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ABSTRACT 
 
 

ISHAN NEEMA. Cluster-based composite pavement deterioration modeling: A 
framework for incorporating flooding. (Under the direction of 

 DR. OMIDREZA SHOGHLI) 
 
 

Pavement networks are among the most valuable highway assets for a nation as 

billions of dollars have been invested every year in construction, maintenance, and 

rehabilitation. These networks undergo deterioration over time due to traffic loading, 

material characteristics, and environmental factors. Various prediction models were 

developed to predict pavement performance for several purposes, such as preparing an 

asset management plan, budget, and investment strategy. However, limited studies were 

found that were conducted on developing a probabilistic deterioration model for composite 

pavement networks. Also, most of the pavement management system’s prediction models 

did not integrate flooding, and very few studies were found in this regard. Therefore, this 

research aims to develop a cluster-based pavement deterioration model through the Markov 

Chain and the Monte Carlo simulation analysis for composite pavements and propose a 

framework for incorporating flooding in the model. To this end, a case study was conducted 

on 102 pavement sections located in the United States' eastern region. For this purpose, the 

roughness, traffic loading, temperature, and precipitation characteristics from 2015 to 2019 

was collected from the LTPP database. These pavement sections are grouped into three 

different clusters using the K-means clustering algorithm. Then, with the application of 

Markov chain analysis and Monte Carlo simulation, the pavement deterioration model for 

each cluster was developed. This deterioration model is utilized to predict the family-based 
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deterioration trend. The proposed framework for incorporating flooding is utilized to 

predict the pre-and-post flood IRI values of flood-affected pavement sections.  
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Overview 

Roads and highway networks are the bloodlines for any nation as it contributes to 

the nation's economic development by providing employment, ease of doing business, and 

it plays a vital role in social, educational and health development by connecting people and 

products. Highway asset is the most valuable asset for any transportation department 

(DOT), as billions of dollars have been invested every year in its construction, 

maintenance, and rehabilitation. The budget for highway construction and maintenance is 

prepared based on the state's revenue generated by the DOT. For example, the North 

Carolina Department of Transportation (NCDOT) forecasts the generation of revenue for 

the next ten years and, based on these forecasts, prepares the transportation system's 

maintenance and rehabilitation budget. 

The revenue generated by the NCDOT is grouped into three major categories: 

highway fund, highway trust fund, and federal funds (NCDOT, 2019). The highway fund 

is used to construct, maintain, and rehabilitate 80,000 miles of highway network of North 

Carolina (NCDOT, 2019). The fund estimated by the NCDOT for the investment for 

highway maintenance, pavement program, and bridge program for the fiscal year 2019-20 

is USD 1.63 billion (NCDOT, 2019). The preparation of the budget for pavement 

maintenance and rehabilitation depends on the pavement's predictive performance in future 

years. The pavement performance is predicted by evaluating the amount of change in 

pavements' characteristics such as roughness, rutting, structural strength, and more. The 

change in the value of these characteristics of the pavement is termed as deterioration. The 
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pavement characteristics are dependent on the traffic loading, environmental condition, 

quality of materials, and geographical condition.  

Pavements tend to deteriorate throughout their lifespan, which can be predicted 

using a deterioration model. A deterioration model is developed by performing 

mathematical analysis on the pavements’ characteristics such as variable traffic loading, 

deterioration in material quality, and surrounding geographical & environmental 

conditions. In some studies, the deterioration model developed was common for all the 

pavement sections; however, it is not appropriate to have a single deterioration model for 

a variety of pavements. Sunitha et al. (2012) has compared the deterioration model 

developed by, with, and without clustering pavement sections. Their comparison illustrates 

that a single prediction model developed for all pavement sections will either underestimate 

or overestimate pavement conditions. Also, when large pavement stretches need to be 

maintained, prioritizing a particular pavement section's maintenance work becomes 

complicated. In such a situation, pavement sections' clustering is a useful tool for 

developing a section-wise maintenance strategy (Sandra & Sarkar, 2015). The deterioration 

trends of pavement sections differ as the characteristics of sections differ. Therefore, all 

pavement sections cannot be considered a single entity; instead, they should be grouped 

based on their characteristics’ similarity, and the deterioration model for each group can 

be generated separately. Therefore, the clustering of pavement sections is preferred for 

developing effective deterioration models and maintenance strategies. The emission of 

greenhouse gases has increased substantially every decade, which accounts for the rise in 

temperature and, ultimately, climate change. Various research suggests that climate change 

leads to weather extremes, such as massive floods, snow, and temperatures. The research 
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done by Paerl et al. (2019) analyzed the rainfall pattern of the coastal parts of the state of 

North Carolina and found that 36 tropical cyclones occurred in the state, which includes 

Hurricane Florence (2018) and Hurricane Matthew (2016), since the late 1990s. They 

estimated that the precipitation and flooding would increase in North Carolina as tropical 

cyclones' frequency will increase. Previous studies show that climate change is evident. 

Therefore, this subject cannot be neglected while developing a budget for the construction 

and maintenance of pavement as its characteristics are dependent on climatic conditions, 

and billions of dollars are associated with it. The pavement maintenance budget is 

developed based on predicted pavement performance using deterioration models. 

However, the pavement deterioration model, which accounts for extreme weather events 

such as frequent heavy rainfall, floods, and snow, was rarely found in the literature.  

1.2 Background  

Natural disasters and extreme weather events such as flooding, frequent heavy 

rainfall, and snow contribute to deterioration in pavement more quickly than normal 

weather conditions. Various studies are conducted in the past by different researchers for 

understanding the impact of flooding on the pavement network. In 2005, two hurricanes, 

Katrina & Rita, hit New Orleans and the southeastern part of Louisiana, United States. 

Approximately 2,000 miles of road length was submerged in flood runoff for five weeks 

(Sultana et al., 2018). Zhang et al. (2008) assessed the effect of the hurricane, occurred in 

New Orleans, and found that there was a significant difference in the structural strength of 

pavement between the submerged and non-submerged pavement sections. Helali et al. 

(2008) studied the distress data of these hurricane-affected pavements for pre-and post-

hurricane time. They showed that the deterioration rate of flooded sections was 2.5 to 6.5 
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times more than the non-flooded pavement sections. They also estimated that 90 to 190 

mm of the AC overlay is required for the rehabilitation work. In 2012, a tsunami struck 

Japan, which damaged thousands of miles of pavement sections. After the event of 

flooding, it was found that the pavement sections are substantially damaged and require 

reconstruction, or these pavements sections are serviceable only after rehabilitation work 

(Tokuyama, 2012). In 2010-11, extreme flooding events occurred in Queensland and New 

South Wales, Australia. This flooding caused damage to more than 21,120 miles of 

pavement network, and approximately AU$ 6.4 billion was spent in the rehabilitation and 

reconstruction of flood-affected pavements (Kenley & Harfield, 2014). A recent study was 

conducted on these flood-affected pavements by Chowdhury et al. (2016) to understand 

pavement's structural and surface conditions during pre-flood and post-flood time. They 

developed a deterministic road deterioration model and found that pavement tends to lose 

its strength more rapidly due to flooding. Khan et al. (2014a) also conducted a study on 

these flood-affected pavements and developed a probabilistic road deterioration model by 

incorporating flooding effects. All the previous research suggests that natural disasters, 

especially flooding and frequent heavy rainfall, affect pavement performance and budget. 

The DOTs have developed a wide-ranging pavement management system (PMS) 

for effectively managing their road assets (Hudson et al., 1998). A good PMS is consists 

of five main components which are (i) data collection, (ii) quality database, (iii) accurate 

pavement deterioration model for decision-making strategies, (iv) procedures for 

implementing these strategies, and (v) feedback (Battiato et al., 1994).  For example, the 

NCDOT collects detailed information of all their highway assets in the pavement 

management system (PMS) to analyze and evaluate the transportation system. They used 
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an automated data collecting process to extract pavement information and derive the 

pavement condition rating (PCR) of each segment. Each highway segment's summary 

score is calculated using PCR, known as the pavement condition index (PCI), reflecting 

the highway's overall condition. The PCI is measured on the scale of 0 to 100, where 0 is 

failed, and 100 is excellent (NCDOT, 2019). The PCI predicts pavement performance by 

developing deterioration trends and determining the pavement's life cycle cost (LCC). Most 

of the DOTs do not integrate the effects of flooding in their prediction models. This directly 

results in inaccurate pavement performance prediction and determining the pavement's life 

cycle cost (LCC).  

1.3 Problem Statement 

In this research, a comprehensive literature review was conducted to determine 

gaps in the literature. The gaps identified in the literature are (not limited to):  

1. Limited research was conducted on developing probabilistic pavement deterioration 

models for composite pavement networks,  

2. Very few research were found that utilized the clustering algorithm and incorporated 

flooding in the deterioration model, and 

3. Most of the DOT’s PMS does not incorporate the effect of flooding in their prediction 

models. 

This research work is focused on filling the gaps that are identified above. 

1.4 Research Objective  

The clustering algorithm is a sophisticated technique used for grouping pavement 

sections into different groups based on their similarity. This technique can improve the 

accuracy of the deterioration model.  The pavement's roughness is stochastic; therefore, a 
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probabilistic method can be utilized to predict pavements’ roughness more precisely. 

Extreme weather events such as frequent heavy rainfall and flooding adversely affect 

pavement performance and budget. Inundation in pavements due to flooding and heavy 

rainfall introduces new parameters in the traditional road deterioration models. Therefore, 

it is essential to understand and document the effect of flooding in the deterioration model. 

Based on these requirements, the primary research objective for this thesis work are as 

following: 

1. Development of a cluster-based composite pavement deterioration model through 

Markov Chain and Monte Carlo simulation analysis, 

2. Proposing a framework for incorporating flooding in a pavement deterioration 

model and generating deterioration trends at the various probability of flooding, 

and 

3. Utilization of the model in predicting the pavement performance based on 

roughness for a short duration period. 

This research is focused on developing a cluster-based pavement deterioration 

model using the Markov chain analysis and incorporating the effects of flooding in the 

model. The states’ PMS can be improved by integrating the effect of flooding in their 

deterioration model using the framework proposed in this research. This model can be used 

for developing a predictive maintenance strategy for flood-affected and non-flood affected 

pavement precisely. It can also improve the Life Cycle Cost Analysis (LCCA) of the 

pavement network and help prepare effective budgeting and investment strategy.  
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CHAPTER 2: LITERATURE REVIEW  
 
 
 A systematic literature review was conducted to identify the gaps in the literature 

and develop the research objective. The literature review is divided into five major sections 

and which are further divided into different categories. Figure 1 shows an overview of the 

topics covered in the literature review. These topics are explained in detail in this section.  

 

FIGURE 1: Topics covered in the literature review  

2.1 Pavement Characteristics  

The performance of the pavement tends to decrease gradually throughout its 

lifespan. The evaluation of pavements' performance is based on its characteristics such as 

roughness, rutting, and structural strength. The change in the value of these characteristics 

of pavement is termed as deterioration, and the ability of pavement to be serviceable over 

time by satisfying its designed requirements is termed as pavement performance. 
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Developing pavement performance models is essential in pavement engineering because it 

is used to design and perform maintenance analysis. The first believed pavement 

performance model was developed by the American Association of State Highway 

Officials (AASHO) in the 1960s in the form of equation 𝑦 = 𝑦! + 𝑏𝑥"; where 𝑦! 

represents the pavement's initial performance, x	represents accumulated traffic level, and b 

and c are the parameters to be estimated (Chen et al., 2019). Various parameters influence 

pavement design, such as the surrounding climate, traffic loading, structural capacity, and 

material requirements. Various researchers had analyzed the impact of climate and traffic 

on pavement performance for developing a better pavement design.  

Change in climatic conditions such as hefty rainfall and floods influences the 

pavement's structural and surface condition. These parameters are dependent on various 

factors, such as environmental factors, traffic loading, and the surrounding geography. The 

environmental conditions and traffic loading are stochastic variables. Sultana et al. (2015) 

evaluated the impact of flooding on flexible pavements in Queensland, Australia. They 

found that the flood-affected pavement shows a 67% reduction in CBR (California Bearing 

Ratio) and a 50% reduction in SN (structural strength number) of the pavements. Also, the 

flood-affected pavement sections deteriorated more quickly than the non-flood affected 

pavement sections. Extreme weather events affect the pavement management system as it 

directly increases the maintenance cost and, hence, the pavement's life-cycle cost. 

Therefore, it is crucial to account for these uncertainties in pavements' performance 

prediction. The pavement's performance is measured using various parameters such as 

roughness, rutting, and resilience modulus. Previous research showed that roughness and 
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rutting are the most critical parameters representing the structural and functional 

performance of the pavements. These pavement characteristics are explained below.  

2.1.1 Roughness  

The distortion in the pavement surface, which leads to the rough or objectionable 

driving experience, can be called roughness (AASHTO, 1993). The roughness is 

characterized by the international roughness index (IRI) and generally measured in m/km 

or in/mi. The IRI is measured by a road profiling system, which includes software for 

calculating the IRI statistic. The IRI is a slope statistic given by the ratio of the average 

vehicle suspension's motion by the distance traveled by the profiling vehicle (Sayers, 

1998). The IRI of different states and countries is identical and can be compared directly. 

