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ABSTRACT

LONNIE BAKER. Do Dynamic Allosteric Effects Occur in IgG4 Antibodies?.
(Under the direction of DR. DONALD JACOBS)

Antibodies are large, multi-chain proteins which play a critical roll in the func-

tioning of vertebrate immune systems. Immune effector cells which are responsible

for the destruction of foreign antigens do not randomly target molecules but rely on

antibodies to recognize and bind antigens with very high specificity before initiating

the process of antigen destruction. This process, known as antibody-dependent cel-

lular cytotoxicity (ADCC), involves coordination of binding sites on the surfaces of

antibodies that are distant from each other implying an allosteric mechanism. From

molecular dynamics data, an effective elastic network model (ENM) of an IgG4 mon-

oclonal antibody is constructed from the inverse of a noise-decorrelated covariance

matrix. A perturbation-response method is then applied which demonstrates long

range correlations exist between antibody residues. The correlations between these

distant sites are then shown to have potential site specific cooperative binding free en-

ergies which strongly suggest the presence of dynamic allosteric effects. Of particular

significance, our results confirm the putative allosteric pathways directly connecting

the functionally important CH2 domains to the complementarity determining regions

(CDRs). Our results also show that this functional allosteric pathway is highly sensi-

tive to mutations. This finding launches a potential paradigm shift in how antibodies

use molecular cooperativity as part of their function.
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CHAPTER 1: INTRODUCTION

A typical protein interacts with multiple chemicals in the course of its functions

within a cell. These chemical interactions take place at binding sites on the surface

of the protein which can often be distant from each other. When a binding event at

one binding site effects the binding affinity of another site which is distant from the

first site, the phenomenon is known as allostery.

The existence of multiple binding sites on a protein comes as no surprise given the

large size of most proteins. As different functions of proteins are measured experimen-

tally, such as the ability of an enzyme to produce a product or a transporter protein

to bind its cargo, it can be easily theorized that each function is facilitated by a set of

independently operating binding sites. But by the 1960s, evidence of certain protein

functions had been collected that could not be adequately explained by a completely

functionally independent set of binding sites.

One of the earliest clear examples of this is a study on a bacterial enzyme L-

threonine deaminase[1]. In this study, the function of the enzyme L-threonine deam-

inase is inhibited by an end product which is produced several chemical steps later.

A simple model of competitive binding at the enzymatic cleft between the enzyme

target and the inhibitor was not supported by experimental evidence and the conclu-

sion drawn was that the binding sites for the enzyme target and the inhibitor were in

fact distant from each other. This implied the existence of a phenomenon in which

binding events at one site were affecting the function of another distinct site which

did not overlap the first site. This began a search to explain the mechanism behind

the new phenomenon called allostery.

At the time, the only means of determining the structure of proteins was x-ray
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crystallography. A consequence of this was that early studies of protein function

were focused on highly ordered and relatively rigid proteins which could be more

easily crystallized. This led to the earliest models of allostery which were based

on structural changes such as the KNF (Koshland–Nemethy–Filmer)[2] and MWC

(Monod–Wyman–Changeux)[3] models. These models were highly successful and

were in good agreement with the evidence available at the time. However, as new

experimental methodologies such as nuclear magnetic resonance were developed which

could be applied to proteins in motion, it became clear that the allosteric mechanism

can involve changes in protein dynamics within a native state basin rather than a

large scale change in structure.

In 1984, Cooper produced a model of dynamic allostery which could explain the

cooperativity of distant binding sites through alterations of normal modes[4]. Im-

portantly, this model of dynamic allostery did not rely on any shift in the mean

configuration of the protein. Since then, experimental evidence has been collected

that shows allosteric effects can occur without conformational change[5, 6].

1.1 Allostery in Antibodies

The vertebrate immune system is responsible for the identification and elimination

of foreign pathogens in the host body. From the earliest days of immunology, it was

known that the immune system produces a class of substances which can identify

and bind to invading pathogens and trigger their destruction. It is now known that

large proteins called antibodies are responsible for the recognition and binding of

these pathogens while many other parts of the immune system including B cells and

phagocytes interact with the complexes formed between antibodies and pathogens in

order to produce a range of immune responses.

Determining the system of interaction between pathogens, antibodies and immune

cells was a long and arduous process involving many scientists and opposing theories

which eventually led to the current model of the immune system. In this model, anti-



3

bodies possess a highly specific binding affinity for their target pathogen, also known

as an antigen. Upon binding to this invasive antigen, the antibody can have one of

several possible effects depending on the type of antibody ranging from directly dis-

abling the pathogen to marking the pathogen for destruction by immune cells known

as phagocytes which specialize in the consumption and destruction of pathogens. This

later process is known as antibody-dependent cell-mediated cytotoxicity (ADCC).

The discovery that antibodies were necessary for the activation of other immune

system cells in addition to their ability to bind pathogens immediately suggested the

presence of multiple binding sites on the surface of an antibody which could each

serve different roles. Experimental evidence eventually followed that confirmed these

distant binding sites.
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Figure 1.1: An IG antibody monomer is composed of two heavy chains (grey) and
two light chains (orange). Each heavy chain is composed of three constant domains
(CH1, CH2, CH3) and one variable domain (VH). Each light chain is composed of a
single constant domain (CL) and a single variable domain (VL). The variable regions
of each chain have three complementarity determining regions, or CDRs (purple).

An antibody monomer is a large Y-shaped protein which consists of four chains

bound by inter-chain disulfide bonds. Two of these chains are known as heavy chains

and are colored grey in the figure. Each heavy chain consists of a highly variable

domain at one end (VH), and three consecutive constant domains (CH1, CH2, and

CH3) which are the same across all members of the same antibody class (also known

as an isotype) such as IgG4. The other two chains are known as light chains and are

colored orange in the figure. Each light chain consists of a single variable domain

(VL) and a single constant domain (VC). The high specificity of antigen-antibody
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binding is achieved through a highly developed system of directed mutations which

allow sections of the variable domains (VH and VL) to be altered in order to form

binding sites with affinities for specific antigens. These antigen binding sites are also

known as complementarity determining regions (CDRs). Binding sites which act as

immune cell activators are located in the CH2 and CH3 domains. Different isotypes of

antibody such as IgG1 and IgG4 have constant regions with different binding affinities

which control the function of that isotype in the body.

While the possibility of allosteric communication between these sites was theorized

early on, the general consensus given the evidence on hand was that non-allosteric

mechanisms could explain the apparent cooperativity between these sites[7]. These

non-allosteric mechanisms rely on the tendency of antibodies to cluster together as

multiple antibodies bind to the same antigen. The non-allosteric model proposed that

this increase in local antibody concentration can in turn be detected by immune cells.

As time progressed however, more evidence was produced that allostery might

be at play in the function of antibodies[8]. One key experimental finding was that

antibodies with identical variable Fab regions but different Fc constant regions could

have different binding affinities.

1.2 Dynamic Allostery Model

The model we will use to quantify long range dynamic allosteric effects will involve

several distinct stages. First, molecular dynamics simulations of the antibodies will

be conducted in order to generate trajectories from which a large sampling of confor-

mations can be drawn. Second, an effective elastic network model will be constructed

which will allow the use of a perturbation-response model based on normal mode

analysis. Third, the results from a full perturbation-response scan of each protein

will be analyzed to determine if long range dynamic couplings can be detected which

indicate possible dynamic allosteric effects. These stages will be elaborated below.
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1.3 Molecular Dynamics Simulations of Antibodies

An IgG4 antibody is a very large molecule which consists of 1324 amino-acids

with 10,268 atoms. To increase the speed of computation and allow for a greater

sampled time, the Martini force field was chosen to simulate the antibodies[9]. The

Martini force field features a course grained model which maps groups of 3-5 heavy

atoms from the all-atom protein structure onto single interaction centers. Parame-

ters for this force field have been determined by running extensive simulations of large

bio-molecules in various solvents and adjusting the parameters in order to match ex-

perimentally determined thermodynamic values such as partitioning free energies[10].

