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ABSTRACT

DAVID GRABOWSKY. A BreadCrumb Network for Assisting with Autonomous
Robot Localization. (Under the direction of DR. JAMES CONRAD)

Localization and communication are critical components for functioning autonomous

robots. The infrastructure required for these operations commonly includes global po-

sitioning system (GPS) and easily recognizable and re-identifiable landmarks. How-

ever, these types of infrastructures are not always readily available. GPS typically

uses a low power signal that can be denied intentionally or is unable to penetrate

certain materials. Unique landmarks can be difficult to find in unstructured envi-

ronments like forests, where many potential landmarks can seem nearly identical.

To solve this, this research has developed a deploy-able electronic way-point system

dubbed ’BreadCrumbs’. BreadCrumbs function as electronic landmarks that can pro-

vide localization and communication capabilities to a robot in environments where

such infrastructure is not present. When deployed by a forward moving agent with a

set destination, the BreadCrumbs also form a series of way-points which reduce the

possible state space an autonomous robot must search through when path planning

in an unknown or un-mapped environment. The BreadCrumbs are self localizing and

have several methods for initial location determination based on the environment they

are placed in. GPS is not required for the BreadCrumbs to function and, once es-

tablished, they can function as landmarks for autonomous robots by providing range

data from radio signal strength with a path loss exponenet determined through a

Deep Determinsitc Policy Gradient algorithm. The algorithm is designed such that a

path loss exponent for each BreadCrumb location is learned during run time.
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CHAPTER 1: Introduction

1.1 Motivation

Autonomous robots are becoming commonplace across a variety of disciplines and

applications. Examples include, search and rescue, cave exploration, and supply

trains. In order to operate precisely, these robots must understand their location

within an environment. To understand their location, they must recognize and re-

observe landmarks which contain enough complexity to describe their location on a

global map and within a robots local reference frame. These landmarks are not al-

ways readily available given the environment an autonomous robot might operate it.

For example, search and rescue autonomous robots may have difficulty recognizing

visual landmarks in densely forested unstructured terrain. Buildings or caves that

are subjects of natural disasters or un-mapped also present similar challenges. Pri-

marily, the natural layout of the environment is not always particularly conductive to

an autonomous robots localization operations. To augment this, wireless signals can

be used for localization. Unfortunately, these applications often take place in envi-

ronments where typically available augmentations, such as, Global Position Systems,

are either unavailable, imprecise, or actively denied. Therefore, deploy-able wireless

localization systems become and attractive option. Radio signal strength indications

are a popular choice for wireless localization systems, but are heavily subject to the

difficult to generalize noise and interference presented by the deployed environment.

In addition, many parts of these operations take place in environments where a global

map is not readily available. In the case of search and rescue in a heavily forested

terrain, this presents the risk of wasting time following incorrect paths in a scenario

where time is a premium. In the end, the autonomous robot has the burden of lo-
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calizing, mapping, and path planing simultaneously in an complex and inhospitable

environment. This is a heavy burden for autonomous robots to overcome.

While there is no be-all solution to this problem, it is desirable to lessen the burden

placed on an autonomous robot as much as possible. We could leverage the assump-

tion that a human is operating ahead of the autonomous robot in order to deploy

wireless landmarks. If these wireless landmarks could provide rough self localization

to the autonomous robot, then this could form an initial trail for the autonomous

robot, eliminating the risk of the robot wasting time exploring its environment or fol-

lowing incorrect paths. In addition these devices could function as unique landmarks,

providing the autonomous robot with much needed localization information.

1.2 Objectives and Scope

This work seeks to aid autonomous robots functioning in environments where: GPS

is not available, landmarks are difficult to identify, and path planning mistakes lead

to unacceptable amounts of wasted time and energy. Environments could include:

large wooded outdoor environments with dense tree line foliage or unmapped indoor

environments where typical landmarks may not be consistent and GPS is unavailable.

Each of these environments is expected to have significant wireless signal interference,

hence this work also seeks to minimize the impact of that error. A primary assumption

made to accomplish this is that a human is present and can establish infrastructure

designed by this work prior to or during the operation of an autonomous robot.

The specific functions we seek to aid are, localization, path planning, and landmark

identification. We do not go into specific details on how the autonomous robot is

accomplishing any of these functions, but rather show how the developed system can

provide a generic tools to aid a variety of algorithm in solving the problems associated

with each of theses.

For localization, the challenge present in stated environments begins with the lack

of GPS. GPS is widely used by autonomous robots for localization in large outdoor
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environments, but is not always reliable or available. Therefore, an autonomous robot

must heavily rely on being able to identify landmarks in its surrounding environment.

This leads into the landmark identification challenges. Unique visual landmarks in

unstructured heavily wooded areas can be difficult to come by, and depending on

the length and direction of travel may never be re-observed again, or worse, may be

incorrectly re-observed. An autonomous robot that utilizes visual landmarks may

build up an extremely large memory footprint where individual landmarks have an

extremely low utilization rate. In disaster scenarios, indoor environments may not

have consistent landmarks. A block of rubble initially observed may shift or break

leading to the loss of landmark that was expected to be re-observed. This work focus

on the how wireless radio-frequency (RF) signals emitted from deploy-able devices

can be used to tackle this problem. We focus on how wireless landmarks can provide

measurements and landmark uniqueness in these environments.

The method by which this localization is accomplished involves the use of wireless

RF ranging technology. This technology is especially susceptible to interference and

noise produced by the environment. Thick concrete walls can dampen a RF signal

while metallic objects can cause unexpected reflections or shifts of the transmission.

As this RF ranging is one of the primary pieces of data provided to the autonomous

robot by this system, part of this work heavily focuses on how the noise which afflicts

these range measurements can be reduced. Specifically, we investigate how a general

system can be deployed using neural networks that has the capability to error correct

RSSI noise based on the specifics of the environment a device is deployed in.

This work also seeks to provide the robot with location of deployed electronic de-

vices. These electronic devices must be able to localize themselves. Hence, another

focus of this work is localization algorithms. Furthermore, we examine the condi-

tions under which initial localization algorithms can be deployed depending on the

availability of data.
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In addition, this work focuses on the problem of path planning. In outdoor envi-

ronments the possible space of paths from a starting point to a destination is often

massive. Placing the burden of determining the correct path on the autonomous robot

when it is not aware of the full details of the environment is difficult. By examining

the two specific environment mentioned above, we focus on how a system can be de-

veloped to alleviate this burden. We also examine the possibility of a forward moving

human agent and how that agent can be used to deploy a network that will narrow

down the size of the path space a robot must search through while still providing

localization and communication capabilities.

1.3 Contribution

The primary contribution of this work is the development and implementation of

the BreadCrumb Network. This is a wireless sensor network designed to be deployed

along un-mapped paths that lack easily identifiable landmarks and GPS signals. The

BreadCrumbs are designed to provide autonomous robots with the assistance needed

to localize and operate within these environments. Multiple factors accomplish this

including: an initial location algorithm that builds a system of constraints based on

range measurements between deployed BreadCrumbs, then collapses those constrains

as additional measurements are taken. The network also provides distance estimations

from RSSI measurements that utilize a novel application of a Deep Deterministic

Policy gradient for determine environmental factors which impact the model used

to estimate distance from RSSI. Finally the network forms a communication chain

allowing the autonomous robot the maintain a connection with other devices over

long distances. By providing these functions, the BreadCrumb network lessons the

burden an autonomous robot would face when operating in a GPS denied unstructured

environment.
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1.4 Overview and Structure

The remained of this dissertation is organized into four chapters. Chapter Two cov-

ers the background theory and relevant works associated with this research. Chapter

Three shows the design of the BreadCrumb system. It will walk through all factors of

how the system functions and its operational capacity. Chapter 4 covers the exper-

imental setup used to determine the feasibility of BreadCrumb system as well as an

analysis of the data gathered. Chapter 5 will go over the conclusion of this research,

as well as potential future avenues of research



CHAPTER 2: Background

2.1 Introduction

The last decade has seen an explosion of interest in autonomous robots. These

robots are capable of operating without direct control from humans. There are three

important factors that enable a robot to be autonomous: perception, decision, and

actuation. Perception constitutes devices that enable a robot to observe its environ-

ment. In other words, perception devices give robots inputs from their environment

which can be used to make decisions. Devices that provide these inputs are wide and

varied. They include video cameras which can provide inputs similar to how humans

observe the environment in the form of RGB streams of images. Perception devices

can also include laser scanners which sweep areas around the robot for planar objects,

or even simple bump sensors that only trigger when the robot is physically pressing

against a surface. As long as the device gives the robot an input from it environ-

ment, it can be considered a perception device. Once the robot gathers inputs from

its environment with perception sensors, it must then make decisions based on those

inputs. The decision factor is the autonomous robot’s ability to make determinations

based on inputs and then generate the commands necessary to execute those determi-

nations. 13 system is typically thought of as the component in an autonomous robot

that is making the decision. Typically, a computation device or embedded system is

the component responsible for making the decisions. The devices utilize tools such as

Kalman Filters for determining the accurate position of landmarks, neural networks

for identifying specific objects from perception inputs, and many more. Finally, there

is the third factor that composes autonomy for robots, actuation. Actuation is how

the robot physically interacts with its environment. This generally takes the form of



7

a motor or pneumatic device that moves the robot or its appendages based on the

decisions made by the robot. Thus when a robot such as the one seen in utilizes these

three factors, it has the potential to become an autonomous robot.

With the increase in interest in autonomous robots, the burden upon each of these

factors has compounded as their capabilities are continually being pushed further and

further. Specifically, we consider the burden upon the perception and decision factor

of autonomous robots. To understand these burdens, we must first examine the scope

of applications certain autonomous robots are being used for. We need also examine

the environments where autonomous robotics are used, like those in Figure 2.1, and

the challenges they can present.

(a) (b)

(c)

Figure 2.1: Difficult environments for autonomous robot operations (a) Forests with
dense and similar foliage [9] (b) Underground cave systems [10] (c) Damaged buildings
with large amounts of debris and rubble [11]

One such application involves the mapping, traversal, and communication within

underground caves and tunnels. The United States Army has had a increased inter-
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est in operations that take place in underground caves/tunnels, especially in scenarios

where robotics may be applied [12]. History has shown a variety of conflicts where un-

derground systems have been used to great effect, some examples include the Vietnam

War and contemporary conflicts such as Afghanistan. These tunnels and cave sys-

tems are fraught with hazards, in fact, there is significant cross-over with the hazards

civilian first responders face. Unstable structural conditions can result in collapses

as individuals move through caves, poor air quality can make exploration efforts dif-

ficult, and un-mapped tunnel layouts can make searching for survivors of accidents a

tedious effort. In adversarial conditions, even the act of rounding an unexplored cave

bend can be extremely dangerous. Hence, agencies such as the Defense Advanced

Research Projects Agency (DARPA), are investing in solving this problem. DARPA

recently launched the Subterranean Challenge (currently on-going) [13] which ”seeks

novel approaches to rapidly map, navigate, and search underground environments

during time-sensitive combat operations or disaster response scenarios.” Articulation

in these scenarios is hard, but the difficulty of perception and decision making should

not be understated. For example, an autonomous robot searching for survivor’s in

a geological cave will face two unique challenges. First, the cave will likely be non-

structured and difficult to map. Of particular difficulty will be identifying unique

landmarks in the cave and being able to re-observe them with confidence. Further

more, once the survivors are located, communication will likely be an issue since Ra-

dio Frequency (RF) signals could have trouble reaching the robot depending on the

depth and composition of the cave, forcing the robot to attempt to retrace its path

out of the cave in order to inform rescuers of the survivors. With the lack of available

perception inputs and challenging time constraints, operating in this environment can

prove quite challenging to autonomous robots.

Disaster relief and rescue operations comprise a third example of operations where

autonomous robots are seeing an increase in use.. After natural disasters occur one
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of the first priorities is search and rescue operations. In events such as earthquakes,

individuals may have become trapped under rubble and require rescue. While hu-

mans will almost certainly be quicker and more nimble then a robot in environments

where rubble and debris make motion difficult, autonomous robots still have some

key advantages. First, they can be purpose built small and flexible so that they can

fit into spaces where humans cant, enabling them to explore blocked off passages and

collapsed buildings. Second, robots are disposable. In early disaster relief, the operat-

ing environment can be unstable and treacherous. Hence, autonomous robots can be

used to build an understanding of the condition of the environment and key search lo-

cations before humans are sent in. What complicates this, is the 21 possibility that in

a disaster scenarios, the existing infrastructure can potentially become disabled. Ra-

dio towers and substations may no longer provide effective communication or power.

