 or 3 obstacles. 
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5.3.3. Effect of number of beacon nodes on localization accuracy  

 

In this subsection, we show in Fig. 5.7 how the number of BNs used affects the 

effectiveness of the two outlier localization schemes: OD_CTRD (shown in Fig. 5.7a) and 

the OD_MSC (shown in Fig. 5.7b). We evaluated the outlier localization schemes using 6, 

8, 10 and 12 BNs. The plots show that as the number of BNs used in estimating the location 

of the UN increases, the localization error of the schemes decrease. This is true for both 

OD_CTRD and OD_MSC. The reason behind this is because with increase in the number 

of unique BNs or beacon positions, hence increased beacon signals, the number of 

candidate location estimates used in estimating the location of the UN increases, thereby 

improving the localization efficiency of the scheme. However, the improvement in 

localization accuracy comes with a cost in computation time. Fig. 5.8 shows how the 

number of BNs affects the localization algorithm’s computation time. We evaluated the 

computation time for OD_CTRD and OD_MSC algorithms. To evaluate computation time, 

we have used the execution time of the algorithms on an Intel(R) Core(TM) i5-7200U @ 

2.70GHz laptop system with 8 GB of RAM, 64-bit Operating system, x64-based processor. 

The channel propagation model is consistent with that used in the previous chapters and 

we used an additional attenuation (due to obstructions) of 5dB. 

Figure 5.7: Effect of the number of beacon nodes on Localization accuracy 

comparison. 

(a) (b) 
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Fig. 5.8(a) shows computation time for the OD_CTRD algorithm and one can observe 

that with increase in the number of BNs or anchors used in the simulation, the computation 

time increases as well. Same characteristic is exhibited for OD_MSC shown in Fig. 5.8(b). 

Also the two computation time plots show that OD_MSC is computationally more efficient 

than the OD_CTRD. We will reiterate that a tradeoff will have to be made between building 

an algorithm that produces reasonably accurate results on one hand and one that is 

computationally efficient.  

 

 

5.4.   Chapter Conclusion 

With the success of the mean shift clustering algorithm in the computer vision research 

community, we introduced that mechanism to our spatial correlation based sensor node 

localization scheme, an algorithm we termed Outlier detection_Mean Shift Clustering 

(OD_MSC) and the result has been shown to be very promising. The second outlier 

detection scheme we introduced is the Outlier detection_Centroid method (OD_CTRD) 

which has also produced comparable results to the OD_MSC. 

Figure 5.8: Computation Time versus number of beacon nodes used for, (a) 

OD_CTRD and (b) OD_MSC. 

 

  
(a) (b) 
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A summary of our findings from the simulations shows the following: the pair of outlier 

detection localization schemes: OD_CTRD and OD_MSC outperform the multilateration 

method as the added attenuation fading factor increases. We have also shown that 

increasing the number of BNs (or robot positions) used in sensor localization improves the 

localization performance of the proposed scheme. The reason for the improvement in 

performance of the localization schemes with increased number of BNs is that an increase 

in the number of BNs introduces a large number of possible location estimates to be used 

in the location estimation process which in turn helps in localizing the UN.  

In this and the previous chapters, we have explored and presented theoretical analysis 

and evaluated various localization schemes. In chapter 6, we will discuss and evaluate all 

the localization schemes we have discussed so far using experimental data from real life 

environments.  
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CHAPTER 6:  PERFORMANCE COMPARISON 

 

 

In this chapter, we present a performance comparison of all the various localization 

schemes we evaluated, from simulations as well as from experiments. The localization 

schemes we have evaluated are as follows: Multilateration, Range-Only SLAM 

(ROSLAM), Correlation-based (CorrReg), Outlier detection-Centroid (OD_CTRD) and 

Outlier detection-Mean Shift Clustering (OD_MSC) methods. 

 

6.1. Simulation Performance Evaluation  

 

For simulations, we implemented the localization schemes using MATLAB R2017a. 