The IRI 0 m/km of a pavement section represents a perfectly flat and smooth profile, while 

the IRI greater than 8 m/km represents a nearly impassable pavement profile. Generally, 

the IRI of a newly constructed pavement falls in the range of 0.40 to 2.0 m/km, while 2.5 

to 6.0 m/km for the older pavements. The pavement generally deteriorates with the IRI 

value increment within the range of 0.10 to 0.25 m/km every year (Sayers, 1998). Chen et 

al. (2014) had determined the IRI threshold values of the pavement network located in 

North Carolina and suggested the acceptable and unacceptable IRI ranges. The IRI values 

in the range of 0.78 to 0.95 m/km is perfect, whereas the IRI in the range of 0.95 to 1.15 

m/km is good, and the IRI greater than 2.8 m/km is unacceptable for driving. Figure 2 

shows the general IRI values of different pavement classes and the average vehicle speed 

on these pavements.  
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According to Odoki and Kerali (2000) and Sayers (1998), roughness directly affects 

the vehicle's operating cost, road accidents, and driving comfort. Cracking, potholes, 

improper drainage, etc. can cause the pavement's roughness. The IRI is the most used 

parameter for deriving the pavement's ride quality (Shamsabadi et al., 2014). Therefore, 

roughness is an important factor directly related to the pavement's performance and 

serviceability index (Odoki & Kerali, 2000). The roughness of pavement was thoroughly 

analyzed in this research for developing a pavement deterioration model. The roughness is 

dependent on external uncertainties such as surrounding climatic conditions, material 

properties, and traffic loading. Therefore, the analysis of roughness was done using 

 

FIGURE 2: IRI ranges of different classes of the road (Adapted from Sayers, 1998) 
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probabilistic methods for deriving the pavement deterioration model. The IRI data of the 

pavement sections was collected from the LTPP InfoPave database for developing a 

deterioration model. The details about the LTPP database are explained in section 2.4 of 

this document.  

2.1.2 Rutting 

The rutting in any pavement can be caused due to the failure in the pavement's 

subgrade soil. The accumulation of permanent deformation in pavement layers is called 

rutting. Rutting significantly affects the pavement's performance, leading to substantial 

structural failures (Xu & Huang, 2012). Hence, rutting is the critical factor that relates 

perfectly to pavement deterioration. The unit of measurement of rutting is generally mm or 

inch. In this research, the intended pavement deterioration model was planned to be 

developed based on the pavement's roughness and rutting characteristics. However, the 

LTPP database does not contain sufficient rutting data of the selected pavement sections. 

Therefore, only the roughness-based deterioration model has been developed in this 

research.  

2.2 Pavement Deterioration Models 

The pavement network deteriorates over time due to various factors. Therefore, it 

is crucial to predict pavement deterioration ahead of time to understand its future 

performance and develop a comprehensive pavement management system (PMS).  The 

PMS consists of pavement design, financial planning and budgeting, and lifecycle 

economic analysis. The deterioration model predicts rehabilitation works' required time 

and simplifies the budget estimation of this works. It also derives the relationship between 

various pavements' parameters with their serviceability, which helps in pavement 
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designing (George et al., 1989). An accurate pavement deterioration model can be used to 

precisely measure the pavement performance and maintenance budget associated with it. 

Two types of pavement deterioration models are found in the literature review: 

deterministic and probabilistic deterioration models. Deterministic pavement deterioration 

models provide a specific set of fixed values, whereas the probabilistic models rely on the 

probability of change in condition. 

2.2.1 Deterministic Pavement Deterioration Model  

Deterministic pavement deterioration models are developed using pavement's 

primary response towards the various surface and structural parameters. A prediction 

model is developed by analyzing pavements’ structural and surface responses through 

regression analysis. The regression analysis is of two types, i.e., empirical regression 

analysis and mechanistic-empirical analysis. The model generated by empirical regression 

analysis includes the time-series data of pavement condition with respect to the 

environmental and traffic loading conditions. The model generated by the mechanistic 

regression analysis considers the effect of traffic loading, pavement strength, and pavement 

deflection (George et al., 1989).  Different researchers had developed a pavement 

deterioration model and suggested the methodology for the same. Li et al. (1995) discussed 

deterministic pavement deterioration models, including regression, mechanistic and 

mechanistic-empirical models.  

Regression analysis requires historical data and independent variables that help in 

obtaining dependent variables. Regression analysis requires less time and a large amount 

of data. Madanat et al. (1995) studied the pavement deterioration models' effectiveness 

developed by statistical regression analysis. Their research recommends that these models 
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do not accurately predict the pavement condition because the reliable data is challenging 

and time-consuming to obtain. Also, faults present in the data inadvertently impact the 

accuracy of the prediction. Zhang and Durango-Cohen (2014) have presented a cluster-

wise linear regression model (CLR), which shows that different panels or sections of 

pavement show heterogeneity in deterioration and require developing resource allocation 

strategies tailored to the specific section of the pavement.  

Mechanistic models require many variables such as material properties, geometric 

design, environmental factors, and loading characteristics to analyze the pavement's stress, 

strain, and deflection properties. Based on this analysis, the deterioration in the pavement 

is predicted. Panthi (2009) found that mechanistic models are complex and do not show 

actual pavement deterioration.  

The mechanistic-empirical model gives the final model, which requires less 

computer power and time. Also, the prediction from this model is better than the 

mechanistic model. Like the mechanistic model, it requires many variables to analyze 

stress, strain, and deflection of the pavement. A large number of variables increases the 

complexity of the model (Panthi, 2009). George et al. (1989) have developed an empirical-

mechanistic road deterioration model for predicting pavement serviceability, which helps 

estimate the budget for operation and maintenance of pavement. The prediction of 

pavement deterioration done using a deterministic model induces error as it does not 

consider the uncertainties of environmental and traffic factors.  

2.2.2 Probabilistic Pavement Deterioration Model  

The probabilistic pavement deterioration model incorporates the uncertain behavior 

of traffic, environmental factors, and surface characteristics of the pavement in the model. 
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Li (1997) and Madanat et al. (1995) show the importance of incorporating these 

uncertainties in pavement deterioration models. Mills (2010) studies two types of 

probabilistic models, i.e., the Markov chain model and the survival curves model. Both of 

these probabilistic models are explained later in this document.   

2.2.3 Markov Chain (MC) Model   

The Markov chain model is a stochastic model that describes the sequence of 

possible events in which the probability of the next event is dependent on the current event 

and not on the event before it (Gagniuc, 2017). The Markov chain model can be applied 

where the variables are stochastic. The Markov chain prediction model is governed by three 

boundaries, that are: 

1. The process must be discrete or continuous in time, 

2. The process must have countable outcomes or finite state space, and 

3. The process must satisfy the “Markov Property” (Ortiz-García et al., 2006) 

The Markov property is satisfied when the next variable's value depends on the 

current variable's value and not on the past variables.  

2.2.3.1 Application of Markov chain theory 

The variables such as traffic loading, environmental aspects, and surface 

characteristics of the pavements are stochastic. Therefore, the Markov theory can be 

applied to these variables for developing a pavement deterioration model. The Markov 

Chain process can be applied for deriving pavement deterioration because: 

• The deterioration of pavement is a continuous process in time, 

• The state-space of the deterioration process is finite in number, and 
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• The deterioration of pavement is stochastic; hence, it is assumed to hold the 

Markov property (Kerali & Snaith, 1992) 

Various researchers applied the Markov chain theory to the constructed facilities 

such as pavements and bridges to predict its deterioration. Khan et al. (2014a, 2014b); 

Madanat et al. (1995); Panthi (2009); Saha et al. (2017) have used the Markov Chain model 

for predicting pavement deterioration, while Fu and Devaraj (2008); Ranjith et al. (2011) 

used it for predicting bridge deterioration. The Markov chain model can be used to integrate 

the pavement deterioration rates with the variables resulting in the change in M&R (Khan 

et al., 2014b). The Markov chain model focuses on the transition probabilities and the 

factors responsible for this transition instead of the factors responsible for condition 

degradation (Karimzadeh & Shoghli, 2020). Two types of Markov chains were found in 

the literature review: time-independent and time-dependent Markov chains. Both of these 

models can be utilized for determining pavement deterioration. In the time-independent 

Markov chain models, the transition probability matrix of the pavement is constant 

throughout the time, and the pavement is assumed to deteriorate according to this single 

transition probability matrix; while in the time-dependent Markov chain models, the 

transition probability matrix of the pavement changes with time and the pavement will 

deteriorate based on these transition probability matrix (Ortiz-García et al., 2006). The 

details of the transition probability matrix (TPM) are explained below.  

2.2.3.2 Markov chain transition probability matrix 

 The probability of a pavement section to change its state is termed as transition 

probability. The pavement sections' transition probability is the probability that the 

pavement section is currently in condition i at time t and will change to condition j at time 
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t+1. This transition of pavement sections from one condition to another is combined in a 

matrix called the transition probability matrix (TPM). The TPM is associated with time-

independent and time-dependent Markov chain models that are explained in the previous 

section.  

The classic example of the Markov Chain transition probability matrix is shown 

below, adapted from Kostuk (2003). Kostuk (2003) shows an example in their research for 

explaining the Markov Chain process. The example assumes that a bird is sitting on the lily 

pads in a lake, and there is a finite number of lily pads present in the lake. Lily pads in this 

example are considered as a state, and since the lily pads are finite in number, this kind of 

system is described as a finite state system. The location of the bird is captured every five 

minutes. The probability that the bird will change its position from lily pad i to j is denoted 

by pij. Figure 3 shows the simple example of a transition from one state to another.  

The likelihood of transition from one state to another state is represented in a 

matrix, where the rows show the present state, and the columns show the future states. 

Table 1 shows that the probability of transition from one state to another. For example, 

the probability of transition from state 1 to state 2 is 0.3.  

  

 

FIGURE 3: The Transition between Two-State (Adapted from Kostuk, 2003) 
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TABLE 1: Transition Probability Matrix (Adapted from Kostuk, 2003) 

From Existing 
State 

To Future State 
Total 

1 2 3 

1 0.7 0.3 0 1 

2 0 0.6 0.4 1 

3 0 0 1 1 
 

The transition in states is combined in a matrix called transition probability matrix, 

which is denoted by P, and the probability of state change is denoted by pij, where i denotes 

the row, and j denotes the column of the matrix. Figure 4 illustrates the transition matrix.  

 

FIGURE 4: Schematic diagram of a three-stage transition model (Adapted from 
Kostuk, 2003) 

Figure 5 represents the complicated situation in which the bird can change its state 

from i to two other states and represent its potential location after one- and two-time 

epochs. The bird assumed to start with lily pad i.  

 

FIGURE 5: The Possible transitions over two epochs (Adapted from Kostuk, 
2003) 
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2.2.3.3 Application of TPM in developing deterioration model 

The pavement network's current condition is termed as the initial state and is 

described in terms of the initial state vector. The initial state vector of the pavement 

network is given by (Ortiz-García et al., 2006): 

𝑎! = [𝛼#, 𝛼$, ……𝛼%] 

Initial state vectors assume that all the αi must be non-negative numbers, and their 

sum must be equal to one. The pavement deterioration model is generated by utilizing the 

transition probability matrix (TPM). The transition probability matrix is the probability that 

the pavement section is currently in condition i at time t and will change its state to 

condition j at time t+1. The TPM is denoted by P and given by (Ortiz-García et al., 2006) 

𝑃 =

⎣
⎢
⎢
⎢
⎡
𝑝## 𝑝#$ … . 𝑝#%
𝑝$# 𝑝$$ … . 𝑝$%
. . … . .
. . … . .
𝑝%# 𝑝%$ … . 𝑝%%⎦

⎥
⎥
⎥
⎤
 

Where, pij indicates the probability that a road is currently in state i and will be in 

state j next year. Like the initial state vector, all the TPM numbers must be non-negative, 

and the sum of each row must be equal to one. The probability distribution of the states at 

a future time, say t = 1 and at time t, may be calculated from the TPM generated and the 

initial state vector and is shown in equations 1 and 2 (Ortiz-García et al., 2006).  

 

 𝑎# =	𝑎!	𝑃# (1) 

 

 𝑎& =	𝑎!	𝑃& (2) 
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Where, a1 = probability distribution at time t = 1, at = probability distribution at 

time t, a0 = initial state vector at time t = 0, and Pt = TPM raised to the power of t. In 

equations (1) and (2), it is assumed that the transition probability matrix (P) of the 

pavement is constant throughout the time, and the pavement is assumed to deteriorate 

according to this single transition probability matrix P throughout its lifespan. This 

equation is used for performing time-independent Markov chain analysis. In this research, 

a time-independent Markov chain analysis was performed for developing a pavement 

deterioration model.  

 The TPM used for representing pavement deterioration were generated based on 

three assumptions: 

1. The condition of the pavement sections cannot be improved without receiving any 

maintenance treatment, i.e., pij = 0 for i > j, 

2. The pavement sections which reached their worst condition cannot deteriorate 

further, i.e., pnn = 1, and 

3. The pavement section cannot deteriorate by more than one state in a duty cycle. 

Based on this assumption, the ideal TPM of the pavement section is denoted by: 

𝑃 = 	

⎣
⎢
⎢
⎢
⎢
⎡
𝑝## 𝑝#$ 0 … . 0
0 𝑝$$ 𝑝$' … . 0
0 0 𝑝'' … . 0
. . . . .
. . . . .
0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

The Markov chain prediction model specified above is used by various pavement 

management systems for predicting pavement deterioration. Some of these are NOS 

(Kulkarni, 1984), MicroPAVER (Butt et al., 1994), NETCOM (Kerali & Snaith, 1992), 

and HIPS (Thompson et al., 1987).  
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Several research studies were conducted to derive TPMs using various 

mathematical methods in the past. Such as, the simplest proportion method (Wang et al., 

1994), the expected value method (Jiang et al., 1988), minimum error method, percentage 

transition method, ordered probit model, Bayesian technique, and conversion from the 

deterministic models. All these methods are explained and evaluated later in this section.  

