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ABSTRACT 
 
RICHARD JUSTIN MARTIN. Emergency Medical Services Demand Forecasting: 
Modern Machine Learning Approaches for Producing Short-Term Spatiotemporal 
Estimations. (Under the direction of DR. CEM SAYDAM) 
 
Emergency medical services (EMS); commonly referred to as ambulance, paramedic or 

pre-hospital emergency services, are a critical component in the delivery of urgent medical 

care to communities. EMS agencies, the organizations responsible for providing out-of-

hospital acute medical care to the population of a specific service area, are confronted with 

the evolving task of effectively allocating the ambulances and medical personnel required 

to provide sufficient geographic coverage while minimizing response times to high-priority 

call requests. To meet this challenge, EMS practitioners and researchers have investigated 

the effectiveness of using various forecasting techniques for predicting future call volumes 

and demand densities. In this study, a forecasting methodology is proposed for producing 

spatiotemporal call volume predictions at a degree of granularity in time and space that is 

practical and actionable. A series of daily, hourly, and spatially distributed hourly call 

volume predictions are generated using a multi-layer perceptron (MLP) artificial neural 

network model following feature selection using an ensemble-based decision tree model. 

For spatially distributed predictions, K-Means clustering is applied to produce 

heterogeneous spatial clusters based on call location and associated call volume densities. 

The predictive performance of the MLP model is benchmarked against both a selection of 

traditional time-series forecasting techniques and a common industry method. Results 

show that MLP models outperform time-series and industry forecasting methods, 

particularly at finer levels of spatial granularity where the need for more accurate call 

volumes forecasts is more essential. 



 iv 

DEDICATION 
 
I would like to dedicate this work to my mother and father, Carol Lynn and Rick Martin, 

who have always supported me in all of my endeavors and provided me with the 

opportunities to grow along the way; to my younger brother Brandon whose unwavering 

drive to succeed motivates me to keep pace every step of the way; and to my loving wife 

Brittany who never fails to spark my curiosity and challenges me to be better in every way.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v 

ACKNOWLEDGEMENTS 
 
First and foremost, I would like to recognize my dedicated and trusted advisor, Dr. Cem 

Saydam. I cannot thank him enough for his time, mentorship, and steadfast commitment to 

my academic career and success. I am proud to be his Last Mohican. I would also like to 

recognize the members of my dissertation committee Dr. Mohamed Shehab, Dr. Yaorong 

Ge, and Dr. Ertunga Ozelkan for their time and support. Finally, I would like to recognize 

the wonderful team members of MEDIC Mecklenburg EMS Agency who have supported 

this project from the beginning with their intellectual contributions and data. Thank you to 

Joe Penner, Dr. Jon Studnek, Allison Infinger, Jessica West, Chris Stephens, and all of the 

supporting Quality Improvement and Communications team members. I want to extend a 

special thanks to Jessica West for her diligent work in gathering and delivering the data 

used in this study, without such data this project would not be possible.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 

TABLE OF CONTENTS 
 

LIST OF TABLES ............................................................................................................................. VIII 
LIST OF FIGURES .............................................................................................................................. IX 
CHAPTER 1: INTRODUCTION ....................................................................................................... 1 

1.1 PROBLEM DOMAIN ............................................................................................................ 1 
1.2 EMS DEMAND FORECASTING .......................................................................................... 2 
1.3 STUDY MOTIVATION AND EXPECTED CONTRIBUTION .............................................. 3 
1.4 STUDY OUTLINE ................................................................................................................ 5 

CHAPTER 2: LITERATURE REVIEW ........................................................................................... 6 
2.1 EMS DEMAND FORECASTING MODELS .......................................................................... 6 
2.2 COMPARISON OF METHODS ........................................................................................... 25 
2.3 ALTERNATIVE MODELS AND METHODS ...................................................................... 29 

CHAPTER 3: DATA ANALYSIS .................................................................................................... 31 
3.1 DATA SOURCE .................................................................................................................. 31 
3.2 DATA STATISTICS AND PRE-PROCESSING ................................................................... 31 
3.3 TEMPORAL FEATURE DECOMPOSITION AND ANALYSIS .......................................... 35 

CHAPTER 4: DAILY CALL VOLUME FORECASTS .................................................................. 40 
4.1 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE METHOD .............................. 40 
4.2 THE MEDIC DAILY FORECASTING METHOD ................................................................ 43 
4.3 DAY OF WEEK MOVING AVERAGE METHOD ............................................................... 44 
4.4 HOLT-WINTERS TRIPLE EXPONENTIAL SMOOTHING METHOD ............................... 45 
4.5 ARTIFICIAL NEURAL NETWORK METHOD .................................................................. 46 
4.6 DAILY FEATURE SELECTION ......................................................................................... 48 
4.7 ANN DEVELOPMENT FOR DAILY FORECASTS ............................................................ 53 
4.8 DAILY CALL VOLUME FORECAST RESULTS ................................................................ 55 

CHAPTER 5: HOURLY CALL VOLUME FORECASTS ............................................................. 57 
5.1 THE MEDIC HOURLY FORECASTING METHOD ............................................................ 57 
5.2 HOURLY DAY OF WEEK MOVING AVERAGE METHOD .............................................. 58 
5.3 HOURLY FEATURE SELECTION ..................................................................................... 59 
5.4 ANN DEVELOPMENT FOR HOURLY FORECASTS ........................................................ 60 
5.5 HOURLY CALL VOLUME FORECAST RESULTS ............................................................ 61 

CHAPTER 6: SPATIOTEMPORAL CALL VOLUME FORECASTS .......................................... 63 
6.1 SPATIAL CLUSTERING .................................................................................................... 63 
6.2 SPATIALLY DISTRIBUTED HOURLY CALL VOLUME FORECASTS ............................ 69 
6.3 SPATIALLY DISTRIBUTED HOURLY FEATURE SELECTION ...................................... 70 
6.4 ANN DEVELOPMENT FOR SPATIALLY DIST. HOURLY FORECASTS ......................... 71 



 vii 

6.5 SPATIALLY DISTRIBUTED HOURLY FORECAST RESULTS ........................................ 72 
CHAPTER 7: SUMMARY AND CONCLUSIONS ......................................................................... 74 

7.1 DISCUSSION ...................................................................................................................... 74 
7.2 STUDY LIMITATIONS AND SUGGESTIONS FOR FUTURE RESEARCH ....................... 77 

REFERENCES ..................................................................................................................................... 79 
APPENDIX A: SUB-DAILY TIME FRAME CALL VOLUME FORECASTS ................................. 82 

A.1 TEMPORAL CLUSTERING................................................................................................ 82 
A.2 SPATIALLY DISTRIBUTED TIME FRAME CALL VOLUME FORECASTS .................... 85 
A.3 SPATIALLY DISTRIBUTED TIME FRAME FEATURE SELECTION ............................... 85 
A.4 ANN DEVELOPMENT FOR SPATIALLY DIST. TIME FRAME FORECASTS .................. 86 
A.5 SPATIALLY DISTRIBUTED TIME FRAME FORECAST RESULTS ................................. 86 

APPENDIX B: GEOSPATIAL ANALYSIS ........................................................................................ 88 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 viii 

LIST OF TABLES 
 
Table 1: EMS Demand Forecasting Study Comparison Matrix ...................................... 26 
Table 2: Annual Call Volume and Mecklenburg County Population Estimates .............. 33 
Table 3: MEDIC EMS Call Response Code & Priority Matrix....................................... 34 
Table 4: Dispatch Priority Call Percentages ................................................................... 35 
Table 5: Temporal Feature Labeling Schema ................................................................. 36 
Table 6: Daily Call Volume Prediction Features Ranked Results ................................... 52 
Table 7: Hourly Call Volume Prediction Features Ranked Results ................................. 60 
Table 8: Total Call Volume Counts Per Cluster ............................................................. 67 
Table 9: Spatial Hourly Call Volume Prediction Features Ranked Results ..................... 71 
Table 10: Per Cluster MAPE/MAD Results by Method (7 Clusters) .............................. 73 
Table 11: Per Cluster MAPE/MAD Results by Method (8 Clusters) .............................. 73 
Table 12: Per Cluster MAPE/MAD Results by Method (9 Clusters) .............................. 73 
Table 13: Per Cluster MAPE/MAD Results by Time Frame Method (9 Clusters) .......... 86 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix 

LIST OF FIGURES 
 
Figure 1: Total Call Volume by Year in Mecklenburg County, NC ................................ 32 
Figure 2: Total P1+P2 Call Volume by Month (2010 – 2017) ........................................ 36 
Figure 3: Total P1+P2 Call Volume by Month (2014 – 2017) ........................................ 37 
Figure 4: Total P1+P2 Call Volume by Day of Week (2010 – 2017) .............................. 38 
Figure 5: Average P1+P2 Call Volume by Day of Week (2010 – 2017) ......................... 39 
Figure 6: P1+P2 Daily Call Volumes Rolling Mean and Std. Dev. (2010-2017) ............ 41 
Figure 7: Single Hidden Layer MLP Model ................................................................... 47 
Figure 8: DOWMA Method MAPE Values (Periods 1-365) .......................................... 56 
Figure 9: H-DOWMA Method MAPE Values (Periods 1-350) ...................................... 62 
Figure 10: P1+P2 Spatial Clusters Elbow Plot ............................................................... 66 
Figure 11: P1+P2 Calls K-Mean Spatial Clusters; K=7 (2010-2017).............................. 68 
Figure 12: P1+P2 Calls K-Mean Spatial Clusters; K=8 (2010-2017).............................. 68 
Figure 13: P1+P2 Calls K-Mean Spatial Clusters; K=9 (2010-2017).............................. 69 
Figure 14: Percent of Total Call Volume and MAPE Values by Cluster. ........................ 75 
Figure 15: MLP vs. MHF Absolute Error Frequency Distributions by Cluster ............... 76 
Figure 16: Avg. P1+P2 Avg. Hourly Call Volume Time Clusters (2010-2017) .............. 83 
Figure 17: P1+P2 Avg. Hourly Call Volume Time Clusters Elbow Plot ......................... 84 
Figure 18: P1+P2 TCC-A Sample Time Clusters by Day of Week (2010-2017) ............ 84 



  
 
 

CHAPTER 1: INTRODUCTION 
 
1.1 PROBLEM DOMAIN 
 
Emergency medical services (EMS); commonly referred to as ambulance, paramedic or 

pre-hospital emergency services, are a critical component in the delivery of urgent medical 

care to communities. EMS agencies are organizations charged with the responsibility of 

providing out-of-hospital acute medical care to the population of a defined geographic 

region such as a county, city or local municipality. Depending on the local health care 

infrastructure, these agencies may be owned and operated by local governments, health 

care systems, or private organizations. EMS agencies routinely provide transportation to 

local clinical care facilities, such as hospitals and emergency departments, for patients who 

are unable to transport themselves due to the nature of their condition or circumstances. 

The primary goal of any EMS agency is to minimize their response times to high priority 

emergency call requests and lessen the rate of mortality and morbidity [1]. To adequately 

serve the population of their service regions, EMS managers and dispatchers continuously 

study the distribution of incoming call requests (demand) and establish resource 

deployment plans specifying the number of ambulances and emergency response personnel 

required for future periods. These deployment plans, derived from historical demand data 

and forecasts, determine the daily personnel work shift schedules. Throughout the course 

of a day, shifts may also be staggered and/or overlapped to account for hourly fluctuations 

in call volume demand and anticipated personnel fatigue [2]. While fundamentally 

deployment decisions are data and forecast driven, EMS dispatchers frequently describe 

the deployment planning process, and associated redeployment decisions, as an art based 

on the experiences and intuition of the individual [2].  
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1.2 EMS DEMAND FORECASTING 
 
By their very nature, EMS systems are extraordinarily complex. The demand for 

ambulances is dynamic and is known to fluctuate spatially and temporally based on the 

time of day and day of the week [3]. EMS managers and dispatchers are faced with the 

evolving task of deploying ambulances and personnel required to provide adequate 

coverage for a defined geographic service area given limited resources. Dispatchers 

continuously redistribute (redeploy) their fleet of ambulances to different locations, often 

referred to as posts, throughout the day to compensate for spatiotemporal demand 

fluctuations. However, the scope of these adjustments is restricted by the pre-determined 

shift staffing plans for a given period. In instances where the incoming call volume exceeds 

the number of available ambulances, resources are allocated strictly based on call priority 

which is determined by observed patient severity. While higher priority calls take 

precedence, less severe call requests remain in queue until such time when sufficient 

resources become available [2]. Industry and academic researchers have conducted 

numerous studies focused on developing novel deployment strategies, and associated 

staffing plans, in an effort to reduce response time while maximizing service coverage [4]. 

These deployment models, typically developed based on historical data, are ultimately 

dependent on detailed 9-1-1 emergency call demand forecasts to serve as inputs. [3, 5, 6]. 

In a recent survey study, Aringhieri et al. [1] conducted a broad literature review of 

Emergency Medical Services related research and grouped papers into one of the following 

seven categories; “1. Ambulance Location Problems, 2. Ambulance Relocation Problems, 

3. Ambulance Dispatching and Routing Policies, 4. Interplay with other emergency health 

care delivery systems, 5. Evaluation and validation of EMS systems performance, 6. 
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Forecasting, and, 7. Workforce Management”. Further exploring the papers that fell into 

the forecasting category, the authors aggregated the studies into groups of papers that 

focused on forecasting EMS call demand, response travel time, and ambulance crew 

workloads. By investigating and cataloging a wide range of literature Aringhieri et al. were 

the first to clearly draw distinctions between the various fields of EMS research. Despite 

the critical importance of producing accurate forecasts, significantly fewer studies have 

been focused on establishing more sophisticated call forecasting approaches to improve the 

predictive models used for EMS demand planning. 

 

1.3 STUDY MOTIVATION AND EXPECTED CONTRIBUTION 
 
Regardless of past research efforts in the EMS community, the prevailing industry trend 

remains to use simple time-series forecasting methods, such as moving averages and 

proprietary formulas built into computer aided dispatch software, to predict future call 

volume and demand densities. While these types of forecasts are valuable for strategic and 

tactical capacity planning at broader geographical scales over longer periods of time (i.e. 

monthly or weekly), they do not adequately support short-term operational decisions, such 

as daily and hourly deployments and redeployments [5]. Furthermore, their accuracy 

decreases significantly when aggregated at finer spatial scales. Reviewed in the 

forthcoming chapter, the current literature presents no formal benchmark for comparing 

forecast precision or accuracy within emergency medical services systems. This prompted 

Brown et al. [7] and Setzler et al. [5] to conduct unique studies assessing the performance 

and reliability of current industry practices against novel forecasting approaches. They 

concluded that the improvements of newer, more advanced, methods have been marginal 
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by comparison to simple time-series methods and suffer from an increased level of 

complexity and number of underlying assumptions. This suggests that widespread industry 

adoption requires practical and elegant solutions that clearly outperform the current 

practices. Moreover, the majority of historic approaches have focused on time of the day 

as the sole dimension and generated forecast predictions for larger geographic areas such 

as entire counties or cities. Only in recent years have researchers began recognizing the 

importance of incorporating the temporal and spatial distribution of demand into their 

prediction models. The primary objective of this study is to establish a methodology for 

producing accurate spatiotemporal call volume forecasts that outperform current industry 

practices at a degree of granularity in time and space that is practical, actionable, and 

supports widespread adoption. A series of daily, hourly, and spatially distributed hourly 

call volume predictions are generated using a multi-layer perceptron (MLP) artificial neural 

network model following feature selection using an ensemble-based decision tree model. 

