
OPTICAL DISPLACEMENT MEASUREMENT BY IMAGE CORRELATION

by

Nathan Lambert

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Mechanical Engineering

Charlotte

2019

Approved by:

Dr. Steve Patterson

Dr. Kevin Lawton

Dr. Tom Suleski

ii

©2019
Nathan Lambert

ALL RIGHTS RESERVED

iii

ABSTRACT

NATHAN LAMBERT. optical displacement measurement by image correlation.
(Under the direction of DR. STEVE PATTERSON)

This thesis describes the design and verification of a scanning, optical, displacement

measurement instrument, which utilizes digital image correlation (DIC) to measure

displacement. This system is intended to provide proof of concept for a technique to

be incorportated into a optical creep measurement instrument. This system captures

magnified images of a wire sample, and compares these images against a set of target

images using normalized cross-correlation in order to locate a unique set of features

on a wire sample. A linear encoder measures the displacement of the wire as it is

translated axially in relation to the imaging system. The total distance between

two points on the wire is computed by summing the global coordinate measurement

from the linear encoder and the local coordinate scale measurement using image

correlation. The components which were designed for this system include, a co-axially

illuminated imaging system, flexure based mounting system which allows for high

precision component alignment, and a high accuracy linear positioning system. The

goal for this system is the capability of resolving the position of specific features on

a wire, to 10 nm without the need for special preparation of the samples. The proof

of concept prototype, performed a series of 40 DIC based position measurements,

at a rate of one measurement per second, resulting in a repeatability uncertainty

of 4.58 nm. This level of performance demonstrates the viability of this method of

displacement measurement, for implementation into a complete creep measurement

instrument. The primary sources of measurement uncertainty are thermal in nature

and could be reduced with tighter environmental temperature control and further

design for thermal stability.

iv

DEDICATION

I want to dedicate this thesis to my wife, Brittney. Her support during this process

has been essential. Without it, this thesis would not be possible.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Steven R. Patterson, whose incredible knowl-

edge, guidance, and mentorship made this thesis possible. I would also like to thank

Dr. Kevin M. Lawton, whose invaluable insight has been essential in the creation

of this thesis. Additionally, Dr. Alan R. Freitag and the Graduate School at UNC

Charlotte provided an immensely generous veteran graduate student assistantship.

Micheal J. Coniglio of Heidenhain Corporation provided assistance and material sup-

port that is greatly appreciated.

vi

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS 1

CHAPTER 1: INTRODUCTION 1

1.1. Purpose 1

1.2. Previous Work 3

1.2.1. Previous measurements at UNC Charlotte 4

1.2.2. Instrument goal 4

1.2.3. Overall instrument design 4

CHAPTER 2: CAMERA SYSTEM 6

2.1. Magnification System Design 7

CHAPTER 3: ILLUMINATION SYSTEM 18

3.1. Stray Light Control 19

CHAPTER 4: WIRE HOLDER ASSEMBLY 21

CHAPTER 5: LINEAR ENCODER 27

CHAPTER 6: SOFTWARE 29

6.1. Multi-Threading 30

6.1.1. Main thread 31

6.1.2. Camera thread 32

6.1.3. Measurement averaging thread 32

6.1.4. Encoder thread 33

vii

6.1.5. Encoder averaging thread 33

6.1.6. Temperature thread 34

6.1.7. Picomotor thread 34

6.1.8. Vertical control thread 34

CHAPTER 7: NORMALIZED CROSS-CORRELATION 36

7.1. Correlation With Noise 40

7.1.1. Sharpness vs noise study 42

CHAPTER 8: SUB PIXEL RESOLUTION 44

CHAPTER 9: MEASUREMENT UNCERTAINTY 48

9.1. Camera Position Measurement Uncertainty 48

9.2. Encoder Position Measurement Uncertainty 53

9.3. Static Drift 54

9.4. Dynamic Drift 55

9.5. Combined Camera and Encoder Measurement Uncertainty 57

CHAPTER 10: CONCLUSIONS 58

CHAPTER 11: FUTURE WORK 59

11.1.Thermal Control 59

11.2.Creep Measurement Instrument Design 59

REFERENCES 61

APPENDIX A: MATLAB CODE 62

APPENDIX B: C++ CODE 68

APPENDIX C: Encoder Uncertainty Analysis 114

viii

LIST OF TABLES

TABLE 2.1: Final design lens spacing. 8

TABLE 2.2: Thin lens model variable definitions. 9

TABLE 2.3: Lens properties. 11

TABLE 2.4: Microscope specifications. 15

TABLE 4.1: Picomotor specifications 25

TABLE 9.1: Variables used to determine DIC based location
measurement uncertainty

49

ix

LIST OF FIGURES

FIGURE 1.1: Complete displacement measurement instrument 2

FIGURE 2.1: Camera assembly 6

FIGURE 2.2: Ray diagram 8

FIGURE 2.3: Seidel diagram 13

FIGURE 2.4: Modulation transfer function 14

FIGURE 2.5: Microscope images 15

FIGURE 2.6: Microscope image FFTs 16

FIGURE 2.7: Image path 16

FIGURE 2.8: Camera fine adjustment flexure 17

FIGURE 3.1: Illumination path 18

FIGURE 4.1: Wire holder on rotational flexure with screw adjustment 21

FIGURE 4.2: Relations for spring deflection and flexure rotation 22

FIGURE 4.3: Vertical axis flexure and piezo actuator 24

FIGURE 4.4: Picomotor 25

FIGURE 5.1: Encoder flexure 27

FIGURE 6.1: Simultaneous thread operations 31

FIGURE 6.2: Averaging of multiple image locations 33

FIGURE 6.3: Vertical axis control block diagram 35

FIGURE 7.1: Sine function: f(x) = asin(x) + b, a = 1, b = 1 37

FIGURE 7.2: The peak of the curve represents where the sine
waves completely overlap

39

FIGURE 7.3: Standard deviation vs number of samples being correlated
when signal to noise ratio is low

41

x

FIGURE 7.4: Standard deviation vs number of samples being correlated
when signal to noise ratio is high

41

FIGURE 7.5: Correlation vs noise vs blur 43

FIGURE 8.1: Example correlation surface 44

FIGURE 8.2: Filtered correlation coefficient data 45

FIGURE 9.1: Temperature corrected camera position 55

FIGURE 9.2: Encoder vs camera 56

CHAPTER 1: INTRODUCTION

1.1 Purpose

Creep generally occurs over an extended period of time, and for this reason mea-

suring creep can be a very slow process. To conduct repeated measurements with

an instrument which only measures one sample at a time, might take several months

or even years. Changes in laboratory environmental conditions can make comparing

sequential test runs with such long time intervals between them difficult. Therefore,

it is desirable to run several tests simultaneously. One method for achieving this

would be to use multiple instruments to complete these tests; however, this can be

very costly and variations from one instrument to another may also make comparing

measurements challenging.

Another approach to addressing these issues is to develop a single instrument which

can measure multiple wires during the same test. The aim of this project is to

investigate the potential sources of uncertainty which arise in such an instrument.

Figure (1.1) below shows a CAD model of the complete instrument assembly.

2

Figure 1.1: Complete displacement measurement instrument

3

1.2 Previous Work

One of the common methods for optical creep measurement currently in use in-

volves taking a magnified image of an object and splitting the image into a large

number of sub-images. The position of each sub-image is tracked using Digital Image

Correlation (DIC). The distances between the sub-images are computed and used to

calculate the total strain. Many techniques involve the application of a known pattern

to the surface of the sample part, such as a pattern of dots, and subsequently imaging

the sample (sometimes referred to as speckles, when applied randomly). One such

pattern generation technique is described by Di Gioacchino et al [1]. They describe a

technique for vapor deposition of nanometer scale gold particles to be used as markers

for scanning electron microscopy. One technique described by Telfer, et al. [2] involves

imaging the pattern from multiple angles and then employing photogrammetry tech-

niques to develop a 3-dimensional model of the test object. The distances between

the markings are measured using digital image correlation and a 3-dimensional strain

field is then calculated. These techniques allows the pixel level tracking of material

displacement. Sub-pixel algorithms are commonly employed, which allow for even

greater resolution. One such method for achieving sub-pixel resolution is outlined by

Sousa, et al. [3] The proposed method involves dividing sub-images into four smaller

sub-images and then estimating the displacement of each sub-image using an optical

flow based technique. In a paper by Debella-Gilo, et al. [4] several methods for attain-

ing sub-pixel resolution while using DIC methods to track glacier flows with satellite

imagery are explored. The methods investigated include interpolation methods using

parabolic and gaussian models, as well as bicubic interpolation. Another method of

creep measurement described by Harding, et al. [5] utilizes Moire fringes to gener-

ate a displacement signal as a sample creeps. Another novel approach to measuring

creep in 304 stainless steel is described in an article by Elhoucine and Nagy [6]. This

article outlines a method for creep measurement which utilizes "directional potential

4

drop" resulting from the change in a sample’s metallurgical structure during creep

deformation.

1.2.1 Previous measurements at UNC Charlotte

The previous instrument configuration utilized a capacitance-based displacement

sensor to measure the creep of a single wire with a nominal diameter of 0.003in.

One of the drawbacks of this system is that the capacitance-based mechanism has

limited dynamic range. The primary and tertiary creep phases experience large length

changes, while the secondary phase changes at a much slower rate [7]. While the

previous instrument can achieve the required nanometer level resolution, its total

range is not sufficient to capture the full extent of the creep behavior. Another

significant limitation of the previous system is the time it takes to run multiple tests

because it measures only one wire at a time [8].

1.2.2 Instrument goal

The goal for this instrument is the ability to make optical displacement measure-

ments of feature sets on a wire, with a resolution of 10 nm and a total range of no less

than 1 mm. This instrument is a proof of concept, with the aim of gaining a better

understanding of the likely uncertainties associated with measurements taken with

an instrument of this type. Verifiying that this technique can produce the required

performance for an optical displacement measurement instrument, demonstrates the

value of this technique for integration into an optical creep measurement instrument,

capable of measuring multiple wires simultaneously.

1.2.3 Overall instrument design

In order to achieve the desired dynamic range, a camera is mounted on a translation

stage, facing a wire sample. The image from the camera is processed using DIC in

order to measure the location of a unique set of surface features on the unmodified

wire. Once these features are located, the wire is translated to its opposite end, and

5

the camera finds the location of another set of unique features. The translation of the

stage is measured by a 10 nm resolution linear encoder. The camera system cycles

between the two sets of features on the wire and utilizes both the camera position

measurement and the linear encoder measurement to calculate the total displacement

between the two target feature sets on the wire.

CHAPTER 2: CAMERA SYSTEM

Figure 2.1: Camera assembly

7

A combination of optical magnification and image processing are required in order

to achieve the desired 10 nm resolution. Optical image magnification is chosen to

achieve a spacial resolution of 20 nm per image pixel. The camera sensor used for this

system, has a pixel size of 1.67 µm, and as a result the required optical magnification

necessary to achieve a spatial resolution of 20 nm per image pixel is approximately

85X. After the image has been magnified the sub-pixel routine is then employed in

order to achieve the final system resolution. At this spatial resolution, a sub-pixel

routine needs to only achieve half-pixel resolution in order to achieve the desired

10 nm resolution.

2.1 Magnification System Design

The design goals for the magnification system were that it must produce a 85X

magnification, while keeping the optical path length to a minimum. To obtain this

magnification, a system of two converging lenses and one diverging lens was designed.

The magnification system was designed using thin lens and thick lens paraxial models,

as well as Zemax OpticStudio ray-tracing software. The system was designed so that

the first lens would produce a 10X magnification and the last two lens would produce

a combined 8.5X magnification. Together these elements yield the required 85X

magnification.

8

Table 2.1: Final design lens spacing.

label distance
Wd 9.9 mm
D1 37 mm
D2 28 mm
Si2 151 mm

Wd D1 D2 Si2

Figure 2.2: Ray diagram

9

Table (2.2) shows the variable definitions used in the thin lens paraxial model.

Table 2.2: Thin lens model variable definitions.

label distance
Wd working distance
Sin image distance for the nth lens
S0n object distance for the nth lens
Fn focal length for the nth lens
Mn magnification produce by the nth lens

The requirements for the first lens are that it must produce a 10X magnification

at a reasonable working distance Wd. The magnification produced by the first lens

M1 is determined by equation (2.1)

M1 = −Si1
Wd

(2.1)

The relationship between the working distance Wd and the image distance Si0 is

determined by equation (2.2)

1

F1

=
1

Si1
+

1

Wd

(2.2)

Equation (2.1) is substituted into equation (2.2), and solved for Wd which yields

equation(2.3). The desired magnification M1 is input as well as the focal lengths of

standard "off the shelf" lenses until a configuration resulting in a working distance

suitable to the design is achieved.

Wd =
F1(M1 − 1)

M1

(2.3)

The resulting image distance from the first lens element can then be calculated using

equation (2.4).

Si1 =
(Wd)F1

Wd − F1

(2.4)

10

The image from the first lens serves as the object for the second lens, and therefore

the object distance for the second lens is dependent on the distance between the two

lenses D1 as seen in equation (2.5).

S02 = D1 − Si1 (2.5)

The image distance for the second lens can be calculated as a function of distance

D1 using equation (2.6).

Si2 =
(D1 − Si2)F2

(D1 − Si2)− F2

(2.6)

Once the object distance and the image distance for the second lens element is cal-

culated, it is possible to determine the magnification produced by this lens element

using equation (2.7).

M2 =
−Si2
So2

(2.7)

The combined magnification of the final two lenses can be computed using the equa-

tion (2.8)

M2M3 = M2:3 (2.8)

Equation (2.8) can be solved for the magnifcation M3 required for the last two

optics to produce the required combined magnification M2:3. This magnification can

then be used to generate equation (2.9) which determines the separation distance

between the second and third lens M3

D2 =
F3(M2:3

M2
)− 1

(M2:3

M2
)

+
(D1 − Si2)F2

(D1 − Si2)− F2

(2.9)

The object distance for the third lens So3 can be computed using equation (2.10).