2.2.4 Methods for deriving TPM  

1. Minimum-error method 

The Minimum-error method uses historical data, regression analysis, and historical 

distribution data for deriving TPMs. Ortiz-García et al. (2006) had used the minimum-error 

method for deriving time-dependent TPMs. The typical equation of the minimum error 

method is given by Ranjith et al. (2011).  

Objective function              𝑍 = 	∑ 𝐶	(𝑡) − 𝐸	(𝑡)&       

 

Subject to                          0 ≤ pij ≤ 1         i,j = 1,2……..n 

       ∑ 𝑝𝑖𝑗 = 1(             i= 1,2.....n 

Where,  

C(t)= system condition rating at time t based on regression 

E(t)= expected rating at time t  

According to Madanat et al. (1995), the minimum error method does not consider 

the effect of vehicle loading, environmental factors, material properties, loading scenarios, 

and underlying continuous deterioration.  
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2. Percentage transition method 

The percentage transition method is used to derive the change in road condition 

state with respect to the previous state. Pierce (2003) has used the percentage transition 

method for deriving TPMs using five years of historical IRI data of rigid pavements. These 

data are used to develop TPMs and then used in Monte Carlo simulation to derive the road 

deterioration model. For predicting the bridge deterioration model, Ranjith et al. (2011) 

had statistically compared the minimum-error and percentage transition method and found 

that the minimum-error method sometimes gives better results than the percentage 

transition method. Ranjith et al. (2011) compared this method to predict bridge 

deterioration only. The percentage transition method addresses different explanatory 

variables used to develop a pavement deterioration model (Khan et al., 2014b). The 

transition probability of each pavement section can be calculated using this equation: 

 𝑝)( =	
𝑁)(
𝑁)

 (3) 

 

Where, pij = transition probability from state i to j, Nij = number of sections 

transition from state i at time t to state j at time t+1. When reliable data is insufficient, the 

panel of expert engineers' engineering judgment is used to prepare the transition probability 

matrix. All the transition probabilities are compiled in a matrix called the transition 

probability matrix, which is given by  

𝑃 = 	

⎣
⎢
⎢
⎢
⎢
⎡
𝑝## 𝑝#$ 0 … . 0
0 𝑝$$ 𝑝$' … . 0
0 0 𝑝'' … . 0
. . . . .
. . . . .
0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤
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3. Probit model 

The Probit model is a type of model where the dependent variable can take only 

two values, and the model is estimated using the maximum likelihood procedure (Khan et 

al., 2014b). Madanat et al. (1995) used the ordered Probit model for developing time 

dependent TPMs, and the results show that the proposed method considered explanatory 

variables and the hidden nature of the pavement performance. They assumed that ordered 

states were independent and showed similar distribution. However, Fu and Devaraj (2008) 

study show that the ordered Probit model requires a large amount of data to generate 

suitable TPMs. Li (2005) derived a method for converting the deterministic model into a 

probabilistic model, which is easy compared to developing a new model for deriving 

TPMs. However, this method is not commonly used.  

4. Bayesian Technique 

The Bayesian technique is used to derive heterogeneity of different individual 

parameters of the pavement, such as roughness and rutting, and it is used to obtain realistic 

parameter distributions through data and knowledge (Hong & Prozzi, 2006). The study of 

Li (1997) shows that the Bayesian technique was feasible for validating the developed 

pavement deterioration model, rather than developing a new model. However, Panthi 

(2009) stated that this technique does not consider the pavement's mechanistic behavior 

and depends heavily on data; therefore, improper data can lead to erroneous models.  

5. Conversion from the deterministic model 

Li (1997), Li et al. (1995), has used the deterministic equation and converted it 

using Monte-Carlo simulation to derive TPMs. The deterministic equation is dependent on 

the pavement design equation, which considers the effect of traffic growth rate, subgrade 
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deflection, and pavement thickness in deriving the TPMs. Historical data was used to 

derive the TPMs. The conversion from the deterministic model to the probabilistic model 

is straightforward (Li et al., 1995). However, this method used the existing deterioration 

model rather than developing and a new one. The researchers rarely use this method.  

The qualitative analysis was conducted on all these methods for determining the 

most feasible method for developing a transition probability matrix. The qualitative 

evaluation was done based on the results derived from previous studies and is shown in 

table 2. Based on this evaluation, the percentage transition method was found feasible for 

deriving a transition probability matrix because it uses real data and considers the effects 

of the underlying variable affecting the deterioration process. 
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TABLE 2: Different methods for deriving transition probability matrix  

Method Used Functions Limitations Sources 

Minimum-Error 

method 

Based on historical 

data and engineering 

experience 

Does not contain 

effects of explanatory 

variables on 

underlying 

deterioration  

Ortiz-García et al. 

(2006), Madanat et al. 

(1995), Khan et al. 

(2014b) 

Percentage 

Transition Method 

A TPM is derived 

from the probability of 

transition from one 

state to other 

Uses real data to 

derive TPMs and 

considers the effect of 

explanatory variables 

Ranjith et al. (2011), 

Pierce (2003), Khan et 

al. (2014b),  

Ordered Probit 

Method 

Considers explanatory 

variable in pavement 

deterioration: the 

ordered state is 

independent of the 

previous state  

It does not provide a 

transition probability 

matrix and requires a 

large amount of data 

Fu and Devaraj 

(2008), Li (2005), 

Madanat et al. (1995), 

Khan et al. (2014b) 

Bayesian 

Technique 

Address heterogeneity 

of individual 

parameter can be used 

for model calibration  

Heavily depends on 

the data and improper 

data leads to an 

erroneous model  

Li (1997), Panthi 

(2009), Hong and 

Prozzi (2006), Khan et 

al. (2014b) 

Conversion from 

the deterministic 

model 

Easier and quick 

process 

The method is similar 

to the statistical 

method; no new 

deterioration model is 

developed 

Li (1997), Li et al. 

(1995), Khan et al. 

(2014b) 
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2.2.5 Survival Curves  

The insurance companies generally use survival curves to derive the probable life 

of the product's units and decide the premium values of these products and services. The 

survival curves show the number of units of the given group surviving at a particular age 

(Winfrey, 1935). Wang et al. (1994) used long-term pavement performance (LTPP) 

program data for deriving survival curves patterns of fatigue cracking of flexible pavement. 

Panthi (2009) found that survival curves are easy to develop and give the only probability 

of pavement failure corresponding to the age, but this probability induces considerable 

error if the group of units used is small. The schematic trend of a survival curve is shown 

in figure 6.  

 

 

FIGURE 6: Survival Curve (Adapted from Panthi, 2009) 
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2.3 Clustering Technique 

 Cluster analysis or clustering is a statistical algorithm used to group a set of data 

objects into clusters so that the properties of data objects in a cluster are similar to each 

other. The similarity between the data objects is calculated based on the Euclidean distance 

‘e’ between the objects' attributes. This algorithm is an unsupervised learning algorithm, 

where no prior assumptions are made for the likely relationships within the data objects. 

The clustering algorithm is classified into two types, i.e., hierarchical and non-hierarchical 

clustering. The classification of the clustering algorithm is shown in figure 7 and explained 

in this section.  

 
2.3.1 Hierarchical Clustering 

Hierarchical algorithms form clusters in two methods, i.e., agglomerative methods 

and divisive methods. In agglomerative methods, the clusters are merged in stages, while 

in the divisive method, the clusters are divided (Kim et al., 2004). Generally, a dendrogram 

is used to represent a hierarchical clustering algorithm. This method assumes that the 

number of clusters is equal to the number of the data objects, and then the dissimilarity 

matrix is developed for the computation of clusters (Kumar & Swamy, 2015). In this 

process, the grouping of data points with maximum similarity is done and developing a 

 

FIGURE 7: Classification of clustering algorithm  
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dissimilarity matrix to obtain the relationship between the newly formed cluster and the 

remaining entity (Gong & Richman, 1995).  

2.3.2 Non-hierarchical Clustering 

 In the non-hierarchical clustering algorithm, a dataset is divided into groups based 

on the dataset’s similar properties so that these groups are non-overlapping and have no 

hierarchical relationship between them (Barnard, 1995). The K-means clustering algorithm 

is a widely used non-hierarchical clustering method. This method is explained below.  

2.3.2.1 K-means Clustering 

In K-means clustering, the ‘K’ is the centroid of the cluster and represents the 

number of groups in a dataset. The fundamental calculation in this algorithm includes 

selecting ‘K’ points or centroids and then assigning the datasets closest to the centroids and 

repeating this iteration until there is no change in the centroids (Karypis et al., 2000). The 

K-means clustering algorithm aims to minimize the squared Euclidian distance between 

the data points and the centroid on the cluster. The advantage of the K-means algorithm 

over the agglomerative algorithm is that it can be performed quickly. This algorithm is the 

most extensively used clustering algorithm. A scatterplot can be plotted to visualize 

different clusters.  

2.3.3 Application of Clustering analysis 

Clustering analysis has been used in diverse work fields such as marketing, land 

use, insurance, city planning, earth-quake studies, and many more fields. In the 

transportation engineering field, clustering is primarily applied to group the variable used 

in Mechanistic-Empirical Pavement Design (MEPD) (Kumar & Swamy, 2015). Wang et 

al. (2011) collected the weigh-in-motion (WIM) data recorded in the state of Arkansas, 
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USA.  They used a clustering algorithm to identify the truck loading patterns and estimate 

the full axle-load spectrum. Lu and Harvey (2006) used the clustering method for 

classifying truck composition, volume, speed, and axle load spectrum in California to 

improve MEPD. Papagiannakis et al. (2006) applied the hierarchical clustering method on 

the WIM data collected from the long-term pavement performance (LTPP InfoPave) 

database. They identify the groups of sites with decreasing similarities based on the vehicle 

class and axle loading. Yan et al. (2011) used the K-means clustering algorithm for 

modeling the flow of traffic at the port of Tianjin. Sunitha et al. (2012) developed two types 

of deterioration models: by using the K-means clustering algorithm and without using any 

clustering algorithm. They compared the results derived from both the models and found 

that pavement sections' clustering is preferred for efficient pavement performance 

prediction. Developing a deterioration prediction model requires data-extraction of the 

historical condition and maintenance activities of pavement sections. Inadequate and 

insufficient data extraction may lead to generate inaccurate prediction models. Therefore, 

the family of assets was developed, and the deterioration of these families was then 

investigated. Karimzadeh et al. (2020a) used the K-means and agglomerative hierarchical 

algorithms to extract similarities over a broad set of road segments. Their study provides 

more comprehensive insight for forming family groups, which could result in improving 

deterioration models.  

All previous research suggests that clustering is an effective mathematical tool that 

can be used for efficient data analysis when less data is available. However, no research 

was found which utilizes the clustering process for developing a probabilistic pavement 

deterioration model.   



29 
 

The clustering process is an unsupervised learning algorithm; therefore, the 

cluster's validation is required. The formed cluster's validation can be done by creating 

different data visuals, such as 2D and 3D scatterplot. However, creating data visuals is not 

possible when many variables are available. Many research has been going on to determine 

a method to derive the optimum number of data clusters, but no reliable method is 

available. Generally, for determining the optimal number of clusters for a dataset, the 

elbow method is used. However, selecting the number of clusters is a subjective topic and 

can be done based on the available data, analysis’s requirement, and judgment 

(Karimzadeh et al., 2020b).  

In this research, the clustering technique was used to appropriately group pavement 

sections into different groups and develop each cluster's deterioration models. The sections 

within the cluster are homogeneous with each other and heterogeneous between other 

clusters.  The data for developing the model was collected from the LTPP database. This 

data was unlabeled, and the grouping of data was needed to be done. Therefore, the K-

means clustering algorithm was suitable for this kind of dataset and used in this research. 

The data was divided into three clusters using the K-means algorithm. The number of 

clusters in this research was determined based on the judgment and evenly distributing 

sections in each cluster.  

2.4 LTPP Database  

The long-term pavement performance (LTPP) InfoPave program was developed by 

the Transportation Research Board (TRB) in 1987 as a part of the Strategic Highway 

Research Program (SHRP). This program's overall objective is to analyze and document 

long-term pavement performance under various loading and environmental conditions 
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throughout its lifespan. Under this program, pavement test sections were constructed on 

in-service roadways. Each test section has assigned a unique section number which 

identifies the pavement type, location, material, and thickness properties. The test section's 

length is 152-meter, extended by a maintenance control zone of 152-meter and 76-meter 

on either side of the test section (Elkins et al., 2003). The illustration of a typical LTTP test 

section is shown in Figure 8. The effect of traffic loading, environmental conditions, 

material properties, construction quality, and maintenance on test sections is documented 

and uploaded on the LTPP InfoPave website. The desired pavement information can be 

filtered and extracted from this database. In the LTPP InfoPave database, there are 2581 

pavement sections across the United States and Canada. Some of these sections are 

routinely monitored, while others are not. The routinely monitored sections are those 

whose data collection and updating process is presently ongoing; therefore, these sections 

are given active status while others are given inactive status. The LTPP InfoPave database 

was used to collect data for this research, and the sections in active status are selected for 

the analysis.  