For spatially distributed predictions, K-Means clustering is applied to produce 

heterogeneous spatial clusters based on call location and associated call volume densities. 

The predictive performance of each MLP model is then benchmarked against both a 

selection of traditional time-series forecasting techniques and a common industry method. 

Results show that MLP models outperform time-series and industry forecasting methods, 

particularly at finer levels of spatial granularity where the need for more accurate call 

volumes forecasts is more essential. This study is being conducted under the endorsement 

of MEDIC, the Mecklenburg County EMS Agency. While MEDIC has been accepted in 

various capacities as an industry leader, agency directors at MEDIC continue to recognize 

and express the need for more accurate demand planning and prediction capabilities that 
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also incorporates the spatial distribution of demand. The results of this study are expected 

to improve upon current industry practices and progress the current state of the art 

presented in the literature.  

 

1.4 STUDY OUTLINE 
 
This study is organized in the following manner. In Chapter 2, a comprehensive review of 

the prominent research related to EMS demand forecasting is conducted and the various 

forecasting methods are compared based on their contribution to the field and effectiveness 

in application. Additionally, the principal strengths and weakness of the various models 

are summarized, and alternative forecasting methods and strategies are discussed. In 

Chapter 3, the data used in this study is reviewed, summarized, and pre-processed. In 

Chapters 4 and 5, non-spatially distributed daily and hourly call volume forecasting 

methods and comparative results are presented. Chapter 6 details the development and 

results of spatiotemporal call volume forecasting methods; including the implementation 

of a k-means clustering model as an alternative approach to fixed-grid geographic 

segmentation. Conclusions and suggestions for future studies are summarized in Chapter 

7. Lastly, the effectiveness of an exploratory time frame clustering approach for producing 

sub-daily call volume predictions is examined in Appendix A and supplemental geospatial 

analysis work is included in Appendix B. 

 

 

 



 6 

CHAPTER 2: LITERATURE REVIEW 
 
2.1 EMS DEMAND FORECASTING MODELS 
 
As noted by Aringhieri et al. [1], Channouf et al. [3], and McConnel and Wilson [8], some 

of the earliest works related to emergency medical services demand forecasting appeared 

in the 1970s. For instance in 1971, Hall [9] was one of the first to collect a sample of actual 

EMS call volume data in order to identify any latent trends or cycles in hourly, daily or 

weekly demand. While the paper was not focused specifically on forecasting, Hall 

formulated a systematic approach for evaluating the demand for ambulances in an urban 

setting. Using a one-month data set, provided by local emergency responder agencies in 

Detroit, Michigan, Hall performed a regression analysis that measured the relationship 

between the ambulance travel times and travel distances. Additionally, other independent 

variables were considered such as the type of emergency, traffic and weather conditions 

but were found to have little explanatory power given the available data [9]. Hall’s research 

objective in analyzing this demand data was to develop a model of various operating 

policies that agencies could implement to determine the optimal number of ambulances to 

deploy in a geographic area. Despite the absence of a concrete forecasting model, Hall’s 

work represents one of the earliest investigations focused on gaining a deeper 

understanding on the nature of EMS demand.  

 

Aldrich et al. [10] conducted a separate study in 1971 that applied regression analysis to 

evaluate the nature of demand for emergency medical services over a one-year time period. 

The data used for their study consisted of ambulance trip records from the Los Angeles 

Central Receiving Hospital coupled with 1960 Los Angeles census data. The census data 
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enabled the authors to include socioeconomic characteristics such as age, sex, income, 

education level, marital status, and race as independent variables to estimate the number 

and type of medical emergency calls that would be received over the course of a year. As 

is common with census data, the information collected in 1960 was aggregated into 

geographic areas known as census tracts. Each of the individual ambulance call records 

provided for the study also included this census tract field, which enabled the researchers 

to effortlessly merge the datasets. Despite the fact that the data was already aggregated into 

geographic clusters Aldrich et al. designed their model to predict at the per capita level and 

not at the census tract level; citing that while the location is pertinent to operating policy, 

geographic units add complexity to the analysis [10]. With the advent of computer models 

and algorithms, this complexity limitation can be overcome by researchers seeking to add 

more meaning and accuracy to their models (refer to Setzler et al. [5]). The census tract 

information used also included land use variables that were factored into the model, such 

as the number of housing units and employment within the area. Similar to Hall [9], Aldrich 

et al. considered including weather as a factor contributing to emergency call demand but 

opted to exclude it from their final model. This decision was likely driven by the difficulty 

associated with collecting sufficient weather-related data to include in their analysis. It is 

notable to point out this omission, as we will see in later research, as several subsequent 

researchers postulate similar justifications for considering the inclusion of weather data but 

ultimately elect to exclude it. Aldrich et al. [10] concluded that “the demand for public 

ambulances appears to be highly predictable, using a simple linear model employing 

socioeconomic variables, quality of service variables and land use variables.” Given the 

demographic information available they found that areas with higher densities of children 
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and elderly people generate higher call volumes and that nonwhite and low-income 

families are more inclined to utilize public ambulance services [10]. Overall the major 

contribution of this study was the integration of socioeconomic and demographic data. 

Aldrich et al. were also the first in the EMS forecasting community to hypothesize a 

correlation between a population’s level of access to health care and their use of emergency 

medicine; specifically stating that “we expect that demand would be highest in tracts 

(areas) with a concentration of people of low socioeconomic status. These people may use 

the emergency system even in the absence of real emergencies because they generally do 

not have a regular physician.” A population’s access to health care continues as a major 

theme today within emergency medical services research.  

 

Siler [11] performed a study similar to that of Aldrich et al. [10] using comparable 

socioeconomic data sets. Both investigations carried out by Siler and Aldrich et al. used 

census information, land use data, ambulance call records, and multiple regression models 

to analyze the demand characteristics for emergency medical services over the course of a 

one-year period. However, Siler outlined several sharp distinctions between his model and 

the one developed by Aldrich et al. While Aldrich et al. used 1960 census tract information 

to study demand at the per capita level, Siler aggregated 1970 census records at the 

community level. Siler also used additional forms of socioeconomic variables, including 

non-linear forms, and concentrated on the relationships between the employment levels in 

residential and non-residential communities as determinants for the number of incidents 

requiring emergency medical services. Siler challenged the findings of Aldrich et al. stating 

that their models were over-specified and that the effects of several socioeconomic 
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variables were inconsistent from one regression model to the next within their study [11, 

12]. Siler’s final regression model contained the following four independent variables: “(1) 

employment in an area as a proportion of the resident population, (2) the proportion of 

resident population that is both white and married, (3) housing units per residential area, 

and, (4) the ratio of white-collar to blue-collar employment among female residents”. All 

four of the independent variables had a nonlinear relationship to the number of incidents. 

The employment in an area as a proportion of the resident population was found to have 

the most significant impact on demand for emergency medical services. This finding 

supported Siler’s initial assertion that population density shifts during the day as residents 

leave their homes and travel to commercial areas throughout the city. Accordingly, Siler 

hypothesized that demand for ambulances would migrate with the population. Siler’s 

model found that, similar to Aldrich et al., “demand is higher for unmarried whites and 

for nonwhites regardless of marital status”, that “demand is higher the fewer occupants 

there are per housing unit”, and finally that “demand is greater the higher the proportion 

of blue-collar relative to white-collar job holders among employed female residents” [11]. 

Serving as an extension of the initial investigation carried out by Aldrich et al., Siler 

contributed to studying the relationship between various socioeconomic measures and the 

demand for emergency medical services. Furthermore, Siler was the first to incorporate 

socioeconomic variables to represent the changes in population densities at the community 

level as people migrate from residential to commercial areas throughout the day.  

 

Both studies conducted by Siler [11] and Aldrich et al. [10] used data restricted to the Los 

Angeles, California area, and the authors highlighted this as an important limitation in the 
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discussion of their results. This prompted Kvålseth and Deems [13] to conduct a similar 

investigation attempting to produce analogous results using data collected from the Atlanta, 

Georgia area. The time horizon for their study covered a one-month period and, like Siler 

and Aldrich et al., used ambulance calls records and 1970’s census data merged by census 

tract. Following initial regressions runs, the authors found 18 exogenous variables to be 

significant in estimating the demand for ambulances. Comparable to Siler and Aldrich et 

al., the author’s results showed that variables associated with demographics, economics 

and land-use could be used to explain variations in demand. Specifically, they found that 

increases in EMS demand corresponded to declining household income, increasing male 

unemployment, larger land acreage per capita, and the percent of non-white populations. 

Likewise, they concluded that demand for emergency medical services increases as the 

percent of the population under the age of 15 years and over the age of 65 years increases. 

While Kvålseth and Deems [13] did not cite the works of Siler specifically, overall their 

results were consistent with the general findings of both Aldrich et al.’s and Siler’s 

investigations. 

 

Kamenetzky et al. [12] completed a regression analysis study concentrated on establishing 

demand estimation models using comprehensive sets of ambulance call and census data. 

The authors claimed that previous investigations attempting to establish links between 

EMS demand and populations characteristics fell short by using incomplete datasets [12]. 

To perform their study, a series of step-wise multiple regression models were carried out 

using a combination of 1970’s census data, population and employment estimates for 1979, 

and complete sets of 1979 call data provided by 82 EMS agencies throughout 200 civil 
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divisions in Southwestern Pennsylvania. This represented the largest and most 

geographically diverse collection of EMS data analyzed prior to 1982. In addition to 

developing models focused on estimating the number of emergent calls using historical 

call data and sociodemographic features, the researchers attempted to analyze the effect of 

provider characteristics on demand. This required dividing the agencies represented in the 

data into different service characteristic categories such as profit/non-profit, 

paid/volunteer, public/private, and community/municipal. However, preliminary tests 

indicated that the effect of provider characteristics on demand was not statistically 

significant when other factors were considered. Their final regression model produced 

reliable demand estimates for a given area using the following four sociodemographic 

indicators: “(1) total resident population, (2) total employment in the area, (3) logarithm 

of the percentage of the population which is both white and married, and (4) the square of 

housing units per area resident” [12]. These four variables, with the exception of 

employment, were taken from census data and are comparable to the variables used in the 

final models formulated by Kvålseth and Deems [13], Siler [11] and Aldrich et al. [10]. 

Kamenetzky et al. [12] were the first and only researchers to consider the effect of provider 

characteristics on demand. Their final model was also very unique compared to other 

approaches given that it incorporated estimations of unmet demand and differentiated 

between demand based on clinical categories.   

 

Recognizing the fact that previous studies only leveraged regression approaches to analyze 

and forecast EMS demand, Baker and Fitzpatrick [14] decided to apply a Winters’ 

exponential smoothing model to generate daily ambulance demand forecasts. Using data 
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provided by the South Carolina Department of Health and Environmental Control, the 

researchers selected four different counties in South Carolina, varying from urban to rural, 

to serve as their study area. The authors intentionally selected a diverse group of counties 

to overcome what they identified as a key limitation of previous studies focused exclusively 

on a single geographic area. They hypothesized that applying a Winter’s exponential 

smoothing time-series model to produce short-term forecasts would be a more practical 

alternative for EMS managers over traditional multiple linear regression models that 

generate longer-term estimations and rely heavily on casual variables [14]. In an effort to 

optimize their exponential smoothing model, Baker and Fitzpatrick also developed goal 

and quadratic programming methods that adjusted the model parameter settings to 

minimize the mean squared error (MSE) and BIAS. The BIAS statistic they developed 

served as a gauge on the direction of the average forecast error. A positive BIAS indicated 

an over-estimation of average demand, while a negative BIAS represented under-

estimation. Given that EMS resources are allocated and dispatched based on demand 

forecasts, the authors stated that under-estimation of demand is a more severe inaccuracy 

and parameters settings that produce over-estimated forecasts should be preferred [14]. The 

authors configured their model so the desired value and direction of the BIAS statistic 

could be adjusted by the decision maker (i.e. EMS dispatchers and managers). They 

compared the results of their multi-stage programming and forecasting approach against 

results produced by a single-objective Winters’ exponential smoothing model and a 

multiple linear regression forecasting model. Overall, they found their approach produced 

more accurate forecasts for the various counties over competing models while also 

supporting the objectives of the decision makers surveyed [14]. Baker and Fitzpatrick were 
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the first researchers to explore the application of time series models to produce daily call 

volume predictions.  