The robot is then forced to localize and communicate using only the on-board sen-

sors/devices it has. Identifying landmarks in these environments can be tricky. With

the established infrastructure damaged, landmarks may have to be identified from

items like rubble. Adding to the complexity, the environment may still be in flux,

meaning these landmarks could change over time. GPS could be used to combat this

issue, but depending on the disaster, autonomous robots may be expected to explore

underneath rubble or in buildings that may collapse, thus reducing the usefulness of

GPS. The nature of this environment makes it extremely complex for an autonomous

root to operate it. The robot must overcome challenges to perception and decision

making in an environment that is potentially still in flux. On the topic of rescue

operations, we also examine scenarios where it is beneficial to have a human move

ahead to an injured individual to provide first aid, while an autonomous robot follows

behind the human carrying heavier/bulkier equipment such as a stretcher. In moun-

tainous forest rescue, when the location of an injured individual is known, it is not

always possible to directly reach that individual via helicopter. Teams may have to be
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deployed miles away and must make their way through unknown terrains as quickly

as possible to locate the individual. Bulky and or heavy equipment in these scenar-

ios proves to be a detriment as humans must sacrifice speed and energy carrying it.

Lightly equipped individuals can quickly race ahead to provide first aid while other

follow more slowly behind carrying the heavier equipment. An autonomous robot

robot can be used to replace the individuals carrying the heavy equipment. Even in

non-emergency situations, having a autonomous robot carry heavy equipment while

individuals move ahead of said robot can be very useful. In worse case scenarios where

multiple individuals are injured, an autonomous robot such as in Figure 2.3, could be

used to autonomously transport the injured individuals back to a safe location.

Figure 2.2: Robot rescue vehicle developed by Rheinmetall [1] which can au-
tonomously evacuate casualties over long distances.

This scenario creates a high burden on the robots decision making capabilities.

Since the rescuers are racing to the injured individual, the robot will likely lose visual

sight of the rescuers as they pull ahead. Depending on the foliage and range, the robot

may even lose all forms of communication. Since the environment is not known, the
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robot will be forced to make difficult decisions when it comes to path planning. Adding

to the difficulty is that the best path in an outdoor unstructured environment is not

always clear. A straight line to the injured persons location may be the most direct

route, but could also lead to obstacles that must be backtracked around. While back-

tracing it may become difficult to reobserve previously identified landmarks making

localization difficult. Essentially, the search space of the unknown map is an extremely

daunting challenge for the robot. GPS may be able to aid the robot, but in dense

foliage or poor weather conditions GPS could become unreliable. It seems likely given

this challenge, that while attempting to follow the rescuers, the robot will could lose

localization capabilities, or make poor navigation decisions leading to wasted travel

time. The issue here is again, that there is a lack of existing infrastructure for the

robot to utilize or take advantage of.

These examples all follow a common theme, in that a robots perception and de-

cision factors are challenged by the environment the robot operates in. Identifying

landmarks is critical for an autonomous robot to function. Landmarks play a key roll

in localization and path-planning decisions. Furthermore, the environment discussed

tend to lack infrastructure many autonomous robots perceive as landmarks such as

signage or structured layouts. Existing technology such as GPS which is widely re-

lied on to augment localization and path planning algorithms, proves to either be

unreliable or unavailable in many of these environments. Without these tools, the

burden placed on the robots decisions making capabilities becomes substantial, es-

pecially as it relates to navigation, path planning, and communication. Hence, the

BreadCrumb network has been designed to tackle these challenges. The BreadCrumb

network is composed of electronic landmarks that can be rapidly deployed to provide

robots with infrastructure for localization, path planning, and communication in en-

vironments where such tools are not readily available. The goal being to reduce the

burden of localization and path planning in challenging environments.
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Range signal strength indication is proving to be a popular choice for indoor lo-

calization techniques. Primarily because it is widely available from various device

such as wireless fidelity (WiFi) routers, low-cost Zigbee devices, and more. Since

WiFi routers can already be found setup in many modern buildings and devices like

Zigbees are relatively low cost this makes utilizing RSSI for indoor localization an

attractive option. However, given the multitude of options, it can be come difficult to

determine which device to use. Hence work, such as that conducted by [14], is focused

on comparing and contrasting the benefits and draw backs of various peices of this

technology. In [14] compares the accuracy and power consumption of four different

commonly used devices for indoor RSSI based localization’s: bluetooth low energy

devices (BLE), WiFi devices, Zigbee devices, LoRaWAN.

Bluetooth Low Energy was specifically designed for applications where power was

a premium and data transfer rates were expected to be low. It was introduced by

the Bluetooth Special Interest Group with the aim of reducing power consumption

and the cost of devices utilizing [15] Since then, there has been an increased focus on

how BLE technology can be utilized for indoor localization. [16] distributed 19 BLE

beacons over a roughly 600 meter squared area and demonstrated/analyzed how these

devices in fixed locations could be used to localize a consumer device. A comparison to

WiFi fingerprinting was also provided. The work conducted by [17] was to propose a

framework for indoor position utilizing BLE tags which used RSSI to localize devices.

WiFi devices offer a readily available source of infrastructure for robots to utilize for

indoor localization. [18] provides an analysis of several indoor localization techniques

and shows how a single WiFi access point can be used to support an indoor localization

system. Work conducted by [19] focuses on utilizing GraphSLAM to localize and map

with signal strength from WiFi devices.
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2.2 Localization and Path Planning

Range signal strength indications are the backbone measurement utilized by this,

and many other works. Fundamentally, this is a value that represents the signal

strength of a received transmission from a transmitter. As the signal radiates out

from the transmitter, its power decreases. In fact, this is typically stated as the

signal power being inversely proportional to the distance traveled squared. However,

this only holds true when there are no sources of interference, which is highly unlikely

for any practical uses. As shown in [20] this relationship can quickly breakdown when

sources of interference are present, making RSSI difficult to utilize, especially when

the goal is to estimate distance using RSSI for localization purposes. To utilize RSSI

for localization through distance measurements other models are forms of analysis

are often required. Chapter 3 gives more details on what RSSI is, the environmental

factors that influence it, as well as the models which are used to estimate distance from

the measurements. The remaining subsections of this section detail other works that

have utilized RSSI for localization. It is important to reiterate that the localization

goal of BreadCrumb network is to provide initial locations of the BreadCrumb for

path planning purposes for the autonomous robot. Enhanced localization through

techniques like Kalman Filtering are left as a technique to the device utilizing the

BreadCrumb network. In addition, the BreadCrumb network operates under the

constraint that each BreadCrumb can only communicate with its nearest neighbor,

as defined by the prototype work conducted in [21].

Indoor locations are fraught with obstacles and materials that influence RSSI. These

range from objects like walls to simple pieces of furniture or metallic objects like fill-

ing cabinets. The interference introduced by these objects makes the RSSI distance

relationship extremely difficult to model. As shown in [22], the difficulty in determin-

ing the quality of a signal link between a mobile and static device can prove quite

challenging. To the point where RSSI may seem like an unusable tool, despite its
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seeming rise in popularity. One of the primary reasons for this is the changing nature

of environments where these measurements take are gathered. While the transmitter

and receiver have line of sight of each other in the same room the readings may be

consistent, but as soon as it move to another room the environment factors change

enough that any initial calibration done in the beginning room become untenable.

Hence, work conducted by the authors in [23] where a virtual calibration method

is used to incorporate the interference introduced by objects and walls. They also

present a probabilistic blueprint for the density of sensors needed in order to achieve

a localization accuracy. However, that work, and many others, require the location

of the deployed nodes to be known ahead of time. Work conducted also utilized

a fixed devices for determining an environmental specific propagation model which

is used to more accurately localize a stationary device. While these methods are

impressive, the reliance on known deployment locations makes them limited. Given

that our BreadCrumb network is meant to be deployed on the fly, the location of the

BreadCrumbs will not be known ahead of time.

There has been work done that explores other types of trails which can be created

and followed by robot agents. Russell proposed that a heated trail could be deployed

by a robotic agent which would allow other robotic agents to sense paths previously

taken [24]. Another interesting method proposed by Russel, Thiel, and Mackag-Slim

was to have a robotic agent lay down a trail of volatile chemicals that could be

detected by an odor sensor [25]. However, both of these proposals focus on indoor

environments and would likely not efficiently scale to outdoor environments. Instead

of a physical trail, work conducted by [26] used two UAVs, one of which had a GPS

module. The UAV without the GPS module was able localize itself by communicating

with the GPS equipped UAV. Other works have used fixed landmarks to plot paths

from a start point to and end point such as in [27]. In this work cellular towers were

used as landmarks to assist in localizing and planning the path of a UAV operating
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in a GPS-denied environment.

Another key aspect of this work is the difficulty determining a path from the initial

way-point to the end way-point when many possible paths exists. To clarify, this

challenge presents itself when a robotic agent is aware of its starting location and the

end location, but has no knowledge of the physical layout of the terrain between the

start and end. Work conducted by [28] uses multiple robots to search for a path to

the end way-point by having each robot communicate observed landmarks across a

shared network until a suitable path is found. [2] also uses multiple robots to find a

path to an end destination, however, the author also utilizes small physical beacons

that can store information and pass that information to passing by robots.

Figure 2.3: Multiple robots path optimizing by moving physical beacons [2].

The author uses the robots to manipulate and place the beacons in locations that

optimizes the path between the starting way-point and ending way-point. Both of

these works emphasize creating efficient paths from a start way-point to an end way-

point using multiple robots. These are suitable solutions to problems where efficient

ferrying is required between two locations, but not suitable when a path between
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way-points is needed to quickly be found and only traversed a few times.

2.2.1 Deployable Landmarks

Work has been done utilizing landmarks to localize robotic agents in outdoor en-

vironments. Ross and Hoque [3] propose that Fiducials can be used to augment

GPS such that the measurement of error of the GPS can be reduced while the robot

observes the Fiducials as in Figure 2.4.

Figure 2.4: Robot observing Fiducials to augment GPS [3].

Fiducials were also used by [29] along side visual measurements of an underwater

structure in order to localize an autonomous underwater vehicle. Work conducted

by [30] sought to localize an robot by combining odometry data and utlra-wide band

ranging to a landmark. Instead of Fiducials, [31] utilized magnetic sensors for local-

ization with landmarks. This method has the advantage of functioning where visual

and radio-frequency localization methods are limited. In lieu of artificial landmarks,

[32] used pre-existing satellite imagery to localize an UAV with a downward facing

camera for areas where GPS was unreliable.

Research has also been conducted for creating and deploying a network with the

purposes of communication or localization. The author of [33] developed a prototype

network, part of the inspiration for this work, which could determine the location on
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a line between a transmitter and receiver that was the least distance from an RSSI

tag. LifeNet [34] is an ad-hoc network that can be used in emergency situations. It is

a static network that is required to be deployed in the building to establish communi-

cation between firefighters and a base station. In addition, the Fire Information and

Rescue Equipment project aimed to design and implement a set pf decision support

tools for the assistance of firefighters [35]. They created a network called SmokeNet to

trace the firefighters in a large building. Liu et. al conducted work aimed at solving

a similar problem but suggested the use of an automatic dispenser system to deploy

their network at appropriate locations [36]. A similar method of automatic deploy-

ment is used by Lai et. al for pipeline monitoring called TriopusNet [37]. In addition,

research conducted by [38] sought to extend the range of wireless mesh networks in

situations where an entity needs to move outside of the range of the network. Re-

search by Souryal et al. examined a similar problem where they sought to extend the

range of single-hop communication [39] via relays.

2.3 Radio Wave Propagation

The primary information being provided by the BreadCrumb network to autonomous

robot comes in the form of distance/range estimations gathered from radio signal

strength between a transmitting and receiving device. The radio signal strength de-

cays as it propagates through the environment. In order to understand utilize these

radio wave signals for determining distance, we must understand how they propa-

gate through environment as well as how they are effected by the composition of the

environment.

2.3.1 Free Space Electromagnetic Radiation Propagation

Wireless signals such as radio waves behave in certain ways as they travel through

the environment, this is called radio propagation. A fundamental principle governs

how electromagnetic radiation, including radio waves, function in free space. Free
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space describes an environment where there are no obstacles or sources of interference

between a transmitting and receiving device. The energy of general electromagnetic

radiation follows the inverse-square law in these environments. The inverse-square

law fundamentally describes how the power density of the radiation is proportional

to the inverse of the square of the distance from the transmitter or source. Assuming

that the radiation is uni-formally emitted from a single point. This is given as:

power =
1

distance2
(2.1)

As the the radiation propagates, the power is continuously displaced over an ever

increasing spherical surface area the traveling emission. Hence, the power density of

a radiation after propagating over a set distance can be described as:

Pd =
Pt

4πd2
(2.2)

Where, Pd is the calculated power density per unit area, Pt is the power at the

transmitter, and d is the distance the radiation has propagated from the source. A

visualization of this is given in Figure 2.5.
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Figure 2.5: Visualization of the inverse square law showing the exponential decrease
in intensity I as a multiple of the distance r [4].