We have used a common system model to evaluate all the five localization schemes.  We 

have presented these simulation parameters in tables shown in earlier chapters. However, 

a summary of the parameters is shown below: 

 We implemented the schemes assuming a 40m x 40m network area 

 10 beacon nodes (for all 4 localization schemes expect ROSLAM which uses one 

mobile BN transmitting at 10 different positions) 

 UN at position {20,20} 

 Varying number of obstacles (1, 2 and 3 obstacles) in the network area 

 LOS fading factor of 1dB 

 Additional attenuation (due to obstructions) of 4 dB 

 Transmit frequency of 900MHz 

 Radio transmit Power of 0dBm 

 Path loss exponent of 2.3 

 Results are averaged over a total of 10 independent trials.  

 

The network environment is depicted in Fig. 1.4 and the channel was modelled using a log-

normal shadowing model as described in section 1.2.2.  
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6.1.1. Simulation Results 

We described the system model used for simulations and will now present the results 

achieved with the aim of comparing the effectiveness of the five localization schemes 

discussed using our assumed model where a number of obstacles are present in the network 

area.  

 

The plot in Fig. 6.1 shows a comparison plot of all the five localization schemes 

evaluated using simulations. As shown, the corrReg, OD_CTRD and OD_MSC methods 

perform better than the multilateration and ROSLAM when added attenuation factor goes 

from 3dB and above. The reason that corrReg, OD_CTRD and OD_MSC perform 

significantly better, as we have observed, is that these three schemes unlike the 

multilateration and ROSLAM, employ systematic mechanisms to deselect erroneous 

distance estimates for localization.  

Another key reason why the ROSLAM did not perform well in these simulations, as we 

have pointed out earlier in chapter 3, is because the number of unique locations where the 

mobile BN transmits beacons is not sufficient to effectively localize the UN.  We have 

shown in chapter 3 that increasing the number of these unique robot or mobile BN steps 

improves ROSLAM localization performance, albeit the increase in computational time 

introduced. 

Figure 6.1: Localization accuracy comparison using varying added attenuation of 

1dB to 5dB 
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6.2 Experimental Performance Evaluation  

 

 

Next, we present experimental evaluations of the proposed correlation based and outlier 

based localization schemes using off-the-shelf wireless sensor nodes. We consider several 

different deployment environments, all of which are characterized with various shadowing 

obstructions. We obtain measurement data from each of these environments and apply 

them to the five localization schemes implemented in MATLAB. We will cover the 

experimental system model which includes the description of the locations where we 

collected the experimental data, the nature of the sensor nodes deployment, the number and 

types of sensor nodes used as well as the objective(s) of the experiments we have 

conducted. 

 

6.2.1 Experimental system model     

   

Prior to discussing the evaluation of the localization schemes, we will describe the 

locations where we collected measurement data. We collected measurement data to be used 

in evaluating our localization scheme as well as the other four localization schemes in three 

different physical locations: an open outdoor courtyard, an indoor location (LAB), and a 

wooded location, all of which are located on the campus of the University of North Carolina 

at Charlotte (UNCC). We also obtained measurement data from a fourth location at an off 

campus wooded area in Simpsonville South Carolina. For each of the testbeds evaluated, 

we took a significant number of RSSI measurements which we used to calculate the path 

loss exponent for the environment. Also we used Micaz motes [65] for each of the 

experimental testbeds and estimated locations were calculated offline on a laptop from data 

transmitted to a base station connected to the laptop. We will describe in detail, the type of 

motes used in a subsequent sub-section and Fig. 6.2 shows a Micaz mote. 

Figure 6.2: Shows a Micaz Mote with radio platform MPR2400 based on 

the Atmel ATmega128L [65]. 
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The environmental locations where we collected measurement data are outlined below: 

Figure 6.3:  (a) Outdoor WSN localization test bed (b) Indoor location and (c) 

Wooded location. [6] 
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Outdoor environment, UNC Charlotte 

 

We took measurement readings in an open air location behind the EPIC building at UNC 

Charlotte that contains metallic structures such as metallic tanks, air handling units, poles 

etc. as shown in Fig. 6.3(a). These obstacles obstruct RF beacon signals transmitted from 

BNs. We deployed twelve BNs (circled with yellow rings) and eight UNs (circled with red 

rings) in a 25𝑚 × 25𝑚 region. The path loss exponent obtained using the RSSI from 

received beacon signals was determined to be 3.15 in this location. We also show in Fig. 

6.8(a) the localization error results obtained using the correlation-based scheme and results 

obtained using multilateration method. The plot shows that the correlation-based scheme 

performs better than the multilateration method in an obstructed environment.  

