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ABSTRACT 

SARAH HARRISON. The In-vivo Evolution of Burkholderia multivorans in a Cystic Fibrosis 
Patient. (Under the direction of DR. TODD R. STECK)  

Burkholderia multivorans is an opportunistic pathogen that poses a health risk to patients with 

cystic fibrosis (CF). The use of broad-range antibiotics to combat chronic bacterial lung infections has 

led to the evolution of antibiotic-resistant and multi-drug resistant Burkholderia multivorans (ABR and 

MDR). Understanding how these bacteria respond genetically to antibiotic therapy would be useful in 

optimizing drug therapy as well as to provide insight into how an established, complex, and chronic 

bacterial community adapts in response to multiple drug treatments. To this extent, we analyzed the in 

vivo evolution of B. multivorans during multiple pulmonary exacerbations over three years in a CF 

patient who underwent extensive antibiotic treatment. We found the population diversified into at least 

two coexisting lineages with an average of 2.7 SNPs/year. Within these lineages, we found that 12 

genes had a significant excess of mutations. Importantly, we observed an excess of mutations in the 

dacB gene and one in ampD, in strains isolated following IV administration of ceftazidime (CAZ) 

during a 2-week hospitalization. Both dacB and ampD have previously been reported to regulate β-

lactamase expression, where deactivating mutants leads to hyper-inducible AmpC and/or PenA in other 

Burkholderia and gram-negative bacteria. These data suggest possible β-lactamase regulators' 

importance to resistance to β-lactam antibiotics in B. multivorans. 
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CHAPTER 1 INTRODUCTION  

Chronic airway colonization with members of the Burkholderia cepacia complex (Bcc) is 

often associated with a severe decline in lung functionality and reduced survival rates in patients 

with cystic fibrosis (CF) (Jones et al., 2004)⁠. Less than 3% of CF patients become infected with 

Burkholderia and infection usually occurs during or after adolescence (Cystic Fibrosis 

Foundation Patient Registry 2019 Annual Data Report). B. multivorans and B. cenocepacia 

account for a majority of infections by the complex and are associated with lethal septicemia 

known as “cepacia syndrome” (Mahenthiralingam et al., 2008; Shafiq et al., 2011)⁠. However, in 

recent years B. multivorans have surpassed B. cenocepacia in new infections, becoming the most 

prevalent of the Bcc (Kenna et al., 2017)⁠. The use of antibiotics in CF patients is common, both 

prophylactic and in response to pulmonary exacerbations (PE). Understanding how these bacteria 

evolve ABR over time would contribute useful information for optimizing drug therapy. This is 

needed to combat bacterial pathogenicity and reduce health care costs. 

 Frequent therapy using multiple drugs creates a fluctuating environment that selects for 

resistant mutants by eradicating sensitive sub-populations (Lamrabet et al., 2019)⁠. Single-

nucleotide polymorphisms (SNPs) that arise in these environments are subject to the primary 

evolutionary forces of selection and drift. Any mutation that becomes fixed is expected to be 

associated with replication speed, biofilm formation, virulence, or antibiotic resistance (ABR) 

(Podnecky et al., 2015; Rhodes & Schweizer, 2016).  Indicating the importance of understanding 

the evolutionary dynamics of bacterial communities during strong selective pressure. To date 

there is limited data on the evolution and diversification of B. multivorans in vivo following 

extensive antibiotic therapy. 
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 In recent years there have been multiple studies documenting the evolution of bacteria 

within Bcc in the CF lung (Diaz Caballero et al., 2018; Hassan et al., 2020; Silva et al., 2016)⁠. A 

comparative genomics study analyzed the whole genome sequence (WGS) of 22 isolates of B. 

multivorans recovered from a single CF patient over 20 years and found that the population 

diversified into 3 coexisting subpopulations. They identified parallel adaptive variations 

targeting adherence, metabolism, and changes in the cell envelope related to adaptation to the 

biofilm lifestyle (Silva et al., 2016). A genome-wide variation study of 111 B. multivorans 

isolates from a CF patient over a ten-year time also reported the incident isolate to diversify into 

multiple distinct lineages and found parallel patho-adaptation in genes associated with virulence 

and resistance. They found polymorphisms in the araC and ampD genes to be associated with 

increased resistance to β-lactam, aminoglycoside, and fluoroquinolone antibiotics (Diaz 

Caballero et al., 2018). Another comparative genomics study of 11 B. cenocepacia and 9 B. 

multivorans isolates during a co-infection over 4.4 years saw the majority of genes containing 

mutations to be associated with the oxidative stress response, transition metal metabolism, and 

antibiotic resistance (Hassan et al., 2020). These studies all demonstrated an original infecting 

strain to establish a population that diversified into multiple distinct lineages that differ 

considerably both genotypically and phenotypically. This shows the complexity of chronic and 

antibiotic-resistant B. multivorans infections where genetically diverse sub-lineages can co-exist 

during and after antibiotic treatment. 