All simulations were run with an explicit Martini water solvent. The conformational

ensembles produced by these simulations are then used to construct covariance ma-

trices of atomic positions which serve as components in the analysis of large scale

collective motions which will take place in later steps.

1.4 Principal Component and Normal Mode Analysis

A typical protein contains thousands of atoms. Analyzing the individual move-

ments of each atom therefore requires the use of a very high number of degrees of

freedom. Principal component analysis (PCA) is a dimensionality reduction tech-

nique that has long been a tool used to study protein dynamics[11]. In PCA, the

true dynamics of a protein are decomposed into a linear combination of orthogonal

modes[12]. Normal mode analysis (NMA) is another method that can also be used to

decompose molecular motions into orthogonal normal modes. Typically in NMA, a

harmonic approximation is made regarding the potential energy functions underlying

the molecular dynamics.

The first theoretical model of dynamic allostery was based on normal mode anal-

ysis of protein motions[4]. The relationship between PCA and NMA is critical for

an understanding of our model. At issue is the ability to model molecular driving
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forces with harmonic potentials and the method used to determine the values of the

harmonic force constants.

The true energy landscape of a protein contains many local minima which mark

semi-stable conformations between which proteins diffuse over time. The inter atomic

forces which define this landscape are definitely not harmonic in nature. Inside an

energy minimum however, it is often reasonably accurate to approximate any stable

potential as harmonic. The reason for this can be seen from the Taylor expansion of

any arbitrary potential energy function of a single variable V (x):

V (x) = V (0) + V ′(0)x+
V ′′(0)

2!
x2 +

V ′′′(0)

3!
x3 + ...

[1]

Where x is the displacement from equilibrium. At the local energy minimum

located at x = 0, the first term V (0) is zero as we are free to define the lowest point

of the potential as zero. The slope at a minimum is also zero therefore V ′(0) is also

zero. Later terms involving xn at higher powers will all approach zero as x→ 0, but

terms with higher n will approach much faster than terms with lower n. For this

reason, the arbitrary potential function V (x) can be approximated as a harmonic

potential, V
′′(0)
2!

x2, when x is sufficiently close to 0. This logic carries over to potential

functions of more than one variable in regions sufficiently close to an energy minimum.

If a protein is in a conformation that is sufficiently close to a free energy minimum,

then the potential energy functions which drive the protein’s motion can be approx-

imated as harmonic potentials. Our method takes into consideration a full range of

harmonic and anharmonic potentials and differs from other methods enough to be

dubbed a quasi-harmonic approximation[13].

Within this approximation, the motions of the protein can be decomposed into an

orthogonal set of normal modes and their associated fractions of captured variance
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given by the eigenvectors |n〉 and eigenvalues λ of a covariance matrix of atomic

positions Q:

Q =
N∑
n=1

|n〉λ 〈n|

[2]

For each matrix Q, a 2µs molecular dynamics (MD) simulation was conducted on a

full IgG4 antibody using the Martini course grained force field. From each simulation,

10, 000 configurations were sampled in order to create a matrix of atomic positions

where M = 10, 000 were the number of samples, the index k is the sample number,

and the indexes i and j are degrees of freedom used to define the elements of Q:

Qi,j = cov(x(i), x(j)) =
1

M − 1

M∑
k=1

(x
(i)
k − < x(i) >)(x

(j)
k − < x(j) >)

[3]

This work will use only the coordinates of the carbon alpha Cα atoms of the pro-

tein backbone. For a protein consisting of N amino acids (residues), the degrees of

freedom are therefore 3N . This level of course graining is thought to capture the

configurational and dynamic effects which are important for dynamic allostery while

leaving behind data regarding the movements of individual atoms. Small amplitude,

high frequency motions of individual atoms have been found to have less long range

correlations than lower frequency motions[11, 12].

Due to the incomplete sampling of atomic configurations, the covariance matrix Q is

only an approximation of the true covariance matrix. It has been shown that a process

known as shrinkage removes most biases, approaching a true unbiased estimator,

which improves the quality of estimated covariance matrices generated from a limited

sample space[14]. This process has been implemented and its effect will be monitored

and benchmarked because we obtain different results from the modified covariance
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matrices. This will be done by comparing the new normal modes derived from these

matrices to the old modes based on covariance matrices without shrinkage applied.

1.5 Effective Elastic Network Model

For a true ENM which assumes harmonic potentials as the only driving forces, the

Hessian H is proportional to the inverse of the covariance matrix Q−1[15].

H = RTQ−1 = RT

N∑
n=1

|n〉 1

λ
〈n|

[4]

Our method uses this relationship in reverse by first determining the covariance

matrix Q from an MD simulation and then using the above equation to derive an

approximation of H. This approximation is dubbed a quasi-harmonic approximation

because Q was determined by an MD simulation which used anharmonic as well as

harmonic potentials[13]. The force constants Hij which are determined by inverting

Q in this way capture the anharmonic potentials of the MD simulation. The force

constants of a true ENM approximate the forces between atoms as harmonic poten-

tials without considering long range effects from anharmonic forces such as van der

Waals forces. The force constants of our effective ENM approximate the potentials of

mean force derived from an MD simulation which implicitly include these anharmonic

forces[16].

The force constants which compose an effective ENM form a symmetric matrix

which is mathematically equivalent to a Hessian matrix H of second partial derivatives

of potential energy V with each element Hij of H given by:

Hij =
∂2V

∂xi∂xj

[5]
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A true elastic network model (ENM) treats an entire protein as if it were a collec-

tion of masses connected to each other by quadratic Hookean (harmonic) potentials

(springs). In most cases the masses consist of all Cα atoms. The force constants

that make up an ENM are highly arbitrary but are usually parameteized to fit some

experimental data. This simplified model allows for analytical calculation of the nor-

mal modes of vibration. Much research has been conducted on the accuracy of ENMs

predictions of protein motions[17, 15, 18]. A major advantage of ENMs is that the

global effects of small perturbations to the network can be computed analytically

through normal mode analysis.

The most glaring flaw in a true ENM is the fact that the forces driving atomic

motions are not entirely harmonic. The effective ENM which our method uses differs

from a true ENM in that anharmonic forces are taken into account when H is being

generated.

The elements of H are analogous to force constants in a highly interconnected,

multi-dimensional elastic network. For a mass on a spring moving in one dimension

x, ∂2V
∂x

= k. Where k is the force or spring constant. If each mass in the network

has 3 degrees of freedom and there are N masses, then H will have a dimension of

3N . The eigenvectors |n〉 of H are the normal modes of the models motion while the

eigenvalues 1
λ

= ω are the frequencies of the associated normal modes squared.