This distance is the distance between the last lens and the camera sensor.

So3F3

So3 − F3

(2.10)

11

After determining the necessary spacing, D2, the required object distance, So3,

and image distance, Si3, are computed in the same manner as for the second lens.

At this point, the magnification of the last lens, M3, is calculated. Using equations

(2.3), (2.9), and (2.10) the total length of the magnification system can be computed

solely as a function of the required magnification, the focal lengths of the lenses and

the distance between the first and second lenses. A variety of combinations of focal

lengths for "off the shelf" lenses, as well as values for the distance D1 were evaluated

using these equations to choose a configuration which produced a suitably compact

magnification system. Table 2.3 shows the resulting lens choices.

Table 2.3: Lens properties.

Lens focal length material part number
1 9.07 mm molded acrylic APL0609-A(Thorlabs)
2 90 mm N-BK7 67157(Edmunds Optics)
3 −9 mm N-Bk7 48935(Edmunds Optics)

12

Once the initial design was established using thin lens paraxial equations, thick

lens paraxial equations were used to improve the quality of the model. Following

this the design was input into Zemax OpticStudio ray-tracing software to simulate

the performance of the system. Small adjustments to the design were made based on

the Zemax simulation to reduce aberrations in the system. The design incorporates

an adjustable aperture behind the lenses to reduce spherical aberration. To further

correct spherical aberrations in the system, an "off the shelf" apsheric objective lens

is utilized. The system does not require color imaging, so a narrow bandwidth green

LED light source is utilized for the illumination system. The use of a small frequency

range of light means that there is little need for achromatic doublets or other elements

to correct the chromatic aberrations [9].

Most of the remaining abberations in the system are spherical in nature. The

spherical abberation is of much greater magnitude than that of the other abberations

in the system as is shown in Figure (2.3). Some of the spherical aberration is however

reduced further than what is depicted in the diagram, because the aperture in the

physical system is of a smaller diameter than in the Zemax simulation. The Zemax

simulation utilizes the largest possible size of the aperture but the final size of the

aperture was not known at the time of simulation, because it was manually optimized

after construction.

13

Figure 2.3: Seidel diagram

14

As previously stated, the design of the optical magnification system is driven by a

desire to limit the total length of the system as well as the total cost. Subsequently the

system utilizes relatively few optical elements which are all "off the shelf". Meeting

these conditions comes at the cost of reduced optical performance, and consequently

the magnification optic’s performance falls short of being diffraction limited. The

optics do, however, provide sufficient resolution and contrast in order to recognize

scratches and surface features on the wire necessary to track its movement using

DIC. The magnification of the system is such that if the system could achieve the

necessary resolution, one pixel would represent 20 nm on the wire. This system ac-

tually resolves about 10 lines per mm as shown in the modulation transfer function

in figure (2.4), and thus it can resolve approximately 2 × 10−4 lines per pixel with

its current magnification. While this is significantly below the diffraction limit, it is

still sufficient because cross-correlation’s sensitivity to image blur is quite low, as is

shown in section (7.1).

Figure 2.4: Modulation transfer function

15

Figure (2.5a) shows an image captured by the optics in the instrument. Figure

(2.5b) shows an image of a similar wire captured by an Olympus BX51 microscope,

utilizing an Olympus UC30 digital microscope camera for image capture. The resolu-

tion produced by the instrument’s optical system, is on the order of what is expected

based on the simulated MTF.

(a) System Microscsope (b) Olympus Microscope

Figure 2.5: Microscope images

Table 2.4: Microscope specifications.

Instrument microscope Olympus microscope
camera model UI-1492LE-M UC30
resolution 3840(H) x 2748(W)pixels 2080(H) x 1544(W) pixels
pixel size 1.67 x 1.67 µm 3.45 x 3.45 µm
image magnification 85X 100X
sensor type monochrome CMOS color CCD

Figure (2.6a) shows the FFT of the image from figure (2.5a). Figure (2.6b) shows

the FFT of the image from figure (2.5b). From these images we can see that the

images captured by the current system does not capture a significant portion of the

high frequency content in the image captured by the Olympus microscope.

16

(a) System Microscsope FFT (b) Olympus Microscope FFT

Figure 2.6: Microscope image FFTs

The path of light from the test wire to the camera sensor is shown Figure (2.7)

magnification optics

pellicle beam splitter aperture camera chip

stray light baffle

Figure 2.7: Image path

The camera was purchased in the form of an image sensor on a printed circuit

board. This form factor allowed the housing system to be designed to meet practical

requirements as well as allowing for the purchase of a monochrome camera. The

use of a monochrome camera means there is no Bayer color filter to account for in

the recorded image. The camera housing was additively manufactured using ABS

plastic and incorporates a two-axis flexure system. This flexure system allows fine

17

adjustment of the alignment between the image sensor and the optics. After the light

passes through the magnificaiton optics it passes through a pellicle beam splitter,

whose purpose will be further expalained in chapter (3). The camera housing also

includes an optical baffle which eliminates stray light outside of a 30 degree inclusion

angle. The optical baffle is designed to eliminate first and second order reflections

within the system. The entire camera and optics assembly is mounted to a flexure

system which allows for the fine adjustment of the angle of the camera to ensure

that its horizontal axis is well aligned with the axis of travel of the wire. The fine

adjustment flexure is shown in figure (2.8). This whole assembly is mounted on top

of a micrometer stage which is used to adjust the focus of the system.

Figure 2.8: Camera fine adjustment flexure

CHAPTER 3: ILLUMINATION SYSTEM

Since the system is imaging an opaque object, it is not possible to pass illumination

light through the object as is normally done with a backlit microscope. In order to

illuminate the wire sample, a coaxial illumination system was created which consists

of an LED light source, an aperture, a converging lens and a pellicle beam splitter.

The aperture limits the angle of the cone of light which can enter the system and thus

minimizes scattered illumination light from reflecting into the sensor. The converging

lens converts the expanding cone of light from the LED into a nearly collimated

light source. The pellicle beam splitter reflects a portion of the light forward into the

magnifying optics, which in this case, act to focus the light to a spot 50 percent larger

than the field of view of the optics [10]. The remainder of the light which passes

through the system hits a surface which has been painted optically black to prevent

the light from passing back through the system and into the sensor. The path of light

from the illumination LED to the test wire is shown in Figure (3.1).

magnification optics

illumination LED
pellicle beam splitter

aperture

Figure 3.1: Illumination path

19

3.1 Stray Light Control

The housing that contains the camera sensor is 3D printed from ABS plastic and

contains an integral stray light baffle with a calculated exclusion angle of 30 degrees.

The initial images from the system appeared over-saturated and also showed a large

dependence on the ambient illumination in the laboratory. It was determined that

light from outside the system was being transmitted through the plastic housing and

striking the sensor. When the housing was designed, it was believed that it would

shield the sensor from the majority of outside light. In practice however, it appears

as though small amounts of light were able to pass through the small voids which

resulted from incomplete bonding of print layers. To reduce this effect the housing

was painted optically black. Painting the camera housing both served to help fill any

small voids where light might be able to enter the housing, as well as reduce internal

reflections. It was also discovered that light was transmitting through the rear of

the camera sensor chip, and subsequently a rear plate was included in the system

to better enclose the camera. To further prevent unwanted stray light from entering

the system, the entire system was surrounded by an opaque environmental isolation

enclosure. The inclusion of this enclosure also significantly reduced disturbances to

the system caused by irregular air flow within the testing environment. Another

source of stray light within the system is the illumination LED. A portion of the light

from the LED scatters when it hits the pellicle beam splitter and eventually reflects

into the image sensor. To help mitigate this issue, a simple ray tracing program

was written which would track the marginal ray of the illumination light. Using this

ray tracing program, the previously mentioned converging lens was selected which

helps to narrow the path of the light from the LED. Both the focal length of this

lens and its distance from the LED were calculated to produce an illumination spot

size approximately 2 times the diameter of the wire once it passes through all of the

magnification optics. [11]. The lens which was selected has a focal length of 10 mm,

20

and is placed at a distance of 0.12 in from the tip of the LED.

CHAPTER 4: WIRE HOLDER ASSEMBLY

Figure 4.1: Wire holder on rotational flexure with screw adjustment

The sample wire and the linear encoder glass scale are mounted to a platform which

incorporates two separate flexure mechanisms. The first flexure mechanism allows for

fine rotational adjustment to align the wire with the linear encoder. This flexure

angle is adjusted using a screw and spring system. The flexure and its adjustment

system is shown in figure (4.1). The spring preloads the flexure and the screw at

the end of the adjustment lever is then used to control the rotational position. The

spring must be stiff enough to rotate the flexure far enough in the clockwise direction

to contact the stop. For this to be the case, the spring and the flexure must be in

rotational equilibrium at an angle greater than or equal to the angle θmax at which

the flexure will contact the physical stop.

22

A maximum rotational range (θmax) of 3° was selected in order to allow sufficient

range to properly align the flexure with the camera. The sum of moments is presented

in equation (4.1), which is used to calculate the equilibrium point between the coil

spring and the flexure.

θmax = maximum rotation of notch flexure

k1 = rotational stiffness of notch flexure

k2 = linear stiffness of coil spring

r = length of lever arm from flexure hinge to adjustment screw

∆y = change in length of coil spring

∑
moments

= 0 = k1θmax − k2∆yr (4.1)

Equation (4.2) is then used to calculate the change in length of the coil spring, as

a function of the maximum rotational position of the flexure hinge. The diagram in

figure (4.2) shows the relations which were used to calculate the change in coil spring

length as a function of flexure rotation.

yuc
rsinθ

ylevel

∆y

θmax
r

Figure 4.2: Relations for spring deflection and flexure rotation

yuc = uncompressed length of coil spring

ylevel = length of the coil spring when the flexure is level

∆y = yuc − ylevel − rsin(θmax) (4.2)

23

t = minimum thickness of notch flexure

b = depth of notch flexure

ax = radius of notch flexure

E = Young’s modulus of flexure material

k1 = rotational stiffness of notch hinge flexure

Equation (4.3) is used to calculate the rotational stiffness of the flexure hinge [12].

k1 =
1

3
2Eba2x[1

2β+β2
]

[(
2+4β+2β2

(1+β)(2β+β2)

)
+

(
6(1+β)

(2β+β2)
3
2

)
tan−1

√
2β
β

] (4.3)

Where

β =
t

2ax
(4.4)

Substituting equation (4.2) into equation (4.1), and applying the small angle ap-

proximation, yields equation (4.5) which gives the required stiffness of K2.

K2 =
ryuc + rylevel − r2θmax

−k1θmax
(4.5)

These equations were used to choose appropriate geometry for the flexure hinge, as

well as the coil spring stiffness. With b=0.025 in, t=0.05 in, and ax=1 in, the rotational

stiffness k2= 0.23 lb · in
degree

.

24

Figure 4.3: Vertical axis flexure and piezo actuator

The second flexure mechanism, which allows the wire sample to be positioned

vertically, is shown in figure (4.3). The vertical flexure system incorporates a digitally

controlled actuator which uses a piezo to generate stick slip rotational motion. This

rotational motion is imparted into a micrometer screw in order to generate precision

linear movement. This actuator is called a Picomotor. A photograph of a Picomotor

is shown in figure (4.4). The Picomotor allows for precise control of the wire’s vertical

position with respect to the camera. The vertical flexure system consists of 8 total

flexures, two sets near the the top of the wire holder and two sets near the bottom.

The flexures were positioned so as to limit the rotation of the system due to any

moments potentially generated if the system is driven slightly off axis.

25

Equation (4.6) is used to compute the stiffness of each flexure element [12].

k3 =
12EI

L3
(4.6)

A flexure width of 1.5 in, a length of 0.79 in, and a thickness of 0.04 in results in a

stiffness K3 of 1.13 lb
in

per flexure element and a total stiffness of 9 lb
in
. A displacement

of 4.4 mm requires 7 N. This displacement range is sufficient to track the vertical

position of the wire, and the force required to produce this displacement is well below

the 22 N the Picomotor is capable of producing.

Figure 4.4: Picomotor

Table 4.1: Picomotor specifications

specification value
travel range 25.4 mm
minimum motion < 30 nm
max speed 1.2 mm min−1

max force 22 N

By using the same material for both the camera mount and the wire holder, their

thermal expansion is well matched. This helps minimize differential thermal expan-

sion between the two assemblies. In addition, both the camera mount and the wire

mount have been designed to be close to symmetrical about their vertical axis. Nei-

26

ther the camera mount, nor the wire mount are symmetrical about its horizontal

axis, which means that there is appreciable differential drift in the vertical direction

between the assemblies. To compensate for this effect, the vertical flexure stage’s

position is held constant through closed loop feedback from the camera image. In

this system, the wire and encoder are translated while the camera is held in a fixed

position. The wire mount assembly, as well as the encoder glass scale, are mounted on

top of a translation stage which is actuated by a picomotor. Mounting these compo-

nents together allows for the measurement of the wire translation using the encoder

system.

CHAPTER 5: LINEAR ENCODER

Figure 5.1: Encoder flexure

This instrument utilizes a Heidenhain LIF 401R scale, a LIF 48 encoder read head,

and a proprietary electronic interface box. The encoder glass scale is mounted to

the same translation stage as the wire holder; however, it does not physically contact

the wire holder assembly. The steel mounts for the linear encoder’s glass scale and

the linear encoder’s read head are manufactured from the same batch of steel to

help minimize differential thermal expansion which could affect the alignment of the

encoder scale and its read head. The glass scale mount incorporates a flexure assembly

which allows for the fine rotational alignment of the encoder scale to the encoder read

head. This flexure is shown figure (5.1).The surface of the encoder read head must be

placed 1 mm ± 0.01 mm relative to the front surface of the glass scale, with parallelism

of ±0.06 mrad. In order to achieve this, the structure to which the glass scale and

the encoder read head are mounted to are designed with a registration surface. This

28

surface allows the precision alignment of the components with a dial indicator without

actually contacting the encoder or glass scale. The glass scale mount includes precisely

machined holes, into which 0.125 in dowel pins can be positioned so as to support the

encoder in the proper alignment as it is rotated into the correct position.