 The genomics variability and stability within these sub-populations during exposures to 

antibiotic treatments remains widely unexplored. Understanding how changes in the underlying 

population structure drive the evolutionary trajectory of B. multivorans have important 

implications for the development of novel treatment options. To this extent, we monitored the 
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evolution of B. multivorans over six different pulmonary exacerbation periods that involved 

multiple applications of different antibiotics. We tracked the clonality, evolution, and genome-

wide variation of these isolates, to provide insight into the micro-evolution and adaptation of B. 

multivorans, and highlight novel mechanisms enabling survival in the CF lung during extensive 

antibiotic therapy. My goal is to better understand these factors and identify genes under strong 

selection, which is a necessary step in tailoring therapeutics.  
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CHAPTER 2 MATERIALS AND METHODS 

 

2.1: Sample Collection and DNA Extraction  

 Isolates from sputum samples of a single adult male CF patient, age 24 at the beginning 

of the sampling period. His treatment regimen during the study included oral enzymes for CF-

related malabsorption, along with antibiotics administered as prophylactic agents and various 

antibiotics (Table 1.). The patient has a heterozygous deltaF508/unknown CF transmembrane 

conductance regulator (CFTR) genotype. Patient FEV1 values ranged from 33%-40% during the 

time of the study, which is consistent with severe obstruction. He experienced nine PEs that 

required antibiotic intervention (6 of which we sequenced samples). Serial expectorated sputum 

samples were obtained with informed consent, twice weekly for almost 3 years (IRB Protocol 

Approved #11-12-36). Samples were collected in the morning by the patient expecting sputum 

into a sterile 15-ml Falcon tube, which was placed on ice during transport to the lab, and stored 

at -80C until use. Sputum samples of desired time points were allowed to thaw, and an aliquot 

was struck out for single colonies onto Burkholderia cepacia selective agar (BCSA) plates and 

incubated at 37C for 48h. Single colonies with morphology consistent with B. multivorans were 

picked and replated as described above. Single colonies were chosen and inoculated into 2 mL of 

LB broth and incubated at 37C for 24h. DNA extraction followed standard procedures for 

microbes.  
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TABLE 1: Isolate Information 

 The patient was sampled during six pulmonary exacerbation (PE) periods displayed 
below in different colors. The filled blue lines indicate that the patient was taking the antibiotic 
on the left side during that PE period, with the provided administration route (oral or 
intravenous). The volume exhaled at the end of the first second of forced expiration (FEV1 %) 
values were measured during each PE event, and provided below each PE event. The date that 
each of the 20 samples is matched (by color) with the PE event from which it was sampled. 
There were two samples not taken during a PE event (AS142, and AS154). For samples that 
were taken during a PE, it is indicated whether it was sampled at the beginning or end of the PE 
period.  
 

 Patient antibiotic use for PE period (m/day/yr)   
Administration  3/15/09- 1/7/10- 7/9/10- 3/3/11- 7/27/11- 12/22/11- 
route Antibiotic 4/5/09 1/23/10 7/15/10 3/8/11 8/1/11 1/4/12 
Oral: Ciprofloxacin             
 Bactrim             
 Minocycline             
I.V: Ceftazidime             
FEV1 %:  38-40 22-39 38 37 32-36 34-35 
Strain ID: Date Isolation             

AS142 3/7/09             
AS218 4/3/09 end            
AS219 4/4/09 end            
AS222 1/7/10   onset         
AS223 1/7/10   onset         
AS224 7/9/10     onset       
AS225 7/13/10     end       
AS226 7/13/10     end       
AS227 7/14/10     end       
AS228 3/3/11       onset     
AS229 3/3/11       onset     
AS230 3/4/11       onset     
AS231 3/8/11       end     
AS232 3/8/11       end     
AS154 5/26/11             
AS233 7/27/11         onset   
AS236 8/1/11         end   
AS237 12/23/11           onset 
AS240 1/2/12           end 
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2.2: Genome Sequencing, Assembly. and SNP/INDEL calling  

Isolated single colonies were sent to Omega Bioservices, where whole-genome sequencing 

(WGS) was performed using 151 bp paired-end reads with an Illumina HiSeq 2500 platform. 

The quality of raw files was assessed using FastQC-0.11.8 (Andrews, 2010). Adapters and low-

quality reads were removed using Trimmomatic-0.35 (Bolger et al., 2014). BWA mem was used 

for globally aligning each sample's reads to the reference genome of Burkholderia multivorans 

FDAARGOS_246 (NCBI Accession: PRJNA231221) (Li & Durbin, 2009). The alignment files 

were sorted using Samtools sort and converted to a tab-delimited pileup format using Samtools 

mpileup (Li et al., 2009)⁠. Custom python scripts were used to parse out variants from the 

mpileup files, which were then merged to display the variant calls of every strain. Several criteria 

were established to consider a SNP. There had to be at least two forward and two reverse reads. 

The variant must also meet a coverage threshold of three standard deviations from the mean 

coverage, and >70% allele frequency. An SNP call was excluded if all strains called the variant, 

as they were considered to be ancestral. Similar criteria were applied for the identification and 

filtering of INDEL calls. 

 

2.3: Detection of Structural Variation  

Structural variants (SVs) involve duplication, deletion, or translocation of large-scale 

fragments of the genome, ranging from >10bp to entire chromosomes. I wrote a custom pipeline 

to detect and verify these SV’s. Full description of pipeline and code for merging/overlap of calls 

available at https://github.com/skharrison/SV. SVs were identified using a variety of software 

packages including PINDEL, BREAKDANCER, GRIDSS, MANTA, LUMPY, and DELLY (D. 