This model is the fundamental explanation for how electromagnetic radiation en-

ergy propagates through free space. The Friss Transmission Equation utilizes this

in order to create a model for determining the expected power at a receiving device

radio wave device.

2.3.2 Friss Transmission Equation

In order to properly model the received power between the antenna of a transmitting

and receiving device, it is not enough to only use the utilize the inverse power law.

Instead, in addition to this law, the physical characteristics of the antenna being

used from transmission must be taken into account. Like the power inverse law, the

Friss Transmission Equation makes the assumption of free space, meaning the area

over which the radio wave propagates is void of any sources of interference that may

reflect, refract, or otherwise interfere with the signal. This includes phenomena such

as Earths atmosphere or humidity. The equation is given as:

Pr =
PtGtGrλ

2

(4πd)2
(2.3)
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where Pr is the power at the receiver, Pt is the power at the transmitter, Gt is the

gain at the transmitter, Gr is the gain at the receiver, λ is the wavelength of the

signal, and d is the distance between transmitter and receiver [40]. There are certain

criteria that must be met for the equation to hold. The antennas are assumed to be

in the far field from each other, meaning that the distance is expected to be greater

than the wavelength d >> λ, the antenna are expected to be aligned with identical

polarization, and the wavelength is assumed to be consistent give the bandwidth is

narrow. It is important to note that Friss transmission equation does not incorporate

any system losses that could occur from impedance’s and imperfections in factors like

the antenna construction. To account for this, an extension to the equation known

as the Friss free space propagation model is given:

Pr =
PtGtGrλ

2

(4πd)2L
(2.4)

where the variable L has been added to incorporate these losses to the system.

2.3.3 Environmental Impact on Radio Wave Propagation

In practical environments, there are rarely scenarios where free space actually exists.

Under most circumstances, items like foliage, walls, and furniture will exists between

a transmitter and receiver. These obstacles can have a significant impact on the way

a radio wave signal propagates. In fact, there are many sources which can impact

these signals as they propagate.

Reflection can occur when a radio wave impacts a conductive surface and experi-

ences a change in medium, i.e air to metal. Part of the signal may be transmitted

through the new medium while another part is reflected off of it. This can also oc-

cur when the wave impacts a large surfaces who’s surface area is greater than the

wavelength of the signal.
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In a similar vein, radio waves can also experience refraction, where a gradual change

in something like ions and free electrons, causes the waves to ’bend’ as they travel.

The phenomena is dependent on other factors such as electron density and signal

wavelength, but the basic out come is the same. Essentially, as the wave enters a

medium its course can become adjusted causing it to exit the medium at a different

angle than the one it entered.

There is also diffraction, which is when a radio wave signal can be received even

though the direct line of site between a transmitter and receiver is blocked. The

receiver is considered shadowed by the block object, and depending on the wavelength

of the transmitting signal, it may diffract around the obstacle and still reach the

receiver. This can commonly be seen with buildings that have well-defined sharp

corners and edges.

Scattering occurs when the radio wave has a similar wavelength with an object

to the size of a given object with irregular geometry causing the signal ti ’scatter’

unpredictably. This is especially common occurrence with forest foliage.

All of these various methods of interference, some of which can be seen visualized

in Figure REF, can be grouped into a property called fading.

2.3.4 Fading

Fading is the result of the various phenomena which impact radio signal propa-

gation. The end result is that as the signal propagates from the transmitter to the

receiver, the expected power dissipation of the signal takes on added properties such

that it is no longer solely dependent on distance and the characteristics of the physical

system doing the transmitting and receiving. In the end, these phenomena cause the

transmitting signal to appear to be received at the receiver from multiple paths as

visualized in Figure 2.6.
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Figure 2.6: Visualization of the impact of phenomena such as reflection, diffraction,
and scattering on the propagation of a radio wave signal from a transmitting base
station to a receiver [5].

These signals arriving from multiple paths can become superimposed upon one

another causing construct rive or destructive interference. These interference’s are

subject to how the new signals phase or amplitude is impacted.

Fading itself can be broken down into two broad categories to better describe the

impact on the propagation: Large Scale Fading and Small Scale Fading. Each of

these categories can also be broken down into various sub-categories as illustrated in

Figure 2.7.
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Figure 2.7: Categorical breakdown of the multiple types of fading.[6].

Large scale fading primarily incorporates the loss of signal power resulting from

obstacles in between the transmitting and receiving device as well as the loss resulting

from transmission over long distances. It is broken down into path loss which covers

power loss over unit area per distance and shadowing which covers the loss of power

due to obstructions in the path of the signal.

Small Scale Fading, sometimes refereed to as Rayleigh Fading, covers the impact

on the signal over small distances and duration’s of time. This is especially preva-

lent indoors. Three subcategories of Small Scale Fading include: Fast Fading, Slow

Fading, and Multipath Fading. Fast fading occurs due to the movement of the trans-

mitter or receiver, as well as surface reflection. Linear distortions are caused by this

via high Doppler spread when the bandwidth of the signal is comparable or less than

the Doppler bandwidth. Slow fading occurs primarily when line of sight is obstructed

between the receiver and transmitter. This can be caused by buildings, geographical

obstacles, etc. In this instance we see the impact of low Doppler spread which occurs

when the bandwidth of the signal is greater than the Doppler bandwidth. Finally

there is Multipath Fading, which itself is broken down into Flat and Selective Fad-

ing. Multipath Fading occurs when, as the name implies, a signal from a transmitter
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reaches a receiver from multiple paths. The affect on the signal could result in Flat

Fading, were all received signal frequency components are affected equally and ampli-

tude fluctuates over time. Or the result could be selective fading, where only certain

frequency components of the signal will have been affected.

Hence, it can be seen that in any practical scenario, environmental knowledge is

a must have to properly model radio wave propagation and the impact on received

power. Technically, all of these interference patterns are deterministic, meaning if we

have precise knowledge of our environment then the impact on the signal is predicable.

However, this knowledge can be extremely costly to obtain. Factors such as obstacle

location, material composition, dimensions, temperature, humidity, and ionization

would all need to be known. With absolute knowledge of the environment then with

a method such as ray tracing it may be possible to predict exactly how a radio wave

will interact with the environment. However, the cost of such an endeavour is simply

too high to ever be practical. Thus, to narrow down this burden, we select what the

most prominent source of interference will be, and examine methods for minimizing

the error introduced by that interference. Since our operational range between de-

vices will generally be under 1 kilometer, and our devices are expected to operate

indoors or in areas with dense foliage, we focus our attention on how to overcome

Multipath interference. Previously, the Rayleigh Fading was mentioned. This is an

example of model for describing the impact of multi-path on an environment, show-

ing the necessity for which such interference must be overcome. The Rayleigh fading

model assumes there is no direct line of sight and that there are enough obstacles

in an environment such that signals will be highly scattered to the point where each

signal has an equal probability of reaching the receiver from any angle. Environments

where this could happen include cities, dense forests, or indoor buildings. Under this

assumption, central limit theorem describes that channel response can be defined as

a Gaussian process incorporating the delays associated with the paths, the Rayleigh
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distribution function can be given as :

p(r) =


r
σ2 exp

[
− r2

2σ2

]
for r ≥ 0

0 otherwise
(2.5)

where r is the envelope amplitude or the received signal and 2σ is prediction mean

power of the multi-path signal [41]. The Rician Fading Model extends Rayleigh by

incorporating a dominant line of sight component which is present within the highly

scattering environment. This can be given according to [42] as:

p(r) =


r
σ2 e
−

(r2+A2)
2σ2 I0

(
Ar
σ2

)
for (A ≥ 0, r ≥ 0)

0 for (r < 0)

(2.6)

where A denotes the peak amplitude and I is the modified Bessel function of first kind

zero-order. With that, we are brought back to the problem of properly understanding

radio wave propagation’s and the impacts the environment will have on them. The

questions then becomes, what can be done to analytically minimize the impact of

these factors on our signal measurements.

2.3.5 Models for Overcomming Multi-path interference

In section 2.3.1 we described the fundamental inverse squares law which governs how

electromagnetic radiation power changes over distance. Then section 2.3.2 described

how the received power of a radio wave can be determined by using the previously

stated law, as well as knowledge of the physical properties of the transmitting and

receiving device through the Friss Free Space Propagation Model. However, this

model does not factor in environmental impact such as multi-path interference, which

we have shown has a large impact on signal accuracy. Two models are presented in

order to discuss this.
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2.3.5.1 Okumura Model

The Okumura model focuses on radio propagation in urban environments from

data collected in Tokyo, Japan. The model also has extensions for suburban and

open areas. The model is entirely based on empirical measurements, and does not

have an analytical build up, however, based on empirical performance the model has

proven to be considered on of the simplest and best in terms of accurate path loss

prediction for these urban environments. [42]. The model is described as:

L(db) = LF + Amu(f, d)−G(hte)−G(hre)−GAREA (2.7)

where L is the median value of the propagation path loss, LF is the free space prop-

agation loss, Amu is the median attenuation relative to free space, G(hte) is the base

station antenna gain factor, G(hre) is the mobile antenna gain factor, and GAREA is

the gain due to the environment type, i.e. urban or open space. However, this model

is limited in that it adapts poorly to rural areas were terrain change rapidly occurs,

and is only applicable for frequency ranges between 150MHz to 1920 MHz as it is

based off empirical data, although extrapolations have been done up to 3000 MHz.

2.3.5.2 Log-Distance Path Loss Model

Of particular interest to this work is the Log-Distance Path Loss Model. This

model describes how received signal power decreases logarithmically with distance

both indoors and outdoors [42]. This is expressed through a critical variable n, known

as the path-loss exponent, which is used to parameterize how the power decreases

with distance given the environment a signal propagates through. The model can be

described as:

PL = PL(d0) + 10n log
d

d0
(2.8)
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where PL is the overall path loss in decibals, PL(d0) is the path loss measured between

a transmitter and receiver at reference distance d0, and d is the current distance

between transmitter and receiver. While this does not provide a holistic representation

of the impact on radio wave interference, its generalization has proven effective and

is very popular as it has seen wide use in the literature [43] [44] [45] [46]. It should be

noted that a random zero-mean Gaussian noise variable Xg with standard deviation

ω is typically added to model interference resulting from shadowing. When added the

model is sometimes referred to as the Log-Normal Shadow Model. In other cases such

as fast fading, it is normally appropriate to replace Xg with something that better

models the interference such as Rayleigh or Ricean random variables. However, we

exclude these variables form the formulation for the sole reason that we are interested

in determining d, not the path loss, and these variables only help to model the path

loss.

Even with this generalization, the path-loss exponent is still deeply tied to the

the specific composition of the environment where the transmitter and receiver are

operating. For example, the path-loss exponent for transmitter and receiver on either

side of a large office building will be much different than the path-loss exponent on

either side of a wall inside that building. Determining an accurate estimation of the

path-loss exponent for a given environment is extremely important. Works such as [7]

have shown that through extensive empirical testing, accurate estimations of a path

loss exponent can be determined for specific environments.



28

Figure 2.8: Path-loss exponents n determined through series of empirical data gath-
ering experiments[7]

While this provides useful insights and settings for that specific environment, it

does not broadly generalize. For most deployments, it is required that at minimum

a series of test measurements be taken and used to estimate a path-loss exponent

for the environment of operation. Hence it is critical that the path loss exopnent be

properly determined.



CHAPTER 3: System Theory and Design

In this section, the design of the BreadCrumb will be fully explained and analyzed.

3.1 Log-Distance Path Loss for Distance Estimation

Distance estimation from RSSI is heavily utilized in this work, hence the relation

between the log-distance path loss model and distance estimation need be explained.

The log-distance path loss model typically predicts the power loss between a trans-

mitter and receiver, but the formula can be rearranged to determine the distance

between a transmitter and receiver is the power loss is already known. Assuming a

reference distance d0 of 1 meter is used then equation 2.8 can then be re-written as:

d = 10
PL(d0)−PL

10∗n (3.1)

where d is calculated distance between transmitter and receiver, PL(d0) is the power

loss measured at a reference distance of 1 meter, PL is the power loss measured at

the current distance, and n is the path loss exponent.