It can be seen that the eigenvectors |n〉 of H are identical to the eigenvectors of

the covariance matrix Q. The approximation H ∝ Q−1 is true only as long as the

approximation of harmonic potential functions holds. Q−1 therefore approximates H

more accurately the closer the conformation of the protein is to a true free energy

minimum. The eigenvectors of a Hessian matrix are always the normal modes. The

eigenvectors of a covariance matrix are estimates of the normal modes which rely on

the approximation of harmonic potential functions.
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1.6 Noise Decorrelation

The eigenvalues ω of H are the inverses of the eigenvalues λ of Q, ω = 1
λ
. A

problem with the computation of H naturally arises from extremely small values of

λ. The computation of λ relies on measurements of atomic positions which have some

degree of uncertainty. There is a value ∆λ, below which an estimate of λ becomes

inaccurate due to the presence of these uncertainties. As a result, extremely small

values of λ will cause noise to dominate the construction of H.

The noise present in Q creates numerical instability (for small lambda), and is

the main reason why inverse covariance matrices have not been previously used to

construct effective ENMs. Physically, any eigenvalue λ of a covariance matrix Q

with a magnitude below a certain limit is not accurate due to the uncertainty of the

positional measurements used to derive Q. To remedy this issue, a noise decorrelation

step has been implemented[19] which replaces all eigenvalues of Q below a certain

threshold value λn < λc with a mean value according to:

λn →
1

3N − c

3N∑
n=c

λn

[6]

This transformation reduces the effect that extremely small and uncertain eigen-

values of Q have on the construction of H while at the same time maintaining the

value of the trace of Q. The sum of the eigenvalues that are below λc divided by the

sum of all eigenvalues gives the fraction of total variance that de-noised:

Percent noise decorrelation =

∑3N
n=c λn∑3N
n=1 λn

∗ 100

[7]
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Figure 1.2: Hessian matrices at varying levels of noise decorrelation. (A) Zero percent
noise decorrelation. (B) 5% noise decorrelation. (C) 10% noise decorrelation. (D)
20% noise decorrelation.

Figure 2 shows four examples of Hessian matrices which represent a 238 residue

scFv antibody fragment[19]. Each Hessian was derived from the inversion of a co-

variance martrix of atomic positions. The matrix on the top left is a Hessian derived

from a covariance matrix with zero noise decorrelation. The remaining three matri-

ces are Hessians derived from the same covariance matrix with 5%, 10% and 20%

noise decorrelation by replacement of the lowest eigenvalues with their mean value.

10% indicates that the sum of the replaced eigenvalues account for 10% of the total

variance.

An alternative noise decorrelation method is introduced in this thesis which re-

places all eigenvalues below λc with a fixed minimum value of λc which is based on
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the estimated accuracy limit of λ. This new method has the advantage of a better

physical basis than the previous method which simply set an arbitrary percentage

of noise decorrelation as a user defined parameter. This alternative method will be

implemented as a part of this thesis and the new results will be compared to results

generated using the previously published method.

1.7 Perturbation-Response Model

A model has been developed which measures possible dynamic coupling between

specific binding sites on the protein which are distant from each other[19]. The

denoised Hessian matrix H can be decomposed into a set of eigenvectors |n〉 which

are the normal modes of vibration of the protein. Each normal mode indicates the

amplitudes of motion of every mass along each degree of freedom. By perturbing H

in a way that models a binding event and then tracking alterations to |n〉, dynamic

effects across the entire protein can be measured.

Binding between a protein and a ligand is almost always accompanied by a decrease

in the proteins heat capacity. This observation suggests that internal vibrational

degrees of freedom are being reduced as a result of the binding event[4]. By adding

new force constants or "springs" to the elastic network model, localized reductions to

vibrational freedom can be induced to model binding events at that location.

The addition of new springs to the Hessian H perturbs its normal modes |n〉. These

perturbed modes can be used to calculate the changes in mean squared fluctuation

(MSF) for every mass in the ENM which in this case is every residue or Cα atom.

Changes in the MSF of residues which are distant from the perturbation site indi-

cate that a long range dynamic coupling has occurred which may imply a dynamic

allosteric effect.
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Figure 1.3: Triad, star and ball perturbation types. Spring constants ’k’ are added
to the model between sets of atoms defined by the perturbation type. The perturba-
tion radius ’R’ defines a cutoff distance between the target residue (red) and nearby
residues which are to be included in the perturbation (blue).

Several types of perturbations have been tested which vary in the way they add

springs to the model. Triad, star and ball perturbations are shown in figure 3. All

results and analysis presented here use the ball perturbation type. This perturbation

adds springs to the model such that all masses within a user defined radius Rp of

the target residue have a spring placed between them with a uniform spring constant

value of k. While previous work focused on the ball perturbation type, triad and

star perturbations will be included as a part of this thesis. A triad perturbation at a

target residue p adds springs between residue pairs (p− 1, p), (p+ 1, p), (p− 1, p+ 1)

while a star perturbation adds springs only between the target residue and each other

residue within the cutoff radius R. Springs with either positive or negative constants

can be added to explore the effects of binding events which either decrease or increase

the vibrational freedom of the targeted residues.

The addition of new springs to the model does not alter the equilibrium position of

the protein but instead alters the normal modes |n〉 by changing fluctuations around

the equilibrium conformation. As the normal modes change, the MSFs of residues

across the protein can potentially be altered. Each perturbation produces a new
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set of normal modes which are determined by a new eigenvalue decomposition of

the perturbed Hessian Hp. If p is the index of the residue where a perturbation is

centered then a new set of n normal modes and eigenvalues λp,n will be associated with

that perturbation due to the additional force constants in the elastic network. Each

element of a normal mode gives the amplitude of motion in that degree of freedom.

Each residue has three degrees of freedom: x, y and z. For an N residue protein, the

normal modes with have 3N elements.

For a perturbation at target residue p, the calculation of MSF for residue r is as

follows:

MSF (p, r) =
∑
n

λp,n[V 2
x,p,n(r) + V 2

y,p,n(r) + V 2
z,p,n(r)]

[8]

Where λp,n is the eigenvalue of the nth normal mode associated with the perturbed

Hessian Hp and Vx,p,n(r) is the element of the nth eigenvector of Hp that represents

the x degree of freedom for residue r. In this way, the MSFs of residues which are

distant from the perturbation target are measured and a possible dynamic coupling

effect has been detected. Changes in MSF due to a perturbation are referred to as

"responses".

A full perturbation-response matrix (PRM) tabulates the changes in MSF of every

residue as a result of perturbations to all other residues. A full PRM therefore consists

of an NXN matrix where N is the number of residues in the protein. Figure 4 is

an example of a full PRM where the vertical axis indicates the perturbation target

residue p and the horizontal axis indicates the response residue r.
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Figure 1.4: All residue perturbation-response matrix. This matrix was generated
using a positive/stabilizing force constant. Every blue point on the matrix represents
a residue that was stabilized as a result of of stabilizing perturbation. Every red point
represents a residue that was destabilized. The location of the perturbation is given
by the y axis. The location of the response is given by the x axis.

This perturbation-response model will locate and measure long range dynamic

couplings between residues. In addition to full PRMs which perturb and measure all

residues, targeted PRMs can be made which select only specific residues at which to

apply perturbations or measure responses.

1.8 Cooperative Binding and Allosteric effects

In order for dynamic allosteric effects to occur, the long range dynamic couplings

described above must result in some sort of cooperativity in binding between distant
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sites. The model of dynamic allostery proposed by Cooper and Dryden attempted to

calculate the change in the free energy of binding (∆∆Gvib) which would occur if the

binding of one ligand had an effect on the binding affinity of a second ligand[4]. This

model was based on the observation that binding between a protein and its ligand

usually resulted in a stiffening or loss of flexibility in the protein which would cause

an increase in its normal mode frequencies ν. Their proposed equation took the form:

∆∆Gvib ≈ −KT · ln(
ν21
ν0ν2

)

[9]

Here ν0 is the frequency of the given normal mode when no ligand is bound, ν1 is

the frequency of this mode with the first ligand bound, and ν2 is the frequency with

both ligands bound. The condition for ∆∆Gvib to be negative is clearly ν21 > ν0ν2. If

ligand binding is assumed to cause and increase in ν then a negative ∆∆Gvib implies

a free energy driven cooperative effect between the first and second ligands.