 

In 1998, Tandberg et al. [15] carried out a similar study exploring the performance of 

various time series models for generating ambulance forecasts. Specifically, the 

researchers applied four different models that included a model using raw observations 

from previous periods, a simple moving average model with data point periods ranging 

from one through five, a means with simple moving average (seasonal decomposition) 

model with data point periods ranging from one through five, and an autoregressive 

integrated moving (ARIMA) model [15]. Using a full year of call data (1994) provided by 

the Albuquerque Ambulance Service in Albuquerque, New Mexico, hourly call volume 

predictions were generated using all four models. The prediction accuracy of each model 

was then tested using records for the first 24 weeks of the following year (1995) and 

forecast performance was evaluated using the resulting R-squared values. After testing and 

evaluating a series of different model types and configurations, the authors found that the 

means with simple moving average (seasonal decomposition) model using a three-point 

moving average produced the most accurate forecast. Overall their final model explained 

54.3% of the variation present in the 1995 test data [15]. In addition to generating forecasts 

for the volume of calls in a given hour (ambulance runs per hour), Tandberg et al. [15] also 

attempted to produce predictions for the average service times and call priorities for given 

calls but did not yield useable results. Their study represented the first attempt in the EMS 

forecasting community to produce hourly short-range call volume predictions.  
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Citing specific concerns over the rising senior citizen population, McConnel and Wilson 

[8] carried out a study examining the impacts of an aging society on emergency medical 

services demand. Consistent with preceding investigations, McConnel and Wilson 

collected one year’s worth of ambulance calls records and census data from 1990 

representing the population of Dallas, Texas. The primary objective of their study was to 

measure the demand disparities between different age and racial groups. Regarding 

methodology, McConnel and Wilson elected to use a variety of statistical tests to evaluate 

their hypotheses including multiple Chi-Squared tests and one instance of a Tukey’s range 

test for multiple comparisons of proportions [8]. They began their analysis by calculating 

EMS utilization rates per thousand people based on two gender categories (male and 

female), four different categories representing population ethnicity (non-Hispanic white, 

African American, Hispanic, and other), and eight different age groups (i.e.; <5, 5-14, 15-

24, 25-44, 45-64, 65-74, 75-84, 85+). As expected, and supported by previous research [10, 

11, 13], McConnel and Wilson [8] determined that the demand for emergency medical 

services increases as the age of the population increases. Based on their findings, rates of 

utilization for those 85 years of age or older are 3.4 times higher compared to those falling 

in the (45-64) year old age group. Furthermore, results showed that African Americans 

were twice as likely to utilize emergency medical services compared to Non-Hispanic 

Whites and Hispanics and almost five times as likely compared to the other ethnicity 

categories [8]. This finding is also consistent with previous studies [10, 11, 13]. Lastly, 

McConnel and Wilson found overall EMS utilization rates for females to be noticeably 

higher when considering all incidents types, but lower for life-threatening situations, when 

compared to male utilization rates. While age and other demographic characteristics were 
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included as independent variables in several of the previous studies presented, McConnel 

and Wilson were the first to perform a study explicitly focused on measuring the demand 

disparities between various age groups drawing attention to the potential future impacts of 

an aging society on EMS systems and agencies.  

 

Nearly a decade later in 2007, Channouf et al. [3] performed a study concentrated on 

generating daily and hourly EMS call volume forecasts by applying a variety time-series 

methods. Emphasizing the importance of accurately predicting demand, Channouf et al. 

highlight the fact that reliable forecasts serve as essential inputs into EMS planning models 

and accompanying staffing plans. The data used for their investigation was provided by the 

Calgary EMS System in Alberta, Canada and spanned a time-period of 50 months from 

2000-2004. Consistent with previous studies, each ambulance call record contained the 

time of the incident, the geographic location where the call was placed from, and the 

initially assigned call priority [3]. Although available in the data, the call priority, and 

geographic location information were not used in this study. Rather Channouf et al. focused 

exclusively on time as the central variable and did not consider the spatial variation of 

demand. In preparing the data for analysis, the records were aggregated based on the 

number of calls occurring during each hour of the day. While previous studies, with the 

exception of Tandberg et al. [15], produced forecasts for broader time periods, such as 

months or years, Channouf et al. were the first to clearly state that the demand for 

emergency medical services varies significantly based on the time of the day and the day 

of the week [3]. Performing preliminary analysis of the data, Channouf et al. plotted the 

hourly call volume counts over a one-year, one-month, and one-week period to identify 
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any observable trends and seasonal components present in the data. From the one-year and 

one-month perspective a clear positive trend and seasonal behavior were visible, with 

demand reaching peak values during the months of July and December. One would assume 

these seasonal peaks are related to increased holiday travel, events, and activities common 

during these months. Channouf et al. attributed the positive upward trend as likely being 

caused by urban population growth and, as underlined by McConnel and Wilson [8], the 

advancement of the aging society [3]. Visualizing the hourly call volumes at the one-week 

time-scale uncovered an oscillation demand pattern mode, with demand reaching its 

highest values between the hours of 10:00am and 8:00pm Sunday-Thursday and spanning 

into the late night/early morning on Friday and Saturday [3]. While these results are 

relatively intuitive based on our understanding of human behavior in urban areas, they 

further stress the importance of understanding and predicting demand at a more granular 

level. Diving into methodology, Channouf et al. evaluated five different time series models. 

Three for forecasting daily call volumes and two for forecasting hourly call volumes. The 

three models employed to forecast daily calls included (1) a standard regression model, (2) 

a regression model configured with correlated residuals and (3) a doubly-seasonal ARIMA 

approach. Given the results, Channouf et al. found that the second model outperformed the 

other approaches when forecasting 1-2 days into the future with the standard regression 

model performing comparably at the 14-day mark. The two models used for forecasting 

hourly call volumes as described by Channouf et al. included (1) a model “built around 

the conditional distribution of hourly volumes, conditional on the daily volume” and (2) a 

model “that fits a time-series model directly to the hourly data” [3]. The authors concluded 

that both approaches were effective in producing a reasonably accurate short-term (12-24 
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hrs.) forecast. As previously noted, the major contribution of this investigation was the 

development of novel models that produced relatively accurate forecasts at daily and 

hourly time scales. 

 

Brown et al. [7] performed a study to measure the accuracy of forecasts using a popular 

demand pattern analysis method initially introduced as part of the System Status 

Management framework. Introduced in 1983 by John Stout, an EMS industry leader, 

System Status Management (SSM) is an operations methodology currently used by 

numerous EMS agencies. SSM has also been incorporated into several popular Computer 

Aided Dispatch (CAD) software systems commonly employed by EMS agencies for 

dispatching ambulances. Broadly speaking, what Brown et al. refer to as “demand pattern 

analysis” is an industry approach where historical call data is analyzed to identify typical 

peak demand times. More specifically, SSM performs demand pattern analysis by using 20 

weeks of EMS call volume data to calculate three key hourly forecast values; “1. Average 

Peak Demand (AP), 2. Smoothed Average Peak Demand (SAP), and 3. The 90th Percentile 

for Ranked Demand (90R)”. Brown et al. cite that prior to their publication no scientific 

studies had been conducted to evaluate the accuracy of forecasts produced using the System 

Status Management methodology [7]. To complete their study, Brown et al. collected 73 

weeks of hourly call volume data from seven different EMS agencies serving diverse 

populations throughout the central United States. The first 20 weeks of call volume records, 

starting on April 12, 2004, served as the historical data set for estimation using the three 

SSM demand pattern analysis methods; AP, SAP, and 90R. The 21st week of data was 

omitted, acting as a buffer period, and the last 52 weeks of data were used to test the 
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accuracy of each method. The call volume forecasts produced by means of the three 

methods were compared against the actual call volumes for each hourly period over the 52-

weeks. Descriptive statistics were developed to measure the accuracy of each forecasting 

method, including the number of instances where demand was underestimated and 

overestimated. There results showed that the 90th Percentile for Ranked Demand (90R) 

forecasting approach performed the best with an approximate 19% estimation accuracy. 

While the Average Peak Demand and Smoothed Average Peak Demand forecasts resulted 

in 13% and 10% estimation accuracy respectively [7] . Brown et al. noted that while the 

estimation accuracy for the exact number of calls predicted was found to be relatively low 

using these methods, call demand was correctly estimated or overestimated a combined 

93-96% of the time. Consequently, only 4-7% of call instances would occur during a period 

where an insufficient number of ambulances were dispatched based on the forecast 

estimations. This relates to the sentiment expressed by Baker and Fitzpatrick [14] who 

pointed out the severity of underestimating demand versus the less concerning 

miscalculation of overestimation. Given this fact, Brown et al. concluded the SSM demand 

pattern analysis approach to be a “reasonable predictor for hourly ambulance staffing 

patterns” resulting mainly in an equitable overestimation of demand. This study 

represented the first academic exploration into the prolific System Status Management 

industry practice used for demand planning and analysis.  

 

In 2009, Setzler et al. [5] performed a significantly novel study aimed at producing EMS 

call volume forecasts at various spatiotemporal granularities using artificial neural 

networks. The data used to conduct their investigation consisted of emergency calls 
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dispatched between 2002 and 2004 by MEDIC, an EMS agency responsible for serving the 

populace of Mecklenburg County, North Carolina. While Channouf et al. were the first to 

formally state that the demand for ambulances changes significantly based on the time of 

the day and the day of the week [3], Setzler et al. expanded on this observation by 

incorporating a spatial component of demand into their forecasting methodology. 

Individually each call record contained information related to the time and duration of the 

call, the call priority, and latitude-longitude coordinates identifying the calls location. This 

enabled the researchers to aggregate the call data at various gradations of time and space. 

Specifically, they grouped the call volumes into 1-hour and 3-hour time range buckets, and 

geographically into 2-mile x 2-mile and 4-mile x 4-mile square mile grid blocks; creating 

a total of four different model configurations at different levels of specificity. It is important 

to note that the researchers selected these different configurations arbitrarily, and not based 

on any quantitative measurements or observations. Using the prominent geographic 

information system (GIS) platform ArcGIS, 2-mile x 2-mile and 4-mile x 4-mile fishnet 

grid layouts were layered over a map of Mecklenburg Country creating a total of 168 and 

40 grid blocks, respectively. Citing that many of the previous studies leveraged traditional 

casual forecasting and time series approaches, Setzler et al. hypothesized that artificial 

neural networks (ANN) were a viable alternative as they do not require specific 

assumptions about the data or error terms, are able to adapt to complex data sets and 

patterns, and have the ability to learn and model both linear and non-linear relationships 

[5]. They designed their neural network based on the spatial grid layout where (n) 

represented the total number of grid blocks, either 168 or 40. They also used four different 

input features, (H) which represented the hourly time bucket (24 or 8 in total), (S) for the 
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season of the year (1-4), (D) for the day of the week (1-7), and (M) representing the month 

of the year (1-12). Each grid block (n) had 4 input nodes into the ANN correlating to each 

of the four input variables (H, S, D, M). The output from the ANN represented the call 

volume forecasts for a given time-bucket for each of the (n) grid-block locations, for a total 

of 168 or 40 forecast values depending on the configuration. To benchmark the 

performance of their model, Setzler et al. compared the forecasts produced by their ANN 

against forecasts for each grid-block and time-bucket produced using a method applied by 

MEDIC and others in the EMS industry, a unique adaptation of a 20-point moving average 

[5]. Their results showed that the ANN approach moderately outperformed the moving 

average forecasts at the 4 x 4 mile 1-hour and 3-hour granularity levels. However, at the 2 

x 2 mile 1-hour scale the moving average forecasts were more accurate on average over 

the ANN approach and exhibited no statistically significant difference at the 2 x 2 mile 3-

hour level. The authors ultimately concluded that the performance and simplicity of the 

moving average method currently in use by MEDIC and other EMS agencies suggest no 

reasonable justification for implementing an ANN for demand forecasting. Despite their 

results, Setzler et al. [5] were pioneers in exploring the application of ANN, a modern 

machine learning technique, for forecasting emergency medical services demand.  

 

Chen et al. [16] completed a complementary investigation comparing the performance of 

ANN, moving average, linear regression, and support vector regression models to predict 

daily and sub-daily EMS call volumes for three districts within New Taipei City, Taiwan. 

Closely citing the works of Setzler et al. [5], the researchers further emphasized the 

importance of incorporating the spatial component of demand for producing accurate 
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forecasts and effectively allocating EMS resources. In formulating their approach Chen et 

al. established a framework for practitioners to produce forecasts using a variety of input 

features and a collection of forecasting models. The authors characterize their framework 

as being broken up into two distinct components, (1) geographic information system (GIS) 

and (2) data analytics. The EMS call data is first pre-processed by the GIS which plots the 

call locations and divides the geographic area spatially into grids defined by the user. The 

smaller the grids the finer the spatial granularity. The calls are then labeled and grouped 

together based on grid location. It’s important to note that this approach was not at all novel 

and closely mirrors the methodology originally conceived by Setzler et al. [5]. Chen et al. 

also used input features similar to Setzler et al. (year, season, month, day, day of the week 

and time bucket). To differentiate themselves slightly, they added categorical variables for 

calls occurring on the weekend and during rush hour times. After pre-processing, the data 

was separated into training, validation and testing datasets and fed into the four different 

models (ANN, MA, SR, and SVR). When each model was executed, cross validation was 

performed to identify the optimal combination of input features and model parameters that 

minimized the root mean squared error (RMSE) of the forecasts [16]. The authors 

identified this initial execution and cross-validation process as Phase 1. In Phase 2 the 

model yielding the lowest RMSE within a specific geographic grid-block is selected as the 

optional model for forecasting calls within that area [16]. Once the forecasts are produced 

for each respective grid-block, the results are returned to the GIS for spatial visualization. 

In assessing their results, the authors stated that their models produced acceptable daily 

call volume forecast accuracy (23.01% lowest MAPE in a single 2km by 2km spatial grid) 

for each of the three districts in New Taipei City. The forecast error values for sub-daily 
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(3-hour time bucket) volume estimations were much higher, with significantly lower 

overall accuracy. However, the primary contribution of their study to the EMS field was 

not their results. While this “two-phased” model selection approach is not at all unique 

within the data analytics and machine learning community, it is novel within EMS 

forecasting research. Chen et al. [16] established a spatiotemporal forecasting framework 

that enables applying different forecasting models and parameters to different geographic 

grids based on performance. Furthermore, their framework challenges the idea of a global 

optima with regards to a forecasting methodology and implements a local optima algorithm 

search strategy.  

 

Vile et al. [6] completed a study in 2012 in which they produced ambulance demand 

predictions using a novel time series forecasting technique known as Singular Spectrum 

Analysis (SSA). SSA serves as a more flexible nonparametric estimation method, over 

traditional time series approaches, requiring less assumptions regarding the underlying 

structure and distribution of the data. Referencing previous studies that applied time series 

methods, Vile et al. hypothesized that SSA could provide more accurate forecasts of EMS 

call demand. After collecting several years of ambulance call data provided by the Welsh 

Ambulance Service Trust in Wales, the researchers generated daily call volume forecasts 

using a combination of SSA, ARIMA and a Holts-Winters (HW) exponential smoothing 

models [6]. They then compared the overall accuracy of the three methods using the root 

mean squared error (RMSE) metric. The researchers found that SSA was capable of 

producing short-term forecasts (7-14 days) with accuracies equivalent to ARIMA and HW. 

Additionally, SSA generated forecasts with greater accuracy over longer periods of time 
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(21-24 days). Vile et al. [6] state that in practice SSA is not only a comparable, or in some 

cases superior, forecast methodology, they argue that SSA is overall a more flexible 

approach capable of recognizing cycles and patterns in demand. The authors investigation 

represents the first attempt to apply the novel Singular Spectrum Analysis approach to 

forecasting EMS demand. An additional layer of detail could be added to future models by 

incorporating the spatial component of demand. If SSA was capable of producing forecasts 

of similar accuracies at finer temporal and spatial granularities it could potentially serve as 

a viable alternative to traditional time-series models in practice.   

