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ABSTRACT 

 

 

ZHEN CHEN.  Use of multisensor data in modeling freeway travel time: variability 

analysis and prediction.  (Under the direction of DR. WEI FAN) 

 

Nowadays anonymous vehicle probe data have been greatly improved in both data 

coverage and data fidelity.  Thus, vehicle probe data have become a reliable source for 

freeway travel time analysis. The travel time variability is highly complex as it is affected 

by a wide variety of factors. A better understanding of travel time variability patterns can 

help the decision makers plan, design, operate, and manage a more efficient highway 

system. 

Moreover, travel time prediction also plays a significant role in traffic data analysis 

and applications as it can assist in route planning and reducing traffic congestion. With the 

development of artificial intelligence technologies, various novel prediction methods have 

been developed accordingly in recent years. Machine learning is an example of a data 

driven method which aims to increase efficiency and accuracy of predictions. Recently, 

different machine learning-based approaches, such as neural network, ensemble learning, 

and support vector machines (SVM), have been employed by the researchers and the results 

indicate that such approaches for prediction are adaptable and can give better performances 

than traditional models. 

This research is intended to systematically analyze how travel time distributes and 

varies with respect to the time of day, day of week, year, and weather conditions. In 

addition, an advanced machine learning-based approach (i.e. XGBoost model) is employed 

to predict the freeway travel time. Detailed information about the input variables and data 

pre-processing is presented. Parameters of the XGBoost model are introduced and the 
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parameter tuning process is also discussed. The relative importance of each variable in the 

model is presented and interpreted. Optimized modeling results of the proposed XGBoost 

travel time prediction model are evaluated and compared with those of the gradient 

boosting model. The results also demonstrate that the developed XGBoost travel time 

prediction model significantly improves the computation accuracy and efficiency. 

Summary and conclusions of the whole study are made and further research directions are 

given at the end of study. 
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CHAPTER 1:  INTRODUCTION 

1.1. Problem Statement and Motivation 

 Nowadays anonymous vehicle probe data have been greatly improved in both data 

coverage and data fidelity, and thus have become a reliable source for freeway travel time 

analysis. The travel time variability is highly complex as it is affected by a wide variety of 

factors. These include aspects such as time of day (TOD), day of week (DOW), segment 

locations, and weather conditions. A better understanding of travel time variability patterns 

can greatly help the decision makers plan, design, operate, and manage a more efficient 

highway system. 

 Moreover, travel time prediction also plays a significant role in traffic data analysis 

and applications as it can greatly help in route planning and reducing traffic congestion. 

Traditionally, the methods such as linear regression and time series models have been 

widely applied to predict travel times using historical data. However, with the 

consideration of effectiveness, accuracy, and feasibility, these models may become 

outdated and replaceable. With the development of artificial intelligence technologies, 

various novel prediction methods have been developed accordingly in recent years. 

Machine learning is an example of a data driven method which aims to increase efficiency 

and accuracy of the prediction. Recently, different machine learning-based approaches, 

such as neural network, ensemble learning, and support vector machines (SVM), have been 

employed by the researchers and the results indicate that such approaches for prediction 

are adaptable and can give better performances than traditional models. Therefore, the 

machine learning-based approach is selected for the travel time prediction in this study. 
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 This research is intended to systematically analyze how travel time distributes and 

varies with respect to the TOD, DOW, year, and weather conditions. In addition, an 

advanced machine learning-based approach (i.e. XGBoost model) is employed to predict 

the freeway travel time. 

1.2. Study Objectives 

 The proposed work in this research is intended to fulfill the following objectives: 

1. To select the most appropriate travel time reliability (TTR) measure that could 

properly describe travel time variability, such as planning time index. Typical 

segments based on historical TTR ratings are also selected to illustrate the 

characteristics in different cases. 

2. To systematically analyze the travel time variability patterns with the consideration 

of time of day, day of week, year, and weather. The potential reasons of the 

variability patterns are analyzed. 

3. To develop the travel time prediction model using an advanced, efficient and 

accurate machine learning-based approach. 

4. To examine and evaluate the developed prediction models on a real-world freeway 

so that the gaps between the theoretical research and the application of the 

developed travel time prediction model can be bridged. 

1.3. Expected Contributions 

 In order to better understand freeway travel time characteristics, travel time 

variability patterns under different conditions are studied in this research with the help of 

TTR measures. The validation of machine learning-based travel time prediction model is 

also presented. The expected contributions from this research are summarized as follows:  
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1. Ability to select appropriate TTR measures to analyze travel time variability and 

identify typical segments for further analysis with the help of such TTR measures.  

2. Ability to understand the travel time variability characteristics of selected segments 

with the consideration of time of day, day of week, year and weather. 

3. Ability to develop an advanced, efficient and accurate travel time prediction model. 

4. Ability to predict real world freeway travel time by using the developed prediction 

model. 

1.4. Research Overview 

 Figure 1.1 shows the research structure. In Chapter 1, the significance and 

motivation of the travel time variability analysis and prediction have been discussed, 

followed by the description of study objectives and expected contributions. 

 Chapter 2 presents a comprehensive review of the studies related to travel time 

variability analysis and prediction. Previous approaches that were adopted to analyze travel 

time variability are classified into four categories: (1) basic travel time variability analysis; 

(2) network level travel time variability analysis; (3) travel time variability analysis 

considering weather conditions and incidents; (4) travel time variability analysis 

considering multiple influencing factors. In addition, the machine learning-based travel 

time prediction methodologies are reviewed and summarized in this chapter. In detail, 

methods used by the reviewed studies including the neural network approach, ensemble 

learning approach, K-nearest neighbor (K-NN) approach, and support vector machine 

approach, will be presented.  

 Chapter 3 describes the basic information needed to analyze travel time variability, 

including the travel time data and historical weather data utilized in this study. Detailed 
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information about the raw travel time data source is described first, followed by the 

discussions about weather data collection. The data processing steps are also explained in 

detail in this chapter. 

 Chapter 4 discusses the analysis of travel time variability patterns. The study 

location identification process based on the selected TTR measure is described first. With 

the help of planning time index (PTI), travel time variability patterns of the selected 

segments under all conditions (including the DOW and different weather conditions) are 

also described in detail. 

 Chapter 5 presents the travel time prediction methodology which is utilized in this 

study. The idea of ensemble learning is introduced first. Detailed information on the 

decision tree algorithm, bagging algorithm, and boosting algorithm is presented. The basic 

information about the Random Forest and gradient boosting models is described including 

advantages and disadvantages. An introduction of the XGBoost model is also presented in 

this chapter. Advantages of the XGBoost model are listed. The detailed process of the 

XGBoost model is described including the objective function, regularization terms, and 

model score. 

Chapter 6 discusses the validation steps of the proposed XGBoost-based travel time 

prediction model based on the data described in Chapter 3. Selected features include, but 

are not limit to, the following: TOD, DOW, month of year, year, weather conditions, 

segment characteristics, etc. Detailed information about the input variables and data pre-

processing is presented. The parameters of the XGBoost model are introduced and the 

parameter tuning process is also discussed. The experiment results could give a clear 

picture of how the analyzed parameters impact the prediction performance. 
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Chapter 7 presents the interpretation and evaluation of the numerical results of the 

developed XGBoost model. The relative importance of each variable in the model is 

presented and interpreted. In order to examine the accuracy and effectiveness of the 

proposed model, this chapter also evaluates the optimized modeling results of the proposed 

XGBoost travel time prediction model and compares them with those of the gradient 

boosting model. The results also demonstrate that the developed XGBoost travel time 

prediction model significantly improves the computation accuracy and efficiency. 

Chapter 8 concludes the study with a summary of the discussions about the travel 

time variability analysis, the developed travel time prediction model, and the modeling 

results. Future research possibilities are also provided in this chapter. 
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FIGURE 1.1: Research structure 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

This chapter provides a comprehensive review of travel time studies regarding TTR 

definitions, existing TTR measures, travel time variability modeling and analysis, and 

travel time prediction methodologies, etc. This should give a clear picture of existing 

efforts toward the modeling of travel time variability and travel time prediction. 

The following sections are organized as follows. Section 2.2 presents several 

definitions of TTR, followed by a list of TTR measures. Section 2.3 gives a comprehensive 

review of existing methods of travel time variability analysis, which include travel time 

distribution-based studies, network level travel time variability studies, travel time 

variability analysis with the consideration of incidents/weather studies and travel time 

variability analysis with the consideration of multiple influencing factors. Section 2.4 

presents several common travel time prediction methods. Finally, section 2.5 concludes 

this chapter with a summary.   

2.2. Travel Time Variability Analysis Theoretical Background 

2.2.1. Definitions of Travel Time Reliability 

In order to learn the theoretical background of travel time variability analysis, the 

concept of travel time reliability (TTR) is briefly introduced in this section first. Typically, 

the TTR can be used as a measure of service to describe the variability of travel time (Chen 

et al. 2003). 

Different definitions of travel time reliability have been developed in different 

studies. It will be helpful to review the existing definitions in different studies to clarify the 
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concept of travel time reliability and its measurement. This section briefly reviews existing 

‘reliability’ and ‘travel time reliability’ definitions. Table 2.1 provides a summary of 

existing travel time reliability definitions in chronological order. 

Charles (1997) defined reliability as “the probability that a component or system 

will perform a required function for a given period of time when used under stated 

operating conditions. It is the probability of a non-failure over time.” This definition is 

similar to the other definitions used in reliability engineering (Elefteriadou and Cui, 2007). 

In the transportation area, different kinds of reliability definitions have developed 

by previous studies. The definitions include system reliability, travel time reliability and 

network reliability. Turner et al. (1996) defined trip time reliability as the range of travel 

times experienced during a large number of daily trips. The National Cooperative Highway 

Research Program (NCHRP) report 398 (1997) defined travel time reliability as “the 

impact of non-recurrent congestion on the transportation system.” In the NCHRP report 

399 (1998), travel time reliability was defined as “a measure of the variability of travel 

time”. California Transportation Plan (1998) defined reliability as “the level of variability 

between the expected travel time and the actual travel time experienced.” Florida 

Department of Transportation (DOT) (2011) defined the highway travel time reliability as 

“the percent of travel that takes no longer than the expected travel time plus a certain 

acceptable additional time.” They also defined three major components of reliability: 

travel time, expected travel time, and acceptable additional time. The American 

Association of State Highway and Transportation Officials (AASHTO)’s freight report 

(2002) defined reliability as “the percent of on-time performance for a given time schedule”, 

and this definition was provided for freight transportation. Recker et al. (2004) defined 
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both path and Origin-Destination (OD) travel time reliability. Specifically, the path travel 

time reliability was defined as “the probability that the travel time of a given path is within 

an acceptable threshold” and the OD travel time reliability was defined as “the probability 

that the weighted average travel time of a given OD pair is within an acceptable threshold.” 

The Federal Highway Administration (FHWA) (2012) gave a formal definition of travel 

time reliability, which is: “the consistency or dependability in travel times, as measured 

from day-to-day and/or across different times of the day.” The Strategic Highway Research 

Program 2 (SHRP 2) Project (2014) defined travel time reliability as “the variability in 

travel times that occur on a facility or for a trip over the course of time; and the number 

of times (trips) that either “fail” or “succeed” in accordance with a predetermined 

performance standard or schedule.” 

TABLE 2.1: Summary of existing travel time reliability definitions 
Author/Agency Year Reliability/Travel Time Reliability Definition 

Turner et al. 1996 The range of travel times experienced during a large number of daily trips. 

Charles 1997 The probability that a component or system will perform a required function for 

a given period of time when used under stated operating conditions. It is the 

probability of a non-failure over time. 

NCHRP Report 398 1997 The impact of non-recurrent congestion on the transportation system. 

NCHRP Report 399 1998 A measure of the variability of travel time. 

California 

Transportation Plan 

1998 The level of variability between the expected travel time and the actual travel 

time experienced. 

AASHTO’s Freight 

Report 

2002 The percent of on-time performance for a given time schedule. 

Elefteriadou and Cui 2007 The probability of a device performing its purpose adequately for the period of 

time intended under the stated operating conditions. 

Florida DOT 2011 The percent of travel that takes no longer than the expected travel time plus a 

certain acceptable additional time. 

FHWA 2012 The consistency or dependability in travel times, as measured from day-to-day 

and/or across different times of the day 

Vandervalk et al. 

(SHRP 2 project) 

2014 The variability in travel times that occur on a facility or for a trip over the course 

of time; and the number of times (trips) that either “fail” or “succeed” in 

accordance with a predetermined performance standard or schedule 
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2.2.2. Travel Time Reliability Measures 

 This section introduces the characteristics of different travel time reliability 

measures. Table 2.2 provides a summary of the TTR measures discussed in this section in 

chronological order. 

2.2.2.1. Standard deviation 

 Standard deviation is a classical statistical measure and usually used as a proxy for 

other reliability measures (Charles, 1997). However, the use of standard deviation as a 

reliability performance measure was discouraged by some studies (USDOT, 1996 and 

NCHRP Report 618, 2008) because “it is not easily understood by nontechnical audiences 

nor easily related to everyday commuting experiences, and it treats early and late arrivals 

with equal weight, whereas the public cares much more about late arrival.” 

2.2.2.2. Coefficient of variation (CV) 

 The average travel time and standard deviation values can be combined and used 

to generate a value which is called coefficient of variation (CV). The CV is calculated as 

the ratio of the standard deviation to the mean. The use of CV is also discouraged by some 

studies with the same concern as about the usage of standard deviation. However, it still 

being utilized by some researchers. 

CV =  
Standard deviation

Average travel time
 

2.2.2.3. Percent variation 

 The average travel time and standard deviation values can also be combined as a 

ratio to produce a value, which was recommended by the 1998 California Transportation 

Plan. 
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Percent variation =  
Standard deviation

Average travel time
 × 100% = CV ×  100%   

This measure has the same mathematical characteristics as the CV. However, it is 

easier for the public to understand percent variation as it is expressed as a percentage of 

average travel time. This measure was adopted by the 1998 California Transportation Plan 

(1998) and recommended by Lomax et al. (1997) and NCHRP Report 618 (2008). 

2.2.2.4. Variability index 

The variability index is a ratio of peak to off-peak variation in travel conditions. 

The index is calculated as “a ratio of the difference in the upper and lower 95% confidence 

intervals between the peak period and the off-peak period” (Lomax et al., 1997 and Florida 

DOT, 2011).  

Variability Index =  
Difference in peak period confidence intervals

Difference in off peak period confidence intervals
 

Because the interval differences in the off-peak periods are usually lower than the 

differences in the peak period, the value of variability index is usually greater than 1. 

2.2.2.5. 90th/95th percentile travel times 

90th/95th percentile travel times are both basic TTR measures which have been 

widely used in the world. These indexes indicate how much delay will be on the heaviest 

travel days and were introduced as one of the four recommended travel time reliability 

measures by FHWA. The 90th or 95th percentile travel times are “usually reported in 

minutes and seconds, they could be easily understood by roadway users who are familiar 

with their trips.” 

However, the disadvantage of this measure is “not being easily compared across 

trips with the consideration of different trip lengths.”  
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2.2.2.6. Buffer index (BI) 

Buffer index (BI) represents the extra time required by the travelers to arrive on 

time in addition to the travel time under average conditions. It was introduced as one of the 

four recommended measures by FHWA. The BI is computed as “the difference between 

the 95th percentile travel time and average travel time, divided by the average travel time” 

(Lomax et al., 1997). The equation is shown below:  

BI =  
95th percentile time − average travel time

average travel time
× 100% 

2.2.2.7. Planning time index (PTI) 

Planning time index (PTI) was also introduced as one of the four recommended 

measures by FHWA. It represents the total time needed to plan for an on-time arrival 95% 

of the time (total travel time that should be planned when an adequate buffer time is 

included), computed as 95th percentile travel time divided by free-flow travel time. The 

equation of PTI is presented below: 

PTI =  
95th percentile travel time

free flow travel time
 

The PTI differs from the BI in that it compares near-worst case travel time with that 

under free-flow traffic condition. For example, a PTI of 1.50 means that, for a 20-minute 

trip under light traffic condition, the total time that should be planned for the trip is 30 

minutes (20 minutes × 1.50 = 30 minutes). PTI is a useful measure as it can be directly 

combined and used with the travel time index. 

2.2.2.8. Frequency of congestion (FOC) 

Frequency of congestion (FOC) is a measure introduced as one of the four 

recommended travel time reliability measures by FHWA, which represents the frequency 

https://ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.htm#buffer
https://ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.htm#planning
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of congestion exceeding some expected threshold. It can be typically expressed as the 

percent of days/time that travel times exceed a time threshold x or travel speeds fall below 

a speed threshold y. The FOC is relatively easy to compute if continuous traffic data are 

available, and it is typically reported on weekdays during peak traffic periods. 

2.2.2.9. Skew of travel time distribution 

The skew statistics is a robust measure introduced by Van Lint and Van Zuylen 

(2005). It is defined as “the ratio of the difference between the 90th percentile travel time 

and the median and the difference between the median and the 10th percentile travel time.” 

The equation is given below: 

λ𝑠𝑘𝑒𝑤 =  
T90 − T50

T50 − T10
 

2.2.2.10. Width of travel time distribution 

The width statistics is a robust measure introduced by Van Lint and Van Zuylen 

(2005). It is defined as the ratio of the difference between the 90th percentile travel time 

and the 10th percentile travel time and median travel time. The equation is shown below: 

λ𝑤𝑖𝑑𝑡ℎ =  
T90 − T10

T50
 

2.2.2.11. Misery index 

Misery Index is a measure that can indicate the length of delay of only the worst 

trips. It is usually computed by subtracting the average travel rate from the upper 20 percent 

of travel rates. This yields the time difference between the average trip and the slowest 20 

percent of trips. The equation is below: 

Misery index =  
Average travel rate (Top 20% trips)

Average travel rate
− 1 
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TABLE 2.2: Summary of travel time reliability measures 

Measure Author/Agency Equation 

Standard 

deviation 

Dowling et al. 

