

Spatially Explicit Hyperparameter Optimization for Neural Networks

by

Minrui Zheng

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Geography and Urban Regional Analysis

Charlotte

2020

 Approved by:

Dr. Wenwu Tang

Dr. Elizabeth Delmelle

Dr. Minwoo Lee

Dr. Akin Ogundiran

II

©2020

Minrui Zheng

ALL RIGHTS RESERVED

III

ABSTRACT

MINRUI ZHENG. Spatially Explicit Hyperparameter Optimization for Neural Networks.

(Under the direction of Dr. WENWU TANG)

Neural networks as a commonly used machine learning algorithms, such as artificial

neural networks (ANNs) and convolutional neural networks (CNNs), have been

extensively used in GIScience domain to explore the nonlinear geographic phenomena.

However, there are a few studies that investigate the parameter settings of neural

networks in GIScience. Moreover, the model performance of neural networks often

depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter

configuration of neural networks will increase the overall running time. Therefore, an

automated approach is necessary for addressing these limitations in current studies. In

this dissertation, I proposed an automated spatially explicit hyperparameter optimization

approach to identify optimal or near-optimal parameter settings for neural networks and

accelerate the search process through both model and computing levels. I used two spatial

prediction models in this dissertation to examine the utilities of spatially explicit

hyperparameter optimization. The results demonstrate that the approach proposed in this

dissertation improves the computing performance at model and computing levels and

addresses the challenge of finding optimal parameter settings for neural networks in the

GIScience field.

IV

ACKNOWLEDGEMENTS

My deepest gratitude goes first to my advisor, Dr. Wenwu Tang, who guided me

through the entirely journey of my Ph. D. study. During this journey, Dr. Tang taught me

new realms of knowledge; provided insights to my research from research ideas and

research questions; shared his experiences from research, study and life; supported and

encouraged me to achieve my goals and follow my dream. Without his guidance and

persistent help this dissertation and other publications would not have been possible. I

extend my acknowledgments to my committee members, Drs. Elizebeth Delmelle,

Minwoo Lee, and Akin Ogundiran for their support and guidance on this dissertation

work.

I owe many thanks to former and current members of Center for Applied GIScience

(Dr. Douglas Shoemaker, Dr. Michael Desjardins, Dr. Alexander Hohl, Yu Lan, Dr.

Jianxin Yang, Tianyang Chen, Zachery Slocum, Tarini Shukla) and faculty (Drs. Heather

Smith, Eric Delmelle, Craig Allan, Yu Wang, and Lisa Russell-Pinson) at the University

of North Carolina at Charlotte who have helped and encouraged me during my Ph.D.

journey. Also, I would like to express my appreciation to my friends (Greg Verret,

Amanda Verret, Mark Verret, Nathan Verret, Zoey Zhang, Liu Li, Xueying Shi, Xuehui

Dong, Xuefei Hao, Qiang Li, and Jiayang Li).

Last but not least, I would like to thank my parents for their comments and

suggestions on my dissertation. Also, they gave me endless support and encouraged me

to finish this dissertation.

V

TABLE OF CONTENTS

LIST OF TABLES .. VIII

LIST OF FIGURES ... IX

CHAPTER 1: INTRODUCTION .. 1

1.1. Background ... 1

1.2. Research objectives ... 6

1.2.1. Objective 1 ... 8

1.2.2. Objective 2 ... 8

1.2.3. Objective 3 ... 8

1.3. Roadmap ... 9

CHAPTER 2: LITERATURE REVIEW ... 10

2.1. Artificial neural network ... 10

2.2. Hyperparameter optimization ... 14

2.3. Cyberinfrastructure and High-performance and parallel computing 16

2.4. Evolutionary algorithms .. 20

CHAPTER 3: METHODOLOGY ... 24

3.1. Overview ... 24

3.2. Component 1 – automatic search of hyperparameters .. 26

3.3. Component 2 – spatial prediction of hyperparameter space ... 29

3.4. Component 3 – acceleration of hyperparameter search .. 32

CHAPTER 4: STUDY I. HYPERPARAMETER OPTIMIZATION OF NEURAL NETWORK-

DRIVEN SPATIAL MODELS ACCELERATED USING CYBER-ENABLED HIGH-

PERFORMANCE COMPUTING ... 34

4.1. Introduction ... 34

4.2. Literature review ... 37

4.2.1. Artificial neural networks .. 38

4.2.2. Hyperparameter optimization .. 42

4.3. Study area and data ... 46

4.4. Methodology ... 47

4.4.1. Land price evaluation model .. 48

4.4.2. Hyperparameter optimization .. 50

4.4.3. Determining optimal sample size ... 53

VI

4.4.4. Parallel computing and implementation .. 57

4.5. Results ... 58

4.5.1 Results of Grid Search and Random Search ... 61

4.5.2 Prediction performance of hyperparameters ... 66

4.5.3 Parallel computing performance ... 69

4.6. Discussions ... 70

4.6.1. Necessity of the framework ... 70

4.6.2. Feasibility of the framework .. 71

4.6.3. Computing performance .. 75

4.7. Conclusion .. 76

CHAPTER 5: STUDY II. SPATIALLY EXPLICITY HYPERPARAMETER OPTIMIZATION

OF NEURAL NETWORKS ACCELERATED USING HIGH-PERFORMANCE COMPUTING

 ... 79

5.1. Introduction ... 79

5.2. Study area and data ... 81

5.3. Methodology ... 83

5.4. Implementation ... 83

5.5. Results ... 84

5.5.1. Model performance .. 84

5.5.2. Prediction performance of hyperparameters .. 87

5.5.3. Parallel computing performance .. 90

5.6. Discussions ... 91

5.6.1. The prediction of generalization performance ... 91

5.6.2. Computing performance .. 92

5.7. Conclusion .. 93

CHAPTER 6: STUDY III. AN INTERGRATION OF SPATIALLY EXPLICIT

HYPERPARAMETER OPTIMIZATION WITH CONVOLUTIONAL NERUAL NETWROKS-

BASED SPATIAL MODELS .. 95

6.1. Introduction ... 95

6.2. Hyperparameters of convolutional neural networks ... 99

6.3. Study area and data ... 102

6.4. Experimental design.. 107

6.4.1. Setting of CNN model ... 108

6.4.2. CNN-based cellular automata .. 111

6.4.3 Implementation ... 113

6.5. Results ... 114

VII

6.5.1. Accuracy assessment ... 114

6.5.2. Model performance .. 115

6.5.3. Generalization performance of hyperparameters ... 117

6.5.4. Prediction performance .. 121

6.5.5. Parallel computing performance .. 125

6.6. Discussions ... 125

6.6.1. The simulation performance of CNN-CA model ... 125

6.6.2. Computing performance .. 127

6.7. Conclusion .. 128

CHAPTER 7: CONCLUSION .. 129

REFERENCES .. 132

VIII

LIST OF TABLES

Table 1. Summary of setting parameter method of neural network. .. 42

Table 2. List of datasets collected and used in this study. ... 47

Table 3. Results of linear regression modeling (see Table 2 for definitions of these variables). .. 60

Table 4. Summary of computing performance of hyperparameter optimization over different

number of CPUs (time unit: seconds). .. 70

Table 5. Land cover and land change data for each county (unit: km2) 105

Table 6. Urban proportion for each county (Note: (2006-2001)%, expansion ratio from 2001 to

2006; (2011-2006)%, expansion ratio from 2006 to 2011; (2011-2001)%, expansion ratio

from 2001 to 2011) ... 106

Table 7. The information of hidden layers used in this study. ... 110

Table 8. The accuracy of the validation results via logistic regression and CNN (0, non-urban

cells convert to non-urban cells; 1, non-urban cells convert to urban cells) 123

file:///G:/dissertation/submission/SEHO.docx%23_Toc47450426
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450427
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450427
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450427

IX

LIST OF FIGURES

Figure 1. Spatial modeling process (adapted from Shannon (1975) and Batty (1976)) 2

Figure 2. Illustration of algorithms (Y = f(X); Y = [y1, y2,…, yn]; X = [x1, x2,…, xm]; f is the

algorithm between X and Y), revised from Gahegan (2003). .. 3

Figure 3. Roadmap of dissertation ... 6

Figure 4. Growth trend of spatial modeling and neural network-related publications from 1990-

2019 based on Web of Science database (keywords: neural network and spatial modeling (or

spatial analysis, or spatial analysis and modeling, or spatially explicit model, or geospatial

analysis, or geospatial modeling); the total number of publication is 3,095). 11

Figure 5. Basic structure of a neural network with 4 input variables and 2 outcomes (network is

fully connected) .. 12

Figure 6. Sampling methods with 9 sample points. ... 15

Figure 7. Research domains related to machine learning algorithms (Web of Science database was

used; keyword: machine learning; the number of publications: 84,442). 16

Figure 8. The general workflow of evolutionary algorithms ... 21

Figure 9. One-point recombination of real-valued representation. .. 23

Figure 10. Generic framework of spatially explicit hyperparameter optimization 25

Figure 11. The Venn diagram of this dissertation .. 26

Figure 12. A flowchart of the working principle of an automated EA-based spatially explicit

hyperparameter optimization.. 29

Figure 13. The flowchart of spatial prediction using two hyperparameters (-999 is null value in

the raster dataset; A stands for original value; A’ is updated value through semivariogram

model). ... 32

Figure 14. Basic structure of a feedforward neural network (B stands for bias node; network is

fully connected). ... 39

Figure 15. Bibliometric analysis of research areas in terms of spatial modeling using neural

networks (Web of Science database was used; all collected publications were published prior

to 2018; A: keywords: spatial modeling and neural network, total number of articles: 6,354;

B: keywords related to land change studies were used to refine the result of Figure 2A,

keywords: land change, land cover, land use, urban growth, intra-urban growth, or urban

sprawl, total number of articles: 384; please note that a single publication may be associated

with two or more domains). ... 41

X

Figure 16. Bibliometric analysis of hyperparameter and neural networks in terms of research

areas (Web of Science database was used; A: keywords: hyperparameter, total number of

articles: 2,115; B: keywords: hyperparameter and neural network, total number of articles:

275; please note that a single publication may be associated with two or more domains). ... 44

Figure 17. Spatial distribution of land price of single-family houses in the study area (Charlotte,

North Carolina, U.S.A) .. 46

Figure 18. Framework of the use of hyperparameter optimization for artificial neural networks

(ANNs). .. 51

Figure 19. Distribution of sampled hyperparameters (a: grid search; b: random search). 52

Figure 20. Spatial pattern of single-family housing parcels in terms of distance to uptown

Charlotte in the study area (Mecklenburg County, NC; city: Charlotte). 59

Figure 21. Scatterplot of averaged testing MSEs for hyperparameter sets (circle size is

proportional to MSE, circle size from small to large stands for low MSE to large MSE;

outliers were excluded). ... 62

Figure 22. Scatterplot of CVs for hyperparameter sets (circle size is proportional to CV, circle

size from small to large stands for low CV to large CV; outliers were excluded). 63

Figure 23. Semivariogram analysis of grid and random sampling approach (A, grid search; B,

random search). .. 65

Figure 24. Map of the optimal number of Monte Carlo repetitions for neural network-based

spatial modeling. .. 66

Figure 25. Maps of prediction performance using hyperparameters optimization (a: grid search; b:

random search; prediction error: mean squared error). .. 68

Figure 26. Distribution of coefficient of variation based on testing MSEs using hyperparameter

optimization methods (a: grid search; b: random search). ... 69

Figure 27. Map of land price of single-family houses in Charlotte, North Carolina 82

Figure 28. Learning curve and scatterplots of MSEs for hyperparameter sets over different

generations (A: red circle is sampled points that generated by conventional EA-based

hyperparameter optimization; B: blue circle is sampled points that created by spatially

explicit hyperparameter optimization; circle size from small to large stands for low MSE to

large MSE; outliers were excluded). .. 86

Figure 29. Maps of prediction performance for conventional EA-based hyperparameter

optimization and spatially explicit hyperparameter optimization (A: conventional EA-based

hyperparameter optimization using the 100th generation result; B: spatially explicit

hyperparameter optimization; prediction error: mean squared error). 89

file:///G:/dissertation/submission/SEHO.docx%23_Toc47450485
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450485
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450485
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450485
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450485
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450486
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450486
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450486
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450486

XI

Figure 30. Distribution of standard error based on testing MSEs using spatially explicit

hyperparameter optimization approach. ... 90

Figure 31. Basic structure of a CNN. ... 98

Figure 32. The basic structure of network with dropout (B is bias). ... 101

Figure 33. Map of the study area. .. 103

Figure 34. Selected driving factors used in this study. .. 107

Figure 35. Flowchart of urban land change simulation through CNN, CA and spatially explicit

hyperparameter optimization. T stands for the simulated year. ... 108

Figure 36. Structure of CNN model used in this study .. 109

Figure 37. Von Neumann neighborhood and Moore neighborhood with the first-order zone

(square with black color is focal cell; square with white color is neighbor of the focal cell).

