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ABSTRACT

CONOR MITCHELL LIAM NODZAK. Functional analysis of structural variation
in the 2D and 3D human genome. (Under the direction of DR. XINGHUA MINDY

SHI)

The human genome consists of over 3 billion nucleotides that have an average

distance of 3.4 Angstroms between each base, which equates to over two meters of

DNA contained within the 125 µm3 volume diploid cell nuclei. The dense compaction

of chromatin by the supercoiling of DNA forms distinct architectural modules called

topologically associated domains (TADs), which keep protein-coding genes, noncoding

RNAs and epigenetic regulatory elements in close nuclear space. It has recently been

shown that these conserved chromatin structures may contribute to tissue-specific

gene expression through the encapsulation of genes and cis-regulatory elements, and

mutations that affect TADs can lead to developmental disorders and some forms of

cancer. At the population-level, genomic structural variation contributes more to

cumulative genetic difference than any other class of mutation, yet much remains to

be studied as to how structural variation affects TADs. Here, we study the func-

tional effects of structural variants (SVs) through the analysis of chromatin topology

and gene activity for three trio families sampled from genetically diverse popula-

tions from the Human Genome Structural Variation Consortium. We then leverage

clinically-relevant recurrent genomic rearrangements in acute lymphoblastic leukemia

and propose a machine learning approach to identify the rare Philadelphia-like sub-

type based on the gene activities within lymphoblastoid chromatin domains. This

analysis has found that TADs may improve our understanding of how SVs contribute

to diverse gene expression patterns in health and disease.
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CHAPTER 1: INTRODUCTION

The human genome can be varied in a number of different ways. Typically, a

scientific investigation of human genetic variation would catalogue single nucleotide

polymorphisms (SNPs), small insertions and deletions (INDELs), or larger structural

variants (SVs). Each class of mutation is defined by the nucleotide length of the

change, where a SNP contains a single base change and may result in a transitions

or transversions depending upon the nitrogenous bases involved. Transitions and

transversions may further be annotated as silent, frameshift, missense, or nonsense

alterations to the genic readout, each with different affects on downstream protein

product synthesis. The delineation of variant classes greater than one nucleotide base

is arbitrarily defined by the amount of nucleotide content modified, however, in com-

mon practice a standardized system is used based on size where an INDEL refers to

any insertion or deletion less than 50 bases long, and a structural variant describes

any genomic event greater in size. Although subjectively defined, these length-based

classifications have come to be widely accepted by researchers interested in human

genomic variation, moreover it has been shown that each class contributes variable

amounts of cumulative nucleotide-content changed between genomes when viewed

across global populations. Indeed, efforts by the 1000 Genomes, the Welcome Trust

Case-Control consortium and other groups have determined SNPs contribute about

0.3% cumulative difference, INDELs contribute 0.3%, while SVs contribute the largest

amount of cumulative locus-length difference with 0.8% of the genome covered [1, 2, 3].

This high level of variability caused by SVs suggests that they represent a natural

mutational phenomenon, which leads to evolutionary divergence across populations.

Furthermore, the amount of naturally occurring cumulative change attributable to
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SVs implicates such cellular generational acquisition of somatic events would lead to

modifications to the genome over time and be associated with aberrant gene expres-

sion phenotypes.

Mechanistically, there are common biological processes which lead to the generation

of intrachromosomal structural variants. These mutational modes include non-allelic

homologous recombination, nonhomologous end-joining, fork stalling and template

switching, and L1-mediated retrotransposition [4]. Additionally, microhomology-

mediated break-induced replication at breakpoint contributes rearrangements of chro-

mosomal segments [5]. Each modality represents an endogenous cellular process or

the activity of naturally occurring mobile elements. These may manifest as SVs by

creating unbalanced copy number variations (insertions, duplications, deletions) or as

balanced copy number neutral variants (translocations, inversions).

In order to study structural variation in the human genome, we currently rely upon

arrays and sequencing based methods to allow for their detection and subsequent

genotyping. Each approach carries with it a unique set of strengths and weaknesses

towards this end. For instance, SNP-Microarrays utilize the hybridization of sequenc-

ing reads to probes followed by computational signal detection in order to infer copy

number variation. These SNP-array platforms may suffer in terms of signal-to-noise

ratios, yet offer a cost efficient method to detect copy-number differences for large

sample cohorts in population genetics and biomedical research. With the advent of

modern high-throughput sequencing technologies, limitations remain for the detection

and genotyping of structural variants imposed by sequencing depth and read length

[6]. Sufficient depth is required to resolve deletions and duplications as compared to

the reference genome, while the short sequencing read length makes the detection of

SVs in repetitive regions of the genome especially cumbersome. The key advantages

for computational biologists using a sequencing-based approach comes in the form

of genomic localization and increased resolution by means of four main strategies
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including read-depth, paired-reads, split-reads and de-novo assembly. A read-depth

approach compares aligned reads to the region in order to detect anomalies in the

pile-ups of sequencing reads. A region with fewer than expected aligned reads may be

interpreted as a deletion, while a tandem duplication would be recognized by roughly

twice as many reads than either flanking region of the SV. Paired-read analysis detects

deletions and insertions when read pairs are aligned to the reference and compares

relative distances to the expected library insert size. Similarly, tandem duplication

appear as read pairs in an unexpected order, while inversions show unexpected orien-

tation and translocations appear as pairs mapped to different chromosomes. Another

method maps breakpoints by splitting reads when aligned to the reference and detect-

ing gaps in the reads or reference after alignment. Finally, de-novo assembly methods

do not use a reference genome and instead build contigs from novel insertion sequence

reads. The usefulness of each of these methods for each type of SV is inconsistent,

which has led to the development of algorithms, software, and experimental designs

that employ one or more strategies to allow for more robust SV detection.

The importance and significant interest in detecting SVs comes form the inherent

large contribution that they make to genomic variation at the population level, as

well as their long-recognized role in the development of human diseases, such as can-

cer. Recently, collaborators in the Human Genome Structural Variation Consortium

(HGSVC) have used a multi-platform approach that combines several different long-

read and short-read sequencing technologies to better resolve structural variation for

trios of families sampled by the 1000 Genomes Project. The goal of the HGSVC

is to produce an well-characterized and highly validated set of naturally occurring

SVs with methodological development to integrate these technologies and multiple

computational techniques for better detection and characterization. This work has

developed a multitude of algorithmic approaches to resolve consensus breakpoints, as

well as produced a wealth of multi-omics data in addition to the genotyped struc-
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tural variants. In order to better understand the phenotypic consequences of these

structural variant, we present here a functional analysis and contributions made to-

wards the goal of the HGSVC through the development of bioinformatic techniques

to detect phenotypic changes in gene function and regulation through the integration

of expression and epigenetic datasets. From the analysis of these data, we hope to

glean a deeper appreciation by which SVs affect chromatin architecture, regulatory

elements as well as the overall impact on the activity of protein-coding and long,

noncoding RNA genes.

In tumor oncology, structural variation plays a well-known role in the development

and progression of human cancers. Copy-number variants (CNVs), which are struc-

tural variants such as deletions and duplications that affect the number of gene copies

per-genome can lead to dosage or positional effects, and undergo either positive or

purifying selective pressures throughout evolutionary processes at the cellular and

species levels [7]. Through missteps in processes of replication and recombination,

these CNVs accumulate 103 times faster than single nucleotide variants (SNVs) and

rapidly change the structure and function of a cells genome, and promote oncogenesis

[8]. The relatively inexpensive array-based platforms have allowed for the clinical

detection and interpretation of CNVs involved in cancer predisposition syndromes

clinically-actionable targets [9]. In studies of pediatric B-cell leukemia, copy-number

alterations were found to be common and frequently recurrent at loci of genes involved

in key checkpoints of B-cell development, with cancer progression consequential to

the aberrant expression [10].

Similarly, we can leverage common recurrent sets of translocations to better under-

stand how SVs create subtype-specific expression patterns in pediatric patients diag-

nosed with precursor acute lymphoblastic leukemia (ALL). We begin with an analysis

of global expression patterns with a particular emphasis on the rare Philadelphia-like

(Ph-like) subtype of this disease, which is recognized as possessing a similar transcrip-
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tional profile to those patients with a reciprocal translocation between chromosome

9 and 22, Philadephia-chromosome positive (Ph(+)), yet the Ph-like samples lack

this particular SV. Given that this translocation produces a fusion protein kinase

with unregulated capacity to phosphorylate proteins in the JAK/STAT signalling

pathway and thus activate growth cascades, we hypothesize that the observed simi-

larities between these two subtypes may be driven by SV-mediated disruptions to the

chromatin architecture, which causes irregular activity of genes through epigenetic

modulation and disruption of gene regulatory elements. To evaluate this proposition,

CNVs will be detected for samples with ALL and subsequently evaluated for their

effects on topologically associated domains (TADs) and the coding and non-coding

genes localized in proximal nuclear space with cis-regulatory elements.



CHAPTER 2: BACKGROUND

Functional investigations into the human genome generally fall into two categories,

either genetics, which considers how the sequence of nucleotides contributes to an or-

ganism’s development, phenotype, and intra-species variation, or epigenetics, which

has an overall goal to study aspects of genomic regulation that do not entail a change

to the DNA sequence content. While molecular genetics has provided an immense

knowledgebase from which we better understand evolution and cellular function, epi-

genetics has filled some of the gaps as to how tissue-specific expression patterns are

possible given an organisms cells share the same genome. When we consider trans-

generational inheritance of allele silencing, such as imprinted loci, or induction of

gene activity by environmental stimuli, we can begin to appreciate the complex mi-

lieu of regulatory process that must be at work in the cellular epigenetics cycle, and

how endogenous and exogenous effects exhibit phenotypic changes. The field of epi-

genetics has a long scientific history linking genome structure and functional state,

stemming from the discovery of proteins that provide structural integrity to DNA

may also dictate the accessibility of transcriptional machinery in order to regulate

gene activity.

This relationship has been further characterized by the discovery of untranslated

RNA molecules that take part in various biochemical mechanisms as protein scaffolds

or exhibiting direct and indirect regulation of mRNA transcription and translation.

Moreover, studies have recently linked the three-dimensional chromatin architecture

to yet another layer of genomic regulation, which has showed how genes and regula-

tory elements tend to be proximally localized along chromosome domains and active

chromatin co-localizes in nuclear compartments. The connection between genome ac-
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tivity, structure, and noncoding RNAs provides a highly complex swathe of modes by

which eukaryotic genomes may be self-regulated to create a vast array of cell-types,

tissue-specific expression and even be altered to promote within-species diversity and

disease phenotypes. Here we attempt to contextualize the current state of epigenetic

gene regulation through descriptions of various DNA-binding proteins, the noncoding

genome, and detail the importance of structural variants, methods for their detection

and functional interpretation, as well as known cases in which structural variants alter

epigenetic factors to lead to developmental effects and cancer.

2.1 Epigenetics, Epigenomics and the non-Coding Genome

2.1.1 Introduction

In the early 1940s, prior to Oswald Avery’s discovery that DNA was the main

molecular mode of heredity, revolutionary geneticist Conrad Hal Waddington pub-

lished a theoretical description for the contemporary state of knowledge in the fields

of embryology and developmental biology that espoused the delineation of an organ-

ism’s genetic makeup into categories of organizers and genes [11, 12]. This funda-

mental representation of the genome led Waddington to develop the construct of the

epigenetic landscape, where cellular differentiation may be illustrated as a stream

of water flowing downward over chreodes, a neologism for a multitudinous set of

divergences in paths, towards a final resting position that represented the multiple

state-space transitions taken as an cell experiences environmental fluctuations and the

embryo progresses towards a developed organism with fully differentiated tissues [13].

Waddington elaborated on this pioneering visualization for development with descrip-

tions of cellular specification as individuation, and variable competence of inductive

molecular signals triggered by the environment that guide cellular specification down

common canalizations to minimize perturbations to the system [14]. Furthermore,

the epigenotype was presented as a model for canalization to explain observations

wherein simple mutation was not a sufficient causal explanation for observed evolu-
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tionary inheritance patterns, and further suggests that organismal development could

be described by a complex interaction between the environmental stimulation of ef-

fectors and genetic makeup [15, 16].

At the time, the burgeoning field of epigenetics was therefore a loosely defined

conceptual exercise surrounding resultant observable phenotypic variation with re-

spect to environmental interaction forces. Many interpretations of the principle focus

have been proposed, while the research community has been acquiescent towards an

emphasis on the mechanisms of genetic regulation that underlie tissue and develop-

mentally specific patterns of gene expression capable of being produced by cells that

share a single genome within an individual [17].

A modern formalization for epigenetics was published by Berger et al., which pro-

mulgated a set of chromatin centric mechanisms for the distinct molecular regulation

required for the transient production, maintenance and transmission of phenotypic

variation not consequent to DNA sequence mutation. As such, this work introduced

relevant terminology for biological pathways that act to produce these epigenetic ef-

fects as epigenators, initiators and maintainers of chromatin state. The jargon of

epigenetic analysis loosely reflects the philosophy of Waddington’s theoretical epige-

netic landscape, where an epigenator denotes any temporary environmental signal

or extracellular milieu that leads to activation of the initiator. For example, the

initiator may be a noncoding RNA or other DNA binding factor that is capable of

generating a shift in the chromatin state towards an epigenetic phenotype of either

repression or activation at specific genomic locations. The maintainer may then be a

histone acetyltransferase or methyltransferase enzyme that propagates the epigenetic

phenotype through time, with some maintenance through generations collectively re-

ferred to as epigenetic memory [18]. These standardized definitions for epigenetics

represents a rapprochement of the founding ideological principles with advanced tech-

nological understanding to succinctly capture the regulatory modules of genes that
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produce phenotypic variability.

With the advent of high-throughput sequencing technology, a plethora of epige-

netic datasets have been produced that probe the modifications to histones and ex-

pression of noncoding RNA and allow for a genome-wide perspective. As epigenomic

regulatory connections continue to be resolved, a growing set of initiators and main-

tainers have been identified by the consequence to the expression of genes during

development and disease. Large epigenetics consortiums such as the Encyclopedia of

DNA Elements (ENCODE) and the NIH’s Roadmap Epigenomics Project have pro-

duced expansive reference datasets for the epigenetics research community [19, 20].

Additionally, analyses by ENCODE research groups have provided dynamic repre-

sentations of chromatin state modulation over several distinct cell lines [21]. Taken

together, these resources may be utilized for the identification of regulatory modules

and subsequent comparative and functional analyses across a spectrum of tissues in

healthy and diseased samples.

2.1.2 Mechanistic Regulation of Chromatin State

Epigeneticists attempt to resolve how a single genome can create a vast array

of cellular phenotypes, each with different patterns of gene expression. Biological

processes of transgenerational inheritance must be at work other than random evo-

lutionary DNA sequence mutation and sites of polymorphic nucleotides. Scientific

inquiry at multiple levels of genome organization and structural composition led to

the discovery that chemical modification of specific amino acid residues on histone

octamer subunits can alter the activity and accessibility of chromosomal loci, referred

to as chromatin state, and lead to differences in expression of genes not caused by

DNA sequence mutation [17, 22]. Post-translational modifications may manifest in

the form of variable amounts of methyl, acetyl or phosphoryl functional groups added

to a collection of histone amino acid residues, which have been shown to be char-

acteristic of specific regulatory elements and chromatin state. A definitive list of
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several histone subunit chemical modifications has been published by the ENCODE

consortium that provides markers with known associations with heterochromatin, eu-

chromatin, bivalent chromatin and regulatory capacity of promoters and enhancers

[19].