L. Cameron et al., 2017; Chen et al., 2016; Fan et al., 2014; Layer et al., 2014; Rausch et al., 
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2012; Ye et al., 2009). Files produced by each software were converted to compatible formats 

and Structural Variant Annotation R package used to annotate GRIDSS and LUMPY output 

before merging (D. Cameron & Dong, 2020)⁠. Sample calls from each software were merged at a 

threshold of 75% and kept if at least 4 callers identified a variant in that region. Samples merged 

calls (from all callers) were then overlapped at a threshold of 75% to all other sample total calls 

to produce a final list to be verified by eye. Bedtools (-igv command) was used to produce a 

script to automate the generation of region images using igvTools. Sample bams were loaded 

into IGV and images were produced to verify each region (Quinlan & Hall, 2010; 

Thorvaldsdóttir et al., 2013). Many regions showed to either be reference variants in all samples 

or false positives which were then removed from the analysis. 

 

2.4 Phylogenetic Analysis  

To determine if the strains are clonal all samples were assembled using SPADES with 

default parameters (Bankevich et al., 2012). Assemblies were input into the TYGS (Type Strain 

Genome Server) with six other reference B. multivorans genomes (NCBI Accessions: 

PRAJNA231221, PRJNA279182, PRJNA434393, PRJNA279182, PRJNA279182, 

PRJNA475602, PRJNA600378 ). The job was restricted to only genomes of interest (Meier-

Kolthoff & Göker, 2019). TYGS phylogenetic inference done by resulting intergenomic 

distances was used to infer a balanced minimum evolution tree with branch support via 

FASTME 2.1.4 including SPR postprocessing (Lefort et al., 2015). Branch support was inferred 

from 100 pseudo- bootstrap replicates each and the tree was rooted at the midpoint. The whole 

genome-based phylogenetic tree generated from TYGS was used and downloaded from the 

TYGS webserver. To distinguish the phylogenetic relationship among isolates, consensus 
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sequences were first constructed by taking SNP calls for each sample and placing them into the 

reference genome. For each sample all gene sequences were separately pulled out from the 

consensus sequence, creating separate gene sequence fastas for each sample for all genes 

(including those that did not contain a mutation). All sample genes and the reference were 

aligned separately using MUSCLE (Edgar, 2004). R was used to concatenate each gene 

alignment and create a partition file to run RAxML to create a maximum likelihood tree 

(Stamatakis, 2014). The GTRGAMMA model was chosen and ran with 100 bootstrap replicates 

within RAxML. The best scoring output tree was rooted to the reference strain and visualized.  

All trees were loaded into FIGTREE to be displayed and colored 

(http://tree.bio.ed.ac.uk/software/figtree/).  

 

2.5 Antibiotic Susceptibility Testing   

Antimicrobial susceptibility testing was carried out via disk diffusion on Mueller-Hinton 

agar, plates were grown at 37 C and after 24 hours zones of inhibition (ZOI) were measured to 

obtain the antibiogram. The HardyDisk AST cartridges were used for all except meropenem and 

minocycline where Thermo Scientific Oxoid Discs were used.  All AST ZOI measurement tests 

were performed using Clinical and Laboratory Standards Institute (CLSI) procedures (CLSI, 

2020).  
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CHAPTER 3: RESULTS 

3.1 All Isolates Descend from A Single Incident Isolate  

 To be able to compare mutations longitudinally requires having isolates that are known to 

descend from a single strain. A CF patient may be colonized by one, or more than one, 

Burkholderia multivorans strain. These two possibilities can be distinguished by comparing the 

genomic sequences of the 20 strains with those of multiple other B. multivorans strains. A single 

index pathogen would result in the 20 strains having greater similarity to each other than to any 

other B. multivorans strain. That the 20 strains comprise members of two or more independent B. 

multivorans infections would be reflected by there being a corresponding number of clades in a 

phylogenetic tree. We find all 20 isolates when compared to six reference strains, cluster into a 

single clade, consistent with all being evolved from a single infection event (Figure 1). Isolates 

also all shared >40,000 SNPs when compared to FDAARGO_246 reference strain, which is 

consistent with their descendants from a single incident isolate.  
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3.2 Population Structure of Study Isolates 
 
          To understand the adaptation of B. multivorans in the CF host during PE events the 

evolutionary relationship among the 20 isolates was determined. A maximum-likelihood tree was 

built using a total of 188 identified SNPs (Figure 2). The phylogeny indicates that at minimum 

the population diverged into 2 to 3 sub-populations (S1-S3). The differentiation between isolates 

sometimes did not match chronology. For example, AS222 and AS223 were isolated on the same 

day and are shown to belong to distinct lineages on the phylogeny. This indicates the long-term 

coexistence of multiple sub-populations that evolved from a single index strain.  