1.9 Eigenvalue Perturbations

Our method models binding events by adding springs to the effective elastic net-

work, altering the rigidity of the network at that location. This perturbs the Hessian

matrix H0 → Hp. The perturbed hessian Hp has a new set of normal mode fre-

quencies given by it’s eigenvalues. In order for ∆∆Gvib to be computed using the

above method, it is necessary to compare the frequencies of specific modes as they

transition from ν → ν1 → ν2. Separate eigenvalue decompositions of H0 and Hp do

not guarantee the proper alignment of eigenvalues for this method to be valid.

To solve this issue we used first order eigenvalue perturbation theory to track the

changes in ν for each mode 〈n| separately. For an unperturbed Hessian H0 the

eigenvalues are the normal mode frequencies squared:
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H0 |n〉 = ω0 |n〉

Where ω0 = ν20 . For a small initial perturbation V1 followed by a small second

perturbation V2, the original unperturbed frequencies are altered according to the

equations:

ω1 = ω0 + 〈n|V1 |n〉

[10]

ω2 = ω0 + 〈n|V1 + V2 |n〉

[11]

In this case, each perturbation V takes the form of a sparse matrix of force constants

which are added to H. Using this method, the frequencies ν0, ν1, and ν2 are kept

aligned for each mode. This enables us to compute ∆∆Gvib for each mode.

Antibodies are a natural choice on which to test these methods as there is significant

evidence that distant binding sites on an antibody communicate allosterically[20, 8].

Despite this, no proposed mechanism has been put forth which conclusively explains

allostery in such a large protein. If our methods predict binding cooperativity between

CDR loops and residues in the CH2 regions when applied to antibodies, then the

results will be in significant agreement with experimental evidence.



CHAPTER 2: RESULTS

2.1 Analysis of dynamic couplings

Our method has several parameters associated with each perturbation. These in-

clude the strength of the force constant k, the cutoff radius Rp, and the geometry

which can be either ball, star, or triad (Figure 3). Many combinations of these param-

eters were sampled in order to explore potential differences in long range couplings.

Global perturbation and response profiles are a good way to initially quantify the

differences between the effects of perturbations.

A perturbation which adds positive spring constants to the model is referred to as

a stabilizing perturbation due to its effect of reducing the motions of the perturbed

residues. The addition of negative spring constants has the opposite effect and is

therefore a destabilizing perturbation. The results below all involve stabilizing per-

turbations due to the commonly accepted belief that a binding event will decrease the

mobility of atoms which are involved in the binding. The local reduction of mobility

caused by a stabilizing perturbation can have either stabilizing or destabilizing effects

on residues distant from the perturbation site.

A global perturbation scan begins by applying a perturbation to each residue in

turn. As each residue is perturbed, every other residue in the protein will potentially

experience an alteration in the magnitude of its MSF. The average of all these changes

in MSF is recorded for each perturbation target. Each single residue in the protein is

therefore associated with an average global change in MSF when it is perturbed. A

perturbation profile is created in this way.

Alternately, as each residue is perturbed during the scan, the MSF of a single fixed

residue can be measured. The average change in MSF at a single residue as a result
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of all other residues being perturbed in turn creates a response profile. Below is a

figure which has examples of both global perturbation and response profiles.

Figure 2.1: An example of global perturbation and response profiles organized on the
same plot. The three colors indicate perturbation scan conducted on each of three
ENMs generated from different native structure simulations. The points above the
axis represent the global response profile while points below the axis represent the
global perturbation profile as defined above.

  

(A) Ball perturbation (C) Triad perturbation(B) Star perturbation

Figure 2.2: Stabilizing perturbation-Stabilizing response (SS) perturbation profiles
for all three perturbation types. These images show the magnitudes of stabilizing
responses to stabilizing perturbations. Blue regions indicate that perturbations placed
here cause a higher than average global decrease in MSF.
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(A) Ball perturbation (C) Triad perturbation(B) Star perturbation

Figure 2.3: Stabilizing perturbation-Destabilizing response (SD) perturbation profiles
for all three perturbation patterns. These images show the magnitudes of destabilizing
responses to stabilizing perturbations. Red regions indicate that perturbations placed
here cause a higher than average global increase in MSF.

  

(A) Ball perturbation (C) Triad perturbation(B) Star perturbation

Figure 2.4: Stabilizing perturbation-Stabilizing response (SS) response profiles for
all three perturbation patterns. These images show the magnitudes of stabilizing
responses to stabilizing perturbations. Blue regions indicate that these residues ex-
perience a higher than average decrease in mobility when other residues across the
entire protein are perturbed.

  

(A) Ball perturbation (C) Triad perturbation(B) Star perturbation

Figure 2.5: Stabilizing perturbation-Destabilizing response (SD) response profiles for
all three perturbation patterns. These images show the magnitudes of destabilizing
responses to stabilizing perturbations. Red regions indicate that these residues ex-
perience a higher than average increase in mobility when other residues across the
entire protein are perturbed..
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The data shown above involves a global perturbation scan which sequentially per-

turbs all residues in the protein. The results of this global scan can give information

about the effects binding events have on the protein as a whole. To determine inter-

actions between specific residues a targeted perturbation can be used. By targeting

only a select few residues for perturbation, a response profile can be generated which

shows the response each residue in the protein experiences as a result of the specific

targeted residue being perturbed. This is important for determining the presence of

dynamic allostery between known or suspected binding sites.

If allostery is present in antibodies, the most likely binding sites on the antibod-

ies surface which will be involved will be the complementarity determining regions

(CDRs) and the residues of the CH2 regions. The commonly accepted model of an-

tibody function involves highly specific antigen binding at the CDRs. After binding

to its antigens, the antibody gains the ability to activate immune effector cells by

binding to receptors on the surface of these cells. The sites on the antibody which

bind to immune cells surface receptors are located in the CH2 regions of the antibod-

ies. The cooperativity between CDRs and CH2 region sites which is observed in the

functioning of the immune system is the key evidence that allostery may be present

in antibodies.

For this reason, our choice of perturbation targets in the following test runs are

CDRs. Perturbations in these regions simulate antigen binding. These targeted

perturbations will lead to response profiles which will indicate exactly which residues

in the antibody respond dynamically to binding events at the perturbation targets.

For a targeted perturbation of CDR-L1a involving all three perturbation types, cor-

relations between response profiles as well as visual maps of regions which responded

to the perturbations are given below. The numbers in the upper triangle represent

correlations between SS profiles, while the numbers in the lower triangle represent

DD profiles:
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Table 2.1: Correlations between SS and DD profiles generated with different per-
turbation types at CDR-L1a. Numbers in the upper triangle represent correlations
between SS profiles (blue), while the numbers in the lower triangle represent DD
profiles (red).

Ball Star Triad

Ball x 0.9854 0.9490

Star 0.9354 x 0.9681

Triad 0.9227 0.8903 x

  

Ball Perturbation Star Perturbation Triad Perturbation

Figure 2.6: Stabilizing perturbation-Destabilizing response (SD) response profiles for
targeted perturbations of the L1a CDR loop (purple). Regions colored yellow or red
were destabilized to a significantly higher degree than others when a perturbation
was applied to the target.