3.2 Trilateration

Trilateration in the context of two dimensional wireless localization is the process

by which three devices at known locations measure the range to, and determine the

location of a fourth device at an unknown location. This is illustrated in Figure 3.1

where D1, D2, and D3 have known locations while D4 has an unknown location.
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Figure 3.1: Visualization of true range trilateration [8].

The problem can be expressed as a system of equations:


√

(xD1 − xD4)
2 + (yD1 − yD4)

2√
(xD2 − xD4)

2 + (yD2 − yD4)
2√

(xD3 − xD4)
2 + (yD3 − yD4)

2

−

r1

r2

r3

 =


0

0

0

 (3.2)

where r1, r2, and r3 are the ranges from D1, D2, and D3 to D4. Solving this system of

equations will result in the x and y location of D4 on the Cartesian plane presented

in Figure 3.1.

However, this formulation utilizes true ranging. This assumes that the range mea-

surements are perfect, with zero error introduced. If error were to be introduced to

the ranges r1, r2, and r3. Then a circumstance could arise such as in Figure 3.2 could

arise.
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Figure 3.2: No singular solution for trilateration due to noise [8].

As it is extremely unlikely to have consistent perfect ranging measurments in any

practical sense, the situation in Figure 3.2 should be considered the norm rather than

an exception. Especially considering the previous explanations on fading and sources

of signal interference. With that in mind, the system of equations for trilateration

can be reformed as:
√

(xD1 − xD4)
2 + (yD1 − yD4)

2√
(xD2 − xD4)

2 + (yD2 − yD4)
2√

(xD3 − xD4)
2 + (yD3 − yD4)

2

−

r1

r2

r3

 =


e1

e2

e3

 = E (3.3)

Where e1, e2, and e3 represent the error introduced my sources of noise or interference,

and E is the vector of these errors. Therefore a method for determining the best

possible solution given the data must be utilized. The goal being to determine a
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value for xD4 and yD4 that minimizes E. To accomplished this, Non-Linear Least

Squares is utilized.

3.2.1 Non-Linear Least Squares

Non-linear least squares is used in to minimize the sum of squares in the rror of a

function. In this facse the function can be represented as fi(x, y) where:

fi(x, y) = fi(θ) := di(θ)− ri =

√
(x− xi)2 + (y − yi)2 − ri (3.4)

with i being the ith device with a known location xi, yi. ri is the range measurement

from the ith device to the device at an unknown location. The sum of the squared

error is then defined as:

F (θ) = F (x, y) =
n∑
i=1

fi(x, y)2 (3.5)

where n is the total number of devices with known locations. In order to minimize

F (θ) we need to linearize it. This is first accomplished by the first order partial

derivative with respect to x and y which respectively produces:

∂F (x, y)

∂x
= 2

n∑
i=1

∂fi(x, y)

∂x
= 2

n∑
i=1

∂di(x, y)

∂x
(3.6)

∂F (x, y)

∂y
= 2

n∑
i=1

∂fi(x, y)

∂y
= 2

n∑
i=1

∂di(x, y)

∂y
(3.7)

Next we solve for:

∇F = 2JTf = 0 (3.8)
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With ∇ F as the linearized vector of the partial derivatives, J ,as the Jacobian:

J =


∂f1
∂x

∂f1
∂y

...
...

∂fi
∂x

∂fi
∂y

 (3.9)

where f is the error function:

f(x, y) =



f(x, y)1

f(x, y)2
...

f(x, y)n


(3.10)

Which finally yields:

∇F = 2

 ∑n
i=1

(x−x1)∂fi
∂x∑n

i=1
(y−y1)∂fi

∂x

 (3.11)

With a linearized function, we can utilize Newtons method to solve for ∇F.

3.2.2 Newtons Method

Newtons method provides an iterative process that searches for better approxima-

tions to the roots of a real function f given as:

x1 = x0 −
f(x0)

f ′(x0)
(3.12)

Where x0 is an inital guess for the roots of f , and x1 is an iteration of improved

approximation. By dividing the function f with its derivative a tangent line line of

the function is produced. The root for this is found from the x intercept of the tangent

line. As the tangent x intercept approaches the true x intercept of the function the
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approximate roots become more accurate. By iteratively repeating this process with:

xn+1 = xn −
f (xn)

f ′ (xn)
(3.13)

roots can be determined up to a desired accuracy threshold. However, in the previous

derivation Newtons method has not been defined for vectors. Thus, we must extend

it such that it can handle the vector formed from trilateration. We begin by defining:

xn+1 = xn − [J (xn)]−1 f (xn) (3.14)

with x as our current set of paramters, f(xn) being the function to be minimized,

and J(xn) being the Jacobian of that function. We’ve already defined this, hence to

minimize for two dimensional trilateration we describe our function as:

xn+1 = xn −
[
J (xn)T J (xn)

]−1
J (xn)T f(xn) (3.15)

with n as the iteration number, x the set of parameters, f the error function defined

previously, and J the Jacobian of f

3.2.3 Converting GPS to local

In some scenarios the location of SB and EB may be given in the form of GPS

coordinates, hence they will need to be converted to the BreadCrumbs frame of refer-

ence. To accomplish this an equirectangular projection [47] is used. Since the distance

between BreadCrumbs is on the order of 10s of meters, the distortion introduced by

this projection is negligible for our purposes. The elevation of the BreadCrumbs is

assumed to be nearly equal. The projection is accomplished using the following:

x = r ∗ Long ∗ cos(pi ∗ Lat
180

) ∗ pi

180
(3.16)
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y = r ∗ Lat ∗ pi

180
(3.17)

Where r is the radius of the earth, Long is the longitude, and Lat is the latitude.

3.3 Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradient (DDPG), first introduced by [48], is a reinforce-

ment learning (RL) method that focuses on learning a policy through an endowment

interaction reward paradigm. DDPG overcomes the finite state and action space

of most RL algorithms, allowing for states and actions in the continuous space to

be utilized. Deep Q-learning (DQN) [49] and policy gradients are the two factors

responsible for this. What follows is a brief review of DDPG.

Machine learning has been utilized in various areas such as controls [50], computer

vision [51] and even signal processing [52]. Reinforcement learning is an extension

of this which, at its core, can be determined as a discrete-time Markove Decision

Process (MDP) with tuple M = (S,A, p, r, γ) where S is the state space, A the action

space, p the transition function, r the reward function, and γ the discount factor. A

transition function describes the probability of obtaining a next state, given a current

state and current action: P (st+1|st, at) where t is the current time instance. The

reward function r is defined as the reward achieved at a state-action pair: r(st, at).

The goal is to find the optimal policy which maximizes the total discounted reward:

J = Eri,si∼E,ai∼π [R1] (3.18)

Where π is the policy and Rt is an episodes cumulative discounted reward:

Rt =
i=t∑
T

γi−tr (si, ai) (3.19)
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The expected return after taking an action in a current state following policy π is

given by the Bellman equation. When the target policy is assumed to be deterministic,

as µ, the inner expectation of the equation can be avoided, hence formulated as:

Qµ (st, at) = Ert,st+1∼E [r (st, at) + γQµ (st+1, µ (st+1))] (3.20)

Furthermore, Q-Learning uses function approximates parameterized by θQ which

are optimized by minimizing the loss as shown:

L
(
θQ
)

= Est∼ρβ ,at∼β,rt∼E
[(
Q
(
st, at | θQ

)
− yt

)2]
(3.21)

Where ρβ is the distribution of st given the deterministic policy β, where yt and

the variables the deep Q-Network θQ are as follows:

yt = r (st, at) + γQ
(
st+1, µ (st+1) | θQ

)
(3.22)

However, since the action space is continuous, satisfying the greedy policy µ(s) =

arg max aQ(s, a) requires at to be optimized at every time step which is extremely

impractical in the extreme. Hence, an actor-critic approached based on the DPG

algorithm introduced by [53] is used.

The actor-critic can be divided into the following two features: an actor and a

critic. The actor is given the current state of an environment and uses a policy to

predict an action to take. The critic also receives the state as well as the reward from

the environment from that state. The actors policy is then updated based on the

evaluation from the critic.

The actor µ(s|θµ) details the current policy via deterministically mapping states

to actions. The critic Q(s, a) learns with the Bellman equation is in Q-learning while
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the actor is updated as:

∇θµJ = Est∼ρβ
[
∇aQ

(
s, a | θQ

)∣∣
s=st,a=µ(st)

∇θµµ (s | θµ)s=st ] (3.23)

The training of the algorithm then follows, where the action at = µ(st) + nt is

generated. A reward and next state are received from that action on the environment

and the set is stored in an experience replay buffer (st, at, rt, st + 1). A random

minibatch is selected from the replay buffer based on N which is input to the actor

and critic net. The target net of the actor net then outputs an action µ′(si + 1). The

target of the critic net can then calculate yi based on the mini batch and action. The

loss is minimized as according to:

L =
1

N

∑
i

(
yi −Q

(
si, ai | θQ

))2
(3.24)

Then the actor policy is updated according to the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ
(
s, a | θQ

)∣∣∣∣∣
s=si,a=µ(si)

∇θµµ (s | θµ)

∣∣∣∣∣∣
si

(3.25)

Finally, the target actor and critic network are updated:

θQ
′ ← τθQ + (1− τ)θQ

′

θµ
′ ← τθµ + (1− τ)θµ

′
(3.26)

Incorporating a small constant as τ
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3.4 Physical BreadCrumb

There are two different version types of the BreadCrumb. Each BreadCrumb from

version one is composed of the components listed Table 3.1 and each BreadCrumb

from version two is composed of the components listed in Table 3.2.

Table 3.1: BreadCrumbV1 Components List

Amount Per Crumb Item

1 RaspberryPi Model 2 B+

1 Xbee S2

1 Ceramic GPS with 1575R-A GPS

1 Indicator Panel

1 Solar Rechargeable Battery

1 Modular 3D Printed Case

Figure 3.3: BreadCrumb V1 modular case
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(a) (b)

Figure 3.4: BreadCrumb V1 Assembled a) Top view, b) Side view
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Table 3.2: BreadCrumbV2 Components List

Amount Per Crumb Item

1 RaspberryPi Model 4

1 Xbee S3

1 RaspberryPi Camera V2

1 Indicator Panel

1 Solar Rechargeable Battery

1 Modular 3D Printed Case

1 3-Axis Compass Magnetometer

Figure 3.5: BreadCrumb V2 component parts
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Figure 3.6: BreadCrumb V2 modular case

3.5 Concept of Operations

This section details the concept of operations for this BreadCrumb. It covers how

the network is formed, the operational phases of the BreadCrumb, and the commu-

nication/command protocol the BreadCrumbs use. The basic ConOps follows what

is shown in Figure 3.7.

Figure 3.7: Basic ConOps of BreadCrumbs

The main phases are: power on, pre-deployment, deployment, post-deployment,

passive response. Several of these phases break down into sub-phases which will be
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further described through the next sections.

3.5.1 Power On

3.5.1.1 BreadCrumb Coordinator

The BreadCrumbs communicate using Xbee radios. These Xbee radios follow the

Zigbee protocols. The wireless network over which the BreadCrumbs communicate

must be established by a network coordinator. The network coordinator is a unique

BreadCrumb that only exists at the start of the BreadCrumb trail. It is responsible

for determining an appropriate traffic-free channel for the network to operate over,

selecting the ID of the network, and authenticating and distributing network keys

to nodes as they join the network. The network coordinator BreadCrumb must be

the first BreadCrumb powered on in the trail. All other BreadCrumbs simply join

this network once powered on and have no special network formation functions. The

BreadCrumb acting as the network coordinator also can utilize a 2 inch LCD screen

that displays information on the network which can be used for troubleshooting. All

but one Xbees are configured using Zigbee Router API. A particularly important

setting is the broadcast hops. When the Xbee mounted to the robot is broadcasting

range data, steps must be taken to ensure that the range readings which are specific to

each device do on hop along the Xbee chain. The single Xbee used as the coordinator

is configured with the Zigbee Coordinator API.

3.5.1.2 All Other BreadCrumbs

All other BreadCrumbs once powered on join the network established by the coordi-

nator. They then run a series of system checks to ensure proper operational capacity.

Of these system checks the following are critical and will cause a system restart if

failed.

1. No Xbee radio detected

2. No Zigbee network found
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3. Zigbee network found, but could not join network

4. If BreadCrumb V2 and no RaspberryPi camera detected

Other noncritical checks include flashing the display lights so an operator can check

for burnout, and checking that directories for data and measurements have been

properly established. If the proper directories are not established then additional

time is allocated to create data folders. After successfully connecting to the network

and completing the peripheral checks, the green LED indicator will flash three time

to indicate that power on was successful.