CHAPTER 6: SOFTWARE

The software for this instrument initializes the camera and captures an image from

it, performs cross-correlation to determine the location of a set of features on the

wire, controls the vertical and horizontal axes of the wire’s translation, reads and

outputs position measurements from the linear encoder, and records temperature

measurements near the sample wire. In many cases, the software required for the im-

age processing and hardware interfacing is very computationally intensive. Stemming

from this need for computational efficiency, C++ was chosen as the programming lan-

guage for use in this instrument because it is quite low level and allows for relatively

straight forward optimization. Since most of these processes must occur concurrently,

multi-threading has been incorporated into the software to create multiple execution

streams using the thread architecture depicted in figure (6.1). A LabJack DAQ sys-

tem is used to interface the control PC with the Picomotors and temperature sensor.

A proprietary electronics interface box manufactured by Heidenhain, is being used to

interface the control PC with the linear encoder. The digital camera has an integral

USB interface to communicate with the control PC.

30

6.1 Multi-Threading

It is necessary that many of the components of this system such as the camera,

encoder, and LabJack DAQ system run concurrently and asynchronously when the

system is in operation. In order for these systems to run continuously, they must run

inside a continuous loop. This would be impossible using a single execution stream

architecture, so a multi-threaded program structure is utilized. In a multi-threaded

system, the main thread spawns additional sub-threads. Each additional sub-thread,

executes independently from and simultaneously with the other threads. Because the

individual threads must often share information between themselves, great care must

be taken to prevent what is known as a race condition. A race condition is where

one thread requests information from another thread before it has had adequate time

to complete its own processing task. The use of multi-threading also allows for the

control computer to make more efficient use of its multiple processors, by completing

computational processes partially in parallel, rather than entirely in series. A diagram

of the data flow within the multi-threaded structure is shown figure (6.1).

31

Main
Thread

Camera
Thread

Encoder
Thread

Picomotor
Thread

Encoder
Averaging
Thread

Temperature
Thread

Vertical
Picomotor
Thread

File
Output
Thread

User Input

Target
images

Camera
Image 1

Camera
Image 2

Target
Image 1

Target
Image 2

Cross
Correlation 1

Cross
Correlation 2

Filter and
Curve fit 1

Filter and
Curve fit 2

X and Y
Coordinates
1

X and Y
Coordinates
2

Average X
and Y
Coordinates

Average X
Coordinate

Average Y
Coordinate

Figure 6.1: Simultaneous thread operations

6.1.1 Main thread

Upon software start up, the main thread first initializes the connection to the

LabJack DAQ system. Once this connection is established, the main thread begins

the creation of sub-threads. The next operations for the main thread are to connect,

initialize, and begin receiving position data from the encoder. The encoder sends

absolute position data so an offset is subtracted from the position data in order to

ensure the initial position of the system is zero. Next, it prompts the user to ask if they

would like to continue. If the user chooses to do so, they are next prompted to input

a desired location on the wire in nanometers. After inputing this information, the

main thread calculates the difference between the system’s current position and the

desired position ∆x. If ∆x is greater than the specified maximum acceptable error,

32

the program commands the picomotors to take one step in the appropriate direction.

From this point, the main thread recomputes the ∆x. If ∆x is greater than the

specified maximum acceptable error value, the program continues through the loop.

If the ∆x value is less than the maximum acceptable error value, the program breaks

out of the loop and again prompts the user if they would like to continue. If the user

chooses not to continue, the main thread will exit the camera feed and release its

memory location. At this time all of the sub-threads rejoin the main thread.

6.1.2 Camera thread

In this thread, Target reference of the desired feature sets on the wire, are imported.

Once the target images are imported, communication to the camera is established,

camera parameters are set, and the camera begins capturing a continuous stream of

images. It is inside this thread that the captured images are compared against the

target references in order to produce a correlation coefficient matrix. At this time a

function is employed to find the location of the maximum correlation coefficient. The

location of the maximum correlation is displayed to the screen and the location of

the best fit, designated by a red square, is superimposed over the live camera stream.

This process occurs for two separate image locations.

6.1.3 Measurement averaging thread

In order to reduce the effect of any non-uniform phenomena within the image,

two separate cross-correlation processes occur with two target regions. These two

measurements are then averaged as illustrated in equation (6.1) and figure (6.2).

This averaging effect also helps to reduce the effect of higher local noise levels in dark

portions of the image.

33

Target Image 2Target Image 1

x1

x2

Avgpos

Figure 6.2: Averaging of multiple image locations

xavg =
x1 + x2

2
(6.1)

6.1.4 Encoder thread

The encoder thread initially establishes a TCP-IP connection to the encoder elec-

tronic interface box (EIB). Once the connection is established, the EIB system per-

forms an automatic system check. If the system is functioning properly, the program

enters a loop which continuously polls position information from the encoder/EIB

system.

6.1.5 Encoder averaging thread

Values from the encoder thread are sent to the encoder averaging thread where

they are averaged over a specified number of iterations. This average measurement

value is then sent to the main thread to compute the position and ∆x value, as well

as to the file output thread.

34

6.1.6 Temperature thread

The temperature sensor input thread continually polls the analog port on the Lab-

Jack which connects to a LMT-87 analog temperature sensor located near the wire.

The voltage signal is processed through a function, which converts it into temperature

in °C.

6.1.7 Picomotor thread

The picomotor thread takes commands from the main thread which indicate the

direction and the speed at which the picomotors should step. These commands then

switch the appropriate digital pins for the LabJack DAQ system. The digital pins

then connect to the driver for the picomotors. Digital pin 1 determines the direction

of motion of the horizontal axis picomotor. When pin 1 is high, the picomotor’s drive

direction is set to rotate in the clockwise direction. Clockwise rotation results in the

stage moving to the left (as viewed from the camera). If pin 1 is low the picomotor

drive direction is set to rotate in the counter-clockwise direction. Counter clockwise

rotation results in the stage’s movement to the right. To make the horizontal axis

picomotor step, digital pin 2 is commanded high and then low. The picomotor will

take a step when the pin goes low.

6.1.8 Vertical control thread

The optics and wire holder systems were designed with symmetry about the vertical

axis in mind. This allows the expansions within the system to partially cancel. This

cancellation helps keep the camera, optics, wire, and encoder well aligned. The

aforementioned systems do not, however, have a great deal of symmetry about the

horizontal axis, which allows for a great deal of expansion of the system vertically.

This poses issues with keeping the wire centered vertically in the camera’s field of

view. Without vertical correction, the wire can drift completely out of view of the

camera. In order to combat this issue, the vertical axis flexure is used to keep the

35

wire centered. When the vertical control thread is initialized, it accesses the vertical

position of the wire as determined by image correlation. This initial position becomes

the set point for a simple proportional position regulation control system. The control

system operates only if the vertical position exceeds a range of ± 3 pixels. The control

system incorporates a fail-safe system in the event that there is a disturbance to the

system which causes the camera to lose view of the wire target features. If the wire

features go out of view of the camera, the software defaults to reporting a correlation

location of 0. If this were allowed to occur, the system could driven in the wrong

direction to an unreachable destination. This would cause the system to generate

a large stress in the flexure system, and would also produce excessive wear within

the picomotor. To avoid this, the system automatically terminates if the location of

the target feature is reported to be zero. Digital pin 3 of the Labjack controls the

direction of movement for this axis, and pin 4 commands this axis to step. A block

diagram of this control system is shown in figure (6.3).

Kp Picomotor

disturbance

DIC position measurement

-

+ +
+

set point vertical position

Figure 6.3: Vertical axis control block diagram

CHAPTER 7: NORMALIZED CROSS-CORRELATION

The image processing method which is employed to track the target feature sets

on the wire, is cross-correlation. Cross-correlation is the integral of the conjugate of

a shifting function, multiplied by a stationary function.

R(t) = f ∗ g =

∫ t

0

f(u)g(t− u) du (7.1)

One of the large advantages to employing normalized cross correlation for deter-

mining the position of a feature set is its relative insensitivity to quality of the optics.

To illustrate this point, the case of a simplified 1-D example can be examined. The

possible intensity value range of an image is bounded between 0 and 255, and for this

reason a sine function with a vertical offset is used to demonstrate this point.

f(x) = a sin(x) + b (7.2)

37

0 2 4 6 8

0

0.5

1

1.5

2

x

f
(x

)

Figure 7.1: Sine function: f(x) = asin(x) + b, a = 1, b = 1

Substituting equation (7.2) into functions f(u) and g(t−u) yields the equation for

cross-correlation of the sine wave.

R(t) =

∫ t

0

(a sin(u) + b)[a sin(t− u) + b] du (7.3)

The integration of equation (7.3) leads to equation (7.4)

R(t) =
1

2
a2(t sin−t(t cos))− 2ab(t cos−1) + b2t (7.4)

The correlation coefficient depends both on the geometry of the sine function as

well as the contrast of the image which is a function of a. Contrast with regards

to a gray-scale image can be thought of as the range of gray intensities between the

brightest and the darkest portions of an image. Blur in an image has the effect of

reducing the frequency content and contrast of image data. In this example contrast

38

of an image is analogous to the height of the peak to peak distance of the sine wave.

This peak to peak height in the sine wave example is determined by the value of

the variable a. It is shown that if a = 0, b = 0, no correlation is possible. In the

case where a = 0 and b 6= 0 the function reduces to b2t, and all of the sinusoidal

components are eliminated from the function. While it is possible to generate a

correlation, it is meaningless in the context of matching the functions. Some contrast

is therefore necessary in order for the image to have a data signature distinct enough

to be correlated. The 1-dimensional analog can be said to have contrast if f(t) 6= 0,

g(t) 6= 0, f ′(t) 6= 0, g′(t) 6= 0 at some point in the function. In the absence of noise

in the image, any image meeting these requirements can be perfectly correlated using

cross-correlation as long as the image has a contrast level greater than zero. Even in

the extreme case where an artificially generated image has only a single gray pixel

with all the remaining pixels being white, the single gray pixel can still be located

with perfect accuracy. This result is no longer true however, in a real image where

noise is present. When the contrast decreases, the signal to noise ratio decreases,

resulting in correlation errors. The cross-correlation of two identical finite length sine

functions is shown in figure (7.2)

For digital image analysis, the 2-D discreet form of cross-correlation, shown in

equation (7.5) must be utilized.

R(x, y) =
∑
x′,y′

(T (x′, y′)) · I(x+ x′, y + y′)) (7.5)

The coordinates of the original image are x and y, where as the coordinates of the

shifting target image are x′ and y′

The shortcoming of this form of the equation is that it is very sensitive to the

magnitude of the functions. To eliminate this issue the normalized form, shown in

equations (7.6) is often employed.

39

−80 −60 −40 −20 0 20 40 60 80

20

40

60

80

100

120

t

C
ro
ss

co
rr
el
at
io
n
co
effi

ci
en
t

Cross Correlation of Sine Waves

Figure 7.2: The peak of the curve represents where the sine
waves completely overlap

R(x, y) =

∑
x′,y′(T (x′, y′)) · I(x+ x′, y + y′))√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I
′(x+ x′, y + y′)2

(7.6)

The normalized form of cross-correlation results in correlation coefficients ranging

between −1 to 1. A cross-correlation coefficient of 1 represents a perfect match and

a value of -1 being an inverse correlation.

40

7.1 Correlation With Noise

Adding noise to a function causes random errors in the location of the maximum

correlation coefficient. This effect is particularly significant when there are a relatively

small number of samples in the correlation. As the number of samples correlated

increases, the error tends toward 0. The higher the signal to noise ratio is, the less

the initial error, and the faster it decays when the number of samples is increased.

To demonstrate this behavior, Gaussian noise was added to a sine function and then

cross-correlated with a noiseless sine function. This model was used because the

noise captured by the camera continuously changes, while the noise in the target

reference does not. Once correlation of the two functions is complete, the location

of the maximum correlation coefficient is determined and recorded. This process is

repeated 30 times, and then the standard deviation of these 30 locations is calculated

and recorded. After the standard deviation is calculated, the number of samples

used in the correlation is increased, and the entire process is repeated for a specified

number of cycles.

Figure (7.3) Shows that when the sine function with added noise, has a signal

to noise ratio of 1, the standard deviation approaches zero relatively slowly, as the

number of samples being correlated increases.

41

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

0.5

1

Number of samples being correlated

m
ea
su
re
d
po

si
ti
on

st
an

da
rd

de
vi
at
io
n

Figure 7.3: Standard deviation vs number of samples being correlated
when signal to noise ratio is low

Figure (7.4) Shows that with a larger signal to noise ratio of 3, increasing the

number of samples used in the correlation drives the standard deviation to zero more

quickly.

0 50 100 150 200 250 300 350 400
0

0.5

1

Number of data points

m
ea
su
re
d
po

si
ti
on

st
an

da
rd

de
vi
at
io
n

Correlation Standard Deviation

Figure 7.4: Standard deviation vs number of samples being correlated
when signal to noise ratio is high

The large amounts of data captured by the camera system help to decrease the

standard deviation of the maximum correlation coefficient, which allows the system

to maintain single-pixel stability even with a relatively simple optical design. This

42

stability, combined with the estimated 20 nm
pixel

spatial resolution, enables the system

to resolve to 20 nm before sub-pixel image processing.