 

Indoor environment, UNC Charlotte  

 

We also took measurement data in an indoor testbed located in the Embedded Systems 

laboratory in the Electrical and Computer Engineering department of University of North 

Carolina at Charlotte. The laboratory contained metallic cubicles, cabinets, robotic devices, 

computer systems, chairs as well as tables. These obstacles obstruct beacon signals 

transmitted from BNs to the UNs. We deployed twelve BNs and six UNs in a 25𝑚 × 5𝑚 

area within the laboratory. We also calculated, using measurement data taken from this 

environment, a Path loss exponent which came out to be 2.34. As expected, the Path loss 

exponent here was very low and is because of the effects of reflections on beacon signals 

due to the presence of cubicles, metallic file cabinets, chairs and other metallic objects in 

the laboratory. Fig. 6.8(b) shows the localization error results obtained using our 

correlation-based scheme as well as that from the multilateration approach. This plot also 

shows that the correlation-based scheme performs better than the multilateration method. 

 

Wooded environment, UNC Charlotte  

 

We set up the third experimental testbed at a wooded area located behind the EPIC 

building at the University of North Carolina at Charlotte. Fig. 6.3(c) shows the network 

area which contained trees, shrubs and has an undulating landscape. The trees and shrubs 

obstruct beacon signals transmitted from BNs to the UNs. We deployed twelve BNs and 
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four UNs in a 25𝑚 × 25𝑚  area. Using measurement data taken from this wooded area, 

we calculated a Path loss exponent of 3.23. Fig. 6.8(c) shows localization error results 

obtained using correlation-based scheme and results obtained using the multilateration 

method. From the plot, we can show that the correlation-based scheme outperforms the 

multilateration method.  

 

Wooded environment, Simpsonville, SC  

 

We also set up a fourth experimental testbed also in a wooded area but at an off-campus 

location in Simpsonville, South Carolina. This sensor network area, shown in Fig. 6.3(a) 

and (c), contains trees and shrubs which obstruct beacon signals from BNs to the UNs. 

Here, we deployed five UNs and one BN and the BN was moved around to eight or more 

different positions around the 20 × 20 𝑚2 area. From the RSSI measurements we took in 

this location, we calculated the path loss exponent of 2.3. We evaluated our correlation-

based localization scheme as well as the multilateration, ROSLAM, OD_CTRD and 

OD_MSC methods. In Fig. 6.9 we show the localization error results obtained using the 

correlation-based scheme and localization error results obtained using the other four 

localization schemes. From the plot, it also shows that the correlation-based scheme 

outperforms the other localization schemes. 

 

6.2.2. System description 

 

A description of the wireless sensor node system we have used in the experimental 

testbed is illustrated subsequent sub-sections. 

 

6.2.2.1. Hardware description 

 

In Table 6.1, we describe the hardware components we have used for the experiment. 

The components include 5 unknown nodes (UN), a beacon node (BN) which also serves 

as a base station (BS), a MIB510 interface board and finally a laptop computer. 
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Table 6.1: Hardware descriptions 

Hardware Description 

Unknown 

node  

Micaz Motes using IEEE 802.15.4 compliant RF radio platform 

MPR2400 based on the Atmel ATmega128L, that operate on 2.4 GHz 

ISM band 

Beacon node /  

Base Station  

Micaz Motes using IEEE 802.15.4 compliant RF radio platform 

MPR2400 based on the Atmel ATmega128L, that operate on 2.4 GHz 

ISM band  

MIB510 MIB510 Mote Interface Board 

Laptop 

computer 

Dell XPS L502X with Intel® Core(TM) i7-2670QM CPU @ 2.20 

GHz, 8 GB RAM.  

 

 

6.2.2.2. System Components 

 

A depiction of the experimental testbed system components is shown in Fig. 6.4 while 

Table 6.2 lists the hardware and their respective functions. 

 

 

 

 

Figure 6.4:  System schematic showing the individual components of the 

experimental testbed: Laptop, BN/BS, UN1 to UN5 and the MIB510 interface board 

that connects the BS to the laptop for data aggregation. 
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Table 6.2: System components and Functions. 

Hardware Function 

Unknown 

node  

Micaz Motes programmed to transmit beacon signals to the mobile 

BN. 

Beacon node  Micaz Motes programmed to receive beacon signals from UNs at 

different positions in the network area. 