Therefore, in order to maintain expression phenotypes across an organismal body

plan, somatic cellular division must be concomitant with a mechanism for the tissue-

specific epigenetic patterning and regulation of genes. In humans, Groth and col-

leagues were able to demonstrate chromatin state stability is mediated by the dynamic

interplay of histone recycling and synthesis at the head of the replication fork pro-

gression that combines parental transfer of bound, modified histones to the daughter

strand mediated by the Asf1 protein with associated deposition of newly translated

histones. [23]. The mechanism of chaperone guided histone recycling provides a

means for chromatin state propagation. For example, existing methylation of the

ninth lysine of histone subunit 3 (H3K9) deposited by the methyltransferase Suv39

H1 is associated with heterochromatin, which further allows for the binding of HP1,

which can in turn recruit the Suv39 H1 protein to maintain transgenerational cellular

inheritance of the closed-form chromatin state at specific regions of the genome [24].

Some of the most important protein complexes in epigenetic regulation and chro-

matin state modification are the Polycomb Group proteins, PcG, and the Trithorax

Group, trxG, which respectively mediate gene silencing and activation [25]. Polycomb

Group proteins are responsible for maintenance of the silent chromatin state marker,

trimethylation of histone 3 at lysine 27 (H3K27me3), throughout development by

methyltransferase activity [26]. PcG proteins are vital regulators of developmental

cell-fate specification along body axes through HOX genes transcriptional repression

[27]. The PcG complex is capable of histone modifications at specific chromatin sites

through interactions with various other proteins, and in some known cases the precise

localization is mediated by long noncoding RNA recruitment [28, 22]. This capability
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was shown by Zhang et al. who found that a Polycomb gene encodes an RNA binding

protein, which suggests there may be additional regulatory long noncoding RNAs that

need to be investigated [29]. Additional evidence was also shown whereby Polycomb

proteins preferentially bind a chromatin domain based on the presence of noncoding

RNA molecules [30]. Similarly, the active state of chromatin may be delineated by

the regional presence of histone 3 lysine 4 trimethylation (H3K4me3), which can be

induced and maintained by action of several proteins that constitute trxG complexes.

[31].

2.1.3 Gene Regulation in Nuclear Space

Classical genetics has long demonstrated the important role that location and dis-

tance may exert on observable phenotypic variation. Muller’s 1930 experimental

findings showed that variegated eye coloration in Drosophila could be attributed to

the position along a chromosome of induced mutations by X-ray exposure, the event

dubbed position effect variegation (PEV) [32]. Two decades later, Mclintock’s ground-

breaking discovery that transposable elements control variable kernel coloration in

maize through insertion at random locations about the genome was published, fur-

ther suggesting a critical regulatory role in the relative positions of genomic elements.

[33].

The importance of genomic position has continued to underlie contemporary re-

search discoveries in genetics. With the adoption of modern high-throughput se-

quencing techniques (DNAseq and RNAseq), chromatin immunoprecipitation assays

(ChIPseq) and chromatin conformation capture technologies (3C, 4C, Hi-C, etc.)

provide a more complete lens to study the complexity of human genetics. It is now

possible to obtain the sequence, determine the state of chromatin markers across

whole genomes, identify exact loci of mutations ranging from single-nucleotides to

large structural variants, and finally contextualize this information within the 3-

dimensional compartmentalization of the nucleus. A recent pan-cancer study of all
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samples from The Cancer Genome Atlas (TCGA: http://cancergenome.nih.gov/ ) in-

tegrated knowledge of cell-line specific chromatin topology with the sample-level copy

number variants in a computational framework to identify structural variants that sig-

nificantly altered gene expression [34, 35]. In this study, Weischenfeldt et al. were able

to show recurrent duplications and deletions at the boundaries of topologically associ-

ated domains capable of driving aberrant gene expression through enhancer hijacking

events. Enhancer hijacking refers to the phenomenon whereby genomic structural

variation disrupts the three-dimensional topology of the chromatin leading to altered

contact frequencies between loci. Cognate epigenetic regulators of specific genes, i.e.

enhancers, are no longer able to associate with the promoter region and a reduction in

expression may be observed. On the other hand, a gene may be over-expressed if the

altered chromatin topology introduces the possibility for increased contact frequency

between a non-cognate enhancer and the promoter.

2.1.4 Epigenetic Regulation of Hematopoiesis and Cancer

Hematopoiesis encompasses the combined developmental processes that lead to the

production of various cell-type constituents of blood, including those of the adaptive

and innate immune systems [36]. During embryonic development, a phase of definitive

hematopoiesis occurs in which a population of multipotent hematopoietic stem cells

(HSC) are ultimately established in the bone marrow that allow for the production of

all blood-cell lineages well into adulthood [37]. The overall process of HSC production

is regulated by complex time-dependent actions of several sets of adhesion molecules,

tyrosine kinase receptors, growth factors, and transcription factors [37]. The develop-

mental cascade activated during definitive hematopoiesis leads to the production of

both myeloid and lymphoid progenitor cells, which in turn may become erythrocytes,

mast cells, platelets, neutrophils, eosinophils, macrophages, basophils, and T-cells

and B-cells [38]. Throughout the cell-fate specification of these mature types, each

cell-type has a unique set of regulators with context-dependent expression patterns,
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leaving multiple causative avenues for hematological malignancies when disrupted.

[36]. For an example of this context dependency, the activation and up-regulation of

the PU.1 gene leads to the generation of macrophages, yet low levels of this gene will

lead to B-cell development [39]. In addition, it is well-established that the transcrip-

tion factors E2A, and Pax5 are critical to the production of B-cells and loss of potency,

as knock-down experiments confirmed that the progenitor may develop into a variety

of cell-types in the absence of the Pax5 transcription factor [40]. These transcrip-

tion factors allow for a precise regulation of progenitors leading to programming of

the multiple blood cell types, however there is mounting evidence showing epigenetic

regulation provides another level of regulation including the action of micro-RNAs

(miRNAs) to impede or drive certain cell types by targeting various transcription

factors [41]. The work by Xiao et al. and others confirmed stage-specific expression

patterns of miRNAs is involved in lymphocyte development and likely function where

loss of the miR-150 miRNA leads to an arrested B-cell stage during development and

expansion of immature cells, analogous to observations during leukemias [42, 43, 44].

Moreover, there is increasing evidence of the emerging role of long noncoding RNAs

(lncRNAs) in the epigenetic regulation of processes of hematopoiesis and malignan-

cies. These lncRNAs have been implicated in both epigenetic activation and chro-

matin silencing through a variety of mechanisms that drive aberrant expression of

proto-oncogenes and tumor suppressors [45]. For example, studies of chronic lympho-

cytic leukemia found that the lncRNA DLEU2 exhibits tumor suppressor activity

in B-cells through regulation the cell-cycle and induction of apoptosis, and is often

silenced in B-cell of patients with the disease [46]. Additionally, myeloproliferative

disorders appear to be induced by the suppression of the lncRNA Xist, leading to

modification of the chromatin state and activity of developmental genes and progres-

sion of blood cancers associated with X-chromosome dosage [47].

The lineage programming carried out during hematopoiesis is highly dependent



14

upon key transitions of histone marks, deemed the chromatin state dynamics. Chro-

matin immunoprecipitation experiments showed that over 17,000 enhancer elements

are established to promote lineage-specific transcription patterns characterized by a

complex network of transcription factors that control the overall chromatin state and

developmental progression [48]. Disruptions of epigenetic networks is a known causal

driver of several types of disease, especially cancers [49, 50]. Indeed, malignancies of

myeloid cells and leukocytes appear to show epigenetic changes to the DNA, both

cases exhibit global hypomethylation and increased expression of methyltransferases,

indicating a strong connection with blood malignancies and chromatin state [51].

Furthermore, the activity of recurrent genomic translocation of leukemias and fusion

gene products have been shown to specifically target and modify the chromatin at

loci of lineage-specific regulators of hematopoiesis through heterochromatinization as

well as decondensation by off-target acetyltranferase activity [52].

2.2 Long Noncoding RNAs

2.2.1 Introduction

Recently, the influence of the noncoding genome on gene expression, development,

phenotypic variation and disease susceptibility has been widely accepted and con-

tinues to be increasingly understood as a paramount genomic regulatory constituent

[53, 54, 55, 56]. One such area of noncoding gene regulation that has spurred much

interest is in the function of long noncoding RNAs, an transcribed constituent of the

noncoding portion of the human genome, which in and of itself comprises 98% of a

person’s DNA [57]. As of the most recently published release, there are 15,779 long

noncoding RNA (lncRNA) gene annotations recognized by the GENCODE Project on

the basis of being a noncoding transcript greater than 200 ribonucleotides in length

[58]. Furthermore, the biological significance of lncRNA functions are continually

discovered in almost every organ system in humans, and their disruption has been

implicated in the cellular development and several complex disorders including neu-
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rodegeneration, cardiovascular disease and cancers [59, 60, 61, 62].

2.2.2 Definition and classes of lncRNAs

The classes of lncRNA genes recognized by GENCODE comprise several distinct

annotation types, which are primarily based on the characterizations of their genomic

locus, orientation, relative relationship to protein coding counterparts, and presence

of computationally predicted open reading frame. The process of lncRNA discovery

and annotation is not simple, where a general workflow includes transcript assembly,

assessment of protein-coding potential, followed by subcellular localization studies

and further characterization of secondary structure [63]. The 5,501 antisense RNAs

represent a subclass of lncRNAs with a locus on the opposing strand of an annotated

protein coding gene. With 7,490 lncRNAs, the long interleaving noncoding RNAs

(lincRNAs) represent the largest type of lncRNA. The designation of lincRNA is

made for transcripts found in a conserved, intergenic regions. The lncRNA HELL-

PAR is over 200Kb in length and represents a class of large unspliced transcripts, a

macro lncRNA, unto itself. GENCODE annotations also include 3 lncRNAs as simply

non coding, where they are known to be in fact non-coding transcripts. The 3-prime

overlapping ncRNAs are a set of 32 experimentally supported noncoding transcripts

located within the 3-prime UTR of genes. There are 47 non-coding genes that are

located within protein coding gene promoters and transcribed in the opposing po-

larity, referred to as bidirectional promoter lncRNA. 556 lncRNAs are annotated as

processed transcripts, wherein they are genes that produce transcripts longer than

200 nucleotides and do not contain an open reading frame. Along the same strand as

protein coding genes the sense intronic annotation represent over 899 lncRNA genes

that are located exclusively within introns, while 183 sense overlapping genes contain

a protein coding gene in an intron of the lncRNA. Additionally, GENCODE recog-

nizes 1087 TEC lncRNAs, were the experimental validation for coding potential is

yet to be confirmed for the transcript, however there is the presence of a poly-A tail.
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2.2.3 lncRNAs as epigenetic regulators of gene expression

The quintessential examples of epigenetic gene regulation provide our current ex-

planation for genomic imprinting and human sex chromosome dosage compensation,

which are both lncRNA mediated processes. In biologically human females a process

of random X inactivation must occur early during development to achieve dosage

compensation. This process of nonspecific selection and silencing of an X chromo-

some is governed by the actions of two long noncoding transcripts in cis, which run

antisense to one another, Xist and Tsix. The expression of the human Xist gene

persists exclusively on the inactive X chromosome, is 17-kilobases of ribonucleotides

in length and remains relegated to the sub-nuclear location from where it is derived

[64]. This lncRNA was found to be conserved among the mammalian clade and was

further demonstrated to be required to achieve X chromosome inactivation [65]. Sub-

sequent investigation provided evidence that the additional monoallelic expression of

the lncRNA Tsix by the future active X chromosome also contributes to the initiation

of the process [66]. The opposing actions of the antisense lncRNAs guide chromatin

modifications whereby specific sequence domains of the Xist mediate association and

spreading across the inactive X chromosome [67]. More facets of Xist biology are

continually being discovered, and recent findings have shown that the lncRNA binds

81 different proteins throughout distinct phases of X-chromosome inactivation, and

the formation of a ribonucleoprotein complex with HnrnpK is required to recruit

Polycomb proteins for chromatin silencing [68].

For a subset of genes, a process of selective parent of origin expression, or imprint-

ing, results from the actions of lncRNAs that contribute to silencing of one of the

alleles. The lncRNA that functions to produce the effect is generally adjacent to a

cluster of known imprinted genes within the linear spatial domain [69]. In humans

and mice, the domain Kcnq1 Imprinting Control Region (Kcnq1 ICR) comprises four

protein coding genes and one antisense lncRNA, Kcnq1ot1. The imprinted effect of
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genes within the Kcnq1 ICR is controlled by the paternal expression of Kcnq1ot1,

which drives the H3K9me3 mark of heterochromatinization through an interaction

with the neighboring chromatin and occlusion to the perinucleolar region where re-

pressive PcG complexes are more abundantly concentrated [70, 71, 72]. Subsequent

deletion of specific Kcnq1ot1 domains led to loss of the lncRNA function and biallelic

expression was observed [71].

From these examples, we can see a clear relationship exists whereby normal allele-

specific expression events may be the direct results of epigenetic gene regulation by

lncRNA expression and association with chromatin. Disruptions of such events were

shown by experimentally induced knockouts of lncRNA Kcnq1ot1 domains and re-

quirement of Xist to achieve chromosomal silencing, which demonstrate the varied

functional significance of lncRNAs in gene regulation. Functional lncRNAs there-

fore play a critical role in normal human physiology and development, although the

specific action that they perform is unknown for the vast majority of annotations

available. Nuclear segregation of separate alleles is shown to be a process that under-

lies monoallelic expression and in some cases is the direct result of lncRNA expression

and function. These findings suggest that nuclear partitioning is a process at least

in part regulated by lncRNAs, and underscores the importance of spatial relation-

ships within the nucleus and gene expression as well as the need to unravel genomic

spatial complexity in human physiology and pathology [73]. More work is therefore

necessary to identify these relationships between lncRNAs and protein coding genes

within nuclear territories that drive cellular phenotypes. Further work is immediately

needed to explore how structural variation may disrupt the regulatory roles of lncR-

NAs in gene expression for normal and disease cases. The significance of such studies

is evident in the possibility to detect novel therapeutic biochemical pathways with

greater specificity as to the underlying epigenetic mechanisms.

