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ABSTRACT

YUEHAN SHAO. THE SEMIPARAMETRIC MARK-SPECIFIC
PROPORTIONAL HAZARDS MODEL FOR MULTIVARIATE MARKS VIA A

SINGLE-INDEX. (Under the direction of DR. YANQING SUN)

Competing risk analysis is commonly applied to time-to-event data with finitely

many causes of failure. It alters the probability of the occurrence of an event of in-

terest broken down by a specific cause. Motivated by the HIV vaccine efficacy trials,

continuous causes-of-failure (marks) have been discussed in the literature. Method-

ologies have been developed to model for a continuous univariate mark or to study a

parametric structure to relate multiple marks with covariates. In this dissertation, we

extend the scope of the previous research and explore a semiparametric mark-specific

proportional hazards model accommodating a multivariate continuum of marks via a

single-index.

In our model, we allow flexible nonlinear interactions between covariates and mul-

tiple marks. To avoid the curse of dimensionality, we incorporated multiple marks

into a single-index. A profile estimation procedure is introduced. We adopt the lo-

cal linear smoothing technique for approximating the unknown functions and then

utilize the maximum partial likelihood to estimate the unknown parameters. A de-

tailed computational algorithm is derived. The uniform consistency and asymptotic

normality of the proposed estimators are established.

We conduct two simulation studies to evaluate the finite-sample performance of

the proposed estimation procedure. Besides, the proposed model and methods are

applied to the datasets from two HIV vaccine efficacy trials to access the HIV vaccine

efficacy taking account of various protein sequence distances (marks) between the

infecting HIV and the HIV strain inside the vaccine.
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CHAPTER 1: INTRODUCTION

1.1 Motivation and Literature Review

1.1.1 Proportional Hazards Model

In finitely many competing risks analysis for time-to-event data, researchers wish

to develop tools for analyzing the failure time data in the presence of different causes-

of-failure (marks). For example, in HIV vaccine efficacy trials, the protein sequence

distance between an infecting HIV sequence and an HIV sequence presented in the

vaccine is often measured in each trial and treated as a variable mark. The utmost

genetic diversity of HIV is one of the most significant obstacles in producing an

efficacious vaccine. The genetic heterogeneity of HIV can be measured as the weighted

percentage of mismatching in protein sequence distances. This implies that one of the

essential objectives of each efficacy trial is to access if and how the vaccine to reduce

the risk of HIV infection depends on different protein sequence distances (marks).

Mark variable is different from covariate. Mark is assumed to be observed whenever

the failure time is uncensored, while covariate is observed for any individuals no

matter the failure time is censored or not.

The analysis of competing risks originates from the Cox model. The proportional

hazards model (Cox (1972)) is widely used in the medical study for exploring the

associations between one or more covariates and survival time. Let T be the failure

time, Z(t) be the covariate vector. The Cox model can be written as

λ(t|z) = λ0(t)exp
{
βT z

}
, (1.1)

where λ0(t) is an unspecified baseline function, β is the unknown parameter. One
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of the most attractive properties of this model is that the parameters, β, can be

nicely interpreted as the expected change in the logarithm of the hazard ratio when

one covariate changes in one unit, given that all other covariates fixed. Prentice et al.

(1978) initially utilized the Cox regression structure to model the effects of variables

on conditional cause-specific hazard function,

λj(t|z) = lim
h→0

P{T ∈ [t, t+ h), J = j|T ≥ t, Z(t) = z}/h, (1.2)

for j = 1, ...,m, where J describe causes of failure. This model takes the form

λj(t|z) = λ0j(t)exp
{
βTj z

}
, (1.3)

for j = 1, ...,m. Thenceforth, a large deal of work extended the studies on discrete

marks in failure time data. See Kalbfeisch and Prentice (1980), Sun (2001), Scheike

et al. (2008) for further details.

The marks in the above model are considered to be discrete. However, in many

data applications, it is better to account for continuous marks. For example, in the

aforementioned HIV vaccine efficacy trials, the variety of HIV strains from the HIV

sequence contained inside the vaccine reveals that discrete marks may not be a valid

model assumption. Statistical analysis for quality of life data (score) in cancer clinical

trials (OLSCHEWSKI and SCHUMACHER (1990)) is another example of continuous

mark variables.

For this reason, researches on the mark-specific hazard function for continuous

marks have been considered. This hazard function has the form

λ(t, v|z) = lim
h1,h2→0

P{T ∈ [t, t+ h1), V ∈ [v, v + h2)|T ≥ t, Z(t) = z}/h1h2, (1.4)

where V denotes a vector of continuous marks. Huang and Louis (1998) devel-
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oped the nonparametric maximum likelihood estimator of the joint distribution of

T and a single continuous mark variable V through the unconditional cumulative

mark-specific hazard function. In this paper, they also derived the asymptotic prop-

erties of the estimators. Motivated by the HIV vaccine efficacy trials, Gilbert et al.

(2004) developed nonparametric tests for investigating the relationship between the

mark-specific hazard rate function and a single continuous mark variable. Later,

Gilbert et al. (2008) expanded the scope of their work and defined the vaccine effi-

cacy (VE) as VE(t, v) = 1−λ(t, v|Z = 1)/λ(t, v|Z = 0), where Z is the vaccine group

indicator. They applied a nonparametric technique for estimating VE(t, v), and pro-

posed several semiparametric and nonparametric testing procedures for the vaccine

efficacy. Besides, the large-sample results for the procedures were established. Sun

et al. (2009) developed inferences for the mark-specific proportional hazards model

with a univariate continuous mark. This involves the model

λ(t, v|z(t)) = λ0(t, v)exp
{
β(v)T z(t)

}
, (1.5)

where the baseline hazard function λ0(·, v) depends nonparametrically on t and v,

and the p-dimensional regression parameter β(v) is the unknown continuous function

of v. In this model, given any two individuals, the ratio of their hazard functions

does not depend on time. In practice, however, this assumption may not always

be valid. Instead, models, including stratification, were studied. In particular, a

stratified mark-specific proportional hazards model with a single continuous missing

mark variable was studied by Sun and Gilbert (2012). The model takes the form

λk(t, v|z(t)) = λ0k(t, v)exp
{
β(v)T z(t)

}
, (1.6)

for k = 1, 2, ..., K, where K is the number of baseline strata. They investigated two

estimation procedures based upon the inverse probability weighted (IPW) complete-
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case (CC) method and upon the augmented inverse probability weighted (AIPW)

complete-case (CC) method. Besides, the vaccine efficacy (VE(t, v)) was accessed

under the model framework. A Goodness-of-fit Test for this model was conducted in

Sun et al. (2014).

There is a limitation when models only include one continuous mark variable. For

instance, multiple HIV sequences are contained in HIV vaccines. If more types of

HIV viruses are recognized, studied, and blocked, HIV vaccines will potentially be

more efficacious. In this sense, it is essential to develop a mark-specific proportional

hazards model with a multivariate continuum of marks. Sun et al. (2013) studied the

stratified mark-specific PH model with multivariate marks

λk(t, v|z(t)) = λ0k(t, v)exp
{
β(v, θ)T z(t)

}
, (1.7)

for k = 1, 2, ..., K, where λ0k(·, v) is the unknown baseline hazard function for kth

stratum depending nonparametrically on t and v. β(v, θ) is a known parametric

p-dimensional function with unknown parameters which takes the form

β(v, θ) = θ0 + θ1v1 + θ2v2 + θ12v1v2.

The regression parameters depend parametrically on multiple marks to avoid curse

of dimensionality problem. Although polynomial approximations for more complex

functions are generally used in real data analysis, it is desirable to develop a more flex-

ible semiparametric mark-specific proportional hazards model for multivariate marks.

In the meantime, the model can break the so-called "curse of dimensionality".

1.1.2 Single-index Model

The single-index model is one of the commonly used models in biostatistics and

econometrics to maintain latent nonlinear features for the data without complications
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of high dimensionality (Hardle and Stoker (1989)). The generic formulation of this

model is

Y = g(αTX) + ε, (1.8)

where Y is the response, X is the multivariate covariate vector, E(ε|X) = 0 almost

surely, g(·) is the unknown univariate smooth function, and α is an unknown unit vec-

tor with one component positive for identification purpose. The dimension reduction

framework of the single-index model is particularly popular since the high-dimensional

covariate X is reduced to a scalar, the linear combination αTX. The nonlinear func-

tion g(·) is utilized to preserve most of the modeling flexibility. The interpretability

of the regression parameters α is another attractive feature of the single-index model.

The first derivative of E(Y |X) with respect to X is proportional to the coefficient α.

In other words, α indicates an instantaneous rate of change in E(Y |X) as X changes.

In the survival analysis, Wang (2004) proposed a two stage approach to take account

of the potentially time-dependence and missingness of covariates in the single-index

model with the conditional hazard function. This model can be written as

λ(t|Z) = λ0(t)exp
{
φ(βTZ)

}
, (1.9)

where λ0(·), φ(·) and β are unknown. Huang and Liu (2006) studied the same model.

They adopted spline smoothing method for approximating the unknown link func-

tion φ(·) and estimated the regression parameter β based on maximum partial like-

lihood. In model (1.9), all components of covariate vector X are treated equally.

However, in real data application, the covariate vector X may often be divided into

two parts, including principal interest covariates and "nuisance" covariates. Let U be

a p-dimensional vector of principal interest covariates and Z be a q-dimensional vec-

tor of "nuisance" covariates. Lu et al. (2006) studied the partially linear single-index
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survival model

λ(t|U,Z) = λ0(t)exp
{
βTU + φ(γTZ)

}
, (1.10)

where φ(·) is unspecified and λ0(·) is known up to a parameter θ. Sun et al. (2008)

relaxed the constraint on baseline function λ0(t) and estimated unknown function φ(·)

using polynomial spline smoothing technique. Lin et al. (2016) studied a single-index

varying coefficients Cox model, and proposed a global partial likelihood method to

estimate β(·). The model takes the form

λ(t) = λ0(t)exp
{
β(αTX)TZ

}
, (1.11)

where X is the multiple biomarker vector (a vector of covariates), Z is the exposure

variable, for example, treatment group indicator, β(·) is a d -dimensional vector of un-

known varying-coefficient functions, and α is an unknown regression coefficient vector.

The uniform consistency, asymptotic normality, and semiparametrically efficiency of

the estimators were shown in the paper.

As we mentioned at the beginning of this chapter, unlike covariate, a variable

mark is only observed in individuals who fail. To the best of our knowledge, the

single-index model has not yet been introduced to explore the effects of marks in the

competing risk context. This dissertation aims to propose a semiparametric mark-

specific proportional hazards model for multivariate marks, which are incorporated

into a single-index.

1.2 Dissertation Compendium

To elucidate the objective, the remainder of this dissertation is organized as follows.

In Chapter 2, we focus on the proposed model and develop a profiled estimation proce-

dure for unknown parameters and functions in the model. An explicit computational

algorithm is given for implementation. In Chapter 3, we establish that, under cer-

tain conditions, the proposed estimators for parameters and functions are uniformly
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consistent and asymptotically normal. Chapter 4 examines our proposed model and

methods for finite-sample performance through two simulation studies. One considers

bivariate marks, and the other contains multiple marks. In Chapter 5, we illustrate

the proposed method with real data applications to two HIV vaccine efficacy trials.

The model performance and findings on the applications are discussed.



CHAPTER 2: MARK-SPECIFIC PROPORTIONAL HAZARDS MODEL FOR

MULTIVARIATE MARKS VIA A SINGLE-INDEX

In this chapter, we develop the semiparametric mark-specific proportional hazards

(PH) model for multivariate marks with a single-index. In Section 2.1, we introduce

the proposed model with related notations and assumptions that are used throughout

the dissertation. The profile estimation procedure is established for model parameters

in Section 2.2. For implementation purposes, in Section 2.3, we derive a computation

algorithm for the methodology. In Section 2.4, we discuss the variance estimations

for covariance matrices of ̂̃β(·) and θ̂.

2.1 Model Descriptions

Suppose that n independent and identically distributed observations are sampled

from the underlying population. Denote V to be the d-dimensional mark variable.

For the purpose of setting up of the identifiability condition, we let V1 be the first

component of the mark variable V , and V2 be other components of V. Then the d-

dimensional mark variable V = (V1, V
T

2 )T is assumed to be continuous with a known

and bounded support. Without loss of generality, we assume the support of V to be

[0, 1]d and rescale if needed.

For ith observation, let Ti be the failure time, C0i be the censoring time, and

τ be the end of follow-up time. The right-censored failure time Xi is defined as

min{Ti, (C0i ∧ τ)}. δi is the indicator of non-censorship. It takes value 1 if Xi is the

failure time. The possibly time-dependent covariate Zi is a p-dimensional vector. The

mark is assumed to be observed whenever δi = 1; Vi is not meaningful and undefined

when the corresponding failure time is censored. The censoring time is assumed to
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be conditionally independent of (T, V ) given Z.

We propose the semiparametric mark-specific proportional hazards (PH) model for

multivariate marks via a single-index:

λ(t, v|z(t)) = λ0(t, v)exp
{

(β(θTv))T z(t)
}
, (2.1)

where λ0(·, v) is the baseline hazard function, β(u) is a p-dimensional vector of un-

specified continuous functions of u ∈ R, and θ is a d-dimensional vector of parameters.

θTv is the index used to combine multivariate marks. For identification purpose, we

impose the restriction on the first parameter of θ, θ1 = 1.

2.2 Profile Estimation Procedure

When all the observations are i.i.d., the partial likelihood for (2.1) can be expressed

as

L(β, θ) =
n∏
i=1

[
exp{β(θTVi)

TZi(t)}∑n
k=1 Yk(Xi) exp{β(θTVi)TZk(t)}

]δi
, (2.2)

where Yi(t) = I(Xi ≥ t) is an indicator that equals 1 if the ith subject is at risk just

before time t.

Since β(·) is an unspecified p-dimensional vector, for a fixed u, we approximate

β(θTv) for θTv in a neighborhood of u using a Taylor expansion,

βl(θ
Tv) ≈ βl(u) + β′l(u)(θTv − u), l = 1, 2, . . . , p. (2.3)

Let β̃(u) =
(
β1(u), . . . , βp(u), β′1(u), . . . , β′p(u)

)T and β(u, θTv) = β(u) + β′(u)(θTv −

u). Denote Z̃i(t, u, θTv) = (1, θTv − u)T ⊗ Zi(t). where ⊗ is the Kronecker product.

Specifically, Z̃i(t, u, θTv) = (Zi(t)
T , Zi(t)

T (θTv − u))T .
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Then, for the ith observation,

β(u, θTv)TZi(t)

= β(u)TZi(t) + β′(u)TZi(t)(θ
Tv − u)

= β̃(u)T
(
Z1i(t), . . . , Zpi(t), Z1i(t)(θ

Tv − u), . . . , Zpi(t)(θ
Tv − u)

)T
= β̃(u)T Z̃i(t, u, θ

Tv). (2.4)

To estimate model parameters β(·) and θ, we use the convenient profile estimation

approach. Given θ, we estimate β(u) first.

Let Ni(t, v) = I(Xi ≤ t, δi = 1, Vi ≤ v) be the marked point counting process

for subject i. It jumps when ith observation has an uncensored failure time with

the corresponding mark Vi. Denote N∗i (t) = I(Xi ≤ t, δi = 1). Then, the localized

version of the log partial likelihood function for β(u) at a given u is

`(β̃, u, θ) =
n∑
i=1

∫ τ

0

Kh(θ
TVi − u)

{
(β̃(u))T Z̃i(t, u, θ

TVi)

− log

[ n∑
k=1

Yk(t) exp
(

(β̃(u))T Z̃k(t, u, θ
TVi)

)]}
N∗i (dt),

(2.5)

where Kh(·) = K(·/h)/h, K(·) is a symmetric kernel density function with support

[−1, 1], and h is the bandwidth.