Figure 1. Tree inferred with FastME 2.1.6.1 from GBDP distances calculated from genome 
sequences. The branch lengths are scaled in terms of GBDP distance formula d5 (Meier-Kolthoff et 
al., 2013). The numbers above branches are GBDP pseudo-bootstrap support values > 60 % from 100 
replications, with an average branch support of 17.0 %. The tree was rooted at the midpoint. 
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             One possible explanation for the coexistence of numerous sub-populations is the 

complex and dynamic nature of the CF lung could be promoting diversification into an array of 

specialist niches. Previous studies have shown that varying nutritional conditions, reduced 

dispersal, host immune response, and competing colonizing microbial species can all drive 

evolutionary diversification in the CF lung (Bernardy et al., 2020; Klockgether et al., 2018; 

Miller et al., 2015; Palmer et al., 2007) ⁠ It has been hypothesized that this diversification which 

generates broad phenotypic and genotypic variability could be one of the first key steps for 

developing chronic infections (Schick & Kassen, 2018). ⁠ 
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3.3: Mutation Rate within Lineages 

To understand the overall mutation rate of the B. multivorans population during these 

three years, the number of cumulative SNPs for each sample was plotted over time of isolation. It 

was found that over the three-year study period there was an average accumulation of 2.7 

Figure 2. Maximum Likelihood phylogenetic tree inferred by RaxML showing coexisting 
clades within the population. The colors describe phylogenetic clades S1 to S3. The * 
denotes samples that were isolated from the patient on the same date and clustered on 
separate clades.  
 

S3 

S2 

S1 

 

 

 

* 

* 
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SNPs/year (Figure 3.), regardless of sub-population (AS218 and AS219 excluded). This indicates 

that indifferent of extensive antibiotic pressure, the overall mutation rate remains consistent with 

a similar longitudinal study of B. multivorans in the CF lung, which has described a rate of 2.4 

SNPs/year over 20 years (Silva et al., 2016)⁠⁠. However, if split population into individual sub-

population designated by the phylogeny, it is shown that isolates of the S3 lineage have a rate of 

5.3 SNPs/year (orange in Figure 3.), while the S1 lineage appears to have a slower mutation rate 

with an average of 1.7 SNPs/year (green in Figure 3.). The S2 population was excluded from 

analysis due to the two samples being taken only a day apart, and the disappearance of this 

lineage. This data suggests that within a given patient, the rate of mutation accumulation can 

vary over the same study period between diverged sub-populations. This also indicates that 

extensive selective pressure likely does not impact the overall mutation rate of B. multivorans, 

hinting that after initial diversification the population remains relatively stable.  
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3.4: Frequency and Functional Characterization of SNPS and INDELS 

 All SNPs and indels in the AS samples were identified (see methods).  A total of 188 

SNPs and 40 indels were discovered. Samples had a range of SNPs (1-85) and INDELs (8-17) 

which corresponded to which subpopulation the samples belonged. The S2 population (AS218, 

AS219) contained the highest number of mutations on average (96). Isolates of S3 had an 

average of 82.2 and those within the S1 group had the lowest with an average of 18.6. Of the 188 

SNPs, 108 (57.4%), 29 (20.7%), and 41 (21.8%) were non-synonymous, synonymous, and 

intergenic polymorphisms. There were 12 intergenic mutations located in putative regulatory 

regions (100bp ahead of a start codon).  

Figure 3. SNPs plotted over time of sample isolation. Colors denoted by phylogenetic 
subpopulation. Green = S1, Blue= S2, and Orange=S1. Sample SNP numbers. A linear fit 
with a slope was plotted over time (excluding S2), as well as for each sub-lineage.  
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To describe the variety of mutations at any given time point, analyzed mutations shared 

and unique to each of the defined subgroups. A significant proportion (42%) of SNPs were 

singletons (only in one sample). There were also 29 mutations shared between all isolates of the 

S2 and S3 subpopulations, while those in the S1 did not share any (Supplementary Figure 2). 

Sought to identify SNPs in any genes fixed in all isolates over time, polymorphisms that arise in 

the population and remain fixed are candidates for those maintained by selection (fixed 

polymorphisms). However, it was found that no mutations arose and were fixed across all 

isolates.  

COG analysis of all genes showed that the majority of genes were associated with 

membrane (15.88%), unknown (13.53%), transcription (13.53%), and amino acid 

transport/metabolism (12.94%) (Figure 5.).  Only samples from S2 and S3 contained mutations 

in H, and L COG categories (Figure 4.). To further investigate the mutation accumulation 

differences between the lineages (see Section 3.3), sought to analyze mutated genes involved 

with replication, recombination, and repair (L), and cell cycle control and division (D) as 

defective repair or replication mechanisms could help to explain the increased mutation rate in 

the S2, and S3 sub-populations in comparison to S1. The only mutation classified as D that was 

shared among both subpopulations was in the A8H40_RS22860 locus, which encodes a 

peptidoglycan-binding protein LysM. No mutations involving DNA repair were shared among 

all isolates of S2 and S3, however, isolates in the S3 population were shown to all contain a 

mutation in recB which prepares dsDNA breaks for recombinational DNA repair. Also, worth 

noting is that both isolates in the S2 population share a mutation in a DNA repair exonuclease 

locus A8H40_RS29745. 
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Figure 4. Breakdown of COG categories of mutated proteins. L: DNA replication, 
recombination, and repair; E: metabolism and transport of amino acids; H: metabolism and 
transport of coenzymes; G: metabolism and transport of carbohydrates; C: production and 
conversion of energy; J: transcription; I: lipidic metabolism; M: Cell wall structure, biogenesis, 
and outer membrane; O: posttranslational modifications; U: Intracellular trafficking, secretion, 
and vesicular transport; T: mechanisms of signal transduction; Q: metabolism and transport of 
nucleotides; P: transport of inorganic ions; N: cell motility; K: translation including ribosomes 
biogenesis; F: metabolism and transport of nucleotides; R: general prediction function only; S: 
function unknown; V: Defense mechanisms; D: Cell cycle control and replication; N: Cell 
motility 
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3.5: Genes with Multiple Independent Mutations 