Long noncoding RNAs are also capable of direct recruitment of histone modifying
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proteins to facilitate regulatory targeting of homeobox (HOX) genes. The highly con-

served HOX genes are responsible for development of an organisms anterior-posterior

axes that lead to cell-fate specification and are subject to tight coordination of expres-

sion. Rinn et al. were the first to conclusively demonstrate such a regulatory capacity

for the lncRNA HOTAIR located in the HOXC gene cluster, which acts in trans to

silence the expression of the HOXD gene cluster [28]. The HOTAIR lncRNA is re-

quired for the recruitment of Polycomb repressive complex 2 (PCR2) to the specific

targeting of the HOXD loci for histone 3 lysine-27 trimethylation (H3K27me3) by

influencing the SUZ12 subunit [28, 74]. Later, research demonstrated that increased

activity of HOTAIR in breast carcinoma was a predictor of invasiveness and metasta-

sis, and the recruitment of PRC2 by HOTAIR led to an epigentically reprogrammed

embryonic chromatin state in the cancer cell [75]. Furthermore, immunoprecipitation

experiments demonstrated distinct domains of the HOTAIR transcript were found to

serve as a scaffold that links the PRC2 and LSD1 repressive chromatin complexes to

modulate histone methylation of HOX genes [76]. It was also found that tissue-specific

noncoding isoforms of SRA act as a scaffold forming ribonucleoprotein complexes of

steroid nuclear receptors and function as transcriptional coactivators [77]. In doing

so, the SRA lncRNA component of these steroid receptors stimulates a variety of

physiological responses in the cell, including gene expression, proliferation and apop-

tosis [78]. These works were critical to frame our current understanding of lncRNA

functions as regulators of gene expression, which may act in cis or in trans to guide,

tether, and link chromatin modifying machinery to protein coding targets, and greatly

increase the complexity of learning the processes epigenetic regulation, which requires

further work be done for the majority of lncRNAs that remain poorly understood and

likely have context-specific functions.

As evidenced by the GENCODE Project annotations, long noncoding RNAs are of-

ten found antisense to protein coding genes [58]. Additionally, researchers that worked
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with the consortium for the Functional Annotation of the Mammalian Genome (FAN-

TOM) found that over 70% of the mammalian genome may contain sense-antisense

transcriptional units that are regulated in a tissue-specific reciprocal or congruent

manner [79]. In acute lymphoblastic leukemia, the tumor suppressor gene Cyclin

Dependent Kinase Inhibitor 2B, CDKN2B was shown to be repressed when there is

expression of the antisense lncRNA ANRIL, which contributes to heterochromatin

formation [80]. Antisense transcription is thought to contribute to methylation of

sense-promoters through lncRNA sequence homology and secondary structure medi-

ated recruitment of chromatin modifying machinery [69]. Moreover, single nucleotide

variants (SNVs) within the ANRIL locus are also known associated high-risk alleles

for atherosclerosis and homozygosity of which leads to reduced expression of the an-

tisense lncRNA and disrupts the development of arterial smooth muscle cells [81].

Put another way, disrupted lncRNA activity may increase the possibility for irreg-

ular vascularization, for which Tie-1, a key tyrosine kinase involved in angiogenesis

and proper endothelial cell development, was found to be under direct antagonistic

regulation by mRNA-lncRNA hybridization with its antisense-lncRNA counterpart

[82]

The mechanism by which these SNVs within the ANRIL locus led to a decreased

abundance of CDKN2B was later confirmed by expression analysis followed by a

variant of chromatin conformation capture (3C). This study examined lymphoblastoid

cell lines and demonstrated an inhibition of ANRIL when the cognate transcription

factor STAT1 was bound to the region, and an inability for STAT1 to bind for

cells harboring high risk alleles because of altered chromatin contacts, which led to

reduced DNA accessibility [83]. In some cases of the blood disorder α-Thalassemia, a

structural deletion was shown to cause abnormal positioning of a noncoding variant of

the LUC7L gene, and the antisense transcription of which leads to epigenetic silencing

of the sense globin gene HBA2, and therefore reduced bioavailability of alpha globin
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[84].

Furthermore, concordant expression of lncRNAs with pathway-specific mRNA has

been implicated in a wide array of human biological mechanisms relevant to complex

diseases. As a model of type 2 diabetes mellitus, mice fed a diet rich in fats re-

sulted in elevated expression of the lncRNA MEG3 through acetylation of the locus,

which led to FOXO1 upregulation causing hyperglycemia and insulin resistance in

primary hepatocytes [85]. Additionally, a pleiotropic role of MEG3 was discovered by

neuroscientists that studied expression subsequent to cerebral ischemia. Following a

stroke event, activity of the lncRNA was greatly increased in neurons and specifically

bind to the p53 protein DNA binding domain, stimulating cellular apoptosis [86]. A

focus on lncRNAs enriched in human cancers found that upregulated MEG3 selec-

tively targets and binds TGF-β genes through computationally predicted RNA-DNA

triplexes via GA-rich repeats in the lncRNA [87]. The formation of RNA-DNA triple

helices has been recognized for quite some time, and the computational prediction of

RNA-DNA triplexes may be performed using the Triplexator tool, which performs

sequence-based hydrogen bonding analysis of the RNA molecule for enriched fea-

tures that contribute to chromatin association for DNA targets and can be used to

predict lncRNA regulation [88, 89, 90]. Notably, a Nobel Prize was awarded to Black-

burn, Greider and Szostak in 2009 for the compendium of their research towards our

understanding of chromosomal telomeres and the function of the ribonucleoprotein

telomerase [91]. Their collective works in part determined that a catalytic lncRNA

TERRA was a required element for the telomerase enzyme to synthesize appropriate

DNA sequences at the chromosome terminals by containing the necessary nucleotide

template [92]. TERRA was later demonstrated to be localized at telomeric chro-

matin through G-quadruplex formation, a DNA-RNA hybridized structure composed

of looped, hydrogen bonded guanine tetrads, to provide a protective effect and re-

cruitment of enzymes for telomere maintenance [93, 94, 95].
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Long noncoding RNAs may play an important, yet incompletely understood, role in

a multitude of pathologies of unregulated cellular growth such as cancer [45]. Found

in the promoters of genes, so called promoter-lncRNA expression was found to be

tightly co-regulated with the associated protein coding genes and may be altered in

tumor cells. In one case, the promoter-lncRNA PANDA was shown to be induced by

p53 as part of cellular response pathway to exogenous DNA damage to actively binds

and sequester NF-YA, a transcription factor responsible for activation of apoptotic

genes [96]. Additionally, research has demonstrated promoter-lncRNA regulation of

a key enzyme that catalyzes folate metabolism as well as precursor DNA synthesis

[97]. Furthermore, glucocorticoid-mediated cellular growth arrest is modulated in

part by the action of the Gas5 lncRNA by serving as a glucocorticoid response ele-

ment decoy sequence, effectively titrating the glucocorticoid receptor away from its

DNA target sequences. Thus, lncRNAs may play a systematic role to actively inhibit

cellular death and drive key metabolic reactions, whereby the coordinated expres-

sion of lncRNAs with cell-cycle control genes suggests yet undiscovered instances of

their disruption among cancers [98]. Indeed, an integrated study of RNA expression,

chromatin state and chromatin contacts in T-cell acute lymphoblastic leukemia found

the oncogenic proliferative signaling of NOTCH1 specifically targets the lncRNA LU-

NAR1 with downstream effect of stimulation of expression at the insulin-like growth

factor 1 receptor locus, thereby providing a clear example of a lncRNA-mediated

process required for tumor growth and sustainability [99]. One key aspect that this

study lacks is an assessment of the variability of the lncRNAs among samples due to

genomic structural variation, which may modulate the process among samples of a

specific tumor type.

These findings elucidate one important facet of lncRNA biology as a regulator of

genomic stability, which when abrogated could lead to the development of cancer,

and lend credence to take a closer look at other lncRNAs that act in physiological
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pathways. The binding capacity of lncRNAs for important enzymes and implicated

roles in a wide variety of cellular functions demonstrate their biological significance,

which necessitates further investigation when impacted by large structural variation

and their disruption during complex genetic disorders. The literature on these topics

remains minimal compared to the quantity of lncRNAs discovered and the availability

of newer sequencing technologies to capture high-order relationships is ever expand-

ing making it now required that the field establish computational methods for their

integration to capture higher-order relationships of lncRNAs in genomics [91].

The binding capacity of lncRNA for other RNA molecules is also a method of ac-

tion by which lncRNA molecules may contribute to the regulation of gene expression.

Researchers have shown that in gall bladder carcinoma cell lines, the lncRNA TUG1

sequesters the micro RNA (miRNA) miR-300 by acting as a miRNA sponge, effec-

tively reducing the negative gene regulation of the miRNA and thereby indirectly

increasing the availability of the miRNA target mRNA, which promotes epithelial-

mesenchymal transition [100]. TUG1 has also been implicated in the pathology of

ischemic stoke and neuronal cell death by acting as a miRNA sponge of miR-9, a

regulator of pro-apoptosis gene mRNA [101].

2.2.4 Databases for Curated lncRNA Annotations

There are currently several databases that curate information on lncRNAs that

may be used for experimental and bioinformatics analyses. Table 2.1 describes the

available information on lncRNAs to use in these types of experiments. lncRNAtor

provides a comprehensive overview of over 34,000 human and model organism lncR-

NAs and includes experimentally validated interactions with proteins and expression

profiles from TCGA [102]. The LNCipedia database of 111,685 human lncRNAs with

computationally predictions of RNA-RNA interactions [103]. Similarly, the 113,513

lncRNAs collected in the lncRNome databank have computational predictions of their

potential to interact with proteins [104]. Finally, the lncRNAdb offers detailed, man-
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Table 2.1: Long noncoding RNA Databases

Information LNCipedia lncRNome lncRNAdb lncRNAtor

lncRNA
Count

111,685 113,513 287 34,605

Genomic
Loci

Y Y Y Y

Sequences Y Y Y N
Secondary
Structure

Y Y N N

Expression
Profile

N N Y Y

RNA-protein
Interactions

N Y (predicted) Y (literature) Y (experimental)

RNA-RNA
Interactions

Y (predicted) N Y (literature) N

ually curated information on 287 human lncRNAs with profiles from the human ex-

pression atlas, and interaction data from published literature [105].

2.2.5 Computational Tools for lncRNA Identification and Functional Prediction

The activity of known long noncoding RNAs can be identified by their expression

levels from lncRNA-specific probes on Affymetrix arrays [106]. In order to identify

known or novel lncRNAs from an RNAseq experiment, transcriptome assembly must

be performed using a computational tool such as Cufflinks [107]. If the goal is to

determine whether a new transcript is a lncRNA, one must then assess the coding

potential of the RNA using either ribosomal profiling experiments or the comparative

genomics method implemented by the PhyloCSF software [108]. Once low coding

potential is determined, the functional assessment begins with computational predic-

tion of the secondary structure, which give lncRNAs functional domains and binding

sequences to interact with RNA or proteins [109]. Several methods have been devel-

oped for secondary structure prediction, which can be a computationally expensive

task due to the inherent large size of lncRNAs. One such tool, lncRNAScan-SVM

implements a support vector machine, a type of machine learning based method, in
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order to predict the secondary structure, while CROSSalign is capable of nucleotide-

level resolution of lncRNA structure and implements a dynamic time warping method

to align variable lengths of sequences [110, 111]. This information can glean valuable

insight into subsequent prediction with other RNAs, DNA sequences, and proteins

in order to characterize the function of lncRNAs, which can partially be performed

using a tool such as lncTar [112].

2.3 Architectural Features of Human Chromatin

2.3.1 Introduction

Within the nucleus of a eukaryotic cell is a highly condensed form of DNA, which

for diploid humans amounts to nearly two meters of DNA confined in a 125 µm3 vol-

ume [113]. In order to achieve this level of compaction, the DNA is wrapped around

histone proteins with regular intervals to form nucleosomes which resemble a beads

on a string. This building block of chromatin can be regionally condensed by the an-

tagonistic actions of methylation or acetylation of the histone proteins leading to the

formation of heterochromatin and euchromatin. Furthermore, megabases of nucleo-

somes may form a helical structure and coil round itself in a process of supercoiling,

leading to ultimate chromosome structure [114]. Here, we will provide an overview

of the genomic architecture of human chromatin and present recent findings toward

our current understanding by which this topology contributes the regulation of gene

expression.

2.3.2 Overview of chromatin structure at multiple scales

The content of the human genome is a multilevel, highly organized DNA-protein

structure that enables enormous compaction of billions of DNA molecules into the

microscopic physical dimension of the nucleus within the cell. The double stranded

DNA helix first associates with a histone-3:histone-4 tetramer (H3-H4), followed by

two histone 2A and histone 2B (H2A-H2B) dimers to constitute the DNA nucleosome
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octamer core particle, which is the primary building block of chromatin [115]. This

process is propagated across the entire chromosome, which further self-associate to

create chromatin nucleofilaments that are comprised of closely linked nucleosomes.

At higher levels of genome assembly, the nucleofilaments form supercoiled chromatin

which in turns forms radial helices leading to the high density of whole chromosomes

within the nucleus.

Recent advances in biophysical technologies have made it possible to characterize

the organization of DNA with greater clarity and detail, and have led to a more

robust understanding of genome spatial relationships and regulation. Chromatin

conformation capture technology was the first kind of such methods and let to accurate

quantification of chromatin contacts frequencies for specific regions of DNA [116]. The

spatial organization of the genome determined from this method was found using a

formaldehyde cross-linkage of short, digested DNA fragments followed by quantitative

PCR to identify chromatin that occupies proximal space in the nucleus [116]. A

wide variety of 3C derivatives have since been proposed with wide and narrow focal

ranges, and Leiberman-Aiden et al. leveraged high-throughput sequencing in their

method, denoted Hi-C, which enables one to assess the chromatin dynamics and

long-range DNA interactions at the genome-wide level [117]. This study calculated

intrachromosomal contact frequencies and determined that chromatin had a higher

propensity to come in physical contact with certain regions within a compartment

and less frequently with loci outside the a compartment boundary. Moreover, they

found that the genome could be stratified by contact frequencies and inferred activity

levels into so-called A and B compartments, for open and closed chromatin state,

respectively [117]. Furthermore, Hi-C analyses confirmed a long-held concept from

the nineteenth century of chromosomal partitioning, and was found to be congruent

with florescence microscopy experiments that showed the nuclear DNA is organized

into distinct chromosome territories during interphase of the cell cycle [118].
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With a method to probe the organization of eukaryotic genomes, subsequent in-

vestigations have led to the discovery that stability of the organization is inversely

related to the reproducibility of chromosomal interactions. Genomic organization may

be described by the differential dynamics model of chromosomal connections. The

model describes multiple scales of stability and proposes that high-level chromosomal

territories and compartmentalization remains stable during a single cell cycle, yet are

unlikely to be maintained into future cycles, whereas lower-level chromatin loops and

topologically associated domains are highly dynamic through a cell cycle but highly

reproducible in future cycles [119]. Topologically associated domains (TADs) are

highly conserved organizational features of high contact frequency, linear stretches of

DNA generally less than one megabase in length, are comprised of smaller chromatin

loops and are therefore thought to be the basic structure of genome organization and

regulatory modules of the genes within them [120]. This level of genome organization

is stable through evolutionary time, where they have been shown through comparative

Hi-C to be highly conserved through syntenic regions, bolstering their significance in

gene expression and development [121]. Indeed, genome organization is tightly linked

to regulation of gene expression and cellular differentiation, where dynamic reorga-

nization of chromatin architecture takes place between embryonic stem cells and all

levels of development across tissues [122].

In terms of epigenetic gene regulation, the topologically associated domain may

contain within it several chromatin loops and therefore TADs may then be a conse-

quence of their formation. The loop structure is a layer of chromatin organization

where one or two genes and epigenetic elements such as enhancers may be confined

within adjoined, linearly distant CTCF protein bound DNA motifs that are main-

tained by a cohesin complex in a process called loop extrusion [123, 124]. Furthermore,

the orientation of CTCF binding motifs must have a convergent orientation in order

for loop formation to occur normally, suggesting a natural mechanism for disruption
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of chromatin looping through mutation or structural variation, albeit not all genes

are found within insulated neighborhoods [125]. These architectural proteins main-

tain accessibility of DNA and form self-contained epigenetic regulatory modules of

genes called insulated neighborhoods, which have been shown can be eliminated with

engineered loss of cohesin, and they are known to drive aberrant gene expression in

disease when the structure is disrupted [126, 127, 128].