Base Station  Same as the BN and connected to a Dell laptop using the MIB510 

interface board. 

Laptop 

computer 

BN/BS connects to the Dell XPS L502X laptop through a MIB510 

interface board and aggregates RSSI measurements received by the 

BN and feeds the measurement data to the localization algorithms. 

 

Figure 6.5: Wooded location in Simpsonville, SC. (a) Cross section of the wooded area 

showing trees and shrubs, (c) deployment area showing the stands on which the sensor 

motes: BNs and UNs are mounted on, (b) & (d) shows UN1 and UN3 mounted on top 

of stands to elevate the height of the deployed sensor nodes. 
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Beacon nodes (BN) and sensor motes that are not aware of their locations, i.e. unknown 

nodes (UNs) were all implemented using Micaz Motes manufactured by Memsic. These 

low-cost wireless sensors are equipped with IEEE 802.15.4 compliant RF radio platform 

MPR2400 based on the Atmel ATmega128L, which operate on 2.4 GHz ISM band and RF 

power set at 0dBm. The UNs were configured to transmit RF signals at intervals of 10 

seconds and the BN configured to receive and return RSSI value of the received signals. 

For aggregating of the sensor data onto a laptop, we used, as shown in Fig. 6.6, a Micaz 

Mote as base station connected to a Dell laptop using the MIB510 which provides a 

serial/USB interface for programming and data communications. 

 

We mounted the BN and UNs on top of wooden stands as shown in Fig. 6.5 (a) – (d) 

and secured with Velcro to avoid fall and damage to the motes. The Omnidirectional dipole 

antennas of all the sensor motes: BN and UNs alike, were placed in a vertical alignment to 

ensure consistent polarization of the antennas hence proper receipt of the signals by the 

UNs. Each of the UNs as we have stated earlier were configured to transmit beacon signals 

at intervals of 10 seconds. A significant amount of measurement data was collected and 

processed offline to first calculate the path loss exponent of the location and more 

importantly to estimate the location of the five UNs. 

 
 

Figure 6.6: Shows the MIB510 Mote Interface Board used in our experiments and 

a base station connected to it. 
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6.2.3. Experimental Results 

Having described the experimental testbed, we will discuss how the measurement data 

used in evaluation the localization schemes were collected. Then we will show using Fig. 

6.9 how the various localization schemes discussed in the course of this dissertation stack 

up to each other.  

 

6.2.3.1.  Measurements and data collection 

For the experimental testbeds shown in Fig. 6.3(a) – (c), we statically placed the BNs 

and UNs as specified in section 6.2. In Fig. 6.8(a) – (c), we show results of these testbeds 

evaluated for our proposed correlation-based localization scheme and the multilateration 

scheme. The plots shown here indicates that our correlation-based scheme performed better 

than the multilateration scheme for all UNs nodes and at all 3 testbeds evaluated. The 

reason behind the good performance of the correlation-based scheme in obstructed or 

shadowed environments is that whereas multilateration uses distance estimates from all 

BNs, whether they are obstructed or not, thereby introduces errors which adversely affects 

the UNs location estimate, our correlation-based methodically deselects those distance 

estimates calculated from obstructed BNs, thereby reducing the effects of obstructions in 

the network region. 

 

However, for the last off campus wooded area testbed, we used a different deployment 

approach. Here, we used a single BN and moved this BN to several different positions 

around the perimeter of a 20m x 20m wooded environment where the BN transmits beacon 

signals. Our main goal is to emulate the movement of a mobile robot around a network 

region. Fig. 6.7 illustrates a layout of the deployment area showing true locations of the 

deployed UNs, BN positions and trees that obstruct and hence attenuate beacon signals. 