The Power On phase of a BreadCrumb should be performed after the previous

BreadCrumb in the trail has entered the deployment phase. In other words, there

should never be a time when two BreadCrumbs are simultaneously in the power on

or pre-deployment phase. The Power On phase of the current BreadCrumb should

take place adjacent to the most recently deployed BreadCrumb to ensure the Zigbee

network is discovered and joined as quickly as possible.

3.5.2 Pre-Deployment

Once a BreadCrumb is powered on and connected to the network, it requests the

deployment number of its nearest neighbors. The deployment number numerically

represents the order the BreadCrumbs were deployed in, with the coordinator having

a deployment number of zero. It then sets its deployment number equal to the highest

deployment number returned plus one. Since the current BreadCrumb was powered

on next to the previous BreadCrumb, the current BreadCrumb should end up with

the highest deployment number of the network at this state. The deployment number

is used as an identifier for the BreadCrumb.

Next, the current BreadCrumb begins to request received signal strength indicator

(RSSI) readings from the previous BreadCrumb at a rate of one Hz. The RSSI reading

is used to indicate an reasonable deployment range for the device. The goal being
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to maximize the range of the BreadCrumb network while maintaining enough signal

integrity for reliable communication.

RSSI readings with a signal strength greater than -50 dB are considered to be too

close to the previous BreadCrumb, and cause the yellow LED to light up. This indi-

cates that the current location is fit for deployment, but not optimal as more distance

could be covered while maintaining signal integrity. RSSI readings between -50 and

-80 dB are considered optimal locations for deployment and cause the green LED to

light up. RSSI readings less than -80 dB are considered to be signal risk distances.

While signal strength for communication may be mainted for further distance, the

risk of losing the signal entirely and forcing the user to back track is deemed to

great to increase the limit . This causes the red LED to light up indicating that

the BreadCrumb should not be deployed here. Once a location has been determined

the current BreadCrumb is put down. Then a switch on the current BreadCrumb is

flipped to in-service, indicating that the BreadCrumb has been deployed. The current

BreadCrumb sends its deployment number to its nearest neighbors, those neighbors

continue to chain the information back to the coordinator. informing them that an-

other BreadCrumb has been deployed. The current BreadCrumb then gathers a series

of 20 RSSI measurements from the previous BreadCrumb. These will be used for fu-

ture localization calculations. If this BreadCrumb is to be the final of the network,

then after the initial switch flip, the switch should be flipped back to the out-of-service

position. This will trigger a broadcast that informs the Coordinator the network is

complete. Note, the coordinator BreadCrumb does not participate in this phase.

3.5.3 Deployment

This phase is broken down into separately for the current BreadCrumb activated

and the coordinator BreadCrumb.
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3.5.3.1 Current BreadCrumb

During the deployment phase, the current BreadCrumb waits to receive a deployed

signal from the next BreadCrumb. Once received, it requests 20 RSSI measurments

from the next BreadCrumb. Once gathered, gathered, the current BreadCrumb will

send the 20 measurements to the previous and next BreadCrumb down the chain

back to the coordinator. The current BreadCrumb then waits and responds to other

BreadCrumb requests until it receives a location update from the coordinator. Once

the current BreadCrumb receives its location, it moves onto the post-deployment

phase.

3.5.3.2 Coordinator BreadCrumb

During the deployment phase, the Coordinator BreadCrumb is responsible for local-

izing the deployed network. Depending on conditions this can be performed a number

of ways. The conditions breakdown in the flowchart below. To further understand

this flow chart, the following scenario is provided. An autonomous supply train is

expected to deliver materials to a staging ground in an un-mapped forest with poor

GPS reliability. The staging ground location has been determined. Human personal

have been dispatched to secure the grounds and deploy the BreadCrumb network.

There is no time constraint with this work. The robot begins operating once the trail

complete flag is raised the robot begins operating.

Next, we will walk through how this process unfolds from the coordinators per-

spective. The starting BreadCrumb (SB) has been deployed at a known location.

The ending BreadCrumb has not yet been deployed but the location where it will be

deployed is known. This is visually represented in Figure 3.9.
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Figure 3.9: Perspective of starting BreadCrumb when location of deployed starting
and undeployed ending BreadCrumb (SB and EB) is known.

Next a BreadCrumb labeled UB1 is powered on, goes through the pre-deployment

phase, and is deployed. It gathers 20 RSSI measurements to SB. Another Bread-

Crumb labeled UB2 is powered on, goes through the pre-deployment phase, and is

deployed. It gathers 20 RSSI measurements to UB1. This also causes UB1 to gather

20 RSSI measurments to UB2. Once UB1 has gathered its measurements it sends the

following information to the coordinator: BreadCrumb Deployment Number, RSSI

measurements to previous BreadCrumb, RSSI measurements to next BreadCrumb.

This begins the flowchart in Figure 3.8. The data received is determined to be Bread-

Crumb data with the affor mentioned information. As UB1 is not the final Bread-

Crumb of the trail the trail complete flag has not be set. Thus, the BreadCrumb

Location Expansion algorithm is run.
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Algorithm 1: BreadCrumb Location Expansion

1: Uniform Circle Point Generation:
2: th = 0 : π

N
: 2 ∗ π

3: xcirc = r ∗ cos th
4: ycirc = r ∗ sin th
5: Expansion:
6: LocList=concate{LocList,zeros(N),ID + 1}
7: for ii=1:length (LocList{ID}):
8: LocList{ID+1}(ii)=LocList{ID}+{xcirc, ycirc}
9: return LocList

In algorithm 1, N is the number of points to generate uniformly around a circle with

radius r as determined using the log-distance path loss model from the RSSI value

sent by UB1. xcirc and ycirc are those points. LocList is the current list of all possible

BreadCrumb locations. It has a number of dimensions equal to the total number of

BreadCrumbs which have been deployed and sent measurement data. Whenever a

new BreadCrumb sends measurment data, an additional dimension is concatened to

the LocList of sizeN . Every element of LocList is a cell array containing a possible x,y

coordinate of a BreadCrumb. Each dimension of LocList corresponds to an individual

BreadCrumb with respect to the location of the previous BreadCrumb denoted by the

layer above the current BreadCrumb. This is determined via the deployment number

of ID that is encoded in the BreadCrumbs data measurement. At this point LocList

will only contain the location of the BreadCrumb coordinator and making the number

of dimensions equal to 1. After the Location Expansion Algorithm is run with the

data from UB1, the size of LocList will expand to 1xN . Where each element of the

second dimension is an theoertical location from UB1 may be located with respect

to the coordinator. The visualization of this process can be seen in Figure 3.10:
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Figure 3.10: n theoretical locations of UB1 along the circumference of the circle
generated by rSB UB1

.

Where each instance of UB1 is a potential x, y location currently stored in the

second dimension of LocList with respects to SB. Once the BreadCrumb at the

end of the trail is deployed a similar process will happen with UB2. LocList will

be expanded to be dimension 1xNxN where each element of the third dimension

corresponds to a potential location of UB2 with respect to its index in the second

dimension, which corresponds to each theoretical instance of UB1. This process is

visualized in Figure 3.14



50

(a) (b)

Figure 3.11: (a) n theoretical locations of UB2 along the circumference of the circle
generated by rUB1 UB2 for each theoretical instance of UB1 (b) n theoretical loca-
tions of UB2 along the circumference of the circle generated by rUB1 UB2 for a single
theoretical instance of UB1

Since this can quickly become unwieldy to visualize, we will continue the explana-

tion using 3.14 which only examines a single instance of UB1. However, the following

will still apply to all instances. At this point, EB is deployed and will broadcast that

information back to SB. This will trigger SB to begin the BreadCrumb Location

Collapse Algorithm detailed below.

Algorithm 2: BreadCrumb Location Collapse

1: candidateList=[]
2: for ii=1:length(LocList{EBID − 1}
3: xy = LocList{ID}(ii)
4: distcalc =

√
(xy(1) + EBx)2 + (xy(2) + EBy)2

5: if abs(distcalc − distmeas) < 1 then
6: canidateList=[candidateList;LocList{1:ID-1}]
7: return candidateList

In Algorithm 2 a series of comparisons are done between the calculated distance

from theoretical values of the each xy location in the deepest dimension of LocList.

This process can be seen in Figure 3.12
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Figure 3.12: rthUB2 EB
calculated based on the location of each theoretical instance of

UB2.

Those calculated distances are then compared to the measured distance from the

end deployed BreadCrumb and the BreadCrumb deployed before it. If the difference

between the measured and calculated distance is less than an arbitrary threshold, one

meter in this case, than that instance of UB2 and its parent instance of UB1 are

considered candidates. For example, if UB2 at LocList1,4,7 meets this criteria, then

both 4th instance of UB1 and the 7th instance of UB2 spawning from the fourth

instance of UB2 will be considered candidates. The process is visualized in Figure

3.13
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Figure 3.13: Candidate locations for UB1 and UB2. The candidates connected by
the path of green lines are closet to the acutal location of the BreadCrumbs.

At this point the possible locations for UB1 and UB2 have been reduced down to

two and three locations respectively. For this example it is enough to allow the robot

to begin path planning and operations. As the robot being to follow its path, we

assume it is running its own localization algorithm and is generating estimates for its

location. As the robot comes into range of UB1 it gets a range measurement to UB1

and sends it to the coordinator SB with the robots current location. The trilateration

and BreadCrumb Location Collapse algorithm are both triggered according to the flow

chart. However, not enough information is available for the trilateration algorithm at

this point, so it simply fizzles. In this iteration of the BreadCrumb Location Collapse

algorithm, EBx and EBy is replaced with rbotx and rboty. Figure 3.14 a) visualizes

this process with the final result being Figure 3.14 b).
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(a) (b)

Figure 3.14: (a) Robot triggering the BreadCrumb Location Collapse algorithm by
providing the coordinate with range measurement from the robot the UB1 (b) Final
resulting locations of UB1 and UB2

Now that all BreadCrumbs have been reduced down to having singular x, y coordi-

nate values, this concludes the example of a deployment when the starting and ending

location are not. However, this raises the question, what if the ending location was

not known. This could be a very common scenario when a broad objective is given,

such as locate an individual in an unexplored cave, where the precise destination is not

known ahead of time. In that instance, only the location of the starting BreadCrumb

SB would be known. This would look similar to Figure 3.16
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Figure 3.15: Theoretical locations of UB1, UB2, and EB determined through Bread-
Crumb Location Expansion algorithm. Note that for visual clarity not all instances
of EB were included.

In this scenario, once the robot was deployed near SB it would begin to get range

measurements to UB1. From the robots perspective it would appear as in Figure
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Figure 3.16: Range measurements from robot and SB to UB1 at unknown location.

There are two options in this scenario. Either SB can use the BreadCrumb Location

Collapse algorithm or from the robots perspective a circle-circle intersection can be

solved such that the two visualized locations of UB1 are determined. Those two

locations can then be fed to the BreadCrumb Location Collapse algorithm. The

circle-circle intersection can be solved with Algorithm 3

Algorithm 3: Circ-Circ Intersection

1: d =
√

(x1 − x2)2 + (y1 − y2)2

2: l =
r21−r22+d2

2d

3: h =
√
r21 − l2

4: x = l
d
(x2 − x1)± h

d
(y2 − y1) + x1

5: y = l
d
(y2 − y1)± h

d
(x2 − x1) + y1

6: return [x,y]

Where x1, y1 and x2, y2, are objects with known locations, r1 and r2 are the ranges

from those locations to an object at an unknown location, and x, y are the pair of
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solutions for where that point might be. Hence, when the robot moves to another

location and gets another range measurement to UB1 the possible locations can

be reduced to a singular either through trilateration or the BreadCrumb Collapse

Algorithm, with the solution appearing as in Figure 3.17

Figure 3.17: Range measurements from robot UB1 reducing possible of locations of
UB1 to a single location.

This brings the deployment phase to an end. At this point, all BreadCrumbs should

be localized, thus transitioning them to the Post-Deployment Phase.