For a targeted perturbation of CDR-H3a involving all three perturbation types, cor-

relations between response profiles as well as visual maps of regions which responded

to the perturbations are given below. The numbers in the upper triangle represent

correlations between SS profiles, while the numbers in the lower triangle represent

DD profiles:
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Table 2.2: Correlations between SS and DD profiles generated with different per-
turbation types at CDR-H3a. Numbers in the upper triangle represent correlations
between SS profiles (blue), while the numbers in the lower triangle represent DD
profiles (red).

Ball Star Triad

Ball x 0.9530 0.8597

Star 0.9305 x 0.8865

Triad 0.7971 0.7918 x

  

Ball Perturbation Star Perturbation Triad Perturbation

Figure 2.7: Stabilizing-Destabilizing (SD) response profiles for targeted perturbations
of the H3a CDR loop (purple). Regions colored yellow or red were destabilized to a
significantly higher degree than others when a perturbation was applied to the target.

From the above figures, it can be seen that the residues most likely to be dynam-

ically destabilized as a result of perturbations to either CDR-L1a or CDR-H3a are

located in the CDRs of the opposite chain as well as the CH2 regions of both chains.

The fact that small perturbations to a single CDR loop have significant destabilizing

effects on these very distant regions is evidence that dynamic allosteric effects are

possible.

2.2 Shrinkage of Estimated Covariance Matrices.

One of the improvements I implemented was the application of shrinkage to the MD

positional covariance matrices. The usefulness of shrinkage arrises from the problem

of imperfect sampling of positions during the MD simlation. When these imperfect
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measurements are used to construct an estimate of the true covariance matrix Q,

they intruduce systematic errors. These errors can be minimized through a process

known as shrinkage. When conducted at the optimal level, the process of shrinkage

is thought to almost universally improve the quality of covariance matrices when the

number of samples is not sufficiently large relative to the number of dimensions[14].

A quantitative measure of shrinkage required to optimize a covariance matrix is

shrinkage factor δ. A large value of δ implies that the estimated covariance matrix

in question is very likely to have systematic errors, while a small value of δ implies

that the estimated covariance matrix most likely has enough samples to minimize

these errors. When applied to our covariance matrices, we determined the optimal

shrinkage factors were always around δ = 2.56× 10−4. This very low shrinkage factor

has virtually zero impact on the estimated covariance matrices.

This is a very good result for the current data. In the future, when our methods

are used on other protein, the optimal shrinkage will be implemented automatically.

If the initial quality of estimated covariance matrices are lower in the new proteins,

the level of shrinkage implemented will increase to a level which is guaranteed to

minimize certain systematic errors.

2.3 New Noise Decorrelation Method.

The second improvement to our method was a new noise decorrelation method.

Noise decorrelation is a necessary step when inverting a covariance matrix because

very low eigenvalues can become overly large in the inverted matrix. These very

low covariance eigenvalues represent very small amplitude motions which are often

dominated by noise. The previous method was designed to remove these extremely

low eigenvalues by replacing a set of the lowest eigenvalues with the average value of

the set. The set of eigenvalues to be replaced was determined by choosing a threshold

percentage. This percentage would be the fraction of total variance represented by
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the replaced eigenvalues.

The new method is based on an estimate of the accuracy of positional data taken

from an MD simulation. Eigenvalues which are below the square of this estimate

are simply replaced with the threshold value. A threshold value of 0.01Å2 indicates

that all eigenvalues below 0.01Å2 are replaced with 0.01Å2. This implies an expected

accuracy limit of 0.1Å in the MD positional data because the eigenvalues of the

covariance matrix are in units of Angstroms squared.

The degree to which both methods differ in their effects can be measured in several

ways. Both ND methods produce de-noised Hessian matrices with complete sets

of orthogonal eigenvectors (normal modes) and eigenvalues (mode frequencies). An

overlap matrix can be computed from any two Hessian matrices by projecting every

eigenvector from one Hessian onto all eigenvectors from the other Hessian. An overlap

matrix between two identical sets of vectors will be perfectly diagonal, while sets of

vectors which differ from each other will have proportionally greater off-diagonal

elements. A single covariance matrix was de-noised using both methods and each

resulting de-noised matrix was inverted to give a Hessian matrix. Below is an overlap

matrix between the normal modes of these two Hessians.
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Figure 2.8: The overlap matrix of all eigenvectors from Hessian matrices derived using
both ND methods. A diagonal overlap matrix implies a very high degree of similarity
between the two sets of vectors.

The virtual lack of off-diagonal elements in the overlap matrix above means that

the normal modes derived using both ND methods are very similar to each other.

Noise decorrelation directly changes the eigenvalues of the covariance matrices. The

figure below compares scree plots (descending eigenvalues) from covariance matrices

which have had both methods of noise decorrelation applied to them.

Figure 2.9: Descending eigenvalue scree plots for covariance matrices de-noised using
the old (left) and new (right) noise decorrelation methods.
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The scree plots above are nearly identical upon first examination. This is due

to the fact that the top covariance eigenvalues which represent high amplitude, low

frequency motions are not affected by the noise decorrelation. An more obvious effect

of the new noise decorrelation method can be seen after inverting both of the de-

noised covariance matrices from above and plotting the Hessian matrix eigenvalues

in ascending order.

Figure 2.10: Ascending Hessian matrix eigenvalue plots for the old (left) and new
(right) noise decorrelation methods. These plots show that the old noise decorrelation
method introduces a sharp jump in the low frequency modes which is not present in
the new method.

Using the old noise decorrelation method, there is a significant jump around the

35th eigenvalue of H. This was caused by the fact that over 90% of the total variance

of the original covariance matrix Q came from the first 35 or so modes. With the old

noise decorrelation threshold set to 10%, all modes of the covariance matrix Q after

the first 35 or so were replaced with a fixed number. In the old method, this number

was the average of the replaced eigenvalues. In this case the value turned out to be

approximately 0.0005.

Using the old ND method with a threshold of 10%, replacing all of the eigenvalues of

Q past the 90% variance threshold does not have a noticeable effect on a scree plot of

descending eigenvalues. When Q is inverted to form a Hessian matrix H, the largest

eigenvalues of Q become the smallest eigenvalues of H. Plotting the eigenvalues of
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H from smallest to largest, a significant step can be seen at the point where the

noise decorrelation began replacing eigenvlaues. Only the first 35 modes of H were

not affected because they correspond to the largest eigenvalues of Q and were not

replaced. All modes of H after this threshold were increased significantly.

Using the new noise decorrelation method and with a threshold of 0.01, there is

again no significant effect on the scree plot for Q. The ascending plot of H eigenvalues,

however, no longer shows a sudden jump anywhere in the first 500 eigenvalues. This is

the first evidence that that new method is significantly less invasive to the data than

the old method. The eigenvalues of Q do not drop below the new method’s threshold

until after the first several thousand eigenvalues. From the plot of ascending H

eigenvalues above, we can see that the new method is a much more subtle correction

than the old method. With the old method, only the first 35 out of 3972 eigenvalues

were left uncorrected. This produced a sharp step in the lowest eigenvalues of H.

The new method only replaced the last few hundred eigenvalues of Q with a fixed

value, leaving far more of the data intact.