 .. 112

Figure 38. The processing architecture of CA (Pt,i is the transition probability of non-urban cell i

at time T convert to urban cell at time T+1. POt,i is the suitability of occurrence of cell i at

time T, and NEt,i is the neighborhood effect of cell i at time T. βt,i is the growth constraint of

cell i at time T) ... 113

Figure 39. Learning curve and scatterplots of values of accuracy for hyperparameter sets over

different generations (A: red circle is sampled points that generated by conventional EA-

based hyperparameter optimization; B: blue circle is sampled points that generated by

spatially explicit hyperparameter optimization; circle size is proportional to MSE, circle size

from small to large stands for low MSE to large MSE; outliers were excluded) 116

Figure 40. Distribution of standard error based on the values of accuracy using spatially explicit

hyperparameter optimization methods ... 118

Figure 41. Maps of generalization performance for conventional EA-based hyperparameter

optimization and spatially explicit hyperparameter optimization (A: conventional EA-based

hyperparameter optimization using the 60th generation result; B: spatially explicit

hyperparameter optimization). ... 120

Figure 42. Probability-of-occurrence of urban growth changes for 2006-2011 period. 122

Figure 43. Maps of observed and simulated urban growth for 2006-2011 period. 124

Figure 44. Maps of observed and simulated urban growth for 2011-2016 period. 124

file:///G:/dissertation/submission/SEHO.docx%23_Toc47450496
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450496
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450496
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450496
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450496
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450498
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450498
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450498
file:///G:/dissertation/submission/SEHO.docx%23_Toc47450498

1

CHAPTER 1: INTRODUCTION

1.1. Background

In the past decades, with the increasing volume of spatial data and development of

cutting-edge techniques, several spatial models have been created to investigate complex

spatial phenomena and explore spatial process (Goodchild and Geosciences 1992,

Longley and Batty 1996, Graham 1997, Fotheringham, Brunsdon, and Charlton 2000,

Miller and Goodchild 2015).

Spatial modeling embraces a series of models and techniques that explore

relationships, patterns, and phenomena across space and time. The steps of spatial

modeling often proceed in a sequence from problem specification, model theory, data

preparation, model verification, calibration, and evaluation to prediction (see Figure 1).

Although spatial modeling traditionally belongs to the domain of geography, it can be

applied to a variety of geography-related domains, e.g., ecology, urban studies,

transportation, and social science (Longley and Batty 1996, Miller 1999, Krewski et al.

2009, Borcard, Gillet, and Legendre 2011, Logan 2012), as well as other disciplinary

domains, including computer science and mathematics (Gelfand, Kottas, and

MacEachern 2005, Andrews et al. 2010).

2

Figure 1. Spatial modeling process (adapted from Shannon (1975) and Batty (1976))

Although spatial modeling exists in a number of research areas, one of the vital parts

of spatial modeling is algorithms. Figure 2 illustrates the process of algorithms from input

X to output Y. Algorithms are a sequence of computational steps that transform the input

into the output. In each spatial modeling exercise, it includes one or multiple model units

which have a single algorithm and related parameters. There are two types of parameters

based on their contributions to spatial modeling, standard parameters, and

hyperparameters. Standard parameters are an “internal” component of spatial modeling,

and their values usually are derived from models, such as coefficients of regression

models and coefficients of objective functions of optimization models.

3

Figure 2. Illustration of algorithms (Y = f(X); Y = [y1, y2,…, yn]; X = [x1, x2,…, xm]; f is

the algorithm between X and Y), revised from Gahegan (2003).

Hyperparameters are an “external” component of spatial modeling, and the values are

user-defined or pre-defined by other algorithms. Hyperparameters usually influence the

algorithms themselves and the derivation of standard parameters. Some examples of

hyperparameters are the learning rate of artificial neural networks (ANNs), the initial

number of clusters of k-means clustering, and the number of trees in random forest

algorithm. However, hyperparameters also exist in rule-based spatial modeling, such as

the cellular automata (CA) model. Stochastic disturbance term from transition rules is a

hyperparameter for CA, which allows the CA model generated patterns to be closed to

reality (Yeh and Li 2001).

With consideration of big spatial data and complex spatial phenomena (Couclelis

1998, Longley et al. 1998, Openshaw and Abrahart 2000), the emergence of

GeoComputation opened a new computational world to geographers because it provides

more computational methods and techniques that are applicable to geographical problems

(Longley et al. 1998, Couclelis 1998, Openshaw and Abrahart 2014, Brunsdon and

Singleton 2015). GeoComputation has four core aspects (Gahegan 1999): computer

architecture and design (e.g., parallel computing); search, classification, prediction and

modeling (e.g., artificial neural network); knowledge discovery (e.g., data mining); and

visualization (e.g., statistical results using graphics).

4

Machine learning belongs to the second aspect of GeoComputation (search,

classification, prediction, and modeling). A number of geographers are placing emphasis

on the use of machine learning algorithms for spatial modeling (Batty, Xie, and Sun

1999, Sui and Maggio 1999, Pijanowski et al. 2002, Li and Yeh 2002, Pijanowski et al.

2014). But, several studies discussed hyperparameter settings of machine learning

algorithms. Finding optimal hyperparameters thus can often make the difference between

average results and state-of-the-art performance. Most of hyperparameter optimization-

related articles were published in computer science and engineering (Chapelle et al. 2002,

Bergstra and Bengio 2012, Bergstra, Yamins, and Cox 2013a, Thornton et al. 2013). In

geography field, the most commonly used hyperparameter optimization approach is

manual selection (Li and Yeh 2002, Pijanowski et al. 2005, Pijanowski et al. 2014),

although a number of automated hyperparameter optimization approaches and

applications were proposed by researchers from computer science (Bergstra, Yamins, and

Cox 2013b, Thornton et al. 2013, Li et al. 2017).

Hyperparameter optimization has data- and computational-intensity issues, which

have been identified by current hyperparameter optimization studies (Bergstra, Yamins,

and Cox 2013a, Bergstra et al. 2015, Lorenzo et al. 2017, Falkner, Klein, and Hutter

2018). In addition, as the volume of spatial data increases, the process of finding optimal

or near-optimal hyperparameters is becoming a computational-intensive problem. In

order to address these limitations, cyberinfrastructure (CI) and high-performance and

parallel computing (HPC) provide a solution. CI is “a combination of data resources,

network protocols, computing platforms, and computational services that bring people,

information, and computational tools together to perform science or other data-rich

5

applications in this information-driven world” (Page 1)(Yang et al. 2010). HPC includes

grid computing, cluster computing, and ubiquitous computing, which provides supper

computing power for CI’s applications (Yang et al. 2010, Tang et al. 2018). Existing

hyperparameter optimization approaches or applications typically adopted HPC to

address the computational bottleneck (Bergstra et al. 2015, Falkner, Klein, and Hutter

2018). Meanwhile, the capabilities and importance of CI and HPC in spatial modeling

have been discussed in a series of studies (Armstrong 2000, Wang and Liu 2009, Yang et

al. 2010, Wang 2010, Tang et al. 2018).

However, the discussions of hyperparameter optimization-related studies are

insufficient. Also, current hyperparameter optimization approaches assumed

hyperparameters are independent. According to the First Law of Geography —

"everything is related to everything else, but near things are more related than distant

things” (Tobler 1970), similar things are placed closer than dissimilar things. The

“distance” between two things is not only about the distance in real-world (e.g., spatial

units (meters or miles) or traveling time), it also can be measured as similarity in a virtual

space (Waters 2017). Thus, the assumption of current hyperparameter optimization is

inappropriate. Since each combination of hyperparameters may contain information

relative to others, the methods from geography may help to identify the similarity (spatial

dependence) and explore the landscape of the hyperparameter space. Hence, a

hyperparameter approach that considers the similarity (spatial dependence) and landscape

of hyperparameter space is necessary, particularly within the context of spatial modeling.

Figure 3 is the roadmap of this dissertation showing the motivations, the methods,

and the contributions. In this doctoral dissertation research, I propose a new

6

hyperparameter optimization approach that is closely related to spatial modeling,

machine learning algorithms, and HPC. The specific research objectives will be discussed

in Section 1.2.

Figure 3. Roadmap of dissertation

1.2. Research objectives

There are a number of machine learning algorithms that are applied in spatial

modeling, such as artificial neural networks (ANNs), support vector machines (SVMs),

genetic algorithms (GAs), and random forests (RFs). As one of the popular machine

learning algorithms, ANNs are a practical and widely applicable algorithm in current

geography-related research (Zheng, Tang, and Zhao 2019). A series of neural network-

related studies have been carried out on various aspects of geography-related fields, such

as land change models, remote sensing, and urban planning (Li and Yeh 2002,

7

Pijanowski et al. 2002, Nevtipilova et al. 2014). Hence, I examine the utility of spatially

explicit hyperparameter optimization approach in neural network-based spatial models in

this dissertation.

While ANNs have been the subject of many classic studies in GIScience1 field, the

search process of hyperparameter optimization for ANN-based spatial models is still a

“black-box” or “gray-box” problem. The performance of ANNs depends crucially on the

specific hyperparameters, such as the learning rate. The quality and features of data may

influence the hyperparameters as well. Most previous studies used trial-and-error

approach or expert opinions (Li and Yeh 2002, Pijanowski et al. 2005, Pijanowski et al.

2014). These methods are easy to use, but, they are subjective. Moreover, ANNs are a

data-driven method, different datasets may have different hyperparameter settings. Thus,

finding optimal or near-optimal hyperparameters of ANNs can often make the difference

between average results and state-of-the-art performance.

In this dissertation, I present a spatially explicit hyperparameter optimization

approach, which is an improvement for existing approaches by taking into account spatial

characteristics (i.e., spatial dependence). In addition, I develop an automated framework

of spatially explicit hyperparameter optimization for ANN-based spatial models, which

allows for 1) handling the data- and computational-intensity challenges of

hyperparameter optimization, using cyber-enabled HPC, 2) handling multiple

hyperparameters simultaneously, and 3) explore the local variation structure of

hyperparameters. Lastly, I apply the proposed spatially explicit hyperparameter

1 “Geographic information science (GIScience), which is the research field that studies the general

principles underlying the acquisition, management, processing, analysis, visualization, and storage of

geographic data” (page 494) (Goodchild 2003).

8

optimization in different case studies. The results of case studies might guide

practitioners on improving their model performance. Therefore, I use three research

objectives for advancing the body of knowledge:

1.2.1. Objective 1

⚫ Examine the feasibility and necessity of hyperparameter optimization in machine

learning algorithm-based spatial models;

⚫ Evaluate how the methods from geography may help to identify the similarity

and explore the landscape of the hyperparameter space;

⚫ Explore the potential feasibility of accelerating hyperparameter optimization

from the model-level.

1.2.2. Objective 2

⚫ Automate the spatially explicit hyperparameter optimization approach that

considers spatial dependence in the optimization process.;

⚫ Examine the utility of the automated spatially explicit hyperparameter

optimization;

⚫ Explore the local variation structure of the search space of hyperparameters and

adjust the local variation structure based on spatial dependence.

1.2.3. Objective 3

⚫ Investigate the universality of spatially explicit hyperparameter optimization in

different neural network-based spatial models;

⚫ Evaluate the model performance and efficiency of spatially explicit

hyperparameter optimization;

9

⚫ Identify future directions of spatially explicit hyperparameter optimization.

1.3. Roadmap

In the remainder of this dissertation, Chapter 2 focuses on a literature review of

artificial neural networks, hyperparameter optimization, cyberinfrastructure and high-

performance and parallel computing, and evolutionary algorithms. Chapter 3 describes

the framework of spatially explicit hyperparameter optimization. Chapter 4, which

connects to objective 1, focuses on introducing the basic framework of spatially explicit

hyperparameter optimization that incorporates spatial statistics and high-performance and

parallel computing. Chapter 5 demonstrates the utilities of the automated spatially

explicit hyperparameter optimization (objective 2). Chapter 6 examines the practicability

of spatially explicit hyperparameter optimization, which links to objective 3. Chapter 7

concludes this dissertation.

10

CHAPTER 2: LITERATURE REVIEW

This literature review covers four topics, including artificial neural networks,

hyperparameter optimization, cyberinfrastructure and high-performance and parallel

computing, and evolutionary algorithms.

2.1. Artificial neural network

The first artificial neural network (i.e., perceptron) was designed in 1958 (Rosenblatt

1958). Since then, more and more studies adopt ANNs in their studies to capture

nonlinear relationships between input and output, and solve complex real-world problems

(Roberts and Attoh‐Okine 1998, Li and Yeh 2002, Gulliford et al. 2004, Neaupane and

Adhikari 2006). As identified by some pioneers from geography, ANNs and other

machine learning algorithms can explore patterns and investigate complex relationships

from spatial data with multiple scales and different spatial resolutions (Openshaw and

Openshaw 1997, Gopal 2017). Further, ANNs and other machine learning algorithms are

well suited to capturing nonlinearity from spatial data. Figure 4 shows the growth trend

of the number of publications of ANN-based spatial modeling from 1990-2019. From this

figure, we can see that the number of publications using ANNs in spatial modeling is not

constantly growing since it was developed. The number of new publications kept a low or

negative growth rate in the middle of the 1990s and early 21st century. Since 2014, the

growth trend of research outputs (i.e., publications) has entered a stage of rapid growth. It

is directly associated with the faster computing processors and new extensions of neural

11

networks (e.g., convolutional neural networks) (Mellit and Kalogirou 2008, Niu et al.

2016).

Figure 4. Growth trend of spatial modeling and neural network-related publications from

1990-2019 based on Web of Science database (keywords: neural network and spatial

modeling (or spatial analysis, or spatial analysis and modeling, or spatially explicit

model, or geospatial analysis, or geospatial modeling); the total number of publication is

3,095).

The ability of ANNs in examining nonlinear relationships between input and output

has been discussed in the past years (Hornik, Stinchcombe, and White 1989, Chen,

Billings, and Grant 1990, Brondino and Silva 1999, Limsombunchai 2004, Mas and

Flores 2008, Pijanowski et al. 2014). ANNs cover different types of neural networks,

such as feedforward neural networks, recurrent neural networks, and convolutional neural

networks. The latter is also an application of deep learning techniques. Input layer,

hidden layer, and output layer are the basic types of layers used in traditional neural

networks (Figure 5). Each input variable is linked to a node in the input layer, and each

outcome is linked to a node in the output layer. Each connection (e.g., from input layer to

12

hidden layer, from hidden layer to output layer) has a weight value associated with it.