(2009); Pu (2011) 
Standard deviation 

Coefficient of 

variation 
Pu (2011) Coefficient variation =  

Standard deviation

Average travel time
 

Present variation 

1998 California 

Transportation 

Plan; Lomax et al. 

(1997); NCHRP 

Report 618 (2008) 

Percent variation

=  
Standard deviation

Average travel time
 

× 100% 

Variability Index 

Lomax et al. 

(1997); Albert 

(2000) 

Difference in peak period confidence intervals

Difference in off peak period confidence intervals
 

90th/95th 

Percentile Travel 

Times: 

FHWA 90th/95th Percentile Travel Times 

Buffer Index FHWA 

95th precentile time − average travel time

average travel time
× 100% 

Planning Time 

Index 
FHWA 

95th percentile travel time

free flow travel time
 

Frequency of 

Congestion 
FHWA Frequency of trips exceeding a threshold value 

Skew of travel 

time distribution 

Van Lint and Van 

Zuylen (2005) 
λ𝑠𝑘𝑒𝑤 =  

T90 − T50

T50 − T10
 

 

Width of travel 

time distribution 

Van Lint and Van 

Zuylen (2005) 
λ𝑤𝑖𝑑𝑡ℎ =  

T90 − T10

T50
 

Misery Index Lomax et al. (1997) 

Misery index

=  
Average travel rate (Top 20% trips)

Average travel rate
− 1 

 

2.3. Travel Time Variability Analysis Methods 

 Basically, the travel time variability pattern can be analyzed based on travel time 

distribution data only. However, to investigate the impacts of nonrecurring congestion, 

different sources of travel time variability including traffic incidents, inclement weather, 

and work zones were also studied by different researchers around the world. This section 

reviews these studies by classifying previous studies into 5 categories including basic travel 
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time variability analysis studies; Network travel time variability studies; Travel time 

variability studies with the consideration of weather impact; Travel time variability studies 

with the consideration of incident impact, and travel time variability studies with the 

consideration of multiple influencing factors. 

2.3.1. Basic Travel Time Variability Analysis 

Research studies that used basic data to model travel time variability using TTR 

measures are reviewed in this section. Table 2.3 provides a summary of the studies 

reviewed in this section in chronological order. 

2.3.1.1. Van Lint and Van Zuylen’s research work 

Van Lint and Van Zuylen (2005) derived two time-reliability-metrics (skew and 

width) based on the 90th, 50th and 10th percentile of the day-to-day travel time data. Both 

metrics can make a clear distinction between different traffic flow conditions (congestion, 

free or transient). They could also identify the travel time reliability and congestion during 

a given TOD and DOW time period. The results could be used in discrete choice models 

and for travel time unreliability visualization on the map. 

2.3.1.2. Saberi and Bertini’s research work 

Saberi and Bertini (2010) prioritized freeway segments with the help of TTR 

measures based on the archived loop detector data from the Interstate-5 freeway (24 miles 

long) in Portland, Oregon in the U.S. Several reliability measures were selected and 

examined using differential reliability maps and compared with travel-time-based 

measures. The authors found that “the buffer time index and the coefficient of variance 

were the most consistent among the measures of reliability.” Their research also showed 

that freeway segment correlations have high impacts on the variability of corridor travel 

http://www.sciencedirect.com/science/article/pii/S0968090X16000309#b0155
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time and should not be ignored. It was also found that different reliability measures 

presented different portraits of the reliability aspects on a freeway corridor. However, other 

factors contributing to the unreliability of travel times were not identified in this research 

study. 

2.3.1.3. Yazici et al.’s research work 

Yazici et al. (2012) developed a method to analyze TTR based on DOW and TOD 

patterns by utilizing GPS data collected from taxis in the New York City. The authors 

selected coefficient of variation (CV), skewness (λskew), and width of the distribution (λvar) 

as the TTR measures and used the Classification and Regression Tree (C&RT) model for 

the determination of DOW-TOD periods for each selected TTR measure. 

The results of the study showed that TTR exhibited time-varying patterns which 

could be identified during different DOW-TOD periods. Based on the analysis results, the 

authors found that the “levels of reliability at the calculated periods generally did not agree 

well”, which means that a reliable period identified based on one measure could be found 

to be an unreliable period using a different measure. 

2.3.1.4. Eliasson’s research work 

Eliasson (2007) used data from the Stockholm’s automatic camera system and 

developed a model for estimating travel time variability in terms of the mean travel time, 

length of link, and free flow travel time.  

The author identified “a stable relationship between the relative standard deviation 

of travel time (standard deviation divided by travel time) and the relative increase in travel 

time (travel time divided by free-flow travel time)” and then estimated a function to predict 

how changes in congestion impact the TTR.  
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The author also investigated the relationship between travel time distribution and 

different TOD periods. The result showed that “travel times are approximately normally 

distributed” under severe congestion condition. However, the travel time distribution was 

skewed under low levels of congestion condition. 

2.3.1.5. Emam and Ai-Deek’s research work 

Emam and Ai-Deek (2006) defined reliability as “the probability that an entity will 

perform its intended function(s) satisfactorily or without failure for a specified length of 

time under the stated operating conditions at a given level of confidence”. Based on such 

definition, the TTR was expressed mathematically using the failure rate (hazard) function. 

Four different travel time distributions were tested in this study including Weibull, 

exponential, log-normal, and normal distribution. The Anderson-Darling (AD) goodness-

of-fit statistics and error percentages were employed to evaluate model performances. As 

a result, the log-normal distribution provided the best model fit and was then used to predict 

TTR of freeway corridors. The proposed methodology was applied to estimate travel time 

reliability on the I-4 corridor in Orlando, Florida using real-world transportation data 

collected by dual-loop detectors.  

The results indicated that it was more efficient to use the same day of the week (e.g., 

Mondays) in the estimation of TTR for a roadway segment than to use mixed data (i.e., 

data collected across multiple weekdays), because of the significant differences between 

traffic patterns across multiple weekdays. In addition, the researchers also noticed that the 

new reliability estimation method showed higher sensitivity to geographical locations, 

which reflects the congestion level and bottlenecks.  
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2.3.1.6. Sohn and Kim’s research work 

Sohn and Kim (2009) presented a method for predicting the dynamic variance in 

estimating link travel times. The authors adopted the autoregressive moving average-

generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model and 

employed the generalized Pareto distribution (GPD) in the model to solve the problem of 

asymmetry in travel time distribution.  

The authors also used the travel time data which were obtained from the beacon-

based probing system in Seoul and performed single and multiperiod predictions. The 90th, 

95th, and 99th percentiles of travel times were selected as the TTR measures.  

The analysis results showed that the ARMA-GARCH-GPD model was the most 

promising model for the first four sites. For the other sites without GPD, the ARMA-

GARCH was good enough to obtain promising results.  

2.3.1.7. Hainen et al.’s research work 

Hainen et al. (2011) conducted a study to compute travel time based on the data 

collected from Bluetooth devices. To examine the impact of bridge closure in Indiana, US, 

the authors used data from media access control (MAC) addresses from Bluetooth-enabled 

devices to conduct travel time plots and identify congestion choke points.  The authors also 

estimated the distribution of travel times on four alternate routes. The 25th and the 75th 

percentile travel times were used as the TTR measures to evaluate the effects of each choice. 

This study indicated how to evaluate different route choice based on data collected 

from Bluetooth devices, sampling methodology and travel time reliability data.  
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2.3.1.8. Zheng et al.’s research work 

Zheng et al. (2016) utilized the data from Automated Number Plate Recognition 

(ANPR) cameras to study TTR on a corridor in Changsha, China. Two reliability measures 

(standard deviation and the skewness of travel time) were derived from the travel time 

distribution model. The authors also investigated the relationship between these two 

measures and the expected travel time to show the effects of changing travel states. The 

results showed that the linear relationship could be developed between Travel Time 

Standard Deviation (TTSD) and mean travel time and skewness.  

However, the linear relationships between TTSD and the mean travel time and 

skewness were not same under different links/days. The regression parameters for a link 

also linearly depend on the link length. 
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2.3.2. Network Level Travel Time Variability Analysis 

Research studies that model network level travel time variability using TTR 

measures are reviewed in this section. Table 2.4 provides a summary of the studies 

reviewed in this section in chronological order. 

2.3.2.1. Yang et al.’s research work 

Yang et al. (2014) utilized the Hasofer–Lind–Rackwitz–Fiessler algorithm which 

was widely used in the field of reliability engineering to calculate the reliability index of a 

system. The modeling framework consisted of three parts: travel time estimation, travel 

time distribution estimation, and corridor-network TTR index calculation. A description of 

the data set used in this study was followed by the implementation and applications of the 

proposed method. The results showed that this modeling method could better capture the 

variability of traffic flow in detail, especially during rush hours. 

2.3.2.2. Recker et al.’s research work 

Recker et al. (2005) conducted a study on risk-taking route choice via the analyses 

of travel time variability data of section, corridor, and network under different demand 

levels. The TTR was also evaluated. In this study, path TTR was defined as “the probability 

that the travel time of a given path is within an acceptable threshold.” OD-TTR was 

defined as “the probability that the weighted average travel time of a given OD pair is 

within an acceptable threshold.” The evaluation procedure was based upon a Monte Carlo 

simulation framework. Three scenarios were constructed to test how different route choice 

models affect the estimation of travel time reliability under uncertain environment. The 

analysis can be concluded as: “as the degree of risk aversion to network uncertainty 

increases, travel time also increases and results in lower travel time reliability.” 
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2.3.2.3. Clark and Watling’s research work 

Clark and Watling (2005) conducted a study to estimate the total network travel 

time probability distribution. They considered day-to-day demand variations in the travel 

demand matrix as a main factor affecting travel time variability and estimated the total 

travel time density function. The numerical test results indicated that the application of this 

approach was suitable to understand the impact of capacity changes.  

2.3.2.4. Ng and Waller’s research work 

Ng and Waller (2010) developed a methodology to assess TTR in a transportation 

network under uncertain road capacities. A Fourier transformation method was presented 

in this study.  The special case when capacities were normally distributed random variables 

was also considered. The proposed method was applied to analyze the impact of capacity 

variations on the TTR, which was proved to be valid. 

2.3.2.5. Tu et al.’s research work 

Tu et al. (2013) investigated a macroscopic TTR diagram to relate the TTR to the 

network density. The authors conducted empirical analyses to investigate the variability in 

macroscopic fundamental diagram (MFD) as seen in scatter plots using traffic data of 

freeway systems in Netherlands. A critical TTR accumulation point was found to exist, 

“below which network accumulation had little impact on travel time reliability and had a 

significant impact when it is above”. The critical TTR accumulation was also found to be 

usually lower than the critical MFD accumulation.  
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2.3.3. Travel Time Variability Analysis with the Consideration of Incidents and Weather 

Research studies on travel time variability with the consideration of incidents and 

weather were reviewed and summarized in this section. Table 2.5 provides a summary of 

the studies reviewed in this section in chronological order. 

2.3.3.1. Hojati et al.’s research work 

Hojati et al. (2016) developed a method to quantify the impact of traffic incidents 

on TTR on freeways. The authors first obtained the recurrent speed profile for each specific 

link and DOW using the Quantum-Frequency Algorithm. The non-recurrent congestion 

was identified as an ‘event’ with a start time and end time. Next, the total travel time due 

to an event on a set of affected links was modeled, and then the BI was selected as the TTR 

measure. The authors then conducted a Tobit regression analysis which can handle the 

presence of censored data either in the lower tail or in the upper tail. Based on the 

Queensland DOT and STREAMS Incident Management System (SIMS) database, 430 

incidents were matched with the identified events. Finally, 3 Tobit model estimation results 

were shown focusing on crashes, hazards and stationary vehicles.  

2.3.3.2. Charlotte et al.’s research work 

Charlotte et al. (2017) presented an empirical analysis of travel time distribution on 

urban roads in the region of Paris, France. Historical data of accidents and roadway works 

were added to evaluate the impact of some non-recurrent influencing factors. 90th 

percentile of the travel time distribution was modeled with linear models including 

explanatory variables including number of lanes, mean value of the travel time distribution, 

travel direction, time of the day, number of accidents and roadworks. 
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2.3.3.3. Martchouk et al.’s research work 

Martchouk et al. (2010) studied the travel-time variability with the travel-time data 

on freeway segments in Indianapolis collected with the help of anonymous Bluetooth 

sampling techniques. The effects of adverse weather were discussed in the study. The 

results showed that the travel time increased during adverse weather period, and the 

variance in travel times during the same time period also increased. Various statistical 

models were also estimated in the study to understand the effect of individual vehicle travel 

times variability as well as average travel times variability. For the individual vehicle travel 

time model, the probability of travel duration time changes of a segment was estimated. As 

anticipated, higher average speed led to lower individual travel time, whereas higher 

distance and volume resulted in increased travel time. In the average travel time model, 

estimated parameter indicated that higher average travel time during the previous time 

period resulted in higher average travel time during the current period. 

2.3.3.4. Peer et al.’s research work 

Peer et al. (2012) conducted a study to provide simple rules to predict travel time 

variability based on the travel time data of 145 (one-directional) highway links in 

Netherlands. Standard deviation of travel times was used as the TTR measure. The 

explanatory variables included DOW, season, weather condition and network condition. 

Formulas for TTR were built based on ‘rough information’ and ‘fine information’.  Mean 

delay was also analyzed to express the travel time. 

The empirical analysis of travel time variability results showed that a shorter link 

is on average associated with lower variability. The authors also found that variability is 
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positively correlated with the number of lanes for smaller delays and it is negatively 

correlated with the number of lanes for longer delays. 

2.3.3.5. Shao et al.’s research work 

Shao et al. (2008) proposed a new travel time reliability-based stochastic user 

equilibrium traffic assignment model to investigate the effects of rain on risk-taking 

behaviors of different road users in networks with day-to-day demand fluctuations and 

variations in travel time. To capture the rain effects on travel time, a new travel time 

function was developed based on the conventional BPR function. Rain effects on traffic 

demand were also modeled via the conventional elastic demand function. Finally, it was 

found in the numerical results that path choice behaviors and traffic demand of different 

road users were affected by the rainfall intensity. 

2.3.3.6. Li et al.’s research work 

Li et al. (2016) conducted a study which focused on studying the weather impact 

on traffic operations. Different rainfall intensity data for every hour of Florida regions were 

incorporated into the TTR model along with the historical speed database. Different 

scenarios for each hour (under clear weather, light rain, and heavy rain conditions) were 

created and applied to the respective roadway sections. The results showed that the speed 

reductions on arterials were 10% for light rain and 12% for heavy rain. However, the 

assumed reduction in the speed on arterials caused by rain intensity may need to be verified 

with additional empirical data during a long period of time to reveal the trends and impacts 

with more confidence and accuracy. 
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2.3.3.7. Kamga and Yazici’s research work 

Kamga and Yazici (2014) conducted a study via merging taxi trips’ GPS records 

and historical weather records of New York City and then calculated the descriptive 

statistics of travel time for different TOD, DOW and various weather conditions. The 

weather conditions were categorized into 8 groups including Clear, Light rain, Rain, Heavy 

rain, Light snow, Snow, Heavy Snow and Unknown. Based on the value of each coefficient, 

the Classification and Regression Trees (C&RT) model was used to extract the travel time 

coefficients distribution under each DOW-TOD-Weather category.  

The temporal pattern analysis results of each travel time parameter were finally 

presented. With the analysis results of CV, the authors pointed out: “Regarding the weather 

impacts, it was found that inclement weather indeed increases average travel times yet 

decreases variability, resulting in higher travel reliability indicated by lower coefficients 

of variation.” 
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2.3.4. Travel Time Variability Analysis with the Consideration of Multiple Influencing 

Factors 

Research studies on travel time variability with the consideration of multiple 

influencing factors were reviewed and summarized in this section. Table 2.6 provides a 

summary of the studies reviewed in this section in chronological order. 

2.3.4.1. Tu’s research work 

Tu (2008) developed a TTR model with the consideration of four influencing 

factors including road geometry, adverse weather, speed limits, and traffic accidents. The 

model was validated using traffic data from urban freeways in Netherlands. The results of 

road geometry impacts indicated that there was a threshold value L for the length of 

ramp/weaving section. If the actual length was less than L, the TTR would decrease with 

the decreasing length of ramp/weaving sections. If the actual length was larger than L, the 

length has far less impact on travel time reliability. TTR on the freeway was also strongly 

impacted by the number of ramps per unit road length. Above a threshold value, the more 

ramps contribute to the lower TTR. The results of adverse weather’s impacts indicated that 

adverse weather conditions clearly have negative effects on TTR on the freeway, which 

means that travel times are less reliable under adverse weather conditions than those under 

normal weather conditions, especially at higher inflow levels. 

2.3.4.2. Javid and Javid’s research work 

Javid and Javid (2017) developed a framework to estimate travel time variability 

caused by traffic incidents based on integrated traffic, road geometry, incident, and weather 

data. A series of robust regression models were developed based on the data from a stretch 

in California's highway system. Next, travel time variability was estimated via the proposed 
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speed change models, and the results were compared with the actual changes in travel time. 