 

As previously noted, several researchers have considered including weather related 

variables in their demand forecast models but ultimately decided to exclude them. The 

relationships between weather conditions and the effects on human health have been deeply 

studied throughout various fields [17-20]. Within EMS research, Wong and Lai [21] and 

McLay et al. [22] performed novel studies analyzing the effects of weather on historical 

ambulance services demand. In 2014, Wong and Lai [23] carried out a follow-up study 

focused entirely on developing short-range forecasts using weather factors as causal 

predictors. By exploring three years of daily ambulance call data provided by the Hong 

Kong Hospital Authority, Wong and Lai generated daily call demand forecasts using 

autoregressive integrated moving average (ARIMA) time series models. They started by 

comparing the performance for three different model configurations. This included a base 

model using only historical call volume data with no weather variables, a second model 

that incorporated historic actuals for average temperature, and a third that included historic 

actuals for average temperature and relative humidity. Following preliminary runs, they 
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determined that average temperature had the most significant impact on improving the 

overall forecast accuracy, while the addition of relative humidity increased the mean 

absolute percent error (MAPE). Given that actual average temperatures are not useful for 

producing future demand predictions, Wong and Lai replaced the historic actuals from 

previous periods with forecasted temperatures for future periods. Their final model 

produced a weeks’ worth of daily call demand forecasts with reasonable accuracy using 

historical call volumes and forecasted average temperatures. The authors cited that one of 

the primary deficiencies of their work was the fact that not all EMS demand is related to 

weather [23]. Therefore, the accuracy of their forecasts was reduced by demand that is 

independent of weather influences. To further improve their model, they recommended 

making distinctions between the different types of demand such as calls resulting from 

incidents possibly caused by weather versus other injuries and illnesses. This is commonly 

referred to in the industry as the dispatch determinate (Ex. traffic accident, overdose, chest 

pain, breathing problems, etc.). The study conducted by Wong and Lai [23] was the first 

attempt to incorporate weather related data into forecasting models to improve overall 

prediction accuracy. Previous researchers postulated the benefits of this inclusion but 

strayed away from the idea due to the difficulty associated with gathering the data. Given 

the detailed weather forecast data that is readily available today, collecting the necessary 

data required for analysis is no longer a significant limitation. 

 

Zhou et al. [24] completed a study in 2014 where they developed a time-varying Gaussian 

mixture model to predict ambulance demand density. Serving as a probability distribution 

model, a Gaussian mixture model (GMM) approach assumes that data points are derived 
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from a collection of Gaussian distributions. GMM is often applied to clustering and density 

estimation problems and, in some forms, serves as an unsupervised machine learning 

technique. For EMS forecasting, the authors focused on demand density and used one 

month of call data provided by Toronto EMS for training their model and two separate 

months of call data for testing. Demand density was calculated spatially by forecasting call 

volumes for two-hour intervals within a group of 1km by 1km grid spaces. Those volume 

values were then normalized by the total demand volume forecasted for a given time 

period. The forecasted demand density values produced using the Gaussian mixture model 

were then compared to forecasted densities generated by variations of the moving average 

(MA) method. The authors found their proposed mixture model outperformed the MA 

method yielding higher statistical accuracy overall. The study conducted by Zhou et al. 

[24] provides a promising direction for future EMS demand forecasting research. Given 

the availability of richer datasets, various probability distribution-based models such as 

GMM may be capable of producing more generalized estimations of call demand at finer 

spatiotemporal granularities.  

 

2.2 COMPARISON OF METHODS 
 
In each of the preceding studies, the investigators reviewed the literature that most closely 

correlated to their hypotheses, research objectives, and methodologies. However, seldom 

did the authors attempt to categorize the historical approaches based on their unique 

methodology or usefulness to the emergency medical services field. Channouf et al. [2] 

suggested that EMS demand forecasting studies can be separated into two distinct groups 

“ (1) models of the spatial distribution of demand, as a function of demographic variables 
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and (2) models of how demand evolves over time” [2]. Using that categorization as a 

guideline, the earlier works of Aldrich et al. [8], Siler [11], Kvålseth and Deems [10], 

Kamenetzky et al. [12] and McConnel and Wilson [6] that primarily used socioeconomic, 

demographic, and land use variables to explain the nature of EMS demand would fall into 

the first group. While the works of Hall [7], Baker and Fitzpatrick [14], Tandberg et al. 

[15], Channouf et al. [2], Brown et al. [11], Setzler et al. [5], Vile et at. [6], Wong and Lai 

[23], Zhou et al. [24], and Chen et al. [16] would be considered members of group two. 

Table 1 summarizes all the studies surveyed in this review and identifies several important 

factors to consider when comparing the usefulness of the various models that have been 

developed for forecasting EMS demand. 

Table 1: EMS Demand Forecasting Study Comparison Matrix 

 

The primary data source for each of these studies has been ambulance call records 

aggregated at various scales of time granularity. In each instance, the data used was 

restricted to a specific geographic area or, in the case of Kamenetzky et al. [12], Baker and 

Fitzpatrick [14] and Brown et al. [7], a limited sampling of locations. The recurring use of 

regression analysis in this problem space has proven to be an effective system for 

identifying explanatory components of demand, and most of the researchers making use of 

those techniques yielded comparable results from location to location. However, many of 
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the researchers also highlighted the fact that the geographic scope of their individual studies 

served as an underlying limitation of their results as they relate exclusively to the populace 

of a specific region.  

 

The studies conducted by Baker and Fitzpatrick [14], Tandberg et al. [15], Channouf et al. 

[2], Brown et al. [11], Setzler et al. [5], Vile et at. [6], Wong and Lai [23], Zhou et al. [24], 

and Chen et al. [16] represented a significant paradigm shift in research trends, from 

models aimed at identifying and explaining the causal factors of demand, to models capable 

of predicting demand with reasonable accuracy. In terms of demand planning, this equates 

to a transition from models useful for establishing long-term or medium-term strategic and 

tactical policies based on population characteristics to models that aid in developing short-

term operational plans. For EMS dispatchers and managers, a robust understanding of the 

nature of demand over longer periods of time (i.e. monthly or yearly) supports their 

decisions related to ambulance fleet size and system capacity; while short-range forecasts 

assist with producing weekly, daily and hourly workforce schedules and deployment plans. 

For EMS agencies, the need for accurate short-term forecasting methods that can be 

incorporated into their daily dispatching processes are critical to the delivery of responsive 

patient care. Brown et al. [7] underscored this point by evaluating the effectiveness of the 

current SSM industry practice. While they found the demand pattern analysis forecasting 

methods associated with SSM to be adequate at estimated or overestimating demand, they 

failed to consider the allocation and distribution of resources dispatched spatially. The 

work completed by Baker and Fitzpatrick [14] set the course for much of the future research 

by shifting the focus away from casual regression models that analyzed demand over longer 
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periods to time-series based forecasting models capable of producing daily predictions with 

greater accuracy. Additionally, Baker and Fitzpatrick [14] emphasizes the importance of 

developing practical models that could be implemented by EMS agencies and staff. The 

works of Tandberg et al. [15] and Channouf et al. [2] progressed the field further by 

exploring the effectiveness of relatively simple time series models for producing hourly 

call volume forecast.  

 

The various temporal models developed by researchers have improved our ability to predict 

operational volume at the daily or hourly level for entire EMS service areas. However, 

accurate estimations that incorporate the spatial distribution of demand are vital to 

determining ambulance dispatch locations and establishing fluid redeployment plans based 

on spatial demand fluctuations [5, 24]. Concentrating on varying the levels of forecast 

granularity, Setzler et al. [5] were the first to add a spatial component of demand in their 

forecasting methodology. Ultimately their novel spatiotemporal approach set the trajectory 

for all future research efforts. The use of machine learning models, such as artificial neural 

networks, overcomes the dimension complexity limitation discussed by Aldrich et al. [10] 

when attempting to produce call forecasts values for an array of geographic locations. Chen 

et al. [16] further reinforced this idea by developing a framework for generating 

spatiotemporal forecasts using a combination of artificial neural networks, support vector 

regression and traditional time-series approaches. One of the unique challenges associated 

with predicting ambulance demand in both time and space is the sparse nature of demand 

instances at finer granularities. This results in a complex, non-normal, zero-inflated data 

distribution that is especially difficult for traditional regression and time-series approaches 
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to model accurately. Both Setzler et al. [5] and Chen et al. [16] encountered this challenge 

while evaluating the results of their forecast estimations. At finer granularities, fewer call 

instances exist at each time interval and grid location for the model to train against. With a 

larger number of zero demand (no call) instances occurring in a given geographic area, the 

resulting models consequently produced zero call volume forecasts for the majority of 

locations and time intervals. Given the number of dimension combinations with zero 

actuals, this also results in artificially low error values when the forecasts are compared 

against the actuals.  

 

2.3 ALTERNATIVE MODELS AND METHODS 
 
ANNs have been presented as effective alternatives to traditional time series forecasting 

methods across a wide range of applications. In 1993, Tang and Fishwick [25] compared 

the performance of neural networks against the Box-Jenkins method across sixteen time 

series datasets of varying complexity. Their results indicated that for long-term forecasts, 

neural networks consistently outperformed the Box-Jenkins model.  Similarly, in 1996, 

Hill et al. [26] produced time series forecasts using neural networks and six prominent time 

series methods. They found that across monthly and quarterly time series, neural networks 

significantly outperformed the traditional methods. Since the publication of those early 

studies, the applications and production implementations of ANNs have dramatically 

evolved and expanded. Exploring the application of more complex models such as deep 

neural networks has the potential to significantly advance EMS call volume estimation 

capabilities at finer spatiotemporal granularities.  
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Data mining techniques, such as cluster analysis, could also be applied to improve 

forecasters understanding of demand distributions and aid in model feature selection and 

grouping. Prospective models must also continue to incorporate detailed spatial demand 

information when formulating predictions. More recent investigations such as those 

performed by Vile et al. [6] and Wong and Lai [23] that continue to focus on time as the 

sole dimension are comparatively antiquated. Aringhieri et al. [3] suggested that “based 

on the spatial mode, data mining might allow the development of a prediction system for 

emergency demand, i.e., to identify the most likely region from where the next emergency 

request could arrive”. This may also require integrating those socioeconomic, 

demographic, and land use attributes identified in previous studies as causal variables. 

Additional features such as traffic patterns, weather, events, and the dynamics of daily 

population shifts could also improve the richness and accuracy of future models [5, 16]. 

Probability distribution based models, such as those explored by Zhou et al. [24], as well 

as various Bayesian learning methodologies are also encouraging approaches for producing 

meaningful spatial estimations of demand. Future researchers might also consider 

incorporating features related to individual emergency call instances, such as the dispatch 

determinate and assigned call priority to add an additional layer of meaning to their 

projections. Lastly, it is essential that forthcoming investigations overcome the challenges 

associated with the zero-inflated demand distributions that are created at various 

spatiotemporal granularities.  
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CHAPTER 3: DATA ANALYSIS 
 
3.1 DATA SOURCE 
 
The data used in this study was provided by MEDIC, a private EMS Agency responsible 

for serving Mecklenburg County North Carolina, and contains all 911 emergency medical 

call occurrences recorded from January 1st, 2010 to December 31st, 2017. Each call record 

contains the call date/time, call location coordinates, responding ambulance identifier, 

assigned call priority, patient problem description, call response outcome (transferred, 

refused care, false call, etc.), and additional time stamps such as the time in route and arrival 

time. Emergency medical calls (or incidents) are uniquely identified using a field labeled 

“master incident number”. While there is a one-to-one relationship between an individual 

call received by MEDIC and a single master incident number, the same master incident 

number may be logged for multiple records. This occurs in cases where multiple 

ambulances respond to a single call, or in situations where one or many ambulances serve 

multiple patients on a single call. For the purposes of this study, duplicate master incident 

number records will be removed from the dataset to provide a more accurate representation 

of true call demand instances and to remain consistent with the approaches of previous call 

demand forecasting studies. 

 

3.2 DATA STATISTICS AND PRE-PROCESSING 
 
The original dataset contained 907,883 records, representing every call MEDIC responded 

to over an eight-year period (January 1st, 2010 to December 31st, 2017). A total of 46,804 

records with duplicate master incident numbers were removed using a custom Python 

script, leaving 861,079 unique call records. Meaning, over an eight-year period only 5.16% 
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of all calls responded to by MEDIC required multiple ambulances and/or served multiple 

patients on a single call. A more detailed analysis of these relatively infrequent calls could 

be conducted using the same dataset in a future study. Figure 1 displays the total call 

volume by year. Total call volume is defined as the total number of EMS calls received in 

a single period (i.e. year, month, week, day, hour, etc.).  

 

Figure 1: Total Call Volume by Year in Mecklenburg County, NC 

As illustrated in Figure 1, the total call volume annually in Mecklenburg County has 

increased each year with an average increase of 4.97% over eight years. Mecklenburg 

County has also experienced a relatively proportional increase in the total population as 

shown in Table 2 [27]. Performing a simple linear regression between annual total call 

volume and the estimated population in Mecklenburg County each year yielded an adjusted 

R2 value of 97.02%. While relative changes in population have little impact on daily and 

hourly demand, it’s important to underscore this relationship as it contributes to the long-

term trend of call volumes in the region.  
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Table 2: Annual Call Volume and Mecklenburg County Population Estimates 

 

To produce accurate short-term spatiotemporal call volume forecasts the call date, time, 

location, and call priority are all critically important. As previously noted, the primary goal 

of EMS agencies is to minimize their response times to high priority calls [1]. Private 

agencies, such as MEDIC, contracted by local counties and municipalities are bound to 

specific response time service requirements based on assigned call priorities. EMS 

communication (911) operators fielding incoming call requests perform an initial patient 

triage by asking callers a series of structured questions to quickly determine patient severity 

and assign a call priority. Clinically, calls are coded using a series of phonetic response 

code words (Echo, Delta, Charlie, Bravo, Alpha, Omega) that distinguish between different 

patient severities and conditions. At the dispatch level these codes fall into three different 

dispatch priority categories; (P1) Priority 1: life-threatening, (P2) Priority 2: potentially 

life-threatening, and (P3) Priority 3: non-life threatening. For instance, if a patient is 

described as experiencing abdominal pain, or a headache, the call may be coded as a 

Charlie P2, i.e. potentially life threatening. While a patient presenting breathing problems, 

and/or sharp chest pain, may be coded as an Echo P1, i.e. life-threatening symptoms. To 

remain compliant with their service-level agreement in Mecklenburg County, MEDIC 

must respond to at least 90% of all P1 calls within 10 minutes 59 seconds, all P2 calls 
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within 12 minutes 59 seconds, and all P3 calls within 20 minutes. This response and 

dispatch priority information is summarized below in Table 3.  