 The database contains different types of information on each monitored pavement 

section. This information is grouped into five distinct primary categories: general 

information, structural information, climatic information, traffic information, and 

 

FIGURE 8: Typical layout of an LTPP test section (Adapted from Elkins et al. 2003) 
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performance information. The general information category contains information about 

pavement age, experiment type, study, group, monitoring status, section type, treatment 

type, section location, maintenance and rehabilitation details, and roadway functional class. 

The structural information category contains material details of the pavement sections' 

surface, base, and subgrade layers. This category is used to differentiate between asphalt 

concrete (AC) and Portland cement concrete (PCC) pavement sections. The climatic 

category contains information about the climatic region, annual freezing index, annual 

precipitation, and annual temperature sections. The traffic category contains traffic loading 

information in terms of average annual daily traffic (AADT) and average annual daily truck 

traffic (AADTT) of the sections. The performance category contains information about 

pavement deflection, fatigue cracking, faulting, longitudinal cracking, longitudinal profile 

(IRI), transverse cracking, and transverse profile of all the sections. These five information 

categories are specified on the left-hand side of the website and can be used as the filtering 

tool for extracting the desired pavement data.  

The data collection begins by clicking on the Data tab on the LTPP InfoPave 

website, selecting the pavement sections' desired attributes using the available filtering 

tools, and then downloading the data in the desired format. In this research, the LTPP 

InfoPave database was used for extracting the historical data from 2015 to 2019 of the 

pavement sections. The extracted data contains historical information of pavement 

attributes such as traffic loading, temperature, precipitation, and roughness. These 

attributes were used in the analysis for developing the probabilistic pavement deterioration 

model. The analysis of these parameters is explained in chapter 3 of this document.  
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2.5 Flooding Hazards  

A flood is termed when the streamflow level of water becomes relatively high and 

inundates the banks of the stream (USGS, 2019). An event or physical condition that can 

cause fatalities, accidents, belongings damage, infrastructure harm, etc., is termed a hazard 

(Drane et al., 2020). The floods can cause loss and damage to lives and property by the 

inundation of water. Therefore, the hazards associated with floods are termed as flood 

hazards. The floods comprise three elements, i.e., severity, which includes the magnitude, 

duration, extent of flooding; occurrence probability; and the start speed of flooding 

(FEMA, 2019).  

2.5.1 Impact of Flood on Pavement Performance 

The emission of greenhouse gases is increasing exponentially every decade, which 

causes climate change, and these climate changes are resulting in extreme weather events 

such as frequent heavy rainfall, floods, increasing temperature, and other weather extremes 

(Parry et al., 2007). Extreme weather events adversely affect the performance of pavement 

by reducing its structural strength of base and sub-base layers and increasing surface failure 

characteristics of the pavement network (Helali et al., 2008; Khan et al., 2014a; Mallick et 

al., 2017; Sultana et al., 2015; Zhang et al., 2008). The analysis for understanding the 

impact of flooding on pavement performance is very important for efficiently managing 

the road assets in the long run. The flood damage affects the pavement performance in 

various patterns, termed as the delayed effect, jump effect, jump and failure effect, and 

direct failure effect (Lu et al., 2017). These flooding effects are caused due to various flood 

loads such as flood depth, velocity, duration, debris, and contaminants, which cause various 

damages specified in Table 3 (Lu et al., 2018).  
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TABLE 3: Types of load and its effect on the pavement (Adapted from D. Lu et al., 
2018) 

Load type Pavement damage description 

Flood depth Absorption of water and moisture 

Flood duration Absorption of water and moisture 

Flood velocity Force of water causes the removal of materials 

Flood debris Debris carried water reduces surface characteristics 

Flood contaminants Flood contaminants absorption or adhesion 

 

The pavement sections are designed as multi-layer composite systems that transfer 

the traffic load uniformly from the exposed surface layer to the bottom-most subgrade 

layer. Pavements' serviceability is dependent on load distributing characteristics of traffic 

loads. However, flooding and frequent heavy rainfall adversely affect these characteristics. 

The research done by Lu et al. (2018) shows that pavement damage ratio increases as the 

increase in the cycle of flooding and frequent hefty rainfall increases.  

2.5.2 Flood Risk 

The flood risk assessment requires sound scientific and technical analysis to 

minimize the flood loss by preparing an effective flood responding strategy ahead of time. 

The occurrence of any magnitude of a flood is expressed in a 1-percent annual exceeding 

probability (AEP). The 1-percent AEP flood has the 1% probability of being equal to or 

exceeding the flood level or peak in any given year and has an average recurrence of 100 

years and is generally termed a 100-year flood (USGS, 2019). Statistical procedures are 

used to derive the flooding recurrence probability. The height of the water and the quantity 

of streamflow is examined at the stream gauge. The stream gauge is used to derive the 
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flooding recurrence probability by analyzing the annual peak flows measured at the water 

body (USGS, 2019). Generally, it is found that a catastrophic flooding event has less 

recurrence probability than a smaller flooding event; similarly, the recurrence interval of 

catastrophic foods is less than smaller floods (FEMA, 2019)..  

The risk is termed as an undesirable event that will cause loss and damages to life 

and property. The risk of any event can be expressed in terms of the probability of that 

event's occurrence. The probability of an event's occurrence represents the event's 

likelihood, ranging from 0 to 1. The probability of flooding is derived using the following 

techniques (a) statistical analysis of stream-flow records, (b) regional methods, (c) transfer 

methods, (d) empirical equations, and (e) watershed modeling (FEMA, 2019).  

2.5.3 Flooding Events in North Carolina 

North Carolina, located on the Atlantic Seaboard, is regularly affected by tropical 

thunderstorms, causing heavy rainfall and floods. The Okeechobee hurricane (1928), 

Hurricane Floyd (1999), and Hurricane Florence (2018) are some examples of significant 

flooding events that occurred in the state (NWS, 2019). The Okeechobee hurricane in 1928 

was decimated from Puerto Rico, which causes 4 to 9 inches of rainfall in eastern North 

Carolina. In 1999, the hurricane Floyd was decimated near the Cape Verde islands, which 

caused 15 to 20 inches of rainfall in the eastern region of North Carolina. Hurricane 

Florence in 2018 was also decimated from the Cape Verde islands, which caused 

devastating rainfall of 20 to 30 inches in the eastern region of North Carolina (NWS, 2019). 

The weather history of the state of North Carolina shows that various tropical floods 

occurred in the state over time, and the eastern part of North Carolina is the most affected 
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geographical region of the state. Therefore, it is essential to develop a framework that 

shows the effect of flooding on the pavement surface.  

2.5.4 Incorporation flooding in pavement deterioration model 

 This research's primary objective is to propose a framework that shows the flood's 

impact on the composite pavement sections and reflects it in a deterioration model. Khan 

et al. (2014a) had proposed the methodology for incorporating the effect of flooding in the 

deterioration model. However, the deterioration model developed by them used an 

unsophisticated clustering method. This research collected the pavement data from the 

LTPP InfoPave database, which does not contain the flood-affected pavement sections' 

information. Moreover, no reliable data was available, showing the historical relationship 

between flood occurrence and its impact on the pavement’s performance. Therefore, a 

hypothetical flooding event is assumed to occur between 2020 and 2021, and its impact on 

pavements’ roughness was predicted. The flood's impact on pavements’ roughness was 

predicted based on the accumulation of flooded water on the pavement surface. For this, 

the flood recurrence interval was studied, and annual flooding probability was determined 

based on it.  

For deriving the deterioration model at various probabilities of flooding, the Monte 

Carlo simulation was conducted. The actual non-flood TPM and a hypothetical flood TPM 

are generated and used in the Monte Carlo simulation. The effect of a flood can be seen by 

the increment in the pavement surface's IRI value. The increment in the IRI value depends 

on the probability of flood occurrence, i.e., the higher the probability of flood occurrence, 

the higher the IRI's increment. The framework for incorporating the flooding effect in the 

deterioration model is explained in detail in section 3.5 of this document.  
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2.6 Literature Review Summary 

A comprehensive review of the literature was conducted for this thesis work. The 

change in pavement condition with respect to time is called pavement deterioration. 

Pavement deterioration is dependent on various parameters such as traffic, environmental, 

geographical, and material. These parameters affect the pavements’ performance and ride 

quality. The roughness (IRI) is the parameter used for calculating the ride quality of the 

pavement. The higher the IRI value, the lesser the ride quality. The IRI is an essential factor 

directly related to the pavement's performance and serviceability index; therefore, it is used 

in this research for developing a pavement deterioration model. The IRI is stochastic in 

nature; therefore, probabilistic methods are required for predicting it accurately.  

Various research was conducted in the past for deriving the pavement deterioration 

models. Generally, two types of pavement deterioration models were found in the literature 

review, i.e., deterministic pavement deterioration models and probabilistic pavement 

deterioration models.  

Deterministic pavement deterioration models are generally based on regression 

analysis, which is relatively simple and easy to use. Most of the pavement management 

system uses deterministic pavement deterioration models. However, these models have few 

disadvantages, such as it does not account for the IRI's uncertain nature, caused due to 

variable traffic loading and environmental conditions. Also, it requires a large amount of 

data sets for accurate deterioration prediction.  

Probabilistic pavement prediction models use the Markov Chain theory for 

developing the deterioration model. The advantage of using the probabilistic pavement 

deterioration model is that it accounts for the IRI's uncertain behavior caused due to 
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variable traffic loading and environmental factors. Moreover, the data required for 

developing a deterioration model is less compared to the deterministic models. In this 

research, the pavement deterioration model was developed using the probabilistic method 

for accounting for the IRI's uncertain nature.  

The Markov Chain model is probabilistic, which accounts for the stochastic nature 

of the pavement's roughness. The Markov process consists of TPMs that predict the change 

in pavement conditions from one state to another based on the current state and not the 

state before it. The Markov chain time-independent and time-dependent TPMs can be used 

for deriving the pavement deterioration model. The TPMs can be derived using five 

methods specified earlier in section 2.2.4. The qualitative analysis was conducted on these 

methods by thoroughly analyzing previous literature. The salient features and evaluation 

of all these methods are mentioned in table 2. Based on this evaluation, the percentage 

transition method was the most feasible method for deriving TPMs as it addresses different 

explanatory variables used in developing a pavement deterioration model.  

Cluster analysis or clustering is a statistical algorithm used to group a set of data 

objects into clusters so that the properties of data objects in a cluster are similar. In this 

research, K-means clustering was used to group the pavement sections based on their traffic 

loading, temperature, and precipitation data. In many research, the grouping of pavement 

sections was done in an unsophisticated manner. The selection of clusters' numbers was 

made based on the judgment for evenly distributing sections in each cluster.  

In this research, the LTPP InfoPave database was used for extracting the historical 

data from 2015 to 2019 of the pavement sections. The extracted data contains historical 

information of pavement attributes such as traffic loading, temperature, precipitation, and 
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roughness. After collecting the data, the K-means clustering algorithm was used to group 

this data into three clusters.  

In this century, climate change results in extreme weather events such as excessive 

temperature, drought, floods, excessive snow, and various other unanticipated natural 

events. The pavement infrastructure system throughout the world is experiencing 

performance loss due to extreme weather events. This research proposes a framework for 

evaluating the change in pavements’ roughness due to the flooding event's occurrence and 

representing it through a deterioration model. Due unavailability of the flood-affected 

pavement data, a hypothetical flooding event is assumed to occur between 2020 and 2021, 

and its impact on pavements’ roughness is predicted.. The actual non-flood TPM and a 

hypothetical flood TPM are generated and used in the Monte Carlo simulation to predict 

pavements’ deterioration at the various probability of flood. 

Most research does not use clustering techniques and developed family-based 

prediction models. However, clustering is an effective mathematical tool that can be used 

for efficient data analysis when less data is available. Moreover, very few research was 

conducted on developing a probabilistic pavement deterioration model for composite 

pavements. The LTPP database was not used to derive a roughness-based probabilistic 

pavement deterioration model by incorporating flooding effects. Therefore, a study was 

required that proposes a deterioration model by addressing all these issues. Also, the states' 

transportation department can utilize the deterioration model to improve its pavement 

management system. The methodology utilized in this research is thoroughly explained in 

chapter 3 of this document.  
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CHAPTER 3: METHODOLOGY  
 
 

In this research, a cluster-based probabilistic pavement deterioration model was 

developed. This model is a roughness-based deterioration model as roughness is the most 

significant factor contributing to pavements’ serviceability. The rate of deterioration in 

pavement accelerates when extreme weather events such as floods occur. Therefore, this 

research also proposes a framework to incorporate the effect of flooding in the deterioration 

model. This framework will help predict the pavement's roughness based on the probability 

of flood occurrence. In this section, the methodology utilized to develop a cluster-based 

deterioration model and the incorporation of flooding in the deterioration model is 

explained in detail. The overview of the methodology is shown in figure 9.  

 

FIGURE 9: Overall methodology of the analysis 
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3.1 Data collection  

The development of a distress-based deterioration model requires the historical 

distress data of the pavement. Thus, the entire pavement is divided into smaller sections; 

then, the historical data is extracted for these sections. These sections' distress data are 

analyzed and then combined for deriving a distress-based deterioration model for the entire 

pavement. A similar kind of methodology was used for deriving the deterioration model in 

this research.  