2.3.3 The Three-Dimensional Genome and Human Disease

With the regulatory role of enhancer-promoter interactions mediated by chromatin

architecture being widely established, there is the need to learn more about how

disruptions in chromatin structure can contribute to disease etiology. There are now

several diseases that have been characterized using conformation capture technologies

that have demonstrated disruptions in topology leading to epigenetic rearrangements

and altered gene expression. Deletion of TAD boundaries could lead to the merging of

tow adjacent TADs and irregular enhancer-promoter contacts, while rearrangements

may lead to neo-TAD formation or dissociation of the gene with an enhancer [129].

In some cases of familial acute myelogenous leukemia, a translocation on chromosome

3 creates exactly such a situation where the enhancer located in the same TAD as

the normally active GATA2 gene is repositioned in a neo-TAD with the EVI1 gene,

increasing the myeloid cell stem-ness and driving oncogenesis [130]. T-Cell acute lym-

phoblastic leukemia was found to be enriched for microdeletions at insulated neigh-

borhood boundaries that contain common oncogenes, while mutagenic alteration at

these sites was sufficient to promote tumorigenesis in nonmalignant cells [126].

Multiple myeloma is a type of cancer of circulating plasma cells which exhibits

aneuploidy, or partial to whole chromosome duplication with high copy number vari-

ation. In a recent integrative analysis of copy number variants (CNV), GM12878

ChIP-seq data, gene expression, and Hi-C data, it was found that hematopoietic

lineage-specific cytokine signaling pathways were upregulated and driving immune
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system evasion due to altered TAD boundaries by CNVs [131]. This work has pro-

vided a clearer interpretation in the way aneuploidy may be further characterized by

architectural changes in the chromatin and directly influence the activity of onco-

genic gene expression. In another study of myeloma, a recurrent translocation found

in 20% of patients studied led to TAD disruption and the juxtaposition of important

lineage-specific enhancers of immunoglobulin genes, dubbed super-enhancers, near a

known proto-oncogene MYC [132].

The significance of chromatin architectural rearrangements extends to developmen-

tal and demyelinating disorders, which may also result from TAD-shuffling, neo-TAD

formation, as well as TAD fusions [133]. These types of structural changes repre-

sent a rearrangement due to translocations, a new domain formation, and a loss of

a boundary between adjacent, non-interacting TADs, respectively. The shortened

digits characteristic of Cooks syndrome result from a duplication intersecting a TAD

boundary, which leads to a new TAD containing the KCNJ2 and KCNJ16 genes

and the Sox9 enhancer-promoter interaction within the isolated domain [134]. As a

result of a TAD boundary deletion, a fused TAD causes multiple enhancers normally

active in the forebrain to be hijacked by the LMNB1, causing its overexpression and

concomitant downregulation of myelin sheath proteins sensitive to LMNB1, and the

progressive phenotype in adult-onset demyelinating leukodystrophy [135].

With the amount of available chromatin conformation currently data and con-

tinually being produced, we are now at the verge of discovering a more complete

understanding of how genomic structural variation contribute to human diseases. By

contextualizing genomic rearrangements and variants in terms of their impact on

the three-dimensional architecture of chromosomes, a clearer understanding may be

drawn wherein these variants may alter the spatial regulatory modules of genes and

promote the aberrant expression patterns that are characteristic of specific diseases.

It may also show how subtype-specific transcriptional patterns develop and contribute
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to varied responses to treatment protocols.

2.4 Structural Variation in the Human Genome

2.4.1 Introduction

Since the publication of the human genome draft sequence, it readily became appar-

ent there existed a great deal of variation, beginning with a focus on single nucleotide

polymorphisms [136]. With Chromosomal structural variation (SV) is thought to be

a naturally occurring phenomenon that contributes to the course of human evolution

and diversification, and in some cases may lead to disease[4]. Structural variation is

any change to the chromatin with arbitrary cut-off being larger than 50 basepairs, and

make a contribution of roughly 18 megabases difference between two human genomes,

more than any other type of variant [1]. Furthermore, the functional impact of SVs

on the expression of genes has been shown to be much greater than that of single

nucleotide variants (SNVs) [1, 137]. Due to their apparent importance in genomic

biology, it is no surprise that a large amount of research has been devoted to their

detection, how they originate, and their impact in natural variation and disease.

2.4.2 A History of Structural Variant Detection and Analysis

Multiple efforts have been make to tackle the difficult challenge of SV detection

and functional analysis, although a gold standard still remains to be developed as a

reference [6]. Kidd et al. developed a resource from 17 human genomes and resolved

the breakpoints of 1,054 SVs in order to determine the mechanism behind their forma-

tion, which was primarily limited by the inability of short-read sequencing technology

to capture all of the SV junctions [138]. Researchers working with the 1000 Genomes

Project made an effort to catalogue unbalanced genomic structural variants, or copy

number variants (CNVs), from population based sequencing and found over 28,000

deletions, insertion and duplications across 185 human genomes, with an average of

about 1000 per genome [2, 3]. The mutational mechanisms that generate SVs were
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then inferred by the breakpoints, and are described by four different mechanisms.

These mechanisms are nonhomologous end-joining (NHEJ), nonallelic homologous

recombination (NAHR), L1-mediated retrotransposition, and fork stalling and tem-

plate switching (FoSTeS) [7]. NHEJ occurs due to a failure in a DNA repair mech-

anism, NAHR is the result of a crossing over event between genomic regions that

share sequence homology, while FoSTeS occurs due to an error in replication and L1

retrotransposition denotes the activity of a biologically active retrotransposon [139].

Recent work by the Human Genome Structural Variation Consortium, a subgroup of

the 1000 Genomes Project, has created a haplotype-resolved map of structural vari-

ation in Han Chinese, Yoruban, and Puerto Rican trios [140]. This work has taken

advantage of multiple sequencing platforms and technologies, as well as a numerous

SV-detection algorithms in order to resolve these variants in great detail, and has

created a rich dataset to explore the functional consequence of SVs in healthy indi-

viduals. This orthogonal approach to structural variant detection has provided the

most comprehensive assessment to date, making use of both long-read and short-read

sequencing technology to resolve SVs with nucleotide resolution.

From these studies and more, we now fully appreciate the complexity of genomic

structural variation, which may come in the form of intrachromosomal variants and

interchromosomal translocations. Intrachromosomal variants occur along one chro-

mosome in coding and noncoding regions, and encompass deletions, duplications,

insertions, as well as inversions [4]. A translocation may be balanced or unbalanced,

wherein either both chromosomes or only one may exchange portions of their genetic

material and join through NHEJ, respectively. These translocations may result in

the abnormal concatenation of genetic sequences leading to fusion genes and fusion

gene protein products. Additionally, it has been noted that the repositioned DNA

induces transcriptional changes in the genes along exchanged chromosomes, likely due

to nuclear repositioning and changes in the global architecture of the chromatin [141].
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The functional impact of SVs in the human genome is varied across a severity

spectrum, and SVs have been implicated in a wide variety of disorders in every tissue.

Research has shown that CNVs may play a critical role in several neurocognitive

disorders, autism spectrum disorder and cognitive delay [139]. On the other side of

the spectrum, homozygous deletions of whole genes are known to naturally occur

from population based studies, indicating their relative dispensability based upon

their preponderance in normal variation in healthy samples [1]. One of the most

destructive types of structural variation, chromothripsis, occurs in cancer genomes

and is a catastrophic shattering of whole chromosomes [142]. As aforementioned, the

1000 Genomes Project and others have noted that structural variants contribute more

to genetic difference than any other type of variant in humans, with the cumulative

nucleotide content affected representing roughly 0.1% of the genome [3, 2, 139].

2.5 Acute Lymphoblastic Leukemia

2.5.1 Introduction

B-cell acute lymphoblastic leukemia is one of the most common diagnoses for blood

disorders among afflicted pediatric patients. In the precursor form, a cancer mani-

fests itself as a circulating population of cancerous innate-immune cells resulting from

clonal expansion of a B-lineage lymphoblasts. The clinical morphological character-

istics used at diagnosis include the small size of a relatively homogeneous pool of

lymphoblasts that exhibit elevated nucleocytoplasmic ratios and a visibly condensed

chromatin state [143].

Pre-B ALL represents a major success story in the treatment of cancer, with an

approximate median five-year survival rate among children diagnosed of over 80%

[144, 145]. The overall incidence of ALL, according to the National Cancer Insti-

tute’s Surveillance, Epidemiology, and End Results Program (SEER), is about 1.7

per 100,000 individuals for the U.S. population. The median age of onset is 15 with a

bimodal distribution around two and sixty years old, indicative that the 84,000 people
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afflicted each year are more frequently children [146]. The exact epidemiological root

of the leukemia remains poorly understood, as predisposition syndromes account for

less than 5% of all reported diagnoses and no conclusively demonstrated environmen-

tal cause or carcinogenic factor, while the greatest percentage of childhood ALL cases

are affected committed precursor B-cell hematopoietic lineages [147]. A reflection on

the current state of acute lymphoblastic leukemia treatment, which for many may

include a regiment of antileukemic agents like glucocorticoids, asparaginase, tyrosine

kinase inhibitors, chemotherapy or allogeneic stem cell transplantation, may lead one

to the conclusion that prognostic factors may direct clinical treatment [44]. However,

the post-genomic era has produced several insights of commonly occurring transloca-

tions and genomic rearrangements now recognized by the World Health Organization

that patients may be classified by and serve as the basis of treatment protocols [148].

Treatment for the 20% of patients who do not respond well to current medical care

may therefore require more translocation-group specific research to identify possible

regulatory pathways amenable to targeted therapies.

2.5.2 Characterization of cytogenetic subtypes

There are several subtypes of acute lymphoblastic leukemia that may be defined

based on recurrent translocations and large rearrangements with shared loci. While

these aberrations are often drivers of oncogenesis, it is important to note that they

have been found to exist in samples derived from healthy umbilical blood at much

higher frequency than the reported oncogenic incidence, suggesting they may not be

sufficient and a second genetic lesion is likely necessary for leukemogenesis to oc-

cur [149]. A genome-wide analysis of pediatric B-lymphocyte ALL patients found

that there is often an additional gain or loss at genes known to regulate B-lineage

development that act as cooperating mutations with recurrent translocations to pro-

mote leukemia [10]. Further work demonstrated somatic alterations were enriched in

genes that contribute to B-cell development, Janus kinases, the tp53 tumor suppres-
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sor pathway, as well as other cellular growth signaling cascades [150]. Additionally, a

study of DNA methylation found consistent epigenetic silencing via hypermethylation

at promoters of these genes, however this study did not make use of immunoprecip-

itation data to investigate the effects on chromatin state due to somatic mutations

[151, 152]. From these studies we can glean that B-cell specific areas of the genome

contribute to the pathogenic state of leukemia, however what lacks is a look into

the noncoding genome that may be disrupted, and how the chromatin topology is

affected by structural variation with respect to shared translocation groups. Further-

more, studies of HOX genes among leukemias showed they contribute to oncogenesis

through disturbed hematopoiesis, yet are not sufficient to discriminate between sub-

groups based on combined expression alone [153, 154]. These expression based studies

may be limited by this approach, while integration with epigenetic data types could

improve the discriminatory capacity based on capturing subtype-specific regulatory

relationships between the coding and noncoding genome.

Hematological cancers represent a class of disorders affecting cells of the blood and

lymphatic system [155]. The specific diagnosis and classification is first based upon the

cell lineage from which the hematopoietic stem cell has committed, and may further

be described by the maturation state of the cancerous cell [156]. Acute varieties of

leukemia denote that premature myelogenous or lymphoblast cells rapidly proliferate

and are released into circulation [157]. In contrast, patients suffering from chronic

leukemia often involve late-stage, mature blood cells, which reflects the generally

poorer prognosis of the acute variety [158]. Acute lymphoblastic leukemia may then

be categorized using a variety of commonly occurring genomic rearrangements and

ploidy levels [159]. The focus of this study will be B-cell Philadelphia chromosome-

like acute lymphoblastic leukemia, a rare form of hematological cancer specifically

involving the immature antigen-presenting cells of the adaptive immune system [160].

The name itself comes from the likeness in genetic expression to the well-characterized
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translocation event between the long arms of chromosome 9 and 22, first described

by Peter Nowell at the University of Pennsylvania in 1960 [161, 162].

2.5.3 Recurrent Chromosomal Rearrangements and Chromatin Topology in

Hematological Cancers

Recent integrative analyses of the three dimensional chromatin contacts in nuclear

space has led to the discovery of mechanisms of oncogenesis by which genomic re-

arrangements can reposition promoter/enhancer regulatory elements near oncogenes

leading to aberrant expression. With high throughput sequencing, chromatin im-

munoprecipitation assays and advanced chromatin conformation capture technolo-

gies, one may obtain the sequence, determine the chromatin state, identify exact loci

of mutations ranging from single nucleotides to large structural variants, and visu-

alize this information with respect to the 3-dimensional compaction of nuclear DNA

to identify networks of regulatory elements that act upon genes within proximal nu-

clear space and identify disturbances in cancer. Cell-line chromatin topology has

been shown to be useful as a reference to study sample-level copy number variation

(CNV) affects on topologically associated domains and the disrupted regulatory rela-

tionships within these regions normally in frequent physical contact with one another

[34]. These authors produced a computational framework to perform a expression

quantitative trait loci analysis of amplifications and deletions for all cancer samples

in The Cancer Genome Atlas (TCGA: http://cancergenome.nih.gov/ ) and found ex-

amples of enhancer hijacking events common to a variety of cancers [35]. Enhancer

hijacking refers to the phenomenon whereby genomic structural variation disrupts

the chromatin topology and the contact frequencies between loci. When a hijacking

event occurs, two possibilities may occur and lead to changes in gene expression. If

enhancers are no longer able to physically associate with promoters, there may be a

reduced expression of the normally regulated gene. Alternatively, a gene may be over-

expressed if the altered chromatin topology introduces the possibility for increased
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contact frequency between a non-cognate enhancer and promoter.

Groschel et al. concluded that patients with acute myeloid leukemia (AML) that

harbor a recurrent inversion along the long arm of chromosome 3 exhibit increased

stemness with EVI1 over-expression due to a repositioned strong enhancer forGATA2,

with its concomitant haploinsufficiency [130]. This finding was important as it pro-

vides direct link between a large, recurrent structural variant that not only rearranged

the epigenetic landscape when compared to ENCODE reference data, but was the

causal mechanism for unmitigated growth a subgroup of patients with AML. The im-

portance of this discovery underlies the notion of chromatin gene regulation as inher-

ently a structurally mediated process. T-cell acute lymphoblastic leukemia provides

another unique case where cancer results from structural variants in key positions

that define chromatin topology. Control of tissue-specific gene expression has been

suggested as a process where distal regulatory elements conform as stretches of DNA

in close three-dimensional space, with boundaries defined by bound CTCF proteins

and the cohesin complex, forming a structure denoted as an insulated neighborhood

or loop [126]. Recurrent microdeletions in T-cell ALL intersect these insulated neigh-

borhood boundaries, as defined by the Jurkat cell line as a reference, and where found

to be a direct activation mechanism for known T-cell oncogenes [163]. Currently there

is not an analogous study for acute leukemia of the B-cell lineage, and there has yet

to be any work taken as to subtype-specific differences of gene expression with respect

to the impact on chromatin topology.