3.5.4 Post-Deployment

During the Post-Deployment phase, all BreadCrumb V2 begin to gather visual lo-

cation measurment/RSSI range measurement pairs. The visual location measurment

is gathered by periodically taking pictures with the raspberrypi camera. The mobile
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robot is equipped with an ArUco tag. This is a popular fiducial marker used for find-

ing correspondences between 2D images and real world environments [54]. Utilizing

OpenCV we are able to quickly and efficiently determine the local translation vector

from the camera to the ArUco tag. When a BreadCrumb observes an ArUco tag it

immediately requests and RSSI measurement from the BreadCrumb on the robot,

termed the mobile BreadCrumb. The values are then saved together and applied to

our Deep Deterministic Policy Gradient algorithm once a certain threshold of visual

location measurment/RSSI range measurements have been gathered. This is done

to learn an appropriate path loss exponent to be applied to the log-distance path

loss model based on the robots location around the BreadCrumb. However, if the

BreadCrumb already has line of site to the robot, this may seems unhelpful. How-

ever, since the BreadCrumbs have already been localized, we can transform the visual

location measurement from the BreadCrumbs local frame to the global frame. Then,

any BreadCrumbs in range of BreadCrumb observing the mobile node can gather an

RSSI measurement to the mobile node, and use the global coordinates of the mobile

node to determine their local distance to said node. Figure 3.18 visualizes this.
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Figure 3.18: BreadCrumb B2 visually observes MN , gathers a visual location mea-
surment, transforms that measurement to the global frame, and sends it to B1 who
can gather an visual location measurment/RSSI measurement pair to the mobile node
without direct line of sight.

Thus, several BreadCrumbs can gather data even when the mobile node is only

visually observed by a single BreadCrumb. This information is fed to the Deep

Determinstic Policy Gradient which is detailed below:

3.5.4.1 Agent

The agent is composed of two parts. The first is the physical or simulated man-

ifestation of the agent which performs actions. The manifestation in this case is

represented by the augmentation made to the path loss exponent when calculating

the range from the RSSI of a transmission made by the Xbee radio. The second part,

in this application, is the neural network which is responsible for learning actions

based on the signal transmissions interactions in the environment. The agent can be

broken down into an actor and critic network as described below:

3.5.4.2 Actor and Critic Network

The actor and critic network are both composed of a series of network layers. In

the case of the actor, the network was structured as seen in Figure 3.19. The critic
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network was constructed as seen in Figure 3.20.

Figure 3.19: Actor network layout
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Figure 3.20: Critic network layout

The actor network layer details can be seen in Table 3.3 while the critic network

layer details can be seen in Table 3.4.
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Table 3.3: Actor Network Layers Details

Layer Name Value

Feature Input 3 input features st

Fully Connected 256 unit

ReLU ReLU

Fully Connected 256 unit

ReLU ReLU

Fully Connected 256 unit

Tanh Hyperbolic Tangent

Scaling Layer Scaling Layer

Regression Output Mean Squared Error
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Table 3.4: Critic Network Layers Details

Layer Name Value

Input1 3 feature observation input

Fully Connected 1 256 unit

Input2 1 feature action input

Fully Connected2 256 unit

Concatenation
Concatenation of Fully Connected1

and Fully Connected2

ReLU ReLU

Fully Connected 256 unit

ReLU ReLU

Fully Connected 1 unit

Regression Ouput Mean Squared Error

The actor network training options can be seen in Table 3.5 and the critic network

training options can be seen in Table 3.6

Table 3.5: Actor Network Options

Name Value

Learn Rate 0.005

Gradient Threshold Method l2norm

L2RegularizationFactor 1.0000e-04

Optimizer Adam
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Table 3.6: Critic Network Options

Name Value

Learn Rate 0.001

Gradient Threshold Method l2norm

L2RegularizationFactor 1.0000e-04

Optimizer Adam

3.5.4.3 The Environment

The environment is the general term for the physical or simulated areas where

the agent operates. In this work, the environment is physically outdoor woodland

locations or indoor office space. Signals are transmitted by Xbee radios, those signals

interact with the various elements of their environment and are received by other

Xbee radios. Each Xbee has a local environment within its signal transmission range

which is what is considered its environment in terms of the reinforcement learning

algorithm.

3.5.4.4 The State

The state is a description of the variables which denote points of interest within

our environment. In this case the state is described by the x and y coordinates of the

autonomous robot on a Cartesian plane as provided by the localization of that robot

and the current RSSI measurement received from the robot to the BreadCrumb at

that location.

s = {xbot, ybot, RSSIbot} (3.27)
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3.5.4.5 Action

This describes the possible actions that will effect the state as the agent operates in

the environment. The possible actions include only changing the pass-loss exponent

within the range of two to four.

a = {PLE} (3.28)

3.5.4.6 Reward

The reward function is dictated by the euclidean distance between the final pre-

dicted range and the actual range as determined by the camera mounted on the

BreadCrumb that observes the robot. The agent is incrementally rewarded as the

predicted and actual range converge, and given an large reward when the difference

is less than 0.05 meters. The reward function can be defined as:

r(s, a) =


−1 |d| > 2

2− d |d| > 0.05 and |d| < 2

10 |d| < 0.05

(3.29)

Where r(s, a) is the reward of the action taken in a given state, and d is the

euclidean distance between the visual location measurment and calculated range with

the PLE selected by the action.

3.5.5 Passive Response

Now that the BreadCrumb knows its current location it only provides two functions.

The first is to respond to requests from other BreadCrumbs or the robot. The details

of these requests can be as follows:

The second is to enable the RSSI reinforcement learning mitigation algorithm.

This algorithm is designed to utilize machine learning to learn the specific RSSI noise
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pattern of the local environment the BreadCrumb has been deployed to. Details on

the specifics of this algorithm can be seen in the next section.

3.5.6 BreadCrumb Communication Commands

The BreadCrumbs can each request or command other BreadCrumbs to perform

certain actions or send information. The autonomous robot utilizing the Bread-

Crumbs also has access to these commands. When a BreadCrumb receives a commu-

nication the first byte of that message will be a command ID. The ID will dictate the

format of the rest of the message as well as what functions are required to be taken.

The commands are summarized as the following, with more details given below the

summary:

Command ID Command Description

1 request deployment number

2 Request hardware ID

3 Send RSSI measurement to device

4 Request RSSI measurement from device

5 Set device as next BreadCrumb

6 Send location to device

7 Set device as previous BreadCrumb

9 Send ready to transmit flag

The general format of each message is seen in Figure 3.21, however, depending on

the specific command message, the format may change.

Figure 3.21: General format of command messages that can be sent to BreadCrumbs
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Command ID 1 instructs the receiving BreadCrumb to send its deployment number

to the BreadCrumb who sent it the command message.

Command ID 2 performs a similar function, except the hardware ID of the Xbee

device attached to the BreadCrumb is sent instead.

Command ID 2 is primarily used for trouble shooting.

Command ID 3 tells the BreadCrumb to send an RSSI measurement to the Bread-

Crumb who sent the command. Command ID 4 stipulates that the BreadCrumb who

received the message request an RSSI measurement from a BreadCrumb specified by

the deployment number attached.

Command ID 5 states that the sender of the message should be set as the Bread-

Crumb that was deployed immediately after the receiving BreadCrumb.

Command ID 6 command the receiving BreadCrumb to transmit its location, if

available, to the sender of the command.

Command ID 7 states that the sender of the message should be set as the Bread-

Crumb that was deployed immediately before the receiving BreadCrumb.

Command ID 9 is used when the BreadCrumb that sent the command requires

critical information from the receiving BreadCrumb, such as location or confidence

scores, but the receiving BreadCrumb does not have this information ready yet. Thus,

when the information is ready, the receiving BreadCrumb will send the transmitting

BreadCrumb a flag to prepare it to receive the critical information transmission.



CHAPTER 4: Experimental Setup and Results

This section details the experimental setup of various elements for analysis.

4.1 Path Loss Exponent Impact

The path loss exponent is the primary adjustable factor in the log-distance path

loss model. In most work, the PLE is considered either pre-determined based on

a reference model, or is empirically determined from experimentation in a known

environment where the device will operate.

A series of tests was conducted to determine the PLEs impact. The test was con-

ducted in an indoor environment cluttered with many sources of multi-path between

a series of four devices receiver and a transmitter are placed in four separate locations

a that are 3.3528m, 3.657m 6.7056m, and 7.497m away respectively. These four loca-

tions are given the color codes teal, lime, purple, pink. Figure 4.1 shows the point of

view from the transmitter to each receiver at a given distance.
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(a) (b)

(c) (d)

Figure 4.1: Point of view of transmitter to receiver located in cluttered indoor area a)
teal receiver 3.3528m away, b) lime receiver 3.657m away, c) purple receiver 6.7056m
away, d) pink receiver 7.497m away

Roughly 200 measurements were taken of the RSSI values measured at each of

the four locations at 1 second intervals. Using the log-distance path loss model, the

distance was calculated using a reference path-loss value -31 Decibels measured at a

distance of 1 meter away. In addition, a path-loss exponent of 2 was used. Once the

distance was calculated, it was compared to the actual distance. The error between

these two can be seen in Figure 4.2
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(a) (b)

(c) (d)

Figure 4.2: a) Distance error for teal receiver with normal distribution fit, b) Dis-
tance error for lime receiver with normal distribution fit, c) Distance error for purple
receiver with normal distribution fit, d) Distance error for pink receiver with normal
distribution fit

Examining these we see there is relatively consistent error measured at each re-

ceiver, and worse it is centered at different locations. This becomes more obvious if

overlap the graphs together as in Figure 4.3
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Figure 4.3: Overlapped errors of receivers from Figure 4.2 with path-loss exponent of
2.0

Next, we change the path-loss exponent to something better reflecting the environ-

ment, such as 2.4, then recalculate this errors in distance. The result is displayed in

Figure 4.4

Now it can be seen that the errors have slightly shifted closer to 0. Proving of

course that the path-loss exponent plays an critical role in the distance estimation
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Figure 4.4: Overlapped errors of receivers with path-loss exponent of 2.4

Now it can be seen that the errors in Figure 4.4 have slightly shifted closer to 0

compared to the errors in Figure 4.3. Proving of course that the path-loss exponent

plays an critical role in the distance estimation.

4.2 Range to AcUro Tag

An Aruco tag is used as the target identifiable object. Utilizing the AcUco OpenCv

library a translation matrix from the AcUro tag to the cameras frame of reference

can be determined. Examples of this can be seen in Figure 4.5.



72

(a) (b)

(c) (d)

Figure 4.5: Examples of identifying ArUco tags and the range resulting from the
translation vector at ranges of: a) 1.0 meter, b) 2.0 meters, c) 3.0 meters, d) 4.0
meters

Next a series of 200 measurements was gathered at distances of 1, 3, 5, and 8 meters.

The error between the known distance and the measured distance was calculated and

is plotted in Figure 4.6.
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(a) (b)

(c) (d)

Figure 4.6: Histograms of the error between the actual range and the range measured
to the ArUco tag at distances of: a) 1m, b) 3m, c) 5m, d) 8m

4.3 Path Loss Exponent Learn-ability

The Deep Deterministic Policy Gradient is expected to learn appropriate PLEs

based on the visual location measurement/RSSI range measurement pairs. To that

end, a simple test was conducted to confirm this is feasible. Two BreadCrumb V2s

were placed on either side of a door according to Figure 4.7.
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Figure 4.7: Visual range measurements taken from BC1 and BC2 in the global frame
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Figure 4.8: Visualization of arUco tag moving through door as measurements are
taken. (Note the annotated dates are not meaningful)
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Roughly two thousand five hundred measurements were taken at various point in

a straight line between BC1 and BC2. The process of moving the tag is visualized

in Figure ??. The RSSI value of a visual location measurement vs the distance from

that visual location measurement is plotted in Figure 4.9. The distribution of the

PLEs selected vs the visual range measurements can be seen in Figure 4.10.

Figure 4.9: Distance to BC1 a visual location measurment was taken vs the RSSI
measurement taken at that location. A linear best fit line was included to show
outliers.
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Figure 4.10: Selected PLE in through door experiment vs visual range measurements.
Visualizes the distribution shift of selected PLEs before and after the range where
the physical door is located. Hence, showing networks ability to learn obstacles’ that
it is not previously aware of.

Using a free space RSSI of -24 dB and path loss exponent of 2.0, which was em-

pirically determined at a range of 1 meter, we can calculate the range from the RSSI

measurements using the log-distance path loss model. After splitting the data 20/80

percent for training and validation respectively, the difference between calculated

distances and visual location measurment distances were determined and plotted in

Figure 4.11.
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Figure 4.11: Error between the calculated distance from RSSI and visual location
measurments with ideal path loss exponent of 2.0. Mean error of 1.2525 meters.

Next, the DDPG was trained with 20 percent of the dataset. The network was fed

the same data as was used to generate Figure 4.11. The resulting PLEs were then

used to calculate the distances from the measured RSSI values. Those calculated

distances were then compared to the visual location measurment gathered distances.