The deterioration model was developed using the roughness (IRI) characteristics of the 

pavement in this research. The historical data such as IRI, traffic loading, temperature, and 

precipitation of 102 pavement sections from 2015 to 2019 was extracted from the LTPP 

database for the analysis purpose. The clustering technique is a robust tool used to 

determine patterns and structures in labeled and unlabeled datasets (Sandra & Sarkar, 

2015). The data extracted from the LTPP test sections were not a part of the same roadway 

and belonged to different roadways. These test sections are also situated in different 

geographical and environmental locations, and section-wise, IRI data of one entire 

pavement was not available for analysis. Moreover, a single deterioration model developed 

for a variety of pavements underestimates or overestimates the pavement condition 

(Sunitha et al., 2012). Due to these issues, the clustering algorithm was applied to 

determine patterns within these pavement sections.  

The clustering algorithm was used to group pavement sections into different clusters based 

on their traffic loading, temperature, and precipitation characteristics. The sections within 

a cluster are homogeneous while heterogeneous with the sections from different clusters. 

Therefore, it was assumed that the combination of the pavement sections in each cluster 
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represents one entire pavement. The deterioration model of each cluster predicts the future 

condition of one entire pavement.  

3.1.1 Pavement Section Selection & Data Preparation  

Five years of historical data from 2015 to 2019 were obtained to develop a 

probabilistic pavement deterioration model that incorporates flooding. A case study was 

then conducted on 102 pavement sections located in the United States' eastern region. The 

selection of pavement sections for the analysis was made based on three criteria: 

• The pavement sections should be of asphalt concrete or composite pavement, 

• Sections must be in an active monitoring condition, and 

• After 2015 no maintenance was conducted on these sections.  

The composite pavement sections in this research are consist of an asphalt concrete 

layer over a Portland cement concrete layer. The typical cross-section of composite 

pavement is shown in figure 10. 

 

 

FIGURE 10 Typical cross-section of a composite test section (Adapted from LTPP 
InfoPave database) 

After applying these filters, historical data from 2015 to 2019 was collected for 102 

pavement sections from the LTPP database. The historical data of these sections consists 

of parameters that are: traffic (AADTT), temperature (°F), precipitation (in), and roughness 
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(m/km). The data extraction process was conducted by using the 'data' tab on the LTPP 

InfoPave website. Filtering tools available on the LTPP website was used for selecting the 

data of interest. The data was extracted in the form of a downloadable Microsoft Excel file 

from the database. The extracted Excel sheet contains a basic section overview, history of 

the selected section's structure, climate, traffic, and profile information. The data extracted 

from the LTPP database requires manual formatting; therefore, every section's parameters 

were combined in one excel sheet for the analysis. The state-wise section list is shown in 

table 4. The highlighted states in figure 11 represent the geographical location of selected 

pavement sections. 

TABLE 4: State-wise Section List 

 Row State No. of Sections 
1 Alabama 9 
2 Florida 15 
3 Georgia 6 
4 Illinois 1 
5 Indiana 8 
6 Kentucky 1 
7 Maryland 1 
8 Mississippi 7 
9 Missouri 3 
10 North Carolina 17 
11 Ohio 8 
12 Pennsylvania 5 
13 South Carolina 1 
14 Tennessee 3 
15 Virginia 16 
16 West Virginia 1 

Total  102   
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FIGURE 11: Geographical location of selected sections 

3.2 Pavement Section Grouping  

 The selected sections are combined into different groups based on the collected 

historical data from the LTPP InfoPave database. These different groups are called clusters, 

and the process of dividing pavement sections into different clusters is known as clustering. 

The clustering process is an unsupervised algorithm in which there is no prior knowledge 

about the relationship between the observations. Clustering's aim in this research was to 

combine the pavement sections into various clusters based on their traffic loading, 

temperature, and precipitation characteristics.  

Various clustering algorithms were found in the literature. Overall, the K-means 

clustering algorithm is easy to apply, accurate, and effective in handling a large amount of 

data (Alashwal et al., 2019; Perera et al., 1998; Sandra & Sarkar, 2015; Sunitha et al., 

2012). Also, the data collected from the LTPP database was unlabeled and not in defined 

categories or groups. Therefore, the K-means clustering algorithm was found suitable for 
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this kind of dataset and further used in this research for analysis. This algorithm's main 

objective was to find and assign groups to the dataset.  

The variable K represents the number of groups. Selecting the optimal number of 

clusters is a subjective topic and can be done based on the available data, analysis’s 

requirement, and judgment (Karimzadeh et al., 2020b). In this research, the optimal number 

of clusters was derived based on evenly distributing pavement sections into each cluster. It 

was assumed that each cluster represents one entire pavement. Therefore, three separate 

deterioration models were developed for three clusters (i.e., Cluster-based deterioration 

models). 

Two datasets were created containing traffic, precipitation, temperature, and IRI 

information of all the 102 pavement sections. The first dataset contains the parameters' 

actual values, while the other dataset contains the scaled value between 0 to 1 of these 

parameters. The dataset, which contains scaled values of the parameter, was used for 

clustering. Python was used for applying the K-means clustering algorithm for the grouping 

of sections into different clusters. The dataset containing the scaled value of the parameters 

was imported into Python. The clusters were then generated using the K-means clustering 

algorithm based on traffic, temperature, and precipitation data from 2015 to 2019. In total, 

the clustering algorithm was applied on fifteen pavement attributes (3 characteristics x 5 

years). The results derived from the clustering analysis were that the pavement sections are 

grouped into three different clusters named CL_0, CL_1 & CL_2. These clusters were 

assumed to represent three different pavements as a whole, and the deterioration model of 

these clusters was developed separately. The scatterplot of sections representing its cluster 

identity was plotted using their geographical location and is shown in figure 12. 
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FIGURE 12: Cluster identity and geographical location of sections 

 
3.2.1 Clustered data visualization  

 In the cluster CL_0, CL_1, and CL_2, there are 44, 14, and 44 pavement sections, 

respectively. Each cluster comprises of sections from various states of the United States. 

Based on each cluster's traffic, temperature, and precipitation characteristics, a cluster 

summary table was prepared and shown in table 5. This summary table was then further 

used to define each cluster's properties, and a name code was assigned to each cluster. The 

properties and name code of these clusters are: 

• The cluster CL_0 characterized moderate traffic loading, low temperature, and high 

precipitation conditions and represented by the code MTr_LTe_HP 

• The cluster CL_1 characterized low traffic loading, high temperature, and low 

precipitation conditions and represented by the code LTr_HTe_LP. 
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• The cluster CL_2 characterized high traffic, moderate temperature, and moderate 

precipitation conditions and represented by the code HTr_MTe_MP 

TABLE 5: Section summary of each cluster 

Cluster 
Name 

Number 
of 

Sections 

Traffic (AADTT) Temperature (°F) Precipitation (In) 

Max Min Range Max Min Range Max Min Range 

CL_0 44 4748.0 4.0 4744.0 65.8 45.1 20.7 91.3 40.7 50.6 

CL_1 14 163.0 62.0 101.0 77.2 71.6 5.6 63.5 31.3 32.2 

CL_2 44 5731.0 17.0 5714.0 69.8 52.5 17.3 77.2 34.0 43.3 

 

 

FIGURE 13: State-wise section list of each cluster  

The state-wise section list of each cluster is shown in figure 13. The IRI data of 

each cluster was analyzed to understand its data quality and validate it. For this, the IRI 
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distribution chart and its descriptive statistic were prepared and shown in table 6. These 

visuals show the interquartile IRI value of pavement sections each year. The IRI value of 

the 25th, 50th, and 75th percentile of the pavement sections in 2015 are 0.802, 0.963, and 

1.206 m/km, while for 2016, these values are 0.837, 1.012, and 1.262 m/km, respectively. 

As per the descriptive statistics, sections' IRI value in the specified interquartile range tends 

to increase every year. It suggests that the pavement sections tend to shift towards the right 

side of the curve, representing higher IRI values. Higher IRI values represent deterioration 

in pavement sections. Hence, the IRI data collected showed pavement deterioration and 

was suitable for developing a deterioration model. The IRI distribution for cluster CL_2 is 

shown in table 6.  After completing the clustering analysis and grouping pavement sections, 

the Markov Chain analysis was performed on these clusters to derive a deterioration model.  

TABLE 6: IRI distribution chart and descriptive statistics of cluster CL_2 

Distribution Charts Descriptive Statistics 
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Distribution Charts Descriptive Statistics 

  

  

  

3.3 Markov Chain Analysis 

 This research intends to develop a probabilistic pavement deterioration model and 

integrate flooding in the model. The Markov Chain analysis is the basis on which the 

intended model was developed. The Markov Chain analysis comprises developing four 

matrices: IRI distribution table, transition matrix, transition probability matrix, and 

probability distribution matrix. First, the IRI distribution table was created, and then the 

TABLE 6 (Contd.): IRI distribution chart and descriptive statistics of cluster CL_2 
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other three matrices were developed based on it. The process acquired for developing these 

matrices is explained below.  

3.3.1 Development of Matrices 

1. IRI Distribution Table   

The IRI distribution table was prepared by analyzing each section's historical IRI 

data and then grouping it into their respective IRI bucket each year. A bucket is the IRI 

range value in m/km. For example, the IRI range of 0.5 to 1.0 m/km can be termed as the 

IRI bucket range. The derivation of the IRI bucket range was based on the following 

reasons:  

• Pavement sections generally deteriorate with the increment in the IRI value within 

the range of 0.10 to 0.25 m/km every year (Sayers, 1998),  

• The maximum number of pavement sections in each cluster falls within the IRI 

range of 0.5 to 1.75 m/km; therefore, for uniformly distributing sections into each 

range bucket, the selection of range buckets was made, and 

• Due to the low range of the IRI bucket, small changes in the sections were 

monitored.   

The IRI bucket range was selected 0.25 m/km for cluster CL_0 & CL_2, while 0.2 

m/km for cluster CL_1. In cluster CL_1, more than 90% of the sections have the IRI value 

less than 1.1 m/km, and the number of sections in this cluster is less compared to the other 

two clusters. Therefore, for uniformly distributing sections in each bucket, the IRI range 

bucket of the cluster CL_1 was selected 0.2 m/km. Sections in the IRI distribution table 

formed the basis of developing all three matrices specified earlier. 
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The IRI distribution table consists of six columns. The first column represents the 

IRI bucket range in m/km units. The second column represents the number of sections, 

which is divided into five sub-sections representing the number of sections in five different 

years from 2015 to 2019. The third column represents the total sections, calculated by 

adding the number of sections each year in a particular range bucket. The fourth column 

represents the percentage of sections, calculated by taking the summation of total sections 

in each range bucket and then dividing it by the sum of total sections row. The fifth row 

represents the cumulative percentage of the sections, calculated by adding the percentage 

value of the section in each range bucket to the sum of all of the previous percentage values. 

The sixth row represents the lower end range of the bucket. The IRI distribution table for 

all the clusters is shown in tables 7, 8, and 9.  

For example, in table 7, there are eight sections in the range bucket of 0.5 to 0.75 

m/km in 2015, while six sections in 2017 in the same bucket. The IRI distribution table 

shows that the number of pavement sections tends to shift in the higher IRI range bucket 

as the time increases. This trend indicates that the IRI of pavement sections is deteriorating 

with time.  