Learning algorithms are used to adjust the weights in order to minimize the error in the

output. There are two types of learning algorithms, supervised learning algorithms (e.g.,

backpropagation) and unsupervised learning algorithms (e.g., self-organizing map). The

goal of supervised learning is to map a function from input to desired output (Nasrabadi

2007). The goal of unsupervised learning is to explore the potential patterns and

structures based on a series of data without pre-defined features or pre-defined objectives

(Sanger 1989). Further, activation functions are used to determine the output based on a

set of inputs. The major contribution of activation functions is to involve nonlinearity into

neural networks. Other examples of activation functions include sigmoid, hyperbolic

tangent, and rectified linear unit (ReLU) (Specht 1990, Hahnloser et al. 2000, Bishop

2006).

Figure 5. Basic structure of a neural network with 4 input variables and 2 outcomes

(network is fully connected)

A number of neural network-based spatial models have been constructed in

GIScience. For example, Atkinson and Tatnall (1997) used feedforward backpropagation

13

multi-layer neural network to classify land cover types from Landsat Thematic Mapper

imagery, and to identify and classify different categories of clouds (e.g., cirrus and

stratocumulus) from Landsat Multispectral Scanner data. They mentioned that neural

networks provide more accurate results than traditional statistical approaches (e.g.,

maximum likelihood) and less computing time, and allow to classify images from multi-

resource spatial data. Similarly, Xu et al. (2017) demonstrated the ability of convolutional

neural networks to classify multi-resource remote sensing data. Li and Yeh (2002)

simulated land use land cover changes using an integrated method (neural networks and

cellular automata). The results showed that neural network-based cellular automata (CA)

model can handle the multiple land use changes simulation, which is difficult for standard

CA model. Based on Li and Yeh’s work, a series of studies adopted neural network-based

CA model in land change models or further refined this network-based CA model, such

as Yeh and Li (2003), Pijanowski et al. (2005), Guan et al. (2005), Almeida et al. (2008),

and Omrani et al. (2017).

Although there are many applications of neural network-based spatial models (Figure

4), a few studies discussed the hyperparameters of neural networks (Wanas et al. 1998,

Stathakis 2009, Karsoliya 2012). Besides the quality of datasets, the hyperparameters of

neural networks have a significant influence on model performance. The investigations

on how to find appropriate hyperparameters have been conducted in many years and the

most remarkable contributions of existing hyperparameter optimization approaches came

from computer science. Trial-and-error and recommendations from previous studies are

the most popular method used in neural network-based spatial models. But, they have a

14

common weakness--all of them are subjective (Zheng, Tang, and Zhao 2019). Therefore,

it is necessary to encourage spatial modelers to adopt hyperparameter optimization.

2.2. Hyperparameter optimization

The importance of hyperparameters in neural networks has been discussed in the

previous section, but how to effectively find appropriate hyperparameters is still a

challenge. The process of determining appropriate hyperparameters is called

hyperparameter optimization. Sampling can provide supports for accelerating the process

of hyperparameter optimization. Grid search and random search are two widely used

sampling methods in hyperparameter optimization. For grid search (Figure 6A), we first

need to define a grid size of the search space and then divide the entire search space into

a number of grids based on the grid size. The hyperparameter at each grid point is a

sampled hyperparameter. Random search is to randomly select sampled hyperparameters,

and each combination of hyperparameters has an equal chance of being sampled (Figure

6B). However, a random search may result in uneven distribution of samples. As the

example in Figure 6B shows, the distribution of samples is uneven; some areas have

more samples than other areas. Latin hypercube sampling can resolve this limitation of

random search. Latin hypercube sampling is a combination of grid search and random

search. That is, we also need to separate the search space into a number of grids (Latin

squares here), and sampled hyperparameters come from those Latin squares, and the

combination of hyperparameters has an equal chance of being selected (Figure 6C).

15

Figure 6. Sampling methods with 9 sample points.

Bayesian optimization is another way to find optimal hyperparameters, which can

find appropriate hyperparameters with less computing time (Snoek, Larochelle, and

Adams 2012, Shahriari et al. 2015). Bayesian optimization (Močkus 1975) is a global

optimization approach, which creates a model based on known sampled hyperparameters.

Sequential model-based optimization (SMBO) also refers to Bayesian optimization.

Typically, these known sampled hyperparameters are drawn from a Gaussian distribution.

This step is called Gaussian process (GP), a stochastic method that is an extension of

Gaussian probabilistic distribution (Williams and Rasmussen 2006). Acquisition function

is used to create a utility function from these known sampled hyperparameters, which

guides next search of hyperparameter optimization. Acquisition function is the key

component of Bayesian optimization because the goal of acquisition function is to obtain

an unbiased estimation from samples. In other words, acquisition function balances the

number of samples from unknown (exploration) and known areas (exploitation). Also,

this is the major challenge for acquisition function. There are many ways to construct

acquisition function, such as expected improvement and Gaussian process upper

confidence bound (Snoek, Larochelle, and Adams 2012, Shahriari et al. 2015).

16

Although most existing hyperparameter optimization approaches were developed or

investigated from computer science and engineering research areas (Zheng, Tang, and

Zhao 2019), the discussion of hyperparameter optimization is not sufficient in machine

learning community (Figure 7). Also, existing hyperparameter optimization approaches

have a set of limitations, for example, the inappropriate assumption (i.e., hyperparameters

are independent) and high demand of computing (Zheng, Tang, and Zhao 2019).

Figure 7. Research domains related to machine learning algorithms (Web of Science

database was used; keyword: machine learning; the number of publications: 84,442).

2.3. Cyberinfrastructure and High-performance and parallel computing

Cyberinfrastructure (CI) includes computing systems, data, services, tools, and virtual

organizations for solving scientific problems (NSF 2007), which provides solid support

for addressing computing challenge within the context in GIScience and other disciplines

(Armstrong 2000, NSF 2007, Wang 2010, Yang et al. 2010, Tang et al. 2018). High-

performance and parallel computing (HPC) is a part of CI, and there are three types of

17

HPC: cluster computing, grid computing, and cloud computing (Yang et al. 2010). As

mentioned by Hey et al. (2009), HPC also promotes the development of data-driven

science. For GIScience field, it is necessary and meaningful to use cyberinfrastructure

and HPC for exploring and understanding complex and nonlinear geographical

phenomena.

There are four categories of parallel computer architectures (Wilkinson and Allen

1999): Single Instruction Stream, Single Data Stream (SISD); Single Instruction Stream,

Multiple Data Stream (SIMD); Multiple Instruction stream, Single Data Stream (MISD);

and Multiple Instruction stream, Multiple Data stream (MIMD). SIMD and MIMD are

two popular parallel computer architecture categories, which have many applications

(Armstrong 2020, in press). SIMD uses a single operation instruction to execute multiple

processors using multiple datasets. In contrast, MIMD adopts multiple processors to run

different operation executions using multiple datasets (Ding and Densham 1996,

Armstrong 2020, in press). Based on SIMD and MIMD computers, there are two popular

parallel computing paradigms: multi-core and many-core. Multi-core computing is an

extension of single-core computing, which includes multiple processors to execute an

execution instruction(s). Typically, these multiple processors are connected by shared

memory modules. Since early 2000, many researchers suggested the use of graphic

processing units (GPUs; an example of many-core computing) to further accelerate

computing performance for a range of studies (Tang and Bennett 2009, Nickolls and

Dally 2010, Krieder, Grimmer, and Raicu 2012, Zhang et al. 2015).

Based on multi-core and many-core computing paradigms, embarrassingly parallel,

shared memory, and message passing are three parallel approaches (Wilkinson and Allen

18

1999). For the embarrassingly parallel approach, communication among processors is not

necessary. In other words, tasks with no communication requirements can adopt

embarrassingly parallel approach. Otherwise, shared memory and message passing can be

considered. In shared memory approach, different processors access and exchange data

through shared memory space. In contrast, the message passing approach does not rely on

shared memory space, and each processor has its own memory space. The

communication among processors for data exchange is handled via message sending or

receiving. However, communication among processors can lead to a significantly reduced

in computing performance. Further, decomposition is a necessary step for all parallel

computing tasks, which introduces load balancing2 issues (Wilkinson and Allen 1999).

Besides adopting suitable parallel approaches, decomposition is also an important

strategy for HPC. Complete decomposition, domain decomposition, and control

decomposition are three categories of decomposition methods (Wilkinson and Allen

1999). The complete decomposition method is the simplest decomposition method that

divides a task into multiple independent sub-tasks. The communication among sub-tasks

is not necessary. The basic idea of domain decomposition is to divide a global domain

into many subdomains. However, the difference between complete decomposition and

domain decomposition is that domain decomposition can apply to dependent sub-tasks

with necessary communication. Based on this feature, domain decomposition is a popular

approach for spatial problems. Ding and Densham (1996) summarized the scopes of

applications for domain decomposition, including static data structure problems, dynamic

2 Load balancing is spreading tasks across processors that lead to maximize the use of computing resources,

minimize response time, and avoid overloading (Wilkinson and Allen 1999).

19

data structure problems, and fixed domain but dynamic computation problems. Control

decomposition covers two decomposition methods: functional decomposition and

manager/worker decomposition. Functional decomposition breaks the execution

instruction into a set of sub-instructions and then allocates to multiple processors. For

manager/worker decomposition, the function of the manager is to assign tasks to workers,

and workers return the finished jobs to the manager. A benefit of manager/worker

decomposition is efficiency because the manager dynamically distributes tasks to workers

instead of allocating tasks in advance.

The advancements of cyberinfrastructure and HPC have attracted much attention in

the GIScience community. From spatial statistics, Armstrong et al. (1994) developed a

method for addressing the computational intensity issue when processing measures of

spatial association (G). A parallel implementation for computing G*(d) statistic using grid

computing was proposed by Wang et al. (2008). Hohl et al. (2016) adopted HPC to

accelerate the process of space-time kernel density estimation (STKDE). In spatial

simulation, a parallel agent-based model for simulating large-scale land-use opinions was

presented by Tang et al. (2011). Gong et al. (2013) developed a parallel approach to

handle the computational complexity of a spatial interaction simulation model. In

addition, there are a number of applications of cyberinfrastructure and HPC in

geovisualization. For example, Soroknine (2007) discussed a parallel implementation of

visualizing big spatial data using GRASS GIS software. Tang (2013) adopted GPUs to

accelerate the development of a type of area cartograms (i.e., circular cartograms).

Hyperparameter optimization typically comes with data- and computational-intensity

issues. HPC has the ability to handle these issues. The use of HPC in addressing data- and

20

computational-intensity have been discussed in existing hyperparameter optimization

approaches. The adoption of computing clusters (GPU- or CPU-based) is at the center of

current studies (e.g., Bergstra et al. (2013a, 2015); Lorenzo et al. (2017); Falkner et al.

(2018).

2.4. Evolutionary algorithms

Evolutionary computation is a population-based machine learning algorithm, which

is inspired by biological evolution (Darwinian principles of natural selection). The

algorithms involved in evolutionary computation include four main types: genetic

algorithms (GA), genetic programming (GP), evolutionary strategies (ES), and

evolutionary programming (EP) (Eiben and Smith 2003). The ability of EAs for handling

real-world problems has been discussed by several studies, see for example, Srinivas and

Deb (1994), Zitzler and Thiele (1998), Deb (2001), and Xiao et al. (2002).

There are six necessary steps of EAs: representation, initialization, selection,

evaluation, recombination, and mutation (Figure 8). Representation is the first step of

EAs. The major goal of this step is to transform real-world problems to EA-world

problems using encoding methods. The context within problems from real-world is called

phenotypes. Genotypes are the encoded context from real-world problems, which refer to

chromosomes within EAs. There are a number of available encoding methods, such as

binary string, a string of integer or float numbers, and tree-based (Eiben and Smith 2003).

Binary string method is the popular encoding method in EAs (Cao et al. 2014), but some

studies suggest that other representations may be more effective than binary string for

specific cases (Armstrong, Xiao, and Bennett 2003, Cao et al. 2014). Earlier works tried

21

to include all hyperparameters into the binary string, but it resulted in poor scalability

(Kitano 1994). Thus, how many hyperparameters in a chromosome and how to encode

them post a challenge. The initialization step provides an initial set of solutions, which

has the similar function as sampling.

Figure 8. The general workflow of evolutionary algorithms

The role of selection and evaluation is to show directions of improvement. Typically,

each individual has a fitness value associated with it. The fitness values are derived from

measurement indexes determined by objective functions. The selection process identifies

better solutions to survive to the next generation based on fitness values. That is,

solutions with higher fitness values have a higher chance of surviving, whereas lower

fitness has a lower chance of surviving (Branke 1995, Xiao, Bennett, and Armstrong

2002, Cao et al. 2014). However, there is still a chance that solutions with high values

may perish, and solutions with low values may survive. Thus, fitness proportionate

22

selection or elitism selection is needed for improving the generation process. Fitness

proportionate selection (aka, roulette-style selection algorithm (Lipowski and Lipowska

2012)), is to select a part of solutions for recombination using a probability of being

selected. The remaining solutions are copied into next generation without modification

(Goldberg 1989). Elitism selection is to select the best solutions (e.g., top 10%) in the

current generation and duplicating those best solutions directly to the next generation

without modification, and then the remaining solutions are produced through variation

steps. Elitism selection avoids missing the best solutions found in the previous

generations, whereas roulette-style selection maintains genetic diversity.