7.1.1 Sharpness vs noise study

In order to further understand the effects of sharpness of the system’s optics on

the resulting cross-correlation coefficient, a simulation study was conducted where

the sharpness of an image captured by the instrument’s camera system is reduced by

applying a Gaussian filter [13]. Since there is a certain unavoidable amount of noise

within the image, it is of interest to determine to which effect the resulting cross

correlation coefficient is most sensitive.

First an image captured from the camera system is imported into MATLAB. A

region of interest (ROI) section of the image is cropped and stored as a target image.

First a Gaussian filter is applied to both images. Next noise is added separately to

both the full image and the cropped image. These images are then cross-correlated.

This is then done iteratively in a loop, increasing the noise and Gaussian levels with

each iteration. A surface fitting routine is then applied to the resulting correlation

coefficient surface in order to generate an equation, and the partial derivatives of this

equation are calculated in order to determine the sensitivity of the cross-correlation

to both parameters.

Figure (7.5) below shows a surface fit representing the simulated cross-correlation

coefficients which result from varying the image blur as well as the image noise.

43

0.2
0.4

0.6
0.8

1

·10−2
0.2

0.4
0.6

0.8
1

·10−2

0.6

0.8

1

σ (Blur)σ (Noise)

C
ro
ss
-C

or
re
la
ti
on

C
oe
ffi
ci
en
t

Correlation vs noise vs blur

Figure 7.5: Correlation vs noise vs blur

Equation (7.7) represents a polynomial fit to the blur and noise data with a R-

squared value of 0.9981 and sum of squared errors value of 0.004543.

F (b, n) = 1.027− (.001437)b− (0.0543)n (7.7)

The below partial derivatives with respect to image blur and image noise are linear

for both image blur and noise. The partial derivatives also provide evidence that the

sensitivity of the cross-correlation coefficient to noise in the image is far greater than

that of blurring of the image.

∂F

∂b
= −0.001437 (7.8)

∂F

∂n
= −0.0543 (7.9)

CHAPTER 8: SUB PIXEL RESOLUTION

The optical magnification within the instrument produces a spacial resolution of

20 nm
pixel

. In order to achieve the desired 10 nm resolution, a method to reach sub-pixel

resolution has been devised. Normalized cross-correlation is used to compare the

live image from the camera to a template image of the target features. This cross-

correlation process produces a matrix of correlation coefficients for each corresponding

row and column, coordinate pair. For further analysis this matrix can be viewed as

a surface. The peaks of the surface represent the areas in the image with the highest

correlations to the target image. Initially the surface typically includes both the

desired global peak value as well as several local peak values, as is shown in figure

(8.1).

20

40

10 20 30 40

−0.5

0

0.5

X
Y

C
ro
ss
-C

or
re
la
ti
on

C
oe
ffi
ci
en
t

Correlation Coefficient Surface

Figure 8.1: Example correlation surface

45

In order to further process the data, it is necessary to filter it so that only data

points representing the global peak are present. To accomplish this filtering, the

location of the highest correlation value is calculated, and the data in a surrounding

box is cropped from the remainder of the data. This captures the global peak and

prevents local peaks from generating erroneous data points. This data is again filtered

to reject any points below a specified cross-correlation coefficient threshold. The

resulting filtered data is shown in figure (8.2) with a correlation coefficient threshold

value of 0.9.

2,518
2,520

2,522
2,524

2,526
2,528

2,400
2,450

2,500
2,550

2,600

0.9

0.91

0.92

0.93

0.94

0.95

0.96

xy

C
ro
ss
-C

or
re
la
ti
on

C
oe
ffi
ci
en
t

Correlation Coefficient Surface

Figure 8.2: Filtered correlation coefficient data

46

The resulting surface is similar to that of a general quadratic surface.

R(x, y) = a0x
2 + a1x+ a2y

2 + a3y + a4 (8.1)

The filtered data is then input into a surface fitting algorithm which utilizes a

maximum likelihood estimator to fit the data to a quadratic surface.

Next xi, yi, and Ri(correlation coefficient) data is used to compute the M and ~c

matrices as seen in equations (8.2) and (8.3).

M =

∑
x2
i

∑
x3
i

∑
x2
i y

2
i

∑
x2
i yi

∑
x2
i∑

x3
i

∑
x2
i

∑
xiy

2
i

∑
xiyi

∑
xi∑

y2
i x

2
i

∑
y2
i xi

∑
y4
i

∑
y3
i

∑
y2
i∑

yix
2
i

∑
yixi

∑
y3
i

∑
y2
i

∑
yi∑

x2
i

∑
xi

∑
y2
i

∑
yi n2

(8.2)

~c =

[∑
Rix

2
i

∑
Rixi

∑
Riy

2
i

∑
Riyi

∑
Ri

]
(8.3)

~α = M−1~c =

a0

a1

a2

a3

a4

(8.4)

Multiplying the inverse of the M matrix with the ~c yields coefficient matrix ~α.

These coefficients are then used to populate the equation for a three dimensional

quadratic surface fit.

47

The partial derivatives of the original quadratic equation are derived and set equal

to zero in order to determine the point where the slope of the quadratic surface is

zero.

∂R

∂x
= 2a0x+ a1 = 0 (8.5)

∂R

∂y
= 2a2y + a3 = 0 (8.6)

The maximum x and y values of the estimated function.

xmax =
−a1

2a0

(8.7)

ymax =
−a3

2a2

(8.8)

Using this method both effectively averages the effect of noise in the image and

allows for sub-pixel estimation of the most likely position of the features on the

image [4]. This form also allows for a straight forward estimation of the position

measurement uncertainty. The Jacobian is defined as.

A =

 ∂x
∂a0

∂x
∂a1

∂x
∂a2

∂x
∂a3

∂x
∂a4

∂y
∂a0

∂y
∂a1

∂y
∂a2

∂y
∂a3

∂y
∂a4

 (8.9)

Once the jacobian A matrix is created, the covariance matrix for xmax and ymax,

V can then be generated.

V = AM−1AT (8.10)

Uncertainty can be determined by taking the square root of the variance.

CHAPTER 9: MEASUREMENT UNCERTAINTY

9.1 Camera Position Measurement Uncertainty

To measure the uncertainty of the correlation-based position measurement, 40 mea-

surements were collected at one second intervals. The standard deviation of these

measurements is 4.85 nm. The repeatability uncertainty does not however take into

account the Abbe errors caused by changes in the mounting alignment. The camera

system is mounted on a rotational hinge which is used to align the camera’s horizon-

tal axis to the wire sample’s axis of translation. This mechanism and its adjustment

screw are subject to thermal expansion. This thermal expansion influences the an-

gular alignment between the axes. Changes in axis alignment lead to Abbe error.

Additionally the wire and the wire holder both experience thermal expansion, which

can contribute to uncertainty of the position measurement.

49

Table (9.1) lists the variables associated with the camera and sample mounting

which are used in the following calculations of uncertainty.

Table 9.1: Variables used to determine DIC based location
measurement uncertainty

specification value discription
ri 0.06 mm length of wire in camera coordinates
∆r 0.009 nm change in length of wire

in camera coordinates due to thermal expansion
li 76.2 mm initial length of flexure lever arm
∆l 23.6 nm change in length of flexure lever arm

due to thermal expansion
hi 25.4 mm initial height of flexure angle adjustment screw
∆h 158.75 nm change in height of flexure angle adjustment screw

due to thermal expansion
∆T 0.5◦C change in temperature within environmental enclosure
αabs 31× 10−6 m

m ·K CTE of abs plastic
αsteel 12.5× 10−6 m

m ·K CTE of steel
∆θ 2× 10−4° change in angle of flexure hinge
σli 0.127 mm uncertainty of initial length of flexure lever arm
σ∆l 1.18 µm uncertainty of change in length of flexure lever arm

due to thermal expansion
σhi 0.0762 mm uncertainty of initial height of flexure angle adjustment screw
σαabs 3.1× 10−6 m

m ·K uncertainty of the CTE of ABS plastic
σαsteel 1.25× 10−6 m

m ·K uncertainty of the CTE of steel
σ∆θ 1× 10−5° uncertainty of flexure hinge angle
σ∆T .01◦C uncertainty of the change in temperature

The change in length of the ABS plastic lever and the adjustment screw due to

change in temperature is.

∆l = αabsli∆T (9.1)

∆h = αsteelhi∆T (9.2)

50

The change of angle, ∆θ, due to change in temperature.

∆θ = θ2 − θ1 (9.3)

θ1 = tan−1

(
hi
li

)
(9.4)

θ2 = tan−1

(
hi + ∆h

li + ∆l

)
(9.5)

51

The uncertainty of ∆l, ∆h, and ∆r can be calculated using equations (9.6), (9.7),

and (9.8)

σ∆l =
√

(αabs∆Tσli)2 + (li∆Tσαabs)2 + (liαabsσ∆T)2 (9.6)

σ∆h =
√

(αsteel∆Tσhi)2 + (hi∆Tσαsteel)2 + (hiαsteelσ∆T)2 (9.7)

σ∆r =
√

(αsteel∆Tσri)2 + (ri∆Tσαsteel)2 + (riαsteelσ∆T)2 (9.8)

The uncertainty of the angle between the horizontal axis of the camera and the

translation axis of the camera is:

σθ =

√(
∂θ

∂hi
σhi

)2

+

(
∂θ

∂∆h
σ∆h

)2

+

(
∂θ

∂li
σli

)2

+

(
∂θ

∂∆l
σ∆l

)2

(9.9)

Where the sensitivities to each component are:

∂θ

∂hi
=

li + ∆l

∆h2 + 2∆hhi + h2
i + (li + ∆l)2

+
hi

l2i + h2
i

(9.10)

∂θ

∂∆h
=

li + ∆l

∆h2 + 2∆hhi + h2
i + (li + ∆l)2

(9.11)

52

∂θ

∂li
=

hi + ∆h

(li + ∆l)2
(

(hi+∆h)2

(li+∆l)2
+ 1
) +

hi
h2
i + l2i

(9.12)

∂θ

∂∆l
=

hi + ∆h

(li + ∆l)2
(

(hi+∆h)2

(li+∆l)2
+ 1
) (9.13)

The uncertainty of the x position, as measured by the camera:

σx =
√

(cos(∆θ)σri)2 + (cos(∆θ)σ∆θ)2 + ((−risin(∆θ)−∆rsin(∆θ))σθ)2 (9.14)

The estimated measurement uncertainty of the x position measurement, including

Abbe error, is ± 105 nm. The Abbe error of the x position measurement is very

sensitive to the uncertainty of the temperature measurement of the system. If the

temperature of the system could be controlled to ± 0.1◦C then this uncertainty could

be reduced to ± 24 nm.

53

9.2 Encoder Position Measurement Uncertainty

The encoder axial alignment system is configured in a similar manner to the cam-

era system, and as such, the uncertainty equations are also very similar. The largest

difference between the two mounting configurations is that the camera system is

mounted on an ABS plastic flexure hinge and the encoder is mounted on a steel

flexure hinge. To evaluate the repeatability uncertainty of the encoder position mea-

surement, 40 measurements were taken at a time interval of 1 second. The standard

deviation of these measurements is 3.5 nm. The measurement uncertainty in the cur-

rent environment is estimated to be ± 48 nm, largely due to Abbe error. The all steel

construction of this structure significantly reduces the effect of Abbe error. If the

temperature could be controlled to ± 0.1 ◦C, then the estimated uncertainty reduces

to 10.2 nm. Analysis of the uncertainty of the encoder can be found in Appendix C.

54

9.3 Static Drift

To measure the thermal drift of the instrument, the instrument is allowed to make

continuous measurements for an 8 hour period. During this time, the maximum drift

of the instrument is approximately 800 nm. A temperature sensor is placed within

the environmental enclosure to allow for the measurement and compensation of ther-

mal effects. The instrument’s drift shows a cyclic behavior with approximately the

same frequency as the temperature in the enclosure changes. In order to compensate

for the effects of temperature, the temperature is scaled and then subtracted from

the measured position. The figure below shows that the uncorrected camera posi-

tion measurement has a mean value of −322 nm and a standard deviation of 201 nm.

When the position is corrected for temperature variation, the standard deviation

becomes 120 nm. The instrument has a lumped temperature sensitivity of approxi-

mately 1900 nm
◦C

. The environmental temperature, which the instrument is tested in,

is only controlled to 0.5◦C which allows for approximately ± 465 nm of drift. If the

temperature could be controlled to 0.1◦C then it should be possible to reduce the

uncorrected thermal drift to ± 195 nm.

55

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

−800

−600

−400

−200

0

200

400

600

Cycles

P
os
it
io
n
in

na
no

m
et
er
s

Temperature Corrected Position

Camera Position
Scaled Temperature

Temperature Corrected Position

Figure 9.1: Temperature corrected camera position

9.4 Dynamic Drift

In order to analyze how well the position measurement generated using DIC com-

pares with the encoder position, the linear stage is actuated at varying rates in both

directions. The camera and encoder position measurements, as well as the calculated

error between them, are shown in figure (9.2). The average error is 4.2 nm, and the

standard deviation is 25.8 nm.

56

0 10 20 30 40 50 60 70 80 90

−100

−50

0

50

100

150

200

250

300

350

Cycles

P
os
it
io
n
in

na
no

m
et
er
s

Dynamic Encoder Position vs Camera Position Measurements

Encoder Measurement
Camera Position Measurement

Measurement Difference

Figure 9.2: Encoder vs camera

57

9.5 Combined Camera and Encoder Measurement Uncertainty

The encoder produces a continuous global position measurement, while the camera

produces a local discontinuous position measurement. In order to generate a final

position measurement, the camera measurement and the encoder measurement must

be summed. The camera position measurement for the target features is only tracked

and recorded when the features are in view of the camera; any thermal drift that

occurs when the features are out of view results in measurement error. Thus the

instrument cannot achieve an uncertainty less than the temperature corrected drift

within the system which is around ± 100 nm in the current environment. This un-

certainty could be significantly reduced if the environmental temperature were more

strictly controlled.