The results of the split-sample validation showed the effectiveness of the proposed models 

in estimating the travel time variability. In conclusion, for incidents occurring on weekends, 

the highway clearance time would be shorter. Shoulder existence and lane width would 

adversely impact downstream highway clearance time. 

2.3.4.3. Schroeder et al.’s research work 

Schroeder et al. (2013) presented a methodology for freeway travel time analysis 

based on freeway data in North Carolina. The variability impact considerations included 

time-of-day, day-of-week, and month-of-year differences, and various nonrecurring 

congestion sources (such as weather, incidents, work zones, and special events). The 

freeway scenario generator was used and resulted in 2,508 scenarios based on freeway 

facility data in North Carolina. The resulting travel time distribution was presented, and a 

sensitivity analysis was conducted to explore the relationship between weather and 

incidents and the overall reliability of the facility. 

2.3.4.4. Kwon et al.’s research work 

Kwon et al. (2017) developed an empirical corridor level method to study the travel 

time variability. The authors divided the variables which had an impact on the travel time 

into three categories: traffic influencing events (traffic incidents and crashes, work zone 

activity, weather and environmental conditions), traffic demand (fluctuations in day-to-day 

demand and special events), and physical road features (traffic control devices and 

inadequate base capacity). A linear regression statistical model was then constructed to 

conduct the travel time reliability analysis. Buffer time (95th percentile of travel time - 

median travel time) was chosen over other measures to represent the TTR because it was 
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more popular and easier to formulate and fit the model. The model was tested in San 

Francisco Bay Area and used to identify how each variable contributes to the TTR. The 

results of this study provided useful insights into predicting the TTR. 

2.3.4.5. Kim’s research work 

Kim (2014) conducted a study on freeway travel time variability and developed a 

compound Gamma distribution model. The model captured both vehicle-to-vehicle and 

day-to-day travel delay. The author also proposed a framework that features scenario-based 

simulation approaches. Factors such as incidents, bad weather, work-zone, and planned 

special events were considered in this study. This approach could provide the ability to 

forecast potential variations in travel time and estimate travel time distributions with more 

accuracy. 
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2.4. Travel Time Prediction Using Machine Learning Approaches 

Traditionally, the methods such as linear regression and time series models have 

been widely applied to predict travel times using historical data. However, with the 

consideration of effectiveness, accuracy and feasibility, these models may become 

outdated and replaceable. With the development of artificial intelligence technologies, 

various novel prediction methods have been developed accordingly in recent years. With 

the help of ITS systems and the traffic data, different machine learning approaches have 

been deployed in the travel time prediction area. The methodology can include, but are not 

limited to: Support vector machine regression, Neural network approaches (e.g. State-and-

space neural network, long short term memory neural network), nearest neighbor (e.g. k-

nearest neighbor), and ensemble learning (e.g. Random Forest and gradient boosting), etc. 

The review of different approaches will be helpful to find the most appropriate, advanced 

and accurate model in this study.  Research studies that used machine learning/deep 

learning methods to predict travel time are reviewed and summarized in this section. Table 

2.7 provides a summary of the studies reviewed in this section in chronological order. 

2.4.1. Support Vector Regression Approach 

2.4.1.1. Wu et al.’s research work 

Wu et al. (2004) applied SVR for travel-time prediction and compared its results to 

other baseline travel time prediction methods using real world highway traffic data. Since 

support vector machines have greater generalization ability and can guarantee global 

minima for given training data, it was believed that SVR would perform well for time series 

analysis. The results showed that the SVR model can “significantly reduce both relative 

mean errors and root-mean-squared errors of predicted travel times”. This study 



28 

 

demonstrated the feasibility of applying SVR in travel time prediction and proved that SVR 

is applicable for traffic data analysis. 

 

2.4.2. Neural Network Approach 

2.4.2.1. Park and Rilett’s research work 

Park and Rilett (1999) proposed a BP neural network model to predict freeway link 

travel time. The freeway link travel time data collected on the freeway of Houston, Texas, 

by the automatic vehicle identification (AVI) system were used as the validation database. 

The proposed model can provide acceptable prediction results with the mean absolute 

percentage error (MAPE) being ranged from 7.4% to 18%. 

2.4.2.2. Van Lint et al.’s research work 

Van lint et al. (2002) presented an approach to predicting freeway travel time based 

on the state-space neural network. The data from freeway operations simulation (FOSIM) 

4.1 were used to train and test the travel time prediction model. The authors also eliminated 

the insignificant parameters in the model and made it more effective without the loss of 

predictive performance. 

2.4.2.3. Wisitpongphan et al.’s research work 

Wisitpongphan et al. (2012) proposed a back propagation (BP) neural network 

model to predict freeway link travel time. The one-month vehicle trajectory data of 297 

probe vehicles via GPS database in Thailand were used as the validation database. The 

prediction results of the proposed model can accurately approximate the travel time with 

the mean squared error (MSE) being less than 3%. 
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2.4.2.4. Zheng and Van Zuylen’s research work 

Zheng and Van Zuylen (2013) conducted a study using the probe vehicle data to 

estimate complete link travel times. Based on the information collected by probe vehicles, 

a three-layer neural network model was developed by the authors to estimate complete link 

travel time for individual probe vehicle traversing the link. The estimation result of this 

model was then compared with that of an analytical estimation model. The performance of 

these two models were evaluated using the data derived from VISSIM simulation model. 

The final results suggested that the Artificial Neural Network model performs better. 

2.4.2.5. Duan et al.’s research work 

Duan et al. (2016) employed a long short-term memory (LSTM) neural network 

model to predict freeway travel time. The authors constructed 66 series LSTM neural 

networks by using travel time data collected along 66 links of the highways in England. 

The authors discussed the predictions of multi-step ahead travel time and found 1-step 

ahead travel time prediction can provide best results.  

2.4.2.6. Liu et al.’s research work 

Liu et al. (2017) proposed a LSTM deep neural network model using 16 settings of 

hyper-parameters to predict the travel time on the interstate highways in California, U.S. 

The results of proposed model were compared with the results of other regression models 

and Autoregressive integrated moving average (ARIMA) model and showed that the 

performance of the LSTM neural network model was the best. 

2.4.2.7. Wang et al.’s research work 

Wang et al. (2018) presented a machine learning-based method to predict the 

vehicle travel time using floating-car data. The authors adapted different machine learning 
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models to solve the regression problem. Furthermore, the authors evaluated the solution 

offline with millions of historical vehicle travel data and the results showed that their 

proposed deep learning algorithm significantly outperforms the other state-of-the-art 

algorithms. 

2.4.2.8. Wang et al.’s research work 

Wang et al. (2018) proposed a LSTM neural network-based travel time prediction 

model using the historical vehicle trajectory data. Both road segment-based travel time 

estimation and path-based travel time estimation were discussed in this study. The results 

showed that the proposed model can effectively capture the spatial and temporal 

dependencies and accurately predict travel time. 

2.4.2.9. Wei et al.’s research work 

Wei et al. (2018) combined the convolutional neural network and LSTM neural 

network together to predict the short-term travel time. The vehicle trajectory data on the 

urban roads were used in this study. The author pointed out that the prediction of the 

proposed model was more effective than that of other existing approaches. 

2.4.3. Nearest Neighbors Approach 

2.4.3.1. Yu et al.’s research work 

Yu et al. (2017) combined the Random Forest model and K-NN model in their 

study to predict bus travel time. The proposed combined-model was compared with linear 

regression, K-NN, SVM and Random Forest. The results showed the proposed model 

achieved highest accuracy level and can be applied to real-time prediction.  
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2.4.3.2. Myung et al.’s research work 

Myung et al. (2011) proposed a model to predict travel times with the help of k 

nearest neighbor (KNN) method using data obtained from vehicle detector system and the 

automatic toll collection system. The model combined these two datasets and minimized 

the limitations of each dataset. The authors compared the prediction results of the proposed 

model with other models using actual travel time data. The comparison results showed that 

the proposed model performs much better than other models.  

2.4.3.3. Moonam et al.’s research work 

Moonam et al. (2019) conducted a study to predict freeway travel time based on 

the experienced travel time using several methodologies including k-nearest neighbor (k-

NN), least squares regression boosting and Kalman filter (KF) methods. The authors 

compared the performances of each methods from both link and corridor perspectives and 

pointed that “the KF method offers superior prediction accuracy in a link-based model”. 

2.4.4. Ensemble Learning Approach 

2.4.4.1. Hamner et al.’s research work 

Hamner et al. (2011) applied a context-dependent Random Forest method to predict 

travel-time based on GPS data of the cars on the road in a simulation framework. The root 

mean squared error (RMSE) of the model was less than 7.5%.  

2.4.4.2. Zhang and Haghani’s research work 

Zhang and Haghani (2015) employed a gradient boosting regression tree method to 

analyze and predict freeway travel time to improve the prediction accuracy. The authors 

used travel time data along freeway sections in Maryland and discussed the effects of 

different parameters on the proposed model and the correlations of input and output 
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variables. The prediction results showed the proposed model can provide considerable 

advantages in freeway travel time prediction. 

2.4.4.3. Li and Bai’s research work 

Li and Bai (2016) employed a gradient boosting regression tree method to analyze 

and predict travel time of freight vehicles. The authors used travel time data and vehicle 

trajectory data in Ningbo, China. The prediction results showed the proposed model can be 

feasible in the real-world. 

2.4.4.4. Fan et al.’s research work 

Fan et al. (2017) conducted a study using the Random Forest method to predict 

freeway travel time with the help of data collected from highway electronic toll collection 

in Taiwan. The results can help drivers to select optimal departure times to avoid traffic 

congestion and thus minimize travel time. 

2.4.4.5. Gupta et al.’s research work 

Gupta et al. (2018) employed Random Forest and gradient boosting models to 

predict taxi travel time in Porto, Portugal. The vehicle trajectory data were used as the 

database and it was found that the gradient boosting model provided better prediction 

results than the Random Forest model. 
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TABLE 2.7: Summary of travel time prediction using machine learning approaches 

Year Author Location 
Roadway 

Category 
Data Source 

Data 

Type 
Prediction method 

1999 Park and Rilett 
Houston, 

US 
Highway AVI system Travel time BP Neural Network 

2002 Van Lint et al. N/A Freeway 

FOSIM (freeway 

operations 

simulation) 

Travel time, 

travel speed 

State-Space Neural 

Network 

2005 Wu et al. Taiwan Highway Loop detector Travel speed SVR 

2010 Hamner et al. N/A N/A 

Global 

Positioning 

System (GPS) 

Travel speed Random Forest 

2011 Myung et al. Korea N/A 
Automatic traffic 

count system 
Travel time KNN 

2012 Wisitpongphan 
Bangkok, 

Thailand 
Highway GPS 

Travel time, 

GPS 
BP Neural Network 

2013 
Zheng and Van 

Zuylen 

Delft, 

Netherlan

ds 

Urban 

road 
GPS data 

Vehicle 

position, 

travel speed 

State-Space Neural 

Network 

2015 
Zhang and 

Haghani 

Maryland

, US 

Interstate 

highway 
INRIX Company Travel time Gradient boosting 

2016 Duan et al. England Highway 

Cameras, GPS 

and loop 

detectors 

Travel time LSTM Neural Network 

2016 Li and Bai 
Ningbo, 

China 
N/A N/A 

Truck 

trajectory, 

travel time, 

travel speed 

Gradient boosting 

2017 Liu et al. 
California

, US 

Interstate 

highway 
PeMS Travel time LSTM Neural Network 

2017 Fan et al. Taiwan Highway Electric toll 

Travel time, 

vehicle 

information 

Random Forest  

2017 Yu et al. 
Shenyang

, China 
Bus route 

Automatic 

Vehicle Location 

system 

Bus travel 

time 

Random Forest and K-

NN 

2018 Wang et al. 
Beijing, 

China 

Urban 

road 
Floating Car Data 

Taxi ravel 

time, vehicle 

trajectory 

data 

LSTM Neural Network 

2018 Wei et al. China 
Urban 

road 

Vehicle passage 

records  
Travel time LSTM Neural Network 

2018 Wang et al. 

Beijing 

and 

Chengdu, 

China 

Urban 

road 
GPS 

Vehicle 

trajectory 

data 

LSTM Neural Network 

2018 Gupta et al. 
Porto, 

Portugal 

Urban 

road 
GPS 

Taxi travel 

speed 

Random forest and 

gradient boosting 

2019 Moonam et al. 

Madison, 

Wisconsi

n, US 

Freeway 
Bluetooth 

detector 
Travel speed K-NN, KF 
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2.5. Summary 

 A comprehensive review of the current and historical researches related to TTR 

definitions, measures, travel time variability analysis and machine learning-based travel 

time prediction methodologies has been presented in the preceding sections. This is 

intended to provide a solid reference and assistance in analyzing travel time variability and 

developing travel time prediction models. 
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CHAPTER 3: DATA DESCRIPTION AND PROCESSING 

3.1. Introduction 

 This chapter provides the basic information needed to analyze travel time 

variability and conduct travel time prediction, including the travel time data and historical 

weather data utilized in this study. The following sections are organized as follows. Section 

3.2 presents detailed information about the raw travel time data source, followed by the 

discussions about weather data collection in section 3.3. Section 3.4 described details of 

data processing. Finally, section 3.5 concludes this chapter with a summary. 

3.2. Travel Time Data Collection 

 This study focuses on the travel time data gathered from the Regional Integrated 

Transportation Information System (RITIS) website and uses the collected data to conduct 

the TTR analysis and travel time prediction. A series of major freeway segments are 

selected for the case study: Interstate 77 (I-77) Southbound (Figure 3.1) is one of the most 

heavily traveled Interstate highways in Charlotte, North Carolina and runs from north to 

south. All the selected segments have uninterrupted coverage of RITIS data 24 hours per 

day and 365 days a year. 

Interstate 77 begins at the South Carolina state line, near Fort Mill, and goes 

through the city of Charlotte as a major north-south corridor, connecting the Charlotte 

center area with the suburbs of Pineville, Huntersville, Cornelius, and Davidson. The 

highways in Charlotte area experience massive traffic congestion during weekdays due to 

heavy commuter and interstate traffic.  

The selected section of I-77 Southbound starts from the intersection with Harris 

oak Blvd and ends at the interchange with I-485 (Exit 2) at the south part of the city. 32 
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roadway segments are selected in this study, and the total length of the selected section is 

19 miles. 

 

FIGURE 3.1: Selected I-77 southbound section 

As discussed in the literature review, in the past, travel time was deduced from the 

loop detector data, historical trends or floating car runs. In this study, travel time and speed 

data are obtained from the RITIS website which gathered information about roadway 

speeds and vehicle counts from 300 million real-time anonymous mobile phones, 

connected cars, trucks, delivery vans, and other fleet vehicles equipped with GPS locator 

devices. 
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On the RITIS website probe data analytic suite, the raw probe data can be 

downloaded with the desired section and format. The roadway section can be selected 

based on the Road states and countries, Traffic message channels (TMCs), Directions, Zip 

codes, Road class and Road name. The partial sections can be selected with the selection 

of begin and end intersections. The date range can be selected from January 1st, 2008 to 

today. Seven days of week and times of day from 12:00 AM to 11:59 PM can also be 

selected. The units of travel time can be categorized into both seconds and minutes. The 

averaging period can be selected as five minutes, ten minutes, fifteen minutes and one hour. 

A sample of raw travel time data utilized in this study is shown in Table 3.1 below: 

TABLE 3.1: Sample raw travel time data 

TMC Code Measurement_tstamp Speed Travel_time_seconds 

125N04784 1/1/2015 0:00 62.91 53.58 

125N04783 1/1/2015 0:00 61.17 12.82 

125N04786 1/1/2015 0:00 60.43 47.56 

125N04785 1/1/2015 0:00 61.30 11.85 

125N04780 1/1/2015 0:00 63.97 14.59 

125N04782 1/1/2015 0:00 63.04 21.73 

125N04781 1/1/2015 0:00 62.79 12.42 

125N04788 1/1/2015 0:00 65.03 29.60 

125N04787 1/1/2015 0:00 63.50 53.76 

125N04789 1/1/2015 0:00 64.79 54.50 

125-04783 1/1/2015 0:00 62.98 33.22 

125-04782 1/1/2015 0:00 62.75 35.68 

125-04785 1/1/2015 0:00 60.54 5.16 

125N04784 1/1/2015 0:00 62.91 53.58 
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Table 3.1 contains the following information: 

TMC_Code: The RITIS Probe Data Analytics Suite uses the TMC standard to 

uniquely identify each road segment. This field indicates the segment ID. 

Measurement_tstamp: This field indicates the timestamp of the record. 

Speed: This field indicates the current estimated harmonic mean speed for the 

roadway segment in miles per hour. 

Travel_time_seconds: This field indicates the time it will take to drive along the 

roadway segment. 

3.3. Weather Data Collection 

The historical weather data near the Charlotte Douglas International airport can be 

found at the www.wunderground.com website. The raw weather data can be achieved 

within the desired time period. The date range can be selected from January 1st, 1941 to 

today.  