Variation operators have two types of operators, recombination (crossover) and

mutation (Eiben and Smith 2003). The role of variation operators is to create new

individuals from old generations, and to maintain genetic diversity. Variation

operators are accomplished by creating an offspring from two parents and the

offspring contains genotypes from both sides of parents. Meanwhile, variation

operators can speed up the local fine-tuning because only those survived individuals

in the current generation have the chance to survive in the next generation.

Recombination (or crossover) is that the offspring chooses and exchanges one of

some parts of chromosomes from parents with a certain probability. The general

recombination operators include one-point, n-point, uniform, discrete, intermediate or

arithmetic, and subtree (Eiben and Smith 2003). The one-point recombination is

illustrated in Figure 9. Besides the types of recombination operator, there exists

another hyperparameter in recombination operator—crossover probability (or

crossover rate). Crossover probability is used to determine how often individuals will

23

be performed crossover operator. A larger value of crossover rate, the speed of

generating offspring is fast than the smaller values. For example, if crossover

probability is 60%, then the offspring has 60% chance of being created by crossover

operator.

Figure 9. One-point recombination of real-valued representation.

 The primary function of mutation is to maintain genetic diversity and enhance the

local searching capability of EAs that avoids the local minima issue. Such diversity is

important for the successful application of EAs to a multi-objective optimization problem

because it is related to the exploration of the search space (Deb 2001, Xiao et al. 2007).

Like the recombination operator, there are a number of types of mutation operator, such

bit-flip, random resetting, and Gaussian (Eiben and Smit 2011). Mutation probability (or

mutation rate) is used to determine how often do parts of a chromosome mutated. For

example, if mutation probability is 1%, then parts of a chromosome of an individual has

1% chance of being mutated. Typically, the value of mutation probability is small. If the

probability is high (e.g., 60%), then EAs will in fact change to random search.

24

CHAPTER 3: METHODOLOGY

3.1. Overview

In previous sections, I identified current hyperparameter optimization approaches

have a number of limitations, such as inappropriate assumption and high computing cost.

In this dissertation, I propose a spatially explicit hyperparameter optimization framework

that focuses on addressing data- and computational-intensity challenges, considering

spatial dependence, and exploring local landscape of search space of hyperparameters.

The generic framework of spatially explicit hyperparameter optimization is illustrated

in Figure 10. Three modules are covered in spatially explicit hyperparameter

optimization: generation of sampled hyperparameters, evaluation of sampled

hyperparameters, and hyperparameter analysis. Generation of sampled hyperparameters

determines the search space of hyperparameters (i.e., hyperparameters that need to be

optimized) and how to acquire sampled hyperparameters. Evaluation of sampled

hyperparameters module examines the performance of sampled hyperparameters through

three aspects: whether the sample size is enough; whether the number of repetitions is

enough; and whether results from samples are robust. Generalization performance of the

search space, computing performance, and model performance are evaluated in the

hyperparameter analysis module. For detailed explanation see Chapter 4 and Zheng et

al.’s study (2019).

 Further, the framework comprises three components: automatic search of

hyperparameters, spatial prediction of hyperparameter space, and acceleration of

25

hyperparameter search. Each component contributes to one or more modules. The major

contribution of automatic search of hyperparameters component is to automate the

process of spatially explicit hyperparameter optimization. Acceleration of

hyperparameter search component is responsible for handling data- and computational-

intensity issues of spatially explicit hyperparameter optimization. Moreover, spatial

prediction of hyperparameter space component links to evaluation of sampled

hyperparameters and hyperparameter analysis modules. I will discuss the core parts of

these three components in the following sections. That is, Section 3.2-3.4 will cover

automatic search of hyperparameters (component 1), spatial prediction of hyperparameter

space (component 2), and acceleration of hyperparameter search (component 3),

respectively.

Figure 10. Generic framework of spatially explicit hyperparameter optimization

26

Spatially explicit hyperparameter optimization that is proposed in this dissertation

covers three research communities– spatial modeling, cyberinfrastructure, and machine

learning algorithms (Figure 11). The major contributions of this dissertation are: 1)

considering spatial dependence between hyperparameters, 2) exploring and visualizing

the landscape of the search space of hyperparameters, and 3) improving the computing

performance at both model- and computing-levels.

Figure 11. The Venn diagram of this dissertation

3.2. Component 1 – automatic search of hyperparameters

Machine learning algorithms have great potential capabilities for discovering of the

relationships from data through structural and functional aspects (Mitchell 1997). Several

geographers have placed emphasis on the use of machine learning algorithms to spatial

modeling (Batty, Xie, and Sun 1999, Sui and Maggio 1999, Pijanowski et al. 2002, Li

and Yeh 2002, Pijanowski et al. 2014). However, the discussion of how to select

hyperparameters for machine learning algorithm-based spatial modeling is inadequate in

GIScience community.

27

Since most machine learning algorithms contain more than one hyperparameters,

there is a challenge for finding multiple hyperparameters at the same time. There has

been a great interest in evolving neural networks through population-based

hyperparameter optimization since 1990s (Belew, McInerney, and Schraudolph 1990,

Yao 1994, Zhang, Shao, and Li 2000, Yu, Wang, and Xi 2008). As one of the global

optimization methods, EAs derive their behavior from a metaphor of the processes of

evolution in nature. EA-based hyperparameter optimization method has a series of

advantages, for example, 1) EAs can increase the efficiency and robustness of the

optimum seeking process, 2) EAs are suitable for complex evaluation functions, and 3)

EAs can reduce the occurrence of local optimum (Ding et al. 2013). Although EA-based

hyperparameter optimization approaches have been successfully implemented in the

computer science field, the discussion of using EA-based hyperparameter optimization in

GIScience is insufficient. Meanwhile, existing EA-based hyperparameter optimization

approaches have some limitations, which are discussed in the previous section (Section

2.4). Further, the methods from GIScience may benefit current EA-based hyperparameter

optimization, which may further improve the computing performance.

A number of studies have been shown that incorporating prior knowledge can

significantly improve the learning process (Schwarz and Ocenasek 2000, Pitiot et al.

2009). Much recent research has been devoted to learning algorithms for architectures of

machine learning algorithms, such as the deep brief network (Erhan et al. 2010). They

found that supervised learning tasks with an unsupervised learning component can

improve model performance. The results from unsupervised learning component can be

seen as prior knowledge. In EAs, the performance of a search process is dependent on the

28

topology of the fitness landscape (Sareni and Krahenbuhl 1998, Ratle 2001, Casas 2015).

The approach proposed in this dissertation acquires the topology of the fitness landscape

from a series of prior knowledge based on the features of search space.

The main idea of this component is to build a model based on fitness values from

EAs, and using this model as a guideline to do next search steps. A flowchart of the

working principle of the EA-based hyperparameter optimization is shown in Figure 12.

The novelty of this approach has two aspects: firstly, it allows the incorporation of spatial

features into the EA. A spatial statistical model will be developed based on the regular

fitness function (fitnessR; which is calculated without statistical model), this step is named

as knowledge-based fitness function (fitnessK). Since the knowledge-based fitness

function is calculated from the regular fitness function, the knowledge-based fitness value

will be updated for each generation. The final fitness function (fitnessF) involves

knowledge-based fitness function and regular fitness function. The final fitness function

is computed as follows:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐹 = 𝑤𝑅𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑅 + 𝑤𝐾𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐾 (1)

where wR and wK are the weights of regular fitness function and knowledge-based fitness

function, the sum of weights is equal to 1. Secondly, maps of the evaluation landscape

will generate for each generation. These landscape maps could show the path of the

search process of hyperparameter optimization. This model is used to generate the

generalization performance of hyperparameters.

29

Figure 12. A flowchart of the working principle of an automated EA-based spatially

explicit hyperparameter optimization.

3.3. Component 2 – spatial prediction of hyperparameter space

Sampling is the most commonly used method in current hyperparameter optimization.

However, those sampled hyperparameters cannot represent the entire hyperparameter

space. Thus, a method that can convert discrete points to continuous space is needed.

Spatial interpolation, which is a component of spatial statistics, provides such an ability

that transforms discrete points into continuous space with consideration of spatial

dependence.

Spatial interpolation has been applied in different disciplines, such as geography and

environmental sciences (Li and Heap 2014). Spatial interpolation methods can be divided

into two categories: point interpolation and areal interpolation. Point interpolation

focuses on point data, such as daily temperature, whereas areal interpolation deals with

30

the data that aggregated over areas, such as average pollution levels for counties (Lam

1983). A number of spatial interpolation methods have been developed. Lam (1983)

divided these spatial interpolation methods into four types: exact and approximate

methods for point interpolation, and non-volume-preserving (the same as the exact and

approximate for point interpolation) and volume-preserving methods for areal

interpolation. Examples of exact methods include weighting, kriging, and splines. In

contrast, Fourier series, least-square fitting with splines, and distance-weighted least-

squares are examples of approximate methods (Lam 1983). Meanwhile, Li and Heap

(2014) summarized interpolation methods into three categories: non-geostatistical

methods (e.g., nearest neighbors and inverse distance weighting), geostatistical methods

(discuss later), and combined methods (e.g., trend surface analysis combined with

kriging).

Kriging is a key component of spatial interpolation methods (Krige 1978). It is a

linear interpolation method, and it uses a semivariogram model to investigate spatial

autocorrelation (spatial dependence). The semivariogram model is used for measuring the

spatial dependence between sample points. The general assumption for kriging is that the

semivariogram is known. Moreover, semivariogram has three characteristics: range, sill,

and nugget (Matheron 1963). Besides those, kriging is called spatial BLUE (best linear

unbiased prediction) (Le and Zidek 2006). There are two groups of kriging: univariate

(one-dimension) and multivariate (multi-dimension). Ordinary kriging (OK) and

universal kriging (UK) are examples of univariate interpolation methods, and cokriging is

the example of multivariate interpolation methods (Wackernagel et al. 2002, Li and Heap

2014). Besides linear interpolation methods, there are a number of non-linear and

31

machine learning-based interpolation methods, for example, support vector machine (Li

et al. 2011) and neural networks (Klesk 2008).

Although there exist a number of spatial interpolation methods, kriging is the most

commonly used interpolation method in GIScience field, particularly for the OK and UK.

OK is derived from an assumption of intrinsic stationarity (the mean is constant). The

variation of kriging that can handle trends is called UK. In other words, the mean

function of UK is not constant. In this dissertation, I examine the capabilities of spatial

interpolation in spatially explicit hyperparameter optimization. Thus, UK is adopted to

predict the continuous patterns from selected hyperparameters.

The major objective of this component is to build a semivariogram model of the

fitness landscape from the generations of EA. Figure 13 shows the flowchart of the

spatial prediction component. First, we collect all sampled hyperparameter sets (i.e.,

chromosomes of EA) and their related fitness values. Second, we convert sampled

hyperparameter sets into the spatial index. For example, we have two hyperparameters (A

and B), those two hyperparameters can be seen as longitude (A) and latitude (B) in a

spatial dimension. Then, the result is transformed into a grid format with attributes

assigned to every cell, indicating the fitness values. And then, we build a semivariogram

model based on these fitness values. After building a semivariogram, we re-calculate

those fitness values and return these updated values to EA. Furthermore, we create a final

map of the fitness landscape using all sampled hyperparameter sets from the entire EA

process. This final map is used to show the prediction of generalization performance. The

detailed illustration of this component is discussed in Section 4.4.3, as well as Zheng et

al.’s study (2019).

32

Figure 13. The flowchart of spatial prediction using two hyperparameters (-999 is null

value in the raster dataset; A stands for original value; A’ is updated value through

semivariogram model).

3.4. Component 3 – acceleration of hyperparameter search

While hyperparameter optimization also has data- and computational-intensity issues,

those issues are still a challenge in current hyperparameter optimization studies. HPC, as

a part of CI, provides powerful computing capability to handle data- and computational-

intensity issues (see Section 2.3 for more information). In the past years, a number of

applications and extensions of using HPC to address data- and computational-intensity

issues have been constructed in current hyperparameter optimization study. The use of

computing clusters (GPU- or CPU-based) is the mainstream of current studies (Bergstra,

Yamins, and Cox 2013a, Bergstra et al. 2015, Lorenzo et al. 2017, Falkner, Klein, and

Hutter 2018). Young et al. (2015) used HPC platform to address the computing challenge

in hyperparameter optimization. During their works, they found that their approach (EA-

based hyperparameter optimization) are unable to maximize the use of available

computing resources. In other words, some computing processors finish their works

earlier and stay idle because the complexity of a model with different hyperparameters is

33

different. Hence, an appropriate load balancing strategy and decomposition strategy are

necessary in order to achieve a more efficient performance.

The search space of hyperparameters can be seen as an infinite space. Using brute

force search to find suitable hyperparameters is often infeasible. Thus, sampling is

needed in hyperparameter optimization. Each model with different hyperparameter sets is

independent, and its performance has little influence on other models. Based on this

feature, embarrassingly parallel computing is utilized in this dissertation because this

computation method is suitable for tasks that do not need to communicate with each

other. In order to achieve the best performance of HPC, I decompose sampled

hyperparameters into a series of subsets. More specifically, each subset contains a single

combination of hyperparameters. And dynamic load balancing is used in this dissertation

in order to address the workload imbalance issue. Computing resources can use their full

potential when involving a dynamic load balancing strategy. When the status of a

processor is idle, then a new task will be immediately assigned to it.

34

CHAPTER 4: STUDY I. HYPERPARAMETER OPTIMIZATION OF NEURAL

NETWORK-DRIVEN SPATIAL MODELS ACCELERATED USING CYBER-

ENABLED HIGH-PERFORMANCE COMPUTING

(This chapter is derived from an article published in International Journal of Geographical

Information Science, October 12th, 2018, copyright Taylor & Francis, available online:

https://www.tandfonline.com/doi/full/10.1080/13658816.2018.1530355)

In this chapter, the major purpose is to examine the feasibility and necessity of

spatially explicit hyperparameter optimization and to evaluate the performance of

hyperparameter optimization in neural network-based spatial models (links to objective

1).