The old ND method replaced over 3900 of the lowest eigenvalues with the number

0.0005, beginning with eigenvalues as high as 0.0195. The new method only replaced

a few hundred of the lowest eigenvalues with the number 0.01, and no eigenvalues

over 0.01 were replaced at all. This establishes the new method as significantly less

invasive to the original data when dealing with our system and using the old ND

threshold of 10%. This could be expected from any system where the vast majority

or the variance is captured in the first few modes of Q. At much lower thresholds,

the old method could be less invasive to the data for our system. The new method

avoids the problem of determining the correct de-noising threshold for each system.

The Hessian matrices H define the parameters of protein elastic network models

(ENMs). These Hessian matrices are constructed by inverting covariance matrices

Q derived from MD simulations. The noise decorrelation step serves to remove un-
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wanted effects from the ENMs which enter into the model at the matrix inversion

step. Given two ENMs, one constructed with the old noise decorrelation method and

one constructed with the new method, we can compare the global perturbation and

response profiles quantitatively by computing the correlations between profiles.

Correlations between global response profiles can give an initial indication of how

much the new noise decorrelation methods affect our results. Correlations between

SS (blue) and DD (red) global response profiles generated using the old and new

methods of noise decorrelation (ND) are shown below:

Table 2.3: Correlations between SS (blue) and DD (red) global response profiles
generated using the old and new methods of noise decorrelation (ND).

ND method New Old

New x 0.9979

Old 0.9382 x

Correlations between SD (red) and DS (blue) response profiles generated using the

old and new methods of noise decorrelation (ND) are shown below:

Table 2.4: Correlations between SD (red) and DS (blue) response profiles generated
using the old and new methods of noise decorrelation (ND).

ND method New Old

New x 0.8690

Old 0.9823 x

From these correlations between response profiles, we can see that the new noise

decorrelation method has some minor but measurable effects on global responses to

perturbation when compared to the old method. The most significant effect was seen

in the SD response profiles with only 0.869 correlation.

The effects of different ND methods on the response profiles of targeted pertur-

bations are also of interest. Two perturbation targets of interest, CDR-L1a and
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CDR-h3a, were perturbed using the old and new noise decorrelation methods. These

sites are very likely to be involved in allosteric mechanisms in antibodies if allostery

is present at all. The results can be seen graphically in the figures below:

  

Old ND method New ND method

Figure 2.11: Stabilizing perturbation-Destabilizing response (SD) response profiles
for targeted perturbations of the L1a CDR loop (purple) using the old and new noise
decorrelation methods. Regions colored yellow or red were destabilized to a signifi-
cantly higher degree than others when a perturbation was applied to the target. From
this figure, the new noise decorrelation method does seem to have minor effects on
the dynamic coupling between the CDR-L1a perturbation target and other residues.
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Old ND method New ND method

Figure 2.12: Stabilizing perturbation-Destabilizing response (SD) response profiles
for targeted perturbations of the H3a CDR loop (purple) using the old and new
noise decorrelation methods. Regions colored yellow or red were destabilized to a
significantly higher degree than others when a perturbation was applied to the target.
The new noise decorrelation method seems to have minor effects on the dynamic
coupling between the H3a-L1a perturbation target and other residues.

The original purpose of noise decorrelation was to remove the oversized effects of

small, noise dominated eigenvalues from covariance matrices. While both methods

succeeded in this task, the new method does so with much less adjustment to the

original data. Additionally, the lowest eigenvalues of the Hessian matrices H are

required when computing binding cooperativity ∆∆G, as will be seen in the next

step. The sharp change in low H eigenvalues which is seen when using the old method

is expected to have significant effects on this calculation. From these results it would

seem that the new method is preferable to the old method. If the old method is still

used then a much lower threshold than 10% would be recommended to avoid overly

modifying the original data beyond what is necessary.

2.4 Modeling cooperative binding effects

To calculate the binding cooperativity ∆∆G between two binding sites, our method

follows the arguments outlined by Cooper and Dryden[4]. Note that the exact ∆∆G
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between two sites is not actually being computed here, but rather the ∆∆Gvib which

is the contribution to ∆∆G from changes in vibrational modes. We refer to ∆∆Gvib

as ∆∆G throughout this paper. As described above, the value of ∆∆G for a single

normal mode is given by:

∆∆Gvib ≈ −KT · ln(
ν21
ν0ν2

)

[9]

Our method modifies this approximation so that ∆∆G can be computed between

any two sites by computing the changes in normal modes ν as perturbations are

applied to each of the sites in turn. Sites can be either single residues or groups of

residues. Our method is currently implemented such that an initial perturbation site

is specified by the user which represents the binding location of the first ligand. At

this point the normal modes of the unperturbed protein (ν0 modes) and the normal

modes of the single ligand-bound protein (ν1 modes) have been computed. A scan

is then performed which places a new perturbation at every residue in the protein

in turn and computes the two ligand-bound normal mode frequencies (ν2 modes)

associated with each residue.

With each perturbation comes possible changes to all of the 3972 Hessian eigen-

values (3 degrees of freedom for each of 1324 residues). These eigenvalues give the

frequencies of the normal modes. Each mode is associated with a value of ∆∆G as the

frequency of the mode changes from ν0 to ν1 to ν2 as a result of perturbations. The

sum of ∆∆G for all modes with respect to a given pair of perturbations gives the total

∆∆G between the two perturbation sites. Changes to all eigenvalues can be com-

puted and stored as requested by the user. In practice only the first few frequencies

representing the lowest frequency modes are required to compute the value

The following results are based on series of cooperativity scans which began with
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one of two initial perturbation sites: CDR-L1a and CDR-H3a. CDR loops are ex-

pected to play a major roll in the ability of an antibody to recognize and bind antigens

and then subsequently bind to and activate immune cell receptors. The two chosen

to be shown here are partly arbitrary although CDR-H3a is suspected of playing a

more significant roll than other loops. The figure below shows the locations of these

CDR loops.

  

CDR-L1a

CDR-H3a

CDR-L1b

Residue 470 (red)

Figure 2.13: The locations of three perturbation targets are show above in purple.
These include CDR loops L1a, H3a, and L1b. Residue 470 is colored red and indicates
the residue that was most commonly the location of highest cooperativity (most
negative ∆∆G) across all perturbations.

After initially perturbing CDR-L1a to simulate a binding event there, a secondary

perturbation scan is conducted across all other residues to simulate secondary binding

events at these other locations. The figures below show the results of this perturbation

scan.
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Binding cooperativity in 
blue/green regions

No binding cooperativity in 
red/orange regions

Initial binding 
site (CDR-L1a)

(A) (B)

Figure 2.14: (A) shows a plot of ∆∆G values which associate a measure of cooper-
ativity between an initial binding site at CDR-L1a (purple) and all other residues.
(B) Orange to red colored sites show anti-cooperativity with CDR-L1a, while green
to blue sites show positive cooperativity (more negative ∆∆G values).

Also of interest are the values of ∆∆G which belong to individual modes given

a pair of perturbation sites. Below is a plot which shows ∆∆G values between an

initial CDR-L1a perturbation site and residues 467-472.

  

467

468

469

470

471

472

(A) (B)

Figure 2.15: Values of ∆∆G per mode between CDR-L1a and residues 467-472.
Across all combinations of parameters, these residues showed the highest degree of
binding cooperativity (lowest ∆∆G) when the initial perturbation targets were either
CDR-L1a or CDR-H3a.
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The first characteristic that stands out from these plots is the widely varying level of

∆∆G between different modes. Many modes ∆∆G values are above zero, indicating

a lack of cooperativity. Some modes ∆∆G values are below zero and in these cases a

cooperative effect is mediated by the mode. The locations of the peaks are of interest.