The positions around the network region where the BN transmitted beacon signals are:  

 BN position 1: {5,0} 

 BN position 2: {0,15} 

 BN position 3: {20,5} 

 BN position 4: {20,15} 

 BN position 5: {15,20} 

 BN position 6: {5,20} 

 BN position 7: {0,15} 

 BN position 8: {0,5}.  
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For the UNs, we statically placed them at the following positions:  

 UN position 1: {5,5} 

 UN position 2: {10,10} 

 UN position 3: {15,5} 

 UN position 4: {15,15} 

 UN position 5: {5,15} 

Fig. 6.5 (a) and (c) show a cross section of the deployment of the sensor motes in the sensor 

area. Each of the five UNs had an ID tag ranging from 1 to 5 and these IDs matched the 

sensor node configured on the UN. Similarly the BNs were also labelled with ID tags, 

ranging from 1 to 8 corresponding to the ID configured on the nodes. The BN is a Micaz 

mote acting as a sink and connected to the laptop through a MIB510 interface board. The 

measurement data collection process starts with the BN at position 1 at {5,0} where it sends 

packets at intervals of 10 seconds. Each of the UNs may or may not receive the transmitted 

packets depending on the distance between the UN and the BN position as well as the 

presence of obstacles or lack thereof in the Line of sight between the UN and the BN. The 

process is repeated at BN positions 2 through 8.   

 

The data collected is aggregated and processed offline on the Dell laptop. Table 6.3 

shows average RSSI values received from the UNs at the mobile BN as it is moved from 

positions 1 through 8 in the network region. The path loss exponent of the testbed 

environment is calculated. In this case, the path loss exponent calculated was 2.3. The RSSI 

data collected is used to calculate the distance estimates of each of the UNs to each of the 

BN positions. The resulting data and path loss exponent are fed into each of the localization 

schemes for the final location estimate of the five UNs. Then for each localization schemes, 

we calculated the localization error 𝑒𝑖 using the Euclidean distance between the UNs’ 

estimated location estimates 𝑥�̂�𝑖  and their true location 𝑥𝑦𝑖  as shown in equation 6.1. 

                                                𝑒𝑖 = √(�̂�𝑖 − 𝑥𝑖)2 + (�̂�𝑖 − 𝑦𝑖)2     (6.1) 
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Table 6.3: Average RSSI values received by mobile beacon node from the unknown nodes.  

 Average RSSI values (dBm) 
 BN Pose  

1 

BN Pose 

2 

BN Pose 

3 

BN Pose 

4 

BN Pose 

5 

BN Pose 

6 

BN Pose 

7 

BN Pose 

8 

UN1 -73.23 -84.43 -76.40 -89.07 -87.90 -93.13 -81.30 -63.00 

UN2 -76.70 -84.43 -70.93 -84.27 -76.07 -74.20 -73.20 -77.63 

UN3 -73.87 -70.10 -66.83 -74.23 -88.63 -88.07 -78.87 -78.10 

UN4 -91.47 -76.67 -89.83 -67.53 -68.83 -72.57 -73.80 -90.37 

UN5 -75.67 -80.07 -70.30 -82.63 -74.13 -66.00 -59.77 -70.07 

 

Table 6.4: Error in estimated distances from the unknown nodes to the beacon node. 

 Distance Estimate Errors (m) 

 BN Pose 

1 

BN Pose 

2 

BN Pose 

3 

BN Pose 

4 

BN Pose 

5 

BN Pose 

6 

BN Pose 

7 

BN Pose 

8 

UN1 0.98 7.27 6.77 11.39 2.21 29.24 2.29 2.86 

UN2 2.70 7.27 6.43 6.97 3.22 4.59 5.22 1.87 

UN3 4.80 13.66 1.86 4.57 13.14 8.57 7.48 5.24 

UN4 19.41 6.55 20.57 1.63 1.16 5.58 8.67 15.49 

UN5 7.35 6.90 13.57 0.39 4.63 2.11 3.45 6.83 

 
 

6.2.3.2.  Experimental result plots 

 Fig.6.6 shows results of the evaluation of our correlation-based localization and the 

multilateration schemes. In Fig. 6.9 we show a comparison plot of all the five localization 

schemes explored. 

Figure 6.7: (a) Experimental testbed layout showing BNs as red triangles, UNs as blue 

circles and gray crosses as obstacles (trees), (b) and (c) show UN1 and UN4 

obstructed by cluster of trees respectively. 
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(a) 

(b) 

(c) 

Figure 6.8: Performance evaluation of Multilateration and correlation-based localization 

schemes for environments shown in Figure 6.3 (a) –(c) respectively using experimental 

data. 
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Results of the accuracy of the location estimates of the five UNs using the five evaluated 

localization schemes is compared as shown in Fig. 6.9. From the plots, one can observe 

that the correlation-based localization scheme performs better than the other four evaluated 

schemes. Ranking the localization schemes according to their total performance for all five 

UNs localized shows that the correlation-based scheme came out 1st, followed by the 

OD_MSC and then OD_CTRD, ROSLAM and Multilateration in that order.  