Define

S(j)
n (t, v; β̃, u, θ) =

1

n

n∑
k=1

Yk(t) exp
(

(β̃(u))T Z̃k(t, u, θ
Tv)
)(

Z̃k(t, u, θ
Tv)
)⊗j

,

for j = 0, 1 and 2. Here a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT for a column vector a.
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Taking the derivative of (2.5) with respect to β̃(u), we obtain the score function:

U(β̃, u, θ) =
n∑
i=1

∫ τ

0

Kh(θ
TVi − u)

(
Z̃i(t, u, θ

TVi)− Z(t, β̃, u, θTVi)
)
N∗i (dt), (2.6)

where Z(t, β̃, u, θTv) = S
(1)
n (t, v; β̃, u, θ)/S

(0)
n (t, v; β̃, u, θ). The local linear maximum

partial likelihood estimator ̂̃β(u, θ) is a solution to U(β̃, u, θ) = 0, and can be com-

puted using a Newton-Raphson algorithm. The second derivative of `(β̃, u, θ) with

respect to β̃(u) yields

I(β̃, u, θ) = −
n∑
i=1

∫ τ

0

Kh(θ
TVi − u)

×
{
S

(2)
n (t, Vi; β̃, u, θ)

S
(0)
n (t, Vi; β̃, u, θ)

−
(
Z(t, β̃, u, θTVi)

)⊗2
}
N∗i (dt).

(2.7)

The estimator β̂(u, θ) of β(u) for the fixed θ is the vector consisting of the first p

components of ̂̃β(u, θ). In the following, we use β̂(u) for β̂(u, θ) for simplicity. After

incorporating the solutions β̂(u) into the partial likelihood function (2.2), we can

update θ by maximizing the following log partial likelihood function using Newton-

Raphson algorithm:

lp(θ) =
n∑
i=1

∫ τ

0

[
(β̂(θTVi))

TZi(t)− log

( n∑
k=1

Yk(t) exp
(
β̂(θTVi)

TZk(t)
))]

N∗i (dt).

(2.8)

Define

S∗(j)n (t, v; β̂, β̂′, θ) =
1

n

n∑
k=1

Yk(t) exp
(
β̂(θTv)TZk(t)

)(
v2β̂

′(θTv)TZk(t)
)⊗j

,

for j = 0, 1 and 2.

Taking derivative of (2.8) with respect to θ, the corresponding profile partial esti-
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mating function Up(θ) for θ is

Up(θ) =
n∑
i=1

∫ τ

0

{
V2iβ̂

′(θTVi)
TZi(t)−

S
∗(1)
n (t, Vi; β̂, β̂

′, θ)

S
∗(0)
n (t, Vi; β̂, β̂′, θ)

}
N∗i (dt). (2.9)

We estimate θ by θ̂ that is the root of the score equation Up(θ) = 0. The regression

function β(u) is estimated by β̂(u, θ̂).

2.3 Computational Algorithm

In this section, we derive an iteration algorithm for implementing the profiled

estimation procedure introduced in Section 2.2.

Let θ̂(s), β̂(s)(·) and β̂′(s)(·) be the estimators of θ, β(·) and β′(·) for the sth iteration,

respectively. Particularly, we denote θ(0) to be the initial value of θ, and β(0)(·), β′(0)(·)

to be the initial values of β(·) and β′(·).

The detailed computational algorithm is provided as follows.

(1) Initialize θ(0). Let u0
min = min(θT(0)V ) and u0

max = max(θT(0)V ). Then, we take

the grid of n0 evenly spaced points in [u0
min, u

0
max] and choose the initial values of

functions β(0)(u) and β′(0)(u) for u = u0
min, ..., u

0
max. Here, n0 is the number of grid

points.

(2) Given θ̂(s−1), we estimate β(·) in the following.

Let usmin = min(θ̂T(s−1)V ) and usmax = max(θ̂T(s−1)V ). n0 equally spaced grid points

are taken in the interval [usmin, u
s
max]. For every fixed grid point u = usmin, ..., u

s
max,

maximize (2.5) with respect to β̃ and solve the following local partial score equation

for β̃:

n∑
i=1

∫ τ

0

Kh(θ̂
T
(s−1)Vi − u)

×
{

(1, θ̂T(s−1)Vi − u)T ⊗ Zi(t)− Z(t, β̃, u, θ̂T(s−1)Vi)
}
N∗i (dt) = 0.

(2.10)
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Let ̂̃β(s)(u) = {β̂(s)(u)T , β̂′(s)(u)T}T be the solution. For each θ̂T(s−1)Vi, i = 1, ..., n,

search for the corresponding closest grid point u∗i . Then, β̂(s)(θ̂
T
(s−1)Vi) = β̂(u∗i ) and

β̂′(s)(θ̂
T
(s−1)Vi) = β̂′(u∗i ) for i = 1, 2, ..., n.

(3) Given constants r1 and r2, let as = usmin + r1h and bs = usmax− r2h. For given β̂(s)

and β̂′(s), the partial score equation for θ can be expressed as

n∑
i=1

∫ τ

0

I(θTVi ∈ [as, bs])

{
V2iβ̂

′
(s)(θ̂

T
(s−1)Vi)

TZi(t)

−

∑n
k=1 Yk(t) exp

(
β̂(s)(θ

TVi)
TZk(t)

)(
V2iβ̂

′
(s)(θ̂

T
(s−1)Vi)

TZk(t)
)

∑n
k=1 Yk(t) exp

(
β̂(s)(θTVi)TZk(t)

) }

×N∗i (dt) = 0.

(2.11)

The sth estimate of θ is θ̂(s), which can be solved using the Newton-Raphson algo-

rithm.

We repeat the steps (2) and (3) of the above iteration procedure until the maximum

of the absolute differences of the estimates between two successive steps meets the

convergence criteria. Let s∗ be the number of iterations. After convergence, we obtain

the final results θ̂(s∗) and
̂̃
β(s∗)(u) for u = min(θ̂T(s∗)V ), ...,max(θ̂T(s∗)V ). The estimator

β̂(u) of β(u) consists of the first p elements of ̂̃β(s∗)(u). The final solutions of (θ, β)

are denoted by (θ̂, β̂).

2.4 Variance Estimation

In this section, we discuss the variance estimation procedure for estimators, θ̂ and

β̂(·).

We propose to estimate the covariance matrix of ̂̃β(·) similar to Sun et al. (2009).
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Specifically, we let

Σ̃n(
̂̃
β(u)) =

h

n

n∑
i=1

∫ τ

0

(Kh(θ̂
TVi − u))2

×

S(2)
n (t, Vi;

̂̃
β, u, θ̂)

S
(0)
n (t, Vi;

̂̃
β, u, θ̂)

−
(
Z(t,

̂̃
β, u, θ̂TVi)

)⊗2

N∗i (dt), (2.12)

and

I(̂̃β(u), u, θ̂) = −
n∑
i=1

∫ τ

0

Kh(θ̂
TVi − u)

×

S(2)
n (t, Vi;

̂̃
β, u, θ̂)

S
(0)
n (t, Vi;

̂̃
β, u, θ̂)

−
(
Z(t,

̂̃
β, u, θ̂TVi)

)⊗2

N∗i (dt).

(2.13)

The asymptotic covariance matrix of ̂̃β(u) can be estimated by

1

nh
(I(̂̃β(u), u, θ̂)/n)−1Σ̃n(

̂̃
β(u))(I(̂̃β(u), u, θ̂)/n)−1. (2.14)

Then, the estimator for the variance of β̂(u) is the first element on the diagonal of

(2.14).

To estimate the covariate matrix of θ̂, we apply the second-order finite difference

method with profile partial likelihood for θ̂ (Zeng et al. (2016)).

From the estimation procedure for θ in Section 2.2, the profile log partial likelihood

function for θ can be written as

`p(θ) = max
β

logL(β, θ). (2.15)

Specifically, to calculate it, we maximize again the loglikelihood logL(β, θ) with θ

held fixed. In other words, we follow the steps (1) and (2) in the computational
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algorithm to evaluate β̂, and then plug in back to the partial loglikelihood function

(2.15).

Then, we can estimate the covariate matrix of θ̂ by the negative inverse of a

(d− 1)× (d− 1) matrix whose (m,n)th element is

`p(θ̂) + `p(θ̂ + bem + ben)− `p(θ̂ + bem)− `p(θ̂ + ben)

b2
, (2.16)

where em is the mth canonical basis and b is a constant of order n−1/2.



CHAPTER 3: ASYMPTOTIC RESULTS

In this chapter, we explore the uniform consistency and asymptotic normality of the

proposed estimators, β̂ and θ̂. In Section 1, we introduce the notations that are used

when stating the theorems. Section 2 lists all asymptotic properties of the proposed

estimators. Further notations and detailed proofs can be found in Appendix A.

3.1 Notations and Conditions

We assume that the bounded support of θTv is [ι1, ι2], where ι1 and ι2 are constants.

The parameter θ is identifiable up to a scale shift, and we impose the restriction on

the first element of θ, setting θ1 = 1. To facilitate notations, we denote θ = (θ1, θ
T
2 )T ,

where θ1 is the first component of θ and is equal to 1, and θ2 consists of other

components of θ. Correspondingly, we set v = (v1, v
T
2 )T , where v1 contains the first

element of v, and v2 contains other elements of v. The covariate Z(t) is possibly

time-dependent. The proofs work for time-dependent Z(t), but we may drop the

dependence of Z(t) on t when it does not cause confusion for simplicity.

To state the theorems, we introduce the following notations. We adopt
∮

to rep-

resent the integration of multidimensional v. Let Θ be the support of θ and θ0 be

the true value of θ. Under the restriction on θ, specifically, θ0 = (1, θT20)T , where

θ20 is the true value of θ2. Set S = {w(u) = (w1(u), ..., wp(u)) : u ∈ [ι1, ι2], w(u)

is continuous on [ι1, ι2]}, H = diag{Ip, hIp}, w̃ = H(wT1 , w
T
2 )T and Z̃i(u, θ

Tv) =

H−1(ZT
i , Z

T
i (θTv − u))T .

Define

• µj =
∫
ujK(u)du, νj =

∫
ujK2(u)du, for j = 0, 1 and 2,

• P (t|z) = P (X ≥ t|Z = z),
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• s(j)(t, v;w1, w2, u, θ) = E[P (t|Z)exp{w̃(u)T Z̃(u, θTv)}Z̃(u, θTv)⊗j], for j = 0

and 1,

• s̃(j)(t, w1, u) = E[P (t|Z)exp{w1(u)TZ}Z⊗j], for j = 0, 1 and 2,

• s∗(j)(t, u) = E
[
P (t|Z)exp{β(u)TZ}

(
β′(u)TZ

)⊗j]
, for j = 0, 1 and 2,

• η1(t, v; θa, θb, w1, w2) = E
[
P (t|Z)exp{w1(θTa v)TZ}

(
w2(θTb v)TZ

)]
,

• φ(t, u) = E
[
P (t|Z)exp{β(u)TZ}

(
β′(u)TZ

)
Z
]
.

Here a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT for a column vector a.

Condition A

(A.1) The possibly time-dependent covariate Z is bounded with a compact set.

(A.2) τ is finite, P (X > τ) > 0, P (C = τ) > 0 and P (C = 0|Z = z) 6= 1.

(A.3) The unknown parameter θ is bounded with a compact support Θ.

(A.4) Each component of β(u) has a continuous second derivative on u ∈ [ι1, ι2]. The

continuous second-order partial derivative of the baseline function λ0(t, v) with

respect to v exists on [0, τ ]× [0, 1]d.

(A.6) The kernel function K(·) is bounded, symmetric density function with continu-

ous derivative and compact support [−1, 1]. The bandwidth satisfies nh3 →∞,

nh4 → 0 and h2log(n)→ 0 as n→∞.

(A.7) Define M = {v|v ∈ [0, 1]d, θTv = u} and adopt
∮
to represent the integration of

multidimensional v. Functions

∮
M

∫ τ

0

{
s̃(1)(t, β, θT0 v)− s̃(1)(t, w1, u)

s̃(0)(t, w1, u)
s̃(0)(t, β, θT0 v)

}
λ0(t, v)dtdv = 0,
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and

∮ 1

0

∫ τ

0

v2

{
η1(t, v; θ0, θ, β, w2)− η1(t, v; θ, θ, w1, w2)

s̃(0)(t, w1, θTv)
s̃(0)(t, β, θT0 v)

}

× λ0(t, v)dtdv = 0,

exist a unique solution (w1, θ) for θ ∈ Θ, w1 ∈ S and any bounded function w2.

(A.8) For j = 0, 1 and 2, each component of functions s(j)(t, v;w1, w2, u, θ),

s̃(j)(t, w1, u), s∗(j)(t, u), η1(t, v; θa, θb, w1, w2) and φ(t, u) has second continuously

derivative for t ∈ [0, τ ], v ∈ [0, 1], w1 ∈ S, bounded w2, θ ∈ Θ and u ∈ [ι1, ι2].

(A.9) The matrix  s̃(2)(t, β, u) s̃(1)(t, β, u)

s̃(1)(t, β, u)T s̃(0)(t, β, u)


is nonsingular at u ∈ [ι1, ι2].

Define M0 =
{
v
∣∣∣v ∈ [0, 1]d, θT0 v = u

}
. The matrix,

∮
M0

∫ τ

0

{
s̃(2)(t, β, u)− s̃(1)(t, β, u)s̃(1)(t, β, u)T

s̃(0)(t, β, u)

}
λ0(t, v)dtdv,

is positive definite at u ∈ [ι1, ι2].



19

3.2 Asymptotic Properties of the Proposed Estimators

Theorem 1. Under Condition A, we have

(a) θ̂
p→ θ0 as n→∞.

(b) β̂(u)
p→ β(u) uniformly over u ∈ [ι1, ι2] as n→∞.

Theorem 2. Under Condition A, if nh4 → 0, then

√
n(θ̂2 − θ20)→ N(0, A−1

θ Σθ(A
−1
θ )T ),

where

Aθ =

∮ 1

0

∫ τ

0

v2

{
s∗(1)(t, θT0 v)⊗2

s∗(0)(t, θT0 v)
− s∗(2)(t, θT0 v)

}
vT2 λ0(t, v)dtdv,

Σθ =

∮ 1

0

∫ τ

0

E[ϕ2
i (t, v2)P (t|Zi) exp{β(θT0 v)TZi}]λ0(t, v)dtdv,

ϕi(t, v2) =

{(∫ ι2

ι1

ρ(u)ζ(u)duA−1
θ

)
− I
}
v2

{
β′(θT0 v)TZi −

s∗(1)(t, θT0 v)

s∗(0)(t, θT0 v)

}
− ρ(θT0 v)

{
Zi −

s̃(1)(t, β, θT0 v)

s̃(0)(t, β, θT0 v)

}
,

ζ(u) =

∮
M0

∫ τ

0

{
s̃(1)(t, β, u)s∗(1)(t, u)

s̃(0)(t, β, u)
− φ(t, u)− ∂s̃(1)(t, β, u)

∂u

}
vT2

× λ0(t, v)dtdv,

M0 is defined as M0 =
{
v|v ∈ [0, 1]d, θT0 v = u

}
in Lemma 3 and ρ(·) is defined in

(A.61) in Appendix A.
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Theorem 3. Under Condition A, if nh4 → 0, then

√
nh

[
β̂(u)− β(u)− 1

2
h2µ2(I − L)−1β′′(u)

]
→ N(0, ν0Π(u)Π(u)T ),

where

L is the linear operator that satisfies for any function g,

L(g)(u) = Ω−1(u)
∮ 1

0
Υ(v;u)g(v)dv, I is the identity operator,

ν0 =

∫
K2(u)du,

Π(u) = (I − L)−1(Ω−1/2)(u),

Ω(u) =

∮
M0

∫ τ

0

{
s̃(2)(t, β, u)− s̃(1)(t, β, u)s̃(1)(t, β, u)T

s̃(0)(t, β, u)

}
λ0(t, v)dtdv,

Υ(v;u) = −
∫ τ

0

ζ(u)A−1
θ v2

{
s∗(1)(t, θT0 v)s̃(1)(t, β, θT0 v)T

s∗(0)(t, θT0 v)
− φ(t, θT0 v)T

}
λ0(t, v)dt.



CHAPTER 4: SIMULATION STUDY

In this chapter, we conduct two simulation studies to evaluate the finite-sample

performance of the proposed model and methodology.

Basically, we implement the proposed computational algorithm introduced in Sec-

tion 2.3. Notice that in each replicate, after convergence, we obtain the final results

θ̂(s∗) and ̂̃β(s∗)(u) for u = min(θ̂T(s∗)V ), ...,max(θ̂T(s∗)V ), where s∗ is the number of

iterations. Since the estimates of θ̂ are different between any two simulations, the

resulting grid points u are different. For the purpose of performance evaluations, we

introduce an additional step as the last step (Step L) in each simulation.