 

           To determine the probability of observing a given number of mutations based on gene 

size, I used a two proportion Z-test in R with the prop.test command correcting for multiple tests 

using the Bonferroni correction. Numerous mutations in genes can indicate selective 

Figure 5. Breakdown of COG categories of mutated proteins. L: DNA replication, recombination, 
and repair; E: metabolism and transport of amino acids; H: metabolism and transport of 
coenzymes; G: metabolism and transport of carbohydrates; C: production and conversion of 
energy; J: transcription; I: lipidic metabolism; M: Cell wall structure, biogenesis, and outer 
membrane; O: posttranslational modifications; U: Intracellular trafficking, secretion, and vesicular 
transport; T: mechanisms of signal transduction; Q: metabolism and transport of nucleotides; P: 
transport of inorganic ions; N: cell motility; K: translation including ribosomes biogenesis; F: 
metabolism and transport of nucleotides; R: general prediction function only; S: function unknown; 
V: Defense mechanisms; D: Cell cycle control and replication; N: Cell motility 
 
  

Figure 5. The number of mutations in each sample that product falls into the designated COG 
category.  Breakdown of COG categories of mutated proteins. L: DNA replication, 
recombination, and repair; E: metabolism and transport of amino acids; H: metabolism and 
transport of coenzymes; G: metabolism and transport of carbohydrates; C: production and 
conversion of energy; J: transcription; I: lipidic metabolism; M: Cell wall structure, biogenesis, 
and outer membrane; O: posttranslational modifications; U: Intracellular trafficking, secretion, 
and vesicular transport; T: mechanisms of signal transduction; Q: metabolism and transport of 
nucleotides; P: transport of inorganic ions; N: cell motility; K: translation including ribosomes 
biogenesis; F: metabolism and transport of nucleotides; R: general prediction function only; S: 
function unknown; V: Defense mechanisms; D: Cell cycle control and replication; N: Cell 
motility 
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enhancement of changes driven by adaptation to host pressures and other environmental 

variables. Mutations in genes that are involved in maintaining or increasing bacterial fitness 

should be present at a non-random frequency. There were 12 genes identified that contained 

mutations at a frequency higher than chance (Table 2.). No specific mutation was found to occur 

more than once. Two of the 12 multi-mutated genes have previously been shown to be involved 

with antibiotic resistance. One of the two, the gene A8H40_RS14655 encoding a LysR family 

transcription regulator, had 4 mutations (p<.0001) which were all nonsynonymous SNPs in four 

different isolates but none of the four mutations were found in the later isolates. This gene has 

shown to be a close homolog (99% identity) of BMUL_0631 which was found to contain 7 SNPs 

in another long-term study of B. multivorans in the CF lung, indicating the possible importance 

of survival during antibiotic treatment (Diaz Caballero et al., 2018)⁠. The second multi-mutated 

gene associated with antibiotic resistance is dacB, which was independently mutated four times 

in a total of 12 isolates; two were nonsynonymous SNPs, a single one bp deletion, and a 161 bp 

deletion.  The dacB gene encodes a non-essential penicillin-binding protein (PBP4) and has 

previously been reported to be involved in the expression regulation of β-lactamases in P. 

aeruginosa (Moya et al., 2009)⁠.  Another gene with multiple mutations worth noting is fabF, 

which contains two nonsynonymous SNPs and encodes a beta-ketoacyl-ACP synthase II 

involved in fatty acid metabolism. A study on the in-host CF evolution of B. pseudomallei found 

multiple convergent nonsynonymous mutations affecting the FabF protein as well as fatty acid 

elongation proteins (Viberg et al., 2017)⁠. Chronically infecting B. cenocepacia isolates have also 

been seen to contain a larger ratio of unsaturated fatty acids when compared to initial infecting 

isolates (Coutinho et al., 2011) ⁠. A majority of SNPs in multi-mutated genes were found to be 

nonsynonymous (92%), which further provides evidence of strong selection at these 12 loci.  In 
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summary, genes associated with cell wall/membrane biogenesis appeared to be under selection in 

multiple isolates at the highest frequency, as well as genes involving metabolic functions and 

transport (ions, lipids, and amino acids).  

 
 

Table 2: Genes with Multiple Independent Mutations. 

 Table displays all genes that had a statistically significant number of mutations. 
Probabilities were Bonferroni corrected for multiple comparisons. A total of 12 genes were 
found to contain a significant number based on size of gene and number of mutations.  