CHAPTER 10: CONCLUSIONS

Individually, the encoder and camera position measurements achieve the requisite

resolution to fulfill the design goals of this project; however, the most significant

limitation is thermal drift. This leads to the conclusion that this technique is viable

for use in a high dynamic range creep measurement system, which is optimized to

reduce thermal effects. One of the advantages of this technique compared to similar

techniques, is the ability to achieve the desired performance without the need to

"mark" samples before measuring them. Another advantage is that this system can

be constructed at a much lower cost than other comparable systems which utilize

scanning electron microscope imagery or other similarly expensive technologies to

achieve comparable results. A third advantage of this technique is its ability to be

expanded to observe multiple experiments within the same test setup.

When the optical magnification system for this instrument was designed, it was not

known to what extent sub-pixel resolution could be achieved. Therefore, the system

was designed with the assumption that a factor of two increase in resolution could

be achieved using sub-pixel resolution algorithms. Subsequently the magnification

for this system was designed around this requirement. After completing this proof

of concept, it is estimated that sub-pixel algorithms can provide at least an order of

magnitude improvement in effective resolution. With this in mind the magnification

requirement of the system could likely be reduced and still achieve comparable results.

CHAPTER 11: FUTURE WORK

11.1 Thermal Control

The largest source of error in the system, which limits the system’s performance,

appears to be a result of thermal effects, from the temperature fluctuation in the room

that this instrument has been constructed in. By building active temperature control

into the next iteration of this experiment, it may be possible to obtain a significant

reduction in uncertainty. For the purpose of expedience large portions of the imaging

assembly were constructed from ABS plastic, which has a relatively high coefficient

of thermal expansion compared to other potential material choices which could be

employed in future systems.

11.2 Creep Measurement Instrument Design

The purpose of this design is to investigate the potential uncertainties associated

with obtaining a creep measurement using a scanning DIC-based instrument. Ulti-

mately the intent is that a full-scale instrument would be created using the knowledge

gained through this project. Having proved that DIC based position measurement is

a viable technique for tracking features on a wire, a fully functional creep measure-

ment instrument, based on this principle could be constructed. In order to do this,

the length scale of the system would need to be elongated from tens of millimeters

to hundreds of millimeters. In the current testing configuration, the wire sample has

been positioned horizontally with only enough load placed on it to keep the wire

relatively taut. In the next iteration of this instrument, the wire would need to be

loaded in a mechanism which keeps a constant tension on the wire sample even as

the wire experiences creep. The most straight forward method for doing this would

60

be to suspend a known weight from a vertical wire, which is fixed in position at the

top. Subsequently, it is also desirable that the system be able to scan across multiple

wires in order to complete multiple tests simultaneously. This could be achieved by

fixturing multiple parallel wires, and increasing the instrument’s axis of travel, in the

direction perpendicular to the wire, so that the camera can traverse between all of

the wires.

61

REFERENCES

[1] F. Di Gioacchino and J. Quinta da Fonseca, “Plastic strain mapping with
sub-micron resolution using digital image correlation,” Experimental Mechanics,
vol. 53, pp. 743–754, Jun 2013.

[2] M. J. Telfer, M. A. Coe, B. A. Cottom, and J. R. Price, “Apparatus and method
for optically measuring creep,” Aug. 26 2014. US Patent 8,818,078.

[3] A. Sousa, J. Xavier, M. Vaz, J. Morais, and V. Filipe, “Cross-correlation and dif-
ferential technique combination to determine displacement fields,” Strain, vol. 47,
pp. 87–98, 2011.

[4] M. Debella-Gilo and A. Kääb, “Sub-pixel precision image matching for measuring
surface displacements on mass movements using normalized cross-correlation,”
Remote Sensing of Environment, vol. 115, no. 1, pp. 130–142, 2011.

[5] K. G. Harding and Y. Liao, “Method and system for creep measurement,” Dec. 8
2015. US Patent 9,207,154.

[6] E. Madhi and P. B. Nagy, “Sensitivity analysis of a directional potential drop
sensor for creep monitoring,” NDT E International, vol. 44, no. 8, pp. 708 –
717, 2011.

[7] K. Naumenko and H. Altenbach, Modeling of creep for structural analysis.
Springer Science & Business Media, 2007.

[8] K. Lawton, M. and S. Patterson, R., Long-term Creep Measurements of 302
Stainless Steel and Elgiloy. American Society for Precision Engineering:, 2018.

[9] J. M. Geary, Introduction to lens design: with practical ZEMAX examples.
Willmann-Bell Richmond, VA, USA:, 2002.

[10] A. V. Arecchi, R. J. Koshel, and T. Messadi, “Field guide to illumination,” SPIE,
2007.

[11] E. C. Fest and S. of Photo-optical Instrumentation Engineers, Stray light analysis
and control. SPIE press Bellingham, 2013.

[12] S. T. Smith, Flexures: elements of elastic mechanisms. Crc Press, 2014.

[13] R. C. Gonzalez, “Digital image processing,” 2018.

62

APPENDIX A: MATLAB CODE

A.1 blur vs noise simulation

1 clc

2 clear

3

4 format long ;

5

6 img = imread (’ wire_sample2 . jpg ’) ;

7 img_gray=rgb2gray (img) ;

8

9 n o i s e l e v e l (img_gray)

10 noisem=.0005;

11 var iance =.0015;

12 sigma=1;

13 s c a l e =.001

14 r e c t =[1500 ,900 ,1000 ,2000] ;

15

16 %load ing and manipu la t ing images−−−−−−−−−−−−−−−−−−−−

17 img_gray=rgb2gray (img) ;

18

19 img_gray_blur=imgau s s f i l t (img_gray , sigma) ;

20 img_gray_noise_and_blur=imnoise (img_gray_blur , ’ gauss ian ’ ,

noisem , var iance) ;

21 reps=10

22 for sigma=1: reps ;

23 sigmamult=sigma∗ s c a l e

63

24 for s i g n o i s e =1: reps ;

25 no i s eva r=(s i g n o i s e ^2)∗ s c a l e

26

27 %cropped images−−−−−−−−−−−−−−−−−−−−−−−−−−−−

28 crop_sample = imcrop (img_gray , r e c t) ;

29 img_crop_with_blur= imgau s s f i l t (crop_sample , sigma) ;

30 img_crop_with_noise_and_blur=imnoise (img_crop_with_blur , ’

gauss ian ’ , noisem , no i s eva r) ;

31

32 cor3=normxcorr2 (img_crop_with_noise_and_blur ,

img_gray_noise_and_blur) ;

33

34 %p l o t t i n g−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 f igure (1)

36 subplot (3 , 3 , 1)

37 imshow(img_gray) ;

38 t i t l e (’ g r ay s c a l e wire ’)

39

40 subplot (3 , 3 , 2)

41 imshow (crop_sample) ;

42 t i t l e (’ cropped image ’)

43

44 subplot (3 , 3 , 4) ;

45 imshow(img_gray_blur) ;

46 t i t l e (’ g r ay s c a l e wire ’)

47

48 subplot (3 , 3 , 5) ;

64

49 imshow(img_crop_with_blur) ;

50 t i t l e (’ cropped image with b lur ’)

51

52 subplot (3 , 3 , 7) ;

53 imshow (img_gray_noise_and_blur) ;

54 t i t l e (’ wire with no i s e and b lur ’)

55

56 subplot (3 , 3 , 8)

57 imshow (img_crop_with_noise_and_blur) ;

58 t i t l e (’ crop with no i s e and b lur ’)

59 pause (1)

60

61 cc_coef_3 (sigma , s i g n o i s e)=max(max(cor3))

62 [ypeak3 , xpeak3] = find (cor3==max(cor3 (:)))

63

64

65 end

66 end

67 f igure (2) ;

68 surf (cc_coef_3) ;

69

70 X=[1: s i g n o i s e]

71 Y=[1: sigma]

72 x s c a l e=X∗ s c a l e

73 y s c a l e=Y∗ s c a l e

74 [y , x]=meshgrid (ysca l e , x s c a l e)

75

65

76 x_vec=reshape (x , sigma .∗ s i gno i s e , 1)

77 y_vec=reshape (y , sigma .∗ s i gno i s e , 1)

78 cc_coef_3_vec=reshape (cc_coef_3 , sigma .∗ s i gno i s e , 1)

79 f igure (2)

80 s c a t t e r 3 (x_vec (: , 1) , y_vec (: , 1) , cc_coef_3_vec (: , 1))

81 xlabel=(’ no i s e ’)

82 ylabel=(’ b lur ’)

83

84 cub i c_ f i t=f i t ([x_vec , y_vec] , cc_coef_3_vec , ’ poly11 ’)

85 [fx , fy] = d i f f e r e n t i a t e (cub ic_f i t , [x_vec , y_vec])

86

87 f igure (3)

88 plot (cub i c_ f i t)

89

90 data= [x_vec y_vec cc_coef_3_vec]

91

92 csvwrite (’ cross_cor . csv ’ , data)

66

A.2 phase lag corrected data analysis

1 clc ;

2 clear ;

3 M = csvread (’ data11 . csv ’ , 170 ,1) ;

4 s h i f t= 61 ;

5 axis ([0 10 0 10 0 2000]) ;

6 s izem=s ize (M, 1) ;

7 i t r =[1 : s izem] ’ ;

8 data=[i t r ,M] ;

9 i t r=data (: , 1) ;

10 enc=data (: , 2) ;

11 cam=data (: , 3) ;

12 cam_zero=(cam−cam(1)) ;

13 amp=1744;

14 temp=data (: , 6) ;

15 temp2=(temp−temp (1)) ;

16 temp2_amp=temp2∗amp;

17 enc_sh i f t=enc (1 : end−s h i f t) ;

18 cam_zero_shift=cam_zero (s h i f t : end) ;

19 temp2_shift=temp2_amp (1 : end−s h i f t +1)−156;

20 i t r_ s h i f t=i t r (s h i f t : end) ;

21 cam_comp_shift=cam_zero_shift+temp2_shift ;

22

23 f igure (1)

24 plot (i t r_ sh i f t , cam_zero_shift , i t r_ sh i f t , temp2_shift , i t r_ sh i f t

, cam_comp_shift , ’ l i n ew id th ’ , 4)

67

25

26 t i t l e (’ s h i f t e d ’)

27

28 meanval_unc=mean(cam_zero_shift)

29 stddev_unc=std (cam_zero_shift)

30

31 meanval=mean(cam_comp_shift)

32 stddev=std (cam_comp_shift)

33

34 data1 = cat (1 , [i t r_ sh i f t , cam_zero_shift , temp2_shift ,

cam_comp_shift]) ;

35 csvwrite (’ themale r ror . csv ’ , data1) ;

68

APPENDIX B: C++ CODE

1 #include <iostream>

2 #include <eib7 . h>

3 #include <chrono>

4 #include <ctime>

5 #include <unis td . h>

6 #include <cstd io>

7 #include <s i g n a l . h>

8 #include <fstream>

9 #include <thread>

10 #include <stdde f . h>

11 #include "opencv2/opencv . hpp"

12 #include "opencv2/ imgproc . hpp"

13 #include "opencv2/ imgproc/ imgproc . hpp"

14 #include "opencv2/ ob jde t e c t / ob jde t e c t . hpp"

15 #include <opencv2/ imgcodecs . hpp>

16 #include <opencv2/ imgcodecs / imgcodecs . hpp>

17 #include "opencv2/ h ighgu i / h ighgu i . hpp"

18 #include <eigen3 /Eigen/Core>

19 #include <opencv2/ core / e igen . hpp>

20 #include <ueye . h>

21 #include <time . h>

22 #include <LabJackM . h>

23 #include "LJM_Uti l i t ies . h"

24 #include <mutex>

25 #include <cond i t ion_var iab le>

69

26 #include <cmath>

27 #include <vector>

28 #include <algorithm>

29 #include <Eigen>

30

31

32 #define EIB_TCP_TIMEOUT 5000 /∗ t imeout f o r TCP

connect ion in ms ∗/

33 #define NUM_OF_AXIS 4 /∗ number o f axes o f the

EIB ∗/

34 #define MAX_TEXT_LEN 200 /∗ maximum s i z e o f

conso l e input s t r i n g ∗/

35

36

37 HIDS hCam = 0 ;

38

39 using namespace std ;

40 using namespace cv ;

41 using namespace Eigen ;

42

43

44 char qu i t ;

45 int quitnum=0;

46 bool ready = fa l se ;

47 mutex m;

48 mutex m2;

49 mutex m3;

70

50 mutex m4;

51 mutex m5;

52 cond i t i on_var i ab l e cond_var ;

53

54 double l o c =0;

55 double l o c2 =0;

56 double l o cy =0;

57 double l o cy2=0;

58

59 double zero ;

60 long int encpos ;

61 long int pos = encpos ;

62 int handle ;

63 double temperature ;

64 double avg2 ;

65

66 double avg f i t x =0;double f i t x 1 =0;double f i t x 2 =0;

67

68

69 void CheckError (EIB7_ERR e r r o r) ;

70 void Po l lPo s i t i on (EIB7_AXIS axis , int enc_type , long int& a)

;

71 int picomotor (int handle , int n , int t , int Dist , double Spd ,

double d i r) ;

72 int picomotor2 (int handle , int n , int t , int Dist , double Spd ,

double d i ry) ;

73 void v e r t c on t r o l (int handle) ;

71

74

75 void encavg () ;

76 void encoder () ;

77 Mat camera () ;

78 int temp(int handle) ;

79 void v e r t c on t r o l (int handle) ;

80 void data () ;

81

82

83 class coor_row

84 {

85 public :

86 long double x , y , z ;

87 coor_row (long double X, long double Y, long double Z)

88 {

89 x=X;

90 y=Y;

91 z=Z ;

92 }

93 friend ostream& operator<<(ostream&os , const coor_row&

xyz) ;

94 friend ofstream& operator<<(ofstream&fs , const coor_row&

xyz) ;