The raw weather data include information on different categories such as 

temperature, dew point, humidity, pressure, visibility, wind direction, wind speed, gust 

speed, precipitation, and conditions. The raw weather data from this website were recorded 

per hour. Due to the discrepancy in the time interval, one-to-one mapping or correlation 

study cannot be done using the original data. Hence, the methodology to combine the traffic 

data with the weather data will be discussed in the next section. The sample of weather 

data achieved is shown in Table 3.2 below. 

http://www.wunderground.com/


39 

 

TABLE 3.2: Sample raw weather data 

Date Time (EDT) Visibility  Conditions 

Saturday, March 14, 2009 6:55 AM 2.0 miles Rain 

Saturday, March 14, 2009 7:55 AM 2.0 miles Rain 

Saturday, March 14, 2009 8:55 AM 2.0 miles Light Rain 

Saturday, March 14, 2009 9:55 AM 2.0 miles Light Rain 

Saturday, March 14, 2009 10:55 AM 3.0 miles Light Rain 

Saturday, March 14, 2009 11:55 AM 2.0 miles Light Rain 

Saturday, March 14, 2009 12:55 PM 3.0 miles Light Rain 

Saturday, March 14, 2009 1:55 PM 7.0 miles Light Rain 

Saturday, March 14, 2009 2:55 PM 6.0 miles Light Rain 

Saturday, March 14, 2009 3:55 PM 7.0 miles Light Rain 

Saturday, March 14, 2009 4:55 PM 4.0 miles Rain 

 

3.4. Data Processing 

Based on previous studies, it is widely accepted that only severe weather events 

will cause a significant impact on speeds and travel times. Due to the weather 

characteristics in the Charlotte area and the distribution of each weather category, detailed 

weather conditions are categorized into three groups including normal, rain, and 

snow/fog/ice. Table 3.3 presents the detailed classification of the weather conditions. 

Conditions such as “overcast” or “mostly cloudy” are assumed to be no different from 

“clear” conditions due to no obvious impact on traffic conditions. These conditions are 

categorized into ‘normal’. All the conditions such as ‘rain’ or ‘thunderstorm’ are 

categorized as ‘rain’. In order to ensure the acceptable sample size, “snow”, “fog”, “ice 

pellet”, and other similar conditions are combined together due to their rate of occurrence. 
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TABLE 3.3: Classification of the weather conditions 

Original Weather Condition New Weather Category 

Haze 

Snow/fog/ice 

Fog 

Smoke 

Patches of Fog 

Mist 

Shallow Fog 

Light Freezing R 

Light Ice Pellet 

Light Freezing D 

Light Freezing F 

Ice Pellets 

Light Snow 

Snow 

Heavy Snow 

Clear 

Normal 

Partly Cloudy 

Mostly Cloudy 

Scattered Clouds 

Overcast 

Unknown 

Light Rain 

Rain 

Rain 

Heavy Rain 

Light Drizzle 

Heavy Thunderstorm 

Light Thunderstorm 

Thunderstorm 

Drizzle 

Squalls 

 

Figure 3.2 illustrates the data processing steps. In order to merge the link travel 

times dataset with historical weather dataset, the issue of different intervals of two datasets 

should be resolved first. The RITIS datasets are aggregated into 15-minute intervals, while 

the weather dataset is aggregated into one-hour intervals. Therefore, the weather conditions 

are distributed evenly with RITIS dataset based on the timestamp.  
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FIGURE 3.2: Data processing flow chart 

3.5. Summary 

This chapter presents the detailed information on the data source, data structure, 

and processing methodology to combine the travel time with raw weather data. This is 

intended to provide a solid reference and assistance in analyzing travel time variability for 

future tasks.  
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CHAPTER 4: TRAVEL TIME VARIABILITY ANALYSIS 

4.1. Introduction 

 The chapter presents the analysis of travel time variability patterns. The following 

sections are organized as follows. Section 4.2 shows the study location identification 

process based on the TTR. Section 4.3 presents the travel time variability patterns under 

all conditions. Section 4.4 discusses the travel time variability patterns considering the 

DOW.  Section 4.5 describes the travel time variability patterns considering different 

weather conditions. Finally, section 4.6 concludes this chapter with a summary. 

4.2. Study Location Identification Based on TTR 

This section describes how to identify study locations based on the TTR measure. 

The indicator is calculated by aggregating the speed and travel time observations collected 

during the time interval of interest across a year. A number of performance measures such 

as FOC, PTI, BI can be applied to achieve this goal. For illustration purpose and other 

reasons that will be discussed later, we only present how to extract the PTI values for each 

segment during each time interval. 

4.2.1. Selection of TTR Measures  

TTR measures have been increasingly encouraged by FHWA for use to manage 

and operate transportation systems. Previous research has led to the employment of various 

TTR measures to assist in highway performance evaluation and congestion management. 

In the literature review chapter, we have introduced different types of travel time reliability 

measures such as the 95th percentile travel time, BI, PTI, MI, CV, FOC, skew of travel 

time distribution, and width of travel time distribution.  
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There are four most widely used TTR measures in previous studies and they are BI, 

PTI, CV, and FOC. However, BTI and CV have the limitation since their values depend 

on the average travel time, which may change over time (Fan and Gong, 2017). Therefore, 

the PTI is chosen as the primary measure of travel time reliability in this study. It is 

calculated by dividing 95th percentile travel time by the free flow travel time so as to 

represent the percentage of extra travel time that most people will need to add on to their 

trip in order to ensure on-time arrival. For example, a PTI value of 1.5 at 5 PM means that 

for a 20-minute trip in light traffic, 30 minutes should be planned at 5 PM to make sure 

that he or she is on time. The equation of PTI is provided below: 

𝑃𝑇𝐼𝑖 =
𝑇𝑖95

𝐹𝐹𝑇𝑇𝑖
 

where, 

𝑃𝑇𝐼𝑖 = The planning time index of segment i. 

𝑇𝑖95 = 95th percentile travel time on the TMC segment i during the study period 

across multiple days (e.g., a month) or a year. 

𝐹𝐹𝑇𝑇𝑖 = Free-flow travel time on TMC i during the same observation period as 

mentioned above. 

For each roadway segment, the free-flow travel time is computed by dividing the 

length of segment by the free-flow speed, which was defined as the 85th percentile speed 

during overnight hours (10 p.m. to 5 a.m.) (Florida DOT, 2011, Schrank et al. 2015, Fan 

and Gong, 2017). 

4.2.2. Corridor PTI Information Aggregation 

The first step to identify the study segments is to plot the two-dimensional PTI 

matrix for each road segment along the corridor. This would provide a straightforward and 
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visualized tool for decision-makers to grasp the average traffic conditions along a corridor. 

The long-term (in one-year period) PTI values of each segment from 2011 to 2015 were 

calculated and shown in Figure 4.1 to Figure 4.5, respectively. Note that in these figures, 

the horizontal axis denotes the time of day and the vertical axis represents TMC segments 

along the selected section on I-77 Southbound. Each cell represents the PTI value. The 

darker the color, the higher the PTI. 
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The PTI heatmaps show that, during morning peak periods, traffic congestion 

generally occurs in the vicinity of segment 125N04783 to segment 125N04789; during 

evening peak periods, drivers routinely experience frequent congestion between segment 

125N04776 and segment 125N04785. The study location identification criteria will be 

discussed in the next section. 

4.2.3. Study Location Identification Based on PTI Rating 

In order to select the sections which can represent different traffic conditions, the 

qualitative ratings for each freeway segment in the study area are conducted and further 

classified into different categories/levels based on the qualitative criteria of a previous 

study (Wolniak and Mahapatra, 2014). The ratings which are given based on the PTI values 

are: (1) reliable (PTI<1.5); (2) moderately to heavily unreliable (1.5<PTI<2.5) and (3) 

extremely unreliable (PTI>2.5). 

Based on the rating criteria mentioned above, eight segments (shown in Figure 4.6) 

which contain the four PTI rating cases are selected as the sample study segments. The four 

cases are: 
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FIGURE 4.6: Locations of selected segments 

Case 1 (PM peak only): The average PTI during PM peak period is reliable and 

during PM peak period is unreliable/extremely unreliable. The selected segments are 125-

04779 and 125N04780. 

Case 2 (AM peak only): The average PTI during AM peak period is unreliable/ 

extremely unreliable and during PM peak period is reliable. The selected segments are 

125N04788 and 125-04788. 

Case 3 (Double peak): The average PTI during both AM and PM peak periods are 

unreliable/ extremely unreliable. The selected segments are 125N04784 and 125N04785. 

Case 4 (No peak): The average PTI during both AM and PM peak periods are 

reliable. The selected segments are 125-04790 and 125N04791. 
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Table 4.1 below describes the detailed information about the TMC code, segment 

location, segment length, year, average PTI and rating of these selected segments. The 

information on all the segments in the study area can be found in Appendix A. 

TABLE 4.1: PTI ratings during AM and PM peak periods of selected segments 

TMC Code Segment Location 

Segment 

Length 

(miles) 

Year 
Time 

Period 

Average 

PTI 
Rating 

125-04779 
TYVOLA 

RD/EXIT 5 
0.67 

2011 
AM Peak 1.09 reliable 

PM Peak 2.00 unreliable 

2012 
AM Peak 1.07 reliable 

PM Peak 1.98 unreliable 

2013 
AM Peak 1.06 reliable 

PM Peak 2.08 unreliable 

2014 
AM Peak 1.09 reliable 

PM Peak 2.34 unreliable 

2015 

AM Peak 1.11 reliable 

PM Peak 2.70 
extremely 

unreliable 

Average 
AM Peak 1.08 reliable 

PM Peak 2.22 unreliable 

125N04780 
WOODLAWN 

RD/EXIT 6 
0.26 

2011 
AM Peak 1.10 reliable 

PM Peak 2.45 unreliable 

2012 
AM Peak 1.07 reliable 

PM Peak 2.43 unreliable 

2013 
AM Peak 1.06 reliable 

PM Peak 2.49 unreliable 

2014 

AM Peak 1.10 reliable 

PM Peak 2.69 
extremely 

unreliable 

2015 

AM Peak 1.12 reliable 

PM Peak 3.19 
extremely 

unreliable 

Average 

AM Peak 1.09 reliable 

PM Peak 2.65 
extremely 

unreliable 

125N04784 
I-277/US-74/EXIT 

9 
0.94 

2011 

AM Peak 1.60 unreliable 

PM Peak 3.10 
extremely 

unreliable 

2012 

AM Peak 1.75 unreliable 

PM Peak 3.34 
extremely 

unreliable 
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TMC Code Segment Location 

Segment 

Length 

(miles) 

Year 
Time 

Period 

Average 

PTI 
Rating 

2013 

AM Peak 2.01 unreliable 

PM Peak 4.04 
extremely 

unreliable 

2014 

AM Peak 2.33 unreliable 

PM Peak 4.09 
extremely 

unreliable 

2015 

AM Peak 2.77 
extremely 

unreliable 

PM Peak 5.45 
extremely 

unreliable 

Average 

AM Peak 2.09 unreliable 

PM Peak 4.00 
extremely 

unreliable 

125N04785 

US-29/NC-

27/MOREHEAD 

ST/EXIT 10 

0.20 

2011 
AM Peak 1.38 reliable 

PM Peak 1.71 unreliable 

2012 
AM Peak 1.60 unreliable 

PM Peak 2.08 unreliable 

2013 

AM Peak 1.87 unreliable 

PM Peak 2.95 
extremely 

unreliable 

2014 

AM Peak 2.11 unreliable 

PM Peak 2.85 
extremely 

unreliable 

2015 

AM Peak 2.63 
extremely 

unreliable 

PM Peak 3.61 
extremely 

unreliable 

Average 

AM Peak 1.92 unreliable 

PM Peak 2.64 
extremely 

unreliable 

125N04788 
LASALLE 

ST/EXIT 12 
0.53 

2011 
AM Peak 1.81 unreliable 

PM Peak 1.08 reliable 

2012 
AM Peak 1.90 unreliable 

PM Peak 1.07 reliable 

2013 
AM Peak 2.09 unreliable 

PM Peak 1.11 reliable 

2014 
AM Peak 2.32 unreliable 

PM Peak 1.26 reliable 

2015 
AM Peak 2.62 

extremely 

unreliable 

PM Peak 1.25 reliable 

Average 
AM Peak 2.15 unreliable 

PM Peak 1.16 reliable 

125-04788 0.11 2011 AM Peak 1.72 unreliable 
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TMC Code Segment Location 

Segment 

Length 

(miles) 

Year 
Time 

Period 

Average 

PTI 
Rating 

LASALLE 

ST/EXIT 12 

PM Peak 1.09 reliable 

2012 
AM Peak 1.71 unreliable 

PM Peak 1.06 reliable 

2013 
AM Peak 2.09 unreliable 

PM Peak 1.07 reliable 

2014 
AM Peak 2.14 unreliable 

PM Peak 1.11 reliable 

2015 
AM Peak 2.63 

extremely 

unreliable 

PM Peak 1.13 reliable 

Average 
AM Peak 2.06 unreliable 

PM Peak 1.09 reliable 

125-04790 
US-21/SUNSET 

RD/EXIT 16 
2.25 

2011 
AM Peak 1.05 reliable 

PM Peak 1.05 reliable 

2012 
AM Peak 1.04 reliable 

PM Peak 1.04 reliable 

2013 
AM Peak 1.04 reliable 

PM Peak 1.04 reliable 

2014 
AM Peak 1.06 reliable 

PM Peak 1.05 reliable 

2015 
AM Peak 1.07 reliable 

PM Peak 1.05 reliable 

Average 
AM Peak 1.07 reliable 

PM Peak 1.07 reliable 

125N04791 

HARRIS OAK 

BLVD/REAMES 

RD/EXIT 18  

0.62 

2011 
AM Peak 1.06 reliable 

PM Peak 1.05 reliable 

2012 
AM Peak 1.05 reliable 

PM Peak 1.05 reliable 

2013 
AM Peak 1.07 reliable 

PM Peak 1.06 reliable 

2014 
AM Peak 1.07 reliable 

PM Peak 1.07 reliable 

2015 
AM Peak 1.05 reliable 

PM Peak 1.05 reliable 

Average 
AM Peak 1.04 reliable 

PM Peak 1.04 reliable 
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4.3. Travel Time Variability Analysis at Study Locations 

4.3.1. TTR Pattern under Case 1 

The PTIs of segment 125-04779 and 125N04780 from 2011 to 2015 are shown in 

Figure 4.7 and 4.8. These two sections are located at the south part of the Charlotte 

downtown area. The volume of outbound traffic during PM hours is high and therefore 

contributes to the frequent congestion under PM peak condition. In more detail, in the year 

2015, these two segments had obvious higher PTI values during peak hours than those in 

the years of 2011-2014. The condition like this may be attributed to different factors such 

as the traffic volume, weather condition and accidents. One potential reason behind this 

could be the traffic volume of the segments of case 1 from 2011 to 2015 (annual average 

daily traffic (AADT): 15300, 15200, 15400, 15900, and 15900, respectively). The 

correlation values between the AADT and average daily PTIs of these two segments are 

0.86 and 0.83, respectively, which means highly correlated. Therefore, the traffic volume 

may be a primary reason of the TTR distribution characteristics. Based on the historical 

weather data, the frequency of adverse weather in the year 2015 is higher than that in the 

year from 2011 to 2014. In order to eliminate the possible influence of adverse weather, 

the TTR distribution under only normal conditions during each year are also tested and the 

average daily PTI of 2015 is reduced a little bit (from 2.1 to 2.0) but still higher than PTIs 

of year 2011-2014. With respect to traffic accident, no detailed historical crash information 

about I77 is found. However, the number of total crashes in Mecklenburg county in each 

year had been getting higher and higher from 2011 to 2015 (15476, 15915, 16790, 19847, 

and 21096, respectively) (NCDMV, 2016). This can also be another potential reason that 

contributes to the worsening of the traffic condition in the year 2015. 
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FIGURE 4.7: TTR pattern of segment 125-04779 in 5 years 

 
FIGURE 4.8: TTR pattern of segment 125N04780 in 5 years 

4.3.2. TTR Pattern under Case 2 

The PTIs of segment 125N04788 and 125-04788 from 2011 to 2015 are shown in 

Figure 4.9 and 4.10. These two sections are located at the north part of the Charlotte 

downtown area. The volume of inbound traffic during AM hours is high and therefore 

contributes to the frequent congestion under AM peak condition. Similar to case 1, in the 

year 2015, these two segments had obvious higher PTI values during peak hours than that 
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of years of 2011-2014. The condition like this may also be explained by the potential 

factors (such as traffic volume (with the correlation values 0.83 and 0.89, respectively), 

adverse weather and accident) that contribute to the worsening of the traffic condition in 

the year 2015. 

 
FIGURE 4.9: TTR pattern of segment 125N04788 in 5 years 

 
FIGURE 4.10: TTR pattern of segment 125-04788 in 5 years 
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4.3.3. TTR Pattern under Case 3 

The PTIs of segment 125N04784 and 125N04785 from 2011 to 2015 are shown in 

Figure 4.11 and 4.12. These two sections are located adjacent to Charlotte downtown area. 

The volume of inbound traffic during AM hours and outbound traffic during PM hours are 

both high and therefore contributes to the frequent congestion under double peak condition. 

Similar to case 1 and 2, in the year 2015, these two segments had obvious higher PTI values 

during peak hours than those in the years of 2011-2014. However, the correlation values 

between traffic volume and average daily PTIs are not statistically significant (0.56 and 

0.71, respectively).Therefore, the condition like this may be explained by the other 

potential factors (such as adverse weather and accident) that contribute to the worsening of 

the traffic condition in the year 2015. 