 

Gene/Locus Product Total 
# SNPs,Indels,CNV Probability COG 

fabF beta-ketoacyl-ACP 
synthase II 2 2,0,0 2.80E-06 I 

A8H40_RS09725 hypothetical protein 4 1,2,1 2.90E-77 M 

yafL/A8H40_RS11145 C40 family peptidase 3 3,0,0 6.20E-43 M 

dacB 
Beta-
lactamase/transpeptidase-
like 

4 2,1,1 5.20E-36 M 

A8H40_RS14655 LysR family 
transcriptional regulator 4 4,0,0 5.20E-59 K 

A8H40_RS15235/kefB potassium transporter 5 4,1,0 9.40E-46 P 

secB protein-export chaperone 
SecB 2 2,0,0 1.40E-20 U 

plpD/A8H40_RS21210 BamA/TamA family 
outer membrane protein 3 2,1,0 5.60E-10 M 

A8H40_RS24455 zinc-binding alcohol 
dehydrogenase protein 2 2,0,0 7.70E-09 C 

A8H40_RS24565 hypothetical protein 2 2,0,0 6.30E-59 S 

A8H40_RS05775 DUF4136 domain-
containing protein 2 0,2,0 3.40E-13 S 

pheA Prephenate dehydratase 4 0,4,0 2.00E-52 E 
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3.6 Frequency of Structural Variation  
 
 Structural variations (SVs) are becoming increasingly recognized to represents a 

significant, yet often poorly understood, source of genetic variation. Structural variation is used 

to define a region of DNA that shows a change in copy number (deletions, insertions, and 

duplications), or orientation (like inversions), as well as chromosomal location (such as 

translocations, and fusions) between individuals. However, most current methods are poor at 

defining the breakpoints for SV detection which are sequence boundaries where an SV begins 

and ends, and algorithms often result in a lot of false-positive calls. In an attempt to overcome 

the performance limitations of existing SV-calling methods, I used multiple complementary 

algorithms to call SV loci then merged them, only keeping calls in which at least 4 out of the 6 

used callers had detected a variant at that region. 

In order to validate each call, pair orientation and insert size were manually inspected for 

each region of all sample alignments within the integrative genome visualizer (IGV), to confirm 

true positives. A total of nine SVs were identified (Table 3.), eight were deletions, and one an 

inversion (INV). There were three mutations of >35,000 bp in length, two of which were 

deletions (36,898 bp, and 60,026 bp) found in only AS240. Two of the other eight deletions fall 

within 12,000bp of one another, the first (1968944-1968970) a 27bp deletion in the rimO gene 

which encodes the methyl-thioltransferase RimO, the other a 122bp deletion (1980490-1980612) 

in the A8H40_RS09725 locus encoding a hypothetical protein. AS225 was found to contain a 

unique 32bp deletion in ptsP gene that encodes for a phosphotransferase. Towards the end of 

chromosome one, AS142, AS223, AS225, AS226, and AS154 all share a 183bp deletion in 

A8H40_RS16235 which also encodes a hypothetical protein. Other than the large deletion in 

AS240 mentioned above, there was one other SV identified on chromosome 2 which is a 955bp 
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deletion in only AS218 and AS219 that falls within an outer membrane encoding gene 

(A8H40_RS23195). Unexpectedly, no SVs were identified on the third chromosome.  

Table 3.  Table of Detected and Verified SVs 

The table shows each region (chromosome, start position, stop position) for which a 
structural variation was called and verified. The IGV image of each region by sample is 
displayed to indicate the true presence of the variant. The length and type of SV are also given. 
The color of the lines represents sampling period.  

 

 

3.7: Antibiotic Susceptibility  

 Antibiotic susceptibility testing (AST) via a disc diffusion assay was performed for all 

isolates to analyze the variability of resistance profiles between subpopulations, as well as, 

interpret changes over time resultant of extensive antibiotic treatment. A total of eight antibiotics 

were chosen for testing ceftazidime (CAZ), ceftazidime/avibactam (CZA), meropenem (MEM), 

CHROM START STOP 142 218 219 222 223 224 225 226 227 228 229 230 231 232 154 233 236 237 240 LEN TYPE

NZ_CP020397.1 48863 86761 37898 DEL

NZ_CP020397.1 1505982 1548069 42087 INV

NZ_CP020397.1 1980490 1980612 122 DEL

NZ_CP020397.1 2929122 2929282 160 DEL

NZ_CP020397.1 3161880 3161912 32 DEL

NZ_CP020397.1 3299493 3299676 183 DEL

NZ_CP020398.1 1066240 1126266 60026 DEL

NZ_CP020398.1 1385790 1386745 955 DEL
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meropenem/vaborbactam (MEV), piperacillin (PIP), ciprofloxacin (CIP), 

trimethoprim/sulfamethoxazole (SXT), and minocycline (MH). The ZOIs for each antibiotic 

were plotted over time by the date of isolation from each sample. It was seen that over the course 

of three years there was a general trend downward for CAZ and PIP (Figure 6.A, and 6.E). 

Interestingly all found a general trend upwards (more susceptible) for SXT over time, regardless 

of lineage splitting (Figure 6.G). 