2.5.4 Philadelphia-like Acute Lymphoblastic Leukemia

In acute lymphoblastic leukemia, a rare subtype was discovered that had poor

prognostic outcomes relative to other cytogentic subtypes. Found to occur in roughly

9-15% of cases, the Ph-like form of ALL was named for it’s global expression simi-

larity to Philadelphia chromosome positive (BCR-ABL1 fusion) cases, yet lacks the

hallmark kinase fusion gene product and associated phosphorylation activity [164].
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Patients lacking the BCR-ABL1 fusion gene are known to exhibit alterations to JAK1

and JAK2 signaling kinases, and be associated with poor outcome due to pathway

misregulation [165]. In fact, disruption of JAK signaling is a found in a numerous

forms of hematological cancers due to their pivotal roles in cytokine receptor signaling

[166]. Recently, some evidence exists that support the idea that JAK-STAT signaling

pathway is activated via various genomic mutations observed in Ph-like patients and

researchers have called for greater understanding of this activity and it’s use as a

actionable target for treatment [167]. Furthermore, the diagnosis of Ph-like leukemia

has been a challenging undertaking due to the lack of a characteristic recurrent mu-

tation. Thus, more research is needed to better understand this pathway activation

in the absence of a singular aberration, and it is likely to be a combination of both

mutational change and the disruption of key regulatory elements.



CHAPTER 3: FUNCTIONAL ANALYSIS OF HAPLOTYPE-RESOLVED

STRUCTURAL VARIANTS AMONG HEALTHY HUMAN TRIOS

3.1 Introduction

In recent years, large-scale population sequencing efforts such as the 1000 Genomes

Project have undoubtedly bestowed a surfeit of information from which to study the

functional effects of various mutations, an undertaking with an initial focus on single

nucleotide polymorphisms (SNPs) and has since expanded to provide a worldwide

reference set of human genomic variation [168, 169, 170]. As a subsidiary of the 1000

Genomes Project, the Human Genome Structural Variation Consortium (HGSVC)

took the helm to produce an analogous integrated set of structural variation on the

same 2,504 samples from 26 global populations [1]. The continued work of the HGSVC

research group has focused on creating a high resolution set of structural variation

through the use of a multitude of different technologies including long and short reads,

as well as jumping libraries from Pacbio, Illumina, 10X and others. Contemporary

sequencers have unique sets of strengths and weaknesses that when employed together

allow for a combined analysis of structural variants in a manner that is amenable to

multiple strategies for detection such as read depth, split read and de novo assembly.

With this strategy in mind, the HGSVC working group aimed to produce a set of

refined map of structural variation with advanced methods based on the integration

of multiple sequencing methods and computational SV detection algorithms.
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3.2 Methods

3.2.1 Significance of SVs that Engulf Protein Coding Genes

Initially, a preliminary assessment of the functional consequence of SVs on coding

genes was performed using a permutation enrichment analysis with the results shown

in Figure 3.2. Genomic regions were randomly permuted for the length of genes found

to be engulfed by duplications and inversions. Put another way, these genes were

hypothesized to be completely overlapped and thus affected spatially by SVs by either

complete duplication of their sequence of repositioned in an opposing orientation.

The intersections and permutations were performed using BEDtools and analysis of

expression of these genes was conducted on RPKM normalized RNAseq counts.

3.2.2 Allele Specific Expression of Protein Coding Genes

In order to do determine whether structural variants impacted allele-specific ex-

pression in healthy individuals, we developed an SV ASE analysis pipeline with the

following three steps for PB SVs and IL SVs, respectively, and shown in Figure 3.1.

First, we established a set of candidate SVs gene pairs by taking the intersection

of heterozygous SVs (het SVs) with previously reported SNP ASE genes. Second,

phased RNAseq reads were filtered following criteria whereby reads will have an NM

less than or equal to six, a base quality greater than or equal to ten, a mapping quality

score above twenty, and total read counts above eight. Read counts of the genes were

calculated for each sample’s two haplotypes using BEDtools multicov [171]. Third,

the significance of SV genes pairs was then obtained by applying a binomial test to

the read counts of the two haplotypes with multitest correction using FDR 5%.

3.2.3 Identification of Topologically Associated Domains

The task of annotating domains from Hi-C data was performed by calculating the

directionality index (DI) values for windows across contact matrix bins, the TAD

calling algorithm proposed by Dixon et al. [120]. Reference sets of cell-line domains
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Figure 3.1: Workflow to detect allele specific expression from SVs.
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were obtained from Feng Yue’s 3D-Genome Browser to serve as a comparative and

contrasting sets of domains, from which we can determine the changes to chromosomal

architecture associated with the genomic structural variants. For the unphased Hi-

C datasets, the bin size is simply the resolution of the quantile-normalized contact

matrices, which was 40kb for all nine Hi-C experiments of each sample. A window size

of ±2MB was used which was identical to that used in the reference Hi-C calculations

and corresponds to the binning resolution from which to ascertain directional bias.

The directionality index provides a quantitative measure of the contact bias for a

given bin with bins upstream and downstream within a given window, and has been

widely utilized in order to detect topologically associated chromatin domains. The

exact formula for the directionality index of any given bin is given in the supplemental

of the Dixon et al. paper as equation 1, where DI = (Rd−Ru)
|(Rd−Ru)| ∗ [ (Ru−µ)2

µ
+ (Rd−µ)2

µ
].

To calculate the degree of upstream or downstream bias for a given bin we need to

find three values for our DI formula. We need the number of reads within the window

mapped upstream, Ru, and downstream, Rd, and the average or null expectation

number of reads within the ±2MB, given as µ. The DI quantifications can then

be used as input observations to a hidden Markov model to calculate the posterior

probabilities of a given chromosomal region being a TAD. The TAD calling workflow

is the same software utilized by 3D-Genome Browser Hi-C reference dataset domain

calls and may be downloaded from the Ren lab website at UCSD [172].

3.2.4 Identification of TADs from Haplotype-Resolved Chromatin Contact Maps

The same dilution Hi-C dataset as mentioned previously was statistically phased

to each sample haplotype in order to detect allele-specificity in chromatin contacts

and boundaries. The aforementioned procedure of calculating the directionality index

was performed in order so as to detect upstream vs. downstream contact biases. Due

to the process of phasing of the reads, roughly 10% of the Hi-C sequencing coverage

remains, and thus we chose to follow a common practice in which we decreased the
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resolution to 100kb with the same window size of ±2MB in order to detect more

long-range interactions from shallower sequencing depth [173, 174].

3.2.5 Quantification of Chromatin Topology Dissimilarity

The determination of chromatin topology across multiple samples naturally leads

to the question of how to quantify the degree of similarity across samples. For this

study, we began with a simple determination of overlapping TAD boundaries. The

degree of sample-TAD overlap was calculated first using a reciprocal overlap cutoffs

of 50% and 75% and 100% using BEDtools [171]. In addition to simple pairwise tests

of shared chromatin interaction regions, the pairwise Jaccard distances between sam-

ples were calculated for each set of TADs on a per-chromosome basis. The Jaccard

distance is a measurement which represents the degree of dissimilarity between two

sets after taking the intersection over the union and can be given by the following

formula, dJ(D1, D2) = 1 − J(D1, D2) =
|D1∪D2|−|D1∩D2|

|D1∪D2| , for two sets of TAD coordi-

nates given as D1 and D2 [175, 176]. Recently, a bipartite matching method has been

proposed to provide a refined quantification for the distance or dissimilarities between

particular sets of chromosomal segments, called the BP score [177]. The BP score will

complement traditional distance metrics and allow for the discernment of noise from

true signal in the calculation of the DI, and accounts for the size of the changes to

chromatin. In addition, the bipartite matching method will allow for a more precise

look at specific loci with varying TAD structure and SVs. The BP score method

treats two sets of TADs (i.e. reference vs. sample, sample vs. sample) as a bipartite

graph where TADs from one set nodes of the first component and TADs in the second

set are nodes of the second component. The algorithm allows for each node to have

multiple edges and makes connections between nodes from the first component with

a node from the second component, if and only if, they have a non-empty intersec-

tion. The outcome of the bipartite graph describes how similar chromosomal TAD

partitioning is between Hi-C experiments and corresponds to a BP score of TAD set
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dissimilarity for each chromosome.

3.2.6 Mapping Structural Variation on Local Chromatin Topology

The integrated Illumina callset of structural variants was first filtered to identify

only unique SVs that had a heterozygous genotype. These were then mapped to

regions within TAD structures using BEDtools intersect where the SV was completely

within the bounds of the TAD [171].

3.2.7 Identification of Enhancers and Target Genes Within Chromatin Domains

The identification of epigenetic regulators of genes is a difficult task that often re-

lies upon evidence from enhancer-RNA coexpression or expression quantitative trait

loci (eQTL) studies powered by large sample sizes. In order to assess how gene regu-

lation may be modulated by structural variants within domain boundaries, enhancer

and target gene relationships were downloaded from the GeneHancer database via

the UCSC Genome Table Browser [178, 179]. The GeneHancer annotations provide

the unique ability to map enhancers with associated target genes within topological

boundaries using the genome arithmetic provided by the BEDtools suite intersect

and windows [171]. These intersections were made using TADs known to harbor

structural variants, thus allowing for the combined detection of epigenetic regulatory

impact of SVs on enhancers as well as possible allelic impact to chromatin topology

with phased Hi-C data. Gene target names of enhancers that were intersected by het-

erozygous SVs were assessed for an allelic imbalance in expression activity associated

with regulatory disruption.

3.2.8 Enhancer Mediated Allele-Specific Expression Analysis

These target gene loci were obtained using the R bioconductor biomaRt package

and downloaded from the ensembl database using the HGNC symbol as a query term

[180, 181]. Phased read counts were obtained for these loci in order to determine

allele specific expression events associated with disrupted enhancer functionality using
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BEDtoos Multicov. These haplotype specific read counts across whole gene regions

were then tested for significant difference using a binomial test with an FDR correction

level of 5%.

3.2.9 Annotation of lncRNAs and Expression Analysis

Paired end, strand specific RNA-seq data for each of nine samples from HGSV con-

sortium was sequenced on an Illumina Hiseq platform and mapped to the GRCh38

reference genome with the GSNAP aligner [182]. This data was downloaded from the

HGCV ftp website to the high-performance computing cluster at UNCC Department

of Bioinformatics and Genomics. PCR duplicates were removed and reads were fil-

tered on base quality and read quality scores using the Picard software from the Broad

Institute [183]. These filtered, stand-specific RNA-Seq reads were then used for tran-

scriptome assembly by Cufflinks against the GENCODE version 28 reference GTF

to quantify expression of long noncoding RNA transcripts for each sample [107, 58].

Unguided transcriptome assembly was also performed using Cufflinks on each sample,

and the resulting fasta files were then filtered for length to include only transcripts at

least 200 nucleotides long to be tested for coding potential. Transcripts that passed

filtering and with low coding potential were blasted against RNACentral database of

known lncRNAs to identify the presence of novel and known transcripts [184].

3.3 Results

Samples are given along the x-axis of each plot while vertical bars depict the aver-

age -log2(q-values) calculated from the group t-tests between the RPKM normalized

expression values of genes engulfed by structural variants and that of genes engulfed

by permuted chromosomal regions. The top left panel shows results for the integrated

Illumina deletions (IL-DELs) for all 9 individuals, while the top right panel gives the

results for PacBio deletions (PB-DELs) in trio daughters. The bottom left illustrates

the results from the analysis of the integrated Illumina duplications (IL-DUPs) for
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the 9 samples, and the bottom right panel shows results from the analysis of Illumina

inversions (IL-INVs) engulfed genes for the trio daughters. The position of the hori-

zontal line in each panel corresponds to the corrected significance threshold using the

Benjamini-Hochberg method to control the false discovery rate at 5%.

Our results of the allele specific expression analysis showed that the majority of

heterozygous SVs tested significantly affected the target gene expression in allele spe-

cific manner. Specifically, in the pacbio SV set, a total of 144 SVs (70 insertions and

73 deletions) showed ASE effect on 60 genes, out of the 199 heterozygous SVs inter-

sected with 78 SNP-ASE genes for NA19240; a total of 196 SVs (88 insertions and 108

deletions) showed ASE effect on 77 genes, out of the 220 heterozygous SVs intersected

with 85 SNP-ASE genes for HG00514; and a total of 219 SVs (141 insertions and 78

deletions) showed ASE effect on 89 genes, out of the 274 heterozygous SVs intersected

with 106 SNP ASE genes for HG00733. In the illumina SV set, 58 SVs (7 insertions,

48 deletions and 3 inversions) demonstrated ASE effect on 59 genes, out of the 83

heterozygous SVs intersected with 62 SNP ASE genes for HG00514; 60 SVs (10 inser-

tions, 45 deletions and 5 inversions) demonstrated ASE effect on 60 genes, out of the

108 heterozygous SVs intersected with 78 SNP ASE genes for HG00733; and 57 SVs

(6 insertions, 48 deletions and 3 inversions) demonstrated ASE effect on 44 genes, out

of the 79 heterozygous SVs intersected with 55 SNP ASE genes for NA19240. Our

SV ASE results prompted us to address whether or not the observed allelic imbalance

at SV ASE genes was attributable to a local haplotype along the gene region and an

example is shown in Figure 3.3. For this, we calculated the LD (R2 values) between

the SVs and SNPs with ASE effect on the same gene. We illustrate the haploblock

analysis to assess the allelic effect resulting from a heterozygous deletion belonging

to HG00514 within a transcription factor binding site on exon 5 of the ZNF717 gene.

We further ruled against a haploblock effect driving the allelic imbalance between the

haplotype from low R2 values for the sample’s variants and those from the 1000GP
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Figure 3.2: Permutation analysis of SVs that engulf protein coding genes.
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phase3 CHS population within a 100kb window of the gene, and showed that there

were few variants with high R2 within the exon as well.

Our investigation into chromatin structure for HGSVC trio samples began with an

overall assessment of filtered, unphased Hi-C reads. Chromatin contact maps were

constructed by our colleagues out of the Ren and Sebat labs at UCSD, which were nor-

malized to removed intrinsic biases using a Poisson regression method implemeneted

by HiCNorm [185]. It has been well documented that the chromatin structure appears

to be stable across chromosomes within cell and tissue-types, yet the degree to which

TADs may be identified is strongly dependent upon experimental conditions, such

as the limitation of sequencing read depth upon the resolution of contact detection,

as well as the detection algorithm [186]. In order to asses the ability of our method

to detect lymphoblastoid TADs in our trio populations, we began by comparing the

tad counts per-chromosome for each sample with that of the GM12878 reference cell

line at high (5kb) and low (100kb) resolutions from Rao et al. and Leiberman et

al., respectively [187, 117]. In order to avoid imposing any algorithmic bias in our

comparative analysis, all samples and reference TADs were identified using the direc-

tionality index (DI) method. Given that our sample contact maps were constructed at

40kb resolution, the expectation would be that the numerical counts of TADS would

fall somewhere between the high and low resolutions. Indeed, as depicted in Figure

3.4, we found this pattern to be true across all autosomes and the X chromosome.