TABLE 7: IRI Distribution table for cluster CL_0 

IRI Range  
(m/km) 

Number of Sections Total 
Sections 

Percent 
Section 

Cumulati
ve 

Percent 

Lower 
Limit 2015 2016 2017 2018 2019 

0.500   -   0.750 8 8 6 2 2 26 0.118 0.000 0.500 

0.751   -   1.000 15 10 6 2 2 35 0.159 0.118 0.751 

1.001   -   1.250 8 11 9 8 7 43 0.195 0.277 1.001 

1.251   -   1.500 4 3 9 11 3 30 0.136 0.473 1.251 

1.501   -   1.750 3 5 4 8 12 32 0.145 0.609 1.501 
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IRI Range  
(m/km) 

Number of Sections Total 
Sections 

Percent 
Section 

Cumulati
ve 

Percent 

Lower 
Limit 2015 2016 2017 2018 2019 

1.751   -   2.000 5 4 6 5 7 27 0.123 0.755 1.751 

2.001   -   2.250 1 2 3 5 4 15 0.068 0.877 2.001 

2.251   -   2.500 0 1 0 1 2 4 0.018 0.945 2.251 

2.501   -   2.750 0 0 1 2 3 6 0.027 0.964 2.501 

2.751   -   3.000 0 0 0 0 2 2 0.009 0.991 2.751 

Total 44 44 44 44 44 220 1.000 1.000  

 

TABLE 8: IRI Distribution table for cluster CL_1 

IRI Range  
(m/km) 

Number of Sections Total 
Sections 

Percent 
Section 

Cumulati
ve 

Percent 

Lower 
Limit 2015 2016 2017 2018 2019 

0.500 - 0.700 13 11 8 3 1 36 0.514 0.000 0.500 

0.701 - 0.900 0 2 4 8 10 24 0.343 0.514 0.701 

0.901 - 1.100 1 1 2 0 0 4 0.057 0.857 0.901 

1.101 - 1.300 0 0 0 2 2 4 0.057 0.914 1.101 

1.301 - 1.500 0 0 0 1 0 1 0.014 0.971 1.301 

1.501 - 1.700 0 0 0 0 1 1 0.014 0.986 1.501 

Total 14 14 14 14 14 70 1 1.000  

 

TABLE 9: IRI Distribution table for cluster CL_2 

IRI Range  
(m/km) 

Number of Sections Total 
Sections 

Percent 
Section 

Cumulati
ve 

Percent 

Lower 
Limit 2015 2016 2017 2018 2019 

0.500 - 0.750 8 7 5 2 1 23 0.105 0.000 0.500 

0.751 – 1.000 16 12 11 8 5 52 0.236 0.105 0.751 

1.001 - 1.250 9 10 12 11 9 51 0.232 0.341 1.001 

1.251 - 1.500 7 8 5 7 8 35 0.159 0.573 1.251 

TABLE 7 (Contd.): IRI Distribution table for cluster CL_0 
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IRI Range  
(m/km) 

Number of Sections Total 
Sections 

Percent 
Section 

Cumulati
ve 

Percent 

Lower 
Limit 2015 2016 2017 2018 2019 

1.501 - 1.750 1 2 5  6 22 0.100 0.732 1.501 

1.751 – 2.000 1 2 2 3 6 14 0.064 0.832 1.751 

2.001 - 2.250 1 2 1 2 4 10 0.045 0.895 2.001 

2.251 - 2.500 1 1 2 2 2 8 0.036 0.941 2.251 

2.501 - 2.750 0 0 1 1 1 3 0.014 0.977 2.501 

2.751 – 3.000 0 0 0 0 2 2 0.009 0.991 2.751 

Total 44 44 44 44 44 220 1.000 1.000  

 
2. Transition Matrix 

The transition matrix is an m x m matrix, where m represents the number of IRI range 

buckets. This matrix is prepared by noting the pavement sections' transition from one IRI 

bucket range to another in the next year. Overall, the transition matrix represents the 

number of sections that will change its IRI value from one range bucket to another in the 

next year. The IRI data in each cluster were analyzed and grouped into their respective IRI 

range bucket for developing the transition matrix. The IRI range bucket was specifically 

selected to show the section's possible transition point and reflect it in the deterioration 

model. The number of IRI range buckets for cluster CL_0 & CL_2 is 10, while for cluster 

CL_1 is 6. Therefore, a ten by ten transition matrix was developed for CL_0 & CL_2, and 

a six by six transition matrix was developed for CL_1. In total, three transition matrices 

were developed.  

The transition matrix was developed using the five years of IRI data from 2015 to 

2019 of each cluster's sections. The IRI data were combined into four groups which were 

representing the change in IRI between each consecutive year. The four-year groups were: 

TABLE 9 (Contd.): IRI Distribution table for cluster CL_2 
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2015-2016, 2016-2017, 2017-2018, and 2018-2019. The pavement sections that show 

improvement in the condition were not considered in the analysis because data showing 

such a decrease in IRI value without any maintenance is not realistic for pavement 

deterioration. The transition matrix for each cluster is shown in tables  10, 11 & 12. These 

tables represent the deterioration of pavement sections. Each cell's values represent the 

number of sections that transitioned its state from one IRI bucket range to another in the 

next year. This matrix satisfies the requirements of the Markov property. Therefore, it was 

further used in developing the Markov Chain prediction model.  

In tables 10 to 12, the cells showing a zero represent no transition of pavement 

sections in this IRI bucket range for the next year. For example, in table 10, 3 pavement 

sections transitioned from the IRI bucket range of 0.5-0.75 m/km to 0.751-1.0 m/km range, 

while one sections transitioned from 0.5-0.75 m/km to 1.0-1.250 m/km range. The 

computer program was written on Microsoft Visual Basic for developing a transition 

matrix for each cluster. This computer program was used because the data collected from 

the LTPP database was in Excel format, and MS Visual Basic can be used efficiently on 

Excel sheets. This transition matrix was further used in developing the Markovian Chain 

transition probability matrix. 

TABLE 10: Transition Matrix for the Cluster CL_0 

IRI Bucket 
Range 
(m/km) 

Pavement section transition details 

Number of sections in next year 

Current Year 
IRI Bucket 

0.500 
- 

0.750 

0.751 
- 

1.000 

1.001 
- 

1.250 

1.251 
- 

1.500 

1.501 
- 

1.750 

1.751 
- 

2.000 

2.001 
- 

2.250 

2.251 
- 

2.500 

2.501 
- 

2.750 

2.751 
- 

3.000 
Total 

0.500 - 0.750 16 3 1 0 2 0 0 0 0 0 22 

0.751 - 1.000 0 17 9 4 1 2 0 0 0 0 33 
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IRI Bucket 
Range 
(m/km) 

Pavement section transition details 

Number of sections in next year 

Current Year 
IRI Bucket 

0.500 
- 

0.750 

0.751 
- 

1.000 

1.001 
- 

1.250 

1.251 
- 

1.500 

1.501 
- 

1.750 

1.751 
- 

2.000 

2.001 
- 

2.250 

2.251 
- 

2.500 

2.501 
- 

2.750 

2.751 
- 

3.000 
Total 

1.001 - 1.250 0 0 24 9 2 0 1 0 0 0 36 

1.251 - 1.500 0 0 1 12 11 1 2 0 0 0 27 

1.501 - 1.750 0 0 0 1 13 6 0 0 0 0 20 

1.751 - 2.000 0 0 0 0 0 13 5 1 1 0 20 

2.001 - 2.250 0 0 0 0 0 0 6 3 1 1 11 

2.251 - 2.500 0 0 0 0 0 0 0 0 3 2 5 

2.501 - 2.750 0 0 0 0 0 0 0 0 2 1 3 

2.751 - 3.000 0 0 0 0 0 0 0 0 0 2 2 

TABLE 11: Transition Matrix for the Cluster CL_1 

IRI Bucket 
Range (m/km) 

Pavement section transition details 

Number of sections in next year 

Current Year 
IRI Bucket 

0.500  
-  

0.700 

0.701  
-  

0.900 

0.901 
 -  

1.100 

1.101  
-  

1.300 

1.301 
 - 

 1.500 

1.501  
-  

1.700 
Total 

0.500 - 0.700 23 11 0 0 0 0 34 

0.701 - 0.900 0 13 1 0 0 0 14 

0.901 - 1.100 0 0 2 2 0 0 4 

1.101 - 1.300 0 0 0 1 1 0 2 

1.301 - 1.500 0 0 0 0 0 1 1 

1.501 - 1.700 0 0 0 0 0 1 1 

 

TABLE 10 (Contd.): Transition Matrix for the Cluster CL_0 
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TABLE 12: Transition Matrix for the Cluster CL_2 

IRI Bucket 
Range 
(m/km) 

Pavement section transition details 

Number of sections in next year 

Current Year 
IRI Bucket 

0.500 
- 

0.750 

0.751 
- 

1.000 

1.001 
- 

1.250 

1.251 
- 

1.500 

1.501 
- 

1.750 

1.751 
- 

2.000 

2.001 
- 

2.250 

2.251 
- 

2.500 

2.501 
- 

2.750 

2.751 
- 

3.000 
Total 

0.500 - 0.750 16 5 0 1 2 0 0 0 0 0 24 

0.751 - 1.000 0 34 14 2 0 0 0 0 0 0 50 

1.001 - 1.250 0 0 41 8 0 1 0 0 0 0 50 

1.251 - 1.500 0 0 1 21 6 0 0 0 0 0 28 

1.501 - 1.750 0 0 0 0 13 3 0 0 0 0 16 

1.751 - 2.000 0 0 0 0 0 5 1 0 0 0 6 

2.001 - 2.250 0 0 0 0 0 0 2 0 1 0 3 

2.251 - 2.500 0 0 0 0 0 0 0 4 2 0 6 

2.501 - 2.750 0 0 0 0 0 0 0 0 2 1 3 

2.751 - 3.000 0 0 0 0 0 0 0 0 0 1 1 

 
3. Transition Probability Matrix 

The transition probability matrix was developed using the transition matrix shown 

in tables 10 to 12. The percentage transition method was found feasible for generating the 

Markov Chain transition probability matrix. The reason behind using the percentage 

transition method for deriving TPMs is specified in the literature review section. Equation 

3, specified in the literature review section, was used for deriving the TPMs. A detailed 

explanation of the generation of TPMs using the percentage transition method is explained 

in the literature review section.  

The transition probability matrix for each cluster is shown in tables 13, 14, and 15. 

For example, in table 13, 72.7% of pavement sections remain in the same IRI bucket range 

of 0.5 – 0.75 m/km for the next year, while 13.6% of pavement sections change its state to 



56 
 

0.751-1.000 m/km IRI range bucket. This matrix was further used in developing a 

probability distribution matrix. The TPM generated in this section represents a non-flood 

condition. These TPMs are further used in developing a probabilistic pavement 

deterioration model for non-flood conditions.  

TABLE 13: Transition Probability Matrix of Cluster CL_0 

IRI Bucket 
Range 
(m/km) 

Transition Probability of Sections 

Percentage of Sections in Next Year 

Current Year 
IRI Bucket 

0.500 
- 

0.750 

0.751 
- 

1.000 

1.001 
- 

1.250 

1.251 
- 

1.500 

1.501 
- 

1.750 

1.751 
- 

2.000 

2.001 
- 

2.250 

2.251 
- 

2.500 

2.501 
- 

2.750 

2.751 
- 

3.000 
Total 

0.500 - 0.750 0.727 0.136 0.045 0 0.091 0 0 0 0 0 1 

0.751 - 1.000 0 0.515 0.273 0.121 0.030 0.061 0 0 0 0 1 

1.001 - 1.250 0 0 0.667 0.250 0.056 0 0.028 0 0 0 1 

1.251 - 1.500 0 0 0.037 0.444 0.407 0.037 0.074 0 0 0 1 

1.501 - 1.750 0 0 0 0.050 0.650 0.300 0 0 0 0 1 

1.751 - 2.000 0 0 0 0 0 0.650 0.250 0.050 0.050 0 1 

2.001 - 2.250 0 0 0 0 0 0 0.545 0.273 0.091 0.091 1 

2.251 - 2.500 0 0 0 0 0 0 0 0 0.600 0.400 1 

2.501 - 2.750 0 0 0 0 0 0 0 0 0.667 0.333 1 

2.751 - 3.000 0 0 0 0 0 0 0 0 0 1.000 1 

 

TABLE 14: Transition Probability Matrix of Cluster CL_1 

IRI Bucket 
Range (m/km) 

Transition Probability of Sections 

Percentage of Sections in Next Year 

Current Year 
IRI Bucket 

0.500  
-  

0.700 

0.701  
-  

0.900 

0.901 
 -  

1.100 

1.101  
-  

1.300 

1.301 
 - 

 1.500 

1.501  
-  

1.700 
Total 

0.500 - 0.700 0.676 0.324 0 0 0 0 1 

0.701 - 0.900 0 0.929 0.071 0 0 0 1 
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IRI Bucket 
Range (m/km) 

Transition Probability of Sections 

Percentage of Sections in Next Year 

Current Year 
IRI Bucket 

0.500  
-  

0.700 

0.701  
-  

0.900 

0.901 
 -  

1.100 

1.101  
-  

1.300 

1.301 
 - 

 1.500 

1.501  
-  

1.700 
Total 

0.901 - 1.100 0 0 0.500 0.500 0 0 1 

1.101 - 1.300 0 0 0 0.500 0.500 0 1 

1.301 - 1.500 0 0 0 0 0 1.000 1 

1.501 - 1.700 0 0 0 0 0 1.000 1 

TABLE 15: Transition Probability Matrix of Cluster CL_2 

IRI Bucket 
Range 
(m/km) 

Pavement section transition details for the next year 

Sections in Next Year IRI Bucket 

Current Year 
IRI Bucket 

0.500 
- 

0.750 

0.751 
- 

1.000 

1.001 
- 

1.250 

1.251 
- 

1.500 

1.501 
- 

1.750 

1.751 
- 

2.000 

2.001 
- 

2.250 

2.251 
- 

2.500 

2.501 
- 

2.750 

2.751 
- 

3.000 
Total 

0.500 - 0.750 0.667 0.208 0.000 0.042 0.083 0 0 0 0 0 1 

0.751 - 1.000 0 0.680 0.280 0.040 0 0 0 0 0 0 1 

1.001 - 1.250 0 0 0.820 0.160 0 0.020 0 0 0 0 1 

1.251 - 1.500 0 0 0.036 0.750 0.214 0.000 0 0 0 0 1 

1.501 - 1.750 0 0 0 0 0.813 0.188 0 0 0 0 1 

1.751 - 2.000 0 0 0 0 0 0.833 0.167 0 0 0 1 

2.001 - 2.250 0 0 0 0 0 0 0.667 0 0.333 0 1 

2.251 - 2.500 0 0 0 0 0 0 0 0.667 0.333 0 1 

2.501 - 2.750 0 0 0 0 0 0 0 0 0.667 0.333 1 

2.751 - 3.000 0 0 0 0 0 0 0 0 0 1.000 1 

 
4. Probability Distribution Matrix 

The probability distribution matrix is used to predict the future condition of the 

pavement at any given year. Equation 2 was used for developing the probability 

TABLE 14 (Contd.): Transition Probability Matrix of Cluster CL_1 
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distribution matrix of each cluster. The vector a(0) in equation (2) represents the 

pavement's initial condition. It was assumed that the initial condition of the pavement was 

perfect. The initial state vector a(0) is shown by the matrix below. The variable Pt is the 

transition probability matrix, shown in tables 13 to 15 for each cluster. The probability 

distribution matrix was generated by substituting the variables a(0) and Pt in equation 2. 