 
FIGURE 4.11: TTR pattern of segment 125N04784 in 5 years 
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FIGURE 4.12: TTR pattern of segment 125N04785 in 5 years 

4.3.4. TTR Pattern under Case 4 

The PTIs of segment 125-04790 and 125N04791 from 2011 to 2015 are shown in 

Figure 4.13 and 4.14. These two sections are located far away from Charlotte downtown 

area. The traffic volumes during both AM and PM hours are low and therefore contributes 

to the no peak condition. The variation of PTIs throughout the day of each year do not 

change significantly (from 1.02 to 1.13 and 1.04 to 1.15, respectively). 

 
FIGURE 4.13: TTR pattern of segment 125-04790 in 5 years 
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FIGURE 4.14: TTR pattern of segment 125N04791 in 5 years 

4.4. Travel Time Variability Analysis of Different DOW 

4.4.1. TTR Pattern of Different DOW: Case 1 

The PTIs of segment 125-04779 and 125N04780 from Monday to Sunday are 

shown in Figure 4.15 to Figure 4.16 below, and the average PTIs are shown in Table 4.2. 

The PTI ranking result shows that: the TTR patterns of these two sections on weekdays are 

similar to the TTR pattern under all conditions. However, the TTR patterns on weekends 

are significantly different from weekdays. There are no PM peak characteristics of the TTR 

of these two segments on weekends as the PTIs throughout the day do not change 

significantly. The results indicate that traffic congestion on weekends becomes less 

frequent and also travel demand on weekends is perhaps much lower than that on weekdays, 

which is consistent with previous studies (Chen et al., 2017, Chen et al., 2018). The travel 

time on Friday is least reliable. This result is consistent with a previous study (Wang et al., 

2017). 
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FIGURE 4.15: TTR pattern of segment 125-04779 from Monday to Sunday 

 

 
FIGURE 4.16: TTR pattern of segment 125N04780 from Monday to Sunday 
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TABLE 4.2: Average PTIs from Monday to Sunday (Case 1) 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Segment 125-04779 

Average 

PTI 
1.29 1.30 1.30 1.32 1.40 1.10 1.08 

Rank 5 3 4 2 1 6 7 
Morning 

Peak (7-9 

am) PTI 
1.10 1.14 1.11 1.10 1.11 1.06 1.06 

Rank 5 1 2 4 3 6 7 
Afternoon 

Peak (4-7 

pm) PTI 
2.39 2.42 2.31 2.47 2.63 1.13 1.09 

Rank 4 3 5 2 1 6 7 

Segment 125N04780 

Average 

PTI 
1.37 1.39 1.38 1.44 1.51 1.11 1.09 

Rank 5 3 4 2 1 6 7 
Morning 

Peak (7-9 

am) PTI 
1.11 1.15 1.12 1.12 1.11 1.07 1.08 

Rank 4 1 2 3 5 7 6 
Afternoon 

Peak (4-7 

pm) PTI 
2.89 2.89 2.81 3.19 3.26 1.16 1.11 

Rank 4 3 5 2 1 6 7 

 

4.4.2. TTR Pattern of Different DOW: Case 2 

The PTIs of segment 125N04788 and 125-04788 on different DOW are shown in 

Figure 4.17 to Figure 4.18 below. Similar to case 1, the TTR patterns of these two sections 

on weekdays are similar to the TTR patterns under all conditions and the patterns on 

weekends are significantly different from weekdays. There are no AM peak characteristics 

of the TTR of these two segments on weekends as the PTIs throughout the day do not 

change significantly. The results indicate that traffic congestion on weekends becomes less 

frequent and also travel demand of these two segments on weekends is perhaps much lower 

than that on weekdays. The PTI ranking result shows that the travel time on Tuesday is 

least reliable.  



63 

 

 
FIGURE 4.17: TTR pattern of segment 125N04788 from Monday to Sunday 

 

 
FIGURE 4.18: TTR pattern of segment 125-04788 from Monday to Sunday 
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TABLE 4.3: Average PTIs from Monday to Sunday (Case 2) 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Segment 125N04788 

Average 

PTI 
1.28 1.32 1.28 1.27 1.18 1.06 1.06 

Rank 3 1 2 4 5 7 6 
Morning 

Peak (7-9 

am) PTI 
3.09 3.74 3.13 3.23 2.55 1.04 1.05 

Rank 4 1 3 2 5 7 6 
Afternoon 

Peak (4-7 

pm) PTI 
1.23 1.16 1.28 1.18 1.25 1.14 1.05 

Rank 3 5 1 4 2 6 7 

Segment 125-04788 

Average 

PTI 
1.32 1.37 1.31 1.31 1.25 1.07 1.07 

Rank 2 1 4 3 5 6 7 
Morning 

Peak (7-9 

am) PTI 
2.91 3.53 3.11 3.01 2.14 1.04 1.05 

Rank 4 1 2 3 5 7 6 
Afternoon 

Peak (4-7 

pm) PTI 
1.14 1.08 1.12 1.09 1.09 1.07 1.05 

Rank 1 5 2 3 4 6 7 

 

4.4.3. TTR Pattern of Different DOW: Case 3 

The PTIs of segment 125N04784 and 125-04785 on different DOW are shown in 

Figure 4.19 to Figure 4.20 below. Similar to case 1, the TTR patterns of these two sections 

on weekdays are similar to the TTR patterns under all conditions and the patterns on 

weekends are significantly different from weekdays. The PTIs of these two sections on 

weekends do not change significantly in most of the time. The unique PM peak pattern of 

segment 125N04784 on weekends in the year 2015 may be explained by the potential 

reason that higher accident rate of the year 2015. The PTI ranking result shows that the 

travel time on Friday is least reliable.  
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FIGURE 4.19: TTR pattern of segment 125N04784 from Monday to Sunday 

 

 

FIGURE 4.20: TTR pattern of segment 125N04785 from Monday to Sunday 
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TABLE 4.4: Average PTIs from Monday to Sunday (Case 3) 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Segment 125N04784 

Average 

PTI 
1.74 1.78 1.85 1.97 2.02 1.15 1.12 

Rank 5 4 3 2 1 6 7 
Morning 

Peak (7-9 

am) PTI 
2.98 3.31 3.09 3.08 2.49 1.05 1.05 

Rank 4 1 2 3 5 6 7 
Afternoon 

Peak (4-7 

pm) PTI 
4.30 3.94 4.41 5.29 5.14 1.35 1.45 

Rank 4 5 3 1 2 7 6 

Segment 125N04785 

Average 

PTI 
1.49 1.46 1.57 1.73 1.77 1.11 1.11 

Rank 4 5 3 2 1 6 7 
Morning 

Peak (7-9 

am) PTI 
2.73 2.94 2.89 2.92 2.30 1.05 1.06 

Rank 4 1 3 2 5 7 6 
Afternoon 

Peak (4-7 

pm) PTI 
2.84 2.27 3.01 4.18 4.33 1.12 1.10 

Rank 4 5 3 2 1 6 7 
 

4.4.4. TTR Pattern of Different DOW: Case 4 

The PTIs of segment 125-04790 and 125N04791 on different DOW are shown in 

Figure 4.21 to Figure 4.22 below. The PTIs of two segments during both weekdays and 

weekends do not change significantly. The results indicate that the travel time on these two 

segments do not change frequently on both weekdays and weekends. 
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FIGURE 4.21: TTR pattern of segment 125-04790 from Monday to Sunday 

 

 

FIGURE 4.22: TTR pattern of segment 125N04791 from Monday to Sunday 
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TABLE 4.5: Average PTIs from Monday to Sunday (Case 4) 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Segment 125-04790 

Average 

PTI 
1.06 1.07 1.06 1.06 1.05 1.06 1.06 

Rank 3 1 4 6 7 5 2 
Morning 

Peak (7-9 

am) PTI 
1.08 1.22 1.09 1.07 1.04 1.05 1.06 

Rank 3 1 2 4 7 6 5 
Afternoon 

Peak (4-7 

pm) PTI 
1.05 1.05 1.05 1.05 1.05 1.04 1.05 

Rank 3 1 4 6 5 7 2 

Segment 125N04791 

Average 

PTI 
1.08 1.09 1.07 1.08 1.08 1.08 1.07 

Rank 2 1 6 5 4 3 7 
Morning 

Peak (7-9 

am) PTI 
1.09 1.14 1.07 1.07 1.06 1.08 1.07 

Rank 2 1 5 4 7 3 6 
Afternoon 

Peak (4-7 

pm) PTI 
1.07 1.07 1.07 1.07 1.07 1.06 1.06 

Rank 2 1 5 3 4 6 7 
 

 

4.5. Travel Time Variability Analysis under Different Weather Conditions 

4.5.1. TTR Pattern of Different Weather Conditions: Case 1 

The PTIs of segment 125-04779 and 125N04780 under different weather 

conditions are shown in Figure 4.23 and Figure 4.24 below. The TTR patterns of these two 

sections under normal and rain conditions are similar and the pattern is unique under the 

snow/ice/fog condition. In more detail, the PTIs under rain condition have obvious higher 

values than normal condition throughout the day. This probably suggests that rain can 

cause several travel problems such as visibility issues while driving a vehicle. Heavy 

rainfall may lead to hydroplaning, slippery surfaces for tires and road flooding. Therefore, 

the values of PTIs under rain condition also increase and the traffic congestion becomes 
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more frequent. This result is consistent with other studies (Tsapakis et al. 2013, Li et al. 

2016). The PTIs under snow/ice/fog condition is also higher than those under normal 

condition throughout the day because of the influence of road surfaces and visibility 

problems (Weng et al., 2013). The potential reason for the unique TTR pattern under the 

snow/fog/ice condition could be: snow/fog/ice can contribute to unexpected condition on 

the roadway anytime throughout the day. This result is also consistent with a previous study 

(Yazici et al., 2011). In specific, there is an extremely high PTI value at noon. Since the 

geometric design characteristics of all the segments are similar, the potential reason behind 

this unique pattern could be the non-recurrent condition such as the incidents happened 

during snow condition at the case segments. This hypothesis should be checked in the 

future if more detailed data is available. 

 
FIGURE 4.23: TTR pattern of segment 125-04779 under different weather conditions 
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FIGURE 4.24: TTR pattern of segment 125N04780 under different weather conditions 

4.5.2. TTR Pattern of Different Weather Conditions: Case 2 

The PTIs of segment 125N04788 and 125-04788 under different weather 

conditions are shown in Figure 4.25 and Figure 4.26 below. Similar to case 1, the PTIs 

under rain condition have obvious higher values than those under normal condition 

throughout the day. And the PTIs under the snow/ice/fog condition are also higher than the 

PTIs under normal condition throughout the day and demonstrates unique variability 

pattern. 

 
FIGURE 4.25: TTR pattern of segment 125N04788 under different weather conditions 
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FIGURE 4.26: TTR pattern of segment 125-04788 under different weather conditions 

4.5.3. TTR Pattern of Different Weather Conditions: Case 3 

The PTIs of segment 125N04784 and 125N04785 under different weather 

conditions are shown in Figure 4.27 and Figure 4.28 below. Similar to case 1 and 2, the 

PTIs under rain condition have obvious higher values than those under normal condition 

throughout the day. And the PTIs under the snow/ice/fog condition is also higher than the 

PTIs under normal condition throughout the day and demonstrates unique variability 

pattern. 

 
FIGURE 4.27: TTR pattern of segment 125N04784 under different weather conditions 
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FIGURE 4.28: TTR pattern of segment 125N04785 under different weather conditions 

4.5.4. TTR Pattern of Different Weather Conditions: Case 4 

The PTIs of segment 125-04790 and 125N04791 under different weather 

conditions are shown in Figure 4.29 and Figure 4.30 below. In more detail, the PTIs under 

rain condition have higher values than normal condition but not increase significantly. 

However, the PTIs under the snow/ice/fog condition is much higher than the PTIs under 

normal condition throughout the day. This result shows the adverse weather like snow, fog 

and ice can affect the traffic condition of the segment significantly, and the traffic 

congestion becomes more frequent no matter when. 
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FIGURE 4.29: TTR pattern of segment 125-04790 under different weather conditions 

 
FIGURE 4.30: TTR pattern of segment 125N04791 under different weather conditions 

4.6. Summary 

This chapter describes the analysis results of travel time variability patterns. The 

analysis results can give a clear picture of the travel time variability characteristics under 

general condition, on different DOW and under different weather conditions. 
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CHAPTER 5: TRAVEL TIME PREDICTION METHODOLOGY 

5.1. Introduction 

 This chapter presents the introduction to the travel time prediction methodology. 

The following sections are organized as follows. Section 5.2 shows the basic information 

about the ensemble learning methodology, which includes the ideas of bagging algorithm 

and boosting algorithm. Section 5.3 discusses the principles of the XGBoost algorithm. 

Finally, section 5.4 concludes this chapter with a summary. 

5.2. Basic Information on the Ensemble Learning Methodology 

The ensemble learning-based algorithms consist of multiple base models (e.g., 

decision tree model), and each base model provides an alternative solution to the problem. 

The prediction results of these base models are combined by some rules (such as weighted 

or unweighted voting and averaging). The final output will be achieved through the 

combined model (Zhang and Haghani, 2015).  

The base model of the ensemble learning algorithm is extremely important to the 

final results. Since the model is expected to have enough degrees of freedom to solve the 

underlying complexity of the data and avoid high variance and be more robust at the same 

time, the two most fundamental characteristics of the base model should be a low bias and 

a low variance. In other words, the base model should be a ‘weak learner’ and needs to be 

converted to a ‘strong learner’. In machine learning area, a ‘weak learner’ is a model which 

performs relatively poorly but better than random guessing.  

Decision tree is a basic data-driven supervised learning method and has been widely 

used in the data mining area (Quinlan, 1986; Han and Kamber, 2011). A single decision 
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tree is constructed by splitting the features’ space into regions. The target variable can be 

predicted by using the values of a set of features.  

In detail, the pseudo-code for decision tree is shown below in Figure 5.1, which can 

make it easier to understand the idea of decision tree algorithm. 

 

FIGURE 5.1: Pseudo-code for decision tree (Source: Quinlan 1986) 

Tree model is a commonly used base models in ensemble learning. Tree model can 

be very sensitive, and the computation process of tree model is fast and easy, which can 

reduce model complexity and improve the efficiency.  

Overfitting means that a function fits the data too well. Typically, this is because 

the actual equation is too complicated to consider each data point and outlier. The tree-

based ensemble method can reduce the variance by building a large number of trees and 

then combining the results of them.  

The purpose of an ensemble learning algorithm is to achieve an improved result by 

combining predictions of a group of individual base models. It has been shown that the 

combined model often generates more stable and accurate predictions in many applications 

(Leblanc and Tibshirani, 1996; Banfield et al., 2006). 
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Bagging and boosting are both ensemble techniques, where a set of base models 

are combined to create a model that obtains better performance than a single model. 

However, they utilize different re-sampling methods and therefore can have different 

performances and generate different outputs.  

5.2.1. Bagging algorithm 

Bagging is a method for generating multiple versions of predictor and using these 

to get an aggregated predictor (Breiman, 1996). The bagging algorithm could help reduce 

the overfitting problem from a single model. 

Typically, there are 3 steps to use the tree-based bagging algorithm: The first step 

is to create several (e.g., 100) random sub-samples of the dataset with replacement. The 

second step is to train a model using each sample. Finally, given a new dataset, calculate 

the average prediction from each model (Breiman, 1996). 

In detail, the pseudo-code for bagging introduced by Breiman (1996) is shown in 

Figure 5.2, which can make it easier to understand the idea of bagging algorithm. Given a 

training set D, in each iteration (ranges from 1 to T), randomly sample with replacement N 

samples from the training dataset. Then train a selected base model A (e.g., decision tree 

model) on samples. For each test example, start with all trained base models, and then 

predict by combining results of all T trained models. For the regression problem, the 

combining rule will be averaging them; for the classification problem, the combining rule 

will be a majority vote. 
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FIGURE 5.2: Pseudo-code for bagging (Source: Breiman, 1996) 

Random Forest is a typical bagging-based model that was introduced by Breiman 

(2001), and it has been widely used in the machine learning area. Random Forest is a 

combination of many decision trees. There are two types of randomness built into the trees. 

First, each tree is built on a random sample from the training dataset. Second, a subset of 

features are randomly allocated to each tree node to generate the best split. 

The main limitation of the Random Forest is that a larger number of trees may make 

the model run slower. If the data include categorical variables with a different number of 

levels, “Random Forests are biased in favor of those variables with more levels” 

(Strickland, 2007). 

 

5.2.2. Boosting algorithm 

The idea of boosting algorithm was first proposed by Kearns (1988). Boosting 

algorithm also refers to several algorithms that convert weak learners to strong learners. 

Several base models are combined together to form stronger model that can make 

generalizations (Rajsingh et al., 2018).  
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Different from the bagging method which has each base model run independently 

and then aggregates their outputs at the end without any preference, the boosting method 

improves the prediction through developing multiple models in sequence by putting 

emphasis on these training cases that are difficult to estimate.  

In detail, the initial model in boosting is predicted using a loss function. Each time 

a decision tree is generated, the model is updated based on the previous model and loss 

function resulting in a final model. The samples with the highest error appear most in 

subsequent models, which means that the incorrectly estimated or misclassified samples 

have more chances to be selected.  

There are many boosting algorithms such as AdaBoost, Gradient boosting, and 

XGBoost. Gradient boosting is a typical boosting approach, and it has been widely used in 

the machine learning area. The word ‘gradient’ means that it uses a gradient descent 

algorithm to minimize the loss when adding new models (Friedman, 2001). The gradient 

boosting approach supports both classification and regression predictive modeling 

problems. 

Based on previous studies, the gradient boosting model generally gives better 

results than Random Forest, since Random Forest has fewer parameters needing tuning and 

also is less sensitive to these parameters (Ogutu et al., 2011; Freeman et al., 2015). 