4.1. Introduction

Geographic modeling with spatial or spatiotemporal data is an important research

topic in the domain of Geographic Information Science (GIScience). Early studies were

primarily concerned with the use of statistical methods to analyze spatial data and most of

these models are linear. However, geospatial phenomena are often driven by nonlinear

mechanisms. Linear methods may be ill-suited to the spatially explicit modeling of

geospatial phenomena. Due to the need of non-linear approaches, artificial neural

networks (ANNs) have been applied extensively in a variety of geography-related fields

(Dai et al. 2005, Goethals et al. 2007, Mas and Flores 2008, Grekousis and Photis 2014).

While there have been some studies reported to investigate the optimal configuration of

neural networks (Paola and Schowengerdt 1995, Kavzoglu and Mather 2003, Goethals et

al. 2007), the impact of neural network configuration on model performance has not been

adequately investigated (Mas and Flores 2008). In this study, we aim to investigate the

capability of hyperparameter optimization in neural network-based spatially explicit

https://www.tandfonline.com/doi/full/10.1080/13658816.2018.1530355

35

models, and to examine whether and how hyperparameter optimization can be informed

by such fields as GIScience. We focus on addressing three challenges associated with

hyperparameter optimization of spatially explicit modeling based on ANNs. First, the

determination of neural networks configuration is fundamentally a model selection

problem. Most studies in the GIScience domain used a trial-and-error approach to

develop the structure of ANNs because of the complicated nature of configuring ANNs

(Heermann and Khazenie 1992, Li and Yeh 2002, Pijanowski et al. 2005, 2014).

However, the trial-and-error approach is based on a manual mechanism and is often

subjective. Hyperparameter optimization is a model selection approach that can help

search for optimal neural network-based models (Bergstra and Bengio 2012).

Hyperparameters are parameters of an algorithm (here ANNs) that support the

determination of standard parameters of a model (spatial model here) from data.

Examples of hyperparameters are learning rate and momentum for ANNs. A series of

studies on hyperparameter optimization have been reported in the domain of computer

science and engineering (Bergstra et al. 2011, 2013b, Thornton et al. 2013). Yet, there are

no such studies that have been conducted in the domain of spatially explicit modeling.

Second, hyperparameter optimization has been relatively well investigated in the fields of

computer science, but, challenges remain for the study of hyperparameter optimization

(Claesen and Bart 2015). For example, existing applications of hyperparameter

optimization are depended on the assumption that all potential combinations of

hyperparameters are independent (as required by conventional statistics). However, the

assumption of independence is often violated for practical cases and data, especially for

those that contain spatial or temporal features, which has been recognized in such

36

domains as statistics (Handcock and Wallis 1994), ecology (Tilman and Kareiva 1997),

economics (Fujita et al. 1999), and geography (Tobler 1970, Anselin et al. 1996). In

particular, spatial dependence in geographic space, as suggested in the First Law of

Geography (Tobler 1970) has been a central component that drives the advancement of

spatial statistics. For instance, spatial autocorrelation approaches have been developed to

quantify and evaluate dependence in spatial data (Anselin 1995, Moran 1950). It is thus

inevitable that dependence among sampled observations exists in the hyperparameter

space. More importantly, without appropriately handling this form of dependence among

data, analysis or modeling results may be biased (McDonald 2009). Thus, taking into

account the hyperparameter dependence in the study of hyperparameter optimization is of

necessity. However, no studies have been devoted to handling the hyperparameter

dependence issue yet. While spatial statistics may offer insight into this issue, how to

handle the dependence in the hyperparameter space using spatial statistical methods

poses a challenge for the study of hyperparameter optimization. Third, the searching

process of hyperparameter optimization often consumes huge amounts of computing–i.e.

the hyperparameter optimization poses a computational challenge. High performance

computing (HPC), driven by cyberinfrastructure (Atkins 2003), can help resolve this

challenge. HPC is based on the use of a collection of computing elements (e.g. CPUs) for

problem-solving in a parallel manner. In the past few decades, the use of HPC to

accelerate computationally demanding hyperparameter optimization has been

demonstrated by a set of applications (Bergstra et al. 2013a, Kotthoff et al. 2016).

However, most HPC applications of hyperparameter optimization only focus on the

parallelization of the traversal of the hyperparameter space – that is, at the computing

37

level. Leveraging characteristics of the hyperparameter space (at the method level) to

facilitate the use of HPC for accelerated hyperparameter optimization (at the computing

level) has been inadequately studied. Therefore, in this article, we place our focus on

tackling the three challenges facing hyperparameter optimization for neural network-

driven spatially explicit modeling identified above. Our specific objectives are to (1)

examine the capability of hyperparameter optimization in spatially explicit modeling

based on neural networks, (2) evaluate how spatial statistical methods (i.e. in the domain

of GIScience) may, in turn, help the hyperparameter optimization approach (originated

from the domain of computer science), and (3) explore the potential of further

accelerating HPC-enabled hyperparameter optimization based on characteristics of

hyperparameter space. The rest of this article is organized in the following manner.

Section 4.2 provides a review of previous work in the application of ANN and

hyperparameter optimization. After discussing the study area and data in Section 4.3, the

method of automated hyperparameter optimization approach is presented in Section 4.4.

Section 4.5 shows experimental results and discusses these results in Section 4.6. Section

4.7 provides concluding remarks.

4.2. Literature review

This section presents the background of ANNs and hyperparameter optimization.

These concepts include architectures and learning schemes.

38

4.2.1. Artificial neural networks

Artificial neural networks (ANNs) are an inductive machine learning approach that

resembles the brain functions of human beings or animals for problem-solving

(Openshaw and Openshaw 1997). ANNs are one of the powerful approaches in scientific

and engineering applications when used to predict or recognize patterns. ANNs can learn

from data to improve their performance and adapt themselves as more data are available.

ANNs offer an alternative way of constructing complex models by allowing for

representing nonlinear relationships via directly learning from data (Hornik et al. 1989,

Chen et al. 1990). There are different types of ANNs regarding the network architecture:

for example, feed-forward neural network, radial basis function network, and recurrent

networks. Although various types of neural network models have been developed, the

one that is most widely used is the feed-forward neural network. Figure 14 illustrates the

structure of a multilayer feed-forward neural network. Typically, in a feed-forward neural

network, there are three types of layers: input layer, hidden layer, and output layer. A

neuron is a building block of computation, and neurons and their interconnections

constitute a neural network that can be used for problem-solving. Each neuron in the

input layer corresponds to an input variable. Each connection of neurons (e.g. from the

input to the subsequent neuron) is associated with a weight that can be adjusted. The

training of a neural network is to use learning algorithms (i.e. supervised learning

algorithm) to adjust these weights to minimize the error in outputs, thus determining the

optimal network setting for problem-solving.

39

Figure 14. Basic structure of a feedforward neural network (B stands for bias node;

network is fully connected).

Supervised learning algorithm is often used to train feed-forward neural networks.

Supervised learning algorithm has the capability of learning to map a set of inputs to one

or more outputs by adjusting weights. A number of learning strategies have been

developed, and the most popular one is the backpropagation learning algorithm

introduced by Rumelhart and James (1988). Backpropagation algorithm is based on the

iterative gradient descent search mechanism. Once the weights of the network are

initialized, input nodes are presented to the network and propagated forward to calculate

the output value. An activation function in a neural network transforms an input or set of

inputs to the output of that node. This transformation can be linear or nonlinear.

Commonly used activation functions for neural networks are sigmoid (logistic),

hyperbolic tangent (tanh), polynomial and linear (Specht 1990). Also, there exist other

activation functions as the emergence and development of deep neural networks, for

40

example, ReLU (rectified linear unit; see (Hahnloser et al. 2000) and Softmax (Bishop

2006)).

As one of the machine learning approaches, ANNs have a wide range of applications

in such domains as pattern recognition, classification, and optimization (Maa and

Schanblatt 1992, Dreiseitl and Ohno-Machado 2002, Demuth et al. 2014). Some

applications of ANNs have been conducted over years in geography-related domains,

such as land use and land cover change (Li and Yeh 2002, Pijanowski et al. 2002), urban

modeling (Grekousis et al. 2013), remote sensing (Li et al. 2014), and spatial analysis and

modeling (Govindaraju and Rao 2013, Nourani et al. 2013, Nevtipilova et al. 2014). For a

detailed summary of ANN applications in geospatial science, please refer to Gopal

(2017).

We conducted a bibliometric analysis on academic publications with respect to

spatial modeling using neural networks (Web of Science database was used; keywords:

spatial modeling and neural network). Figure 15(a) shows the results of the bibliometric

analysis in terms of research domains. As we could see, the major research areas of

publications are engineering, computer science, and neurosciences neurology. About 6%

of these publications (384) are related to land change studies (see Figure 15(b)), to which

the use case of this study belongs. Although a number of previous studies have been

reported, most of them use a trial-and-error approach that depends on a set of guidelines

to determine the network configuration (Stathakis 2009, Karsoliya 2012, Table 1).

However, the trial-and-error approach is based on a manual mechanism and is often

subjective. Yet, the model configurations of ANNs are dependent on the data and

research objectives. The recommendation from the literature may be biased for

41

determining the configurations of ANNs. Thus, it is necessary to resolve these

limitations, which motivates us to introduce the use of hyperparameter optimization in

this study.

Figure 15. Bibliometric analysis of research areas in terms of spatial modeling using

neural networks (Web of Science database was used; all collected publications were

published prior to 2018; A: keywords: spatial modeling and neural network, total number

of articles: 6,354; B: keywords related to land change studies were used to refine the

result of Figure 2A, keywords: land change, land cover, land use, urban growth, intra-

urban growth, or urban sprawl, total number of articles: 384; please note that a single

publication may be associated with two or more domains).

42

Table 1. Summary of setting parameter method of neural network.

Method Citation

Trial and error Heermann and Khazenie (1992), Hsu et al. (1995), Gopal and

Woodcock (1996), Ozesmi and Ozesmi (1999), Rigol et al. (2001),

Pijanowski et al. (2002), Fisher and Reismann (2003), Rigol-

Sanchez et al. (2003), Erbek et al. (2004), Pijanowski et al. (2005),

Nayak et al. (2006), Tang et al. (2009), Kia et al. (2012), Linares-

Rodriguez et al. (2013), Isik et al. (2013), Pijanowski et al. (2014)

Literature Miller et al. (1995), Bradshaw et al. (2002), Olden and Jackson

(2002), Mas et al. (2004), Biswajeet and Saro (2007), Almeida et

al. (2008), Pradhan et al. (2010)

Literature +

trial and error

Berberoglu et al. (2000), Li and Yeh (2002), Joy and Death (2004)

4.2.2. Hyperparameter optimization

Standard parameters explain the performance of a model based on a specific dataset

and are determined based on the data. Hyperparameters, however, cannot be determined

(or learned) from the data. Instead, hyperparameters represent higher-level properties of a

model, such as the architecture of the model or model type (e.g. linear regression, ANN).

As Bergstra and Bengio (2012) elicited ‘. . . a learning algorithm produces f through the

optimization of a training criterion with respect to a set of parameters θ. However, the

learning algorithm itself often has bells and whistles called hyper-parameters λ, and the

actual learning algorithm is the one obtained after choosing λ ...’ (Page 1). In other

words, hyperparameters are usually fixed before the training process begins and the

hyperparameters could minimize generalization error of the learning algorithm. Many

machine learning algorithms are associated with a set of hyperparameters. For example,

the height of a decision tree, learning rates or network configuration for ANNs are

representative of hyperparameters.

43

Hyperparameter optimization is a way of choosing a set of hyperparameters for a

learning algorithm. The goal of this process is to optimize the performance of the

learning algorithm on a specific dataset. Extensions and applications of the

hyperparameter optimization have been conducted over the past few years by the

practitioners in the field of computer science and engineering (Figure 16(a)). However,

studies on optimizing hyperparameters of ANNs remain inadequate (see Figure 16(b)).

Of note is the work by Thornton et al. (2013), in which they built a toolkit – Auto-WEKA

to solve the combined algorithm selection and hyperparameter optimization problem

(CASH) based on Bayesian optimization. But, Auto-WEKA only focuses on handling

classification problem. Auto-WEKA 2.0 adds regression algorithms and supports parallel

runs on a single machine to improve the computing performance (Kotthoff et al. 2016).

Meanwhile, there are a set of python libraries that support hyperparameter optimization

with multiple machine learning algorithms, such as Hyperopt (Bergstra et al. 2015) and

NeuPy (http://neupy.com/pages/home.html).

http://neupy.com/pages/home.html

44

Figure 16. Bibliometric analysis of hyperparameter and neural networks in terms of

research areas (Web of Science database was used; A: keywords: hyperparameter, total

number of articles: 2,115; B: keywords: hyperparameter and neural network, total

number of articles: 275; please note that a single publication may be associated with two

or more domains).

The general problem-solving technique for hyperparameter optimization is based on

brute force search or exhaustive search, which is to find the best hyperparameter set(s)

through traversing all possible combinations of hyperparameter in a given search space.

Because of the higher cost and time-consuming nature of brute force search, we often use

a sampling selection approach for the selection of optimal hyperparameters. Two primary

selection methods support applications of hyperparameter optimization: grid search and

random search. Grid search, similar to systematic sampling, manually defines a subset of

45

the search space and then traverses all combinations of the specified hyperparameters

(Lerman 1980, LaValle et al. 2004). Random search is more efficient than grid search

because it randomly selects a chosen number of hyperparameters pairs from a given

domain and then tests these combinations (Andradóttir 2006, Bergstra et al. 2011).