The results can be seen in Figure 4.12.
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Figure 4.12: Error between the calculated distance from RSSI and visual location
measurments with path loss exponents determined with the learned DDPG network.
Mean error of 0.6792 meters.

From this, we can see that the underlying assumption of a Deep Deterministic

Policy Gradient being able to learn a path loss exponent is valid.

4.4 Indoor Data

The indoor data collection was done over a series of three trials. Trials will have

varying numbers of BreadCrumbs at varying locations but will all have the following

information: BreadCrumb RSSI measurements to nearest neighbors, deployed Bread-

Crumb ground truth locations, initial BreadCrumb location as determined by the

BreadCrumb localization algorithm, visual range measurement/RSSI measurements

to a mobile node equipped with a BreadCrumb in the form of a Turtlebot2. This is

visualized in Figure 4.13.



80

Figure 4.13: Turtlebot2 equipped with Mobile BreadCrumb Node to be used for data
collection indoor
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4.4.1 Trial 1: Limited Lab

Four BreadCrumbs V2s were deployed over a limited space in an indoor lab. A

Turtlebot2 equipped with the mobile BreadCrumb was translated linearly for about

9 meters. This is visualized in Figure 4.14. The number of measurements gathered

in the experiment can bee seen in Table 4.1. The initial locations calculated are

visualized in Figure 4.15. The initial location errors are tabulated in Table 4.3. The

mean error of the log-distance path loss model utilizing learned PLEs is tabulated in

Table 4.12.

Figure 4.14: Indoor trial 1 deployed BreadCrumbs and visual location measurements.
Walls included are for graphical purposes only and are not to scale.
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Table 4.1: Indoor trial 1 visual location measurement/RSSI measurement pairs per
BreadCrumb

BreadCrumb ID # measurements pairs

E 73

F 142

Table 4.2: Indoor trial 1 BreadCrumb log-distance path loss error with learned PLEs

BreadCrumb ID Error (meters)

E 0.9654

F 0.6458

Figure 4.15: Indoor trial 1 BreadCrumb initial location results. Mean error: 0.7503.
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Table 4.3: Indoor trial 1 BreadCrumb initial location and errors

BreadCrumb ID [x,y] (meters) Error (meters)

E [1.2154, -0.2546] 0.8954

F [2.8456, 11.1568] 1.0564

4.4.2 Trial 2: Lab

Five BreadCrumbs V2s and one BreadCrumb V1 were deployed over a indoor lab

space. A Turtlebot2 equipped with the mobile BreadCrumb was remotley controlled

and moved around the environment. This is visualized in Figure 4.16. The number of

measurements gathered in the experiment can bee seen in Table 4.4. The distribution

of the visual range measurements and measured RSSI is visualised in Figure 4.17,

4.18, ??, and 4.20. The initial locations calculated are visualized in Figure 4.21. The

initial location errors are tabulated in Table 4.5. The mean error of the log-distance

path loss model utilizing learned PLEs is tabulated in Table 4.15.
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Figure 4.16: Indoor trial 2 deployed BreadCrumbs and visual location measurements.
Walls included are for graphical purposes only and are not to scale.
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Figure 4.17: Indoor trial 2 RSSI vs range from visual measurements BreadCrumb E
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Figure 4.18: Indoor trial 2 RSSI vs range from visual measurements BreadCrumb F

Table 4.4: Indoor trial 2 visual location measurement/RSSI measurement pairs per
BreadCrumb

BreadCrumb ID # measurements pairs

E 231

F 329

G 345

H 277



87

Figure 4.19: Indoor trial 2 RSSI vs range from visual measurements BreadCrumb G
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Figure 4.20: Indoor trial 2 RSSI vs range from visual measurements BreadCrumb H
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Table 4.5: Indoor trial 2 BreadCrumb initial locations and errors

BreadCrumb ID [x,y] (meters) Error (meters)

E [8.1486,-0.4567] 0.5298

F [8.3425,4.1578] 0.3328

G [0.3254,4.2214] 1.1378

H [3.6721,8.9654] 0.3725

Table 4.6: Indoor trial 2 BreadCrumb mean log-distance path loss error with learned
PLEs

BreadCrumb ID Error (meters)

E 0.6543

F 1.3251

G 1.2254

H 1.1378
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Figure 4.21: Indoor trial 2 initial location results. Mean error: 1.0856 meters.

4.4.3 Trial 3: Hallway Exterior

Five BreadCrumbs V2s and one BreadCrumb V1 were deployed over a indoor

hallway. A Turtlebot2 equipped with the mobile BreadCrumb was remotely controlled

and moved around the environment. This is visualized in Figure 4.22. The number of

measurements gathered in the experiment can bee seen in Table 4.7. The distribution

of the visual range measurements and measured RSSI is visualised in Figure 4.23,

4.24, 4.25, and 4.26. The initial locations calculated are visualized in Figure 4.27.

The initial location errors are tabulated in Table 4.8. The mean error of the log-

distance path loss model utilizing learned PLEs is tabulated in Table 4.18.
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Figure 4.22: Indoor trial 3 deployed BreadCrumbs and visual location measurements.
Walls included are for graphical purposes only and are not to scale.
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Figure 4.23: Indoor trial 3 RSSI vs range from visual measurements for BreadCrumb
E

Table 4.7: Indoor trial 3 visual location measurement/RSSI measurement pairs per
BreadCrumb

BreadCrumb ID # measurements pairs

E 575

F 876

G 830

H 571
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Figure 4.24: Indoor trial 3 RSSI vs range from visual measurements for BreadCrumb
F



94

Figure 4.25: Indoor trial 3 RSSI vs range from visual measurements for BreadCrumb
G
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Figure 4.26: Indoor trial 3 RSSI vs range from visual measurements for BreadCrumb
H
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Table 4.8: Indoor trial 3 BreadCrumb initial locations and errors

BreadCrumb [x,y] (meters) Error (meters)
E [1.5263, 46.4501] 8.7884
F [-18.6592, 37.8684] 4.4498
G [-11.8654, 74.4596] 6.3545
H [-48.7168, 69.1564] 5.2172

Table 4.9: Indoor trial 3 BreadCrumb mean log-distance path loss error with learned
PLEs

BreadCrumb Error (meters)
E 4.2641
F 2.4569
G 2.7387
H 1.5735

Figure 4.27: Indoor trial 3 initial location Results. Mean Error: 6.2025 meters.
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4.5 Outdoor Data

The outdoor data was gathered from a wooded forest area with a nearby pond. A

mobile robot was not available, so the mobile BreadCrumb was attached to a PVC

pipe pole, as seen in Figure 4.28, and physically moved around the deployed Bread-

Crumbs while visual location measurement/RSSI range measurements were gathered.

Figure 4.28: Mobile BreadCrumb mounted on PVC pipe to be used for outdoor data
gathering.

4.5.1 Trial 1: Fitness Trail

Five BreadCrumbs V2s and one BreadCrumb V1 were deployed over a outdoor

trail running along a wooded forest area and outdoor pond. A mobile BreadCrumb

mounted on a PVC pipe was translated along this trail. This is visualized in Figure

4.29. A zoomed in view of BreadCrumbs F and H can bee seen in Figure 4.30. The

number of measurements gathered in the experiment can bee seen in Table 4.10.

The distribution of the visual range measurements and measured RSSI is visualised

in Figure 4.31, 4.32, 4.33, and 4.34. The initial locations calculated are visualized in
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Figure 4.35. The initial location errors are tabulated in Table 4.11. After training, the

mean error of the log-distance path loss model utilizing learned PLEs was tabulated

in Table 4.12.

Figure 4.29: Outdoor trial 1 deployed BreadCrumbs and visual location measure-
ments.
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(a) (b)

Figure 4.30: Zoomed in view of BreadCrumb E and F deployed along fitness trail
with visual location measurements. a) BreadCrumb E, b) BreadCrumb F

Figure 4.31: Outdoor trial 1 RSSI vs range from visual measurements for Bread-
Crumbs E
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Figure 4.32: Outdoor trial 1 RSSI vs range from visual measurements for Bread-
Crumbs F
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Figure 4.33: Outdoor trial 1 RSSI vs range from visual measurements for Bread-
Crumbs G
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Figure 4.34: Outdoor trial 1 RSSI vs range from visual measurements for Bread-
Crumbs H

Table 4.10: Outdoor trial 1 visual location measurement/RSSI measurement pairs
per BreadCrumb

BreadCrumb ID # measurements pairs

E 429

F 462

G 480

H 560
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Figure 4.35: Outdoor trial 1 BreadCrumb initial location results. Mean Error:
10.1031 meters.

Table 4.11: Outdoor trial 1 BreadCrumb initial locations and errors

BreadCrumb ID Calculated [Lat,Long] (deg) Error (meters)

E [35.308479N, 80.742984W ] 8.8877

F [35.308321N, 80.744033W] 7.7647

G [35.308218N, 80.745190W] 8.9576

H [35.308923N, 80.745539W] 14.8020

4.5.2 Trial 2: Woods

Five BreadCrumbs V2s and one BreadCrumb V1 were deployed over a outdoor

heavily forested trail. A mobile BreadCrumb mounted on a PVC pipe was translated

along this trail. This is visualized in Figure 4.36. The number of measurements
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Table 4.12: Outdoor trial 1 BreadCrumb mean log-distance path loss error with
learned PLEs

BreadCrumb Error (meters)
E 6.5423
F 12.4583
G 3.1254
H 9.1253

gathered in the experiment can bee seen in Table 4.13. The distribution of the

visual range measurements and measured RSSI is visualised in Figure ??. The initial

locations calculated are visualized in Figure 4.41. The initial location errors are

tabulated in Table 4.14. After training, the mean error of the log-distance path loss

model utilizing learned PLEs was tabulated in Table 4.15.

Figure 4.36: Outdoor trial 2 deployed BreadCrumbs and visual location measure-
ments.
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Figure 4.37: Outdoor trial 2 RSSI vs range from visual measurements for BreadCrumb
E
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Figure 4.38: Outdoor trial 2 RSSI vs range from visual measurements for BreadCrumb
F

Table 4.13: Outdoor trial 2 visual location measurement/RSSI measurement pairs
per BreadCrumb

BreadCrumb ID # measurements pairs

E 231

F 329

G 345

H 277
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Figure 4.39: Outdoor trial 2 RSSI vs range from visual measurements for BreadCrumb
G
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Figure 4.40: Outdoor trial 2 RSSI vs range from visual measurements for BreadCrumb
H
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Figure 4.41: Outdoor trial 2 BreadCrumb initial location results. Mean Error:
10.3341 meters.

Table 4.14: Outdoor trial 2 BreadCrumb initial locations and errors

BreadCrumb ID Calculated [Lat,Long] (deg) Error (meters)

E [35.3074431N, 80.744084W ] 8.3899

F [35.3066794N, 80.743805W] 9.3868

G [35.3063561N, 80.743935W] 11.9523

H [35.3062937N, 80.744478W] 11.6075
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Table 4.15: Outdoor trial 2 BreadCrumb mean log-distance path loss error with
learned PLEs

BreadCrumb ID Error (meters)

E 12.5864

F 20.1462

G 22.1568

H 19.1254

4.5.3 Trial 3: Pond

Five BreadCrumbs V2s and one BreadCrumb V1 were deployed over a trail around

a pond. A mobile BreadCrumb mounted on a PVC pipe was translated along this

trail. This is visualized in Figure 4.42. The number of measurements gathered in

the experiment can bee seen in Table 4.16. The distribution of the visual range

measurements and measured RSSI is visualised in Figure 4.43, 4.44, 4.45, and ??.

The initial locations calculated are visualized in Figure 4.47. The initial location

errors are tabulated in Table 4.17. After training, the mean error of the log-distance

path loss model utilizing learned PLEs was tabulated in Table 4.18.
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Figure 4.42: Outdoor trial 3 deployed BreadCrumbs and visual location measure-
ments.
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Figure 4.43: Outdoor trial 3 RSSI vs range from visual measurements for BreadCrumb
E
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Figure 4.44: Outdoor trial 3 RSSI vs range from visual measurements for BreadCrumb
F
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Figure 4.45: Outdoor trial 3 RSSI vs range from visual measurements for BreadCrumb
G
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Figure 4.46: Outdoor trial 3 RSSI vs range from visual measurements for BreadCrumb
H
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Figure 4.47: Outdoor trial 3 BreadCrumb initial location results. Mean Error:
10.1031 meters.