Specifically, we set a certain range [a, b] to be studied and take the grid of n0 evenly

spaced points in [a, b]: u = a, a+ b−a
n0
, ..., b. In each simulation, after convergence, we

find the corresponding closest grid point uL∗i for each ui. Thus, β̂(ui) = β̂(uL
∗

i ) and

β̂′(ui) = β̂′(uL
∗

i ) for i = 1, 2, ..., n0.

This chapter is organized as follows. In Section 4.1, we conduct a simulation study

on the proposed model with bivariate marks. We illustrate the methodologies on the

case with multiple marks in Section 4.2.

4.1 Example 1: A Mark PH model with Bivariate Marks

In this section, we examine the performance of the proposed local partial likelihood

estimators on the case with bivariate marks V = (V1, V2)T . The constraint on the

first component of θ is set to be θ1 = 1 for identifiability purpose. In this case, only

the second component of θ, θ2, is estimated.

Let z be a binary covariate taking value 0 or 1 with a given probability 0.5 for each

subject. The variables (T, V ) are generated from the following multivariate mark-
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specific proportional hazards model:

λ(t, v|z) = exp{γTv + β(θTv)T z}, (4.1)

where 0 ≤ t ≤ τ with τ = 2, and v = (v1, v2)T with 0 ≤ vi ≤ 1 for i = 1, 2.

We set γ = (γ1, γ2)T = (0.6, 0.4)T and θ = (θ1, θ2)T = (1, 1.5)T . Under model (4.1),

the mark-specific baseline function is λ0(t, v) = exp{γTv} = exp{0.6v1 + 0.4v2}.

The unknown function β(·) is set to be a linear function with the form β(u) =

−1.65 + 1.0(u). We use the Epanechnikov kernel K(x) = 0.75(1− x2)I{|x| ≤ 1}.

We generate the censoring time (C0i) from a exponential distribution with mean

λ = 2. Failure time (Ti) beyond τ are considered censored. The indicator of non-

censorship δi takes the value 1 if Xi is failure time, where Xi = min(Ti, τ ∧C0i). The

censoring rates range from 20% to 30%.

The bandwidths are selected as h = 0.25, 0.35 or 0.45. Sample sizes of n = 800, 1000

and 1200 are studied. We used 400 replicates for each combination of sample size and

bandwidth.

We use n0 = n, and choose r1 = r2 = 1 when estimating θ. In Step L, we set the

interval [a, b] to be [0, 2.5]. For the variance estimation of θ̂, we use b = 9n−1/2.

Figures 4.1 and 4.2 depict the biases, the standard errors of estimates (SEE), the

means of the estimated standard error (ESE), and the coverage probabilities (CP) of

the unknown function β(·) under different settings on sample sizes and bandwidths.

They show that the bias of the estimator decreases as the sample size increases. The

estimated standard error approximates the sample standard error pretty well, and

the coverage probability is close to the nominal level (95%). The estimation results

for θ2 are summarized in Table 4.1. The parameter estimator has a smaller bias for a

larger sample size. ESE and SEE are close to each other, and the coverage probability

approaches their nominal level of 0.95 as the sample size increases.
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Figure 4.1: Plots of bias, SEE, ESE and CP for β(u) with sample size of n = 800,
n = 1000 and n = 1200 for Example 1. The number of simulations is 400. The yellow
dotted lines are for sample size 800. The red dashed lines are for sample size 1000.
The blue solid lines are for sample size 1200. Left panel is for bandwidth h = 0.25.
Right panel is for bandwidth h = 0.35.
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Figure 4.2: Plots of bias, SEE, ESE and CP for β(u) with sample size of n = 800,
n = 1000 and n = 1200 for Example 1. The number of simulations is 400. The yellow
dotted lines are for sample size 800. The red dashed lines are for sample size 1000.
The blue solid lines are for sample size 1200. The bandwidth is h = 0.45.
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Table 4.1: Summary of bias, SEE (Standard Error of Estimates), ESE (Estimated
Standard Error) and CP (Coverage Probability) for θ2 for Example 1. Each scenario
is based on 400 simulations.

n h Bias SEE ESE CP
800 0.25 0.0439 0.3417 0.3812 0.92

0.35 0.0464 0.4329 0.4599 0.92
0.45 0.0632 0.4686 0.4875 0.92

1000 0.25 0.0272 0.3037 0.3559 0.93
0.35 0.0313 0.3676 0.4043 0.94
0.45 0.0189 0.4358 0.4884 0.94

1200 0.25 0.0119 0.3209 0.3691 0.95
0.35 0.0109 0.3757 0.3695 0.94
0.45 0.0280 0.4223 0.4648 0.95
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4.2 Example 2: A Mark PH model with Three Marks

In this section, we extend the simulation settings and consider the following multi-

variate mark-specific proportional hazards model with three marks V = (V1, V2, V3)T

and the same constraint applied to θ.

Let z be a binary covariate taking value 0 or 1 with a given probability 0.5 for

each observation and v = (v1, v2, v3)T with 0 ≤ vi ≤ 1 for i = 1, 2 and 3. The vari-

ables (T, V ) are generated from the following multivariate mark-specific proportional

hazard model:

λ(t, v|z) = exp{γTv + β(θTv)T z}, (4.2)

where 0 ≤ t ≤ τ with τ = 2.

We set γ = (γ1, γ2, γ3)T = (0.6, 0.4, 0.2)T and θ = (θ1, θ2, θ3)T = (1, 1.5, 2.5)T .

Under model (4.1), the mark-specific baseline function is λ0(t, v) = exp{γTv} =

exp{0.6v1 + 0.4v2 + 0.2v3}. The unknown function β(u) is chosen to be a linear

function with the form β(u) = −1.65 + 1.0(u). We adopt the Epanechnikov kernel

K(x) = 0.75(1− x2)I{|x| ≤ 1}.

We generate the censoring times from an exponential distribution with mean λ = 1,

which yields the censoring rates ranging from 20% to 30%.

The bandwidths are selected as h = 0.35, 0.45 or 0.60. Sample sizes of n = 800, 1000

or 1200 are studied. We used 400 replicates for each combination of sample size and

bandwidth.

We use n0 = n, and choose r1 = 2 and r2 = 1.5 when estimating θ. In the last step

(Step L), we set the interval [a, b] to be [0, 5]. For the variance estimation of θ̂, we

adopt b = 10n−1/2.

From Figure 4.3, the frequency of θT0 V with values less than 1 is very small. Thus,

the performance of the estimators is expected to be unstable when θT0 V takes a value

less than one.
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Figure 4.4 and 4.5 present the evaluation results of the estimator of β(·) under

different simulation settings. The bias of the parameter estimator is close to zero,

and the ESE approximates SEE better as the sample size increases. When bandwidth

h = 0.45 or 0.60, the 95% coverage probability is about the nominal level. When

h = 0.35, the empirical coverage probability is slightly below the nominal level of

0.95 but gets close to 0.95 as the sample size increases.

Table 4.2 summarizes the estimation results for both θ2 and θ3. The biases of pa-

rameter estimators decrease with increasing sample sizes. The means of the estimated

standard errors are close to the sample standard errors, and the 95% empirical cover-

age probabilities are closer to the nominal level at 0.95 as the sample size increases.

We notice that when n = 800 and h = 0.35, in some replicates, there are not

enough data points within the neighborhood of some grid points u, which leads to

the large biases of estimators θ and significant differences between SEE and ESE. The

coverage probabilities, in this case, are close to 0.95 since this situation only happens

a couple of times. The problem goes away when h increases to 0.45 or n increases to

1000.

Figure 4.3: Histogram for θT0 V for a single simulation for sample size n = 1200.
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Figure 4.4: Plots of bias, SEE, ESE and CP for β(u) with sample size of n = 800,
n = 1000 and n = 1200 for Example 2. The number of simulations is 400. The yellow
dotted lines are for sample size 800. The red dashed lines are for sample size 1000.
The blue solid lines are for sample size 1200. Left panel is for bandwidth h = 0.45.
Right panel is for bandwidth h = 0.60.
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Figure 4.5: Plots of bias, SEE, ESE and CP for β(u) with sample size of n = 800,
n = 1000 and n = 1200 for Example 2. The number of simulations is 400. The yellow
dotted lines are for sample size 800. The red dashed lines are for sample size 1000.
The blue solid lines are for sample size 1200. The bandwidth is h = 0.35.
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Table 4.2: Summary of bias, SEE (Standard Error of Estimates), ESE (Estimated
Standard Error) and CP (Coverage Probability) for θ2 and θ3 for Example 2. Each
scenario is based on 400 simulations.

n h Parameter Bias SEE ESE CP
800 0.35 θ2 -0.0563 1.3894 0.8012 0.96

θ3 0.0573 0.8047 0.8039 0.96
0.45 θ2 0.0102 0.3881 0.3837 0.92

θ3 0.0212 0.4176 0.4254 0.93
0.60 θ2 0.0191 0.3806 0.4083 0.94

θ3 0.0380 0.4029 0.4831 0.95
1000 0.35 θ2 -0.0165 0.3536 0.3618 0.95

θ3 0.0445 0.4374 0.4787 0.96
0.45 θ2 -0.0052 0.3016 0.3542 0.95

θ3 0.0255 0.3255 0.4038 0.95
0.60 θ2 0.0024 0.3346 0.3534 0.94

θ3 0.0403 0.3714 0.4307 0.95
1200 0.35 θ2 -0.0016 0.2736 0.2843 0.95

θ3 0.0447 0.2715 0.3308 0.95
0.45 θ2 -0.0073 0.2912 0.3412 0.94

θ3 0.0175 0.2988 0.3899 0.95
0.60 θ2 -0.0032 0.3085 0.3418 0.95

θ3 0.0317 0.3495 0.4130 0.95



CHAPTER 5: DATA APPLICATIONS

In this chapter, we illustrate the proposed model and methods with the appli-

cations to two datasets from two HIV vaccine efficacy trials, namely, HVTN 505

DNA/Recombinant adenovirus type 5 (rAd5) vector HIV-1 vaccine trial and STEP/HVTN

502 trial, respectively.

The global priority and urgency of searching for a safe and effective preventive HIV

vaccine stem from the fact that approximately 75 million people have been infected by

HIV and around 32 million cases have died due to HIV at the end of 2018 since 1981,

the beginning of AIDS epidemic (World-Health-Organization (2018)). Although im-

provements in treatment, care, and prevention methods have been progressing, HIV

infection rates and mortality rates remain high. HIV-1 and HIV-2 are two types of

HIV that have been characterized. Relatively, the HIV-1 is fatal and more infective

than the HIV-2 (Gilbert et al. (2003)). HIV-1 is categorized into three groups, M,

N, and O. The majority of HIV-1 is in group M, which consist of different subtypes,

such as A, B, and C. Trials have been conducted to date showing no efficacy except

for one HIV-1 vaccine regimen, RV 144. It has been indicated to have some effects

in preventing HIV infections in Thailand (Rerks-Ngarm et al. (2009)). Two of the

primary barriers to producing an effective HIV vaccine include the large number of

mutations involved and the high degree of genetic divergence of HIV. As the afore-

mentioned motivating example in Chapter 1, genetic heterogeneity can be measured

by mark variables defined as the percentage of mismatching between two aligned

amino acid sequences (one infecting HIV sequence and one HIV sequence represented

in the vaccine) in different subregions of a protein, or multiple protein sequences.

Mark variables are considered to be continuous for the highly mutated property of
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HIV.

In both data applications, for each mark, we standardize the mark variable by

recalculating it as
Vi −min(V )

max(V )−min(V )
, (5.1)

where Vi represents the value of the mark variable for ith subject in the original

dataset. In this case, there is at least one observed value of each mark variable at the

endpoints 0 and 1.

HVTN 505 trial is studied in Section 5.1, while STEP trial is introduced in Section

5.2. Each section is organized as follows. First, we introduce the background of the

dataset. Second, we conduct a preliminary analysis on the dataset with each single

mark variable. In this part, we adopt the mark-specific proportional hazards model

with univariate continuous mark proposed in Sun et al. (2009). This model takes the

form

λ(t, v|z(t)) = λ0(t, v)exp
{
β(v)T z(t)

}
, (5.2)

where the baseline hazard function λ0(·, v) depends nonparametrically on t and v,

and the p-dimensional regression parameter β(v) is unknown continuous function of

v.

Then, various models with multiple marks are studied. Finally, we interpret and

discuss our findings on the application.

5.1 HVTN 505 Trial Analysis

HVTN 505 DNA/Recombinant adenovirus type 5 (rAd5) vector HIV-1 vaccine

efficacy trial was carried out at 21 sites in 19 cities in the United States and en-

rolled 2504 HIV-negative, fully circumcised men or male-to-female (MTF) transgen-

der people who have a male sexual partner(s). Other criteria see (deCamp et al.

(2017)) for details. A total of 2496 volunteers were randomized to receive either the

DNA/Recombinant adenovirus type 5 (rAd5) vaccine or placebo on Days 0, 28, 56,
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Table 5.1: Summary of three selected marks defined by using three sets of Env-gp120
sites for HVTN 505 trial.

Mark number of amino acid positions Site
V1 93 CD4bs antibody contract site
V2 54 CD4bs k-mer site
V3 432 Env-gp 120 site

and 168. Among 2496 participants, 47 acquired HIV infection. Specifically, there

were 27 out of 1251 vaccine recipients and 20 out of 1245 placebo recipients with the

annual HIV incidences of 2.2% for the vaccine group and 1.6% for the placebo group.

In the HVTN 505 trial, the vaccine contained three HIV-1 gp120 strains, labeled

VRC-A, VRC-B, and VRC-C, from a subtype A, B, and C strain, respectively. Since

this trial was conducted in the U.S., where subtype B viruses circulate, it is believed

that subtype B is the closest to the infecting strains. Hence, we focus on the HIV-1

gp120 strain from subtype B in the study. Motivated by the sieve analysis in (deCamp

et al. (2017)), we consider distances defined by using three sets of Env-gp120 sites.

LetM be the number of amino acid positions in the portion of the gp120 protein used

in each set. Three sets consist of CD4bs antibody contract site (M = 93), CD4bs

k-mer site (M = 54) and all Env-gp 120 sites (M = 432). Table 5.1 lists the details

of three marks. Our study begins with an analysis of each variable mark. Then, we

move on to the multiple marks analysis with one or two covariates.

5.1.1 Univariate Mark Analysis

In this section, we analyze each mark variable introduced in Table 5.1 under model

(5.2), where the covariate z is the treatment indicator taking value zero for the placebo

group and one for the vaccine group.

Sun et al. (2020) examined a bandwidth selection model using

h = Cσ̂vn
−1/3
0 , (5.3)
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where C is a constant between 2 and 5, σ̂v is the estimated standard deviation of the

observed marks, and n0 is the number of the observed failures. Using C = 5 yields

h = 0.41. Our analysis fits the model with bandwidth h = 0.40, and the results

are shown in Figure 5.1. The left panel of Figure 5.1 displays the boxplots of each

mark variable grouped by the treatment indicator. The plots of the estimated β(u)

for each mark are shown in the right panel of Figure 5.1. Overall, the logarithm

of the hazard ratio (β̂(u)) increases as the distance between HIV sequences and the

subtype B insert for each set of Env-gp120 site increases. The logarithm of the hazard

ratio is negative (positive vaccine efficacy) when distances between the infecting HIV

sequences and the subtype B vaccine insert are small. However, the evidence does not

seem to be very strong. The logarithm of the hazard ratio is approximately 0 (zero

vaccine efficacy) when the distance is around 0.22 for mark v1, 0.19 for mark v2 and

around 0.20 for mark v3, and is significantly positive (taking risks from vaccination)

when the infecting HIV sequences are highly varying from the vaccine. The results

are consistent with the sieve analysis on the relationship between Env-gp120 vaccine

similarity and genotype-specific vaccine efficacy (deCamp et al. (2017)).
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Figure 5.1: Plots of the analysis on each mark variable. Left panel is for the boxplots
of single marks grouped by treatment indicator. Right panel shows the plots of
the estimated regression coefficient β(u) for each mark and its corresponding 95%
confidence band with bandwidth h = 0.40.
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5.1.2 Multivariate Marks Analysis with One Covariate

In this section, we perform the data analysis under the proposed mark-specific

proportional hazards model (2.1) with all three marks, and the treatment indicator

z as the covariate. The bandwidth is selected as h = 0.40.

In this model, we force the constraint on the first parameter of θ to be 1. Hence, it

is natural to order the mark variable with the decreasing effects on the hazard ratios.