95 } ;

96

97 // over l oad the << opera tor to d i s p l a y the r e s u l t o f my row

98 ostream& operator<<(ostream& os , const coor_row& xyz)

72

99 {

100 os<< xyz . x << " " << xyz . y << " " << xyz . z ;

101 return os ;

102 }

103 ofstream& operator<<(ofstream& fs , const coor_row& xyz)

104 {

105 f s<< xyz . x << " " << xyz . y << " " << xyz . z ;

106 return f s ;

107 }

108

109 int main ()

110 {

111 int handle ;

112 handle = OpenOrDie (LJM_dtANY, LJM_ctANY, "LJM_idANY") ;

113

114 thread encoderaverage (encavg) ;

115 thread encoderthread (encoder) ;

116 thread camthread (camera) ;

117 thread tempthread (temp , handle) ;

118 thread ve r t c on t r o l t h r e ad (ve r t con t r o l , handle) ;

119 thread datarec (data) ;

120

121 //−−

122

123 #define POS_SPEC_INCR "Status word : 0x%04X Pos i t i on (i n t) :

%010 l l d = %11.4 f s i g n a l pe r i od s "

124

73

125 #define POS_SPEC_INCR "Status word : 0x%04X Pos i t i on (i n t) :

%010 l l d = %11.4 f s i g n a l pe r i od s "

126

127 using namespace std ;

128

129 int e x i t = 3 ;

130

131 // i n i t i a l i z e v a i r i a b l e s

132 // i n t err ;

133 // i n t handle ;

134 int n=0;

135 int t ;

136 int Dist ;

137 double Spd ;

138 char D;

139 double d i r ; // output s t a t e (0 = reverse , 1= forward)

140 long int pos ;

141 // doub le zero ;

142 int t a r g e t ;

143 double de l t a =100000000000000000;

144 int endcond= 10 ;

145 double rep=3;

146 double i ;

147 double j ;

148 double to t ;

149 double avg ;

150 double encrep ;

74

151 double posnew=0;

152 double posavg ;

153

154 s l e e p (3) ;

155

156

157 m. lock () ;

158 pos ;

159 avg2 ;

160 cout<< ""<< endl ;

161 cout << " th i s i s the i n i t i a l p o s s i t i o n " << encpos <<endl

;

162 zero= avg2 ;

163 cout<< " th i s i s what i t b e l i e v e s the zero o f f s e t should

be "<< zero << endl ; cout <<endl ;

164

165 m. unlock () ;

166

167 while (e x i t != 0)

168 { to t =0;

169 double locnano=lo c ;

170 // s l e e p (7) ;

171

172 for (i = 1 ; i <= rep ; ++i) {

173 locnano=lo c ;

174 to t=tot+locnano ;

175

75

176 }

177 avg= tot / rep ;

178

179 cout<< "would you l i k e to qu i t ? p r e s s Q to qu i t or any

other key to cont inue " << endl ;

180 c in >> qu i t ;

181

182

183 i f (qu i t != ’ q ’)

184 {quitnum =0;}

185

186 else

187

188 i f (qu i t == ’q ’)

189 {quitnum=1;

190 ready = true ; }

191

192 // Determines what the t a r g e t d e s t i n a t i o n f o r the s t a g e i s .

193 cout << "what i s the d e s t i n a t i on l o c a t i o n : " ;

194 c in >> ta rg e t ;

195 de l t a =100000000000000000;

196

197 while (d e l t a > endcond or de l t a < −endcond)

198 {

199 // f i n d s the p o s i t i o n o f the s t a g e from the encoder at

the beg inn ing o f the loop and d i s p l a y s i t .

200

76

201

202 m2. lock () ;

203 encpos ;

204 avg2 ;

205

206 cout<< ""<< endl ;

207

208 double a=avg2 ;

209 cout << " the po s i t i o n i s : "<< avg2 << endl ;

210

211 de l t a = ta r g e t −a ;

212 cout << " de l t a i s : " << de l t a << endl ;

213

214 cout << " zero i s : " << zero << endl ;

215

216 i f (d e l t a > 0)

217 {

218 d i r = 0 ;

219 Spd=99999999;

220 t=1;

221 }

222 else

223 i f (d e l t a < 0)

224 {

225 d i r =1;

226 Spd=99999999;

227 t=1;

77

228 }

229 else

230 {

231 cout << "This i s not a va l i d d i r e c t i o n " << endl ;

232 }

233 cout << " the d i r e c t i o n i s " << d i r << endl ;

234

235

236 t=Dist=1;

237

238

239

240

241 picomotor (handle , n , t , Dist , Spd , d i r) ;

242

243 double b=−avg2+zero ;

244

245

246 double c = b−a ;

247

248 m2. unlock () ;

249

250

251 cout << "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" <<

endl ;

252 }

253

78

254 }

255

256 encoderaverage . j o i n () ;

257 encoderthread . j o i n () ;

258 camthread . j o i n () ;

259 tempthread . j o i n () ;

260 ve r t c on t r o l t h r e ad . j o i n () ;

261 datarec . j o i n () ;

262

263 return 0 ;

264 }

265

266

267

268 Mat camera ()

269 {

270

271 Mat sample ;

272

273 Mat sample7 ;

274 Mat r e s i z e d ;

275

276 sample = imread (" sample15 . jpg " ,CV_LOAD_IMAGE_GRAYSCALE) ;

277

278 sample7 = imread (" sample16 . jpg " ,CV_LOAD_IMAGE_GRAYSCALE) ;

279

280

79

281 imshow(" sample" , sample) ;

282 imshow(" sample7" , sample7) ;

283

284 Mat debug_img ;

285

286 Mat result_mat ;

287 Mat result_mat2 ;

288 MatrixXf img_eig ;

289

290

291 //

−−−

292 MatrixXd M(5 ,5) ;

293 Eigen : : Matrix<double ,5 ,1> C = Eigen : : Matrix< double

, 5 , 1 >: : Zero () ;

294 //MatrixXd minv ;

295 Eigen : : Matrix<double ,5 ,5> minv = Eigen : : Matrix<double

, 5 , 5 >: : Zero () ;

296 Eigen : : Matrix<double ,5 ,1> A = Eigen : : Matrix<double , 5 , 1 >: :

Zero () ;

297

298

299

300 //

−−−

80

301

302

303

304 HIDS hCam = 0 ;

305 char∗ pMem = NULL;

306 int memID = 0 ;

307 // I n i t i a l i z e the camera . The second input i s f o r windows and

by pass ing NULL you t e l l i t to run in b i t map mode

308 int nRet = is_InitCamera(&hCam,NULL) ;

309 i f (nRet == IS_SUCCESS)

310 { cout << " the camera was i n i t i a l i z e d "<< endl ; }

311 else

312 {cout<< "camera not i n i t i a l i z e d "<< endl ; }

313

314

315

316 // This command Determines how many Ueye cameras are

connected to the computer and re turns a va lue "num"

317 int num = 0 ;

318 nRet=is_GetNumberOfCameras(&num) ;

319 cout << "number o f connected cameras : "<< num<< endl ;

320

321 // This f unc t i on s e t s the p i x e l c l o c k f o r the camera .

322 UINT nPixe lClockDefau l t = 10 ; // t h i s was s e t a t 21

323 nRet = is_Pixe lClock (hCam, IS_PIXELCLOCK_CMD_SET, (void ∗)

&nPixe lClockDefault , s izeof (nPixe lClockDefau l t)) ;

324 i f (nRet == IS_SUCCESS)

81

325 { cout << " the p i x e l c l o ck was s e t "<< endl ; }

326 else

327 {cout<< " p i x e l c l o ck was not s e t "<< endl ; }

328

329

330

331 // This f unc t i on s e t s the exposure o f the camera .

332 double exposure =900;

333 nRet = is_Exposure (hCam, IS_EXPOSURE_CMD_SET_EXPOSURE, &

exposure , s izeof (exposure)) ;

334 p r i n t f (" exposure s t a t %d s e t exposure %f \n" , nRet , exposure

) ;

335

336 // Set the co l o r mode o f the camera

337 INT colorMode = IS_CM_SENSOR_RAW8;

338 nRet = is_SetColorMode (hCam, colorMode) ;

339

340 i f (nRet == IS_SUCCESS) {

341 cout << "Camera c o l o r mode s u c c e s f u l l y s e t ! " << endl ;

342 }

343

344

345

346

347 // t h i s s e c t i on o f the querys the camera f o r a l i s t o f

suppor ted image formats and the a s s o c i a t e d parameters f o r

each

82

348

349 UINT count ;

350

351 UINT bytesNeeded = s izeof (IMAGE_FORMAT_LIST) ;

352

353 nRet = is_ImageFormat (hCam, IMGFRMT_CMD_GET_NUM_ENTRIES, &

count , s izeof (count)) ;

354

355 bytesNeeded += (count − 1) ∗ s izeof (IMAGE_FORMAT_INFO) ;

356

357 void∗ ptr = mal loc (bytesNeeded) ;

358

359

360

361 // Create and f i l l l i s t

362

363 IMAGE_FORMAT_LIST∗ pformatLis t = (IMAGE_FORMAT_LIST∗) ptr ;

364

365 pformatList−>nSizeOfListEntry = s izeof (IMAGE_FORMAT_INFO) ;

366

367 pformatList−>nNumListElements = count ;

368

369 nRet = is_ImageFormat (hCam, IMGFRMT_CMD_GET_LIST, pformatList

, bytesNeeded) ;

370

371 IMAGE_FORMAT_INFO formatIn fo ;

372

83

373 // This code c r ea t e s i n t e g e r va l u e s which i n d i c a t e the h e i g h t

and width o f the image in p i x e l s .

374 // Changing the index o f "FormatInfo" changes the image

format

375

376 f o rmatIn fo = pformatList−>FormatInfo [1] ;

377

378 int width = formatIn fo . nWidth ;

379

380 cout << "width : " << width << endl ;

381

382 int he ight = formatIn fo . nHeight ;

383 cout << " he ight : " << he ight << endl ;

384

385

386 // i n i t i a l i z e s an OpenCV matrix "mat" wi th the Height and

Width o f the s e l e c t e c image format .

387 Mat mat (height , width , CV_8UC1) ;

388

389

390 nRet = is_AllocImageMem (hCam, width , height , 8 , &pMem, &

memID) ;

391

392

393 i f (nRet == IS_SUCCESS)

394 { cout << " the memory was a l l o c a t e d "<< endl ; }

395 else

84

396 {cout<< "memory was not a l l o c a t e d "<< endl ; }

397 //

−−

398

399 nRet = is_SetImageMem(hCam, pMem, memID) ;

400 i f (nRet == IS_SUCCESS)

401 { cout << " the memory was ac t i va t ed "<< endl ; }

402 else

403 {cout<< "memory was not ac t i va t ed "<< endl ; }

404

405

406 nRet = is_ImageFormat (hCam, IMGFRMT_CMD_SET_FORMAT, &

formatIn fo . nFormatID , s izeof (fo rmatIn fo . nFormatID)) ;

407

408

409 while (true) {

410

411 // i n i t i a l i z i n g the v a r i a b l e s to genera te the Matrix

412 long double sumx=0; long double sumy=0; long double sumxx

=0; long double sumyy=0; long double sumxy=0; long

double sumyx=0; long double sumxxx=0; long double

sumxxxx=0; long double sumyyy=0;

413 long double sumyyyy=0; long double sumxxyy=0; long double

sumxxy=0; long double sumxyy=0; long double sumyyxx

=0; long double sumyxx=0; long double sumyyx=0;

414

85

415 // i n i i t i a l i z i n g the v a r i a b l e s r e qu i r ed to genera te the C

matrix

416 long double sumzxx=0; long double sumzx=0; long double

sumzyy=0; long double sumzy=0; long double sumz=0;

417

418 int DELAY_CAPTION = 1500 ;

419 int DELAY_BLUR = 100 ;

420 int MAX_KERNEL_LENGTH = 31 ;

421

422 i s_FreezeVideo (hCam, IS_WAIT) ;

423 char∗ pMem_b;

424 int r e t I n t = is_GetActiveImageMem (hCam, &pMem,&memID)

;

425

426 memcpy(mat . ptr () , pMem, mat . c o l s ∗ mat . rows) ;

427 Mat amp =(mat∗3)−55;

428 Mat thresh ;

429 Mat re s i z ed_thre sh ;

430 Mat r e s i z e d_r e su l t ;

431 double thresh_val =.3 ;

432 int counter=0;

433

434

435

436 cvtColor (amp, debug_img , CV_GRAY2BGR) ;

437

438

86

439 for (int i = 1 ; i < MAX_KERNEL_LENGTH; i = i + 2)

440 { GaussianBlur (amp, amp, S i z e (i , i) , 0 , 0) ; }

441

442

443 //−− f i r s t image cros s c o r r e l a t i on

−−

444 int match_method = CV_TM_CCORR_NORMED;

445 matchTemplate (amp, sample , result_mat ,

match_method) ;

446

447 double minVal ; double maxVal ;

448 Point minLoc , maxLoc , matchLoc ;

449 minMaxLoc(result_mat , &minVal , &maxVal , &minLoc , &

maxLoc , Mat ()) ;

450 matchLoc = maxLoc ;

451

452

453

454 double mincoe f f =.70;

455

456 i f (maxVal>= mincoe f f)

457

458 {

459 r e c t ang l e (

460 debug_img ,

461 matchLoc ,

87

462 Point (matchLoc . x + sample . c o l s , matchLoc . y +

sample . rows) ,

463 CV_RGB(255 ,0 , 0) ,

464 3) ;

465

466 l o c = matchLoc . x ;

467 l o cy = matchLoc . y ;

468 Rect r o i ;

469 r o i . width = 100 ;

470 r o i . he ight = 100 ;

471 r o i . x = matchLoc . x−r o i . width /2 ;

472 r o i . y = matchLoc . y−r o i . he ight /2 ;