Table 3: MEDIC EMS Call Response Code & Priority Matrix 

 

Every year MEDIC consistently meets, and typically exceeds, their contractual service-

level response time requirements of 90% for all priority types. Between 2010-2017, 

MEDIC responded to an average of 96.98% of P1 calls, 97.76% of P2 calls, and 92.50% 

of P3 calls within response time compliance limits. They accomplished this milestone 

despite the fact that from 2010 to 2017 MEDIC’s total transport volume increased by 47%, 

which is greater than three times the rate of Mecklenburg County’s population growth [28]. 

While providing superior performance, MEDIC continually strives to reduce their response 

times to high priority calls. For the purposes of short-term (daily and hourly) demand 

planning, MEDIC indicated that call volume forecasts should focus exclusively on P1 and 

P2 calls. P1+P2 calls represent the most critical patients, require the fastest response times, 

and constitute the majority of all calls received (73.57%). Calls that do not require an 

immediate response are designated as non-emergent transport (NET), such as requests to 

transfer patients to and from clinical care facilities. NET calls also include pre-scheduled 

patient transports. A breakdown of the dispatch priority percentages for all call records are 

outlined in Table 4. Given the objective of concentrating solely on producing high priority 
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call predictions, 227,555 records representing all P3, NET, and other dispatch priority calls 

were dropped from the dataset. An additional 110 records that contained missing or 

incomplete fields were also dropped, leaving a total of 633,417 records in the final dataset.  

Table 4: Dispatch Priority Call Percentages 

 

 

3.3 TEMPORAL FEATURE DECOMPOSITION AND ANALYSIS 
 
As previously noted, each call record in the dataset contains a variety of time stamps 

representing different events that occur throughout the call response process. Individual 

timestamps document the year, month, day, hour, minute and second of a given event. The 

first timestamp in each record is labeled “Response Date” and records the date and time of 

the incoming call request (i.e. demand occurrence). To conduct a detailed analysis and 

prepare the dataset for input into various forecasting models, the response date timestamp 

needs to be decomposed into a collective feature set. Using a custom Python script and a 

coding structure similar to Setzler et al. [5] and Chen et al. [16], the year, season, month, 

week, day, day of the week, and hour were extracted and labeled following the schema 

outlined in Table 5. Since forecasts will be generated at the daily, sub-daily, and hourly 

level, the recorded minutes and seconds values were ignored. Plotting the monthly call 

volume data for all P1 and P2 calls reveals an increasing trend and a distinct monthly 

seasonal pattern; as shown in Figures 2, and 3. 
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Table 5: Temporal Feature Labeling Schema 

 

Recognizing that the drop in total monthly demand each February may relate to the fact 

that it is the shortest month of the year, the average daily volume for each month was 

calculate and compared from month to month and year to year. Between 2010 and 2017, 

February only had the lowest average daily demand in 2013 and 2014. In all other years, 

the lowest average daily demand occurred in December or January.  

 

Figure 2: Total P1+P2 Call Volume by Month (2010 – 2017) 
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Figure 3: Total P1+P2 Call Volume by Month (2014 – 2017) 

To prepare the data for further analysis and input into various forecasting models, two 

separate datasets were generated to represent the daily and hourly call volumes. Using 

custom Python scripts, the daily and hourly call volumes were aggregated separately by 

counting the number of call instances that occurred on individual days and within 

individual hours. In the hourly call volume data, a total of 199 instances of hours with no 

calls (i.e. zero call volume) were identified. To ensure a complete and accurate time series, 

zero call volume records for the missing 199-hour instances were generated using custom 

Python scripts. At the daily scale, a season component is present for the days of the week; 

as illustrated in Figures 4 and 5. Sunday is consistently the one day of the week with the 

lowest total call volume each year, while Saturday typically experiences the second lowest 

call frequency. Furthermore, totals are consistently higher during the week (Monday-

Friday) reaching peak demand on either Monday, Tuesday or Friday. Anecdotally, this can 

be attributed to increased activity throughout the county as people travel to and from work, 
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school, and carry out routine weekly activities. Drilling down to the hourly level, the 

distinction between weekdays (Monday-Friday) and weekend days (Sunday/Saturday) is 

more pronounced. Figure 5 shows the average hourly call volume by the day of the week 

for all 2010-2017 call data. A clear oscillation pattern is visible at the hourly scale as call 

volumes decline in the early morning hours of the day to their lowest point at approximately 

06:00 EST. Call volumes increase significantly between the hours of 06:00 and 12:00, 

remaining at near peak levels for eight to ten hours each day. 

 

Figure 4: Total P1+P2 Call Volume by Day of Week (2010 – 2017) 
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Figure 5: Average P1+P2 Call Volume by Day of Week (2010 – 2017) 

While call volumes are overall consistently higher during the weekdays, volumes remain 

closer to their daily peak volume levels for more hours during the afternoons of the 

weekend days compared to the weekdays. The patterns and trends present in the MEDIC 

dataset are consistent with the behavior of a smaller dataset collected in Calgary, Alberta 

and used in the study conducted by Channouf et al. [3]. Their dataset also exhibited a clear 

long-term positive linear trend, monthly and daily seasonality. In the subsequent chapters, 

daily and hourly estimations are generated using machine learning models and a collection 

of traditional time-series methods which serve as benchmarks comparable to methods 

applied in previous studies. Hourly forecasts are also produced at finer spatial granularities 

to compare their performance against the capabilities of more advanced techniques and a 

range of machine learning models.  
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CHAPTER 4: DAILY CALL VOLUME FORECASTS 
 
In this chapter, an assortment of time-series methods and a multi-layer perceptron (MLP) 

model are used to produce non-spatially distributed daily call volume estimations using the 

MEDIC dataset. An MLP model, loosely based on the original implementations by Setzler 

et al. [5] and Chen et al. [16], is developed over multiple iterations. An expanded version 

of the MLP developed in this chapter is later used in the forthcoming hourly forecasting 

chapters to produce and compare non-spatially distributed and spatiotemporal hourly call 

volume estimations.  

 

4.1 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE METHOD 

Between 2010 to 2017, the participating EMS agency received an average of 217 calls per 

day and approximately 9 calls per hour. When scaled down to the daily and hourly level, 

EMS call volume levels tend to be stationary and repetitive in nature. As such, the use of 

traditional time series forecasting techniques such as moving average models, variations of 

exponential smoothing models, and autoregressive integrated moving average (ARIMA) 

models have historically been capable of producing daily call volume predictions for broad 

geographic areas with reasonable accuracy [3, 15, 29]. ARIMA is one of the most widely 

used models for time-series analysis/forecasting and can be applied to both seasonal and 

non-seasonal datasets. A non-seasonal ARIMA model contains three fundamental 

parameters (p, d, q); where p represents the number of autoregressive (AR) terms, d serves 

as the number of non-seasonal differences, and q denotes the number of moving average 

terms. In a seasonal ARIMA model an additional set of (p, d, q) parameters are included to 
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account for the seasonal component of demand along with an (m) parameter representing 

the number periods in each season. 

 

Prior to generating forecasts using 𝐴𝑅𝐼𝑀𝐴(&,(,))+&,,(,,),,-., or some of the other traditional 

time-series techniques, it is important to first determine if a time series dataset is stationary 

(i.e. constant mean, variance, and covariance overtime). Stationarity is a fundamental pre-

requisite for ARIMA to produce unbiased estimates. One visual technique that can be used 

to initially evaluate the stationary nature of a dataset is to plot the average and variance of 

observation values overtime. Figure 6 displays the daily call volume values using records 

from 2010-2017 plotted along with rolling 365-day mean and standard deviation values. 

 

Figure 6: P1+P2 Daily Call Volumes Rolling Mean and Std. Dev. (2010-2017) 

As previously identified in the data analysis chapter, the daily call volume values exhibit a 

long-term positive trend as illustrated by the increasing rolling mean, while fluctuations in 

the standard deviation values appear to be relatively minor. When a dataset is found to be 
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non-stationary as a result of a changing mean, the value of the differencing (d) parameter 

in a subsequent ARIMA model will be set to a positive integer value greater than zero. 

First or second order differencing is typically sufficient to transform a dataset with a 

variable mean from non-stationary to stationary [30]. 

 

To further evaluate the stationary nature of the time series, a common statistical technique 

known as the Augmented Dickey-Fuller (ADF) test is applied to the 2010-2017 daily 

dataset [30]. The null hypothesis in this test is that the time series can be forecasted by a 

unit root (time-dependent structure). The alternate hypothesis is that the time series cannot 

be represented by a unit root and therefore is stationary. With a resulting p-value of 0.23, 

well above the 0.05 critical value threshold, the dataset is found to be non-stationary. 

Therefore, prior to deploying ARIMA, the sources(s) of non-stationarity (i.e. trend in mean, 

variance, or covariance) need to be determined and the original non-stationary time series 

requires transformation into a stationary form. As illustrated in Figure 1, call volume 

experiences an upward trend during the 2010-2017 period. This underlying trend in mean 

is at least one source for non-stationarity. Hence, first-order differencing is applied to the 

time series and the ADF test is repeated. The test following differencing resulted in a 

practically zero p-value (5.0E-29), well below the 0.05 critical value threshold. This 

confirms that the source of non-stationarity was the trend in mean and that differencing is 

a sufficient step in transforming to a stationary time series. Since ARIMA carries out the 

differencing step innately, the original time series is used as input to ARIMA with the value 

of parameter d in 𝐴𝑅𝐼𝑀𝐴(&,(,))+&,,(,,),,-. set to 1. To determine the optimal values for the 

parameters p and q, in the ARIMA model, an R implementation of the Auto-ARIMA 
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function is utilized [31]. Auto-ARIMA performs a series of hyper-parameter tuning 

searches to identify the best ARIMA model based on two key metrics, the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both AIC and 

BIC are information criteria methods used to determine the model of best fit while also 

penalizing model complexity. Models yielding the lowest AIC/BIC values are preferred. 

For daily forecasts, the seasonality parameter (m) is set to seven, representing the days of 

the week. Using the daily call volume records from 2010-2016 as the training dataset, 

Auto-ARIMA determined the optimal model configuration to be a seasonal 

𝐴𝑅𝐼𝑀𝐴(/,0,/)(1,2,1,3). 

 

4.2 THE MEDIC DAILY FORECASTING METHOD 
 
The performance of each daily forecasting model examined in this chapter is compared 

against a benchmark method presently used by practitioners at MEDIC. This benchmark 

method, identified in this study as the “MEDIC Daily Forecasting” (MDF) method, 

calculates daily call volume estimations. The equation for the MDF method is defined as: 

𝐹(,- = �̅�(,-701	 91 +	
∑	-=70	701 	𝐴- −	∑	-=701	71/ 	𝐴-

∑	-=701	71/ 	𝐴-
? (1) 

 
Where the following notation applies: 
 

F = forecasted call volume 
A = actual call volume 
d = day of the week (Mon, Tue, Wed, Thu, Fri, Sat, Sun) 
m = month 

 
The MDF equation acts as a trend smoothing function, scaling the average actual call 

volume of a specific day of the week (𝑑) from month (𝑚 − 12) in the prior year by the 

total volume percent change over the previous 12 months. Each day of the week in an 
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individual month is weighted equally. The calculated (𝐹(-)	value serves as the forecasted 

call volume for each instance of that (𝑑) day of the week in a month (𝑚). Representatives 

at MEDIC stated that historically the MDF method has resulted in a mean absolute percent 

error (MAPE) value of approximately 6%-15% over an annual planning period [32]. 

MAPE is an error metric commonly used by academics and EMS practitioners for 

evaluating the performance of various forecasting models. As such, MAPE will serve as 

the primary error indicator throughout this study. The equation for MAPE is defined as:   

𝑀𝐴𝑃𝐸 = 	 0
E
	Σ	G=0	E 	 |IJ7KJ|

IJ
  (2) 

 
where the following notation applies: 
 

F = forecasted call volume 
A = actual call volume 
t = time period 
n = number of periods 

 
 
4.3 DAY OF WEEK MOVING AVERAGE METHOD 
 
Numerous studies have examined the performance of moving average (MA) methods using 

various configurations and number of observation periods to generate daily and hourly call 

volume predictions. While this approach is rather naïve, MA has proven to be an effective 

method for time-series forecasting given stationary observations. As examined in the 

previous chapter, and other related studies, significant seasonal patterns exist within EMS 

call data in relation to the day of the week. Consequently, researchers and industry 

practitioners have developed a wide variety of time-series forecasting techniques, such as 

the MDF method, that formulate predictions using call volumes for specific days of the 

week [5, 7, 16]. To evaluate the performance of a similar method, the following moving 

average equation is proposed:  
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𝐹(,L = 	
𝐴(,L70 +	𝐴(,L71 +	𝐴(,L7/ + ⋯+	𝐴(,L7E

𝑛
 (3) 

 
where the following notation applies: 
 

F = forecasted call volume 
A = actual call volume 
d = day of the week (Mon, Tue, Wed, Thu, Fri, Sat, Sun) 
w = week 
n = number of periods 
 

This variation of the moving average technique branded the “Day of Week Moving 

Average” (DOWMA) method, calculates the daily call volume for a given day of the week 

using a collection of actuals representing call volume totals from the same day of the week 

in (n) previous weeks. The number of periods (n) are adjusted or determined with the goal 

of minimize the MAPE value.  

 
 
4.4 HOLT-WINTERS TRIPLE EXPONENTIAL SMOOTHING METHOD 
 
The Holt-Winters Triple Exponential Smoothing method is a prominent forecasting 

technique that is effective at generating estimations given time series data exhibiting both 

trend and seasonality. Baker and Fitzpatrick [14] first used a variation of the Holt-Winters 

method, along with a parameter optimization model, to generate daily EMS call volume 

forecasts. To compare the performance of this method against the MDF benchmark 

method, and other approaches, the following multiplicate seasonal effects version of the 

Holt-Winters model is selected:   

𝐹GOE = 	 (𝐸G + 𝑛𝑇G)	𝑆GOE7& (4.1) 
 
where:  

𝐸G = 	𝛼 S
𝐴G
𝑆G7&

T +	(1 − 𝛼)(𝐸G70 +	𝑇G70) (4.2) 
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𝑇G = 	𝛽(𝐸G −	𝐸G70) +	(1 − 𝛽)𝑇G70 

 
(4.3) 

𝑆G = 	𝛾	 W
𝐴G
𝐸G
X + (1 − 	𝛾)	𝑆G7& (4.4) 

 
and the following notation applies: 
 

F = forecasted call volume 
A = actual call volume 
E = expected base level  
T = estimated trend value 
S = estimated seasonal factor 
p = the number of seasons in the time series (i.e. p=7 for weekly data) 
n = time periods into the future 
t = current time period 
α, β, γ = smoothing parameters where (0	 ≤ 	α ≤ 1, 0	 ≤ 	β ≤ 1, 0	 ≤ 	γ ≤ 1) 

 

The values of the smoothing parameters, notated as 𝛼, 𝛽, 𝑎𝑛𝑑		𝛾 , in the model are 

optimized using the evolutionary search algorithm available in the 2019 version of 

Microsoft’s Excel Solver platform. The objective function is set to minimize the MAPE of 

2017 estimations while maintaining parameter values between 0 and 1. The optimal 

parameter values for daily predictions were determined to be 0.0351, 0.0100, and 0.0286 

for 𝛼, 𝛽, 𝑎𝑛𝑑		𝛾 respectively.  