Notably, the number of TADs identified per-chromosome appears to be consistent for

all samples, and within-family counts appear to be highly similar. From these prelim-

inary comparisons we felt confident that the TAD detection using the directionality

index calculation was consistent and appropriate for our sample data and would make

for informative downstream assessments of SVs on genomic structure and function.
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Figure 3.3: Haploblock analysis of loci surrounding ASE-SV.
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Figure 3.4: Quantitative comparison of HGSV TADs identified per chromosome with
GM12878 reference cell line at multiple resolutions.

Next, we continued our comparative analysis of chromatin structures beyond simple

count metrics in order to assess how well our data characterized genomic chromatin

structure given the lower resolution that our reference dataset. We quantified the

dissimilarity via the by the bipartite graph based approach to give BP scores. This

method assesses chromosome-level TAD partitioning distances between two samples

and provides scores between zero and one, where lower values indicate more similarity

in TAD sets, and thus overall chromatin structure. Our results found that across all

chromosomes and all samples, when comparing our sample TAD calls to those made

for GM12878 at 5kb resolution, the mean BP score was 0.354 with a variance of

0.000159, indicating a high degree of similarity in the regions of the chromosome

identified with similar contact frequency profiles.
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Figure 3.5: BP scores of whole genome TAD set distances compared with GM12878
TADs.

Additionally, pairwise-comparisons of TAD sets show a tight distribution of BP

scores that range from 0.09 to 0.305, with over 50% of scores clustered around 0.2,

indicating a high degree of TAD set similarity. This finding is inline with current un-

derstanding of TAD conservation and developmental changes and should be expected

for samples of the same cell type. As shown in Figure 3.6, the violin plots show

the distributions of pairwise BP scores per chromosome for each contrast between

daughter sof each trio. We can clearly show that all of the trios have similar genomic

TAD calls, while each contrast has a unique distribution of scores indicated by the

density of the violin plots. The pairwise assessment of the Yoruban trio TADs with

the Han Chinese shows a tight similarity profile, with a range of 0.15 to 0.25. The

Puerto Rican sample is representative of a more admixed population than either of

the Han Chinese or Yoruban, and displays somewhat wider tails in the plot which

would indicate regions of greater distance in the overall chromatin topology. The
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greatest amount of distance between the populations was for the TADs called along

the gene dense chromosome 11, between the Han Chinese and Puerto Rican samples,

which may indicate a greater amount of topological diversity between these samples,

yet the mechanism behind this observation remains only speculative.

Figure 3.6: Pairwise assessment of trio TAD set distances.
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Figure 3.7: BP scores of whole genome TAD set distances among haplotypes using
phased Hi-C.

The same analysis segmentation set analysis was applied to statistically phased Hi-

C reads. The phasing process greatly reduced the number of Hi-C sequencing reads,

and thus left for a difficult process of detecting TAD boundaries at anything other

than a poor resolution. The is to say, roughly 10% of reads remain in the resulting

bam files as compared to the unphased data. The phased Hi-C bam files are limited

in their ability to detect a majority of the chromatin structure due to the decrease

in resolution. For instance, due to the reduction in Hi-C reads contacts must be

inferred with a decreased resolution of 100kb to boost the signal to detect long range

contacts. A comparison of the TAD sets between each haplotype can be seen in Figure

3.7 with the similarity for each sample’s chromosome partitioning is given by a BP

score. One noteworthy exception is sample NA19238, for which BP scores could not

be reliably calculated, likely resulting form the reduced ability to detect non-empty

overlaps between the haplotypes given the low resolution of the initial experiment
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and reduction in Hi-C reads due to statistical phasing. The remaining samples show

a similar distribution to that of the unphased data compared to the high-resolution

GM12878 reference cell line, which would indicate an analogous ability to utilize

phased TADs for downstream analysis. Additionally, the increase the dissimilarity

between the haplotype-specific TAD sets may be indicative of possible allele-specific

chromatin domain structures resulting from SVs. Overall the mean BP score across

chromosomes for all samples was 0.512, with a variance of 0.038. Given that the

bipartite graph approach is able to tease our some the subtle noise between the sample

haplotypes, these statistics indicate the likely presence of distinct allelic chromatin

structures, with the known caveat of poor resolution limiting the precise boundary

delineation. Therefore the allelic TAD structures may provide a glimpse into more

pronounced differences in the chromatin, while a fine-tuned approach would benefit

greatly from increased sequencing depth to boost genomic coverage after phasing.

3.3.1 Functional Analysis of SVs intersecting TADs

We assess the distribution of SVs across chromatin domains we aimed to find how

many of the SVs were located within the boundaries of domains. By mapping the

heterozygous SVs in this manner we identified that a majority of TADs harbor struc-

tural variants of various types, and and furthermore that most SVs tested were lo-

cated within these boundaries for these samples, which is suggestive of the overall

resilience of chromatin architecture and reflects the known detrimental regulatory

effects of neo-TAD formation or TAD fusion events. Moreover, there were more dele-

tions found within TAD boundaries than insertions or duplications, which may simply

be a reflection that the SV detection algorithms more easily map these variants. The

counts of IL-SVs per sample can be found in table 3.1, and shows a similar pattern

of intersections for all samples and among each trio. For the Han Chinese family, the

daughter possessed 1,704 TADs which were intersected by IL-SVs, while the mother

and father had 1,684 and 1,657, respectively. The Puerto Rican trio had the fewest
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Table 3.1: Structural variants within TAD boundaries.

Sample TADs IL-SVs SVs int
TADs

IL-SV
INS

IL-SV
DEL

IL-SV
DUP

HG00512 1657 7655 6687 921 5177 589

HG00513 1684 7884 6807 935 5250 622

HG00514 1704 7993 6969 945 5401 623

HG00731 1556 8116 7031 946 5480 605

HG00732 1554 7996 6927 951 5395 581

HG00733 1610 7906 6803 920 5270 613

NA19238 1795 9352 8204 1103 6405 696

NA19239 1707 9189 7982 1106 6213 663

NA19240 1797 9507 8270 1150 6389 731

TADs intersected, with 1,556 in the father , 1,554 in the mother and 1,610 for the

daughter’s genome. Conversely, the Yoruban trio had the most TADs intersected by

SVs, where the father had 1,795, the mother had 1,707 and the daughter had 1,797.

This observation may have to do with the shear number of SVs detected for each trio

was variable, while the Yoruban trio had the most overall.

We next took a look at the overall distribution of genomic SVs with respect to epi-

genetic regulatory elements, specifically enhancers with curated gene targets within

TADs. This method identified 8,529 enhancers-gene possibly impacts by the intersec-

tions of SVs within TADs for HG00512, 8,778 for HG00513 and 8,810 in HG00514. For

HG00731 there were 8,525, and 8,508 enhancers-gene pairs for HG00732, with 8,307

relationships for HG00733. The numbers of enhancers-gene pairs intersected for the

Yoruban trio were 9,573 for NA19238, 9601 for NA19239, and 9,804 for NA19240. The

overall breakdown of heterozygous SVs by class and the number of unique enhancers

can be seen in table 3.2. Not surprisingly, there were several enhancers impacted

within the trios that had identical gene targets, which has been shown by the venn

diagrams in Figure 3.8. The gene targets were then assessed for allele specific ex-

pression given the allelic imbalance of SVs intersecting enhancer regulators of their

expression. In Figure 3.9, we see that there are a a great deal of significant loci that
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Table 3.2: Structural variants that intersect enhancers within TADs from Illumina
callset.

Sample TADs IL-SVs Enhancers IL-SV
INS

IL-SV
DEL

IL-SV
DUP

HG00512 1536 2662 7154 321 2068 273

HG00513 1555 2736 7411 332 2121 283

HG00514 1583 2841 7461 351 2220 270

HG00731 1448 2850 7229 337 2244 269

HG00732 1453 2742 7105 333 2141 268

HG00733 1501 2696 6992 297 2122 277

NA19238 1645 3300 8133 385 2631 284

NA19239 1571 3217 8111 403 2527 287

NA19240 1654 3314 8306 405 2600 309

exhibit allele-specific expression patterns when associated enhancer regulatory ele-

ments located within TADs are impacted by an SV. One interesting feature of theses

observations is that of the Puerto Rican trio enhancer ASE, in which all but one of

the daughter loci are shared with the mother. Moreover, only 4.6% of target genes

shared by HG00731 and HG00733 exhibit similar ASE patterns, whereas that figure

is 21.6% between HG00732 and HG00733.

Figure 3.8: Venn diagrams of gene targets with enhancers intersected by SVs.
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Table 3.3: Structural variants that intersect enhancers within TADs from Illumina
callset and ASE.

Sample ASE
Genes

IL-SVs IL-SV
ASE INS

IL-SV
ASE
DEL

IL-SV
ASE
DUP

HG00512 394 482 71 337 73

HG00513 407 489 57 361 70

HG00514 513 614 78 457 78

HG00731 418 505 72 379 53

HG00732 501 622 92 457 72

HG00733 501 622 92 457 72

NA19238 645 796 125 576 94

NA19239 673 824 128 609 86

NA19240 562 681 99 507 740

Figure 3.9: Venn diagrams of gene targets with enhancers intersected by SVs that
exhibit ASE.
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Figure 3.10: Per sample counts of SVs intersect with TAD encapsulated enhancers.

Figure 3.11: Stacked bar chart of SV types that intersect with TAD encapsulated
enhancers.

In Figure 3.10, we see the per-sample count distribution of SVs with that intersect

enhancers that are located within sample-specific TADs. This bar chart provides a

visual representation of the information in Table 3.1 where TADs are in yellow, total

SVs are in pink and enhancers are in green. We can clearly see a pattern where

large SVs intersect with many enhancers that are located within even larger TAD

regions. Additionally, we depict a stacked bar chart to show the the types of SVs that
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intersect these enhancer elements with target-genes located within sample specific

TADs in Figure 3.11. For each sample we follow commonly used color scheme for

variants, where insertions are colored in green, deletions in red, and duplications in

blue. This chart shows roughly equal numbers of insertions and duplications for each

sample, while deletions are much more numerous in each case. This result appears

to be non-significant, as the current sequencing technologies and SV calling methods

tend to bias the detection of deletions. As the technologies improve the detection

of SVs in the future, there may be more variety of SV types found to overlap with

enhancers in this way.

One specific case of NA19240 TADs using BEDtools to find 30 sample-specific

TADs impacted by insertions and deletions and subsequently determined to contain

27 GM12878 epigenetic enhancers downloaded from UCSC. This preliminary analy-

sis led to the discovery of a 280kb heterozygous deletion along chromosome 2. This

region was found by Rao et al. to contain a single TAD in the GM12878 reference cell

line, indicating that the deletion within this region disrupted the contact profile of the

chromatin at this locus and led to the formation of two distinct TADS [187]. Further-

more, this deletion spans a loci known to contain a transcription factor binding site

and enhancer element that lies adjacent to two genes, IGKJ1 and AC244205.1, and

analysis of NA19240 RNA-seq data showed significant difference in the expression of

both of these genes. The deleted enhancer, GH02J088855, catalogued by GeneHancer

scores high for direct interactions with the genes exhibiting allele-specific expression.

This can be visualized by Figure 3.12, where the top panel shows GM12878 Hi-C con-

tact matrix from Rao et al. and the single TAD indicated by a gold bar, the middle

panel shows a UCSC genome browser session at this locus with the deleted region

highlighted in red, and the neighboring NA19240-specific TADs highlighted blue and

yellow. The bottom panel of Figure 3.12 shows the IGV plot of genomic RNA-seq

covereage at this region, with genes indicated by horizontal blue bars.
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In another case, a heterozygous 340bp deletion overlapped the enhancer element

GH21J029235, which is intronic to, and interacts with the lncRNA LINC00189, to

modulate the activity of its expression. We diagram this result in Figure 3.13 using

the HiCPlotter tool to overlay multiple tracks in the plot. The top-most track shows

a heatmap of the normalized Hi-C contact profile as log2 values of the interaction

matrix, for the Han Chinese HG00514 along chromosome 21 between 28.5Mb and

30Mb. The color scale of the heatmap ranges from dark red to indicate few con-

tacts to orange and finally bright yellow as the contact frequencies increase. The

tack below this shows the view of the genomic region of interest along the diagonal to

make for easier visualization of the regional chromatin contacts. Below this is another

track of gencode v28 genes as dark blue rectangles, which are mapped used GRCh38

genome coordinates. Underneath this layer are the locations of three enhancers that

are annotated by the geneHancer database to have known interactions with the genes

depicted above. Through each of these layers of the image is a pale blue highlight

which indicates a heterozygous deletion that can be seen to intersect both the lncRNA

as well as the enhancer GH21J029235. Finally, we show in the bottom-most track

the location of HG00514 TADs as khaki triangles superimposed on GM12878 refer-

ence lymphoblastoid cell line TADs in blue and IMR90 TADs in red as an example of

healthy lung tissue. We note that the expression of the genes shown in this figure both

possess an allelic imbalance, yet in opposing directions. To investigate what impact

this structural variant may impose on these genes and explain the observation of both

allelic imbalance and opposing effects, we consulted tissue-specific expression patterns

for both the lncRNA LINC00189 as well as the protein coding LTN1 through the

GTEx expression database. We obtained the log expression levels across epstein barr

transformed lymphoblastoid cell lines as an anlaogous reference for both GM12878

and our trio samples. We sampled tissues from several body sites and found that a

distinct pattern emerged that can be seen in Figure 3.14, which illustrates this point.
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We have stratified the samples by gender and sorted by the median expression values,

and found that there is a -0.75 Pearson correlation between the median expression

values of these genes across the sampled tissues, indicating a strong indirect associa-

tion in their activity levels. Based on what is known about lncRNA gene regulation

this may suggest that there is coordinated gene regulation by the lncRNA at this

genetic loci that appears to have been disrupted by the heterozygous deletion at the

site of the intronic enhancer element. Once such example of this has already been

shown in the literature, in which the intronic enhancer of the cystic fibrosis associated

CFTR locus is responsible for coordinated activation of the CFTR promoter region

through a chromatin looping mechanism that produces distinct expression patterns

with the adjacent ASZ1 and CTTNBP2 genes by means of tissue-specific chromatin

looping [188]. While it still remains to be experimentally validated through the use

of targeted chromatin looping such as 4C or 5C, the results we observe here with

regard to the coordinated heterozygous deletion of this intronic enhancer with the al-

lelic asymmetry in the expression of the LINC00189 and LTN1 genes and identify a

candidate region with similar chromatin looping-mediated gene regulation. Moreover,

the these two genes are antisense, and transcription of the lncRNA could modulate

the protein coding gene activity, which warrants further analysis of lncRNA-DNA

binding and chromatin state modeling.
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Figure 3.12: Large deletion coincides with altered chromatin topology, altered expres-
sion in NA19240.
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Figure 3.13: Hi-C interaction matrix overlaid with SV impact lncRNA and intronic
enhancer element GH21J029235.

Figure 3.14: Tissue specific expression patterns of LINC00189 and LTN1.
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Table 3.4: Allele specific expression in HGSVC Pacbio callset.