From the right panel of Figure 5.1, we can see that as the value of mark variable

v2 changes in one unit, the logarithm of the hazard ratio changes most significantly

(which corresponds to the largest slope). Thus, we set v2 to be the first component of

mark variable v. Specifically, θTv takes the form of θ1v2 + θ2v3 + θ3v1. The estimates

(θ̂2, θ̂3) are (0.6775, 0.1431) with standard errors (0.3335, 0.1505). This suggests that

mark v1 have no significant effects on infection against HIV-1.

The top plot in Figure 5.2 describes the distributions of the single-index (θ̂Tv)

for both the placebo group and vaccine group through their quartiles. The plot of

the estimated regression coefficients β(·) in Figure 5.2 shows that the logarithm of

the hazard ratio is negative (positive vaccine efficacy) when u is less than 0.75 and

is significantly positive (taking risks from vaccination) when u is greater than 1.

This reveals that the larger value of the combination of marks v2 and v3 may make

the vaccine effects go in the opposite direction. In other words, the further genetic

distance increases the risk of taking the HIV vaccine.
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Figure 5.2: Plots of analysis on three marks (v2, v3, v1). Top graph shows the boxplots
of θ̂Tv grouped by treatment indicator. Bottom graph shows the plot of the estimated
regression coefficient β(u) and its corresponding 95% pointwise confidence band with
bandwidth h = 0.40.
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5.1.3 Multivariate Marks Analysis with Two Covariates

Inspired by the data application in (Sun et al. (2009)), we extend the model in

the previous section by introducing an additional continuous covariate, behavior risk

score. It is expected that different individuals with different behavior risk scores may

be HIV exposure related to various distributions of θ̂Tv. In this dataset, behavior risk

takes values 0, 0.46, 0.54 and 1. We treat it as a continuous variable as recommended

by the experts since each value has its meaning. We set z = (z1, z2)T , where z1

is the treatment indicator and z2 is the behavioral risk score. Then, β(θTv)T z =

β1(θTv)T z1 +β2(θTv)T z2, where θTv = θ1v2 +θ2v3 +θ3v1. We use bandwidth h = 0.40.

The estimates (θ̂2, θ̂3) are (0.7527, 0.2678) with standard errors (0.2887, 1.1539). We

can see that the coefficient estimates of mark v1 is not significant.

The left plot of the bottom panel (β1(·)) suggests that after adjusting for covariate

behavioral risk score, the vaccine has a positive effect against HIV infection for u ≤

0.50 and has no impact with u > 0.90. This phenomenon has been observed in Sun

et al. (2020).

The plot of estimates for β2(·) in Figure 5.3 is significantly above zero when u is

between 0.30 and 1.20, supporting that higher behavioral risk score increases the risk

of HIV infection.
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Figure 5.3: Plots of analysis on three marks (v2, v3, v1) with two covariates (z1, z2).
Top graph shows the boxplots of θ̂Tv grouped by treatment indicator. Bottom graphs
depict the plots of the estimated regression coefficients β1(u) and β2(u), and their
corresponding 95% confidence band with bandwidth h = 0.40.
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5.2 STEP Trial Analysis

STEP trial was the second preventive HIV vaccine efficacy trial conducted in the

Americas, Australia, and the Caribbean. 1836 HIV seronegative men were random-

ized to receive the MRK Ad5 gag/pol/nef vaccine or placebo. There were 87 out of

1836 HIV infections: 53 out of 914 vaccine recipients (5.8% annual HIV incidence)

and 34 out of 922 placebo recipients (3.7% annual HIV incidence). The sequencing lab

tried to derive HIV sequences from all 87 infected subjects through single-genome-

amplification, but only succeed in 65 of them. We excluded the 22 men without

sequence data.

MRK Ad5 gag/pol/nef vaccine contained three HIV-1 genes: Gag, Pol, and Nef.

For each protein, it is believed that different genetic distances to the protein could

make various vaccine effects on HIV infections. For control purposes, we use the

central HXB2 as the reference strain for calculating the genetic distances to Env-Rev-

Tat-Vif-Vpr-Vpu that is not contained in the vaccine, called control marks. Since the

protein Env-Rev-Tat-Vif-Vpr-Vpu should not be able to trigger immune reactions, it is

anticipated that the effect on HIV infection should not relate to the genetic distance to

the control protein. Besides, two different bioinformatics methods, NetMHC (Buus

et al. (2003)) and Epipred (Heckerman et al. (2007)), were used to evaluate the

genetic distances for each infected individual. See (Sun et al. (2013)) for detailed

introductions to these two methods.

In our study, we include the genetic distances to the proteins Gag, Pol, Nef, and

Env-Rev-Tat-Vif-Vpr-Vpu based on two bioinformatics methods. Table 5.2 lists the

details of the five selected marks. The covariate z is the treatment group indicator

with z = 1 for the vaccine group and z = 0 for the placebo group.
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Table 5.2: Summary of five selected marks for STEP trial.

Mark Method Reference Protein
V1 Epipred HXB2 Env-Rev-Tat-Vif-Vpr-Vpu
V2 NetMHC HXB2 Env-Rev-Tat-Vif-Vpr-Vpu
V3 Epipred vaccine Gag
V4 Epipred vaccine Pol
V5 Epipred vaccine Nef

5.2.1 Univariate Mark Analysis

We study all five marks described in Table 5.2 individually based on the model

(5.2), where covariate z is the indicator of the treatment group taking value 1 for

the vaccine group and 0 for the placebo group. We adopt the bandwidth selection

formula (5.3) with constant C = 5, yielding h = 0.40. The results are given in Figures

5.4 and 5.5.

Figure 5.4 demonstrates that the vaccine efficacy would not be divergent with

the control genetic distances. Figure 5.5 depicts that vaccine efficacy would not be

divergent with the genetic distances to protein, Pol. The function β(·) is significantly

positive when the distance is between 0.40 and 0.53. For marks variable v3 and v5,

the functions β(·) are monotone increasing and are significantly positive (taking risks

from vaccination) when the genetic distance to protein Gap is greater than 0.47, and

the genetic distance to Nef is greater than 0.72.
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Figure 5.4: Plots for the analysis on each control mark (v1 and v2). Left panel shows
the boxplots of the control marks grouped by treatment indicator. Right panel shows
the plots of the estimated regression coefficient β(u) for each control mark and its
corresponding 95% confidence band with bandwidth h = 0.40.
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Figure 5.5: Plots for the analysis on single marks (v3, v4 and v5). Left panel shows
the boxplots of single marks grouped by treatment indicator. Right panel shows the
plots of the estimated regression coefficient β(u) for each mark and its corresponding
95% confidence band with bandwidth h = 0.40.
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5.2.2 Multivariate Marks Analysis

In the analysis of multiple marks in STEP trial, we select the treatment indicator

z as the covariate and design the study as follows. First, we divide five marks into

two groups, A and B, and conduct the analysis on each group. Group A contains

control marks v1 and v2, while group B contains marks v3, v4 and v5. Second, we fit

the mark-specific PH model with all five marks together. To determine the order of

marks in each study, we apply the same rule as we introduced in Section 5.1.2.

First, for group A analysis, we fit the model with θTv = θ1v1 + θ2v2, and band-

width is selected as h = 0.40. Setting θ1 = 1, the estimate θ̂2 is −0.4890, and the

corresponding standard error is 0.1962. The boxplot in Figure 5.6 describes the dis-

tributions of the single-index (θ̂Tv) for both the placebo group and the vaccine group

are close except for the slightly wider range of the distribution for placebo group. β(·)

function shows the vaccine effect on HIV infection does not vary with the combination

of the control marks.
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Figure 5.6: Plots for the analysis on bivariate marks (v1, v2). Top graph shows the
boxplots of θ̂Tv grouped by treatment indicator. Bottom graph shows the plot of the
estimated regression coefficient β(u) and its corresponding 95% pointwise confidence
band with bandwidth h = 0.40.
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Second, to analyze the marks in group B, we apply the mark-specific PH model

with bandwidth h = 0.60. θTv takes the form of θT1 v3 + θT2 v5 + θT3 v4. Setting θ1 = 1,

the estimates (θ̂2, θ̂3) are (0.9430, 0.3088) and the standard errors are (0.3900, 3.2917),

implying that v4 is not significantly related to the hazard ratio. The positive coef-

ficients give that larger values of the combination of marks in group B increase the

risk of infection. The 95% confidence band of the monotone increasing function β(·)

in Figure 5.7 displays that β(u) is significantly positive when u is between 1.30 and

1.70.

Figure 5.7: Plots for the analysis on three marks (v3, v5, v4). Top graph shows the
boxplots of θ̂Tv grouped by treatment indicator. Bottom graph shows the plot of the
estimated regression coefficient β(u) and its corresponding 95% pointwise confidence
band with bandwidth h = 0.60.
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Finally, we combine all five marks listed in Table 5.2 and adopt the model with

θTv = θT1 v3 + θT2 v1 + θT3 v5 + θT4 v2 + θT5 v4. The bandwidth is selected as h = 0.70.

Setting θ1 = 1, the estimates (θ̂2, θ̂3, θ̂4, θ̂5) are (0.9840, 1.0513,−1.4232, 0.3077), and

corresponding standard errors are (0.3797, 0.3530, 0.1498, 1.3688). The monotone in-

creasing function β(·) in Figure 5.8 shows that individuals take risks from vaccination

when u is greater than 1.20. Specifically, θTv with larger values of mark variables v3,

v1 and v5, and smaller values of mark variable v2 have higher risks of HIV infection

than that with smaller values of mark variables v3, v1 and v5, and larger values of

mark v2.

Our analysis shows that the Step vaccine does not provide protection against HIV

infection. Perhaps, it makes the vaccinees more susceptible to infection. This is

consistent with the finding of the trial in Sekaly (2008).



48

Figure 5.8: Plots for the analysis on all five marks (v3, v1, v5, v2, v4). Top graph
shows the boxplots of θ̂Tv grouped by treatment indicator. Bottom graph shows the
plot of the estimated regression coefficient β(u) and its corresponding 95% pointwise
confidence band with bandwidth h = 0.70.
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APPENDIX A: PROOFS OF THE THEOREMS

In addition to the notations defined in Section 3.1, for j = 0, 1 and 2, we also

denote

S(j)
n (t, v;w1, w2, u, θ) =

1

n

n∑
k=1

Yk(t) exp{w̃(u)T Z̃k(u, θ
Tv)}Z̃k(u, θTv)⊗j,

S∗(j)n (t, v;w1, w2, θa, θb) =
1

n

n∑
k=1

Yk(t) exp{w1(θTa v)TZk}(w2(θTb v)TZk)
⊗j.

To facilitate notations, we omit arguments w2 and θb in S
∗(0)
n (t, v;w1, w2, θa, θb) when-

ever there is no ambiguity. Specifically, S∗(0)
n (t, v;w1, θa) = S

∗(0)
n (t, v;w1, w2, θa, θb).

Before proving theorem 1, we first state a lemma applied later. It is a direct

application of Lemma A.1 in Fan et al. (2006).

Lemma 1. Under Condition A, assume that m(t, ·, ·, ·) is a continuous function at its

four arguments. Let cn(t, u, θ) = n−1
∑n

i=1 Kh(θ
TVi − u)m(t, θTVi, (θ

TVi − u)/h, Zi)δi

and c(t, u, θ) =

[ ∫
E{m(t, u, y, Zi)δi|θTVi = u}K(y)dy

]
fθTVi(u).

Suppose that E[m(t, u, y, Zi)|θTVi = u] is continuous at u. If h→ 0 and nh/log(n)→

∞, then

sup
t∈[0,τ ]

|cn(t, u, θ)− c(t, u, θ)| p→ 0.

Proof of Theorem 1.

For any vector functions w1(u) and w2(u), define

Qn(w1, w2, θ;u) =

[
Qn1(w1, w2, u, θ)

T , Qn2(w1, w2, θ)
T

]T
,
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where

Qn1(w1, w2, u, θ) =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
Tv − u)

[
Z̃i(u, θ

Tv)

− S
(1)
n (t, v;w1, w2, u, θ)

S
(0)
n (t, v;w1, w2, u, θ)

]
Ni(dt, dv),

Qn2(w1, w2, θ) =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

[
w2(θTv)TZi −

S
∗(1)
n (t, v;w1, w2, θ, θ)

S
∗(0)
n (t, v;w1, θ)

]
Ni(dt, dv),

and v2 is a vector that contains all components of v expect for the first component.

Recall the definition of M = {v|v ∈ [0, 1]d, θTv = u} and let

q(w1, w2, θ;u) =

[
q1(w1, u, θ)

T , 0, q2(w1, w2, θ)
T

]T
,

where

q1(w1, u, θ) =

∮
M

∫ τ

0

{
s̃(1)(t, β, θT0 v)− s̃(1)(t, w1, u)

s̃(0)(t, w1, u)
s̃(0)(t, β, θT0 v)

}
λ0(t, v)dtdv,

q2(w1, w2, θ) =

∮ 1

0

∫ τ

0

v2

{
η1(t, v; θ0, θ, β, w2)

− η1(t, v; θ, θ, w1, w2)

s̃(0)(t, w1, θTv)
s̃(0)(t, β, θT0 v)

}
λ0(t, v)dtdv,

and s̃(1)(t, β, θT0 v), s̃(1)(t, w1, u), s̃(0)(t, w1, u), s̃(0)(t, β, θT0 v), η1(t, v; θ0, θ, β, w2),

η1(t, v; θ, θ, w1, w2) and s̃(0)(t, w1, θ
Tv) are defined in Section 3.1.

We prove the uniform consistency of β̂(·) and θ̂ based on the proof of the following

three parts.

(1) Under the mark-specific proportional hazards model (2.1), we show that

Qn(w1, w2, θ;u) = q(w1, w2, θ;u) + op(1).

It follows that Qn(β̂, β̂′, θ̂;u) = 0 and q(β, w2, θ0;u) = 0 for any bounded w2. Under
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Condition A.7, we have that (β, θ0) is the unique solution to q(w1, w2, θ;u) = 0 for

w1 ∈ S, θ ∈ Θ and any bounded function w2.

(2) Let cn = h2 +
√
log(n)/(nh). Define

Dn = {w1 : ||w1|| ≤ C, ||w1(u1)− w1(u2)|| ≤ c(|u1 − u2|+ cn), u1, u2 ∈ [ι1, ι2]},

D′n = {w2 : ∃M > 0,∀u ∈ [ι1, ι2], ||w2(u)|| ≤M},

for some constant C, c and M .

We prove that

supu∈[ι1,ι2],w1∈Dn,w2∈D′n,θ∈Θ||Qn(w1, w2, θ;u)− q(w1, w2, θ;u)|| p→ 0.

(3) We verify that

P (β̂ ∈ Dn)→ 1, as n→∞.

The Arzala-Ascoli Theorem (Page 208 in Royden and Fitzpatrick (2010)) tells us

that if X is a compact metric space and {fn} is a uniformly bounded, equicontinuous

sequence of real-valued functions on X, then {fn} has a subsequence that converges

uniformly on X to a continuous function f on X.

Once the above three steps are established, since the interval [ι1, ι2] with the absolute

value metric is a compact metric space and β̂ ∈ Dn with probability one as n goes

to infinity, it follows that any subsequence of {β̂} is uniformly bounded and equicon-

tinuous on [ι1, ι2]. Thus, by the Arzela-Ascoli Theorem, any subsequence of {θ̂, β̂}

has a further convergent subsequence {(θ̂m, β̂m)} uniformly, such that θ̂m
p→ θ∗ and

β̂m(u)
p→ β∗(u) in u ∈ [ι1, ι2], where β∗ ∈ S. Note that

q(β∗, β̂
′, θ∗;u) = Qn(β̂, β̂′, θ̂;u)−

[
Qn(β̂, β̂′, θ̂;u)− q(β̂, β̂′, θ̂;u)

]
−
[
q(β̂, β̂′, θ̂;u)− q(β∗, β̂′, θ∗;u)

]
. (A.1)
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By part (2), the second term in (A.1) converges to zero uniformly over u ∈ [ι1, ι2]. By

part (3), the third term in (A.1) also converges to zero since q(β, w2, θ, u) is continuous

at (β∗, θ∗) uniformly in any bounded w2 and u ∈ [ι1, ι2]. Combining with the fact

that Qn(β̂, β̂′, θ̂;u) = 0, we have q(β∗, β̂′, θ∗;u) = op(1). Hence, q(β∗, β̂′, θ∗;u) = 0.

By Condition (A.7), since q(w1, w2, θ;u) = 0 has unique solution (β, θ0) for θ ∈ Θ,

β ∈ S and any bounded w2, then we have β = β∗ and θ0 = θ∗. This completes the

proof of Theorem 1.