473

474

475 Mat crop = result_mat (r o i) ;

476 //imshow(" crop " , crop) ;

477 cv2e igen (crop , img_eig) ;

478

479 int s i z e x=img_eig . rows () ;

480 int s i z e y=img_eig . c o l s () ;

481

482

483 long double z [s i z e y] [s i z e x] ;

484 long double x [s i z e x] , y [s i z e y] ;

485 vector<coor_row>new_row ;

486

487 for (int j =0; j< s i z e x ; j++)

88

488 {

489 for (int i =0; i<s i z e y ; i++)

490

491 {x [i]= j ;

492 y [j]= i ;

493 z [i] [j]= img_eig (i , j) ;

494

495 coor_row xyz (x [i] , y [j] , z [i] [j]) ;

496 i f (z [i] [j]>=thresh_val)

497 {

498 new_row . push_back (xyz) ;

499 }

500

501 else { counter++;}

502

503

504

505

506 }

507 }

508

509 cout << endl ;

510 for (int i =0; i <(s i z e x ∗ s i z ey−counter) ; i++){

511

512 // the m matrix

513 sumx+=new_row [i] . x ;

514 sumy+=new_row [i] . y ;

89

515 sumxx+=new_row [i] . x∗new_row [i] . x ;

516 sumxxx+=new_row [i] . x∗new_row [i] . x∗new_row [i] . x ;

517 sumxxxx+=new_row [i] . x∗new_row [i] . x∗new_row [i] . x∗

new_row [i] . x ;

518 sumyy+=new_row [i] . y∗new_row [i] . y ;

519 sumyyy+=new_row [i] . y∗new_row [i] . y∗new_row [i] . y ;

520 sumyyyy+=new_row [i] . y∗new_row [i] . y∗new_row [i] . y∗

new_row [i] . y ;

521 sumxy+=new_row [i] . x∗new_row [i] . y ;

522 sumxyy+=new_row [i] . x∗new_row [i] . y∗new_row [i] . y ;

523 sumxxy+=new_row [i] . x∗new_row [i] . x∗new_row [i] . y ;

524 sumyx+=new_row [i] . y∗new_row [i] . x ;

525 sumyyxx+=new_row [i] . y∗new_row [i] . y∗new_row [i] . x∗

new_row [i] . x ;

526 sumyyx+=new_row [i] . y∗new_row [i] . y∗new_row [i] . x ;

527 sumyxx+=new_row [i] . y∗new_row [i] . x∗new_row [i] . x ;

528 sumxxyy+=new_row [i] . x∗new_row [i] . x∗new_row [i] . y∗

new_row [i] . y ;

529 // the c matrix

530 sumzxx+=new_row [i] . z∗new_row [i] . x∗new_row [i] . x ;

531 sumzx+=new_row [i] . z∗new_row [i] . x ;

532 sumzyy+=new_row [i] . z∗new_row [i] . y∗new_row [i] . y ;

533 sumzy+=new_row [i] . z∗new_row [i] . y ;

534 sumz+=new_row [i] . z ;

535 }

536

537

90

538 M << sumxxxx , sumxxx , sumxxyy , sumxxy , sumxx ,

539 sumxxx , sumxx , sumxyy , sumxy , sumx ,

540 sumyyxx , sumyyx , sumyyyy , sumyyy , sumyy ,

541 sumyxx , sumyx , sumyyy , sumyy , sumy ,

542 sumxx , sumx , sumyy , sumy , s i z e x ∗ s i z e y ;

543 // cout << endl<< M<< end l ;

544

545

546 C << sumzxx , sumzx , sumzyy , sumzy , sumz ;

547 minv=M. i nv e r s e () ;

548 A=M. i nv e r s e () ∗C;

549 f i t x 1= matchLoc . x+C(1 , 0) /(−2∗C(0 , 0)) ;

550 }

551

552 //−−second image cros s co r r e l a t i on

−−

553

554 counter=0;

555 matchTemplate (amp, sample7 , result_mat2 ,

match_method) ;

556

557 double minVal2 ; double maxVal2 ;

558 Point minLoc2 , maxLoc2 , matchLoc2 ;

559 minMaxLoc(result_mat2 , &minVal2 , &maxVal2 , &

minLoc2 , &maxLoc2 , Mat ()) ;

560 matchLoc2 = maxLoc2 ;

91

561

562 // i n i t i a l i z i n g the v a r i a b l e s to genera te the Matrix

563 sumx=0; sumy=0; sumxx=0; sumyy=0; sumxy=0; sumyx=0;

sumxxx=0; sumxxxx=0; sumyyy=0;

564 sumyyyy=0; sumxxyy=0; sumxxy=0; sumxyy=0; sumyyxx=0;

sumyxx=0; sumyyx=0;

565

566 // i n i i t i a l i z i n g the v a r i a b l e s r e qu i r ed to genera te the C

matrix

567 sumzxx=0; sumzx=0; sumzyy=0; sumzy=0; sumz=0;

568

569 i f (maxVal2>= mincoe f f)

570

571 {

572 r e c t ang l e (

573 debug_img ,

574 matchLoc2 ,

575 Point (matchLoc2 . x + sample7 . c o l s , matchLoc2 .

y + sample7 . rows) ,

576 CV_RGB(255 ,0 , 0) ,

577 3) ;

578

579 l o c2 = matchLoc2 . x ;

580 l o cy2 = matchLoc2 . y ;

581 Rect r o i 2 ;

582 r o i 2 . width = 100 ;

583 r o i 2 . he ight = 100 ;

92

584 r o i 2 . x = matchLoc2 . x−r o i 2 . width /2 ;

585 r o i 2 . y = matchLoc2 . y−r o i 2 . he ight /2 ;

586

587

588 Mat crop2 = result_mat (r o i 2) ;

589

590 cv2e igen (crop2 , img_eig) ;

591 int s i z e x=img_eig . rows () ;

592 int s i z e y=img_eig . c o l s () ;

593

594 long double z [s i z e y] [s i z e x] ;

595 long double x [s i z e x] , y [s i z e y] ;

596 vector<coor_row>new_row ;

597

598 for (int j =0; j< s i z e x ; j++)

599 {

600 for (int i =0; i<s i z e y ; i++)

601

602 {x [i]= j ;

603 y [j]= i ;

604 z [i] [j]= img_eig (i , j) ;

605

606 coor_row xyz2 (x [i] , y [j] , z [i] [j]) ;

607

608 i f (z [i] [j]>=thresh_val)

609 {

610 new_row . push_back (xyz2) ;

93

611 }

612

613 else { counter++;}

614

615 }

616 }

617

618 // i n i t i a l i z i n g the v a r i a b l e s to genera te the Matrix

619

620 cout << endl ;

621 for (int i =0; i <(s i z e x ∗ s i z e y)−counter ; i++){

622

623 // the m matrix

624 sumx+=new_row [i] . x ;

625 sumy+=new_row [i] . y ;

626 sumxx+=new_row [i] . x∗new_row [i] . x ;

627 sumxxx+=new_row [i] . x∗new_row [i] . x∗new_row [i] . x ;

628 sumxxxx+=new_row [i] . x∗new_row [i] . x∗new_row [i] . x∗

new_row [i] . x ;

629 sumyy+=new_row [i] . y∗new_row [i] . y ;

630 sumyyy+=new_row [i] . y∗new_row [i] . y∗new_row [i] . y ;

631 sumyyyy+=new_row [i] . y∗new_row [i] . y∗new_row [i] . y∗

new_row [i] . y ;

632 sumxy+=new_row [i] . x∗new_row [i] . y ;

633 sumxyy+=new_row [i] . x∗new_row [i] . y∗new_row [i] . y ;

634 sumxxy+=new_row [i] . x∗new_row [i] . x∗new_row [i] . y ;

635 sumyx+=new_row [i] . y∗new_row [i] . x ;

94

636 sumyyxx+=new_row [i] . y∗new_row [i] . y∗new_row [i] . x∗

new_row [i] . x ;

637 sumyyx+=new_row [i] . y∗new_row [i] . y∗new_row [i] . x ;

638 sumyxx+=new_row [i] . y∗new_row [i] . x∗new_row [i] . x ;

639 sumxxyy+=new_row [i] . x∗new_row [i] . x∗new_row [i] . y∗

new_row [i] . y ;

640 // the c matrix

641 sumzxx+=new_row [i] . z∗new_row [i] . x∗new_row [i] . x ;

642 sumzx+=new_row [i] . z∗new_row [i] . x ;

643 sumzyy+=new_row [i] . z∗new_row [i] . y∗new_row [i] . y ;

644 sumzy+=new_row [i] . z∗new_row [i] . y ;

645 sumz+=new_row [i] . z ;

646 }

647

648

649 M << sumxxxx , sumxxx , sumxxyy , sumxxy , sumxx ,

650 sumxxx , sumxx , sumxyy , sumxy , sumx ,

651 sumyyxx , sumyyx , sumyyyy , sumyyy , sumyy ,

652 sumyxx , sumyx , sumyyy , sumyy , sumy ,

653 sumxx , sumx , sumyy , sumy , s i z e x ∗ s i z e y ;

654

655

656

657 C << sumzxx , sumzx , sumzyy , sumzy , sumz ;

658

659

660 minv=M. i nv e r s e () ;

95

661

662

663 A=M. i nv e r s e () ∗C;

664

665

666 double f i t x 3 ;

667

668 f i t x 2= matchLoc2 . x+C(1 , 0) /(−2∗C(0 , 0)) ;

669 f i t x 3= C(1 , 0) /(−2∗C(0 , 0)) ;

670 }

671

672 avg f i t x=(f i t x 1+f i t x 2) /2 ;

673

674 r e s i z e (debug_img , res i zed_thresh , S i z e () , 0 . 25 , 0 . 25) ;

675

676 imshow(" thresh " , r e s i z ed_thre sh) ;

677

678 // Check i f we need to s top proce s s ing

679 i f ((int) waitKey (10) >= 0) {

680

681 waitKey (1) ; }

682

683 i f (quitnum == 1)

684 {break ; }

685 }

686

687 cout << "" << endl ;

96

688 is_FreeImageMem(hCam,pMem,memID) ;

689 i f (nRet == IS_SUCCESS)

690 { cout << "memory was c l e a r ed "<< endl ; }

691 else

692 {cout<< "memory not c l e a r ed "<< endl ; }

693

694 nRet = is_ExitCamera (hCam) ;

695 i f (nRet == IS_SUCCESS)

696 { cout << "camera was ex i t ed "<< endl ; }

697 else

698 {cout<< "camera not ex i t ed "<< endl ; }

699

700

701 destroyAllWindows () ;

702

703 s l e e p (1) ;

704

705 }

706

707

708

709 void CheckError (EIB7_ERR e r r o r)

710 {

711 i f (e r r o r != EIB7_NoError)

712 {

713 char mnemonic [3 2] ;

714 char message [2 5 6] ;

97

715

716 EIB7GetErrorInfo (e r ro r , mnemonic , 32 , message , 256) ;

717

718 f p r i n t f (s tde r r , "\nError %08X (%s) : %s \n" , e r ro r ,

mnemonic , message) ;

719 e x i t (0) ;

720

721

722 }

723 }

724

725

726 void Po l lPo s i t i on (EIB7_AXIS axis , int enc_type , long int& b)

727 {

728

729

730

731 unsigned short s t a tu s ; /∗ s t a t u s word

∗/

732 ENCODER_POSITION pos ; /∗ po s i t i o n va lue (

i n t e g e r) ∗/

733 double pos_sp ; /∗ po s i t i o n va lue (

s i g n a l pe r i od s) ∗/

734

735 /∗ read po s i t i o n from EIB ∗/

736 CheckError (EIB7GetPosition (ax is , &status , &pos)) ;

737

98

738 CheckError (EIB7IncrPosToDouble (pos ,&pos_sp)) ;

739

740 encpos = pos ;

741

742 }

743

744 void encoder ()

745 {

746 EIB7_HANDLE e ib ; /∗ EIB handle

∗/

747 unsigned long ip ; /∗ IP address o f EIB

∗/

748 unsigned long num; /∗ number o f encoder axes

∗/

749 EIB7_AXIS ax i s [NUM_OF_AXIS] ; /∗ axes array

∗/

750 char fw_version [2 0] ; /∗ f irmware ve r s i on s t r i n g

∗/

751 int enc_axis ; /∗ ac t ua l a x i s index

∗/

752 int enc_type ; /∗ encoder type

∗/

753 int i ;

754

755

756 #ifde f Linux

757 s i g n a l (SIGINT , Ctr lHandler) ;

99

758 s i g n a l (SIGTERM, Ctr lHandler) ;

759 #endif

760

761

762 char hostname [1 2] = { ’ 1 ’ , ’ 9 ’ , ’ 2 ’ , ’ . ’ , ’ 1 ’ , ’ 6 ’ , ’ 8 ’ , ’ . ’ , ’ 1 ’ , ’

. ’ , ’ 2 ’ , ’ \0 ’ } ; // t h i s i s the lan IP address

763 enc_axis=0; // t h i s s e l e c t s the f i r s t encoder a x i s

764 enc_type=1; // This s e l e c t s 1vpp as the encoder output

765

766 /∗ open connect ion to EIB ∗/

767 CheckError (EIB7GetHostIP (hostname , &ip)) ;

768 CheckError (EIB7Open(ip , &eib , EIB_TCP_TIMEOUT, fw_version ,

s izeof (fw_version))) ;