Table 4.16: Outdoor trial 3 visual location measurement/RSSI measurement pairs
per BreadCrumb

BreadCrumb ID # measurements pairs

E 245

F 364

G 305

H 254
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Table 4.17: Outdoor trial 3 BreadCrumb initial locations and errors

BreadCrumb ID Calculated [Lat,Long] (deg) Error (meters)

E [35.30812401N, 80.74402723W ] 10.1580

F [35.30869975N, 80.74433727W] 11.0695

G [35.30861718N, 80.74490742W] 9.4979

H [35.30837590N, 80.74501162W] 4.3810

Table 4.18: Outdoor trial 3 BreadCrumb mean log-distance path loss error with
learned PLEs

BreadCrumb ID Error (meters)

E 9.1684

F 12.9842

G 17.6812

H 14.6842

4.5.4 Trial 4: Fitness Trail P2

Five BreadCrumbs V2s and one BreadCrumb V1 were deployed along an extended

fitness trail. A mobile BreadCrumb mounted on a PVC pipe was translated along

this trail. This is visualized in Figure 4.48. The number of measurements gathered

in the experiment can bee seen in Table 4.19. The distribution of the visual range

measurements and measured RSSI is visualised in Figure 4.49, 4.50, 4.51, and 4.52.

The initial locations calculated are visualized in Figure 4.53. The initial location

errors are tabulated in Table 4.20. After training, the mean error of the log-distance

path loss model utilizing learned PLEs was tabulated in Table 4.21.
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Figure 4.48: Outdoor trial 3 deployed BreadCrumbs and visual location measure-
ments.

Table 4.19: Outdoor trial 4 visual location measurement/RSSI measurement pairs
per BreadCrumb

BreadCrumb ID # measurements pairs

E 450

F 574

G 541

H 320
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Figure 4.49: Outdoor trial 4 RSSI vs range from visual measurements for BreadCrumb
E
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Figure 4.50: Outdoor trial 4 RSSI vs range from visual measurements for BreadCrumb
F
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Figure 4.51: Outdoor trial 4 RSSI vs range from visual measurements for BreadCrumb
G
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Figure 4.52: Outdoor trial 4 RSSI vs range from visual measurements for BreadCrumb
H
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Figure 4.53: Outdoor trial 4 BreadCrumb initial location results. Mean Error:
15.5710 meters.

Table 4.20: Outdoor trial 4 BreadCrumb initial locations and errors

BreadCrumb ID Calculated [Lat,Long] (deg) Error (meters)

E [35.308236N, 80.742324W] 20.9356

F [35.308645N, 80.744248W] 17.7398

G [35.308645N, 80.745045W] 10.3671

H [35.309165N, 80.746012W] 13.2464
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Table 4.21: Outdoor trial 4 BreadCrumb mean log-distance path loss error with
learned PLE

BreadCrumb ID Error (meters)

E 56.9841

F 38.1586

G 17.4159

H 19.8956

4.5.5 Trial 5: Woods P2

Five BreadCrumbs V2s and one BreadCrumb V1 were deployed along an trail in

the woods that led to the perimeter of a soccer field. A mobile BreadCrumb mounted

on a PVC pipe was translated along this trail. This is visualized in Figure 4.54.

The number of measurements gathered in the experiment can bee seen in Table 4.22.

The distribution of the visual range measurements and measured RSSI is visualised

in Figure 4.55, 4.56, 4.57, and 4.58. The initial locations calculated are visualized in

Figure 4.59. The initial location errors are tabulated in Table 4.23. After training, the

mean error of the log-distance path loss model utilizing learned PLEs was tabulated

in Table 4.24.
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Figure 4.54: Outdoor trial 5 deployed BreadCrumbs and visual location measure-
ments.

Table 4.22: Outdoor trial 5 visual location measurement/RSSI measurement pairs
per BreadCrumb

BreadCrumb ID # measurements pairs

E 320

F 417

G 402

H 295
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Figure 4.55: Outdoor trial 5 RSSI vs range from visual measurements for Bread-
Crumbs E



127

Figure 4.56: Outdoor trial 5 RSSI vs range from visual measurements for Bread-
Crumbs F
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Figure 4.57: Outdoor trial 5 RSSI vs range from visual measurements for Bread-
Crumbs G
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Figure 4.58: Outdoor trial 5 RSSI vs range from visual measurements for Bread-
Crumbs H
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Figure 4.59: Outdoor trial 5 BreadCrumb initial location results. Mean Error:
8.08072903 meters.

Table 4.23: Outdoor trial 5 BreadCrumb initial locations and errors

BreadCrumb ID Calculated [Lat,Long] (deg) Error (meters)

E [35.307310N, 80.743790W] 7.8812

F [35.306901N, 80.743434W] 7.1829

G [35.306684N, 80.743688W] 12.2296

H [35.306486N, 80.742574W] 5.02855
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Table 4.24: Indoor aggregate mean initial location Error for trials 1 through 3 for
BreadCrumbs E through H.

BreadCrumb ID Error (meters)

E 9.1981

F 16.4892

G 118.1655

H 19.6564

4.6 Results Aggregate Discussion

The aggregated results are grouped based on the experimentation done inside and

outside. Table 4.25 shows the aggregate initial location determination error for each

BreadCrumb located indoors. Indoor trial 1 and trial 2 show promising results for

indoor location determination. In fact, they are on par with some contemporary lo-

calization algorithms. Trial 3 shows an increased error on the meters scale, which

while not on an appropriate level for precise localization purposes, it does provide

enough reasonable accuracy for initial path planning, which is the purpose of the

BreadCrumb trial at this stage. It is also important to note that the map size of trial

3 is much larger than trials 1 and 2. For example, trial 2 took place over a roughly

10x10 meter area where as trial 3 took place over a roughly 80x80 meter area. There-

fore, the change in scale of error is acceptable with the proportional change in scale

of map size for our purposes of initial location determination for path planning. This

also generally holds for the aggregate mean log-distance path loss error with learned

PLEs shown in Table 4.26. Trials 1 and 2 show a reasonable level or error for distance

measurements estimated form the log-distance path loss model. There is a spike in

error for trail 3, however since the model utilized is an empirical one, it is difficult

to find comparative results for this specific environment. All we have to consistently

compare against is the physically measured distance vs the estimated distance. That
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being said, we believe the scale of the error to be well within an acceptable range

for indoor as a distance estimation measurement. The results from the outdoor ex-

perimentation differ from the indoor experimentation quite significantly. Table 4.27

shows a range of relatively high initial location errors for the BreadCrumb with the

highest being 20.9356 meters. Examining the aggregate mean log-distance path loss

error, as shown in Table 4.28, with learned PLEs also shows significant error. We’ve

believe this to be the result of two primary factors. First, the distance between each

BreadCrumbs in these outdoor experiments was upwards of 60 meters on average.

This is a significant increase over the indoor experimentation. When examining the

log-distance path loss model, we can see that at higher distances the resolution of

RSSI measurements decreases. Therefore, slight changes in the PLEs used can lead

to massive amounts of introduced error at this distance scale. Hence, one possible

source of these larger errors is that the error introduced by the learned PLEs is simply

greater than the error introduced by using a constant PLE in these complex outdoor

environments. A possible solution to this would be to increase the power of our trans-

mitters or decrease the distance between BreadCrumbs. That being said, there is a

second source of possible error. All of the measured locations used to compare against

were gathered using a GPS device with an error range of 7 to 25 meters. Given the

distance the outdoor experimentation was done over, this GPS device was the only

method available for gathering any comparative forms of measurement. While our

results generally fall within this range of error, it is extremely difficult to determine

the empirical impact this error introduced to our error comparisons. Therefore, it

is difficult to strictly quantify whether the outdoor experiments can be considered a

success or failure and further testing with a method for more accurate ground truth

determination may be required. Examining the current results, we consider the ini-

tial location error to be within an acceptable range for initial path planning purposes.

While an error of 10 meters is significant, when put on a map with a scale of hundreds
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of meters, we believe it to be acceptable for solely path planning purposes. However,

again, to make a more confident determination we believe higher accuracy ground

truth measurements would be required. Finally, the season during which the outdoor

experimentation was done may also have played a role in these results. Data was

primarily gathered during the fall and winter season, meaning that the amount of

foliage was vastly decreased. During the spring and summer season we expect the

amount of foliage to increases, leading to an increase in the scattering effect on our

radio wave transmissions. The additive error introduced by this effect may cause

of methods PLE determination to produce more accurate results than a statically

determined PLE.

Table 4.25: Indoor aggregate mean initial location error for trials 1 through 3 for
BreadCrumbs E through H.

BreadCrumb ID T1 Error (m) T2 Error (m) T3 Error (m)

E 0.8954 0.5298 8.7884

F 1.0564 0.3328 4.4498

G N/A 1.1378 6.3545

H N/A 0.3725 5.2172

Table 4.26: Indoor aggregate mean log-distance path loss error with learned PLEs for
trials 1 through 5 for BreadCrumbs E through H.

BreadCrumb ID T1 Error (m) T2 Error (m) T3 Error (m)

E 0.9654 0.6543 4.2641

F 0.6458 1.3251 2.4569

G N/A 1.2254 2.7387

H N/A 1.1378 1.5735
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Table 4.27: Outdoor aggregate mean initial location error for trials 1 through 5 for
BreadCrumbs E through H.

BreadCrumb ID T1 Error (m) T2 Error (m) T3 Error (m) T4 Error(m) T5 Error (m)

E 8.8877 8.3899 10.1580 20.9356 7.8812

F 7.7647 9.3868 11.0695 17.7398 7.1829

G 8.9576 11.9523 9.4979 10.3671 12.2296

H 14.8020 11.6075 4.3810 13.2464 5.02855

Table 4.28: Outdoor aggregate mean log-distance path loss error with learned PLEs
for trials 1 through 5 for BreadCrumbs E through H.

BreadCrumb ID T1 Error (m) T2 Error (m) T3 Error (m) T4 Error(m) T5 Error (m)

E 6.5423 12.5864 9.1684 56.9841 9.1981

F 12.4583 20.1462 12.9842 38.1586 16.4892

G 3.1254 22.1568 17.6812 17.4159 118.1655

H 9.1253 19.1254 14.6842 19.8956 19.6565



CHAPTER 5: Conclusion

5.1 Conclusion

A network of devices dubbed BreadCrumbs was developed with the purpose of

assisting autonomous robots operating in GPS denied environments with poor visu-

ally recognizable landmarks. To this end, the BreadCrumbs network determines and

provides the following to autonomous robots: location information for path planning,

range measurements utilizing the log-distance path loss model, generalized path loss

exponent for the location where the BreadCrumb was deployed to be used for reducing

the error of distance estimation from the log-distance path loss model. To provide the

PLEs for the log-distance path loss model, a novel application of a DDPG was uti-

lized and trained with visual location measurements/RSSI range measurement pairs

gathered during run-time by each BreadCrumb.

Through empirical analysis, this work has demonstrated the feasibility of such a

network. Experimentation was done to determine the accuracy of the initial local-

ization method and accuracy of the distance estimation acquired with the learned

PLE. The system showed an successful improvement on indoor localization and dis-

tance estimation over measurements gained through empirical analysis. However, the

results outdoors were not as significant. We believe the reason for this is two fold.

First, the scale of deployment distance was much greater, leading to a decrease in

log-distance path loss model resolution an an increase in the error introduced by the

learned PLE. Second, the error of the GPS utilized to ascertain the location of the

outdoor BreadCrumbs for comparison was too high to be able to properly compare

the results against. That additive error may be skewing the outdoor results, however

given the circumstances this was the only method for gathering data for compari-
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son against. Hence, while the error rate for the outdoor experimentation appeared

quite high, it is still too early to make a definitive statement about the success of the

network outdoor without further ground truth measurements for comparison.

5.2 Future Work

One of the primary avenues of future work involves examining the impact of the

BreadCrumb network when utilized for a localization algorithm, such as with Ex-

tended Kalman Filter Simultaneous Localization and Mapping. This research was

focused on the development and implementation of the BreadCrumb network and an

analysis on its ability to provide better range measurements. While the current work

has shown that the network provides a higher accuracy source of RSSI measurements

through environmentally determining a PLE, it is of interest to see the impact that

will have on actual localization algorithms. A comparison of other techniques is also

desirable. Including the use of technologies such as ultra-wide band. Comparing the

accuracy of the BreadCrumb networks RSSI based distance estimation to ultra-wide

band distance estimation would be an interesting avenue for future work as it would

provide an avenue for comparison against other works that is not purely empirical.

Furthermore, additional testing in outdoor environments during different seasons is

desired. With this scale of experimentation, we we believe that foliage will play a

prime factor by introducing error from the scattering effect. Hence, future works

seeks to conduct experimentation during seasons where foliage will be most present

and introduce to most amount of error.
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