In the following, we prove the parts (1), (2) and (3).

(1) We first prove that Qn(w1, w2, θ;u) = q(w1, w2, θ) + op(1).

Under mark-specific proportional hazards model (2.1), Mi(t, v) = Ni(t, v)

−
∫ t

0

∫ v
0
Yi(s)λ0(s, u) exp{β(θT0 u)TZi}duds. Under Condition A.8, by Lemma 1, the

asymptotic expression of Qn1(w1, w2, u, θ) as n→∞ can be expressed as

Qn1(w1, w2, u, θ)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
Tv − u)

[
Z̃i(u, θ

Tv)− S
(1)
n (t, v;w1, w2, u, θ)

S
(0)
n (t, v;w1, w2, u, θ)

]
Ni(dt, dv)

= E

{∮ 1

0

∫ τ

0

Kh(θ
Tv − u)

[
Z̃i(u, θ

Tv)− s(1)(t, v;w1, w2, u, θ)

s(0)(t, v;w1, w2, u, θ)

]
Ni(dt, dv)

}
+ op(1)

=

∮ 1

0

∫ τ

0

E

{
Kh(θ

Tv − u)

[
Z̃i(u, θ

Tv)− s(1)(t, v;w1, w2, u, θ)

s(0)(t, v;w1, w2, u, θ)

]

× Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv + op(1)

=


[∮

M

∫ τ

0

E

{[
Zi −

s̃(1)(t, w1, u)

s̃(0)(t, w1, u)

]
Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

]T
, 0


T

+ op(1). (A.2)
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By large number theory, the first part of Qn1(w1, w2, u, θ) takes the form

∮
M

∫ τ

0

{
E
[
ZiYi(t)exp{β(θT0 v)TZi}

]
− s̃(1)(t, w1, u)

s̃(0)(t, w1, u)
E
[
Yi(t)exp{β(θT0 v)TZi}

]}

× λ0(t, v)dtdv

=

∮
M

∫ τ

0

{
s̃(1)(t, β, θT0 v)− s̃(1)(t, w1, u)

s̃(0)(t, w1, u)
s̃(0)(t, β, θT0 v)

}
λ0(t, v)dtdv

= q1(w1, u, θ). (A.3)

Hence, we have

Qn1(w1, w2, u, θ) = {q1(w1, u, θ)
T , 0}T + op(1). (A.4)

Now, we derive the asymptotic expression of Qn2(w1, w2, θ). Under Condition A, it

follows from Lemma 2 (D.2) in Gilbert et al. (2008) that

Qn2(w1, w2, θ)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

[
w2(θTv)TZi −

S
∗(1)
n (t, v;w1, w2, θ, θ)

S
∗(0)
n (t, v;w1, θ)

]
Ni(dt, dv)

= E

{∮ 1

0

∫ τ

0

v2

[
w2(θTv)TZi −

S
∗(1)
n (t, v;w1, w2, θ, θ)

S
∗(0)
n (t, v;w1, θ)

]
Ni(dt, dv)

}
+ op(1)

= E

{∮ 1

0

∫ τ

0

v2

[
w2(θTv)TZi −

S
∗(1)
n (t, v;w1, w2, θ, θ)

S
∗(0)
n (t, v;w1, θ)

]

× Yi(t)λ0(t, v)exp{β(θT0 v)TZi}dtdv

}

+ op(1)

=

∮ 1

0

∫ τ

0

v2

{
η1(t, v; θ0, θ, β, w2)− η1(t, v; θ, θ, w1, w2)

s̃(0)(t, w1, θTv)
s̃(0)(t, β, θT0 v)

}
λ0(t, v)dtdv

+ op(1)

= q2(w1, w2, θ) + op(1).
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Thus, it follows that

Qn(w1, w2, θ;u) = q(w1, w2, θ;u) + op(1).

(2) By the uniform strong law of large numbers (Theorem 8.3 in Pollard (1990)), for

each continuous function w1 and any bounded w2,

supu∈[ι1,ι2]||Qn(w1, w2, θ;u)− q(w1, w2, θ;u)|| p→ 0. (A.5)

From the construction of ε-net of Dn, let D(ε,Dn, || · ||∞) be the covering number of

class Dn, we can have

logD(ε,Dn, || · ||∞) ≤ O

(
1

ε
log

(
1

ε

))
= o(n). (A.6)

Applying theorem 8.2 in Pollard (1990), together with (A.5) and (A.6), we have

supu∈[ι1,ι2],w1∈Dn,w2∈D′n,θ∈Θ||Qn(w1, w2, θ;u)− q(w1, w2, θ;u)|| p→ 0.

(3) Denote Qn1,p(β̂, hβ̂
′, θ̂;u), Ŝ(1)

n,p(t, v;u) and Ŝ
(2)
n,p(t, v;u) to be the first p elements

of Qn1(β̂, hβ̂′, u, θ̂), S(1)
n (t, v; β̂, hβ̂′, u, θ̂) and S(2)

n (t, v; β̂, hβ̂′, u, θ̂), respectively.

Let Ŝ(0)
n (t, v;u) = S

(0)
n (t, v; β̂, hβ̂′, u, θ̂). Under mark-specific proportional hazards

model (2.1), Mi(t, v) = Ni(t, v)−
∫ t

0

∫ v
0
Yi(s)λ0(s, u) exp{β(θT0 u)TZi}duds.

Then, given that u1, u2 ∈ [ι1, ι2] and |u1 − u2| ≤ h, to prove that the probabil-

ity of β̂ ∈ Dn converges to one as n → ∞, we first derive the asymptotic expres-

sion of Qn1,p(β̂, β̂
′, θ̂;u1) − Qn1,p(β̂, β̂

′, θ̂;u2). Recall the definition of M1 =
{
v|v ∈

[0, 1]d, θ̂Tv = u1

}
and let M2 =

{
v|v ∈ [0, 1]d, θ̂Tv = u2

}
.
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Consider the following decomposition of Qn1,p(β̂, β̂
′, θ̂;u1)−Qn1,p(β̂, β̂

′, θ̂;u2).

Qn1,p(β̂, β̂
′, θ̂;u1)−Qn1,p(β̂, β̂

′, θ̂;u2)

= n−1

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u1)Zi −Kh(θ̂
Tv − u2)Zi

]
Ni(dt, dv)

− n−1

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u1)−Kh(θ̂
Tv − u2)

]
Ŝ

(1)
n,p(t, v;u2)

Ŝ
(0)
n (t, v;u2)

Ni(dt, dv)

+ n−1

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ̂
Tv − u1)

[
Ŝ

(1)
n,p(t, v;u2)− Ŝ(1)

n,p(t, v;u1)

Ŝ
(0)
n (t, v;u2)

]
Ni(dt, dv)

+ n−1

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ̂
Tv − u1)Ŝ(1)

n,p(t, v;u1)

×

[
Ŝ

(0)
n (t, v;u1)− Ŝ(0)

n (t, v;u2)

Ŝ
(0)
n (t, v;u1)Ŝ

(0)
n (t, v;u2)

]
Ni(dt, dv)

≡ I + II + III + IV. (A.7)

First, we consider I. By the application of Theorem 2 in Hansen (2008), it can be
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shown that

I = n−1

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u1)Zi −Kh(θ̂
Tv − u2)Zi

]
Ni(dt, dv)

= E

{∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u1)Zi −Kh(θ̂
Tv − u2)Zi

]
Ni(dt, dv)

}

+Op

(√
log(n)/(nh)

)
=

∮ 1

0

∫ τ

0

E

{[
Kh(θ̂

Tv − u1)Zi −Kh(θ̂
Tv − u2)Zi

]
Yi(t)exp{β(θT0 v)TZi}

}

× λ0(t, v)dtdv

+Op

(√
log(n)/(nh)

)
=

∮
M1

∫ τ

0

E
{
ZiYi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

−
∮
M2

∫ τ

0

E
{
ZiYi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

+Op

(
h2 +

√
log(n)/(nh)

)
=

∮
M1

∫ τ

0

s̃(1)(t, β, θT0 v)λ0(t, v)dtdv −
∮
M2

∫ τ

0

s̃(1)(t, β, θT0 v)λ0(t, v)dtdv

+Op(cn). (A.8)

Next, we derive the asymptotic expression of II. Under Condition A.6, using a Taylor

expansion, we have

Kh(θ̂
Tv − u1)−Kh(θ̂

Tv − u2) =

{
∂

∂u
Kh

(
θ̂Tv − u2

)}
(u1 − u2)

+Op{(u1 − u2)2}. (A.9)

Then, under Condition A.8, substituting (A.9) into II, it follows from the



61

Theorem 2 in Hansen (2008) that

II = −n−1

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u1)−Kh(θ̂
Tv − u2)

]
Ŝ

(1)
n,p(t, v;u2)

Ŝ
(0)
n (t, v;u2)

Ni(dt, dv)

= −n−1

n∑
i=1

∮ 1

0

∫ τ

0

[
∂

∂u
Kh(θ̂

Tv − u2)
Ŝ

(1)
n,p(t, v;u2)

Ŝ
(0)
n (t, v;u2)

]
Ni(dt, dv)(u1 − u2)

+Op{(u1 − u2)2}

= −E

{∮ 1

0

∫ τ

0

[
∂

∂u
Kh(θ̂

Tv − u2)
Ŝ

(1)
n,p(t, v;u2)

Ŝ
(0)
n (t, v;u2)

]
Ni(dt, dv)

}
(u1 − u2)

+Op

{
(u1 − u2)2 +

√
log(n)/(nh)

}
= −

∮
M2

∫ τ

0

∂

∂u
E

{
s̃(1)(t, β̂, u2)

s̃(0)(t, β̂, u2)
Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv(u1 − u2)

+Op{(u1 − u2)2 + cn}. (A.10)

By the law of large number, we have

II = −
∮
M2

∫ τ

0

∂

∂u

{
s̃(1)(t, β̂, u2)

s̃(0)(t, β̂, u2)
E
{
Yi(t)exp{β(θT0 v)TZi}

}}
λ0(t, v)dtdv(u1 − u2)

+Op{(u1 − u2)2 + cn}

= −
∮
M2

∫ τ

0

∂

∂u

{
s̃(1)(t, β̂, u2)

s̃(0)(t, β̂, u2)
s̃(0)(t, β, θT0 v)

}
λ0(t, v)dtdv(u1 − u2)

+Op{(u1 − u2)2 + cn}. (A.11)

Before deriving the asymptotic expression of III and IV , under Condition A.8,

we apply the Taylor expansions for Ŝ(0)
n (t, v;u2), Ŝ(0)

n (t, v;u1) − Ŝ
(0)
n (t, v;u2) and

Ŝ
(1)
n,p(t, v;u2)− Ŝ(1)

n,p(t, v;u1) as follows:

Ŝ(0)
n (t, v;u2) = Ŝ(0)

n (t, v;u1) +Op(u1 − u2), (A.12)
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Ŝ(0)
n (t, v;u1)− Ŝ(0)

n (t, v;u2)

= n−1

n∑
k=1

Yk(t) exp
[
(β̂(u1))TZk + (β̂′(u1))TZk(θ̂

Tv − u1)
]

× Zk{β̂(u1)− β̂(u2)}

+ n−1

n∑
k=1

Yk(t) exp
[
(β̂(u1))TZk + (β̂′(u1))TZk(θ̂

Tv − u1)
]

× Zk(θ̂Tv − u1){β̂′(u1)− β̂′(u2)}

+Op{(u1 − u2)2}

= Ŝ(1)
n,p(t, v;u1){β̂(u1)− β̂(u2)}+ Ŝ

(1)
n,2p(t, v;u1){β̂′(u1)− β̂′(u2)}

+Op{(u1 − u2)2}, (A.13)

where

Ŝ
(1)
n,2p(t, v;u1)

= n−1

n∑
k=1

Yk(t) exp
[
(β̂(u1))TZk + (β̂′(u1))TZk(θ̂

Tv − u1)
]
Zk(θ̂

Tv − u1),
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and

Ŝ(1)
n,p(t, v;u2)− Ŝ(1)

n,p(t, v;u1)

= n−1

n∑
k=1

Yk(t) exp
[
(β̂(u1))TZk + (β̂′(u1))TZk(θ̂

Tv − u1)
]

× ZkZT
k

{
β̂(u2)− β̂(u1)

}
+ n−1

n∑
k=1

Yk(t) exp
[
(β̂(u1))TZk + (β̂′(u1))TZk(θ̂

Tv − u1)
]

× ZkZT
k (θ̂Tv − u1)

{
β̂′(u2)− β̂′(u1)

}
+Op{(u2 − u1)2}

= Ŝ(2)
n,p(t, v;u1){β̂(u2)− β̂(u1)}+ Ŝ

(1,1)
n,2p (t, v;u1){β̂′(u2)− β̂′(u1)}

+Op{(u2 − u1)2}, (A.14)

where

Ŝ
(1,1)
n,2p (t, v;u1)

= n−1

n∑
k=1

Yk(t) exp
[
(β̂(u1))TZk + (β̂′(u1))TZk(θ̂

Tv − u1)
]
× ZkZT

k (θ̂Tv − u1).

Substituting (A.12) and (A.14) into III, it follows from the Theorem 2 in Hansen
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(2008) that

III = n−1

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ̂
Tv − u1)

[
Ŝ

(1)
n,p(t, v;u2)− Ŝ(1)

n,p(t, v;u1)

Ŝ
(0)
n (t, v;u2)

]
Ni(dt, dv)

= n−1

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ̂
Tv − u1)

×

[
Ŝ

(2)
n,p(t, v;u1){β̂(u2)− β̂(u1)}+ Ŝ

(1,1)
n,2p (t, v;u1){β̂′(u2)− β̂′(u1)}

Ŝ
(0)
n (t, v;u1)

]
Ni(dt, dv)

+Op{(u2 − u1)2}

= E

{∮ 1

0

∫ τ

0

Kh(θ̂
Tv − u1)

×
[
Ŝ

(2)
n,p(t, v;u1){β̂(u2)− β̂(u1)}+ Ŝ

(1,1)
n,2p (t, v;u1){β̂′(u2)− β̂′(u1)}

Ŝ
(0)
n (t, v;u1)

]
× Yi(t)exp{β(θT0 v)TZi}λ0(t, v)dtdv

}

+Op

{
(u1 − u2)2 +

√
log(n)/(nh)

}
=

∮
M1

∫ τ

0

E

{
s̃(2)(t, β̂, u1)

s̃(0)(t, β̂, u1)
Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv{β̂(u2)− β̂(u1)}

+Op{(u2 − u1)2 + cn}. (A.15)

By large number theory, we get

III =

∮
M1

∫ τ

0

s̃(2)(t, β̂, u1)

s̃(0)(t, β̂, u1)
E
{
Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv{β̂(u2)− β̂(u1)}

+Op{(u2 − u1)2 + cn}

=

∮
M1

∫ τ

0

{
s̃(2)(t, β̂, u1)

s̃(0)(t, β̂, u1)
s̃(0)(t, β, θT0 v)

}
λ0(t, v)dtdv{β̂(u2)− β̂(u1)}

+Op{(u2 − u1)2 + cn}. (A.16)

Similarly, substituting (A.12) and (A.13) into IV , together with the application of
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Theorem 2 in Hansen (2008), we get

IV

= n−1

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ̂
Tv − u1)Ŝ(1)

n,p(t, v;u1)

[
Ŝ

(0)
n (t, v;u1)− Ŝ(0)

n (t, v;u2)

Ŝ
(0)
n (t, v;u1)Ŝ

(0)
n (t, v;u2)

]
Ni(dt, dv)

= n−1

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ̂
Tv − u1)Ŝ(1)

n,p(t, v;u1)

×

[
Ŝ

(1)
n,p(t, v;u1){β̂(u1)− β̂(u2)}+ Ŝ

(1)
n,2p(t, v;u1){β̂′(u1)− β̂′(u2)}

Ŝ
(0)
n (t, v;u1)⊗2

]

×Ni(dt, dv)

+Op{(u2 − u1)2}

= E

{∮ 1

0

∫ τ

0

Kh(θ̂
Tv − u1)Ŝ(1)

n,p(t, v;u1)

×

[
Ŝ

(1)
n,p(t, v;u1){β̂(u1)− β̂(u2)}+ Ŝ

(1)
n,2p(t, v;u1){β̂′(u1)− β̂′(u2)}

Ŝ
(0)
n (t, v;u1)⊗2

]