However, there exist a set of limitations of hyperparameter optimization. First, we

need to evaluate the performance of a model with every combination of hyperparameters.

For a single evaluation process, the computing time may be acceptable, but evaluation

time is exacerbated when training multiple models. Although some applications have

parallel computing capabilities or automation support for performing hyperparameter

optimization (e.g. Hyperopt, Auto-WEKA 2.0), all of them focus on addressing the

computational efficiency at computing level (using parallel computing here). However, it

is possible that computing performance may be improved by the information from the

model level, such as reducing sample size (remove redundant sampled observations

here). Second, a stochastic component usually exists in machine learning algorithms. This

stochasticity can be addressed via repeated measures design (Batista and Monard 2003,

Kotsiantis et al. 2007), but such solution will dramatically increase the computing needs.

Third, the search space of hyperparameter is usually complicated, which will further

induce more computing cost. In general, the primary challenge of hyperparameter

optimization is to find the optimal setting of a machine learning algorithm efficiently

(e.g. the minimal amount trials) (Lerman 1980, LaValle et al. 2004).

46

4.3. Study area and data

Our study region is Mecklenburg County, North Carolina, which is located at the

southwestern part of the state (see Figure 17). The Mecklenburg County includes the city

of Charlotte, and serves as the major area of the Greater Charlotte Metropolitan Region.

This Metropolitan Region ranks the 22nd largest metropolitan area in the United States

with a total population of 2,380,314 in 2014 (data source from US Census Bureau,

https://www. census.gov). Charlotte is the largest city of North Carolina, and the second

largest city in the southeastern U.S. Also, Charlotte is home to the corporate headquarters

of Bank of America and the east coast operations of Wells Fargo, which together with

other financial institutions makes it the second-largest banking center in the United

States.

Figure 17. Spatial distribution of land price of single-family houses in the study area

(Charlotte, North Carolina, U.S.A)

47

In this study, we focus on investigating the impact of social environmental variables

on land price. We collected our datasets from Open Mapping web portal of Mecklenburg

County (see http://maps.co.mecklenburg.nc.us/openmapping). Table 2 reports the detail

of the datasets. We used Euclidean distance when we consider the influence of spatial

proximity. In this study, we explore the relationship between the land price of single-

family houses and six driving factors (see Table 2). Figure 16 shows the spatial

distribution of land price of single-family houses.

Table 2. List of datasets collected and used in this study.

Dataset Year Name used in

this study

Explanation

Land price 2016 lp Property related information

Uptown Charlotte 2016 dis2C Distance to city center

Park 2016 dis2P Dataset contains Park and

Recreation park.

Public school 2015-2016 public_sch Dataset contains elementary,

middle, and high schools.

Private school 2015-2016 priv_sch Dataset contains elementary,

middle, and high schools.

Road 2016 dis2R Dataset contains developed

interstate highways.

Hospital 2016 hospital Locations of Hospitals

4.4. Methodology

Land price evaluation and hyperparameter optimization are the main components of

the automated model selection for ANN-driven spatial model. One of our objectives in

this study is to investigate how hyperparameters influence the performance of the ANN

model. Another objective is to improve the computational efficiency using other

approaches together with high performance computing. Also, we will give a

recommended hyperparameter set(s) for the optimal model. In this section, we discuss the

48

land price evaluation model and the algorithm of ANN-driven hyperparameter

optimization and then illustrate the implementation.

4.4.1. Land price evaluation model

We developed a land price evaluation model to investigate the relationship between

the land price in the study region and their drivers. We focus our study on the land price

of residential housing. Residential housing, as one section of the real estate market, is one

of the principal components of our daily life. Real estate market is an essential part of the

regional economy. The economic crisis in 2008 has shown that the real estate market is

affected by such factors as employment, financial system stability, policies and so on.

The relationship between the real estate market and the economy has been studied in the

literature (Quan and Titman 1999, Girouard and Blöndal 2001, Quigley 2002, Mera and

Renaud 2016). Some studies suggested that the determinant of residential land price may

include accessibility value, amenity value, and topography (Brigham 1965, Arribas et al.

2016).

Thus, in this study we chose six variables as drivers of land price in our study region:

1) distance to the center city of Charlotte (noted as x1), 2) distance to the nearest

interstates (x2), 3) distance to the nearest public school (includes elementary school,

middle school, and high school) (x3), 4) distance to the nearest private school (includes

elementary school, middle school, and high school) (x4), 5) distance to the nearest park

(x5), and 6) distance to the nearest hospital (x6). That is, our land price evaluation model

can be formulated as:

𝑝 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) (2)

49

where p is the land price of a parcel. x1-xn are influential variables as drivers of the land

prices associated with the parcel (n=6 here). f(.) represents the model that establishes the

relationship of land price with its drivers. Thus, for linear regression approach, the land

price evaluation model in this study becomes the following:

𝑝 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5 + 𝑤6𝑥6 (3)

where w0-w6 are weights (or coefficients) that define the linear regression model for land

price evaluation. These weights can be estimated by ordinary least squares (OLS),

maximum likelihood estimation (MLE) or other estimation methods. x1-x6 are influential

variables as drivers of the land prices associated with the parcel.

If we use the neural network approach, the land price evaluation model f(.) can be

represented by a neural network with one hidden layer as below:

𝑝 = 𝑓𝑎
𝑜𝑢𝑡 (∑ 𝑤𝑖𝑗

1 𝑓𝑎(∑ 𝑤𝑖𝑗
0 𝑥𝑛)) (4)

where 𝑓𝑎
𝑜𝑢𝑡 is the activation function for output layer neuron(s), fa is the activation

function for neurons in hidden layers. 𝑤𝑖𝑗
𝑙=0,1,2..

 is the weight between node i in layer l to

and node j in layer l+1. 𝑤𝑖𝑗
0 stands for the weight between the first two layers (i.e., the

input layer and the hidden layer). 𝑤𝑖𝑗
1 means the weight between the second and the third

layer (e.g., the hidden layer and the output layer here).

Further, the land price evaluation model f(.) also can be written as a two-hidden-layer

neural network as in Eq. 5:

𝑝 = 𝑓𝑎
𝑜𝑢𝑡(∑ 𝑤𝑖𝑗

2 𝑓𝑎(∑ 𝑤𝑖𝑗
1 𝑓𝑎(∑ 𝑤𝑖𝑗

0 𝑥𝑛))) (5)

where 𝑤𝑖𝑗
1 is the weight between the first hidden layer and second hidden layer, and 𝑤𝑖𝑗

2

means the weight between the second hidden layer and the output layer.

50

Weights of neural networks can be regarded as standard parameters of the neural

network model. Thus, the linear regression model is a special type of neural network with

linear activation function. The parameters of learning algorithms used to generate these

weights become hyperparameters.

4.4.2. Hyperparameter optimization

Figure 18 illustrates the framework of hyperparameter optimization in this study. The

framework consists of four major phases: (1) generation of hyperparameters, (2)

acceleration of model runs using parallel computing (discussed in detail in Section 4.4),

(3) evaluation of sampled hyperparameters (discussed in detail in Section 4.3), and (4)

analysis of hyperparameters-derived results.

51

Figure 18. Framework of the use of hyperparameter optimization for artificial neural

networks (ANNs).

In the first phase of generation of hyperparameters, we select the examined

hyperparameter space and then select sampled hyperparameters based on selection

methods (e.g. grid search and random search). There are a number of hyperparameters

that have impacts on ANNs, such as batch size, training iterations, and the number of

hidden units. In this study, we focus on examining two representative hyperparameters

for backpropagation feed-forward neural network modeling: learning rate and

momentum. The updated weight formula (Eq. 6) is listed as follows:

∆𝑤𝑖𝑗
𝑙 (𝑛) = −𝛿

𝜕𝐸(𝑛)

𝜕𝑤𝑖𝑗
𝑙 (𝑛)

+ 𝛼∆𝑤𝑖𝑗
𝑙 (𝑛 − 1) (6)

52

where 𝛿 is the learning rate and α is the momentum term. ∆𝑤𝑖𝑗
𝑙 is the adjusted weight

between the target output for the current training example and the output generated using

gradient descent rule –
𝜕𝐸(𝑛)

𝜕𝑤𝑖𝑗
𝑙 (𝑛)

. n is the step of current iteration (or epoch).

In Section 4.2.2, we discussed the selection methods of hyperparameter optimization.

In this study, we used both grid search and random search for comparison purpose. For

random search, we used Latin hypercube sampling (LHS) approach (see (McKay,

Beckman, and Conover 1979). LHS first divides the entire search space into a set of Latin

squares, then randomly identify one or more sample points in each square. In this study,

we investigate the efficiency and accuracy of these two sampling methods using ANNs

with two hidden layers. Figure 19 shows the distribution of the sampled hyperparameters

(learning rate and momentum) for grid search and random search (more detail provided

in Results Section).

Figure 19. Distribution of sampled hyperparameters (a: grid search; b: random search).

Regarding the analysis of hyperparameters (Phase 4 in the framework; see Figure 18),

it includes three modules: (1) model performance analysis of ANNs, (2) prediction

performance analysis of hyperparameters, and (3) computing performance. For the first

module, mean squared error (MSE) is applied as model performance metric here. For

53

continuous variables, MSE is a performance metric that has been extensively used

(Willmott 1982, Brown 1998). Performance metrics based on the confusion matrix (e.g.

overall accuracy, and Kappa coefficient; see (Fawcett 2006)) are suitable for categorical

variables. In our case, given that land price is a continuous variable, the error function that

we used for performance evaluation is MSE (see Eq. 7),

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑝�̂� − 𝑝𝑖)

2𝑛
𝑖=1 (7)

where �̂�i is the estimated or predicted land price of the ith data record. pi is the observed

value of the ith data record. n is the total number of records of the dataset. In this study,

we also use the coefficient of variation (CV) to investigate the generalization

performance of the model (Phase 2 in the framework; see Figure 18). CV is a measure of

relative variability that is comparable across different parameter sets (Brown 1998). The

formula for CV is:

𝐶𝑉 =
𝛿

𝜇
× 100% (8)

where 𝛿 is the standard deviation of a variable. 𝜇 is the average of the variable. Typically,

a model or an algorithm is robust when CV is less than 100% (i.e., when standard

deviation equals the average).

4.4.3. Determining optimal sample size

For the evaluation of selected hyperparameters, we involved spatial sampling

approach. Sampling is to acquire a certain number of samples instead of estimating

characteristics of the whole population due to higher cost and longer computing time for

obtaining information from the entire population. Classical sampling theory assumes that

data are identically and independently distributed, which is often referred to as design-

based sampling strategy (Särndal et al. 1978). In other words, in the design-based

54

sampling strategy, the sample size is fixed and the sampling locations are random.

Sample size determination formulas based on classical sampling theory were proposed

(shown below in Eq. 9 and 10). Eq. 9 is to determine sample size for a finite population

(Krejcie and Morgan 1970), and Eq. 10 is for the infinite population (Godden 2004):

𝑠 =
𝜒2𝑁𝑝(1−𝑝)

𝑑2(𝑁−1)
+ 𝜒2𝑝(1 − 𝑝) (9)

𝑛 =
𝑧2𝑝(1−𝑝)

𝑑2
 (10)

where s is sample size for a finite population based on the chi-square distribution, and n

is for an infinite population which follows a normal distribution. χ2 is the chi-square for 1

degree of freedom at the significant level of 0.05 (3.841 here), whereas z is the critical

value at confidence level (e.g., 1.96 for 95% confidence level). N is population size and p

denotes the population proportion. d as the degree of accuracy (i.e., margin of error)

expressed as a proportion. They assumed p is 0.5 since this would provide the maximum

sample size, and d is set to 0.05.

A given sampling point may influence other points located close by, or even some

distance away (Tobler 1970). Spatial sampling theory (aka, model-based sampling

strategy), which is based on geostatistics, is to address this form of intersample influence.

From a geostatistical perspective, the existence of spatial dependence in the search space

implies that the independence assumption for classical sampling is not met. Spatial

dependence occurs when information available at one location allows us to infer

information about the other location. However, besides related fields (e.g. ecology,

geography, evolutionary biology), the consideration of spatial dependence has not been

discussed in other fields. But, the spatial dependence can be found in georeferenced data

or spatiotemporal data (Legendre and Fortin 1989). Moreover, the field of geostatistics

55

provides a set of approaches (e.g., semivariogram) to estimate the spatial dependence and

use this information to predict unknown locations under a given study.

The semivariogram model describes the spatial dependence of the measured sample

points. There are three characteristics of semivariogram: range, sill and nugget

(Matheron, 1963). To provide an efficient way to consider sample size with spatial

dependence, Griffith (2005) proposed a formula for estimating effective sample size3

(Module 2 of Phase 3 in the framework; see Figure 18) using semivariogram models:

𝑛∗ =
𝑛𝑖

𝑛𝑖−
𝐶1

𝐶0+𝐶1
∑ ∑ 𝑓(𝑑𝑖𝑗,𝑟)𝑛𝑖

𝑗=1,𝑗≠𝑖
𝑛𝑖
𝑖=1

𝑛 (11)

where n* is the independent sample size, and ni is the spatially autocorrelated sample size

(refer to the sample size from Eq. 9 or Eq. 10). f(dij, r) stands for a particular

semivariogram model with range (r), nugget (C0), and slope (C1, C1 = sill/range), and dij

is the distance between location i and j. The following equations are two model-specific

cases when C0 is zero:

spherical:
𝑛𝑖−1

(1+251.5132
𝑟

𝑑𝑚𝑎𝑥
)1.9324

+ 1, 𝑑𝑖𝑗 ≤ 𝑟 (12)

exponential:
𝑛𝑖−1

(1+51.4879
𝑟

𝑑𝑚𝑎𝑥
)1.757

 (13)

where dmax denotes the maximum distance between location i and j. Comparing with the

equation for statistical approach, semivariogram approach considers 1) the types of

semivariogram model (e.g., spherical, exponential, and gaussian), and 2) the spatially

autocorrelated sample size, which is estimated from a statistical approach (Eq. 9-10).