769

770

771 /∗ ge t axes array ∗/

772 CheckError (EIB7GetAxis (eib , ax i s , NUM_OF_AXIS, &num)) ;

773

774

775 /∗ i n i t i a l i z e s e l e c t e d a x i s ∗/

776 /∗ 1 Vpp ∗/

777

778 CheckError (EIB7InitAxis (ax i s [enc_axis] ,

779 EIB7_IT_Incremental ,

780 EIB7_EC_Linear ,

781 EIB7_RM_None, /∗ r e f e r ence marks not

used ∗/

100

782 0 , /∗ r e f e r ence marks not

used ∗/

783 0 , /∗ r e f e r ence marks not

used ∗/

784 EIB7_HS_None ,

785 EIB7_LS_None ,

786 EIB7_CS_CompActive , /∗ s i g n a l compensation

on ∗/

787 EIB7_BW_High, /∗ s i g n a l bandwidth :

h igh ∗/

788 EIB7_CLK_Default , /∗ not used f o r

incrementa l i n t e r f a c e ∗/

789 EIB7_RT_Long , /∗ not used f o r

incrementa l i n t e r f a c e ∗/

790 EIB7_CT_Long /∗ not used f o r

incrementa l i n t e r f a c e ∗/

791)) ;

792 while (true)

793 {

794 /∗ c a l l p o l l i n g loop func t i on ∗/

795 Po l lPo s i t i on (ax i s [enc_axis] , enc_type , encpos) ;

796 pos = encpos ;

797 // cout << pos << end l ;

798

799 }

800

801 /∗ c l o s e connect ion to EIB ∗/

101

802 EIB7Close (e ib) ;

803

804 m5. lock () ;

805

806 pos = encpos ;

807

808 m5. unlock () ;

809

810 }

811

812

813

814 int picomotor (int handle , int n , int t , int Dist , double Spd ,

double d i r) {

815

816 int e r r ;

817

818 // Open f i r s t found LabJack

819 // handle = OpenOrDie (LJM_dtANY, LJM_ctANY, "LJM_idANY

") ;

820 char ∗ name2 ;

821

822 // i d e n t i f i e s the a c t i v e IO por t FI01 as the por t be ing

commanded

823 name2 = "FIO1" ;

824

825 // Set DIO s t a t e on the LabJack

102

826 e r r = LJM_eWriteName(handle , name2 , d i r) ;

827 ErrorCheck (err , "LJM_eWriteName") ;

828

829 for (n ; n< t ; n = n+1){

830

831 // Set up f o r s e t t i n g DIO s t a t e

832 double value = 1 ; // Output s t a t e (0 = low , 1 = high)

833 char ∗ name ;

834

835 name = "FIO0" ;

836

837 // Set DIO s t a t e on the LabJack

838 e r r = LJM_eWriteName(handle , name , va lue) ;

839 ErrorCheck (err , "LJM_eWriteName") ;

840

841 struct t imespec tim , tim2 ;

842 tim . tv_sec = 0 ;

843 tim . tv_nsec = Spd ;

844

845 i f (nanos leep(&tim , &tim2) < 0)

846 {

847 p r i n t f ("Nano s l e ep system c a l l f a i l e d \n") ;

848

849 }

850

851 value = 0 ;

852

103

853 e r r = LJM_eWriteName(handle , name , va lue) ;

854 ErrorCheck (err , "LJM_eWriteName") ;

855 }

856

857

858

859 int picomotor2 (int handle , int n , int t , int Dist , double Spdy ,

double d i ry) {

860 // i n t handle ;

861 int e r r ;

862

863

864 // Open f i r s t found LabJack

865 char ∗ name3 ;

866

867 // i d e n t i f i e s the a c t i v e IO por t FI01 as the por t be ing

commanded

868 name3 = "FIO3" ;

869

870 // Set DIO s t a t e on the LabJack

871 e r r = LJM_eWriteName(handle , name3 , d i ry) ;

872 ErrorCheck (err , "LJM_eWriteName") ;

873

874 for (n ; n< t ; n = n+1){

875

876 // Set up f o r s e t t i n g DIO s t a t e

877 double value = 1 ; // Output s t a t e (0 = low , 1 = high)

104

878 char ∗ name4 ;

879

880 name4 = "FIO2" ;

881

882 // Set DIO s t a t e on the LabJack

883 e r r = LJM_eWriteName(handle , name4 , va lue) ;

884 ErrorCheck (err , "LJM_eWriteName") ;

885

886 struct t imespec tim , tim2 ;

887 tim . tv_sec = 0 ;

888 tim . tv_nsec = Spdy ;

889

890 i f (nanos leep(&tim , &tim2) < 0)

891 {

892 p r i n t f ("Nano s l e ep system c a l l f a i l e d \n") ;

893

894 }

895

896 value = 0 ;

897

898 e r r = LJM_eWriteName(handle , name4 , va lue) ;

899 ErrorCheck (err , "LJM_eWriteName") ;

900 }

901 }

902

903 int temp(int handle)

904 {

105

905

906

907 while (true)

908 {

909

910 int e r r ;

911 // i n t handle ;

912

913 // Set up f o r read ing AIN va lue

914 double temp = 0 ;

915

916 const char ∗ NAME = "AIN0" ;

917

918

919 struct t imespec tim , tim2 ;

920 tim . tv_sec = 0 ;

921 tim . tv_nsec = 100000000;

922

923 i f (nanos leep(&tim , &tim2) < 0)

924 {

925 p r i n t f ("Nano s l e ep system c a l l f a i l e d \n") ;

926

927 }

928

929 // Read AIN from the LabJack

930 e r r = LJM_eReadName(handle , NAME, &temp) ;

931 ErrorCheck (err , "LJM_eReadName") ;

106

932

933

934 temperature =((13.582 −s q r t ((184 .470724)

+.01732∗(2230.8− temp∗1000))) /− .00866)+30;

935 }

936 }

937

938

939 void v e r t c on t r o l (int handle)

940 {

941 int n=0;

942 int t ;

943 int Dist ;

944 double Spdy=99999999;

945 double d i ry ;

946 s l e e p (10) ;

947 double l o cy z e r o=(locy+locy2) /2 ;

948

949 cout <<" the y zero i s " << lo cy z e r o << endl ;

950

951 while (true)

952 { double l o c yd e l t a =((l ocy+locy2) /2)−l o cy z e r o ;

953 i f (l o cy == 0)

954 {quitnum=1;

955 break ; }

956

957 else

107

958

959 i f (locy2 == 0)

960 {quitnum=1;

961 break ; }

962

963 else

964

965 i f (l o c yd e l t a < −3)

966 { d i ry = 0 ;}

967 else

968 i f (l o c yd e l t a > 3)

969 { d i ry = 1

970 ; }

971

972 i f (l o c yd e l t a > 3)

973 { t=Dist=l o c yd e l t a ∗1 ;

974 picomotor2 (handle , n , t , Dist , Spdy , d i ry) ;

975 }

976

977 else

978

979 i f (l o c yd e l t a < −3)

980 { t=Dist=−l o c yd e l t a ∗1 ;

981 picomotor2 (handle , n , t , Dist , Spdy , d i ry) ;

982 }

983

984 else

108

985 { cout << "on ta r g e t " << endl ; }

986

987 cout << l o cyd e l t a << endl ;

988 cout << di ry << endl ;

989

990 // picomotor2 (handle , n , t , Dist , Spdy , d i r y) ;

991 s l e e p (3) ;

992

993

994 i f (quitnum == 1)

995 {break ; }

996

997 }

998 }

999 void encavg ()

1000 {

1001

1002 while (true) {

1003 double tot2 ;

1004 double rep2=1;

1005 long int curpos ;

1006 tot2 =0;

1007 for (double k = 1 ; k <= rep2 ; ++k) {

1008

1009

1010 curpos=encpos−zero ;

1011 tot2=tot2+curpos ;

109

1012

1013 }

1014 avg2 = tot2 / rep2 ;

1015

1016 }

1017 }

1018

1019 void data ()

1020 {

1021

1022 //mutex m3;

1023 //mutex m4;

1024 double avg ;

1025 double to t ;

1026 double rep =100; // t h i s i s normal ly a t 2000

1027 // long i n t pos ;

1028

1029 double avg3 ;

1030 double tot3 ;

1031

1032 double conv fact ;

1033 double combavg ;

1034

1035 ofstream campos ;

1036

1037 campos . open ("camposdata . csv ") ;

1038 campos << "time" << " , " << /∗" averaged camera measurement 1"

110

<< " ," << "averaged camera measurment 2"<< ","<< "non

averaged camera 1" << " ," << ∗/ " encoder avg" << " , " << "

measurment 1 and 2 average " << " , " << "measurement 1 y" <<

" , " << "measurement 2 y" << " , " << " temperature " << " , "<<

"averaged f i t x"<< endl ;

1039

1040

1041 // averag ing the f i r s t c ro s s c o r r e l a t i o n pos i t i on

−−−

1042 while (true)

1043 {

1044 double comb_loc=l o c+f i t x 1 ;

1045

1046 auto timenow =

1047 chrono : : system_clock : : to_time_t (chrono : : system_clock : :

now()) ;

1048

1049 to t =0;

1050 for (double i = 1 ; i <= rep ; ++i) {

1051

1052 struct t imespec tim , tim2 ;

1053 tim . tv_sec = 0 ;

1054 tim . tv_nsec = 10000000;

1055

1056 i f (nanos leep(&tim , &tim2) < 0)

1057 {

1058 p r i n t f ("Nano s l e ep system c a l l f a i l e d \n") ;

111

1059 }

1060 to t=tot+comb_loc ;

1061

1062 }

1063 avg = tot / rep ;

1064

1065 // averag ing the second cros s c o r r e l a t i o n pos i t i on

−−−

1066

1067 tot3 =0;

1068 double comb_loc2=loc2+f i t x 2 ;

1069

1070 for (double i = 1 ; i <= rep ; ++i) {

1071

1072 struct t imespec tim , tim2 ;

1073 tim . tv_sec = 0 ;

1074 tim . tv_nsec = 10000000;

1075

1076 i f (nanos leep(&tim , &tim2) < 0)

1077 {

1078 p r i n t f ("Nano s l e ep system c a l l f a i l e d \n") ;

1079 }

1080

1081 tot3=tot3+comb_loc2 ;

1082

1083 }

1084 avg3 = tot3 / rep ;

112

1085

1086 //

−−−

1087

1088 m4. lock () ;

1089

1090 conv fact =14.325;

1091

1092 combavg=((avg3+avg) /2) ∗ conv fact ;

1093

1094 campos << ctime(&timenow) << " , " /∗<< avg3 << " ," << avg <<

" ," << lo c << " ," ∗/ << avg2 << " , " << combavg << " , " <<

locy << " , " << locy2 << " , " << temperature << " , " <<

avg f i tx<< endl ;

1095

1096 m4. unlock () ;

1097 s l e e p (1) ;

1098

1099

1100 cout<< avg <<" , "<< avg3<< endl ;

1101 cout << "combined average : " << combavg << endl ;

1102 i f (quitnum == 1)

1103 {break ; }

1104

1105

1106 }

113

1107

1108

1109 }

114

APPENDIX C: Encoder Uncertainty Analysis

ri = initial length of flexure lever arm

∆r = change in length of flexure lever arm

hi = initial height of flexure angle adjustment screw

rwire = initial length of scale

∆h = the change in height of flexure angle adjustment screw

T = environmental temperature withing environmental enclosure

αsteel = coefficient of thermal expansion of steel

θ1 = initial angle of flexure hinge

θ2 = angle of flexure hinge after thermal expansion

∆θ = change in angle of flexure hinge

σri = uncertainty of initial length of flexure lever arm

σhi = uncertainty of initial height of flexure angle adjustment screw

σαsteel = uncertainty of the coefficient of thermal expansion of steel

σrx = uncertainty of calculated x position

σθ = uncertainty of flexure hinge angle

σx = uncertainty of x position measured by camera

σrscale = uncertainty in the initial length of scale

∆r = αabsri∆T (C.1)

∆h = αabshi∆T (C.2)

The change of angle ∆θ due to change in temperature can be calculated using equa-

115

tions (C.3) through (C.5).

θ1 = tan−1

(
hi
ri

)
(C.3)

θ2 = tan−1

(
hi + ∆h

ri + ∆r

)
(C.4)

∆θ = θ2 − θ1 (C.5)

116

The uncertainty of ∆r, ∆h, and ∆wire can be calculated using equations (C.6),

through (C.8)

σ∆r =
√

(αsteel∆Tσri)2 + (ri∆Tσαsteel)2 + (riαsteelσ∆T)2 (C.6)

σ∆h =
√

(αsteel∆Tσhi)2 + (hi∆Tσαsteel)2 + (hiαsteelσ∆T)2 (C.7)

σ∆rscale =
√

(αsteel∆Tσrscale)2 + (rscale∆Tσαsteel)2 + (rscaleαsteelσ∆T)2 (C.8)

Equations (C.9) through (c.11) are used to calculated the uncertainty of the angle

of between horizontal axis of the camera and the translation axis of the camera, which

is shown in equation (8.16).

∂θ

∂hi
=

ri + ∆r

∆h2 + 2∆hhi + h2
i + (ri + ∆r)2

+
hi

r2
i + h2

i

(C.9)

∂θ

∂∆h
=

ri + ∆r

∆h2 + 2∆hhi + h2
i + (ri + ∆r)2

(C.10)

∂θ

∂ri
=

hi + ∆h

(ri + ∆r)2
(

(hi+∆h)2

(ri+∆r)2
+ 1
) +

hi
h2
i + r2

i

(C.11)

∂θ

∂∆r
=

hi + ∆h

(ri + ∆r)2
(

(hi+∆h)2

(ri+∆r)2
+ 1
) (C.12)

117

σθ =

√(
∂θ

∂hi
σhi

)2

+

(
∂θ

∂∆h
σ∆h

)2

+

(
∂θ

∂ri
σri

)2

+

(
∂θ

∂∆r
σ∆r

)2

(C.13)

The equation for the uncertainty of the x position, as measured by the camera, is

shown in equation (C.14)

σx =
√

(cos(∆θ)σrx)2 + (cos(∆θ)σ∆θ)2 + ((−rxsin(∆θ)−∆rxsin(∆θ))σθ)2

(C.14)