× Yi(t)exp{β(θT0 v)TZi}λ0(t, v)dtdv

}

+Op

{
(u1 − u2)2 +

√
log(n)/(nh)

}
=

∮
M1

∫ τ

0

E

{
s̃(1)(t, β̂, u1)s̃(1)(t, β̂, u1)T

s̃(0)(t, β̂, u1)⊗2
Yi(t)exp{β(θT0 v)TZi}

}

× λ0(t, v)dtdv{β̂(u1)− β̂(u2)}

+Op{(u2 − u1)2 + cn}. (A.17)
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By the law of large number, we get

IV =

∮
M1

∫ τ

0

s̃(1)(t, β̂, u1)s̃(1)(t, β̂, u1)T

s̃(0)(t, β̂, u1)⊗2
E
{
Yi(t)exp{β(θT0 v)TZi}

}
× λ0(t, v)dtdv{β̂(u1)− β̂(u2)}

+Op{(u2 − u1)2 + cn}

=

∮
M1

∫ τ

0

{
s̃(1)(t, β̂, u1)s̃(1)(t, β̂, u1)T

s̃(0)(t, β̂, u1)⊗2
s̃(0)(t, β, θT0 v)

}
λ0(t, v)dtdv{β̂(u1)− β̂(u2)}

+Op{(u2 − u1)2 + cn}. (A.18)

Since Qn1(β̂, β̂′, θ̂;u1) = Qn1(β̂, β̂′, θ̂;u2) = 0, by (A.7), combining the asymptotic

expressions of I, II, III and IV with u1, u2 ∈ [ι1, ι2] such that |u1 − u2| ≤ h, then

we obtain

∮
M1

∫ τ

0

{
s̃(2)(t, β̂, u1)

s̃(0)(t, β̂, u1)
− s̃(1)(t, β̂, u1)s̃(1)(t, β̂, u1)T

s̃(0)(t, β̂, u1)⊗2

}
s̃(0)(t, β, θT0 v)

× λ0(t, v)dtdv{β̂(u1)− β̂(u2)}

=

∮
M1

∫ τ

0

s̃(1)(t, β, θT0 v)λ0(t, v)dtdv −
∮
M2

∫ τ

0

s̃(1)(t, β, θT0 v)λ0(t, v)dtdv

−
∮
M2

∫ τ

0

∂

∂u

{
s̃(1)(t, β̂, u2)

s̃(0)(t, β̂, u2)
s̃(0)(t, β, θT0 v)

}
λ0(t, v)dtdv(u1 − u2)

+Op{cn + (u1 − u2)2}. (A.19)

Under Condition A.8, for the first terms on the right hand side of the equality in

(A.19), we have

∮
M1

∫ τ

0

s̃(1)(t, β, θT0 v)λ0(t, v)dtdv −
∮
M2

∫ τ

0

s̃(1)(t, β, θT0 v)λ0(t, v)dtdv = O(u1 − u2),∮
M2

∫ τ

0

s̃(1)(t, β, θT0 v)λ0(t, v)dtdv = O(1).

Under Condition A, by (A.19), it follows that P (β̂ ∈ Dn)→ 1 as n→∞.
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Before proving theorems 2 and 3, recall that we impose the restriction on the first

element of θ = (θ1, θ
T
2 )T , setting θ1 = 1. Hence, to show the asymptotic normality of

θ̂ and β̂(·) is to prove that of θ̂2 and β̂(·).

We divide the proofs of theorems 2 and 3 into the following three steps. The first

step is to consider the asymptotic expression of θ̂2−θ20, which will be shown in Lemma

2. The second step is to derive the asymptotic expansion of β̂(u)− β(u), which will

be proved in Lemma 3. The third step is to combine the results from Lemma 2 and

3 to establish the asymptotic normality of
√
n(θ̂2 − θ20) and

√
nh(β̂(u)− β(u)).

Let an = ||θ̂ − θ0||, bn = sup
u∈[ι1,ι2]

||β̂(u)− β(u)|| and b′n = sup
u∈[ι1,ι2]

||hβ̂′(u)− hβ′(u)||.

By Theorem 1, we have an → 0 and bn → 0 uniformly in probability.

Lemma 2. Under the mark-specific proportional hazards model (2.1) and Condition

A, the asymptotic expression of θ̂2 − θ20 can be written as

θ̂2 − θ20 =− 1

n
A−1
θ

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β′(θT0 v)TZi −

s∗(1)(t, θT0 v)

s∗(0)(t, θT0 v)

}
Mi(dt, dv)

− A−1
θ

∮ 1

0

W (v){β̂(θT0 v)− β(θT0 v)}dv + op(n
−1/2)

+Op((an + bn)(an + bn + h−1b′n)),

where

Aθ =

∮ 1

0

∫ τ

0

v2

{
s∗(1)(t, θT0 v)⊗2

s∗(0)(t, θT0 v)
− s∗(2)(t, θT0 v)

}
vT2 λ0(t, v)dtdv,

W (v) = v2

∫ τ

0

B(t, θT0 v)λ0(t, v)dt,

B(t, θT0 v) =

{
s∗(1)(t, θT0 v)s̃(1)(t, β, θT0 v)T

s∗(0)(t, θT0 v)
− φ(t, θT0 v)T

}
.

Proof. We shall prove Lemma 2 through deriving the asymptotic expression of

Qn2(β̂, β̂′, θ̂)−Qn2(β, β′, θ0) as well as that of Qn2(β, β′, θ0).
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First, we consider the following decomposition of Qn2(β̂, β̂′, θ̂)−Qn2(β, β′, θ0).

Qn2(β̂, β̂′, θ̂)−Qn2(β, β′, θ0)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β̂′(θ̂Tv)TZi − β′(θT0 v)TZi

− S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β̂, θ̂)

+
S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
Ni(dt, dv)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β̂′(θ̂Tv)TZi − β′(θT0 v)TZi

− S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β̂, θ̂)

+
S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
Mi(dt, dv)

+
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β̂′(θ̂Tv)TZi − β′(θT0 v)TZi

− S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β̂, θ̂)

+
S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
× Yi(t)λ0(t, v) exp{β(θT0 v)TZi}dtdv

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β̂′(θ̂Tv)TZi − β′(θT0 v)TZi

− S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β̂, θ̂)

+
S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
Mi(dt, dv)

+
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β̂′(θ̂Tv)TZi − β′(θT0 v)TZi

− S
∗(1)
n (t, v; β, β̂′, θ0, θ̂)

S
∗(0)
n (t, v; β, θ0)

+
S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
× Yi(t)λ0(t, v) exp{β(θT0 v)TZi}dtdv

+
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
S
∗(1)
n (t, v; β, β̂′, θ0, θ̂)

S
∗(0)
n (t, v; β, θ0)

− S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β̂, θ̂)

}
× Yi(t)λ0(t, v) exp{β(θT0 v)TZi}dtdv

≡ I + II + III. (A.20)
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Let us deal with II first. It can be easily shown that

II =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β̂′(θ̂Tv)TZi − β′(θT0 v)TZi

− S
∗(1)
n (t, v; β, β̂′, θ0, θ̂)

S
∗(0)
n (t, v; β, θ0)

+
S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
× Yi(t)λ0(t, v) exp{β(θT0 v)TZi}dtdv

=

∮ 1

0

∫ τ

0

v2

{
S∗(1)
n (t, v; β, β̂′, θ0, θ̂)− S∗(1)

n (t, v; β, β′, θ0, θ0)

}
λ0(t, v)dtdv

−
∮ 1

0

∫ τ

0

v2

{
S
∗(1)
n (t, v; β, β̂′, θ0, θ̂)

S
∗(0)
n (t, v; β, θ0)

− S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
× S∗(0)

n (t, v; β, θ0)λ0(t, v)dtdv

= 0. (A.21)

We now derive the asymptotic expression of III.

III =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
S
∗(1)
n (t, v; β, β̂′, θ0, θ̂)

S
∗(0)
n (t, v; β, θ0)

− S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β̂, θ̂)

}
× Yi(t)λ0(t, v) exp{β(θT0 v)TZi}dtdv

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
S
∗(1)
n (t, v; β, β̂′, θ0, θ̂)

S
∗(0)
n (t, v; β, θ0)

− S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β, θ0)

+
S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β, θ0)

− S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β̂, θ̂)

}
× Yi(t)λ0(t, v) exp{β(θT0 v)TZi}dtdv

=

∮ 1

0

∫ τ

0

v2S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

{
S
∗(0)
n (t, v; β̂, θ̂)− S∗(0)

n (t, v; β, θ0)

S
∗(0)
n (t, v; β̂, θ̂)

}
× λ0(t, v)dtdv

−
∮ 1

0

∫ τ

0

v2

{
S∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)− S∗(1)

n (t, v; β, β̂′, θ0, θ̂)

}
λ0(t, v)dtdv. (A.22)

Following the arguments in the proof of Theorem 1, it can also be shown that
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b′n = sup
u∈[ι1,ι2]

||hβ̂′(u) − hβ′(u)|| p→ 0. Together with Theorem 1, applying Taylor

expansions, we get

S∗(0)
n (t, v; β̂, θ̂) = S∗(0)

n (t, v; β, θ0) +Op(an + bn),

S∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂) = S∗(1)

n (t, v; β, β′, θ0, θ0) +Op(an + bn + h−1b′n). (A.23)

Under Condition A.8, we have

S∗(0)
n (t, v; β, θ0) = s∗(0)(t, θT0 v) + op(1),

S∗(1)
n (t, v; β, β′, θ0, θ0) = s∗(1)(t, θT0 v) + op(1). (A.24)

By Taylor expansions, we obtain

S∗(0)
n (t, v; β̂, θ̂)− S∗(0)

n (t, v; β, θ0)

= n−1

n∑
k=1

Yk(t)exp{β(θT0 v)TZk}[β′(θT0 v)TZk]v
T (θ̂ − θ0)

+ n−1

n∑
k=1

Yk(t)exp{β(θT0 v)TZk}Zk{β̂(θT0 v)− β(θT0 v)}+Op((an + bn)2)

= E

[
P (t|Z)exp{β(θT0 v)TZ}[β′(θT0 v)TZ]

]
vT (θ̂ − θ0)

+ E

[
P (t|Z)exp{β(θT0 v)TZ}Z

]
{β̂(θT0 v)− β(θT0 v)}+Op((an + bn)2)

= s∗(1)(t, θT0 v)vT (θ̂ − θ0) + s̃(1)(t, β, θT0 v)T{β̂(θT0 v)− β(θT0 v)}+Op((an + bn)2),

(A.25)
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and

S∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)− S∗(1)

n (t, v; β, β̂′, θ0, θ̂)

= n−1

n∑
k=1

Yk(t)exp{β(θT0 v)TZk}[β′(θT0 v)TZk]
⊗2vT (θ̂ − θ0)

+ n−1

n∑
k=1

Yk(t)exp{β(θT0 v)TZk}[β′(θT0 v)TZk]Zk{β̂(θT0 v)− β(θT0 v)}

+Op{(an + bn)(an + bn + h−1b′n)}

= E

[
P (t|Z)exp{β(θT0 v)TZ}[β′(θT0 v)TZ]⊗2

]
vT (θ̂ − θ0)

+ E

[
P (t|Z)exp{β(θT0 v)TZ}[β′(θT0 v)TZ]Z

]
{β̂(θT0 v)− β(θT0 v)}

+Op{(an + bn)(an + bn + h−1b′n)}

= s∗(2)(t, θT0 v)vT (θ̂ − θ0) + φ(t, θT0 v)T{β̂(θT0 v)− β(θT0 v)}

+Op{(an + bn)(an + bn + h−1b′n)}. (A.26)

By the application of Lemma 2 (D.2) in Gilbert et al. (2008), plugging (A.23), (A.24),

(A.25) and (A.26) into (A.22), simple algebra gives that

III =

∫ τ

0

∮ 1

0

v2
s∗(1)(t, θT0 v)

s∗(0)(t, θT0 v)

{
s∗(1)(t, θT0 v)vT (θ̂ − θ0)

+ s̃(1)(t, β, θT0 v)T{β̂(θT0 v)− β(θT0 v)}
}
λ0(t, v)dvdt

−
∫ τ

0

∮ 1

0

v2

{
s∗(2)(t, θT0 v)vT (θ̂ − θ0)

+ φ(t, θT0 v)T{β̂(θT0 v)− β(θT0 v)}
}
λ0(t, v)dvdt

+Op((an + bn)(an + bn + h−1b′n)).

(A.27)

We now deal with I. The process I is a locally square integrable martingale. By
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(A.23) and (A.24), from Lemma 2 (D.2) in Gilbert et al. (2008), it can be shown that

I =
1

n

∮ 1

0

∫ τ

0

v2

(
β̂′(θTv)T − β′(θT0 v)T

){ n∑
i=1

ZiMi(dt, dv)

}

− 1

n

∮ 1

0

∫ τ

0

v2

(
S
∗(1)
n (t, v; β̂, β̂′, θ̂, θ̂)

S
∗(0)
n (t, v; β̂, θ̂)

− S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

){ n∑
i=1

Mi(dt, dv)

}
= op(n

−1/2). (A.28)

Substituting (A.21), (A.27) and (A.28) into (A.20), we can obtain

Qn2(β̂, β̂′, θ̂)−Qn2(β, β′, θ0)

= Aθ(θ̂2 − θ20) +

∮ 1

0

∫ τ

0

v2B(t, θT0 v){β̂(θT0 v)− β(θT0 v)}λ0(t, v)dtdv

+ op(n
−1/2) +Op((an + bn)(an + bn + h−1b′n)), (A.29)

where

Aθ =

∮ 1

0

∫ τ

0

v2

{
s∗(1)(t, θT0 v)⊗2

s∗(0)(t, θT0 v)
− s∗(2)(t, θT0 v)

}
vT2 λ0(t, v)dtdv,

B(t, θT0 v) =

{
s∗(1)(t, θT0 v)s̃(1)(t, β, θT0 v)T

s∗(0)(t, θT0 v)
− φ(t, θT0 v)T

}
. (A.30)
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Now we consider the asymptotic expression of Qn2(β, β′, θ0). Observe that

Qn2(β,β′, θ0)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β′(θT0 v)TZi −

S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
Mi(dt, dv)

+
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β′(θT0 v)TZi −

S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
× Yi(t)λ0(t, v) exp{β(θT0 v)TZi}dtdv

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β′(θT0 v)TZi −

S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
Mi(dt, dv)

+

∮ 1

0

∫ τ

0

v2

{
S∗(1)
n (t, v; β, β′, θ0, θ0)

− S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

S∗(0)
n (t, v; β, θ0)

}
λ0(t, v)dtdv

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β′(θT0 v)TZi −

S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
Mi(dt, dv).

(A.31)

By uniform consistency of S∗(1)
n (t, v; β, β′, θ0, θ0) and S∗(0)

n (t, v; β, θ0), (A.24), it fol-

lows from Lemma 2 (D.2) in Gilbert et al. (2008) that

Qn2(β, β′, θ0) =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β′(θT0 v)TZi −

S
∗(1)
n (t, v; β, β′, θ0, θ0)

S
∗(0)
n (t, v; β, θ0)

}
Mi(dt, dv)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β′(θT0 v)TZi −

s∗(1)(t, θT0 v)

s∗(0)(t, θT0 v)

}
Mi(dt, dv)

+ op(n
−1/2). (A.32)

Under Condition A, substituting (A.32) into (A.29), with the fact that
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Qn2(β̂, β̂′, θ̂) = 0, we have

θ̂2 − θ20 =− 1

n
A−1
θ

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β′(θT0 v)TZi −

s∗(1)(t, θT0 v)

s∗(0)(t, θT0 v)

}
Mi(dt, dv)

− A−1
θ

∮ 1

0

W (v){β̂(θT0 v)− β(θT0 v)}dv + op(n
−1/2)

+Op((an + bn)(an + bn + h−1b′n)), (A.33)

where

W (v) = v2

∫ τ

0

B(t, θT0 v)λ0(t, v)dt, (A.34)

and Aθ and B(t, θT0 v) are defined in (A.30) as

Aθ =

∮ 1

0

∫ τ

0

v2

{
s∗(1)(t, θT0 v)⊗2

s∗(0)(t, θT0 v)
− s∗(2)(t, θT0 v)

}
vT2 λ0(t, v)dtdv,

B(t, θT0 v) =

{
s∗(1)(t, θT0 v)s̃(1)(t, β, θT0 v)T

s∗(0)(t, θT0 v)
− φ(t, θT0 v)T

}
.