If the maximum or minimum values of ∆∆G are always carried by the same modes, it

would indicate that these modes are possibly responsible for some kind of important

function. Since the most negative values of ∆∆G represent the greatest degree of

cooperativity, the modes which have the lowest values of ∆∆G are of interest. Below

is chart of the five modes which carry the lowest values of ∆∆G across five different

arbitrary residues when CDR-L1a is perturbed with a spring constant of k = 1:

Residue 100, highest cooperativity modes: [12 20 19 15 28]

Residue 200, highest cooperativity modes: [19 15 39 33 28]

Residue 700, highest cooperativity modes: [11 9 7 19 32]

Residue 1000, highest cooperativity modes: [10 12 7 19 11]

Residue 1200, highest cooperativity modes: [ 7 11 28 39 33]

At the moment, there is no clear pattern to this data. This is not surprising

however, as a single mode which is always negative regardless of the residues in

question would indicate highly non-specific binding cooperativity between a large

number of residues. This kind of non-specific cooperativity is not known or suspected

in antibodies.

The next most notable aspect of these results is that the levels of ∆∆G drop to

zero around the 40th mode. This drop is found in every plot we have seen so far.

The implications of this are that binding cooperativity between distant residues is

mediated almost entirely by the first few modes as orginally suggested by Cooper and

Dryden. These modes represent the lowest frequency motions of the protein. These

results are in agreement with the predictions of Cooper and Dryden who argued that
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long range dynamic allosteric effects would be mediated by low frequency modes,

while higher frequency modes are highly localized and tend to only involve small

clusters of residues.

Our method computes ∆∆G values for all modes as default. This allows us to sum

whatever number of modes we wish when computing the net binding ∆∆G. While

including all or even most modes does not appear to be necessary to compute ∆∆G

in this case, the option exists.

The next results of interest are plots of which sum the ∆∆G values of many modes

to give a total value of ∆∆G between the initial target and other residues. Below is a

plot which shows the total ∆∆G per residue when the initial CDR-L1a perturbation

site is perturbed using the three different perturbation patterns:

Figure 2.16: Binding cooperativity ∆∆G between CDR-L1a and all other residues
using all three perturbation types (ball, star, and triad) at a spring constant of k = 10.

The first thing to note in the above plots are the significantly different magnitudes

of ∆∆G between different perturbation types. The next thing to note is the very
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obvious location of certain peaks. For a perturbation applied to CDR-L1a with a

spring constant k = 1 and either ball, star or triad perturbation patterns, the locations

of the five most negative ∆∆G peaks from each plot are given below:

Ball, highest cooperativity residues: [471 467 470 469 466]

Star, highest cooperativity residues: [471 469 470 467 468]

Triad, highest cooperativity residues: [470 469 1 468 1324]

From this data, we can see that certain highly localized sites are the locations of

maximum cooperativity (lowest ∆∆G). Residue 470 and other very nearby residues

show a very clear tendency to be the sites of maximum cooperative binding when

CDR-L1a is perturbed. This is a very interesting result because these residues are

located inside the CH2 region. This region is the location of binding sites which

interact with immune cells.

Despite the highly varying average magnitudes of ∆∆G across the three pertur-

bation types, there is a strong correlation in the plots shape between ball and star

perturbation types:

Table 2.5: Correlation matrix of cooperativity (∆∆G) values between CDR-L1a and
all other residues for ball, star and triad at k=1 native simulations

Perturbation Type Ball Star Triad

Ball 1. 0.91277062 0.22216516

Star 0.91277062 1. 0.26581246

Triad 0.22216516 0.26581246 1.

The effects of different spring constant values k were explored next. The plots

below show results for a ball type perturbation applied to CDR-L1a with k =

0.1, 0.5, 1, 5, 10, 20:
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Figure 2.17: Binding cooperativity ∆∆G between CDR-L1a and all other residues at
various values of spring constant k and a ball type perturbation.

There is an obvious trend in this data which shows that increasing the value of

k increases the values of ∆∆G, thereby decreasing or eliminating any cooperativity.

Lower values of k are therefore recommended for future cooperativity scans. The

most accurate or realistic value of k to use when attempting to emulate a binding

event is currently speculative. These results make a case for lower values of k.

The locations of minimum ∆∆G peaks (highest cooperativity) in the above plots

are given below for a ball type initial perturbation at CDR-L1a and varying values

of k:

k = 0.1, highest cooperativity residues: [219 881 471 955 61]

k = 0.5, highest cooperativity residues: [471 881 469 470 467]

k = 1, highest cooperativity residues: [471 467 470 469 466]

k = 5, highest cooperativity residues: [471 881 219 514 469]

k = 10, highest cooperativity residues: [881 514 219 61 760]
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k = 20, highest cooperativity residues: [514 515 881 1133 219]

Residues 470 and 880, along with nearby residues make a very strong showing in

the above data. It should be noted that residue 880 is located in inside the CH2

region of the chain opposite to CDR-L1a (antibodies are composed of four chains).

This is further confirmation of a strong cooperative binding phenomenon between

CDR-L1a and residues in the CH2 region.

Another interesting result is the highly correlated shapes of the ∆∆G plots. Despite

their vastly different magnitudes, the plots show a very high correlation:

Table 2.6: Correlation matrix of cooperativity (∆∆G) values between CDR-L1a and
all other residues for all k values: k = 0.1, 0.5, 1, 5, 10, 20. These values indicate that
the relative regions of cooperativity and anti-cooperativity remain fairly constant as
the perturbation strength is increased. They also indicate that ∆∆G does not respond
in a perfectly linear way to increasing perturbation strength.

k 0.1 0.5 1 5 10 20

0.1 1. 0.93645819 0.88480329 0.91617338 0.89082965 0.87302275

0.5 0.93645819 1. 0.95266221 0.92870632 0.90928372 0.90654884

1 0.88480329 0.95266221 1. 0.90503942 0.8873517 0.90383461

5 0.91617338 0.92870632 0.90503942 1. 0.96634485 0.92892235

10 0.89082965 0.90928372 0.8873517 0.96634485 1. 0.94053016

20 0.87302275 0.90654884 0.90383461 0.92892235 0.94053016 1.

These correlations show that perturbations of very different strengths have similar

∆∆G profiles across the protein. This data also shows that ∆∆G is not linearly

proportional to perturbation strength. A perfectly linear response would give a cor-

relation of 1 as the perturbation strength was increased. This non-linear response can

be reasoned mathematically from the way in which ∆∆G is calculated. First, we can

see that individual normal mode frequencies ν respond quadratically to the strength



41

of the perturbation:

ν20 = ω0

ν21 = ω1 = ω0 + 〈n|V1 |n〉

ν22 = ω2 = ω0 + 〈n|V1 + V2 |n〉

If the strength of a perturbation is proportional to k by some constant m we can

write:

ν21 = b+m1k → ν21 = ν20 +m1k

ν22 = b+m2k → ν22 = ν20 +m2k

For a perturbation of strength 0, ν21 = ν22 = ν20 . We can then rewrite ∆∆G as:

∆∆G ≈ −KT · ln(
ν20 +m1k

ν0
√
ν20 +m2k

) = −KT · ln(
ν20(1 + m1k

ν20
)

ν20

√
1 + m2k

ν20

)

∆∆G ≈ −KT [ln(1 +
m1k

ν20
)− 1

2
ln(1 +

m2k

ν20
)]

[12]

From the above equation we can see that ∆∆G of each mode will respond linearly

only for values of k such that m1k
ν20

<< 1 and m2k
ν20

<< 1.