 Assuming that extensive antibiotic exposure during the infection sampling period would 

result in strong selection for resistance-associated genotypes, sought to identify mutations that 

arose following treatment with CAZ during a 2-week hospitalization in January 2010 (shown as 

the green line in Figure. 6).  It was found that the dacB gene appears to be an important selective 

target since it was independently mutated a total of four times within the collection across all 

sub-populations. No samples isolated prior to the January hospitalization were seen to have any 

mutations in this gene, suggesting that selective pressure imposed by IV administration of CAZ 

could have selected for an advantageous phenotype (increased β-lactam resistance) associated 

with mutations in this gene in the total of 12 samples that contained a mutation in this gene. 

Samples with any of the four were thought to have a lower ZOI (more resistant) to CAZ (Figure 

7. A and B). However, after statistical testing of ZOIs grouped by mutations only found two 

mutations significantly different than the dacB+ (no mutation. The first mutation was the 161bp 

deletion (shown in green) and the substitution of C>A at position 820 (shown in pink). 

One such possible explanation for the increased resistance to β-lactam is that this gene has 

been seen to be involved in the expression of AmpC, β-lactamases, and deactivation can result in 

hyper-production of AmpC, and in some cases when inactivated significantly increases minimum 

inhibitory concentration (MIC) to cephalosporin antibiotics in P. aeruginosa (Moyá et al., 2012). 
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It has also been found to play a role in the activation of the two-component regulatory system 

BlrAB (CreBC) which has been associated with resistance (Fisher & Mobashery, 2014; Moyá et 

al., 2012)⁠. It can be seen in Figure.7. B that no mutation appeared to have any impact on 

resistance to ceftazidime-avibactam (CZA). This shows that deactivation of β-lactamases 

restores the function of CAZ and overexpression of β-lactamases would not influence resistance. 

Interestingly, the only two samples following CAZ treatment that did not contain a mutation in 

the dacB gene were samples AS230 and AS231. These two isolates are more susceptible to CAZ 

than those containing a mutation in dacB (shown in purple in Figure 7. A), however, does show 

to have a large reduction in PIP susceptibility although was not found to be statistically 

significant (Figure 7.B).  Both of these samples are shown to contain a nonsynonymous SNP in 

the ampD gene. Mutations in the ampD have been found to result in the induction of AmpC and 

PenB in B. cenocepacia, and also to be statistically associated with β-lactam resistance in a 

longitudinal study of B. multivorans (Diaz Caballero et al., 2018; Hwang & Kim, 2015).⁠ 

Together these results suggest positive selection for mutations in genes that regulate β-

lactamases following administration of CAZ, where mutations that deactivate to a higher degree 

such as a large deletion have a larger impact on resistance.  

 Interestingly, AS218, AS219, and AS223 all show resistance to SXT and ciprofloxacin 

(CIP). There is only one gene in which AS223 shares a mutation with AS218 and AS219 which 

is A8H40_RS14655 which is predicted to encode a LysR family transcription regulator. This 

gene was independently mutated four times in samples AS218, AS219, AS222, and AS223 but 

none of the mutations appeared and in samples isolated downstream. All samples following the 

hospitalization and increased CAZ and PIP resistance show to be more susceptible to SXT 

regardless of which sub-population the sample belongs to.  
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Figure 6. Antibiotic Susceptibility overtime for A. Ceftazidime (CAZ) B. Ceftazidime/Avibactam 
C. Meropenem (MEM) D) Meropenem/Vaborbactem E. Piperacillin (PIP) E. Ciprofloxacin (CIP) 
F. Trimethoprim / Sulfamethoxazole (SXT) G. Minocycline (MH) 
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Figure 7. A) Ceftazidime (CAZ) ZOI by mutation B) Piperacillin (PIP) ZOI by 
mutation. The asterisks (*) indicate P<.05 for multiple comparison tests using Kruskal-
Wallace and Dunn’s Correction.   
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CHAPTER 5: DISCUSSION 

  Eradication of Burkholderia infections is difficult because members of the Bcc generally 

have a high level of intrinsic and acquired resistance mechanisms to commonly used antibiotics 

in clinical practice. Inside of the CF lung, bacteria face a changing and stressful environment. 

The heterogeneous ecosystem of the CF lung generates ecological micro-niches with differing 

characteristics, thus forming variable selective forces (Palmer et al., 2007)⁠.  Divergent 

evolutionary patterns of colonially related isolates of Bcc bacteria have not been investigated to 

the extent as other more prevalent CF pathogens such as P. aeruginosa. Previous studies have 

found the prevalence of each lineage within a patient to be highly dynamic over the course of 

infection, which affected diversification processes of P. aeruginosa considerably (Bernardy et al., 

2020; Marvig et al., 2015; Schick & Kassen, 2018)⁠. Within-host micro-evolution of diversified 

lineages employed by B. multivorans in the CF lung is not well understood, while it has 

important implications for long-term studies. This also shows possible limitations of sequencing 

only a single strain per time point as this may only provide a fraction of possible evolutionary 

avenues undertaken within the bacterial population. In the present study, it is clear that the 

population was diverse with two primary sub-populations coexisting within the same sputum 

samples. This study supported the presence of co-existing diversified lineages that have a 

considerable difference in the number and rate of mutations (Figure 2 and ). 