The proof of Lemma 2 is completed.
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Before proceeding with stating and proving Lemma 3, recall the definition of

M0 =
{
v|v ∈ [0, 1]d, θT0 v = u

}
, which is the region of integration for d-dimensional

vector v that will be used throughout the proof of Lemma 3.

Lemma 3. Under the mark-specific proportional hazards model (2.1) and Condition

A, the asymptotic approximation of β̂(u)− β(u) over u ∈ [ι1, ι2] can be written as

Ω(u){β̂(u)− β(u)}

= ζ(u)(θ̂2 − θ20) +
1

2
h2µ2Ω(u)β′′(u)

+
1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

s
(1)
p (t, v; β, hβ′, u, θ0)

s(0)(t, v; β, hβ′, u, θ0)

]
Mi(dt, dv)

+Op

{
a2
n

h
+ b2

n + b′2n + cn

}
+ op(h

2 + (nh)−1/2),

where an, bn and b′n are defined in Lemma 2, cn is defined in Theorem 1,

s
(1)
p (t, v; β, hβ′, u, θ0) consists of the first p components of s(1)(t, v; β, hβ′, u, θ0), and

µ2 =

∫
u2K(u)du,

ζ(u) =

∮
M0

∫ τ

0

{
s̃(1)(t, β, u)s∗(1)(t, u)

s̃(0)(t, β, u)
− φ(t, u)− ∂s̃(1)(t, β, u)

∂u

}
vT2

× λ0(t, v)dtdv,

Ω(u) =

∮
M0

∫ τ

0

{
s̃(2)(t, β, u)− s̃(1)(t, β, u)s̃(1)(t, β, u)T

s̃(0)(t, β, u)

}
λ0(t, v)dtdv.

Proof. To prove Lemma 3, we establish the asymptotic expansions of

Qn1(β̂, β̂′, u, θ̂)−Qn1(β, β′, u, θ0) and Qn1(β, β′, u, θ0).

First, we decompose Qn1(β̂, β̂′, u, θ̂)−Qn1(β, β′, u, θ0) into the following five parts
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and derive the asymptotic expression for each part.

Qn1(β̂, β̂′, u, θ̂)−Qn1(β, β′, u, θ0)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u)Z̃i(u, θ̂
Tv)−Kh(θ̂

Tv − u)
S

(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S̃
(0)
n (t, v; β̂, hβ̂′, u, θ̂)

−Kh(θ
T
0 v − u)Z̃i(u, θ0

Tv) +Kh(θ
T
0 v − u)

S
(1)
n (t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Ni(dt, dv)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u)Z̃i(u, θ̂
Tv)−Kh(θ

T
0 v − u)Z̃i(u, θ0

Tv)

]

× Yi(t)exp{β(θT0 v)TZi}λ0(t, v)dtdv

− 1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
S

(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S
(0)
n (t, v; β, hβ′, u, θ0)

− S
(1)
n (t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]

× Yi(t)exp{β(θT0 v)TZi}λ0(t, v)dtdv

− 1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
S

(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S
(0)
n (t, v; β̂, hβ̂′, u, θ̂)

− S
(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S
(0)
n (t, v; β, hβ′, u, θ0)

]

× Yi(t)exp{β(θT0 v)TZi}λ0(t, v)dtdv

+
1

n

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ

T
0 v − u)−Kh(θ̂

Tv − u)

]
S

(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S
(0)
n (t, v; β̂, hβ̂′, u, θ̂)

× Yi(t)exp{β(θT0 v)TZi}λ0(t, v)dtdv

+
1

n

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u)Z̃i(u, θ̂
Tv)−Kh(θ̂

Tv − u)
S

(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S̃
(0)
n (t, v; β̂, hβ̂′, u, θ̂)

−Kh(θ
T
0 v − u)Z̃i(u, θ0

Tv) +Kh(θ
T
0 v − u)

S
(1)
n (t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Mi(dt, dv)

≡ I + II + III + IV + V. (A.35)

Let us start from I. Under Condition A.1 and A.6, applying a Taylor expansion
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around θ̂Tv = θT0 v, it can be shown that

Kh(θ̂
Tv − u)Z̃i(u, θ̂

Tv)−Kh(θ
T
0 v − u)Z̃i(u, θ

T
0 v)

=
∂

∂(θTv)

{
Kh(θ

T
0 v − u)Z̃i(u, θ

T
0 v)

}
vT (θ̂ − θ0) +Op

{
a2
n

h

}
=

{
∂Kh(θ

T
0 v − u)

∂(θTv)
Z̃i(u, θ

T
0 v) +Kh(θ

T
0 v − u)

∂Z̃i(u, θ
T
0 v)

∂(θTv)

}
vT (θ̂ − θ0)

+Op

{
a2
n

h

}
= −

{
∂Kh(θ

T
0 v − u)

∂u
Z̃i(u, θ

T
0 v) +Kh(θ

T
0 v − u)

∂Z̃i(u, θ
T
0 v)

∂u

}
vT (θ̂ − θ0) +Op

{
a2
n

h

}
= − ∂

∂u

{
Kh(θ

T
0 v − u)Z̃i(u, θ

T
0 v)

}
vT (θ̂ − θ0) +Op

{
a2
n

h

}
. (A.36)

Let Ip be the a p-order diagonal matrix with p elements 1 and 0 be a p × p zero

matrix. Denote e = {Ip,0}T . Substituting (A.36) into I, under Condition A, by the

Theorem 2 in Hansen (2008), the asymptotic expression of I can be written as

I =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

{[
Kh(θ̂

Tv − u)Z̃i(u, θ̂
Tv)−Kh(θ

T
0 v − u)Z̃i(u, θ

T
0 v)

]

× Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

= − 1

n

n∑
i=1

∮ 1

0

∫ τ

0

{
∂

∂u

[
Kh(θ

T
0 v − u)Z̃i(u, θ

T
0 v)

]
Yi(t)exp{β(θT0 v)TZi}

}
vT (θ̂ − θ0)

× λ0(t, v)dtdv +Op

{
a2
n

h

}
= −E

{∮ 1

0

∫ τ

0

∂

∂u

[
Kh(θ

T
0 v − u)Z̃i(u, θ

T
0 v)

]
Yi(t)exp{β(θT0 v)TZi}vTλ0(t, v)dtdv

}

× (θ̂ − θ0) +Op

{
a2
n

h
+
√
log(n)/(nh)

}
= −

∮
M0

∫ τ

0

e
∂

∂u
E

{
ZiYi(t)exp{β(u)TZi}

}
vTλ0(t, v)dtdv(θ̂ − θ0) +Op

{
a2
n

h
+ cn

}
= −

∮
M0

∫ τ

0

e
∂s̃(1)(t, β, u)

∂u
vTλ0(t, v)dtdv(θ̂ − θ0) +Op

{
a2
n

h
+ cn

}
. (A.37)
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Next, we deal with II. Let ξ(u) = {β̂(u)T−β(u)T , h[β̂′(u)T−β′(u)T ]}T . Using Taylor

expansions with the uniform consistent properties of β̂ and θ̂, we get

S(1)
n (t, v; β̂, hβ̂′, u, θ̂)− S(1)

n (t, v; β, hβ′, u, θ0)

=

[
n−1

n∑
k=1

Yk(t) exp{β(u)TZk + β′(u)TZk(θ
T
0 v − u)}Z̃k(u, θT0 v)

×
{

(β′(u)TZk) +
∂Z̃k(u, θ

T
0 v)T

∂(θTv)

}]
vT (θ̂ − θ0)

+ S(2)
n (t, v; β, hβ′, u, θ0)ξ(u) +Op

{
a2
n + b2

n + b′2n
}

= φ(n)(t, θT0 v; β, hβ′, u)vT (θ̂ − θ0)

+ S(2)
n (t, v; β, hβ′, u, θ0)ξ(u) +Op

{
a2
n + b2

n + b′2n
}
, (A.38)

where

φ(n)(t, θT0 v; β, hβ′, u) = n−1

n∑
k=1

Yk(t) exp{β(u)TZk + β′(u)TZk(θ
T
0 v − u)}Z̃k(u, θT0 v)

×
{

(β′(u)TZk) +
∂Z̃k(u, θ

T
0 v)T

∂(θTv)

}
.

Under Condition A.8, plugging (A.38) into II, by the application of Theorem 2 in
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Hansen (2008), it can be shown that

II

= − 1

n

n∑
i=1

∮ 1

0

∫ τ

0

{
Kh(θ

T
0 v − u)

[
S

(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S
(0)
n (t, v; β, hβ′, u, θ0)

− S
(1)
n (t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]

× Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

= − 1

n

n∑
i=1

∮ 1

0

∫ τ

0

{
Kh(θ

T
0 v − u)

×

[
φ(n)(t, θT0 v; β, hβ′, u)vT (θ̂ − θ0) + S

(2)
n (t, v; β, hβ′, u, θ0)ξ(u)

S
(0)
n (t, v; β, hβ′, u, θ0)

]

× Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

+Op

{
a2
n + b2

n + b′2n
}

= −E

{∮ 1

0

∫ τ

0

{
Kh(θ

T
0 v − u)

1

S
(0)
n (t, v; β, hβ′, u, θ0)

×
[
φ(n)(t, θT0 v; β, hβ′, u)vT (θ̂ − θ0) + S(2)

n (t, v; β, hβ′, u, θ0)ξ(u)
]

× Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

}

+Op

{
a2
n + b2

n + b′2n +
√
log(n)/(nh)

}
= −

∮
M0

∫ τ

0

E

{
1

s̃(0)(t, β, u)

×

eφ(t, u)vT (θ̂ − θ0) +

s̃(2)(t, β, u) 0

0 µ2s̃
(2)(t, β, u)

 ξ(u)


× Yi(t)exp{β(u)TZi}

}
λ0(t, v)dtdv

+Op

{
a2
n + b2

n + b′2n + cn
}
, (A.39)
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where

φ(t, u) = E
[
P (t|Z)exp{β(u)TZ}Z

(
β′(u)TZ

)]
.

By the law of large number, we have

II

= −
∮
M0

∫ τ

0

eφ(t, u)vT (θ̂ − θ0) +

s̃(2)(t, β, u) 0

0 µ2s̃
(2)(t, β, u)

 ξ(u)


× 1

s̃(0)(t, β, u)
E
{
Yi(t)exp{β(u)TZi}

}
λ0(t, v)dtdv

+Op

{
a2
n + b2

n + b′2n + cn
}

= −
∮
M0

∫ τ

0

eφ(t, u)vT (θ̂ − θ0) +

s̃(2)(t, β, u) 0

0 µ2s̃
(2)(t, β, u)

 ξ(u)

λ0(t, v)dtdv

+Op

{
a2
n + b2

n + b′2n + cn
}
. (A.40)

We now show the asymptotic expression of III. By Taylor expansions and Theorem

1, we have

S(0)
n (t, v; β̂, hβ̂′, u, θ̂) = S(0)

n (t, v; β, hβ′, u, θ0) +Op(an + bn + b′n),

S(1)
n (t, v; β̂, hβ̂′, u, θ̂) = S(1)

n (t, v; β, hβ′, u, θ0) +Op(an + bn + b′n), (A.41)
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and

S(0)
n (t, v; β̂, hβ̂′, u, θ̂)− S(0)

n (t, v; β, hβ′, u, θ0)

= n−1

n∑
k=1

Yk(t) exp{β(u)TZk + β′(u)TZk(θ
T
0 v − u)}(β′(u)TZk)v

T (θ̂ − θ0)

+ S(1)
n (t, v; β, hβ′, u, θ0)T ξ(u) +Op

{
a2
n + b2

n + b′2n
}

= φ
(n)
1 (t, θT0 v; β, hβ′, u)vT (θ̂ − θ0) + S(1)

n (t, v; β, hβ′, u, θ0)T ξ(u)

+Op

{
a2
n + b2

n + b′2n
}
, (A.42)

where

φ
(n)
1 (t, θT0 v; β, hβ′, u) = n−1

n∑
k=1

Yk(t) exp{β(u)TZk + β′(u)TZk(θ
T
0 v − u)}

× (β′(u)TZk).

Under Condition A.8, substituting (A.41) and (A.42) into III, by the Theorem 2 in
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Hansen (2008), it can be shown that

III =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

{
Kh(θ

T
0 v − u)S(1)

n (t, v; β̂, hβ̂′, u, θ̂)

×

[
S

(0)
n (t, v; β̂, hβ̂′, u, θ̂)− S(0)

n (t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β̂, hβ̂′, u, θ̂)S

(0)
n (t, v; β, hβ′, u, θ0)

]

× Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

{
Kh(θ

T
0 v − u)S(1)

n (t, v; β, hβ′, u, θ0)

×

[
φ

(n)
1 (t, θT0 v; β, hβ′, u)vT (θ̂ − θ0) + S

(1)
n (t, v; β, hβ′, u, θ0)T ξ(u)

S
(0)
n (t, v; β, hβ′, u, θ0)⊗2

]

× Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

+Op

{
a2
n + b2

n + b′2n
}

=

∮
M0

∫ τ

0

E

{
es̃(1)(t, β, u)

×

[
s∗(1)(t, u)vT (θ̂ − θ0) + {s̃(1)(t, β, u)T , 0T}ξ(u)

s̃(0)(t, β, u)⊗2

]

× Yi(t)exp{β(u)TZi}

}
λ0(t, v)dtdv

+Op

{
a2
n + b2

n + b′2n + cn
}

=

∮
M0

∫ τ

0

E

{
es̃(1)(t, β, u)

×

[
s∗(1)(t, u)vT (θ̂ − θ0) + s̃(1)(t, β, u)T{β̂(u)− β(u)}

s̃(0)(t, β, u)⊗2

]

× Yi(t)exp{β(u)TZi}

}
λ0(t, v)dtdv

+Op

{
a2
n + b2

n + b′2n + cn
}
. (A.43)
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By large number theory, we have

III =

∮
M0

∫ τ

0

es̃(1)(t, β, u)

×

[
s∗(1)(t, u)vT (θ̂ − θ0) + s̃(1)(t, β, u)T{β̂(u)− β(u)}

s̃(0)(t, β, u)⊗2

]

× E
{
Yi(t)exp{β(u)TZi}

}
λ0(t, v)dtdv

+Op

{
a2
n + b2

n + b′2n + cn
}

=

∮
M0

∫ τ

0

es̃(1)(t, β, u)

×

[
s∗(1)(t, u)vT (θ̂ − θ0) + s̃(1)(t, β, u)T{β̂(u)− β(u)}

s̃(0)(t, β, u)

]

× λ0(t, v)dtdv

+Op

{
a2
n + b2

n + b′2n + cn
}
. (A.44)

Under Condition A, by a Taylor expansion, it can be shown that

IV =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

{[
Kh(θ

T
0 v − u)−Kh(θ̂

Tv − u)

]
S

(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S
(0)
n (t, v; β̂, hβ̂′, u, θ̂)

× Yi(t)exp{β(θT0 v)TZi}

}
λ0(t, v)dtdv

= Op

{
a2
n

h

}
. (A.45)
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Finally, we decompose V into the following two parts.

V =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u)Z̃i(v, u; θ̂)−Kh(θ̂
Tv − u)

S
(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S̃
(0)
n (t, v; β̂, hβ̂′, u, θ̂)

−Kh(θ
T
0 v − u)Z̃i(v, u; θ0) +Kh(θ

T
0 v − u)

S
(1)
n (t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Mi(dt, dv)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ̂

Tv − u)−Kh(θ
T
0 v − u)

]

×
[
Z̃i(v, u; θ0)− S

(1)
n (t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Mi(dt, dv)

+
1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ̂
Tv − u)

[(
Z̃i(v, u; θ̂)− Z̃i(v, u; θ0)

)

−

(
S

(1)
n (t, v; β̂, hβ̂′, u, θ̂)

S̃
(0)
n (t, v; β̂, hβ̂′, u, θ̂)

− S
(1)
n (t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

)]
Mi(dt, dv)

= Xn(τ) + Yn(τ). (A.46)

Under Condition A, it can be shown that

Xn(τ) = op((nh)−1/2),

Yn(τ) = op((nh)−1/2). (A.47)

Substituting the asymptotic expression of I, II, III, IV and V , that is, (A.37),

(A.40), (A.44), (A.45) and (A.47), respectively, into Qn1(β̂, β̂′, u, θ̂)−Qn1(β, β′, u, θ0),
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we obtain

Qn1(β̂, β̂′, u, θ̂)−Qn1(β, β′, u, θ0)

= eζ(u)(θ̂2 − θ20)−
∮
M0

∫ τ

0

s̃(2)(t, β, u) 0

0 µ2s̃
(2)(t, β, u)

 ξ(u)λ0(t, v)dtdv

+

∮
M0

∫ τ

0

e
s̃(1)(t, β, u)s̃(1)(t, β, u)T

s̃(0)(t, β, u)
λ0(t, v)dtdv{β̂(u)− β(u)}

+Op

{
a2
n

h
+ b2

n + b′2n + cn

}
+ op((nh)−1/2), (A.48)

where

ζ(u) =

∮
M0

∫ τ

0

{
s̃(1)(t, β, u)s∗(1)(t, u)

s̃(0)(t, β, u)
− φ(t, u)− ∂s̃(1)(t, β, u)

∂u

}
vT2

× λ0(t, v)dtdv.