The plots show a very high localization error for UN1 (~22m) and UN4 (~25m) for the 

multilateration. Table 6.4 reveals very high errors in the estimated distances between the 

following UNs and the BN positions:  

 UN1 to BN position 4 (11.39m) and UN1 to BN position 6 (29.24m).  

 UN3 to BN position 2 (13.66m) and UN1 to BN position 5 (13.14m).   

 UN4 to BN position 1 (19.41m), UN4 to BN position 3 (20.57m) and UN4 to BN 

position 8 (15.49m).  

 UN5 to BN position 3 (13.57m). 

Multilateration performed poorly especially for UNs 1 and 4 because they were based on 

multiple reference distance estimates that had very high errors.  The high errors are due to 

Figure 6.9: Performance evaluation of all five localization schemes localizing 

five unknown nodes using experimental data. 
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added attenuation to the received beacon signals caused by the clusters of trees around UN1 

and UN4 as shown in Fig. 6.7(b) and (c) respectively. The result for UN3 had 

comparatively lower error since two of the reference distance estimates had high errors but 

not as high as those for UN1 and UN4. The reference distance error for UN5 was lower, 

resulting in a smaller error in multilateration. This clearly depicts the problems with 

multilateration utilizing distance estimates from all the received beacon signals, shadowed 

and non-shadowed alike, which was the motivation behind our research.  

The same can be said for ROSLAM that came in second from the bottom even though it 

uses the Kalman Gain to weight received measurement data and hence determine whether 

or not to give the measured data more influence in the location estimation process. Another 

reason ROSLAM did not perform as well can be attributed to the fact that there was not a 

significant number of unique locations from which the BN received signals. The top three 

localization schemes are the ones that employ spatial correlation. As was seen in the 

simulations shown in previous chapters, the experimental evaluation also proves that the 

schemes that employ spatial correlation mechanism are effective in deselecting those 

erroneous location estimates due to shadowing, hence produce better final location estimate 

for the UNs. 

 

6.3. Performance Evaluation: Conclusion 

In analyzing the performance plots from simulations, we have been able to show the 

effectiveness of the correlation-based localization and also the outlier detection schemes in 

reducing the effects of shadowing caused by obstacles in wireless sensor networks. We 

have shown this by comparing the simulations results of all five localization schemes. 

 

Also a summary of our findings from the experimental testbeds shows that the 

correlation-based localization scheme outperforms all the other evaluated localization 

schemes, namely: the Multilateration, ROSLAM, OD_CTRD and OD_MSC.  

With the evaluation of all five localization schemes, we have shown that the correlation-

based localization schemes is very effective in estimating the location of an UN even in an 

obstructed environment.  
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We have also shown that generally the three localization schemes that employ spatial 

correlation performed better than the two that do not. Our findings showed the 

effectiveness of the spatial correlation mechanism in deselecting shadowed location 

estimates or outliers and producing more accurate final location estimate of an unknown 

node.  
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

This research addressed practical and effective solutions for improving the localization 

accuracy of wireless sensor nodes using distance estimates from RSSI that are impacted by 

obstructions. RSSI is a no-cost method for obtaining distance estimates from a set of 

reference points or beacons, which is the primary reason behind its popularity for 

localization in WSNs. The typical challenge for using RSSI is reducing the effect of errors 

in distance estimates that are unavoidable in terrestrial radio propagation channels 

characterized by long-term fading. A significant amount of prior research has been reported 

to find effective solutions for tackling this problem. For instance, the conventional 

approach of multilateration successfully reduces reasonably small errors in distance 

estimates by using redundancy and minimizing the mean square error, the performance of 

which improves with increasing redundancy. However, localization error using these 

methods can be unacceptably high when there are physical obstructions in the WSN 

deployment area that cause an inordinate amount of errors in the corresponding distance 

estimates from RSSI. The corresponding outliers of distance estimates do more harm than 

good even when redundancy is available. The reason for this adverse effect can be 

attributed to the fact that multilateration uses distance estimates calculated from all beacon 

signals: obstructed and unobstructed, in the sensor localization process. This is the primary 

focus of this research. 