3 Effective sample size (aka, adequate sample size) is a notion defined for a sample that is statistically

significant and the observations in the sample are correlated.

56

Thus, we can use effective sample size to adjust the experimental design and improve the

computing performance.

However, a hyperparameter search space may contain an infinite number of

combinations of hyperparameter sets, and these sampled hyperparameters can only

represent part of the hyperparameter space. Thus, we further use prediction methods to

estimate the generalization performance of the entire hyperparameter space. There exist a

set of interpolation methods (Krige 1978, Zimmerman et al. 1999), such as kriging and

inverse distance weighting (IDW). The difference between kriging and IDW is that the

former allows for the consideration of spatial dependence but the latter does not. In this

study, we used kriging to predict and delineate the continuous patterns of CVs and MSEs

from those of sampled hyperparameters. Kriging is a spatial interpolation method that

makes use of semivariogram to calculate the spatial dependence between points at

different lag distances. To address computational efficiency (Module 3 of evaluation of

sampled hyperparameters in the framework; see Figure 18), Monte Carlo approach

(Kalos and Whitlock 2008) was applied in this study. Monte Carlo approach can be used

as significance testing approach. That is, the number of Monte Carlo approach required is

statistically significant or not, thus allowing for determining the minimum number of

repetitions of neural network runs. The minimum number of repetitions (ni) at a particular

confidence interval is shown in Eq. 14:

𝑛𝑖 = [
𝑧𝑆𝑥

𝐸�̅�
]2 (14)

where z is the critical value of confidence level (e.g., 1.96 for 95% confidence level). Sx

denotes the sampled standard deviation, and E is the margin of error (i.e., 0.05 in the

case). Sample mean assigns to �̅�.

57

In addition, data normalization is used to avoid unnecessary computation here. The

entire dataset is split into a training dataset and a testing dataset for supervised learning.

In our model, we used linear transformation approach to standardize the input data to the

range of [0, 1] (see Eq. 15).

𝑥𝑛𝑒𝑤 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (15)

where xnew is the normalized value of a specific record for a variable. x is the original

value of the record. xmin and xmax are the minimum and maximum of the variable. Output

data will then be scaled back.

4.4.4. Parallel computing and implementation

In Phase 2 of the framework (see Figure 18), we illustrate the acceleration through

parallel computing because the computational demand for hyperparameter optimization is

heavy. In this study, we have n hyperparameter sets each of which needs m times of

repetitive runs. We request k CPUs from high performance computing cluster and

organize the set of all runs (m×n) into k subsets. Further, we could deploy k sub-sets of

model runs into k CPUs – that is, each CPU runs mn k jobs. For example, if there are n =

100 hyperparameters sets each repeating m = 100 runs over k = 100 CPUs, then the

number of jobs is 100 and each CPU charges a single job. Because there is no

communication among model runs, the parallel computing approach is the so-called

embarrassingly parallel computing (Wilkinson and Allen 1999, Tang and Jia 2014). To

evaluate parallel computing performance (Module 3 of Phase 3 in the framework; see

Figure 18), we use speedup (sp in Eq. 16) and efficiency (e in Eq. 17) for evaluating the

acceleration of parallel computing.

𝑠𝑝 =
𝑡1

𝑡𝑛
 (16)

58

𝑒 =
𝑠𝑝

𝑛𝑐𝑝𝑢
 (17)

where t1 is the sequential computing time using a single CPU and tn is the parallel

computing time using n CPUs. ncpu is the number of CPUs used for acceleration. Speedup

uses to calculate the acceleration rate. Theoretically, the ideal speedup (aka, linear

speedup) is n with n CPUs. Efficiency is the ratio of speedup over the number of CPUs

used for parallel computation (Wilkinson and Allen 1999).

The high-performance computing cluster that we used has 59 nodes connected

through a gigabit network to accelerate the automated hyperparameter optimization

process. Each computing node of the high-performance computing cluster has 12 CPUs

and 36 GBs of memory, in total 432 CPUs (dual Intel Xeon 2.93 GHz). The operating

system of the cluster is Redhat Linux, and the job scheduling system is Torque/PBS.

Shell scripts were used to wrap the computation of hyperparameter optimization into

computing jobs that can be executed on the Linux cluster in parallel. The neural network

library that we used in this study is FANN (http://leenissen.dk/fann/wp/), which was

written in C programming language. Further, Python scripting language was used for data

processing associated with neural network modeling and GIS analysis.

4.5. Results

In this study, we focus on examining the utility of hyperparameter optimization for

spatially explicit modeling driven by ANNs. We organized the entire dataset into 32

groups based on the distance to the center city of Charlotte (see Figure 20; the distance

interval is 1km). There are two reasons that we used distance to the center city of

Charlotte. First, cities typically expand outward from the center over time in urban

59

economics, and the center of a city is usually called downtown or uptown. When a parcel

becomes suitable for development as the city expands, the parcels with similar distances

may have similar start dates regarding development (Cunningham 2006). Second, a

number of studies reported that the distance to downtown or uptown has a substantial

influence on land price (Heikkila et al. 1989, Atack and Margo 1998, Yamazaki 2001, Hu

et al. 2016).

Figure 20. Spatial pattern of single-family housing parcels in terms of distance to uptown

Charlotte in the study area (Mecklenburg County, NC; city: Charlotte).

Specifically, we chose one of the groups as our experimental dataset. In this case

study, group 4 with 9254 records (parcels here) was selected: 6478 records (70%) were

assigned as the training set, and the remaining 2776 records (30%) for testing.

60

We used the same training dataset to fit the linear regression model and the same

testing dataset was used to predict values based on the fitted linear model. The ordinary

least squares model was applied in this study. Table 3 summarizes the results of the linear

regression model. The R2 of the linear model is 0.7183, and the predicted MSE based on

the testing dataset is 0.0068. In the ANN model, the MSE of the optimal hyperparameter

set is around 0.004 for both hyperparameter methods (reported in detail next). These

results suggest that the ANN model has a better generalization performance than linear

regression modeling.

Table 3. Results of linear regression modeling (see Table 2 for definitions of these

variables).

Variable Coefficient
Standard

error
t-statistic Probability

Intercept 16.95 0.9359918 18.11 0.00

dis2P 0.004 0.0001177 35.95 0.00

dis2C 0.0006 0.0000743 7.97 0.00

dis2R 0.00008 0.0000462 1.78 0.074

Public_sch -0.001 0.0000640 -14.91 0.00

Priv_sch -0.00005 0.0000338 -1.61 0.108

Hospital -0.0015 0.00001296 -113.43 0.00

R2 0.7183

Adjusted

R2
0.7180

In this study, ANNs were configured as two hidden layers with six nodes in the first

layer and three nodes in the second layer. We applied sigmoid-type activation function

(Eq. 18) for hidden layer neurons and linear identity activation function for output layer

(Eq. 19).

𝑓𝑎(𝑖𝑛) = 1 (1 + 𝑒−𝑖𝑛)⁄ (18)

𝑓𝑎
𝑜𝑢𝑡(𝑖𝑛) = 𝑖𝑛 (19)

61

where in is the weighted sum of values of neurons from the previous layer.

Model fitting is an important part of all quantitative models. However, because of the

complex nature of ANNs, overfitting is a serious and common problem in training ANNs.

There exist a set of strategies for handling the overfitting issue, such as cross-validation,

early stopping, or ensemble learning techniques. In this study, we used testing dataset to

detect whether the model has overfitting issue or not. We found that most learning

processes have overfitting issue when the number of iterations reaches to 10,000 or after.

Also, the minimal MSEs are between 0.003 and 0.004. Thus, the stopping criteria are

based on the number of iterations (10,000 epochs) and the threshold of MSE (0.003 here)

to avoid overfitting issue. In other words, when the training MSE is close to the threshold

(0.003 here), or the learning algorithm reaches the number of iterations (10,000), the

learning process will stop. We repeat each hyperparameter set 100 times, and the initial

weights of each ANN set to 0.00.

4.5.1 Results of Grid Search and Random Search

The interval of learning rate and momentum of our search space set to 0.01 and 0.1.

Range of learning rate and momentum are (0, 0.1] and (0, 1]. We applied 100 sampled

hyperparameter sets in this study. For grid and Latin hypercube sampling, we created a

10 × 10 square grid—i.e., the total number of square grids is 100.

4.5.1.1. Model performance

We used the testing MSEs to evaluate the ANN-based model performance for

sampled hyperparameters. Figure 21 illustrates the scatterplot of averaged testing MSEs

(generalization performance) for grid search and random search (outliers were excluded).

The effective hyperparameter sets for grid search is 90, whereas 94 for random search.

62

For grid search, high testing errors concentrate around the regions where momentums are

large. In particular, testing errors reach the maximum when momentum is around 0.9.

While testing errors are also affected by learning rates: testing errors tend to increment as

learning rates increase. Similar patterns can be observed from the scatterplot of random

search while the parameters sets are randomly generated. In general, generalization

performance of neural networks is high (i.e., low testing MSEs) when both learning rates

and momentum are low. Meanwhile, low learning rates coupled with relatively large

momentum (e.g., momentum<0.7) have high generalization performance.

Figure 21. Scatterplot of averaged testing MSEs for hyperparameter sets (circle size is

proportional to MSE, circle size from small to large stands for low MSE to large MSE;

outliers were excluded).

63

Figure 22. Scatterplot of CVs for hyperparameter sets (circle size is proportional to CV,

circle size from small to large stands for low CV to large CV; outliers were excluded).

Figure 22 shows the scatterplot of CVs for both grid and random search with outliers

removed. We calculated CV based on the result of the testing dataset. High CVs occur at

those regions where learning rate and momentum are large. The highest CVs (>100%)

appear when momentum is larger than 0.9 for random search, whereas learning rate is

higher than 0.07 for grid search. However, there exists an outlier (CV>100% here) in grid

search when learning rate is 0.03, and momentum is 0.2. But, the averaged testing MSE is

small in this hyperparameter set (see Figure 19). Similarly, CVs from random search

show relatively small values around this region.

4.5.1.2. Optimal sample size

As we discussed in Section 4.3.3, semivariogram is a spatial statistical approach that

can be used to estimate spatial dependence. However, in most cases, how to determine

the semivariogram would be a major part of spatial sampling. If the semivariogram is not

64

known, we should select some samples on a regular grid (e.g., triangular, hexagonal) to

create the semivariogram model (McBratney and Webster 1983). Hence, we created the

spherical semivariogram model based on 100 sampled hyperparameter sets (see Figure 19

for distribution of sampled hyperparameter sets).

In semivariogram analysis, the number of lags is set to 12 and lag size is 0.048. From

Figure 23, the nugget for both random search and grid search is 0, and the range is about

0.153 for random search and around 0.148 for grid search. This means for any two

sampled hyperparameters, there is no spatial autocorrelation or dependence when the

distance between the two sets is longer than 0.153 (random search) or 0.148 (grid search).

The sill of random search (1.07×10-7) is smaller than grid search (9.676×10-6). In other

words, the variance of sampled hyperparameter sets in random search is lower than that

from grid search. Furthermore, according to Eq. 12, we only need 88 sampled

hyperparameter sets instead of 383 from conventional statistics (based on an assumption

of independence among samples; see Eq.10).

65

Figure 23. Semivariogram analysis of grid and random sampling approach (A, grid

search; B, random search).

4.5.1.3. Optimal number of repetitions

In this study, we focus on investigating the optimum number of repetitions for each

sampled hyperparameter set based on results from the treatment group of random search.

Figure 24 reports estimation results of a number of repetitions (using Eq. 14) for each

sampled hyperparameter set over a continuous hyperparameter space. Observed from

Figure 24, when learning rate is less than 0.05 and momentum is smaller than 0.7, the

number of repetition for each sampled hyperparameter sets is lower than 100. As learning

A

B

66

rate becomes large, the number of repetitions tends to increase. Similarly, larger

momentum leads to more repetitions. However, momentum has more influence on the

number of repetitions than learning rate. The maximum number of repetitions in this

hyperparameter space is over 1,200 when momentum is larger than 0.9, whereas the

minimal number of repetitions is less than 20 when learning rate is less than 0.01 and

momentum is lower than 0.4.

Figure 24. Map of the optimal number of Monte Carlo repetitions for neural network-

based spatial modeling.

4.5.2 Prediction performance of hyperparameters

Given the testing MSEs of sampled hyperparameters, we further used spatial

interpolation (based on universal kriging) to produce a continuous surface of MSEs and

CVs for the prediction of the generalization performance of hyperparameters. When

67

spatial dependence exists in the model, a kriging-based spatial interpolation algorithm is

suitable for predicting the general performance. Figure 25 shows the prediction maps of

testing MSEs for both grid search and random search. In this prediction map of grid

search (Figure 25a; MSE of cross-validation: 1.936×10-5), larger predicted errors occur as

learning rate increases. Likewise, large momentum (above 0.7) also leads to high

prediction error. Small learning rate and small momentum can obtain the lower predicted

error. The largest error appears when momentum factor is within the range of 0.8-0.9 and

learning rate is within 0.08-0.1.