(A.49)

LetQn1,p(β, β
′, u, θ0) and S(1)

n,p(t, v; β, hβ′, u, θ0) be the first p elements ofQn1(β, β′, u, θ0)

and S(1)
n (t, v; β, hβ′, u, θ0), respectively. We now derive the asymptotic expression of

Qn1,p(β, β
′, u, θ0). Observe that

Qn1,p(β,β
′, u, θ0)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

S
(1)
n,p(t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Ni(dt, dv)

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

S
(1)
n,p(t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Mi(dt, dv)

+
1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

S
(1)
n,p(t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]

× Yi(t) exp{β(θT0 v)TZi}λ0(t, v)dtdv

≡ Rn(u) +Dn(u). (A.50)
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We first consider Dn(u). Note that

Dn(u) =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

S
(1)
n,p(t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Yi(t)

×
[

exp{β(θT0 v)TZi} − exp{β(u)TZi + β′(u)TZi(θ
T
0 v − u)}

+ exp{β(u)TZi + β′(u)TZi(θ
T
0 v − u)}

]
× λ0(t, v)dtdv

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

S
(1)
n,p(t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Yi(t)

×
[

exp{β(θT0 v)TZi} − exp{β(u)TZi + β′(u)TZi(θ
T
0 v − u)}

]
× λ0(t, v)dtdv.

(A.51)

Using a Taylor expansion around |θT0 v − u| < h, we have

exp{β(θT0 v)TZi} − exp{β(u)TZi + β′(u)TZi(θ
T
0 v − u)}

=
1

2
exp{β(u)TZi + β′(u)TZi(θ

T
0 v − u)}β′′(u)TZi(θ

T
0 v − u)2 + op(h

2). (A.52)



87

Substituting (A.52) into Dn(u), we get

Dn(u) =
1

2n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

S
(1)
n,p(t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Yi(t)

×
[

exp{β(u)TZi + β′(u)TZi(θ
T
0 v − u)}β′′(u)TZi(θ

T
0 v − u)2

]
× λ0(t, v)dtdv + op(h

2)

=
1

2
h2

∮
M0

∫ τ

0

E

{[
Ziµ2 −

s̃(1)(t, β, u)

s̃(0)(t, β, u)
µ2

]
Yi(t) exp{β(u)TZi}β′′(u)TZi

}

× λ0(t, v)dtdv + op(h
2)

=
1

2
h2µ2

∮
M0

∫ τ

0

E

{[
Zi −

s̃(1)(t, β, u)

s̃(0)(t, β, u)

]
Yi(t) exp{β(u)TZi}Zi

}

× λ0(t, v)dtdvβ′′(u) + op(h
2)

=
1

2
h2µ2Ω(u)β′′(u) + op(h

2), (A.53)

where

Ω(u) =

∮
M0

∫ τ

0

{
s̃(2)(t, β, u)− s̃(1)(t, β, u)s̃(1)(t, β, u)T

s̃(0)(t, β, u)

}
λ0(t, v)dtdv. (A.54)

Now, we want to show that
√
nhRn(u) is asymptotically normally distributed with

mean zero and covariance matrix ν0Ω(u).

Observe that

〈
√
nhRn(u),

√
nhRn(u)〉(τ)

=
h

n

n∑
i=1

∮ 1

0

∫ τ

0

K2
h(θT0 v − u)

[
Zi −

S
(1)
n,p(t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]⊗2

× Yi(t) exp{β(θT0 v)TZi}λ0(t, v)dtdv.
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Under Condition A.6 and A.9, it follows from the application of Lemma 1 that

lim
n→∞

E〈
√
nhR∗n(u),

√
nhR∗n(u)〉(τ)

= ν0

∮
M0

∫ τ

0

E

{[
Z − s̃(1)(t, β, u)

s̃(0)(t, β, u)

]⊗2

P (t|Z) exp{β(u)TZ}

}
λ0(t, v)dtdv

= ν0Ω(u).

Under Condition A, applying Lemma 2 (D.2) in Gilbert et al. (2008), it can be shown

that

√
nhRn(u)

=
√
nh· 1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

S
(1)
n,p(t, v; β, hβ′, u, θ0)

S
(0)
n (t, v; β, hβ′, u, θ0)

]
Mi(dt, dv)

=

√
h

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

s
(1)
p (t, v; β, hβ′, u, θ0)

s(0)(t, v; β, hβ′, u, θ0)

]
Mi(dt, dv)

+ op{(nh)−1/2}. (A.55)

Using Martingale Central Limit Theorem, it follows that
√
nhRn(u) is asymptotically

normally distributed with mean zero and covariance ν0Ω(u).

Substituting (A.50), the asymptotic expression of Qn1,p(β, β
′, u, θ0), into (A.48), to-

gether with the fact that Qn1(β̂, β̂′, u, θ̂) = 0, we can obtain

1

n

n∑
i=1

∮ 1

0

∫ τ

0

Kh(θ
T
0 v − u)

[
Zi −

s
(1)
p (t, v; β, hβ′, u, θ0)

s(0)(t, v; β, hβ′, u, θ0)

]
Mi(dt, dv)

= −ζ(u)(θ̂2 − θ20) + Ω(u){β̂(u)− β(u)} − 1

2
h2µ2Ω(u)β′′(u)

+Op

{
a2
n

h
+ b2

n + b′2n + cn

}
+ op{(nh)−1/2 + h2}, (A.56)
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where Ω(u) is defined in (A.54) as

Ω(u) =

∮
M0

∫ τ

0

{
s̃(2)(t, β, u)− s̃(1)(t, β, u)s̃(1)(t, β, u)T

s̃(0)(t, β, u)

}
λ0(t, v)dtdv,

and ζ(u) is defined in (A.49) as

ζ(u) =

∮
M0

∫ τ

0

{
s̃(1)(t, β, u)s∗(1)(t, u)

s̃(0)(t, β, u)
− φ(t, u)− ∂s̃(1)(t, β, u)

∂u

}
vT2

× λ0(t, v)dtdv.

The proof of Lemma 3 is completed.
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We shall finish the proofs of Theorem 2 and 3 by combining the results of Lemma

2 and 3.

Proof of Theorem 2.

Recall that the asymptotic expansion of θ̂2 − θ20 is shown in (A.33) as:

θ̂2 − θ20 =− 1

n
A−1
θ

n∑
i=1

∮ 1

0

∫ τ

0

v2

{
β′(θT0 v)TZi −

s∗(1)(t, θT0 v)

s∗(0)(t, θT0 v)

}
Mi(dt, dv)

− A−1
θ

∮ 1

0

W (v){β̂(θT0 v)− β(θT0 v)}dv + op(n
−1/2)

+Op((an + bn)(an + bn + h−1b′n)),

where Aθ and B(t, θT0 v) are defined in (A.30), and W (v) is defined in (A.34):

Aθ =

∮ 1

0

∫ τ

0

v2

{
s∗(1)(t, θT0 v)⊗2

s∗(0)(t, θT0 v)
− s∗(2)(t, θT0 v)

}
vT2 λ0(t, v)dtdv,

W (v) = v2

∫ τ

0

B(t, θT0 v)λ0(t, v)dt,

B(t, θT0 v) =

{
s∗(1)(t, θT0 v)s̃(1)(t, β, θT0 v)T

s∗(0)(t, θT0 v)
− φ(t, θT0 v)T

}
.

We first substitute the asymptotic expression of θ̂2 − θ20, (A.33), into (A.56), the

asymptotic approximation of β̂(u)− β(u):

Gn(u) = Ω(u){β̂(u)− β(u)} − 1

2
h2µ2Ω(u)β′′(u)

+ ζ(u)A−1
θ

∮ 1

0

W (v){β̂(θT0 v)− β(θT0 v)}dv

+Op

{
a2
n

h
+ b2

n + b′2n +
anb
′
n

h
+
bnb
′
n

h
+ cn

}
+ op{(nh)−1/2 + h2 + n−1/2},

(A.57)
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where

Gn(u) =
1

n

n∑
i=1

∮ 1

0

∫ τ

0

[
Kh(θ

T
0 v − u)

[
Zi −

s
(1)
p (t, v; β, hβ′, u, θ0)

s(0)(t, v; β, hβ′, u, θ0)

]

− ζ(u)A−1
θ v2

{
β′(θT0 v)TZi −

s∗(1)(t, θT0 v)

s∗(0)(t, θT0 v)

}]
Mi(dt, dv),

and s(1)
p (t, v; β, hβ′, u, θ0) consists of the first p components of s(1)(t, v; β, hβ′, u, θ0).

Recall that the range of θT0 v is [ι1, ι2], and we impose the restriction on the first

element of θ, setting θ1 = 1. Define set Mκ =
{
v
∣∣∣v ∈ [0, 1]d, θT0 v = κ

}
. Then, with

Jacobian determinant 1/‖θ0‖, it can be shown that

∮ 1

0

W (v){β̂(θT0 v)− β(θT0 v)}dv =

∫ ι2

ι1

∮
Mκ

W (v){β̂(κ)− β(κ)} 1

‖θ0‖
dvdκ. (A.58)

Denote

γ(κ) =

∮
Mκ

W (v)
1

‖θ0‖
dv,

Ψ(κ;u) = −ζ(u)A−1
θ γ(κ). (A.59)

Substituting (A.58) and (A.59) into (A.57), we have

Gn(u) = Ω(u){β̂(u)− β(u)} − 1

2
h2µ2Ω(u)β′′(u)

−
∫ ι2

ι1

Ψ(κ;u){β̂(κ)− β(κ)}dκ

+Op

{
a2
n

h
+ b2

n + b′2n +
anb
′
n

h
+
bnb
′
n

h
+ cn

}
+ op{(nh)−1/2 + h2 + n−1/2}.

(A.60)
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Let ρ be a function in S that satisfies the following integral equation

γ(κ) = ρ(κ)Ω(κ)−
∫ ι2

ι1

ρ(u)Ψ(κ;u)du. (A.61)

Then it follows that

∫ ι2

ι1

γ(κ){β̂(κ)− β(κ)}dκ

=

∫ ι2

ι1

ρ(κ)Ω(κ){β̂(κ)− β(κ)}dκ−
∫ ι2

ι1

∫ ι2

ι1

ρ(u)Ψ(κ;u)du{β̂(κ)− β(κ)}dκ.

(A.62)

Applying (A.62) to (A.60), we have

∫ ι2

ι1

γ(κ){β̂(κ)− β(κ)}dκ

=
1

2
h2µ2

∫ ι2

ι1

ρ(u)Ω(u)β′′(u)du+

∫ ι2

ι1

ρ(u)Gn(u)du

+Op

{
a2
n

h
+ b2

n + b′2n +
anb
′
n

h
+
bnb
′
n

h
+ cn

}
+ op{(nh)−1/2 + h2 + n−1/2},

(A.63)

where

∫ ι2

ι1

ρ(u)Gn(u)du

=
1

n

n∑
i=1

∮ 1

0

∫ τ

0

[∫ ι2

ι1

ρ(u)Kh(θ
T
0 v − u)

[
Zi −

s
(1)
p (t, v; β, hβ′, u, θ0)

s(0)(t, v; β, hβ′, u, θ0)

]
du

−
∫ ι2

ι1

ρ(u)ζ(u)A−1
θ v2

{
β′(θT0 v)TZi −

s∗(1)(t, θT0 v)

s∗(0)(t, θT0 v)

}
du

]
Mi(dt, dv).
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Notice that

∫ ι2

ι1

ρ(u)Kh(θ
T
0 v − u)

[
Zi −

s
(1)
p (t, v; β, hβ′, u, θ0)

s(0)(t, v; β, hβ′, u, θ0)

]
du

= ρ(θT0 v)

[
Zi −

s̃(1)(t, β, θT0 v)

s̃(0)(t, β, θT0 v)

]
+Op(h

2). (A.64)

From (A.57), we can also obtain

bn = Op

{
a2
n

h
+
anb
′
n

h
+
bnb
′
n

h

}
+ op{(nh)−1/2 + h2}, (A.65)

and

b′n = Op

{
a2
n

h
+
anb
′
n

h
+
bnb
′
n

h

}
+ op{(nh)−1/2 + h2}. (A.66)

By Lemma 2, plugging (A.63) into the asymptotic expression of θ̂2 − θ20, (A.33),

together with (A.64), (A.65) and (A.66) and if nh4 → 0, then

θ̂2 − θ20 = A−1
θ n−1

n∑
i=1

∮ 1

0

∫ τ

0

ϕi(t, v2)Mi(dt, dv) + op(n
−1/2). (A.67)

where

ϕi(t, v2) =

{(∫ ι2

ι1

ρ(u)ζ(u)duA−1
θ

)
− I
}
v2

{
β′(θT0 v)TZi −

s∗(1)(t, θT0 v)

s∗(0)(t, θT0 v)

}
− ρ(θT0 v)

{
Zi −

s̃(1)(t, β, θT0 v)

s̃(0)(t, β, θT0 v)

}
. (A.68)

It follows that
√
n(θ̂2 − θ20)→ N(0, A−1

θ Σθ(A
−1
θ )T ),

where

Σθ =

∮ 1

0

∫ τ

0

E[ϕ2
i (t, v2)P (t|Zi) exp{β(θT0 v)TZi}]λ0(t, v)dtdv.
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Here, we complete the proof of Theorem 2.
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Proof of Theorem 3.

To prove Theorem 3, we further using (A.57). Let Υ(v;u) = −ζ(u)A−1
θ W (v). Then

(A.57) can be rewritten as

Gn(u) = Ω(u){β̂(u)− β(u)} − 1

2
h2µ2Ω(u)β′′(u)

−
∮ 1

0

Υ(v;u){β̂(θT0 v)− β(θT0 v)}dv

+Op

{
a2
n

h
+ b2

n + b′2n +
anb
′
n

h
+
bnb
′
n

h
+ cn

}
+ op{(nh)−1/2 + h2 + n−1/2}.

(A.69)

Denote L to be the linear operator that satisfies for any function g,

L(g)(u) = Ω−1(u)

∮ 1

0

Υ(v;u)g(v)dv. (A.70)

Set

rn = Op

{
a2
n

h
+ b2

n + b′2n +
anb
′
n

h
+
bnb
′
n

h
+ cn

}
+ op{(nh)−1/2 + h2 + n−1/2}. (A.71)

Substituting (A.70) and (A.71) into (A.69), we get

Gn(u) +
1

2
h2µ2Ω(u)β′′(u) = Ω(u){β̂(u)− β(u)}+ rn

−
∮ 1

0

Υ(v;u){β̂(θT0 v)− β(θT0 v)}dv

Ω(u)−1Gn(u) +
1

2
h2µ2β

′′(u) = {β̂(u)− β(u)}+ rn

− Ω(u)−1

∮ 1

0

Υ(v;u){β̂(θT0 v)− β(θT0 v)}dv

Ω(u)−1Gn(u) +
1

2
h2µ2β

′′(u) = {β̂(u)− β(u)} − L(β̂ − β)(u) + rn

{β̂(u)− β(u)} =
1

2
h2µ2(I − L)−1(β′′)(u)

+ (I − L)−1Ω(u)−1Gn(u) + rn. (A.72)
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By Martingale Central Limit Theorem,
√
nhGn(u) converges to a normal distribution.

It can be shown that
√
nh(I − L)−1Ω(u)−1Gn(u) is also asymptotically normal.

Combining (A.65), (A.66) and (A.72), if nh4 → 0, then we have

√
nh

[
β̂(u)− β(u)− 1

2
h2µ2(I − L)−1β′′(u)

]
→ N(0, ν0Π(u)Π(u)T ),

where Π(u) = (I − L)−1(Ω−1/2)(u).

The proof of Theorem 3 is finished.