The probability distribution matrix for each cluster is shown in tables 16, 17, & 18. 

𝑎(0) = [1 0 0 0 0 0 0 0 0 0] 

TABLE 16: Probability Distribution Matrix for cluster CL_0 

IRI Range 
(m/km) Year1 Year2 Year3 Year4 Year5 

0.500 - 0.750 0.727 0.529 0.385 0.280 0.203 

0.751 - 1.000 0.136 0.169 0.159 0.135 0.107 

1.001 - 1.250 0.045 0.101 0.138 0.156 0.157 

1.251 - 1.500 0.000 0.032 0.067 0.091 0.105 

1.501 - 1.750 0.091 0.132 0.158 0.177 0.191 

1.751 - 2.000 0.000 0.036 0.074 0.108 0.135 

2.001 - 2.250 0.000 0.001 0.015 0.035 0.057 

2.251 - 2.500 0.000 0.000 0.002 0.008 0.015 

2.501 - 2.750 0.000 0.000 0.002 0.008 0.018 

2.751 - 3.000 0.000 0.000 0.000 0.003 0.012 

Total 1.000 1.000 1.000 1.000 1.000 

TABLE 17: Probability Distribution Matrix for cluster CL_1 

IRI Range 
(m/km) Year1 Year2 Year3 Year4 Year5 

0.500 - 0.700 0.676 0.457 0.309 0.209 0.141 

0.701 - 0.900 0.324 0.520 0.631 0.686 0.705 

0.901 - 1.100 0.000 0.023 0.048 0.069 0.083 
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IRI Range 
(m/km) Year1 Year2 Year3 Year4 Year5 

1.101 - 1.300 0.000 0.000 0.012 0.030 0.049 

1.301 - 1.500 0.000 0.000 0.000 0.006 0.015 

1.501 - 1.700 0.000 0.000 0.000 0.000 0.006 

Total 1.000 1.000 1.000 1.000 1.000 

TABLE 18: Probability Distribution Matrix for cluster CL_2 

IRI Range 
(m/km) Year1 Year2 Year3 Year4 Year5 

0.500 - 0.750 0.667 0.444 0.296 0.198 0.132 

0.751 - 1.000 0.208 0.281 0.283 0.254 0.214 

1.001 - 1.250 0.000 0.060 0.130 0.189 0.230 

1.251 - 1.500 0.042 0.067 0.090 0.112 0.133 

1.501 - 1.750 0.083 0.132 0.159 0.173 0.181 

1.751 - 2.000 0.000 0.016 0.039 0.065 0.090 

2.001 - 2.250 0.000 0.000 0.003 0.008 0.016 

2.251 - 2.500 0.000 0.000 0.000 0.000 0.000 

2.501 - 2.750 0.000 0.000 0.000 0.001 0.003 

2.751 - 3.000 0.000 0.000 0.000 0.000 0.000 

Total 1.000 1.000 1.000 1.000 1.000 

 
Tables 16 to 18 represent the prediction of pavement sections in a particular IRI 

range bucket. For example, in table 16, at year 1, 72.7% of sections will remain in the IRI 

range of 0.5-0.75 m/km, while in year 5, 20.3% of the section will remain this IRI range, 

and so on forth. After the generation of these three matrices, the Markovian Chain analysis 

is completed.  These generated matrices were used in developing the deterioration model 

TABLE 17 (Contd.): Probability Distribution Matrix for cluster CL_1 
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for all the clusters. In section 3.5, these matrices were used for proposing a framework for 

incorporating the effect of flooding in the deterioration model.  

3.4 Model Generation  

The main objective of this research is to generate a probabilistic pavement 

deterioration model. The Monte Carlo simulation was used for generating a probabilistic 

deterioration model and achieving this objective. In the Monte Carlo simulation, an 

uncertain variable is assigned multiple values by random variables' intervention to achieve 

multiple results. The multiple results are achieved through numerous trials, and then the 

average of these trials is taken to estimate the most favorable outcome. The random 

variables can be any numerical values that are used in numerous trials to predict the 

outcome. The pavements’ roughness (IRI) is uncertain, as shown in tables 16 to 18, also 

represents different distribution trends shown in table 6. Therefore, the Monte Carlo 

simulation was used to incorporate IRI's probabilistic nature with numerous trials and then 

generate the most favorable deterioration model for each cluster. 

The implementation of the Monte Carlo simulation was done by transforming the 

TPM into cumulative TPM. The cumulative TPM for cluster CL_0 is shown in table 19 

and appendix A1 & A2 for cluster CL_1 and CL_2, respectively. The Monte Carlo 

simulation algorithm was developed in Microsoft Visual Basic. In this simulation, a 

comparison was made between the cumulative TPM values and the random numbers for 

predicting the future IRI values of the pavement sections. In the simulation, 20 uniformly 

distributed random numbers between 0 and 1 were generated for each iteration. This 

process was repeated for 1500 iterations, and in total, 30,000 random numbers were 

generated in the simulation. These random numbers represent the IRI probability and are 
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used to predict future IRI values. In each iteration, the pavement deterioration model for 

the next 20 years was generated, and in total, 1500 deterioration models were generated. 

The model generated in this section is a probabilistic pavement deterioration model, and it 

accounts for non-flooding conditions.  

TABLE 19: Cumulative Transition Probability Matrix for CL_0 

IRI Bucket 
Range (m/km) Cumulative TPM next year 

Current Year 
IRI Bucket 

0.500 
- 

0.750 

0.751 
- 

1.000 

1.001 
- 

1.250 

1.251 
- 

1.500 

1.501 
- 

1.750 

1.751 
- 

2.000 

2.001 
- 

2.250 

2.251 
- 

2.500 

2.501 
- 

2.750 

2.751 
- 

3.000 

0.500 - 0.750 0.7273 0.8636 0.9091 0.9091 1 1 1 1 1 1 

0.751 - 1.000 0 0.5152 0.7879 0.9091 0.9394 1 1 1 1 1 

1.001 - 1.250 0 0 0.6667 0.9167 0.9722 0.9722 1 1 1 1 

1.251 - 1.500 0 0 0.037 0.4815 0.8889 0.9259 1 1 1 1 

1.501 - 1.750 0 0 0 0.05 0.7 1 1 1 1 1 

1.751 - 2.000 0 0 0 0 0 0.65 0.9 0.95 1 1 

2.001 - 2.250 0 0 0 0 0 0 0.5455 0.8182 0.9091 1 

2.251 - 2.500 0 0 0 0 0 0 0 0 0.6 1 

2.501 - 2.750 0 0 0 0 0 0 0 0 0.6667 1 

2.751 - 3.000 0 0 0 0 0 0 0 0 0 1 

 
3.4.1 Monte Carlo simulation logic 

The random number in each iteration was compared with the cumulative TPM 

values. The IRI range bucket of 0.5 to 0.75 m/km represents the perfectly smooth pavement 

surface; therefore, the comparison starts from this IRI range.  The comparison was started 

from 0.5 to 0.75 m/km range, continued towards the right side of the matrix, and stopped 

when the cumulative TPM value was greater than the random number. The IRI range in 

which the comparison stops represents the IRI value of the following year's pavement 

section. The next iteration will start from the same IRI range in which the last iteration 
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stopped. This procedure was continued for each of the 20 random numbers in a trial and 

repeated for 1500 trials. 

For example, in reference to table 19, the first random number generated was 0.52. 

This random number was compared with the cumulative TPM value 0.727 that is located 

in the leftmost corner, in the 0.5 to 0.75 m/km IRI range. The random number 0.52 is less 

than 0.727; therefore, the IRI transition in the first year did not happen, and the IRI value 

of 0.5 was allocated in this trial. If the second next random number generated was 0.75, it 

is compared with 0.727, i.e., 0.5 to 0.75 m/km IRI range. The random number 0.75 is 

greater than 0.727, so the comparison moves to the next IRI range, which is 0.75 to 1.0 

m/km. The cumulative TPM value in this IRI range is 0.864, which is greater than 0.75; 

therefore, the comparison stops here, and the IRI value of 0.751 was allocated for the 

second year. If the third random number again stopped in the same IRI range of 0.75 to 1.0 

m/km, the IRI value allocated for the third year would be 0.752. This kind of pattern will 

continue until a random number stopped in a different IRI range.  

This process will continue for each of the 20 random numbers and 1500 iterations. 

Each iteration generates a pavement deterioration model for the next 20 years; therefore, a 

total of 1500 deterioration models were generated by the simulation. The final deterioration 

model was generated by taking the average of all the IRI values in their respective year in 

each iteration. Each year's average IRI value is plotted against time, in years, to obtain the 

deterioration model. The deterioration model of each cluster is shown in figures 15 to 17. 

These models represent pavements’ deterioration for the non-flooding situation. The 

results derived from the deterioration models are explained in section 4.1.  
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3.5 Flooding Framework  

A framework was designed for incorporating the effect of flooding in the 

deterioration model, and it is explained thoroughly in this section. This framework was 

developed based on these four assumptions:  

• The initial pavement condition is excellent, 

• Roughness is majorly affected by the accumulation of flooded water on the 

pavement surface, 

• Hypothetical flooding event will occur between the year 2020 and 2021, and  

• No rehabilitation work will be done for the next 3-4 years.  

Hence, a pavement deterioration model was developed that shows a change in the 

IRI of the pavement surface at a different flooding probability. A Monte Carlo simulation 

code was developed for incorporating the effect of flooding in the deterioration model. In 

the simulation code, two types of TPMs were used: non-flooding TPM and flooding TPM. 

The non-flooding TPM represents no flood event that occurred in the past, while the flood 

TPM represents flood occurrence in the past. Ideally, both TPMs needed to be developed 

based on the flood-affected pavement sections' historical IRI data. In this research, the 

LTPP InfoPave database was used to collect the pavement sections' historical IRI data from 

2015 to 2019. The LTPP database does not contain the IRI data of flood-affected pavement 

sections. Therefore, it was not possible to develop an actual flood TPM; instead, a 

hypothetical flood TPM was developed for proposing the framework for incorporating 

flooding in the deterioration model. The hypothetical flooding matrix was developed for 

each cluster. The TPMs developed in the previous section are the non-flood TPMs and was 

used in the place of non-flood TPMs in the simulation. The Non-flooding matrix used in 
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the simulation for cluster CL_0 is shown in table 13, while the hypothetical flooding matrix 

for the cluster CL_0 is shown in table 20. Both of these matrices satisfy the Markov Chain 

property.  

TABLE 20: Hypothetical Flooding TPM for cluster CL_0 

IRI Bucket 
Range 
(m/km) 

Percentage of Sections in Next Year 

Current Year 
IRI Bucket 

0.500 
- 

0.750 

0.751 
- 

1.000 

1.001 
- 

1.250 

1.251 
- 

1.500 

1.501 
- 

1.750 

1.751 
- 

2.000 

2.001 
- 

2.250 

2.251 
- 

2.500 

2.501 
- 

2.750 

2.751 
- 

3.000 
Total 

0.500 - 0.750 0.200 0.8 0 0 0 0 0 0 0 0 1 

0.751 - 1.000 0 0.297 0.703 0 0 0 0 0 0 0 1 

1.001 - 1.250 0 0 0.48 0.52 0 0 0 0 0 0 1 

1.251 - 1.500 0 0 0 0.567 0.433 0 0 0 0 0 1 

1.501 - 1.750 0 0 0 0 0.727 0.273 0 0 0 0 1 

1.751 - 2.000 0 0 0 0 0 0.611 0.389 0 0 0 1 

2.001 - 2.250 0 0 0 0 0 0 0.615 0.385 0 0 1 

2.251 - 2.500 0 0 0 0 0 0 0 0.556 0.444 0 1 

2.501 - 2.750 0 0 0 0 0 0 0 0 0.444 0.556 1 

2.751 - 3.000 0 0 0 0 0 0 0 0 0 1 1 

 

The framework assumes that the pavements’ roughness was majorly affected by the 

accumulation of flooded water on the pavement surface. The effect of the magnitude of 

flood on roughness was not considered in this study. For this, the flood recurrence interval 

was studied, and annual flooding probability was determined based on it. The flooding 

event of different recurrence intervals is assumed to occur in the future, which affects the 

pavements' performance. It was assumed that as the annual flooding probability increases, 

the inundation of pavement surface increases, which ultimately results in a higher rate of 
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pavement deterioration. The flooding event with the recurrence interval of annual, 2-years, 

5-years, 10-years, and 20-years was selected for developing a deterioration model. The 

probability associated with the above-specified flooding events is 1, 0.5, 0.2, 0.1, and 0.05, 

respectively. The deterioration model of pavement sections was generated at these 

specified flooding probabilities. The Monte Carlo simulation was used for generating the 

deterioration models. This code was written on MATLAB.  

In the simulation, non-flood TPM and flood TPM used. For cluster CL_0, the two 

TPMs are shown in tables 13 and 20, respectively. An initial pavement condition matrix 

was developed by assuming that the pavement is in excellent condition in the year 2020. 