Sample PB-SV
Genes

PB-SV
ASE
Genes

PB-SV
ASE INS

PB-SV
ASE INS

HG00514 85 77 88 108
HG00733 106 89 141 78
NA19240 78 60 70 73

Table 3.5: Allele specific expression in HGSVC Illumina callset.

Sample IL-SV
Genes

IL-SV ASE
Genes

IL-SV ASE
INS

IL-SV ASE
DEL

IL-SV ASE
INV

HG00514 62 59 7 48 3
HG00733 73 60 10 45 5
NA19240 55 44 6 48 3



CHAPTER 4: THE DIFFERENTIAL IMPACT OF STRUCTURAL VARIATION

ON GENE REGULATION IN LEUKEMIA SUBTYPES

4.1 Introduction

Pediatric acute lymphoblastic leukemia (ALL) is a hematological cancer that has

been experienced a dramatic success in terms interventional strategies with posi-

tive clinical outcomes in a majority of afflicted patients. Since the discovery of the

Philadelphia-chromosome, large structural variants have come to be recognized as

a significant contributing factor in the development of circulating tumors. Patients

positive for the Philadelphia-chromosome possess a genome harboring a reciprocal

translocation between the long arms of chromosomes 9 and 22 that leads to an ex-

pressed fusion gene product of two kinase signaling molecules, ABL1 and BCR. With

no endogenous regulatory mechanism, the unmitigated phosphorylation activity by

this novel fusion protein stimulates B-cell growth and evasion of apoptosis and pro-

vides an archetypal link between structural variant, oncogenesis and tumor devel-

opment. Similarly, cytogenetic and molecular phenotyping experiments have now

found several translocations and genomic rearrangements with recurrent breakpoints

adjacent to genes regulating B-cell development in pediatric ALL patients [189].

While these aberrations are often oncogenic, it is important to note that they have

been found to exist in samples derived from healthy umbilical blood at much higher

frequency than the reported oncogenic incidence, suggesting they may not be suffi-

cient and a second genetic lesion is likely necessary for leukemogenesis to occur [149].

A genome-wide analysis of pediatric B-lymphocyte ALL patients found that there

is often an additional copy number differences at loci responsible for B-lineage fate-

specification that act as cooperating mutations with recurrent translocations to pro-
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mote leukemia [10]. Further work demonstrated somatic alterations were enriched in

genes that contribute to B-cell development, Janus kinases, the tp53 tumor suppres-

sor pathway, as well as other cellular growth signaling cascades [150]. Additionally, a

study of DNA methylation found consistent epigenetic silencing via hypermethylation

at promoters of these genes, however this study did not make use of immunoprecip-

itation data to investigate the effects on chromatin state due to somatic mutations

[151, 152]. From these studies we can glean that B-cell specific areas of the genome

contribute to the pathogenic state of leukemia, however what lacks is a look into

the noncoding genome that may be disrupted, and how the chromatin topology is

affected by structural variation with respect to shared translocation groups. Further-

more, studies of HOX genes among leukemias showed they contribute to oncogenesis

through disturbed hematopoiesis, yet are not sufficient to discriminate between sub-

groups based on combined expression alone [153, 154]. These expression based studies

may be limited by this approach, while integration with epigenetic data types could

improve the discriminatory capacity based on capturing subtype-specific regulatory

relationships between the coding and noncoding genome.

In the clinical setting, the cytogenetic reporting of a patient’s subtype must be

complete in order to guide treatment protocols and pharmaceutical regimentation.

This diagnostic workup is essential to the long-term outcome and quality of life of the

patient, however it can be seen as a rate limiting step in the overall medical workflow.

The rapid distinction between subtypes with known links to genomic rearrangements

may be better facilitated by the implementation of bioinformatics methods that are

capable of leveraging the multitude of available multi-omics datasets. For rare sub-

types, such as the Ph-like group, little is known about the root cause of the observed

expression anomalies. Therefore, an analysis based upon integrated copy-number

profiles and expression measurements may elucidate the key oncogenic factors con-

tributing to the clinical phenotype behind the Ph-like group.
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Table 4.1: Accessions and hyperlinks to data sources for microarrays analyzed.

Database Accession Download URL

NCI caArray EXP-578 ftp://caftpd.nci.nih.gov/pub/caARRAY/

experiments/caArray_EXP-578/

NCBI-GEO GSE11877 https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE11877

EMBL-EBI EGAS00001000654 https://www.ebi.ac.uk/ega/studies/

EGAS00001000654

4.2 Methods

4.2.1 Microarray Expression Analysis of Stratified Leukemia Samples

Acute lymphoblastic leukemia expression analysis was performed for a large mi-

croarray dataset with special attention given to the Ph-like ALL subtype do ascertain

specific, coordinated gene activities in patients with the rare diagnosis. This study

began by the identification of differentially expressed genes in the Ph-like ALL sub-

type with respect to alternative acute lymphoblastic leukemia groups. Differential

gene expression analysis was performed and heatmaps generated for the top 50 dif-

ferentially expressed genes, which can be found in chapter 2 of the appendix. The

expression matrices were then used to perform functional annotations as well as an

enrichment study of the genes involved in metabolic signalling pathways with sig-

nificant differences across each of the ALL subtypes. Below, we provide a detailed

overview and visual workflow for the expression analysis performed.

4.2.2 Data Acquisition

The HGU133_Plus2 Affymetrix microarray data generated by Roberts et al. was

uploaded to multiple online databases under different accessions [190]. Microarray

probe intensity measurements were formatted as raw .CEL files and collected from

three separate online accessions at EBI, NCBI and NCI caARRAY and downloaded to

the high-performance computing cluster at University of North Carolina at Charlotte.

The accession numbers and web addresses to the data may be found in Table 4.1.

ftp://caftpd.nci.nih.gov/pub/caARRAY/experiments/caArray_EXP-578/
ftp://caftpd.nci.nih.gov/pub/caARRAY/experiments/caArray_EXP-578/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11877
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11877
https://www.ebi.ac.uk/ega/studies/EGAS00001000654
https://www.ebi.ac.uk/ega/studies/EGAS00001000654
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4.2.3 Identification of Differentially Expressed Genes in the Ph-like Subtype

Differential gene expression analysis was conducted to test for significant differ-

ences in the gene-level expression across the two Ph-like groups with respect to the

expression levels of the contrast groups. The contrast groups are given by the nine

non Ph-like ALL group classifications found in table 2. For any given contrast, a

file containing the paths to the .CEL files and a phenotype description reflecting the

group name was read by the Bioconductor package simpleaffy [191]. This package

allowed the raw .CEL files to be read in as a batch and normalized together using

the robust multi-array average algorithm (RMA) to create an expression set (eset)

object in the R environment [192]. Limma was used to fit a linear model for each gene

in a set of microarrays after filtering out low-variance probe-sets [193]. A contrast

matrix was then constructed to perform the contrast fit between the Ph-like group

and each of the alternates, followed by empirical Bayes moderation of the statistics

for differential expression and on the standard errors as a means to evaluate the log

odds of differential expression. Given that the HGU133_Plus2 affymetrix array plat-

form has a large amount of redundancy, in that probes often map with a many-to-one

relationship to a gene, the probes were collapsed to the gene level based on the probe

with the largest absolute levels of expression for a given gene across arrays. This was

done so that the measured differences in expression would be less influenced by inef-

ficient hybridization of probes and a lack of continuity across arrays. These probes

were then annotated with their official gene symbol. Genes were selected for further

analysis based on a FDR significance threshold of 0.01, and a B-value of 1.5. This

set of criteria may be interpreted as having limited the set of genes identified as be-

ing differentially expressed to those, where after for multiple hypothesis testing, have

a one-percent chance of being a false-positive and a 1.5 odds of being differentially

expressed value relative to the contrast group [194].

This dataset was comprised of 1,319 microarray expression files only for those on
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Table 4.2: Distributions of ALL subtypes as defined by recurrent genomic rearrange-
ment events.

ALL Group Samples (N )

Ph-Like 223
BCR-ABL1 87
CRLF2 21

E2A-PBX1 75
ERG 110

ETV6-RUNX1 102
Hyperdiploid 131
Hypodiploid 12

MLL 74
Other 484

the HGU133Plus2 Affymetrix platform. This platform contains 54,675 hybridization

probes, which map to 20,606 unique genes [106]. Prior to analysis, the microarrays

were divided according to the group classification given by column R of appendix one,

table 1 in the supplementary materials provided with the original article. Described

in appendix two, figure S18 on page 44, these groups were defined by the source publi-

cation using a combination of molecular profiling, cytogenetics, immunophenotyping,

and low-density expression arrays. The counts of microarrays for each subtype may

be found below in Table 4.2.

4.2.4 Detection of Differential Activity in Metabolic Signaling Pathways across

ALL Subtypes

Pathway enrichment analysis is a form of bioinformatics and statistical association

analysis of gene expression values across a set of samples. The end goal is to identify

coordinated gene expression differences between groups based on known sets of genes

that belong to a common biological pathway. To perform pathway analysis, we tested

the entire expression matrix for enriched pathways in the Ph-like subtype and the

Ph-like with CRLF2 rearrangent against each of the other groups using the GSEA

software. This software ranks genes belonging to particular pathways and associates
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them with either phenotype via a Kolmogorov-Smirnoff test [195, 196].

In order to probe the impact of recurrent genomic rearrangements on the pheno-

types and outcomes associated with subtypes of ALL, we expanded on the differen-

tial gene expression by attempting to resolve the enrichment of genes associated with

B-cell developmental pathways and oncogenic characteristics. Gene set enrichment

analysis (GSEA) is a commonly used tool for the bioinformatic enrichment tests of

particular genes. The protocol for this analysis begins with matrix [N x (M + Ji)]k

for M Ph-like samples, plus J samples of subtype i, by N quantile-normalized gene

expression measurements taken for each contrast, k, of Ph-like and another ALL

subtype.

Complete analysis reports may be found in the supplementary materials under the

supplementary materials. Within that directory the reports are further divided by

the Ph-like group being interrogated for the gene sets tested, and split again by the

enrichment contrast group. For GSEA, a negative enrichment score corresponds to

whichever phenotype is second in the expression set categories. For all results, the

left-right organization of the original expression sets in which the right most samples

belonged to the Ph-like groups was maintained throughout and thus, the enrichment

scores for the Ph-like groups are all negative. These results reflect that the KS-test

ranking of genes assigns negative values when a gene is correlated with the second

phenotype by GSEA convention, rather than the intuitive interpretation of negative

correlations, and each negative value contributes to the cumulative enrichment score

when the gene also belongs to the gene set [197].

4.2.5 Coexpression analysis of lncRNAs with mRNAs

The lncRNA contribution between subtypes can be ranked according to results of

LPC or T-scores depending upon the predictive advantage of the lassoed principal

components approach computed using the R package LPC. Each contrast between

Ph-like and other subtypes may be treated as several two-class cases in the model.
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Selected distinguishing lncRNAs can then be identified via conventional differential

expression and build networks around their co-expression with differentially expressed

protein coding genes to identify differences in lncRNA patterns between ALL Ph-like

subtype.

4.2.6 Integration with Topologically Associated Domains

We have previously studied the relationships between lncRNAs and protein coding

genes located within chromatin domains as a means to study differential regulatory

impacts resulting from large-scale chromatin rearrangements in the form of classically

recurrent translocation. We then proposed the idea that samples of precursor B-cell

acute lymphoblastic leukemia (ALL) may be classifiable with a narrows focus on

those genes within close three-dimensional proximity. Raw expression data available

from the published research by researchers at St. Jude working in conjunction with

the TARGET initiative was obtained for 1,319 samples in the form of HG-U133plus2

Affymetrix array CEL files. According to the results of this study, subtype annota-

tions could be made for samples with respect to the presence of 9 recurrent genomic

rearrangements. These aberrations included the BCR-ABL1 gene fusion that results

from a reciprocal translocation along the long arms of chromosomes 9 and 22 known

as the Philadelphia chromosome (Ph(+)), fusions of E2A-PBX1 and ETV6-RUNX1,

and rearrangements at the CRLF2, MLL and ERG loci. Samples that cluster to-

gether with the Ph(+) samples yet lack the archetypal translocation of the class are

considered to belong to the rare ALL-subtype, Philadelphia-like (Ph-like). The re-

maining classes may be grouped as hyperdiploid/hypodiploid or Other. Microarray

probes intensity measurements were normalized with the robust multi-array average

(RMA) method and low variance probes were filtered. The remaining probe sets

were collapsed to the gene level using a criterion of the maximal median expression

value measured across all samples. The expression matrix that resulted from prepro-

cessing contained measurements for 11,976 genes across 1,319 samples. Annotations
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from gencode.v19, GRCh37 reference genome, contained 13,870 long non-coding RNA

genes. These annotations were used to identify the 282 lncRNAs that remained in

the expression matrix. Rao et al. (Cell, 2014) published a map of the intrachromo-

somal interactions observed from high coverage in-situ Hi-C experiments mapped to

the GRCh37 reference at 1kb resolution for the GM12878 lymphoblastoid cell line. In

total, 9,275 intrachromosomal topologically associated domains (TADs) were called

by this group with the Arrowhead algorithm and may be obtained under the GEO

accession GSE63525. Previous studies have shown both the conservation of TAD

structure across mouse and human three-dimensional genomes, as well as the pres-

ence of cell-type and tissue-specific variation in the local chromosomal architecture

of the nucleus. For these reasons, several studies have used cell line TAD structure

as a reference to compare case samples against [34, 163, 130]. These finding lend cre-

dence to the use of GM12878 TAD calls as a three dimensional reference map for the

acute lymphoblastic leukemia samples. From the 282 lncRNAs present in the filtered

expression matrix, 163 were found within 204 of these reference TADs. GM12878

domains were used again and identified 607 encompassed protein coding genes, while

350 were found in the expression matrix. The intersection of these genes resulted in a

final set of 141 lncRNA and 350 protein coding genes within 193 defined TAD bound-

aries for use as predictors in our models. We found that the lncRNA:TAD ratios were

181 single-lncRNA TADs, 11 two-lncRNA TADs, and one TAD with three TADs.

Several different classification models were tested for accuracy using identical test

set of (n = 989) and training set (n = 330). A random forest model was implemented

as well as regularized multinomial regression models with varying alpha parameter

settings ranging from 0 (ridge) to 1.0(Lasso) with a step size of 0.1. Parameter opti-

mization to train each model was performed with 10-fold cross validation procedure

with constant fold-ids on the training data in order to make comparisons of the mod-

els more reliable. The hyperparameter optimization performed for all models was
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10-fold cross validated grid search, with the exception of the elastic net implementa-

tions, which implemented coordinate descent for tuning. The cross-validated models

were then compared for the ability to predict the genomic rearrangement of the test

set using the model-specific optimum lambda-min values learned during training. In

addition we tested these against a naive Bayes classifier, simple logistic regression,

a decision tree, random forest classifier, and K-nearest neighbors. In addition we

tested the models on randomly permuted sets of 3,207 to evaluate the usefulness of

our lncRNA-mRNA pair expression values as predictors for class status.

4.3 Discussion

The overarching aim of the differential gene expression analysis was to determine

if there were any distinct differences between the Ph-like subtypes of precursor B-

cell acute lymphoblastic leukemia. Through the use the R statistical programming

language, commonly adapted microarray normalization workflow was implemented,

moderated test-statistics were calculated and significance levels corrected for multiple-

testing errors using Benjamini-Hochberg method off false discovery rate correction.