However, the gradient boosting model is harder to fit than Random Forests at the same 

time. The stopping criteria should also be chosen carefully to avoid overfitting on the 

training data. 
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5.3. XGBoost Algorithm 

XGBoost is the short name for ‘Extreme gradient boosting’ that was proposed by 

Chen and Guestrin (2016). In recent years, it has a recognized impact in solving machine 

learning challenges in different application domains.  

The speed of XGBoost is much faster than that of other common machine learning 

methods since it can process large amounts of data in a parallel way efficiently. The 

XGBoost model can also handle missing values in the dataset. Above all, “XGBoost used 

a more regularized model formalization to control over-fitting, which gives it better 

performance” (Chen and Guestrin, 2016). Therefore, the XGBoost model is selected and 

used to conduct travel time prediction in this study. The detailed information about the 

XGBoost model is described as follows:  

The objective function (Obj(Θ)) of the XGBoost model is provided below (Chen 

and Guestrin, 2016):  

𝑂𝑏𝑗(Θ) = 𝐿(Θ) + Ω(Θ) 

where,  

𝐿(Θ) = The training loss, which measures how well the model fit on training data 

Ω(Θ) = The regularization term, which measures the complexity of the model. 

The loss on training data can be expressed as:  

𝐿 = ∑ 𝑙(𝑦𝑖, �̂�𝑖)
𝑛

𝑖=1
 

In detail, the square loss for the regression problem can be expressed as:  

𝑙(𝑦𝑖, �̂�𝑖) = (𝑦𝑖 − �̂�𝑖)
2 

The logistic loss for the classification problem can be expressed as: 

𝑙(𝑦𝑖, �̂�𝑖) = 𝑦𝑖 ln(1 + 𝑒−�̂�𝑖) + (1 − 𝑦𝑖)𝑙𝑛(1 + 𝑒�̂�𝑖) 
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In this study, 

�̂�𝑖 = the predicted travel time. 

𝑦𝑖 = the actual travel time. 

When a new tree is added to the model, the objective function can be transformed 

to: 

𝑂𝑏𝑗(t) = ∑ 𝑙(𝑦𝑖, �̂�𝑖
(𝑡)

)
𝑛

𝑖=1
+ ∑ Ω(𝑓𝑖)

𝑡

𝑖=1

= ∑ 𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑛

𝑖=1
 

In order to get the simplest goal, the constant term should be removed from the 

function. The process of XGBoost uses second order Taylor expansion to extend the loss 

function and removes the constant term (Chen and Guestrin, 2016). 

𝑂𝑏𝑗(t) = ∑ 𝑙 (𝑦𝑖, �̂�𝑖
(𝑡−1)

+ 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)) + Ω(𝑓𝑡)
𝑛

𝑖=1
 

where, 

𝑔𝑖 = 𝜕
�̂�𝑖

(𝑡−1)𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1)

) , which means the first order partial derivative of the 

function 

ℎ𝑖 = 𝜕
�̂�𝑖

(𝑡−1)
2 𝑙(𝑦𝑖, �̂�𝑖

(𝑡−1)
) , which means the second order partial derivative of the 

function 

After the removal of all the constants, the specific objective at step 𝑡 becomes: 

𝑂𝑏𝑗(t) = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)
𝑛

𝑖=1
 

 

In the XGBoost model, the complexity is defined as (Chen and Guestrin, 2016): 
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Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 

where, 

T = the number of leaf nodes 

𝛾 = the penalty coefficient of the number of leaves 

𝜆 = the penalty coefficient of regularization 

𝑤𝑗= the score of leaf 𝑗 

After re-formulating the tree model, the objective function with the t-th tree can be 

written as: 

𝑂𝑏𝑗(t) = ∑ [𝑔𝑖𝑤𝑞(𝑥𝑖) +
1

2
ℎ𝑖𝑤𝑞(𝑥𝑖)

2 ] + 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

𝑛

𝑖=1
 

𝑂𝑏𝑗(t) = ∑ [(∑ 𝑔𝑖)𝑤𝑗

𝑖∈𝐼𝑗

+
1

2
(∑ ℎ𝑖 + 𝜆)𝑤𝑗

2] +

𝑖∈𝐼𝑗

𝑇

𝑗=1
𝛾𝑇 

where 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} is an instance set assigned to the j-th leaf. The objective 

function could be further compressed as: 

𝑂𝑏𝑗(t) = ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2] +
𝑇

𝑗=1
𝛾𝑇 

where 𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
, 𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

 

The best 𝑤𝑗 one can get for the objective function is: 

𝑤𝑗
∗ = −

𝐺𝑗

𝐻𝑗 + 𝜆
 

Therefore, the final objective function can be written as: 

𝑂𝑏𝑗(t) = −
1

2
∑

𝐺𝑗
2

𝐻𝑗 + 𝜆
+

𝑇

𝑗=1
𝛾𝑇 
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The smaller the score is, the better the structure is. 

XGBoost can also add branches for each leaf node. The loss reduction after the split 

can be expressed as: 

𝐺𝑎𝑖𝑛 =  
1

2
[

𝐺𝐿
2

𝐻𝐿 + 𝜆
+

𝐺𝑅
2

𝐻𝑅 + 𝜆
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + 𝜆
] − 𝛾 

where 
𝐺𝐿

2

𝐻𝐿+𝜆
 is the score of the left node after the cut. 

𝐺𝑅
2

𝐻𝑅+𝜆
 is the score of the right 

node after the cut. 
(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
 is the score of combination without the cut. Finally, the best 

structure of the model can be obtained which can minimize the objective function by 

enumerating different kinds of tree structures. 

5.4. Summary 

This chapter presents the methodology which will be used in travel time prediction. 

The idea of ensemble learning is introduced first. The detailed information on the decision 

tree algorithm, bagging algorithm, and boosting algorithm is then presented. The basic 

information about the Random Forest model and the gradient boosting model is also 

introduced. The advantages and disadvantages of each model are discussed. The basic 

information about the XGBoost model is also presented in this chapter. The advantages of 

the XGBoost model are listed. The detailed process of the XGBoost model is described 

including the objective function, regularization terms, and model score. 
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CHAPTER 6: TRAVEL TIME PREDICTION MODEL VALIDATION 

6.1. Introduction 

This chapter presents the validation of the proposed machine learning model based 

on the data described in Chapter 3. Section 6.2 shows the feature selection and pre-

processing steps, the features will include but not limit to: time of day, day of the week, 

month, weather conditions, and segment characteristics. Section 6.3 introduces the 

parameters in the model and discusses the parameters’ tuning process. Finally, section 6.4 

concludes the chapter with a summary. 

 

6.2. Feature Selection and Pre-processing 

Determining which feature to use in the model is the most important factor of a 

successful machine learning algorithm (Domingos, 2012). The definition of feature 

engineering is “an act of extracting features from raw data and transforming them into the 

formats that are suitable for the machine learning model” (Zheng and Casari, 2018). 

Therefore, the quality of the features will have great influence on whether the travel time 

prediction model is good or not. 

The real-world travel time data provided by the RITIS website (which was 

mentioned in chapter 3) are used for this study. The quality of the data is precise enough 

with less than a 0.5% missing rate (4348 out of 906048). Therefore, this study simply 

replaces the missing values with the mean of its closest surrounding values. 

Based on previous studies (Min and Wynter, 2011; Wang et al., 2018), the features 

that influence the accuracy of travel time prediction may not only include the basic features 

(such as time of day, day of the week, month, and weather), but also include the spatial and 
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temporal characteristics of the segments. Therefore, the travel time information from 

several steps before and the travel time information of adjacent segments are also selected 

and will be used in the model. 

Table 6.1 summarizes the basic information on the features used in this study and 

Table 6.2 is an example of the dataset. In Table 6.2, the first 19 columns are the input 

variables that are used to predict travel time at time step t and the last column is the travel 

time. In some cases, the target variable will be transformed when it is not normally 

distributed, however, “since regression tree is the basic learner of XGBoost, there is no 

need to normalize samples, which means that features from different units would not affect 

the prediction result” (Dong et al. 2018).   

For the Categorical Variable, the most commonly used method is One-hot encoding 

in the Python software. One-hot encoding is a process by which categorical variables are 

converted into a form that could be provided to machine learning algorithms to do a better 

job in prediction. For example, the category weekdays with 7 variables will be transferred 

as dummy variables. It should be noticed that if the range of category variable is too large 

(over hundreds of variables), this method is not suitable anymore.  

TABLE 6.1: Definitions and attributes on selected features 

Variable Definition Attribute 

ID Segment ID Categorical 

L Length of the segment Categorical 

TOD The TOD is represented by every 15-minute timestep 

indexed from 1 to 96 

Categorical 

DOW The DOW is indexed from 1 to 7 to represent from 

Monday through Sunday 

Categorical 

Month  The Month is indexed from 1 to 12 to represent January 

to December 

Categorical 

Weather Weather is indexed from 1 to 3 to represent normal, rain 

and snow/ice/fog, respectively 

Categorical 

https://en.wikipedia.org/wiki/One-hot
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𝑇𝑡−1 Travel time at time step t-1 (15 minutes before) Float 

𝑇𝑡−2 Travel time at time step t-2 (30  minutes before) Float 

𝑇𝑡−3 Travel time at time step t-3 (45 minutes before) Float 

∆𝑇𝑡−1 Travel time change value at time step t-1 (15 minutes 

before) 

Float 

∆𝑇𝑡−2 Travel time change value at time step t-2 (30 minutes 

before) 

Float 

∆𝑇𝑡−3 Travel time change value at time step t-3 (45 minutes 

before) 

Float 

𝑇𝑡−1
𝑖−1 Travel time of first upstream segment at time step t-1 

(15 minutes before) 

Float 

𝑇𝑡−1
𝑖−2 Travel time of second upstream segment at time step t-1 

(15 minutes before) 

Float 

∆𝑇𝑡−1
𝑖−1 Travel time change value of first upstream segment at 

time step t-1 (15 minutes before) 

Float 

∆𝑇𝑡−1
𝑖−2 Travel time change value of second upstream segment 

at time step t-1 (15 minutes before) 

Float 

𝑇𝑡−1
𝑖+1 Travel time of first downstream segment at time step t-

1 (15 minutes before) 

Float 

𝑇𝑡−1
𝑖+2 Travel time of second downstream segment at time step 

t-1 (15 minutes before) 

Float 

∆𝑇𝑡−1
𝑖+1 Travel time change value of first downstream segment 

at time step t-1 (15 minutes before) 

Float 

∆𝑇𝑡−1
𝑖+2 Travel time change value of second downstream 

segment at time step t-1 (15 minutes before) 

Float 

𝑇𝑡 Travel time at time step t Float 
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6.3. Parameter Tuning Process 

In the XGBoost model, there are many parameters that should be considered. There 

are three types of parameters: general parameters, booster parameters and task parameters. 

General parameters are related to which booster is being used to do boosting, 

commonly in the tree or linear models. In detail, the general parameters include: 

• Booster: Select the type of model to run at each iteration. It has 2 options: tree-

based models and linear models. The default value of booster is ‘gbtree’. 

• Silent: Silent controls whether to print message. If the value is set to 1, no 

running messages will be printed. The default value of silent is 0. It is generally 

good to keep it as 0 since the messages might help in understanding the model. 

• Nthread: This parameter is used for controlling the parallel processing and the 

number of cores in the system that would be used. The default value is the 

maximum number of threads available on the computer. The algorithm will 

detect it automatically. 

Booster parameters depend on which booster one has chosen. For the tree booster 

in this study, the parameters include: 

• Learning rate: Learning rate is the rate at which the model learns patterns in 

data. After every round, it shrinks the feature weights to reach the best optimum. 

Lower learning rate leads to slower computation. The default value is 0.3. 

• Gamma: Gamma controls regularization (or prevents overfitting). The optimal 

value of gamma depends on the data set and other parameter values. The larger 

the gamma is, the more conservative the algorithm will be. The value of Gamma 

usually is 0. The default value is 0. 
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• Max_depth: Maximum depth controls the depth of the tree. The larger the 

depth, the more complex the model, and the higher chance of overfitting. There 

is no standard value for max_depth. Larger dataset requires deeper tree to learn 

the rules from data. The value of Max_depth usually ranges from 3 to 10. The 

default value is 6. 

• Min_child_weight: Minimum child weight refers to the minimum number of 

instances required in a child node. It blocks the potential feature interactions to 

prevent overfitting. The default value is 1. 

• Subsample: Percentage of samples used per tree. This parameter will also help 

to prevent overfitting. The value of subsample usually ranges from 0.5 to 1. The 

default value is 1. 

• Colsample_bytree: Percentage of features used per tree. A high value can lead 

to overfitting. The value of colsample_bytree usually ranges from 0.5 to 1. The 

default value is 1. 

• Lambda: This parameter can help to handle the regularization part of the 

XGBoost model. Usually, the value of Lambda is 1 and the default value is 1. 

• Alpha: This parameter can also help to handle the regularization part of the 

XGBoost model. The value of Alpha usually is 0 and the default value is 0. 

• N_estimators: This parameter refers to the number of trees one wants to build 

in the model. The number is up to the complexity of the model. 

Task parameters depend on the learning scenario. For example, regression tasks 

may use different parameters with ranking tasks. The task parameters include: 
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• Objective: This parameter defines the task of learning (the loss function to be 

minimized). The mostly used values are ‘reg:linear’, ‘binary:logistic’,  

‘multi:softmax’ and ‘multi:softprob’. The default value is ‘reg:linear’. 

In order to optimize the modelling result, it is necessary to explore the effect of 

different combinations of parameters on the model performance. Based on previous studies 

(Zhang and Haghani, 2015; Dong et al. 2018), the parameters that could be optimized 

include, but are not limited to: N_estimators (number of trees), learning rate, and 

Max_depth (maximum depth of the tree). Therefore, these parameters are considered to be 

optimized in this study. 

There are several optimization methods considered in previous studies and the grid 

search method is the most widely used one. Therefore, the grid search method is selected 

as the optimization method with the consideration of time-efficiency. In this study, 80% of 

the traffic data is used as training data and 20% of the data is used as the testing data. The 

XGBoost model is fitted with various number of trees (N_estimators ranges from 1 to 500), 

maximum depth (Max_depth ranges from 5 to 10) and learning rates (Learning_rate ranges 

from 0.1 to 0.5). The number of stopping rounds is set as 50, which means stopping 

iteration after 50 rounds when there is no performance improvement. 

Figure 6.1 to Figure 6.6 below show the effects of different selected variables on 

the prediction results. Table 6.3 below presents the detailed prediction results including the 

prediction results at each step, computation time, and optimized results. The mean absolute 

error (MAE) is used to evaluate the performance of the model.  

The equation of the MAE is provided below: 

𝑀𝐴𝐸 =
1

𝑚
∑|𝑦𝑖 − 𝑦�̂�|

𝑚

𝑖=1
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where,  

 

𝑚 = The total number of the data. 

𝑦𝑖 = The actual travel time value in the test dataset of record 𝑖. 

𝑦�̂�= The predicted travel time value in the test dataset of record 𝑖. 

 

 

FIGURE 6.1: XGBoost travel time prediction model outputs with the Max_depth 

=5  

 

0

5

10

15

20

25

30

35

1 3 5 1 0 2 0 5 0 1 0 0 5 0 0

M
A

E

NUMBER OF TREES

MAX_DEPTH=5

learning rate = 0.1 learning rate = 0.2 learning rate = 0.3

learning rate = 0.4 learning rate = 0.5



91 

 

 

FIGURE 6.2: XGBoost travel time prediction model outputs with the 

Max_depth=6  

 

 

FIGURE 6.3: XGBoost travel time prediction model outputs with the 

Max_depth=7  
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FIGURE 6.4: XGBoost travel time prediction model outputs with the 

Max_depth=8  

 

FIGURE 6.5: XGBoost travel time prediction model outputs with the 

Max_depth=9  
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FIGURE 6.6: XGBoost travel time prediction model outputs with the 

Max_depth=10  
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becomes nearly the same. However, the data in Table 6.3 indicate that the results can still 
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performance improvement after 50 iterations. Therefore, the value ‘NA’ in Table 6.3 means 

that the computation already stopped before the number of trees reached those values.  

It could be seen that the parameter max_depth does not influence the prediction 

results significantly since the trends of the errors are nearly the same. However, the data in 

Table 6.3 shows that as the max_depth increases, the MAE decreases a little bit (the 

optimized MAEs of  max_depth from 5 to 10 are 2.02, 1.98, 1.95, 1.93, 1.91, 1.90, 

respectively). The data in Table 6.4 shows that as the max_depth increases, the average 

computation time of the model also decreases a lot, which means the larger value of 

max_depth can not only increase the accuracy of the model a little bit but also increase the 

efficiency. 