State vectors representing the transition of the pavement sections into various states were 

generated. Then a set of random numbers are compared with the flooding probability to 

determine if a non-flooding TPM or a flooding-TPM should be utilized for further process. 

The chance of selecting flooding TPM depends upon the chance of flood occurrence. After 

selecting the TPM, a second random variable is generated to estimate the pavement's future 

state. The final pavement state is generated by taking the average of all the simulated states. 

This process is repeated for 10,000 trials and 20 years. At the end of the simulation, the 

deterioration model was generated for different flooding probabilities. The logic of the 

simulation code is shown in figure 14. The deterioration model at different flooding 

probabilities is shown in figures 18, 19, and 20 for each cluster. The results derived from 

this proposed model is explained in section 4.2 of this document.  
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FIGURE 14: Simulation Code logic 
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CHAPTER 4: RESULTS 
 
 

The results derived from the methodology suggested for generating the pavement 

deterioration model in the previous section are illustrated in this section. The deterioration 

model generated was based on the roughness characteristics of the pavement sections. 

Therefore, the results derived from the models are explained in terms of the roughness of 

the pavement. These results are presented in sections 4.1 and 4.2.  

4.1 Results of deterioration model with no-flood 

 The results derived from the probabilistic pavement deterioration model, without 

incorporating the flooding effect, are explained in this section. The generation process of 

these models is explained in section 3.4. The deterioration model for cluster CL_0, CL_1, 

and CL_2 was generated separately. 

The cluster CL_0 was subjected to moderate traffic, low temperature, and high 

precipitation and represented by the code MTr_LTe_HP. The deterioration curve for this 

cluster is shown in figure 15. The trend illustrates that the IRI will increase throughout 20 

years, representing continuous pavement deterioration. From 2020 to 2025, the IRI of these 

sections will increase by the average rate of 0.150 m/km each year; after 2026, it will 

increase by the average rate of 0.135 m/km till 2029; then from 2030, it will increase by 

the average rate of 0.093 every year till 2034; and then from 2034, it will increase by the 

average rate of 0.052 m/km every year till 2039. The increment in the deterioration rate 

will be highest for this cluster compared to the other two clusters. This pattern will be 

shown because the sections are subjected to heavy precipitation and moderate traffic 

loading conditions. Therefore, for initial years, the rate of deterioration is high, and it tends 

to decrease as the age of pavement increases. 
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FIGURE 15: Deterioration Model for cluster CL_0 

The cluster CL_1 was subjected to low traffic loading, high temperature, and low 

precipitation condition and represented by the code LTr_HTe_LP. The deterioration curve 

for this cluster is shown in figure 16. This cluster's roughness value will start at 0.50 m/km 

in 2020 and reach 1.15 m/km in 2039. The trend illustrates that the IRI will increase 

throughout 20 years, representing continuous pavement deterioration. From 2020 to 2025, 

the IRI of these sections will increase by the average rate of 0.02 m/km each year; after 

2026, it will increase by the average rate of 0.043 m/km till 2034; and then from 2035, it 

will increase by 0.030 m/km every year until 2039. Initially, from 2020 to 2025, this 

cluster's deterioration rate is low compared to the other two clusters because the sections 

of this cluster are subjected to lower traffic and precipitation. However, the deterioration 

rate will increase as the pavement age increases because these sections are subjected to 

high temperatures.  
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FIGURE 16: Deterioration Model for cluster CL_1 

 
The cluster CL_2 was subjected to high traffic loading, moderate temperature, and 

moderate precipitation condition and represented by the code HTr_MTe_MP. The 

deterioration curve for this cluster is shown in figure 17. This cluster's roughness value will 

start at 0.585 m/km in 2020 and reach 2.005 m/km in 2039. The trend illustrates that the 

IRI will increase throughout 20 years, representing continuous pavement deterioration. 

From 2020 to 2026, the IRI will increase by the average rate of 0.103 m/km each year; 

after 2026, it will increase by the average rate of 0.067 m/km till 2032; and then from 2033, 

it will increase by the average rate of 0.057 m/km each year until 2039. Usually, during the 

initial years, the rate of pavement deterioration is maximum. These sections are also 

subjected to heavy loading conditions; therefore, this trend aligns with expectations. The 

rate of deterioration of this cluster will be high from 2020 to 2026, and then it will start 

decreasing as the year progresses. This cluster represents the classic example of a newly 

constructed pavement subjected to heavy traffic loading and moderate climatic conditions. 
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These kind of pavements tend to deteriorate faster just after its construction, and the 

deterioration rate tends to decrease as the age of pavement increases. 

 

 
 

FIGURE 17: Deterioration model for cluster CL_2 

 

Generally, the pavement tends to deteriorate faster in initial years if subjected to 

heavy or moderate traffic loading and precipitation condition. This rate will tend to 

decrease as the age of pavement increases. Similar kinds of trends were shown by the 

deterioration model of cluster CL_0 and CL_2. If the pavement sections are subjected to 

low traffic loading and low precipitation, the rate of deterioration for initial years is less, 

but it will tend to increase as the age of pavement increases. The deterioration model of 

cluster CL_1 showed a similar kind of trend. 
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4.2 Results of deterioration model with flood 

The results derived from the probabilistic pavement deterioration model by 

incorporating flooding are explained in this section. The generation process of these models 

is explained in section 3.5. The graphs in figures 18, 19, and 20 illustrate the expected 

change in pavement's roughness by predicting a jump in the IRI value due to hypothetical 

flooding events. These graphs represent pavement deterioration envelop at different 

flooding probabilities and help to understand the framework proposed in section 3.5 of this 

document. 

Figures 18, 19, and 20 show the predicted roughness of sections in cluster CL_0, 

CL_1, and CL_2, respectively, at different flooding probabilities. The graphs were 

prepared by assuming that flooding events will occur between 2020 to 2021, and the impact 

will be represented by the increment in the sections' roughness. The graph illustrates that 

the impact of flooding on the pavement's roughness is maximum when the probability of 

flooding is maximum. In other words, the higher the probability of flooding, the higher the 

inundation of the pavement surface, which ultimately results in a higher rate of pavement 

deterioration. For example, in figure 18, the roughness of pavement in 2021 will be 1.603 

m/km at a 5% probability of flood, while it will be 1.747 m/km at a 50 % probability of 

flood. The Monte Carlo simulation was used to predict the results. The impact of flooding 

on pavement sections is maximum initially; therefore, the deterioration rate is maximum 

for the initial period. The roughness-based deterioration model tends to decrease when 

post-flood maintenance is applied of the sections; therefore, roughness prediction for the 

first few years was shown at different flooding probabilities. The flood's maximum impact 

is shown in 2021 because it occurred between 2020 and 2021, in all the figures. This impact 
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tends to reduce as time increases. This framework can be utilized when the actual flooding 

data is available to predict the pavement performance for post-flood times and prepare the 

maintenance budget.  

 

FIGURE 18: Pavement deterioration model at different probability of flooding for CL_0 

 

FIGURE 19: Pavement deterioration model at different probability of flooding for CL_1 

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

2020 2021 2022 2023 2024

IR
I (

m
/k

m
)

Years

Impact of Flooding on CL_0

FP_0% FP_5% FP_10% FP_20% FP_50% FP_100%

0.000

0.500

1.000

1.500

2.000

2.500

3.000

2020 2021 2022 2023 2024

IR
I (

m
/k

m
)

Years

Impact of Flooding on CL_1 

FP_0% FP_5% FP_10% FP_20% FP_50% FP_100%



73 
 

 
 

FIGURE 20: Pavement deterioration model at different probability of flooding for CL_2 
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CHAPTER 5: CONCLUSION 
 
 
5.1 Necessity of this research   

The primary objective of this research was to develop a cluster-based probabilistic 

pavement deterioration model for composite pavements. Also, to propose a framework for 

incorporating the effect of flooding in the pavement deterioration model. The research 

objective was developed based on the gaps identified in the literature review. A thorough 

literature review was conducted and documented previously in chapter 2. In the literature 

review, limited studies have focused on using the LTPP InfoPave database for developing 

a probabilistic pavement deterioration model and integrate the effect of flooding for 

composite pavements. 

Extreme weather events such as flooding and frequent heavy rainfall cause 

increment in the deterioration rate and a significant reduction in the strength of pavement 

sections; however, few studies were conducted to address this issue. Regression-based 

deterministic deterioration models were developed in previous research that does not 

address flooding in the model. Therefore, a study was required that proposes a deterioration 

model by addressing all these issues so that the states' transportation department can utilize 

this model to improve their pavement management system. It is believed that the current 

study addresses these issues appropriately, and the framework can be utilized when the 

actual flooding data will be available.  

5.2 Findings of this research 

The methodology utilized for achieving the objective is thoroughly explained in 

chapter 3 of this document. In the current study, the cluster-based pavement deterioration 

model was developed using the Markov Chain analysis, and a framework is proposed to 
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incorporate the effect of flooding in a deterioration model. Historical roughness (IRI), 

traffic loading, temperature, and precipitation data from 2015 to 2019 were used to develop 

the model. The LTPP InfoPave database was used for extracting the data of all these 

parameters. A total of 102 pavement sections from 16 different states of the USA was 

selected for the analysis. These sections were divided into three groups known as clusters 

with the help of the K-means clustering technique. These pavement sections are clustered 

based on each section's traffic loading, temperature, and precipitation characteristics, and 

the clusters are named CL_0, CL_1, and CL_2. The deterioration model for all three 

clusters was developed separately based on each section's roughness. The pavement's 

roughness is stochastic; therefore, the Markov Chain analysis was used to account for this 

behavior. The IRI vs. time data was prepared for each cluster, and then Markov Chain's 

analysis was applied for preparing four matrices, namely, IRI distribution table, transition 

matrix, transition probability matrix, and probability distribution matrix. These matrices 

were further used in the Monte Carlo simulation to generate each cluster's deterioration 

model for the next 20 years. A framework was proposed for incorporating the effect of 

flooding in the deterioration model. In this framework, two types of TPMs were generated: 

non-flood TPM and flood TPM. These TPMs are further used in the Monte Carlo 

simulation for generating a deterioration model of each cluster, based on the probability of 

flood reoccurrence. The results achieved in this study are explained thoroughly in chapter 

4 of this document.  

5.3 Limitations of this research  

The proposed model of this study was conducted using limited data. It is believed 

that the increase in the quantity of data will improve the accuracy of this data-driven model. 
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In addition, the actual roughness data of flood-affected pavement sections were not 

available; therefore, a hypothetical flooding transition probability matrix was developed to 

understand the framework's gist. The framework is proposed by assuming that no 

maintenance work on the pavements will be conducted after the flooding event, and the 

magnitude of the flood was not considered in the framework.  

5.4 Future work suggestion 

In the future, when the predicted sections are observed, the pavement's actual 

roughness data can be compared statistically with the proposed model's data by applying a 

t-test. Also, the actual roughness data of flood-affected pavement sections must be 

collected for generating actual flooding TPM and then validate it with the field data.  

5.5 Expected application of the study  

The transportation departments can use this framework to predict pavement's future 

condition based on the probability of the flood-occurrence. This framework can be utilized 

when the actual flooding data is available to predict the pavement performance for post-

flood times and prepare the maintenance budget. 
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APPENDIX 
 
 
Appendix A1 

Cumulative TPM cluster CL_1 

Cumulative IRI TPM Table CL_1 
IRI Range (m/km) Cumulative TPM next year 

Current Year IRI 
Bucket 

0.500 - 
0.700 

0.701 - 
0.900 

0.901 - 
1.100 

1.101 - 
1.300 

1.301 - 
1.500 

1.501 - 
1.700 

0.500 - 0.700 0.676 1.000 1 1 1 1 
0.701 - 0.900 0 0.929 1.000 1 1 1 
0.901 - 1.100 0 0 0.500 1.000 1 1 
1.101 - 1.300 0 0 0 0.500 1.000 1 
1.301 - 1.500 0 0 0 0 0 1.000 
1.501 - 1.700 0 0 0 0 0 1.000 

 
 
Appendix A2 

Cumulative TPM cluster CL_2 

Cumulative Transition Probability Matrix CL_2 
IRI Range 

(m/km) Cumulative TPM next year 

Current 
0.500 

- 
0.750 

0.751 
- 

1.000 

1.001 
- 

1.250 

1.251 
- 

1.500 

1.501 
- 

1.750 

1.751 
- 

2.000 

2.001 
- 

2.250 

2.251 
- 

2.500 

2.501 
- 

2.750 

2.751 
- 

3.000 
0.500 - 0.750 0.6667 0.875 0.875 0.9167 1 1 1 1 1 1 
0.751 - 1.000 0 0.68 0.96 1 1 1 1 1 1 1 
1.001 - 1.250 0 0 0.82 0.98 0.98 1 1 1 1 1 
1.251 - 1.500 0 0 0.0357 0.7857 1 1 1 1 1 1 
1.501 - 1.750 0 0 0 0 0.8125 1 1 1 1 1 
1.751 - 2.000 0 0 0 0 0 0.8333 1 1 1 1 
2.001 - 2.250 0 0 0 0 0 0 0.6667 0.6667 1 1 
2.251 - 2.500 0 0 0 0 0 0 0 0.6667 1 1 
2.501 - 2.750 0 0 0 0 0 0 0 0 0.6667 1 
2.751 - 3.000 0 0 0 0 0 0 0 0 0 1 
 