 A subset of genes was found to have multiple mutations at independent positions, which 

could indicate loci under selection. Sought to compare the multi-mutated list of genes with 

similar studies, as overlaps would suggest the importance of these loci in the persistence of B. 

multivorans in the CF lung. Correlation of gene lists with Caballero et al (2018) showed only 

two genes in common, the first within a LysR transcriptional regulator (A8H40_RS14655), and 
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secB . We ran the Silva et al (2016) isolate data through our variant calling pipelines to directly 

compare all variants. Two genes were found to be mutated multiple times in both data sets which 

encoded a HAMP domain-containing histidine kinase (A8H40_RS29590) and a palatatin-like 

phospholipase family protein (A8H40_RS21210), however, statistical analysis did not find two 

mutations in either gene to be significant. Interestingly, one region within the SV analysis did 

overlap between data sets one large region on the first chromosome which contained 31 one 

genes, this appeared as a large deletion in AS240 of 37,898bp, and a duplication of 38,489bp in 

the same location which was called in four samples within the Silva data (BM4, BM6, BM7, and 

BM8). No overlaps between multi-mutated genes were found within Lood et. al (2021), or 

Hassan et. al (2020). Other genes with multiple independent mutations which were unique to our 

data set were in fabF, pheA, dacB, a potassium transporter, a zinc-binding alcohol 

dehydrogenase, a C40 family peptidase, and a plpD ortholog encoding a BamA/TamA outer 

membrane protein. 

 The overall genomic stability of B. multivorans in response to strong selective pressure 

(i.e antibiotic therapy) is not well documented. Here it is demonstrated that within lineages B. 

multivorans accumulated on average 2.7 SNPs/year when S2 removed from the analysis, this is 

comparable for what has been found previously for Burkholderia during chronic infection, 

for B. multivorans (2.2–2.4 SNPs/year), B. cenocepacia (1.7–2.1 SNPs/year) and B. dolosa (2.1 

SNPs/year) (Diaz Caballero et al., 2018; Lieberman et al., 2011; Morarty et al., 2007). When 

analyzing SNP accumulation separately for each sub-population found the S3 population is 

mutating at almost double the rate of the S1 (5.3 vs 2.7 SNPs/year). 

 The CF environment presents stressful and variable conditions, where multiple mutations 

may occur that increase fitness. B. multivorans adaptation to the CF lung could be established 
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through the selection of combinations of the genetic mutations that arise which leads to 

diversification of the initial infection into sub-populations over time. The present study illustrates 

that once diverse lineages are established, they are relatively stable and extensive antibiotic 

treatment did not appear to impact the overall mutation rate of the population. However, there 

was evidence detected of more mutable sub-populations (S2/S3) which contained multiple 

mutations in DNA repair mechanisms which could be contributing to the dramatic difference in 

cumulative mutations between lineages. It was seen that IV administration of ceftazidime could 

have resulted in a rapid expansion of β-lactam resistance in the population and potentially 

indicating the importance of dacB and ampD in acquired β-lactam resistance in B. multivorans.  
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SUPPLEMENTAL INFORMATION: 

 

Supplemental Figure 1. IGV image of dacB mutations. Shows IGV image of dacB of AS222, 
ASS224, AS225, AS228, and AS236 to display each type of mutation in dacB. The top shows no 
mutation in AS222 that was not shared among all samples, the pink and red boxes are showing 
the two nonsynonymous SNPs, the blue box is a 161bp deletion, and the green box a single bp 
deletion.  
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Supplemental Table 1. Average coverage/sample stats: 

The table displays summary statistics by sample. Shows the average read coverage, 
average frequency of SNP and INDEL calls, and the number of SNP and Indels that each 
contained.  

 

Sample Avg Coverage Avg SNP Freq Avg INDEL 
Freq SNPs INDELs 

AS142 51.558 0.938 0.920 1 8 
AS218 343.868 0.943 0.739 85 12 
AS219 279.830 0.900 0.697 84 11 
AS222 364.674 0.884 0.762 66 12 
AS223 520.953 0.938 0.799 3 17 
AS224 287.186 0.922 0.807 69 11 
AS225 442.956 0.941 0.789 3 17 
AS226 445.957 0.931 0.792 2 16 
AS227 311.476 0.848 0.754 67 11 
AS228 260.896 0.845 0.741 6 14 
AS229 393.978 0.942 0.806 2 15 
AS230 377.383 0.940 0.820 5 17 
AS231 267.596 0.934 0.793 5 15 
AS232 318.375 0.946 0.780 6 14 
AS154 48.500 0.976 0.859 3 9 
AS233 270.5106 0.936 0.818 74 13 
AS236 292.1818 0.911 0.776 1 17 
AS237 291.420 0.883 0.806 76 12 
AS240 339.280 0.975 0.797 9 15 
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Supplemental Figure 2. SNP Distribution/overlaps. The figure shows overlaps between sample 
SNP numbers to visually display the difference in SNP numbers between the lineages. Can see 
that there are 23 SNPs shared just between AS218/AS219 (S2), 20 shared among all isolates of 
S2/S3, and 12 among those in the S3. All other samples contain very few overlaps with those in 
S2 and S3, and none overlap between all in S1.  
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