 

Intuition will give thought that if we develop a scheme which can identify and deselect 

those erroneous distance estimates caused by shadowing, the sensor location estimate will 

be more accurate. We proposed two approaches aimed at minimizing the effects of 

obstructed beacon signals to sensor node location estimation in WSN. Both approaches 

exploit the fact that in a typical WSN, not all beacon signal sources (beacon/anchor 

nodes/robots) are obstructed. The unobstructed beacon signals essentially confirm the true 

location estimate within an expected margin of error that is determined by the long-term 

fading characteristics. However, the unobstructed beacon signals, although not identifiable, 

essentially have no correspondence to the location estimate agreed upon by the 
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unobstructed beacons. We present approaches to systematically deselect the beacons that 

disagree with a subset of beacons that have a confirmed opinion.  

 

In our first proposed approach, instead of applying multilateration using beacon signals 

from all beacon nodes, we apply multilateration using beacon signals from multiple subsets 

of the beacon nodes. Results from these several multilaterations are combined in such a 

way that those position estimates that agree, within a given threshold, add up while those 

that do not agree are outliers and can be ignored. We developed mathematical models to 

analyze the benefit of our proposed approach. Performance evaluations obtained from 

theoretical formulation, simulations and experiments demonstrate the benefits of our 

correlation-based localization scheme over the multilateration method. 

 

Our second approach was based on outlier detection as applied in the field of data 

science. Specifically, we propose two outlier detection localization schemes named 

OD_CTRD and OD_MSC. We explored these two outlier detection schemes because they 

employ clustering mechanisms that aims to influence which location estimates that 

participate in the final estimation of the sensor node. Again performance evaluations we 

obtained from simulations and experiments demonstrate the benefits of both OD_CTRD 

and OD_MSC over the multilateration method. 

 

We also presented and evaluated ROSLAM using EKF, especially in the area of 

mapping. Our reason for exploring ROSLAM with EKF is because EKF uses a weighting 

mechanism called Kalman Gain in influencing how measured data influences the sensor 

location estimate. This Kalman gain function is similar to our correlation-region based 

weighting mechanism which we used to influence which location estimates are used in the 

final sensor location estimate. Performance evaluations obtained from simulations and 

experiments show that using a beacon signals from a small number mobile BN or robot 

positions does not perform as well as when you use beacon signals from a large number of 

robot positions. Our results demonstrate the benefits of ROSLAM over the multilateration 

method. 
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In summary, we presented an extensive set of approaches for localization in WSNs for 

effectively dealing with obstructions of beacons signals. This includes two proposed 

modifications to multilaterations and a popular approach using EKF. We present extensive 

performance evaluations of all five schemes discussed using simulations as well as 

experimental testbeds. Performance was evaluated from the perspective of localization 

errors as well as computational complexity/cost (computation time) of implementation. 

Our results show that the correlation-based localization scheme (corrReg) performs better 

than all the other four schemes, with the OD_MSC and OD_CTRD coming second and 

third respectively. The three proposed localization schemes performed better than the 

multilateration approach but with an increase in computation cost: corrReg and OD_MSC 

schemes having marginal increase in computation time. 

 

We will outline below: the main goal of this research, how we have met the goal and 

the contributions of our work to the WSN localization research community. 

 

Minimize the effects of shadowing caused by obstructions to beacon signals to sensor 

localization:  

 

Although several approaches exist, our proposed approaches are important due to the 

following: 
 

 We presented effective and inexpensive range-based localization approaches to 

minimize the effects of shadowing caused obstacles in a sensor network 

environment on sensor node localization. 

  Unlike most of the state of the art range-based localization approaches, our 

proposed schemes do not require extra (or specialized) hardware that raises the cost 

and/or size of the sensor nodes.  

 

Following the conclusions we have drawn from the work we have presented, further 

research in this area has been identified. Further work to be done include:  

 

 Further exploration of effective method(s) to reduce computational complexity of 

the OD_CTRD localization method. 
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 Explore using Particle Filter (PF) and the correlation region concept in localization 

sensor nodes in obstructed WSNs. Develop mathematical model to utilize 

correlation regions in calculating weights of particles and finally simulate the 

correlation region-based PF Localization Algorithms where the weights of the 

particles are calculated using correlation regions. 
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