 

4.5 ARTIFICIAL NEURAL NETWORK METHOD 
 
In the two previous studies that explored ANNs as an approach for generating call volume 

estimations, both Setzler et al. and Chen et al. used a popular class of feed-forward ANNs 

known as a multi-layer perceptron model. MLP is categorized as a supervised machine 

learning algorithm that uses a technique known as backpropagation to train an estimation 

model given a training dataset containing (x) number of input features [5, 16]. MLP models 
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can be applied to both classification (discrete) and regression (continuous) problems. The 

structure of an MLP network consists of a series of layers, each containing a collection of 

nodes (neurons). Represented mathematically as a directed graph, the individual nodes at 

each layer are fully connected to the nodes of the following layer. Each network contains 

a single input layer, an output layer, and one or more hidden layers for processing inputs. 

An illustration of a generic MLP model with a single hidden layer is shown in Figure 7.  

 

Figure 7: Single Hidden Layer MLP Model 

The number of nodes in an input layer typically correlates with the number of features and 

frequently contains an additional bias node. While the number of hidden nodes and layers 

in a network is less derivative and depends on a variety of factors including the number of 

input features, the level of noise in the training data, the amount of training patterns, the 

activation function being applied, and the complexity of the function or classification task 

to be learned. In formulating their MLP models, Setzler et al. and Chen et al. referenced a 

prominent study by Zhang et al. [33] that reviewed best practices for forecasting with 
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artificial neural networks. In their survey, Zhang et al. discuss historical findings and 

techniques for determining the number of hidden layers and nodes in an ANN. They 

concluded that, for the majority of forecasting problems, one to two hidden layers are 

appropriate for producing accurate results. When determining the optimal number of 

hidden nodes, Zhang et al. noted that networks with fewer hidden nodes are typically 

preferred as they produce more generalized models, reduce the likelihood of overfitting the 

model based on the training data, and have lower complexity. As a general heuristic, the 

number of hidden nodes in a layer is typically initialized based on the approximate number 

of input features and then altered through a process of trail-and-error that seeks to minimize 

the models testing error. Hyperparameter tuning approaches such as grid-search and 

random-search are also effective strategies that can be applied to identify near-optimal 

configurations for the number of hidden layers and nodes.  

 

4.6 DAILY FEATURE SELECTION 

For any predictive model to perform well, the proper input data (predictors/features) need 

to be identified. Feature selection, also referred to as attribute or variable selection, is the 

process of systematically selecting a subset of attributes from a dataset that are determined 

to be the most relevant to a prediction problem. Hence, feature selection serves as an 

important pre-processing step for developing effective learning models and removing noisy 

data. Reducing the total number of features included in an estimation model has several 

advantages. Learning algorithms have a tendency to experience decreased prediction 

accuracy when the number of input features exceed an optimal level [34]. Additionally, 

removing variables that are determined to be statistically irrelevant, redundant, and/or 
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confounding reduces overall model complexity and the amount of computing time 

required. While feature selection can help alleviate data dimensionality issues commonly 

encountered in machine learning problems, feature selection itself is not dimensionality 

reduction. Both feature selection and dimensionality reduction techniques seek to reduce 

the total number of attributes present in a dataset. Dimensionality reduction accomplishes 

this task by creating new combinations of attributes, whereas feature selection methods 

aim to include or exclude attributes based on their original values and relevancy. Serving 

as an important pre-processing step in the applied machine learning process, feature 

selection can be accomplished using a variety of techniques and methods. One of the most 

common techniques is univariate feature selection, where the best input features are 

identified based on various univariate statistical tests such as chi-squared and F-tests. While 

these statistical techniques are simple to compute and compare, they are univariate in 

nature and are predominantly useful in situations where the input features are entirely 

independent from one another. Feature selection can also be achieved using multivariate 

models, such as support vector machines, that recursively eliminate individual input 

features and measure the impacts on estimation accuracy. While this approach can be very 

effective in application, the major limitation of multivariate (recursive) feature elimination 

is a rather arbitrary feature exclusion tactic that concentrates on maximizing the accuracy 

performance of a specific estimator while potentially discarding relevant and important 

input features.  

 

In this study, a novel feature selection method known as Boruta is applied to identify all 

relevant features in EMS call volume datasets [35]. The literature [5, 16] previously 
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identified several temporal features (year, season, month, week, day, day of week) as 

candidate features for forecasting daily call volumes. In addition to these temporal features, 

weather attribute data collected from the National Oceanic and Atmospheric 

Administration (NOAA) including the historic average daily temperature, minimum daily 

temperature, maximum daily temperature, precipitation in inches, and binary variables 

indicating occurrences of daily rain and snow fall were added to the candidate feature set 

[23]. Lastly, based on the structure of the seasonal 𝐴𝑅𝐼𝑀𝐴(/,0,/)(1,2,1,3) model, distributed 

lag values of periods 1, 2, 3, 7 and 14 for the daily features (day, day of the week, daily 

avg/max/min temperatures, precipitation, rain, snow, and volume) were added to the 

candidate feature set. The inclusion of the lag variables for call volume in the MLP model 

results in rolling window predictions which are comparable to time-series forecasting 

methods (e.g. ARIMA, exponential smoothing, moving average).  

 

After identifying all the candidate features for the daily predictions, Boruta (implemented 

in R) was used to determine which final features should be included in the model [35]. 

Boruta functions as a wrapper method leveraging ensemble-based learning algorithms, 

specifically variations of decision-tree ensembles. For each candidate feature, Boruta 

creates a shadow feature by shuffling the values of the original feature. For instance, if the 

value of feature maxTemp for day 1 is equal to 78 F and day 2 is equal to 83 F, the values 

of the maxTemp shadow feature are created by a randomly shuffling of 78 F and 83 F. This 

shadow feature maintains the same mean and standard deviation of the original feature, yet 

it should not have any significant correlation with the original variable or target variable 

(as it has been created by a random process). After creating shadow features for each 
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original feature, Boruta compares the predictive power of each original feature against the 

shadow features. If any of the original features have a lower predictive power compared to 

their corresponding shadow feature, the algorithm labels those features as “unimportant”. 

If the predictive power of an original feature is higher than that of its shadow feature, the 

algorithm will label it as “important”.  

 

The relative importance (rank) of each feature is also returned, identifying which features 

have a greater importance over the top performing shadow features (random chance). This 

ranking information is captured by the algorithm as “hits” as additional iterations are 

performed. The process of recording “hits” is cyclical, with the algorithm examining if a 

given input feature performs better than random chance. The algorithm accomplishes this 

by comparing the number of times a feature performed better than its shadow feature using 

a binomial distribution. If a feature is determined to be important after several continuous 

hits over multiple iterations it is confirmed, removed from the dataset, and the next iteration 

is performed using the reduced dataset. If a feature fails to receive any hits after several 

iterations are conducted, it is rejected and removed from the dataset. Features that are 

neither confirmed nor rejected are kept as tentative and remain in additional iterations. 

After all of the features have been identified as either confirmed or rejected, or a pre-

determined iteration limit is reached, the algorithm stops and returns the ranking results. 

The final output from the Boruta algorithm is a list of “important” ranked input features 

for use in subsequent learning models. After running Boruta using a random forest 

regressor, the features day, precipitation, rain, snow, and their corresponding lag variables 
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were rejected. The remaining candidate features were confirmed to be important for 

estimating daily EMS call volumes, ranked results are presented in Table 6.  

Table 6: Daily Call Volume Prediction Features Ranked Results 
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4.7 ANN DEVELOPMENT FOR DAILY FORECASTS 
 
This study utilized the Python-based machine learning library scikit-learn to develop and 

implement MLP regression models for generating call volume predictions. To prepare the 

data for model processing, records were divided into training, validation and testing 

datasets. Daily call volume records from 2010-2015 (2177 instances) are used for training, 

while records from 2016 (366 instances) are used for validation and 2017 records (365 

instances) are reserved for testing. Following hyperparameter tuning and validation, 

records from 2010-2016 are used for training the final model that generate 2017 

predictions. One notable disadvantage of MLP models is that network weights are 

initialized randomly. As a result, predictive performance levels naturally vary slightly from 

run to run. One strategy to overcome this issue is to cycle through numerous iterations 

during validation testing and select the model instance with the highest predictive 

performance for each model configuration. Therefore, a total of 1000 iterations were 

performed for each model configuration and the instance with the lowest MAPE across the 

validation dataset was recorded. Cross validation strategies, such as K-folds, that iteratively 

train models using slices of a given dataset ignore the temporal components inherent to 

time series data and consequently are not beneficial in this setting. As an expansion of 

earlier investigations, the initial MLP models tested were initialized based on the final 

parameter settings used by Setzler et al. and Chen et al. Each configured their MLP 

networks with the number of input nodes matching the number of features, a single hidden 

layer mirroring the number of nodes from the input layer, and a sole output node 

representing the volume estimation values. In reviewing best practices for forecasting with 

ANNs, Zhang et al. [33] evaluated historical findings and techniques for determining the 



 54 

number of hidden layers and nodes to use in a network. They concluded that, for the 

majority of forecasting problems, one to two hidden layers are appropriate for producing 

accurate results. When determining the optimal number of hidden nodes, Zhang et al. noted 

that networks with fewer hidden nodes are typically preferred as they produce more 

generalized models, reduce the likelihood of overfitting the model based on the training 

data, and have lower complexity.  

To commence MLP model tuning a set of initial hyperparameters were explored 

through an exhaustive grid search, with the resulting MAPE value serving as the key 

performance metric. The logistic sigmoid, hyperbolic tangent, and rectified linear unit 

activation functions were evaluated along with the “lbfgs”, stochastic gradient descent, and 

stochastic gradient-based optimizer solver functions. Initial tests using the stochastic 

gradient descent and stochastic gradient-based optimizer solver function confirmed that an 

adaptive learning rate consistently produced better results. Lastly, the hidden node 

configuration strategy described by Zhang et al. was evaluated in the initial grid search 

using one to two hidden layers and hidden node sizes equal to 20, x, x+1, x-1, 2x, 50, 100, 

150, 200, and 300 where (x) represents the number of input features. Using the complete 

set of relevant features identified during feature selection, multiple rounds of random and 

grid search found that models configured with the logistic sigmoid activation function, 

stochastic gradient-based optimizer solver function, a single hidden layer, and 100 hidden 

nodes outperformed alternative configurations.   
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4.8 DAILY CALL VOLUME FORECAST RESULTS 
 
To compare the estimation performance across the assorted daily forecasting methods, the 

MAPE values were calculated using the daily call volume records from 2017. Mean 

absolute deviation (MAD) values were also calculated for each method to provide 

perspective on the average number of calls under or over forecasted. All of the forecasting 

methods resulted in considerably accurate daily call volume estimations. The MLP model 

resulted in the lowest overall MAPE of 5.91% with a MAD of 14.54. 𝐴𝑅𝐼𝑀𝐴(/,0,/)(1,2,1,3) 

performed the worst yielding a MAPE of 7.31% and a MAD of 17.42. The MDF method 

resulted in a MAPE of 6.66% and a MAD of 16.38, which is consistent with the historical 

forecasting error reported by MEDIC [32]. The Holt-Winters’s triple exponential 

smoothing method using optimal parameter values resulted in a comparable MAPE value 

of 6.22% with a MAD of 15.20. Estimations using the DOWMA method were calculated 

for a range of period values from (1-365). It was found that as the number of periods 

increased the MAPE decreased until reaching a global minimum MAPE value of 6.16% at 

56 periods with a MAD of 15.28. The range of MAPE values by means of increasing 

DOWMA periods are illustrated in Figure 8.  
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Figure 8: DOWMA Method MAPE Values (Periods 1-365) 

 
These findings suggest that EMS agencies can easily generate accurate daily call volume 

forecasts, which are used for work force and vehicle scheduling, using any of the 

approaches evaluated in this study. However, albeit it is a more complicated method, there 

are several inherit advantages of using an MLP approach. ANNs do not require statistical 

assumptions regarding the distribution of data, for example, they do not require stationarity 

to produce unbiased estimates. Furthermore, following training, they produce predictions 

rapidly and are exceedingly reliable in a production environment. 
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CHAPTER 5: HOURLY CALL VOLUME FORECASTS 

Hourly call volume forecasts serve as critical inputs into detailed work-force schedules 

(peak and off-peak demand periods). To generate hourly forecasts, an MLP model is further 

developed based on the performance of daily forecasting models and results are compared 

against a benchmark method currently used by practitioners at MEDIC to generate hourly 

call volume estimations. ARIMA and a variation of the DOWMA method for hourly 

estimations are also employed as models of comparison. To determine the stationary nature 

of the hourly time series, the ADF test was performed against the complete hourly call 

volume dataset, yielding a p-value of 4.1E-28, verifying that the series is stationary. 

Preparing the ARIMA model for hourly forecasts, the seasonality parameter (m) is set to 

twenty-four. Auto-ARIMA identified the optimal model configuration to be 

𝐴𝑅𝐼𝑀𝐴(0,0,0)(2,2,_,1_). 

 

5.1 THE MEDIC HOURLY FORECASTING METHOD 

Identified in this study as the “MEDIC Hourly Forecasting” (MHF) method, the MHF 

equation is defined as:   

𝐹 ,(,L,a = 	
Σb=2_ 	Σc=0_ 	𝐴`,(,L7c,a7b

20
 (6) 

 
where the following notation applies: 
 

F = forecasted call volume 
A = actual call volume 
h = hour 
d = day of the week (Mon, Tue, Wed, Thu, Fri, Sat, Sun) 
w = week 
y = year 
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The MHF method is a unique adaptation of a traditional moving average formula that 

averages a total of 20 periods to produce estimations. The forecasted value for a given hour 

is calculated by averaging call volumes from the same hour of the day for the previous four 

day of the week time periods over the past five years. Citing the formula as a common 

industry approach, the MHF method was also used by Setzler et al. [5] as a benchmark 

method throughout their study. It is important to note that while Setzler et al. used the MHF 

method to produce and compare spatiotemporal call volume estimations, MEDIC does not 

spatially distribute their hourly forecasts using this method. Despite this fact, the MHF 

method is a suitable benchmark method for non-spatial and spatially distributed forecasts.  