This method allowed for the selection of differentially expressed genes in the Ph-

like group based on a one-percent false positive rate and 1.5 odds of differential

expression. These statistically significant genes were then clustered based on common

hits to KEGG pathways, which served as the means to narrow the search for gene set

enrichment analysis with GSEA. By testing the gene sets identified by gene pathway

clustering, the expression sets for the differentially expressed genes could be analyzed

across the groups for pathway enrichment. The results of the analysis by GSEA show

that, for the enriched pathways, the number of genes belonging to the pathway gene

set and also found in the expression set is greater than ten genes for all contrasts.

This cutoff helps eliminate the inflation of enrichment scores from low-counts. The

pathway enrichment analysis provides a description of the biochemical level differences

in the Ph-like groups that may be inferred from the expression data. This analysis
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showed that there was no significant difference between the two Ph-like groups and

those patients classified as possessing BCR-ABL1 and CRLF2 rearrangements and

those shown to be hypodiploid. While the first two groups also showed the lowest

number of gene counts in table 3, the relatively low number of patients found to be

hypodiploid suggests these results may be improved in future works with a greater

sample size. Here, it was shown that several pathways were unregulated in the Ph-like

ALL samples, especially when compared to the ERG, ETV6-RUNX1, and E2A-PBX1

and Other groups. These results would suggest that that there are distinct patterns

in cellular proliferation and disease progression for the Ph-like variety of precursor B-

cell acute lymphoblastic leukemia. For Ph-like (with CRLF2) samples, this pathway

was significantly enriched compared to the E2A-PBX1, ETV6-RUNX1, Other and

the ERG groups. It is worth noting that according GSEA user manual, an FDR

value cutoff up to 25% may yield significantly interesting results due to the inherent

differences across expression sets, and by this metric the contrast between Ph-like

and hyperdiploid is borderline enriched for this cytokine interaction pathway. This

pathway is shown to be involved in regulating cellular growth and is also implicated

in stimulating the mobility of the lymphocytes [198].

For both types of Ph-like samples, the JAK-STAT signaling pathway was enriched

against samples belonging to the Other, ERG, and E2A-PBX1 groups. The consti-

tutive activation of this pathway has been shown to be a driver for other types of

leukemia[199]. This pathway also is the main target for the BCR-ABL1 fusion gene

product expressed by the Philadelphia chromosome [200]. In healthy cells, the JAK-

STAT pathway is a primary target for cytokine signaling, which suggests a possible

area for further research to identify whether the interplay of these two up-regulated

pathways is involved in both the similar expression profile with Philadelphia- chro-

mosome positive leukemia and the progression of the disease [201, 166].

The analysis of Ph-like differential gene expression showed clear evidence of signifi-
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cant enrichment of the JAK-STAT signaling pathway. This finding is consistent with

prior literature citing the activation of this cytokine activation pathway through the

similar outcome of distinct mutational patterns in non BCR-ABL1 positive samples

[202, 166]. The implication of this result is indicative in that even with respect to each

of the other subtypes studied in this analysis, treatment of the Ph-like subtype may

respond better with inhibitors and modulators of JAK-STAT signaling. In addition,

there were several pairs of antisense lncRNAs and sense, coding counterparts identified

by differential gene expression that would indicate a possible relationship between the

structural changes to the chromatin resulting from somatic rearrangements and copy-

number changes, and the expression of mRNA and regulatory RNAs. One avenue for

future investigation would be to further characterize these antisense RNAs in terms

of their coexpression, predicted and molecular interactions, and impact on chromatin

state in order to validate function. The model with the highest prediction accuracy

was found to be the grouped elastic net regularized multinomial model with alpha

of 0.1, which had a mean square error of 0.0603. This model was found to have 330

non-zero coefficients, which made use of 97 lncRNAs in the classification of leukemia

genomic rearrangement subtypes. Only 13 of these lncRNAs were identified by differ-

ential expression analysis, which suggests the possibility of other contributions from

the relationships of lncRNA and coding genes located within the same topologically

associated domain. Furthermore, the large-scale variations in the genomic landscape

of patients with acute lymphoblastic leukemia may results in architectural differences

of their chromosomes which can be exploited to classify samples based on a reduced

transcriptomic analysis alone. Work is still to be done to further increase the accu-

racy of our model, with a priori knowledge of the specific domains afflicted for each

recurrent aberration class, for example, as well as improved ability to specifically dis-

criminate between Ph-like samples and Ph(+). However, chromatin topology guided

transcriptomic analysis may prove to be a more useful way to delineate between cancer
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samples for which there known sets of recurrent genomic rearrangements.

4.4 Conclusion

The Philadelphia-like subtype of acute lymphoblastic leukemia is a rare hematologi-

cal cancer with poor prognosis relative to the much more common form of BCR-ABL1

fusion gene expression. It remains unclear as to which specific mechanisms drive the

similar global expression patterns between the two subtypes, however with a more

defined chromatin topology there may be hope to tease out event of enhancer hijack-

ing that have been reported in various other forms of cancer. Here, we showed that

analysis of both lncRNAs and mRNA expression that colocalize within TADs enables

a high degree of accuracy in expression-mediated classification of pediatric B-cell

acute lymphoblastic leukemia. With more data, such as greater sample sizes, epige-

netic chromatin marks and sample-specific chromatin topology, there may be further

improvement in expression-based diagnosis of patients. These results show promise

for the development of a quick, cost effective gene panel for rapid diagnosis of ALL

patients based on the expression of genes with consideration of chromatin topology.

Ph-like leukemia has been traditionally difficult to diagnose stemming from the oc-

currence of a wide variety of somatic mutations leading to the archetypal expression

pattern.

In this study we looked at overall differential expression patterns and found a

significant amount of variation across all subtypes of the disease. These findings may

suggest that there a multitude of possible genomic aberrations that contribute to ALL

progression and poor outcomes beyond just the cytogenetic phenotyping. With more

deep high-throughput sequencing of ALL samples, we may be able to fine map the

structure of the chromatin as it has been undoubtedly been altered by large, recurrent

translocations. What is clear, is that the JAK-STAT metabolic signalling pathway

shows significant enrichment in the Ph-like samples relative to all other subtypes.

There is likely a link to be found between the somatic copy number variation in the
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patients and the overexpression of this signaling cascade. Moreover, as more evidence

continually identifies lncRNAs as key regulators of protein coding targets, chromatin

state modeling will become increasingly more important in order to identify the overall

functional significance of SVs in cancer as modification to the genes as well as their

regulatory sequences.

Given that the classification scheme of hematological cancers is based primarily on

chromosomal rearrangement events and is cell-type specific, it may not be surprising

to find differences in gene expression among the different subtypes of precursor B-cell

acute lymphoblastic leukemia [203, 204]. What may be more interesting is finding

particular pathways that define a rearrangement-based subtype by means of consis-

tent perturbation relative to other forms of the same cell-specific disease [205]. By

further defining a given disease by the biochemical pathways that are consistently up

or down regulated, an avenue for precise therapeutic intervention may be found. It

was the aim of this project to define the Ph-like precursor B-cell ALL in this way,

and doing so identified verifiable enrichment in pathways involved in cellular growth

and cytoskeletal motility. The particular pathways involved may indicate an interplay

between increased cytokine activity and kinase activation resulting in rapid prolifera-

tion of immature lymphocytes [206]. These results may indicate contributing factors

to the overall poorer prognosis of this rare subtype relative to others and may be an

avenue for further research focus. [35]



CHAPTER 5: CONCLUSIONS

Through the development of a framework to perform chromatin topology guided

transcriptomic analysis, this work aimed to contextualize the effects of structural

variation in the human genome in terms of the impact to topologically associated

domains and genetic elements within these architectural regulatory modules. This

type of multi-omics analysis will become more common as the cost of sequencing con-

tinues to become less expensive and the chromatin conformation technology becomes

more accurate. Chromatin conformation capture methods have already shown the

reliability and reproducibility of their results and ability to resolve the complex spa-

tial relationships of chromatin and the long-range physical interactions of specific loci

[207, 208, 132]. By pairing this data with RNA-seq measurements, one can assess the

activity levels of genes and their locations within topologically associated domains

[209]. Research has already demonstrated that genomic structural variants can cause

neo-TAD formation, enhancer adoption by non-cognate target genes, TAD fusion or

TAD shuffling in several human pathologies. Analogous work is needed to analyze

these types of effects that lead to the natural variation in gene activity in healthy

individuals. Furthermore, the emerging importance of lncRNA regulatory capacity

of epigenetic state and recruitment of trancscriptional enzymes to adjacent, antisense

promoters necessitates a comprehensive analysis of their interactions with the genes

in a common physical space.

Acute lymphoblastic leukemia provides a set of recurrent chromosomal transloca-

tions and genomic rearrangements, which would suggest a high likelihood for the

disruption of normal TAD boundaries. The direct effects of these rearrangements

are mensurable by the transcriptional differences and enriched pathways across dif-
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ferent subtypes. A detailed analysis of the Ph-like subtype compared to Ph(+) with

the BCR-ABL1 fusion gene may lead to insights into the observed similarity of the

respective global expression patterns, even without the highly active fusion protein

kinase. This fusion protein has no naturally occurring down-regulation mechanism

and leads to aberrant cell signalling in the tumor cell promoting cancer progression,

while the Ph-like samples expression pattern is less clear.

This study aims to provide a comprehensive evaluation of the functional effects

structural variation in the human genome. Through the use of a highly-validated

set of insertions, deletions, duplications, and inversions from the HGSV consortium

and RNA-seq data, Hi-C contacts and GM12878 markers of epigenetic regulation,

SVs will be interrogated and statistically evaluated for allele-specific effects, observed

expression variation and consequence to chromatin topology. Additionally, RNA-seq

based transcriptome assembly will provide a set of lncRNAs for the nine samples

in this dataset that can be used to predicted cis-interactions with the promoters,

miRNA sequestration, as well as direct mRNA binding for genes located within the

same TAD.

Additionally, the acute lymphoblastic leukemia dataset provides SNP array files for

multiple genomic rearrangement subtypes of the disease, which can be used to infer

copy number variation (CNV) for each sample. CNVs may be in variable locations

of the genome and create novel TAD formation and abnormal chromatin contacts in

tumor cells and drive aberrant expression and promote cancer phenotypes. These

differences may be captured by specific patterns of gene expression for common sets

of genes that are found within shared TADs defined by the GM12878 lymphoblast cell

line as a reference. Prior analyses have used analogous cell line TADs as a reference

for comparison to cancer cell lines, yet no one has yet studied the effects of SVs in this

manner for acute lymphoblastic leukemia or across any of the recurrent translocation

subtypes of hematological cancers.
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As a matter of investigating the impact of structural variants on genomic function,

it readily seems apparent that narrowing the focus to particular regulatory domains

provided the key to identifying enhancer-mediated allele-specific expression. This

indirect association between variants and their epigenetic regulatory sequences is a

difficult task. chromatin capture technologies allow us to look beyond the genome

at the two-dimensional level. Rather, topologically associated domains provide a

lens with which to view chromatin contacts and the encapsulation of enhancers with

target genes. With the low resolution Hi-C datasets currently available, it is imme-

diately worth mentioning promising work that is currently being done into applying

deep-learning methods to boost the resolution of contact matrices [210]. This would

circumvent the need for costly deep-sequencing libraries, and allow for the more rapid

analysis of currently available data. Even with that in mind, it seems quite clear that

the regulatory capacity of TADs appears to be robust across evolution, yet the overall

distribution of epigenetic regulatory elements encapsulated within TAD boundaries is

modified by the germline and somatic structural variants that in turn affect expression

phenotypes.
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APPENDIX A: TRANSCRIPTOMIC ANALYSIS OF HGSVC TRIOS

The description of the data processing and command line arguments for SV-ASE

are detailed below. The full results of the structural variant allele-specific expression

analysis for each trio daughter are available as a supplemental data file formatted as

an excel workbook titled HGSVC_SV-ASE.results.xlsx, with the columns described at

the end of this section. Command line arguments and detailed description of SV-ASE

analysis methods are available in the supplementary file README.HGSV.SVASE.txt.

HGSVC_SV-ASE.results.xlsx provides the significant SV-intersected ASE-SNP genes

that showed an allele specific effect for IL-SVs and PB-SVs. Below, table A.1 provides

an overview of the supplemental file providing the results of the allele specific analysis.
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Table A.1: Descriptions of HGSV ASE results supplemental file.

COLUMN VALUE

1 gene chromosome
2 gene start position
3 gene stop position
4 Ensemble ID of gene
5 gene symbol
6 sv chromosome
7 sv start position
8 sv end postion
9 reference allele
10 alternate allele (given as sv type)
11 quality score
12 filter value
13 SV genotype
14 haplotype 1 RNAseq read counts
15 haplotype 2 RNAseq read counts
16 Read count ratio between haplotypes
17 Read count total for both haplotypes
18 P-value result from binomial tests
19 FDR corrected p-value
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APPENDIX B: TRANSCRIPTOMIC ANALYSIS OF ACUTE LYMPHOBLASTIC

LEUKEMIA

B.1 Heatmaps of differentially expressed genes in Ph-like leukemia

Below are images that depict the top 50 differentially expressed genes in the Ph-like

ALL samples relative to each of the alternative subtypes as heatmaps. The color bar

at the top of each heatmap gives the Ph-like samples as gold bars, while the contrast

group is given by a pink bar. Low gene activity is given by a blue color, whereas

increasing levels span the color spectrum from blue to yellow to red. The names of

the genes for which the heatmap rows are drawn are given on the right hand side of

each image.
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Figure B.1: Expression heatmap BCR-ABL1 vs. Ph-like ALL
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Figure B.2: Expression heatmap CRLF2 vs. Ph-like ALL
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Figure B.3: Expression heatmap E2A-PBX1 vs. Ph-like ALL
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Figure B.4: Expression heatmap ERG vs. Ph-like ALL
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Figure B.5: Expression heatmap ETV6-RUNX1 vs. Ph-like ALL
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Figure B.6: Expression heatmap Hyperdiploid vs. Ph-like ALL
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Figure B.7: Expression heatmap Hypodiploid vs. Ph-like ALL
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Figure B.8: Expression heatmap MLL vs. Ph-like ALL
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Figure B.9: Expression heatmap Unspecified vs. Ph-like ALL
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B.2 Plots of Multinomial Deviance vs. log(Lambda) in elastic-Net regression

models

Figure B.10: multinomial deviance vs. log(λ) 1
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Figure B.11: multinomial deviance vs. log(λ) 2
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Figure B.12: multinomial deviance vs. log(λ) 3


	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND
	FUNCTIONAL ANALYSIS OF HAPLOTYPE-RESOLVED STRUCTURAL VARIANTS AMONG HEALTHY HUMAN TRIOS
	THE DIFFERENTIAL IMPACT OF STRUCTURAL VARIATION ON GENE REGULATION IN LEUKEMIA SUBTYPES
	CONCLUSIONS
	REFERENCES
	TRANSCRIPTOMIC ANALYSIS OF HGSVC TRIOS
	TRANSCRIPTOMIC ANALYSIS OF ACUTE LYMPHOBLASTIC LEUKEMIA