A second perturbation target, CDR-H3a was chosen due to its suggested role in

mediating antibody-antigen binding specificity. The results of this cooperativty scan

are shown below:
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Figure 2.18: Binding cooperativity ∆∆G between CDR-H3a and all other residues
at various values of spring constant k and a ball type perturbation.

Again we see the values of ∆∆G are highly dependent on the values of k. Below

are the locations of highest cooperativity as a result of ball type perturbations to

CDR-H3a at different values of k:

k = 0.1, highest cooperativity residues: [219 881 32 220 955]

k = 0.5, highest cooperativity residues: [471 469 470 467 881]

k = 1, highest cooperativity residues: [471 881 467 469 470]

k = 5, highest cooperativity residues: [471 466 467 469 470]

k = 10, highest cooperativity residues: [471 514 1133 515 881]

k = 20, highest cooperativity residues: [881 1133 61 471 219]

Again the regions around residues 470 and 880 show the highest cooperativity,

the same as for perturbations to CDR-L1a. This is significant because CDR-H3a

is located on a different chain than CDR-L1a, although they are relatively close to
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each other structurally. This suggests a conserved dynamic cooperative pathway.

Correlations between cooperativity plots are again very similar:

Table 2.7: Correlation matrix of cooperativity (∆∆G) values between CDR-H3a and
all other residues for all k values: k = 0.1, 0.5, 1, 5, 10, 20

k 0.1 0.5 1 5 10 20

0.1 1. 0.88397599 0.8260738 0.8305561 0.8392471 0.8247699

0.5 0.88397599 1. 0.94095141 0.90476379 0.88522425 0.89195969

1 0.8260738 0.94095141 1. 0.88655648 0.88182968 0.89292393

5 0.8305561 0.90476379 0.88655648 1. 0.88376531 0.8994009

10 0.8392471 0.88522425 0.88182968 0.88376531 1. 0.94053016

20 0.8247699 0.89195969 0.89292393 0.89940098 0.94053016 1.

Some arguments have been made that molecular dynamics simulations do not sam-

ple a complete configurational space and that covariance matrices constructed from

these simulations may be inaccurate. To partly address this issue, three independent

2µs MD simulations were run for an IgG4 antibody. Each of these simulations began

with a different starting configuration referred to as Native 1, Native 2 and Native

3. Each simulation was used to generate an ENM using the procedures above. These

ENMs were then perturbed in the same ways so that the results could be compared.

Cooperativity plots for these three structures are shown below with CDR-L1a as a

perturbation target:
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Figure 2.19: Binding cooperativity ∆∆G between CDR-H3a and all other residues
using a spring constant k = 10 compared using three different simulations of a native
IgG4 structure.

Some significant differences in the shapes and magnitudes of these plots is apparent.

This is not entirely surprising as it has been suggested that allosteric pathways may

only be present in certain configurations. The difference between active and inactive

pathways could be mediated by a shift in the distribution of the configurational

ensemble[21]. The differences between these plots can be quantitatively seen in their

correlations:
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Table 2.8: Correlation matrix of cooperativity (∆∆G) values between CDR-H3a and
all other residues for 3 simulations which were started from different molecular con-
figurations of the same protein.

Starting Structure Native 1 Native 2 Native 3

Native 1 1. 0.62773771 0.76928955

Native 2 0.62773771 1. 0.62222122

Native 3 0.76928955 0.62222122 1.

What is interesting however, is that the residues of peak cooperativity are conserved

between the simulations which were started with different molecular configurations.

Comparing the locations of minimum ∆∆G between the simulations for ball pertur-

bation type with spring constant k = 1 at CDR-H3a:

Native 1, Minimum ddG residues: [471 881 467 469 470]

Native 2, Minimum ddG residues: [ 32 470 61 471 60]

Native 3, Minimum ddG residues: [471 470 469 467 472]

Despite the differences in shape and magnitude, the pathway linking the CDRs

to residues in the CH2 regions is conserved. This could be an implication that the

motions which mediate the cooperativity between these particular sites has been

adequately sampled by all three simulations, and that these pathways are not artifacts

of a particular simulation.



CHAPTER 3: CONCLUSIONS

The methods developed here have shown a plausible mechanism by which dynamic

allostery could be mediated between distant binding sites on large IgG4 antibody

proteins. Our methods begin with data from molecular dynamics simulations of an

antibody. The conformations sampled during these simulations enable us to estimate

positional covariance matrices which can be used to determine the essential dynamics

of the antibody using PCA. Under certain circumstances, these essential dynamics are

equivalent to the normal modes of vibration predicted by an elastic network model.

By analyzing changes to these normal modes as the results of binding events, we have

shown that dynamic coupling exists between distant residues which can account for

long range dynamic allosteric effects.

The estimated positional covariance matrix encodes all of the atomic motions expe-

rienced by the protein during the MD simulation. Inversion of this positional covari-

ance matrix is known to give a Hessian matrix which defines the force constants of an

effective elastic network model (ENM). This process can be used to develop ENMs

which have superior estimates of both short and long range forces when compared

to simpler ENMs. The inversion step brings with it a potential problem, however,

when extremely small eigenvalues of the covariance matrix create too much noise in

the Hessian. To address this issue, we implemented two noise decorrelation methods

which would would reduce this noise while retaining data which was relevant to the

computation of dynamic allosteric effects.

While both noise decorrelation methods successfully removed very low eigenvalues

from the computation of the Hessian matrices, the newer of the two methods proved

to be far more conservative when deciding how much of the original data should
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be left intact. The old method could have compensated for this with a much lower

percent decorrelation threshold which is useful to know if the old method is used in

the future.

Using one of the original formulations of dynamic allostery[4], we showed that a

model based on global normal mode perturbations could account for allosteric phe-

nomena in an IgG4 antibody. The simulations we ran in this strudy focused on

possible allosteric pathways which exist between two specific CDR loops and the rest

of the antibody. Our results showed a level of agreement between our model and

experimentally determined properties of antibodies. Notably, binding events at CDR

loops L1a and H3a reduced the binding free energy at highly localized residues in the

CH2 region.

Changes in locations and magnitudes of cooperative binding effects were modeled

over a range of values for the perturbation strength (spring constant k) and pertur-

bation type (ball, star or triad) parameters. A high degree of conservation was found

in the shapes of the plots but the overall magnitudes of ∆∆G consistently rose or

fell with different parameters. This seems to imply that the shape of the coopera-

tivity landscape is strongly embedded in the protein while the absolute values of the

cooperativity rise and fall roughly together.

Dependence on initial structure has been a known issue for MD simulations for some

time. We accounted for this by running three separate simulations for our antibody

with different starting structures. While the shapes of the ∆∆G plots differed to some

extent, they all agreed upon the location of binding sites which showed maximum

levels of cooperativity when initial binding sites were the CDR loops.

More experimentation on antibodies is planned in the future. The pipeline devel-

oped in this model can easily be applied to other proteins as well. Molecular dynamics

data of any protein is all that is required for our method to be used. Our method

does not inherently rely on previously determined knowledge of allosteric sites. This
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gives our method the potential to identify novel sites which may be relevant to the

design of drugs which bind to target proteins at sites distant from an active site.

This work only sampled a fraction of possible allosteric sites in a single protein. Even

so, the plausibility of dynamic allosteric effects in IgG4 antibodies was consistently

demonstrated.
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