  

5.2 HOURLY DAY OF WEEK MOVING AVERAGE METHOD 
 
Given that the DOWMA method produced the second lowest MAPE value for daily call 

volume estimations, the following modified version is proposed for calculating non-spatial 

and spatially distributed hourly estimations:  

𝐹 ,(,L = 	
𝐴`,(,L70 +	𝐴`,(,L71 +	𝐴`,(,L7/ + ⋯+	𝐴`,(,L7E

𝑛
 (7) 

where the following notation applies: 
 

F = forecasted call volume 
A = actual call volume 
h = hour 
d = day of the week (Mon, Tue, Wed, Thu, Fri, Sat, Sun) 
w = week 
n = number of periods 
 

This variation of the DOWMA method, identified in this study as the H-DOWMA method, 

calculates the hourly call volume for a given hour by averaging the total call volume actuals 

from the same hour and day of the week over (n) previous week. As with the daily 
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DOWMA forecasts, the number of periods (n) are adjusted in order to minimize the 

resulting MAPE value.  

 

5.3 HOURLY FEATURE SELECTION 
 
Feature selection for hourly call volume MLP models was completed following the same 

process utilized for daily call volume models. In addition to the features previously 

identified (year, season, month, week, day, day of week, hour, average daily temperature, 

minimum daily temperature, maximum daily temperature, precipitation in inches, and 

binary variables indicating occurrences of daily rain and snow fall) lag values of hourly 

call volume for periods 1-7, 24, 48, 72, 96, 168 were added to the candidate feature set 

based on the optimal hourly 𝐴𝑅𝐼𝑀𝐴(0,0,0)(2,2,_,1_) model. Using a random forest regressor, 

Boruta rejected the snow feature and confirmed all remaining features as relevant for 

producing hourly EMS call volume estimations. The complete ranked results are presented 

in Table 7.  
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Table 7: Hourly Call Volume Prediction Features Ranked Results 

 

 

5.4 ANN DEVELOPMENT FOR HOURLY FORECASTS 
 
Based on the performance of the MLP model developed for generating daily call volume 

predications, a subsequent MLP model was initialized with comparable configurations for 

producing hourly call volume predictions. As before, the call volume records from 2010-

2016 serve as the training/validation dataset and 2017 records are used for testing. 

Consistent with the grid-search strategy applied to daily MLP models, hourly MLP models 

having (x) number of input features were evaluated using hidden node sizes equal to 20, x, 

x+1, x-1, 2x, 50, 100, 150, 200, and 300 with one to two hidden layers. Multiple rounds of 

hyperparameter tuning was completed using the array of activation functions, solver 
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functions, and hidden node/layer combinations. Through grid-search the MLP model 

yielding the lowest MAPE utilized the hyperbolic tangent activation function, stochastic 

gradient descent solver function, and a single hidden layer containing 25 (x+1) hidden 

nodes. 

 

5.5 HOURLY CALL VOLUME FORECAST RESULTS 
 
To compare the estimation performance across all of the non-spatially distributed hourly 

forecasting methods, the MAPE values were calculated using the hourly call volume 

records from 2017. While in practice, the EMS operations planning horizon is significantly 

shorter (hourly, daily, weekly), testing against the complete annual dataset serves as a more 

generalized benchmark when comparing the adaptive nature of a machine learning method 

for time-series forecasting, i.e. MLP, versus rolling moving-average methods such as MHF 

and H-DOWMA. This strategy also ensures the seasonal adjustment (hourly, daily, weekly, 

monthly, etc.) capabilities of each method are thoroughly evaluated. ARIMA produced the 

worst results at the hourly scale with a MAPE of 41.37% and a MAD of 3.52, while the 

MHF method resulted in a MAPE of 27.14% and a MAD of 2.67. The MLP model yielded 

a MAPE value of 26.97% and a MAD of 2.64. Hourly call volume estimations using the 

H-DOWMA method were calculated based on the range of available data periods (1-350). 

The MAPE values decreased following a negative exponential pattern as the number of 

periods increased ultimately reaching a minimum of 26.22% at 330 periods. This pattern 

is illustrated in Figure 9. 
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Figure 9: H-DOWMA Method MAPE Values (Periods 1-350) 
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CHAPTER 6: SPATIOTEMPORAL CALL VOLUME FORECASTS 

Accurate hourly call volume forecasts that incorporate the spatial component of demand 

are critical to supporting real-time operational activities such as ambulance dispatch 

decisions and initiating dynamic redeployment strategies aimed at perpetually maximizing 

response coverage across a defined geographic service area. As previously noted, as calls 

are received, the latitude and longitude coordinates representing the originating call 

locations are recorded. This information is useful for conducting spatial demand analysis 

and identifying areas that regularly experience higher call volumes. To incorporate the 

spatial component of demand into temporal forecasting models, a K-Means clustering 

approach is implemented to separate calls into related groupings based on call location 

densities. Ancillary geospatial analysis work is presented in Appendix B.  

 

6.1 SPATIAL CLUSTERING 
 
As discussed in the literature review, Setzler et al. [5] were the first to incorporate the 

spatial component of demand and generate demand estimations at various spatiotemporal 

granularities. Chen et al. [16] and Zhou et al. [24] later conducted related spatiotemporal 

studies exploring the effectiveness of a variety of forecasting techniques. In each of the 

three investigations, the researchers developed fixed square-mile/kilometer grid block 

systems to segment geographic areas and formulate estimations. In doing so, Setzler et al. 

[5] and Chen et al. [16] encountered a key limitation of this approach; zero-inflated demand 

distributions that are created when scaled to finer degrees of spatial granularity. After 

presenting their results, Setzler et al. [5] stated that at a certain degree finer levels of 

specificity have little practical value and suggested future investigations focus on “varying 
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population densities in order to determine optimal or near-optimal geographic grid sizes 

and time intervals”.  

 

The relationship between population density and call volume densities has been recognized 

in numerous studies [3, 8, 10-13]. Employing even simple methods, such as linear 

regression, consistently reveals strong causal relations between call volumes and 

population counts. While fixed geographic grids provide a straightforward approach to 

spatial segmentation, the equal division of space does not account for the unequal 

distribution of populations and associated call demand. Alternatively, a general-purpose 

clustering algorithm, such as K-Means, can be applied as a data mining technique to 

produce geographically heterogeneous spatial clusters based on call location (latitude and 

longitude coordinate) and associated call volume densities.  

 

K-Means is a robust clustering algorithm that divides a collection of N samples into K 

distinct clusters, each defined by the average (centroid) of the samples in the cluster. The 

objective of the K-Means algorithm is to minimize the within-cluster sum of squared 

(WCSS) error (Euclidean distance) between sample points and the cluster centroid [36]. 

Since data points are grouped based on proximity, K-Means is a common approach for 

creating spatial clusters using latitude and longitude coordinates. In the prolific geographic 

information systems platform ArcGIS, K-Means is one of the primary unsupervised 

machine learning methods used by the ArcMap grouping analysis tool to identify natural 

groupings in spatial datasets. Moore and Dixon [37] utilized the grouping analysis tool to 

cluster instances of tornados produced by Hurricane Ivan in 2004 based on their 
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latitude/longitude coordinates and relative time of touchdown. Naaman et al. [38] also 

explored a variation of K-Means for automatic organization of digital photos based on 

geographic coordinates and time-based event information. 

 

The scikit-learn implementation of K-Means used in this study requires that the number of 

clusters K be specified and automatically initializes the clusters through the random 

selection of K number of samples that serve as the initial cluster centroids. The algorithm 

continues by looping between two steps. As described in the sci-kit learn K-Means 

documentation; “The first step assigns each sample to its nearest centroid. The second step 

creates new centroids by taking the mean value of all of the samples assigned to each 

previous centroid. The difference between the old and the new centroids are computed, and 

the algorithm repeats these last two steps until the centroids do not move significantly 

based on a user-specified tolerance” [39]. 

 

Establishing clusters of varying sizes based on call location volume results in groupings 

that are more representative of associated population density and reduces the likelihood of 

generating zero-inflated distributions. As suggested by Setzler et al., a practical level of 

granularity is required to produce operationally valuable demand estimations and support 

real-time dispatching decisions. Citing average travel times, distances, and the size of the 

study area, operations managers at the participating EMS agency stated that approximately 

seven to nine spatial clusters would serve as an optimal level of granularity for utilizing 

hourly call volume forecasts for real-time redeployment decisions [32]. This equates to 

three different K-Means model configurations (i.e. K = 7, K = 8, and K = 9). To further 
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evaluate the optimal number of clusters (i.e. the optimal level of granularity) a technique 

known as the elbow method is applied. The elbow method aids in identifying an optimal 

or near-optimal value for K by fitting the model with a range of values for K and calculating 

the average within-cluster sum of squared (WCSS) error for each cluster set. The WCSS 

error values for each model are then plotted on a line chart, which frequently resembles the 

shape of an arm if the data is properly clustered. The elbow, or inflection point on the curve, 

is an indicator of the optimal value, or range of values, of K. After applying the elbow 

method to our call location dataset, 5-10 clusters appear to be the optimal range based on 

the declining rate of change of the within clusters sum of squared error. This supports the 

anecdotal recommendation of the participating EMS agency that 7-9 spatial clusters serve 

as an optimal level of granularity for hourly call volume planning. The resulting elbow 

method chart is shown below in Figure 10.  

 
Figure 10: P1+P2 Spatial Clusters Elbow Plot 

 

Using the original P1+P2 call records, the latitude and longitude coordinates for each call 

were extracted and processed through a K-Means clustering algorithm implemented in 
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scikit-learn. Upon convergence, a numeric label identifying the corresponding spatial 

cluster for each call was appended to each of the original call records. This process was 

repeated for values of K = 7, 8, and 9. The call volume counts per cluster are listed in Table 

8.  The resulting K-Mean clusters are visualized below in Figures 11, 12, and 13. 

Table 8: Total Call Volume Counts Per Cluster 
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Figure 11: P1+P2 Calls K-Mean Spatial Clusters; K=7 (2010-2017) 

 

Figure 12: P1+P2 Calls K-Mean Spatial Clusters; K=8 (2010-2017) 
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Figure 13: P1+P2 Calls K-Mean Spatial Clusters; K=9 (2010-2017) 

 
6.2 SPATIALLY DISTRIBUTED HOURLY CALL VOLUME FORECASTS 

As an extension of the non-spatial hourly call volume forecasts, the performance of an 

MLP model is compared against the MHF method, H-DOWMA method, and ARIMA for 

producing spatially distributed hourly call volume forecasts. In preparation for model 

processing, the hourly call volumes for the range of spatial cluster sets (K = 7, 8, 9) were 

aggregated separately by counting the number of call instances that occurred within each 

cluster during individual hours. This resulted in three spatially distributed hourly call 

volume datasets for 7, 8 and 9 spatial clusters respectively. To ensure a complete and 

accurate time series, zero call volume records for any missing cluster/hour instances were 

generated and inserted into to each dataset. The ADF test was again conducted to verify 

that each of the newly generated time series datasets are stationary prior to model 

processing. Processing each of the datasets individually, spatially distributed call volume 
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estimations using the hourly 𝐴𝑅𝐼𝑀𝐴(0,0,0)(2,2,_,1_)  model were produced. For the H-

DOWMA and MHF methods, call volume prediction values for individual hours were 

generated by iteratively filtering the dataset using the corresponding day of the week, hour, 

and k-means spatial cluster label. This resulted in spatially disturbed hourly call volume 

forecasts by cluster using 𝐴𝑅𝐼𝑀𝐴(0,0,0)(2,2,_,1_), H-DOWMA, and the MHF.  

 

6.3 SPATIALLY DISTRIBUTED HOURLY FEATURE SELECTION 

Feature selection for spatially distributed hourly call volume MLP models was carried out 

following the same process employed for hourly and daily call volume models. With the 

addition of the K-Means clustering label for each of the three spatial cluster sets (K = 7, 8, 

9) the complete candidate feature set included: year, season, month, week, day, day of 

week, hour, average daily temperature, minimum daily temperature, maximum daily 

temperature, precipitation in inches, binary variables indicating occurrences of daily rain 

and snow fall, the K-Means cluster label, and lag values of  hourly call volume per cluster 

for periods 1-7, 24, 48, 72, 96, 168. Processing each of the three datasets separately through 

a random forest regressor, Boruta consistently rejected the snow feature and confirmed all 

other features as relevant for estimating spatially distributed hourly EMS call volumes. The 

rank results are presented below in Table 9. 
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Table 9: Spatial Hourly Call Volume Prediction Features Ranked Results 

 

 

6.4 ANN DEVELOPMENT FOR SPATIALLY DIST. HOURLY FORECASTS 

MLP model development, hyperparameter tuning, and implementation for generating 

spatially distributed hourly call volume estimations was carried out following the same 

process used for producing hourly non-spatial call volume predictions. Each model 

instance was trained using the input features and hourly call volume target values from 

each dataset for all clusters, with the K-Means cluster label serving as the spatial identifier 

in each configuration K=7, 8, 9. Following multiple rounds of hyperparameter tuning, the 

top performing MLP model was a deep neural network configured with the hyperbolic 



 72 

tangent activation function, the stochastic gradient descent solver function, and two hidden 

layers each containing 200 hidden nodes. 

 

6.5 SPATIALLY DISTRIBUTED HOURLY FORECAST RESULTS 

To compare the estimation performance across the MHF method, H-DOWMA, ARIMA, 

and MLP models, MAPE values were calculated separately for each cluster using 2017 

records from each of the three spatially distributed hourly call volume datasets (K = 7, 8, 

9). ARIMA consistently resulted in the highest MAPE values of 53.48%, 54.93%, and 

51.55% for spatial cluster sets 7, 8, and 9 correspondingly. H-DOWMA also resulted in 

higher error for each spatial cluster set with MAPE values of 51.71%, 49.60%, and 47.86% 

for 7, 8 and 9 spatial clusters respectively. The performance of the MHF method improved 

slightly as the level of cluster granularity increased with MAPE values of 48.57% at 7 

clusters, 47.59% at 8 clusters, and 46.13% at 9 clusters. The MLP models considerably 

outperformed the other methods with average MAPE values of 40.22%, 38.10%, and 

36.76% across 7, 8, and 9 cluster sets respectively. A comparison of the MAPE and MAD 

values for ARIMA, the MHF method, and MLP at the per cluster level using 7, 8, and 9 

clusters are provided in Tables 10, 11, and 12 respectively.  
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Table 10: Per Cluster MAPE/MAD Results by Method (7 Clusters) 

 

Table 11: Per Cluster MAPE/MAD Results by Method (8 Clusters) 

 

Table 12: Per Cluster MAPE/MAD Results by Method (9 Clusters) 
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

7.1 DISCUSSION 

The objective of this study was to present a forecasting methodology that utilizes machine 

learning methods to generate daily, hourly, and spatiotemporal call volume estimations at 

a degree of granularity in space and time that is both practical and actionable. Forecasting 

model results demonstrate that, given systematic feature selection and hyperparameter 

model tuning, MLP models consistently produce more accurate predictions. For non-

spatially distributed daily and hourly call volume predictions, traditional time-series and 

the MDF/MHF benchmark methods are shown to perform at marginally similar levels of 

predictive performance without the added complexity of machine learning methods. This 

means that when practitioners forecast daily or hourly call volumes for the entire county, 

they can employ either the MHF method or MLP without sacrificing predictive 

performance. These results are consistent with the findings of previous studies by Setzler 

et al. [5] and Chen et al. [16].  