TABLE 6.3: MAEs of different learning rates, number of trees and Max_depth 

Learning 

rate 
MAE 

Max_depth=5 

 Number of trees 
 1 3 5 10 20 50 100 500 

0.1 31.6232 25.6101 20.7441 12.3545 4.86309 2.1066 2.08573 2.01681 

0.2 28.105 17.9992 11.6453 4.43742 2.16435 2.11039 2.08105 2.03219 

0.3 24.5887 12.1685 6.37425 2.36127 2.14303 2.11073 2.09237 2.05376 

0.4 21.0772 7.91567 3.5855 2.19242 2.1688 2.13987 2.11298 NA 

0.5 17.5817 5.01915 2.47101 2.22655 2.20399 2.16189 2.13814 NA 

Max_depth=6 

 Number of trees 
 1 3 5 10 20 50 100 500 

0.1 31.6239 25.6113 20.7459 12.352 4.84463 2.05099 2.03103 1.97875 

0.2 28.1064 17.9985 11.6379 4.42059 2.09807 2.05496 2.02066 1.98881 

0.3 24.5905 12.1655 6.35543 2.32393 2.09369 2.06605 2.04824 2.02001 

0.4 21.0791 7.9191 3.55346 2.12642 2.11301 2.08441 2.06326 NA 

0.5 17.5816 5.01106 2.4425 2.16502 2.14012 2.11357 2.11321 NA 

Max_depth=7 
 Number of trees 
 1 3 5 10 20 50 100 500 

0.1 31.6246 25.6126 20.7487 12.3503 4.83108 2.01236 1.9901 1.95178 

0.2 28.1076 18.0042 11.6389 4.40351 2.0696 2.01503 1.997 1.97402 
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Learning 

rate 
MAE 

0.3 24.5923 12.1681 6.33938 2.29773 2.05536 2.02392 2.01867 2.00145 

0.4 21.0818 7.90891 3.52957 2.07265 2.06057 2.04777 2.0422 NA 

0.5 17.5864 4.99475 2.39171 2.08885 2.07452 2.07155 2.06401 NA 

Max_depth=8 

 Number of trees 
 1 3 5 10 20 50 100 500 

0.1 31.6262 25.6164 20.7538 12.3515 4.82079 1.98521 1.96533 1.92991 

0.2 28.1107 18.0094 11.6371 4.38646 2.04197 1.984 1.968 1.94855 

0.3 24.5969 12.1703 6.33313 2.28103 2.01744 1.99892 1.99763 NA 

0.4 21.0879 7.90641 3.51711 2.04708 2.02954 2.01933 2.0176 NA 

0.5 17.5936 4.9815 2.36822 2.07031 2.05874 2.06077 NA NA 

Max_depth=9 

 Number of trees 
 1 3 5 10 20 50 100 500 

0.1 31.6291 25.6203 20.7573 12.3507 4.80693 1.96347 1.94109 1.91498 

0.2 28.1168 18.0162 11.6391 4.3746 2.01152 1.95592 1.94509 1.93497 

0.3 24.606 12.1708 6.32246 2.25596 1.99238 1.97705 1.97125 NA 

0.4 21.0991 7.90241 3.51192 2.02939 2.01599 2.01326 NA NA 

0.5 17.6059 4.97653 2.35518 2.0485 2.03841 2.05002 NA NA 

Max_depth=10 

 Number of trees 
 1 3 5 10 20 50 100 500 

0.1 31.6307 25.6248 20.7631 12.352 4.80107 1.94157 1.91908 1.89544 

0.2 28.1198 18.0198 11.6369 4.37085 2.00348 1.94777 1.94338 NA 

0.3 24.6101 12.1721 6.31815 2.24795 1.98632 1.97365 1.97672 NA 

0.4 21.1044 7.89797 3.50731 2.02597 2.01108 2.01454 NA NA 

0.5 17.6118 4.96814 2.3521 2.03704 2.04147 2.05903 NA NA 
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TABLE 6.4: Optimized prediction results and computation times 

Learning rate 
Optimized 

Result (MAE) 

Number of 

Iterations 

Computation 

Time 

Max_depth =5 

0.1 2.01681 500 25 mins 

0.2 2.03219 500 25 mins 

0.3 2.05376 500 25 mins 

0.4 2.079 481 23 mins 

0.5 2.11782 217 9 mins 

Max_depth =6 

0.1 1.97875 500 25 mins 

0.2 1.98881 500 25 mins 

0.3 2.02001 500 25 mins 

0.4 2.05099 405 20 mins 

0.5 2.10818 107 5 mins 

Max_depth =7 

0.1 1.95178 500 25 mins 

0.2 1.97402 500 25 mins 

0.3 2.00145 500 25 mins 

0.4 2.03456 231 12 mins 

0.5 2.06401 81 4 mins 

Max_depth =8 

0.1 1.92991 500 25 mins 

0.2 1.94855 500 25 mins 

0.3 1.99435 281 17 mins 

0.4 2.0176 98 6 mins 

0.5 2.05619 73 4 mins 

Max_depth =9 

0.1 1.91498 500 25 mins 

0.2 1.93497 500 25 mins 

0.3 1.96895 167 8 mins 

0.4 2.01224 80 4 mins 

0.5 2.03841 70 4 mins 

Max_depth =10 

0.1 1.89544 500 25 mins 

0.2 1.93876 352 18 mins 

0.3 1.97233 156 8 mins 

0.4 2.00963 74 4 mins 

0.8 2.03704 60 4 mins 

 

According to the experimental results, it can be concluded that:  

The accuracy level of slower learning rate with a larger number of trees in the model 

is higher than that of a faster learning rate with a smaller number of trees. The number of 
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trees needed to get optimized result for the model with faster learning rate is also lower 

than those with slower learning rates.  

There is also a need to consider the tradeoff between prediction accuracy and 

computational time. Since a large number of trees is being fitted, model complexity also 

increases and requires more computational time. Therefore, the selection of the parameters 

such as max_depth and number of stopping round is important in the real world. 

In addition, the maximum depth of the tree also affects the optimized selection. 

When the learning rates and number of trees are the same, a higher maximum depth of the 

tree leads to the lower error rates. A higher max_depth is also more efficient than a lower 

value since the number of iterations needed to achieve optimized results is lower. In general, 

a higher max_depth value means a more complex tree model and requires fewer trees to be 

fitted with a given learning rate. 

6.4. Summary 

This chapter describes the validation process of the XGBoost-based travel time 

prediction model. The detailed information about the input features is presented. The 

parameters of the XGBoost model are also introduced. In order to achieve a better model 

performance, the parameter tuning process is discussed. The experimental results could 

give a clear picture of how the analyzed parameters impact the prediction performance.
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CHAPTER 7: PREDICTION RESULTS ANALYSIS 

7.1. Introduction 

This chapter presents the evaluation of the proposed XGBoost model based on the 

results described in Chapter 6. Section 7.2 presents the analysis of the optimized prediction 

results from XGBoost model. Section 7.3 presents the performance comparison between 

the XGBoost model and gradient boosting model. Finally, section 7.4 concludes this 

chapter with a summary. 

7.2. Modelling Results Analysis 

In machine learning area, the predictor variables, which are the features mentioned 

in Chapter 6, usually have significant impacts on the prediction results. Exploring the 

influence on the individual feature can help understand the data better. Higher relative 

importance indicates a stronger influence in predicting travel time. 

Table 7.1 presents the relative importance of each feature in the optimized XGBoost 

model. Each predictor variable has a different impact on the predicted travel time. Based 

on the importance rank of each variable, it can be found that the variable 𝑇𝑡−1, which is the 

travel time at time step t-1 (15 minutes before), contributes the most to the predicted travel 

time. This result is expected and consistent with a previous study (Zhang and Haghani, 

2015), which demonstrates that the immediate previous traffic condition will influence the 

traffic condition in the future. Therefore, this feature 𝑇𝑡−1 is the most important and highly 

correlated with the prediction value.  

The results in Table 7.1 show that time of day is the second ranked variable with 

the relative importance value of 34.85%, and this result is also expected. As mentioned in 
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Chapter 4, the travel time variability is also highly correlated with the time of day. The 

travel time usually increases a lot during peak hours and becomes stable during non-peak 

hours.  

The third ranked variable is the segment ID with the relative importance value of 

12.65%. The potential reason behind this ranking could be that the segment ID indicates 

which segment it is. The segment ID contains a lot of potential information such as the 

geographic location of the segment. Based on the travel time variability analysis results in 

Chapter 4, different segment locations contribute to different travel time variability 

characteristics. Therefore, the segment ID is also a necessary and important feature in the 

model. 

Day of week is the 4th ranked variable in the model; the relative importance value 

of day of week is 3.76%. The variable day of week is also important in the model since the 

travel time is highly correlated with which day of the week it is. Based on previous studies, 

the traffic congestion on weekends is less frequent than on weekdays (Chen et al., 2017, 

Chen et al., 2018). The travel time during peak hours on Friday is usually higher than those 

on other weekdays (Wang et al., 2017). Therefore, the variable day of week is important in 

the model; this result is consistent with a previous study (Zhang and Haghani, 2015). 

Weather is also considered in the model with a relative importance value of 1.72%. 

Based on the results mentioned in Chapter 4, inclement weather conditions may have a 

drastic impact on travel time variability. Therefore, the weather information is also useful 

in travel time prediction as adverse weather usually increases travel time. This finding is 

consistent with previous studies (Koesdwiady et al., 2016; Qiao et al., 2016). 
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The travel time at time step t-1 (15 minutes before) is not the only variable with the 

consideration of temporal correlation. Several variables such as the travel time of the two 

steps and three steps ahead (with the relative importance value of 0.40% and 0.33%, 

respectively) and the travel time change value of the three time step ahead (with the relative 

importance value of 0.24%, 0.47% and 0.27%, respectively) are considered in the model. 

These variables are also used in the model of previous studies which had used gradient 

boosting models to predict freeway travel time (Zhang and Haghani, 2015; Cheng et al., 

2018). The time change variables are considered in this study because they could indicate 

the travel time change trends of the segments. However, the influences of these variables 

are relatively small. The outcome is similar to the outcome of a previous study (Cheng et 

al., 2018). 

With the consideration of spatial impact, several variables such as the travel time 

of the two upstream segments (with the relative importance value of 0.29% and 0.40%, 

respectively) and the travel time of the two downstream segments (with the relative 

importance value of 0.26% and 0.60%, respectively) one time-step ahead are considered in 

the model. With respect to the travel time change value, the relative importance values of 

the two upstream segments are both 0.28%, and the relative importance values of the two 

upstream segments are 0.36% and 0.69%, respectively. Based on these results, it could be 

found that the relative importance values of the downstream segments are higher than those 

of upstream segments. It could be explained by the spatial characteristics of the roadway. 

If a bottleneck occurs at the downstream segment, the upstream segment will be influenced 

shortly. 
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TABLE 7.1: Relative importance of each variable and their ranks in the model 

Variable Relative Importance (%) Rank 

ID 12.65 3 

L 0.24 19 

TOD 34.85 2 

DOW 3.76 4 

Month  2.10 5 

Weather 1.72 6 

𝑇𝑡−1 38.87 1 

𝑇𝑡−2 0.40 10 

𝑇𝑡−3 0.33 13 

∆𝑇𝑡−1 0.24 19 

∆𝑇𝑡−2 0.47 9 

∆𝑇𝑡−3 0.27 17 

𝑇𝑡−1
𝑖−1 0.29 14 

𝑇𝑡−1
𝑖−2 0.40 10 

∆𝑇𝑡−1
𝑖−1 0.28 15 

∆𝑇𝑡−1
𝑖−2 0.28 15 

𝑇𝑡−1
𝑖+1 0.26 18 

𝑇𝑡−1
𝑖+2 0.60 8 

∆𝑇𝑡−1
𝑖+1 0.36 12 

∆𝑇𝑡−1
𝑖+2 0.69 7 

 

 

7.3. Model Comparison 

In order to examine the accuracy and effectiveness of the XGBoost model, this 

section comprehensively evaluates the modeling results of the XGBoost model and 

compares the results with those of the gradient boosting model. The prediction result of the 

gradient boosting model is also optimized using a grid search method. For clarity, the mean 
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absolute percentage error (MAPE) is used to evaluate and compare the performance of the 

two models.  

The equation of the MAPE is provided below: 

𝑀𝐴𝑃𝐸 =
100%

𝑚
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖
|

𝑚

𝑖=1

 

where, 

𝑚 = The total number of the data. 

𝑦𝑖 = The actual travel time value in the test dataset of record 𝑖. 

𝑦�̂�= The predicted travel time value in the test dataset of record 𝑖. 

 Table 7.2 below presents the comparison between prediction results of the 

optimized XGBoost model and gradient boosting model. Based on the comparison, it could 

be concluded that the XGBoost model outperforms the gradient boosting model with both 

the consideration of accuracy and efficiency. The potential reason behind this could be as 

follows: 

In general, the XGBoost model is a more regularized form of the gradient boosting 

model. XGBoost uses advanced regularization terms, which improve model generalization 

capabilities. Therefore, the prediction results of the XGBoost model is more accurate than 

those of the gradient boosting model. At the same time, the computation time of the 

XGBoost model (25 mins) is much faster than that of the gradient boosting model (2 hours). 

One important reason behind the better performance of the XGBoost model could be the 

parallel processing function. The gradient boosting model is extremely difficult to 

parallelize since it has sequential characteristics. In comparison, XGBoost can allow us to 

do the boosting work using distributed processing engines. 
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Another key reason is the XGBoost model implements the early stopping function, 

which means that one can stop model assessment when additional trees (see Chapter 6) 

offer no improvement to the prediction results. This function can help us not only prevent 

overfitting problem, but also improve the efficiency of the model significantly. 

TABLE 7.2: Performance comparison between XGBoost model and gradient boosting 

model 

Number of trees MAPE XGBoost (%) MAPE Gradient Boosting (%) 

3 14.64 35.10 

10 5.22 24.33 

20 5.22 16.78 

50 4.87 13.56 

100 4.82 11.11 

200 4.74 9.38 

500 4.72 5.67 

Average computation time 11.8 mins Over one hour 

 

7.4. Summary 

This chapter presents the numerical results of the developed XGBoost model. The 

relative importance of each variable in the model is presented and interpreted. In order to 

examine the accuracy and effectiveness of the proposed model, this chapter also evaluates 

the optimized modeling results of the proposed XGBoost travel time prediction model and 

compares them with those of the gradient boosting model. The results demonstrate that the 

developed XGBoost travel time prediction model significantly improves the computation 

accuracy and efficiency.
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CHAPTER 8: SUMMARY AND CONCLUSIONS 

8.1. Introduction 

Travel time is an important performance measure for assessing freeway traffic 

conditions and the extent of highway congestion. Anonymous vehicle probe data is a 

reliable source for freeway travel time analysis since it greatly improves both data coverage 

and data fidelity. The travel time variability is highly complex as it is affected by a wide 

variety of factors. A better understanding of travel time variability patterns can greatly help 

the decision makers plan, design, operate, and manage a more efficient highway system. 

In recent years, with the development of machine learning technologies, various 

novel algorithms have been developed (Jordan and Mitchell, 2015). One of the 

representative technologies is the XGBoost model. In recent years, the XGBoost model has 

gained popularity by winning many data science competitions (e.g., Kaggle competition). 

Therefore, the XGBoost model has the potential to be applied in transportation-related data 

analysis fields such as traffic flow, travel speed and travel time prediction. 

The primary objective of this research is to develop a methodology for conducting 

travel time variability analysis for the segments under different traffic conditions.  Factors 

including the time of day, day of week, year, and weather condition are considered in this 

study. In addition, the XGBoost model-based travel time prediction is presented in this 

dissertation. The XGBoost prediction model is applied on a real-world freeway corridor so 

that the gaps between theory and practice can be bridged. 

The rest of this chapter is organized as follow: Section 8.2 presents a summary of 

conclusions of the travel time variability analysis; Section 8.3 presents a summary of 

conclusions of the numerical results derived from the proposed XGBoost travel time 
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prediction model; Section 8.4 gives a brief discussion of the limitations of the current 

approaches and provides future research directions. 

8.2. Summary and Conclusions of Travel Time Variability Analysis 

With the analysis of the travel time variability of eight typical segments on the I-77 

southbound corridor in Charlotte, NC, the TTR variability patterns could be identified 

under different conditions. The information gathered out of the travel time variability 

analysis in this study can be concluded as follows. 

In general, the travel time variability patterns of different segments along the 

corridor are different. Different cases including PM peak only, AM peak only, double-peak 

and no peak should be analyzed separately since they demonstrate different results.  

With respect to the DOW, the travel time variability analysis results show that for 

the segments with noticeable peak hour trend, the travel time variability on weekends is 

much lower than that on weekdays. In particular, for the segments under case 1 and 3 (PM 

peak only and double peak, respectively), the travel time variability on Friday is the highest. 

For the segments under case 2 (AM peak only), the travel time variability on Tuesday is 

the highest. For the segments under case 4 (no peak hour), the travel time variability on 

each DOW doesn’t change significantly. 

With respect to weather conditions, the travel time variability analysis results show 

that the PTIs under rain condition have obviously higher values than those under normal 

condition throughout the day. The PTIs under snow/ice/fog condition are also higher than 

the PTIs under normal condition throughout the day with unique variability patterns. 
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8.3. Summary and Conclusions of Travel Time Prediction Results 

Regarding the travel time prediction, it is found that the XGBoost model can 

provide reliable prediction results. The relationships between several important parameters 

in the model (e.g. number of trees, learning rate, and maximum depth of the tree) are 

discussed in this study. In detail, the accuracy level of a slower learning rate with a larger 

number of trees in the model is higher than that of a faster learning rate with a smaller 

number of trees. A higher max_depth value is also more efficient than a lower value since 

the number of iterations needed to achieve optimized results is smaller. 

The relative importance of the features shows that the travel time one step ahead 

(15 minutes before) contributes the most to the predicted travel time. Features such as the 

time of day, day of the week and weather also have higher relative importance values in 

the model than other features. 

The proposed XGBoost-based travel time prediction method has considerable 

advantages over the gradient boosting approach. The performance evaluation result shows 

that the XGBoost-based model can have better outcomes in terms of both prediction 

accuracy and efficiency. 