 

Conversely, when producing spatially distributed call volume forecasts for finer 

geographic areas, MLP models significantly outperform traditional time series methods 

across all spatial levels evaluated (7, 8, and 9 clusters). Comparing the performance of 

spatially distributed hourly forecasts generated using MLP versus the MHF benchmark 

method, the MLP model consistently yields lower estimation error in terms of MAPE and 

MAD. This finding has practical implications given the need practitioners have for accurate 

call volume predictions at more granular spatiotemporal levels. Additionally, MLP model 

predictions are found to be more accurate within clusters containing relatively lower call 
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volumes (clusters with 10% or less of the total county-wide call volume). Using the 9-

cluster configuration for visual analysis, Figure 14 presents the MAPE values and percent 

differences between the MLP and MHF methods on a choropleth map shaded based on the 

percent of total call volume by cluster. The distinction in predictive performance levels 

between the MLP and MHF methods at the per cluster level is also apparent in terms of 

absolute deviation (error) when examining the error distribution per cluster (Figure 15).  

 
 

Figure 14: Percent of Total Call Volume and MAPE Values by Cluster. 
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Figure 15: MLP vs. MHF Absolute Error Frequency Distributions by Cluster
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Both approaches are shown to produce higher MAPE values in clusters containing higher 

(>10%) call volume (and associated population) densities (i.e. clusters 1, 3, 6, and 7). 

Geographically, these clusters represent urban centers within the county and include a 

greater concentration of mixed-use developments, multi-family housing units, and 

commercial buildings. These higher density clusters also encompass, or are adjacent to 

clusters containing, several hospitals with emergency departments (e.g., cluster 3). 

According to practitioners at the participating EMS agency, at any given time there are 

multiple ambulances located in and around the hospitals either transferring patients to the 

facility or completing paperwork. Hence, a major challenge of deployment planning is 

providing sufficient ambulance coverage across a mix of urban, suburban, and rural areas. 

Suburban and rural areas are exceptionally difficult for coverage planning; given lower call 

frequency and increased travel distances [32]. Therefore, a forecasting model, such as 

MLP, that produces more accurate spatiotemporal call volume estimations than the current 

industry method (MHF) is critical to providing adequate coverage and minimizing call 

response times. Particularly in lower call volume areas where the need for accurate 

predictions is greater.  

 

7.2 STUDY LIMITATIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

There are several limitations of this study that should be considered. First, the EMS call 

response data used in this study was provided by a single EMS agency serving 

Mecklenburg County, North Carolina. While geographically the country is comprised of a 

mixture of urban, suburban and rural areas, the effectiveness of the forecasting 

methodology presented in this paper should be investigated in similar and dissimilar EMS 
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service areas. Furthermore, it’s important to note that the optimal level of spatial 

granularity will vary based on the service area size, geographical and topographical 

features, and population densities. The effectiveness of alternative clustering methods 

should be explored, and EMS practitioners should be consulted to aid in identifying 

practical levels of spatial granularity for use in subsequent investigations. 

 

Future studies have the potential to further advance the performance of spatiotemporal call 

volume prediction models by incorporating additional explanatory variables related to 

population shifts and weather data (i.e. temperatures, rainfall, etc.) at the hourly level. 

Datasets related to traffic patterns and population densities distributed by time and space 

collected through services such as Google MapsTM and WazeTM could be introduced to 

future models. Given the strong correlation between population and call volume densities, 

such datasets are likely to further improve the predictive performance of forecasting 

models. Supplemental demographic and socioeconomic variables may also be beneficial. 

Lastly, researchers could explore the applications of alternative machine learning models 

and methods for generating EMS call volume predictions.  
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APPENDIX A: SUB-DAILY TIME FRAME CALL VOLUME FORECASTS 

A.1 TEMPORAL CLUSTERING 
 
In section 6.1, an implementation of the K-Means clustering algorithm was used to achieve 

dynamic spatial segmentation based on recorded call locations and associated call volume 

densities. In a similar fashion K-Means can be applied as a data-mining technique to 

establish dynamic time frame clusters. The observed behavior of average hourly call 

volume suggests that hours with comparable volume levels on individual days of the week 

may be clustered together to potentially create a more representative feature set. Visually 

examining the data plotted in Figure 5 reveals, based on slope direction and inflection 

points, approximately six different daily call volume states. On each day the pattern of call 

volumes begins with a (1) steady decline towards a daily minimum, (2) reaches that 

minimum point and changes directions, (3) increases towards a daily maximum, (4) reaches 

a daily volume peak or near peak, (5) maintains a volume level at peak or near peak, and 

(6) declines into the next day. These six states are depicted in Figure 16, which visualizes 

the output from a preliminary K-Means cluster model using the average hourly call volume 

data for all days of the week aggregated over 24 hours.  

 

To further evaluate this concept of sub-daily time frame forecasts in subsequent MLP 

models, the hourly call volume data was divided into seven separate datasets based on the 

day of the week (to account seasonality). The hourly call volume values for each day of 

the week were then averaged, prior to clustering, using two experimental concepts. For the 

first concept, (Time-Cluster Concept A) the hourly call volumes for each day of the week 

are averaged based on the year and hour in which they occurred. In the second concept, 
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(Time-Cluster Concept B) the hourly call volumes for each day of the week are averaged 

based on the year, month, and hour in which they occurred. This resulted in two sets of 

call volume averages, at different levels of aggregation, for clustering hours with similar 

volume levels. From there, the datasets were iteratively filtered based on the day of the 

week and processed individually through a K-Means clustering model. 

 

Figure 16: Avg. P1+P2 Avg. Hourly Call Volume Time Clusters (2010-2017) 

Following convergence, a numeric cluster label was assigned to each hourly call volume 

record identifying the respective time frame cluster for each hour on a given day of the 

week. This process was repeated using both time-cluster concepts (TCC-A and TCC-B) 

datasets for multiple values of K (1-9). The average WCSS error was calculated for each 

cluster set, resulting in the elbow plot shown in Figure 17. Closely examining the elbow 

plot, 4-6 time-clusters appear to be the optimal range given the declining rate of change in 

the WCSS error. This supports the visual estimation that approximately six distinctly 

unique states of average call volume exist. A sample of the resulting K-Means clusters 

using TCC-A and K=6 time frame clusters are provided in Figure 18.  
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Figure 17: P1+P2 Avg. Hourly Call Volume Time Clusters Elbow Plot 

 

 

Figure 18: P1+P2 TCC-A Sample Time Clusters by Day of Week (2010-2017) 
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A.2 SPATIALLY DISTRIBUTED TIME FRAME CALL VOLUME FORECASTS 

To evaluate the effectiveness of generating spatially distributed sub-daily time frame call 

volume forecasts using the two proposed time-cluster concepts, the prediction performance 

of each approach using K=6 time-frame clusters (TCC-A and TCC-B) is compared against 

a 3-hour fixed time frame approach [5, 16]. Based on the performance of spatially 

distributed hourly MLP models at varying levels of spatial granularity, 9-spatial clusters 

are used for comparative analysis of sub-daily time frame call volume forecasts. Non-

spatially distributed forecasts are also generated for each time frame forecasting model. In 

practice, sub-daily time frame call volume predictions support an EMS agency’s ability to 

identify peak volume time intervals based on the day of the week and support median-

range workforce scheduling and fleet planning decisions.  

 

A.3 SPATIALLY DISTRIBUTED TIME FRAME FEATURE SELECTION 

Feature selection for non-spatial and spatially distributed sub-daily time frame (cluster and 

3-hour fixed) call volume MLP models was carried out following the same process as 

before. With the addition of the time frame labels for each approach, the complete 

candidate feature set included: year, season, month, week, day, day of week, average daily 

temperature, minimum daily temperature, maximum daily temperature, precipitation in 

inches, binary variables indicating occurrences of daily rain and snow fall, the spatial 

cluster and time frame/cluster labels, and lag values of  time frame call volume for periods 

1-3, 6, 12, 18, 24, 30, 36, and 42. Processing each of the datasets separately, Boruta 

consistently rejected the snow feature and confirmed all other features as relevant for 



 86 

estimating spatially distributed time frame EMS call volumes. For non-spatial time frame 

datasets, Boruta rejected the snow, rain, and precipitation features and confirmed all others.  

 

A.4 ANN DEVELOPMENT FOR SPATIALLY DIST. TIME FRAME FORECASTS 

MLP model development, hyperparameter tuning, and implementation for generating 

spatially distributed time frame call volume estimations was carried out following the same 

process used for previous models. Each model instance was trained using the input features 

confirmed during feature selection and the time frame call volume target values for each 

configuration. Following multiple rounds of hyperparameter tuning, the top performing 

MLP model parameter settings for each spatial and non-spatial configuration (TCC-A, 

TCC-B, and 3-hour fixed) were identified and recorded. 

Table 13: Per Cluster MAPE/MAD Results by Time Frame Method (9 Clusters) 

  
 

A.5 SPATIALLY DISTRIBUTED TIME FRAME FORECAST RESULTS 

The resulting MAPE and MAD values for each time frame forecasting MLP model (spatial 

and non-spatial) are provided in Table 13. As a benchmark comparison, the hourly (1-hour) 

MLP model results from previous sections are included. Given the decreased level of 

temporal granularity, and related decreased estimation complexity, all three variations of 
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the time frame forecasting models evaluated, with the exception of TCC-A spatial model, 

outperformed the hourly (spatial and non-spatial) models. However, the time-cluster 

concept (TCC-A and TCC-B) models failed to outperform the comparatively naïve 3-hour 

fixed time frame approach. This indicates that the added complexity of clustering (grouping 

together) hours with similar average call volumes levels based on the day of the week, 

month, and year, does not increase the predictive performance for subsequent forecasting 

models. Lastly, the considerable reduction in forecast error (MAPE) between the 3-hour 

and 1-hour models suggest that utilizing a 3-hour planning horizon, versus the 1-hour 

industry standard, has the potential to significantly improve the effectiveness of short-term 

EMS deployment plans. Ideally, EMS agencies could institute rolling deployment and 

redeployment plans using a combination of daily, sub-daily (spatial and non-spatial), and 

hourly (spatial and non-spatial) forecasting models to maximize coverage and reduce call 

response times.  
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APPENDIX B: GEOSPATIAL ANALYSIS 
 
To analyze the EMS call volume records spatially, a series of maps were constructed using 

the popular geographic information system (GIS) platform ArcMap. Given that each call 

record contains the precise latitude and longitude coordinates representing the call location, 

each record can easily be plotted on a map using GIS software. The primary purpose of 

this analysis is to visualize the spatial distribution of demand, identifying areas within 

Mecklenburg County, North Carolina that consistently experience high call volumes and, 

potentially identify seasonal patterns and trends related to time. Additionally, since early 

studies leveraged the availability of census information to identify causal links between 

EMS demand and socio-economic/demographic characteristics, a visual geo-spatial 

analysis is conducted via choropleth maps using a sample of census features explored in 

previous studies. The last decennial census conducted in The United States was completed 

in 2010, therefore, only the P1/P2 calls that occurred during 2010 will be included in this 

analysis. All P1/P2 calls that occurred throughout Mecklenburg County in 2010, 

aggregated at the census tract level, are displayed below in a choropleth map (refer to 

Figure A-1). The number of priority calls per census tract has been divided into six 

classification ranges using the quantile method in Arc Map. This ensures an equal 

distribution of the calls occurrences and simplifies visual analysis, providing clear visual 

distinction between the different quantile range classifications. Varying shades of green 

indicate the total volume of calls, lowest to highest, from lightest to darkest respectively. 

Examining the map, the majority of census tracts that consistently experience the highest 

call volumes (outlined in light blue) are predominantly positioned around the center of the 

county. This area represents the city of Charlotte and its various urban centers. More 
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specifically, the high-volume census tracts primarily fall to the west, east and north of the 

city’s center. The main hospitals throughout the county have also been included as a layer 

on the map to provide reference points. The location of hospitals, relative to demand, is 

important to note as high priority patients are generally transported to the nearest 

emergency medical facility.  

 
 

Figure A-1. P1+P2 EMS Call Occurrences by Census Tract (2010) 
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It has been established that EMS demand in Mecklenburg County follows a long-term 

positive linear trend with a distinct monthly and daily seasonal component. Figure A-2 

displays the same dataset aggregated by census tract separated into annual quarters. 

Visually, there appears to be little variation from quarter to quarter, i.e. very few shifts in 

the volume level classifications of census tracts.  

 

Figure A-2. Quarterly P1+P2 EMS Call Occurrences by Census Tract (2010) 
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The majority of tracts classified into the highest volume quantile, remain at that level each 

quarter of the year. This indicates that the seasonality observed from quarter to quarter over 

a given year has a minimal impact on the overall spatial distribution of demand. Figures 

A-3 and A-4 contain a series of choropleth maps depicting the number of total daily P1/P2 

call occurrences separated by the day of the week. Each of the maps has been filtered to 

only display color in the census tracts that are classified into the highest two quantiles.   

 
Figure A-3. Day of Week P1+P2 EMS Call Occurrences by Census Tract (Mon-Thu, 2010) 
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From this perspective, minor shifts in the high-volume census tracts are visible. This 

suggests that the day of the week has an influence on the spatial distribution of call volume. 

 

 

Figure A-4. Day of Week P1+P2 EMS Call Occurrences by Census Tract (Fri-Sun, 2010) 
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Additional EMS call volume choropleth maps of interest are provided below in Figures A-

5, A-6, and A-7. These maps illustrate the distribution of calls related to traffic accidents, 

possible crime related calls (based on patient problem description, i.e. assault, stab wounds, 

and/or gunshot wounds), and patients who refused treatment or transport respectively.  

 

Figure A-5. Traffic Accident Related EMS Calls by Census Tract (2010) 
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Figure A-6. Possible Crime Related EMS Calls by Census Tract (2010) 
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Figure A-7. Refused Treatment or Transport EMS Calls by Census Tract (2010) 

 