8.4. Future Work Directions 

The methodology and results for the travel time variability analysis in this study 

can be helpful for the travel time variability modeling related work in the real world. 

However, with the limited amount of data, the impacts of accidents and roadworks on travel 

time variability are not discussed in this study. In the future, the impacts of these variables 

will be studied if the data can be made available. In detail, the impacts of roadway 

geometric changes and traffic volume could be further explored. The impact of detailed 
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weather conditions on each roadway segment is also worth exploring particularly when 

data about more weather stations are available. With respect to different DOW, the 

potential reason behind the highest travel time variability on Tuesday in Case 2 could be 

further studied. Furthermore, the travel time variability analysis will be conducted at a 

network level and relevant characteristics will be examined in detail. 

Typically, the XGBoost-based travel time prediction model can provide reliable 

results with low error rates. However, the impacts of accidents and roadworks on travel 

time prediction are also worth exploring. In the future, how to incorporate these features in 

the model will be studied if the data can be made available.  

Furthermore, the performance of the travel time prediction model is discussed 

under all conditions as a whole. In the future, the performances of the model under different 

traffic conditions (such as both non-congested and congested conditions) can be learned 

and compared.
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APPENDIX A: PTIs OF EACH SEGMENT 

TMC 

Code 
Year Time Period Average PTI Rating 

125N04776 2011 AM Peak 1.06 reliable 
  PM Peak 1.13 reliable 
 2012 AM Peak 1.04 reliable 
  PM Peak 1.40 reliable 
 2013 AM Peak 1.04 reliable 
  PM Peak 1.60 unreliable 
 2014 AM Peak 1.05 reliable 
  PM Peak 1.90 unreliable 
 2015 AM Peak 1.06 reliable 
  PM Peak 2.26 unreliable 

125-04776 2011 AM Peak 1.05 reliable 
  PM Peak 1.06 reliable 
 2012 AM Peak 1.05 reliable 
  PM Peak 1.16 reliable 
 2013 AM Peak 1.05 reliable 
  PM Peak 1.31 reliable 
 2014 AM Peak 1.08 reliable 
  PM Peak 1.60 unreliable 
 2015 AM Peak 1.08 reliable 
  PM Peak 1.92 unreliable 

125N04777 2011 AM Peak 1.07 reliable 
  PM Peak 1.08 reliable 
 2012 AM Peak 1.04 reliable 
  PM Peak 1.23 reliable 
 2013 AM Peak 1.04 reliable 
  PM Peak 1.39 reliable 
 2014 AM Peak 1.05 reliable 
  PM Peak 1.76 unreliable 
 2015 AM Peak 1.06 reliable 
  PM Peak 2.01 unreliable 

125-04777 2011 AM Peak 1.08 reliable 
  PM Peak 1.10 reliable 
 2012 AM Peak 1.05 reliable 
  PM Peak 1.11 reliable 
 2013 AM Peak 1.05 reliable 
  PM Peak 1.22 reliable 
 2014 AM Peak 1.07 reliable 
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TMC 

Code 
Year Time Period Average PTI Rating 

  PM Peak 1.45 reliable 
 2015 AM Peak 1.08 reliable 
  PM Peak 1.52 unreliable 

125N04778 2011 AM Peak 1.09 reliable 
  PM Peak 1.16 reliable 
 2012 AM Peak 1.07 reliable 
  PM Peak 1.16 reliable 
 2013 AM Peak 1.06 reliable 
  PM Peak 1.24 reliable 
 2014 AM Peak 1.08 reliable 
  PM Peak 1.44 reliable 
 2015 AM Peak 1.09 reliable 
  PM Peak 1.58 unreliable 

125-04778 2011 AM Peak 1.09 reliable 
  PM Peak 1.67 unreliable 
 2012 AM Peak 1.07 reliable 
  PM Peak 1.65 unreliable 
 2013 AM Peak 1.06 reliable 
  PM Peak 1.73 unreliable 
 2014 AM Peak 1.09 reliable 
  PM Peak 1.89 unreliable 
 2015 AM Peak 1.10 reliable 
  PM Peak 2.04 unreliable 

125N04779 2011 AM Peak 1.07 reliable 
  PM Peak 1.95 unreliable 
 2012 AM Peak 1.05 reliable 
  PM Peak 1.92 unreliable 
 2013 AM Peak 1.05 reliable 
  PM Peak 2.05 unreliable 
 2014 AM Peak 1.07 reliable 
  PM Peak 2.31 unreliable 
 2015 AM Peak 1.10 reliable 

  PM Peak 2.61 
extremely 

unreliable 

125-04779 2011 AM Peak 1.09 reliable 
  PM Peak 2.00 unreliable 
 2012 AM Peak 1.07 reliable 
  PM Peak 1.98 unreliable 
 2013 AM Peak 1.06 reliable 
  PM Peak 2.08 unreliable 
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TMC 

Code 
Year Time Period Average PTI Rating 

 2014 AM Peak 1.09 reliable 
  PM Peak 2.34 unreliable 
 2015 AM Peak 1.11 reliable 

  PM Peak 2.70 
extremely 

unreliable 

125N04780 2011 AM Peak 1.10 reliable 
  PM Peak 2.45 unreliable 
 2012 AM Peak 1.07 reliable 
  PM Peak 2.43 unreliable 
 2013 AM Peak 1.06 reliable 
  PM Peak 2.49 unreliable 
 2014 AM Peak 1.10 reliable 

  PM Peak 2.69 
extremely 

unreliable 
 2015 AM Peak 1.12 reliable 

  PM Peak 3.19 
extremely 

unreliable 

125-04780 2011 AM Peak 1.10 reliable 
  PM Peak 2.23 unreliable 
 2012 AM Peak 1.08 reliable 
  PM Peak 2.18 unreliable 
 2013 AM Peak 1.08 reliable 
  PM Peak 2.30 unreliable 
 2014 AM Peak 1.11 reliable 

  PM Peak 2.59 
extremely 

unreliable 
 2015 AM Peak 1.13 reliable 

  PM Peak 3.20 
extremely 

unreliable 

125N04781 2011 AM Peak 1.09 reliable 
  PM Peak 2.23 unreliable 
 2012 AM Peak 1.07 reliable 
  PM Peak 2.20 unreliable 
 2013 AM Peak 1.07 reliable 
  PM Peak 2.32 unreliable 
 2014 AM Peak 1.10 reliable 

  PM Peak 2.55 
extremely 

unreliable 
 2015 AM Peak 1.13 reliable 

  PM Peak 3.24 
extremely 

unreliable 
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TMC 

Code 
Year Time Period Average PTI Rating 

125-04781 2011 AM Peak 1.09 reliable 
  PM Peak 1.99 unreliable 
 2012 AM Peak 1.08 reliable 
  PM Peak 2.02 unreliable 
 2013 AM Peak 1.07 reliable 
  PM Peak 2.14 unreliable 
 2014 AM Peak 1.11 reliable 
  PM Peak 2.45 unreliable 
 2015 AM Peak 1.14 reliable 

  PM Peak 3.24 
extremely 

unreliable 

125N04782 2011 AM Peak 1.11 reliable 
  PM Peak 2.09 unreliable 
 2012 AM Peak 1.10 reliable 
  PM Peak 2.18 unreliable 
 2013 AM Peak 1.09 reliable 
  PM Peak 2.32 unreliable 
 2014 AM Peak 1.13 reliable 

  PM Peak 2.53 
extremely 

unreliable 
 2015 AM Peak 1.17 reliable 

  PM Peak 3.27 
extremely 

unreliable 

125-04782 2011 AM Peak 1.14 reliable 
  PM Peak 1.95 unreliable 
 2012 AM Peak 1.15 reliable 
  PM Peak 2.01 unreliable 
 2013 AM Peak 1.14 reliable 
  PM Peak 2.22 unreliable 
 2014 AM Peak 1.20 reliable 
  PM Peak 2.47 unreliable 
 2015 AM Peak 1.31 reliable 

  PM Peak 3.22 
extremely 

unreliable 

125N04783 2011 AM Peak 1.20 reliable 
  PM Peak 2.25 unreliable 
 2012 AM Peak 1.22 reliable 
  PM Peak 2.27 unreliable 
 2013 AM Peak 1.30 reliable 
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TMC 

Code 
Year Time Period Average PTI Rating 

  PM Peak 2.57 
extremely 

unreliable 
 2014 AM Peak 1.39 reliable 

  PM Peak 2.89 
extremely 

unreliable 
 2015 AM Peak 1.62 unreliable 

  PM Peak 3.75 
extremely 

unreliable 

125-04783 2011 AM Peak 1.62 unreliable 

  PM Peak 3.13 
extremely 

unreliable 
 2012 AM Peak 1.63 unreliable 

  PM Peak 3.03 
extremely 

unreliable 
 2013 AM Peak 1.84 unreliable 

  PM Peak 3.43 
extremely 

unreliable 
 2014 AM Peak 1.94 unreliable 

  PM Peak 3.60 
extremely 

unreliable 
 2015 AM Peak 2.23 unreliable 

  PM Peak 4.71 
extremely 

unreliable 

125N04784 2011 AM Peak 1.60 unreliable 

  PM Peak 3.10 
extremely 

unreliable 
 2012 AM Peak 1.75 unreliable 

  PM Peak 3.34 
extremely 

unreliable 
 2013 AM Peak 2.01 unreliable 

  PM Peak 4.04 
extremely 

unreliable 
 2014 AM Peak 2.33 unreliable 

  PM Peak 4.09 
extremely 

unreliable 

 2015 AM Peak 2.77 
extremely 

unreliable 

  PM Peak 5.45 
extremely 

unreliable 

125-04784 2011 AM Peak 1.37 reliable 
  PM Peak 1.55 unreliable 
 2012 AM Peak 1.56 unreliable 



121 

 

TMC 

Code 
Year Time Period Average PTI Rating 

  PM Peak 2.04 unreliable 
 2013 AM Peak 1.86 unreliable 

  PM Peak 2.89 
extremely 

unreliable 
 2014 AM Peak 2.12 unreliable 

  PM Peak 2.88 
extremely 

unreliable 

 2015 AM Peak 2.65 
extremely 

unreliable 

  PM Peak 3.75 
extremely 

unreliable 

125N04785 2011 AM Peak 1.38 reliable 
  PM Peak 1.71 unreliable 
 2012 AM Peak 1.60 unreliable 
  PM Peak 2.08 unreliable 
 2013 AM Peak 1.87 unreliable 

  PM Peak 2.95 
extremely 

unreliable 
 2014 AM Peak 2.11 unreliable 

  PM Peak 2.85 
extremely 

unreliable 

 2015 AM Peak 2.63 
extremely 

unreliable 

  PM Peak 3.61 
extremely 

unreliable 

125-04785 2011 AM Peak 1.29 reliable 
  PM Peak 1.44 reliable 
 2012 AM Peak 1.49 reliable 
  PM Peak 1.66 unreliable 
 2013 AM Peak 1.73 unreliable 
  PM Peak 2.13 unreliable 
 2014 AM Peak 2.00 unreliable 
  PM Peak 2.23 unreliable 
 2015 AM Peak 2.47 unreliable 

  PM Peak 2.79 
extremely 

unreliable 

125N04786 2011 AM Peak 1.19 reliable 
  PM Peak 1.16 reliable 
 2012 AM Peak 1.34 reliable 
  PM Peak 1.21 reliable 
 2013 AM Peak 1.50 reliable 
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TMC 

Code 
Year Time Period Average PTI Rating 

  PM Peak 1.37 reliable 
 2014 AM Peak 1.78 unreliable 
  PM Peak 1.46 reliable 
 2015 AM Peak 2.22 unreliable 
  PM Peak 1.54 unreliable 

125-04786 2011 AM Peak 1.13 reliable 
  PM Peak 1.10 reliable 
 2012 AM Peak 1.22 reliable 
  PM Peak 1.08 reliable 
 2013 AM Peak 1.42 reliable 
  PM Peak 1.09 reliable 
 2014 AM Peak 1.66 unreliable 
  PM Peak 1.14 reliable 
 2015 AM Peak 2.13 unreliable 
  PM Peak 1.12 reliable 

125N04787 2011 AM Peak 1.13 reliable 
  PM Peak 1.09 reliable 
 2012 AM Peak 1.20 reliable 
  PM Peak 1.08 reliable 
 2013 AM Peak 1.35 reliable 
  PM Peak 1.09 reliable 
 2014 AM Peak 1.52 unreliable 
  PM Peak 1.13 reliable 
 2015 AM Peak 1.91 unreliable 
  PM Peak 1.15 reliable 

125-04787 2011 AM Peak 1.61 unreliable 
  PM Peak 1.12 reliable 
 2012 AM Peak 1.66 unreliable 
  PM Peak 1.18 reliable 
 2013 AM Peak 1.77 unreliable 
  PM Peak 1.24 reliable 
 2014 AM Peak 1.93 unreliable 
  PM Peak 1.46 reliable 
 2015 AM Peak 2.20 unreliable 
  PM Peak 1.50 unreliable 

125N04788 2011 AM Peak 1.81 unreliable 
  PM Peak 1.08 reliable 
 2012 AM Peak 1.90 unreliable 
  PM Peak 1.07 reliable 
 2013 AM Peak 2.09 unreliable 
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TMC 

Code 
Year Time Period Average PTI Rating 

  PM Peak 1.11 reliable 
 2014 AM Peak 2.32 unreliable 
  PM Peak 1.26 reliable 

 2015 AM Peak 2.62 
extremely 

unreliable 
  PM Peak 1.25 reliable 

125-04788 2011 AM Peak 1.72 unreliable 
  PM Peak 1.09 reliable 
 2012 AM Peak 1.71 unreliable 
  PM Peak 1.06 reliable 
 2013 AM Peak 2.09 unreliable 
  PM Peak 1.07 reliable 
 2014 AM Peak 2.14 unreliable 
  PM Peak 1.11 reliable 

 2015 AM Peak 2.63 
extremely 

unreliable 
  PM Peak 1.13 reliable 

125N04789 2011 AM Peak 1.41 reliable 
  PM Peak 1.13 reliable 
 2012 AM Peak 1.42 reliable 
  PM Peak 1.10 reliable 
 2013 AM Peak 1.61 unreliable 
  PM Peak 1.10 reliable 
 2014 AM Peak 1.67 unreliable 
  PM Peak 1.12 reliable 
 2015 AM Peak 1.97 unreliable 
  PM Peak 1.11 reliable 

125-04789 2011 AM Peak 1.08 reliable 
  PM Peak 1.06 reliable 
 2012 AM Peak 1.09 reliable 
  PM Peak 1.04 reliable 
 2013 AM Peak 1.19 reliable 
  PM Peak 1.04 reliable 
 2014 AM Peak 1.23 reliable 
  PM Peak 1.05 reliable 
 2015 AM Peak 1.42 reliable 
  PM Peak 1.06 reliable 

125N04790 2011 AM Peak 1.06 reliable 
  PM Peak 1.06 reliable 
 2012 AM Peak 1.05 reliable 
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TMC 

Code 
Year Time Period Average PTI Rating 

  PM Peak 1.04 reliable 
 2013 AM Peak 1.07 reliable 
  PM Peak 1.05 reliable 
 2014 AM Peak 1.15 reliable 
  PM Peak 1.06 reliable 
 2015 AM Peak 1.24 reliable 
  PM Peak 1.06 reliable 

125-04790 2011 AM Peak 1.05 reliable 
  PM Peak 1.05 reliable 
 2012 AM Peak 1.04 reliable 
  PM Peak 1.04 reliable 
 2013 AM Peak 1.04 reliable 
  PM Peak 1.04 reliable 
 2014 AM Peak 1.06 reliable 
  PM Peak 1.05 reliable 
 2015 AM Peak 1.07 reliable 
  PM Peak 1.05 reliable 

125N04791 2011 AM Peak 1.07 reliable 
  PM Peak 1.07 reliable 
 2012 AM Peak 1.06 reliable 
  PM Peak 1.05 reliable 
 2013 AM Peak 1.05 reliable 
  PM Peak 1.05 reliable 
 2014 AM Peak 1.07 reliable 
  PM Peak 1.06 reliable 
 2015 AM Peak 1.07 reliable 
  PM Peak 1.07 reliable 

125-04791 2011 AM Peak 1.23 reliable 
  PM Peak 1.25 reliable 
 2012 AM Peak 1.22 reliable 
  PM Peak 1.24 reliable 
 2013 AM Peak 1.23 reliable 
  PM Peak 1.28 reliable 
 2014 AM Peak 1.16 reliable 
  PM Peak 1.08 reliable 
 2015 AM Peak 1.06 reliable 
  PM Peak 1.07 reliable 
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APPENDIX B: SEGMENT LENGTH INFORMATION 

TMC Code Segment Length (miles) 

125-04791 0.54 

125N04791 0.62 

125-04790 2.25 

125N04790 0.56 

125-04789 1.65 

125N04789 0.98 

125-04788 0.11 

125N04788 0.53 

125-04787 0.49 

125N04787 0.95 

125-04786 0.02 

125N04786 0.80 

125-04785 0.09 

125N04785 0.20 

125-04784 0.04 

125N04784 0.94 

125-04783 0.58 

125N04783 0.22 

125-04782 0.62 

125N04782 0.38 

125-04781 0.74 

125N04781 0.22 

125-04780 0.16 

125N04780 0.26 

125-04779 0.67 

125N04779 0.56 

125-04778 0.57 

125N04778 0.42 

125-04777 0.46 

125N04777 0.82 

125-04776 0.01 

125N04776 1.67 

 