Figure 25b shows the prediction error map for the random search approach. As we

could observe, prediction error will increase (MSE of cross-validation: 6.76×10-6) with

increments in learning rates. Likewise, large momentum causes high prediction error

when learning rate is above 0.03. The general patterns of prediction error maps for both

grid search and random search are similar: small learning rates and small momentum lead

to high generalization performance. This generalization performance tends to be lower

while both learning rates and momentums become larger. That is, the generalization

performance for both grid search and random search is consistent in general. In addition,

these two methods obtain different results when learning rate is less than 0.02 (left-most

in Figure 25a and b). Grid search obtains small prediction error in this region, but random

search shows a relatively large error.

68

Figure 25. Maps of prediction performance using hyperparameters optimization (a: grid

search; b: random search; prediction error: mean squared error).

Figure 26 illustrates the maps of continuous patterns of CVs in response to learning

rates and momentums. The value of CV was calculated based on testing MSEs for each

sampled hyperparameter sets. For grid search, the associated MSE for cross-validation is

374.04, whereas 343.36 for random search. As we could observe, the results of CVs

indicate that the hyperparameter optimization for both grid search and random search are

robust (CV≤100% for most of the hyperparameter space). The generalization

performance is becoming worst when learning rate and momentum are large. From

Figure 26a, largest CVs occur when learning rate between 0.07-0.1 and momentum

between 0.5-0.9. When learning rate is 0.01, the hyperparameter optimization is the most

stable. Random search has a similar pattern: small learning rate and small momentum

lead to stable generalization performance (Figure 26b). However, the lowest CVs

concentrate in smaller learning rate (i.e., learning rate < 0.03). The generalization

performance of the hyperparameter optimization approach for both grid search and

random search tends to be more stable when learning rates and momentums are smaller.

69

Figure 26. Distribution of coefficient of variation based on testing MSEs using

hyperparameter optimization methods (a: grid search; b: random search).

4.5.3 Parallel computing performance

In the computing performance, the sequential computing time for grid search

hyperparameter optimization is 1,464,177.77 seconds (about 16.95 days; based on a

single CPU on the Linux cluster). Random search used 1,157,428 seconds (about 13.4

days; based on a single CPU on the Linux cluster).

In this study, we used multiple CPUs to run our model on the Linux cluster. Each job

is in charge of 100 ensemble runs of a hyperparameter set. Scalability analysis allows for

evaluating the change of computing performance by varying the number of CPUs. Table

4 summarizes the computing performance of grid search and random search over a

different number of CPUs. The number of CPUs was varied from 10 to 100 at an interval

of 10. For grid search, the computing time dropped from 1,464,178 seconds (about 407

hours) to 16,490 seconds (about 4.06 hours) when 100 CPUs were used. As we could

observe, computing time tends to decrease substantially when more CPUs were

introduced. Similarly, speedup shows an increasing pattern with increment in the number

70

of CPUs (from 9.91 to 88.79). Random search exhibits similar patterns as grid search.

The sequential computing time for random search was 1,472,122 seconds (about 409

hours). When 100 CPUs were involved, the computing time decreased to 24,950 seconds

(about 6.93 hours). Correspondingly, the speedup increased from 8.56 to 59 with the

recruitment of more CPUs.

Table 4. Summary of computing performance of hyperparameter optimization over

different number of CPUs (time unit: seconds).

 #CPUs
Parallel

time
Speedup Efficiency

Sequential

time

Grid search

10 135,803 10.78 1.08

1,464,178

20 74,860 19.56 0.98

30 46,157 31.72 1.06

40 44,549 32.87 0.82

50 31,063 47.14 0.94

60 32,100 45.61 0.76

70 31,525 46.44 0.66

80 29,146 50.24 0.63

90 16,490 88.79 0.99

100 16,490 88.79 0.89

Random

search

10 135,504 10.86 1.09

1,472,122

20 79,341 18.55 0.93

30 53,376 27.58 0.92

40 41,614 35.38 0.88

50 38,839 37.90 0.76

60 40,518 36.33 0.61

70 34,002 43.30 0.62

80 27,785 52.98 0.66

90 24,950 59.00 0.66

100 24,950 59.00 0.59

4.6. Discussions

4.6.1. Necessity of the framework

The configuration of neural networks has a major influence on the model

performance. Hyperparameter optimization provides a potential solution to resolving the

71

limitations associated with the nature of neural networks (i.e., complex configuration).

However, the existing literature or applications mainly focused on improving the

computational efficiency at the computing level, and ignored the (spatial) dependence in

the hyperparameter space and potential benefits that may further improve the computing

efficiency. Therefore, it is necessary to develop a framework that allows for further

enhancing the computational efficiency by taking into account information at the model

level. At the same time, this framework provides support for revealing the dependence in

the hyperparameter space, which can be leveraged for further improving the

hyperparameter optimization.

4.6.2. Feasibility of the framework

In the scatterplots of average testing MSEs and CVs for sampled hyperparameter sets

(see Figure 21-22), smaller learning rates and momentums resulted in better

generalization performance for both grid search and random search in our case study. A

large learning rate can accelerate the training process when the search crosses a plateau.

However, the training of neural networks may not converge or even diverge when the

learning rate is too high because the search jumps over steep regions or moves into

undesirable regions (Yu and Chen 1997). Momentum can avoid local minima issue and

accelerate the training process. However, a small momentum value may not reliably

avoid local minima. Conversely, the large value of momentum will cause the learning

process (i.e., search) to oscillate and prevent convergence (Yu and Chen 1997). In short,

large learning rate or small momentum may cause local minima issues. However, the

choice of learning and momentum are dependent on the complexity of the data and the

objective of using ANN. Our experiment showed that the low value of learning rates and

72

relatively small momentums have better and reliable generalization performance.

However, a learning rate between 0.2 to 0.5 and a momentum term between 0.4 to 0.5

seem to provide the appropriate combination of the pavement performance model (Attoh-

Okine 1999). Further, learning rate plays a dominant role (compared to momentum) in

our hyperparameter optimization process. In our case study, the low value of learning

rates (0.01-0.04) with momentums less than 0.6 are more appropriate for training ANN-

based land price evaluation.

4.6.2.1. Semivariogram-based spatial sampling for handling inter-sample dependence

Spatial statistical approaches used in this study, represented by semivariogram and

spatial interpolation, provide support for hyperparameter selection of neural network-

based modeling. The effective sample size approach based on spatial autocorrelation

proposed by Griffith (2005) allows for determining the appropriate sample size by

considering (spatial) autocorrelation among sampled observations. Based on Griffith’s

(2005) effective sample size approach, we only needed 88 sampled hyperparameter sets

(with consideration of spatial autocorrelation) instead of 383 suggested by conventional

statistics (without taking into account dependence among hyperparameter samples). The

difference between classic sampling strategy (statistics here) and semivariogram-based

spatial sampling strategy is that spatial sampling determines a minimal sample size by

considering spatial dependence or here inter-sampled dependence in the hyperparameter

space. The benefits of semivariogram-based spatial sampling have been well

acknowledged over the past few decades in soil science (McBratney and Webster 1983,

Flatman and Yfantis 1984, Lark 2002). However, the use of spatial sampling in other

fields remains limited. In this study, the semivariogram results from grid search, and

73

random search suggested that dependence among samples exists in hyperparameter

space. Yet, a traditional semivariogram supports 2-dimensional space. It can be used in

high-dimensional space, i.e., the multivariate semivariogram (Pebesma 2004,

Wackernagel 2013). We will investigate the capability of multivariate semivariogram in

hyperparameter optimization in future research.

According to our findings, the minimal sample size for hyperparameter selection is

substantially reduced when autocorrelation is considered. This decrease in sample size is

significant because of the computationally challenging nature of hyperparameter

selection. In the experiment reported in this study, each hyperparameter set will require

about 3.2 hours of computing time (average computing time for 100 repetitions). Thus,

reduction in effective sample size (from 383 to 88 here) based on the use of spatial

statistical approaches in this study can greatly decrease the computational demand for

hyperparameter optimization. Furthermore, the variance of sampled hyperparameter sets

in random search is lower than those from grid search. This finding is consistent with

McBratney and Webster (1983) and Delmelle (2014), both of which suggested that

random sampling is often preferred over systematic sampling. In particular, random

sampling is more suitable than systematic sampling for the estimation of semivariogram

results. Bergstra et al. (2011) and Bergstra and Bengio (2012) also suggested that random

search can find models with more accuracy and efficiency than grid search in terms of

configuring the hyperparameters of the neural network.

4.6.2.2 Spatial interpolation for prediction of generalization performance

The estimation of points with unknown values or missing data is well documented

(Creutin and Obled 1982), and spatial interpolation was usually involved (Lam 1983,

74

Mitas and Mitasova 1999). Kriging-based spatial interpolation method helps us to

generate the continuous surface on the hyperparameter space. Integrating spatial

interpolation with hyperparameter optimization could convert discrete representation

(from samples) into the continuous surface. That is, spatial interpolation can predict the

continuous hyperparameter space based on discrete sampled hyperparameter sets. In the

prediction map based on spatial interpolation (Figure 25), the generalization performance

for both grid search and random search tends to be lower when both learning rates and

momentums become larger. In the meanwhile, we generated the continuous surface for

robustness analysis using spatial interpolation. Our prediction results (see Figure 26)

demonstrated that the generalization performance of the hyperparameter optimization

approach for grid search and random search tends to be more stable when learning rates

and momentums are smaller. The prediction ability of spatial interpolation has been

examined by a number of studies in different fields, such as estimating missing data in

climate change or hydrology (Tabios and Salas 1985, Jeffrey et al. 2001), or mapping of

soil properties (Robinson and Metternicht 2006). However, the use of spatial

interpolation in hyperparameter optimization has not been fully investigated. In this

study, our results here provide evidence for the feasibility of prediction of spatial

interpolation methods in hyperparameter space. In addition, the results of spatial

interpolation illustrated the spatial variability of the hyperparameters studied. This would

enable the identification of direction for future selection of hyperparameters. The future

selection is also known as second-phase sampling strategy, which takes additional

samples to improve the overall prediction accuracy (Delmelle 2014). However, additional

samples are usually collected from the maximum kriging variance area (Delmelle and

75

Goovaerts 2009). Whereas, in hyperparameter optimization, additional samples should be

selected from the space that has better generalization performance. Second-phase

sampling will refine the optimal hyperparameters and further show the variation at small

scale.

In general, the optimal hyperparameters and effective sample size are dependent on

the data and structure of ANNs. Hence, for each case study, it is better to use the

hyperparameter optimization framework that we proposed to find the suitable settings for

ANNs. Meanwhile, all of these benefits brought by this framework will give us more

flexibility and capacity in terms of applications of the ANN approach into the modeling

of complex adaptive spatial systems.

4.6.3. Computing performance

We employed a set of strategies to resolve the computational challenge of

hyperparameter optimization. At computing level, the results demonstrated that high

performance computing substantially improves computing performance. Speedup is 59

with 100 CPUs– i.e., the entire experiment of random search needs 6.93 hours with 100

CPUs instead of 321.51 hours (about 13.4days) based on 1 CPU. A number of

applications and studies used parallel computing infrastructure in their hyperparameter

optimization, and demonstrated the capability of high performance computing in

accelerating the selection process of hyperparameter optimization (Bergstra et al. 2015,

Kotthoff et al. 2016). However, the computational challenge at model level can be further

addressed by leveraging information at the model level (spatial statistical approaches

here). Semivariogram-based spatial sampling was involved in this study to estimate the

effective sample size, and a Monte Carlo approach was applied to find the optimal

76

number of repetitions for each hyperparameter set. Based on our results, the estimated

computing time for the entire experiment is decreased to 281.6 hours (about 11.7 days)

based on 1 CPU (about 1.7 days of reduction in computing time due to the introduction of

spatial statistics approach). The optimal number of repetitions is less than 100 when the

learning rate is less than 0.05 and the momentum is smaller than 0.7 using the approach

suggested in this study.

4.7. Conclusion

In this study, we presented an automated hyperparameter optimization framework for

the ANN-based spatial explicit modeling. Our approach demonstrated the utility of

hyperparameter optimization in the GIScience domain and, in return, hyperparameter

optimization could benefit from spatial statistical methods with respect to handling

challenges facing hyperparameter optimization. To the best of our knowledge, this

approach is the first in terms of using spatial statistical methods to facilitate and enhance

hyperparameter optimization. Further, we showed that spatial interpolation algorithms

could be applied to generate the continuous performance surface of hyperparameters. The

neural networks selected through the two search methods outperform traditional linear

regression modeling, and the generalization performance of the two search methods is

consistent. Results in this study suggested that random search is more effective than grid

search for the identification of optimal setting of hyperparameters associated neural

network-based spatial modeling.

This hyperparameter optimization framework allows for integrating hyperparameter

optimization and spatial statistical methods. The automated hyperparameter optimization

77

approach addresses the limitations from traditional model configuration methods (e.g.

trial and error) typically in the GIScience domain. Spatial statistical methods showed

great potential in addressing the limitations of hyperparameter optimization (due to its

independence assumption). Semivariogram-based spatial sampling strategy first revealed

spatial dependence in hyperparameter space, then provided support for estimating

effective sample size that considers spatial dependence. Furthermore, spatial interpolation

methods showed their utility in predicting continuous patterns on a given hyperparameter

space.

Because of higher cost and time-consuming nature of hyperparameter optimization,

computational efficiency is the major challenge. Existing applications and our approach

have demonstrated that high performance computing can address this challenge at

computing level. More importantly, our study illustrated that spatial statistical approaches

as a model-level solution could handle the computational bottleneck of hyperparameter

optimization. For example, the spatial sampling strategy could reduce sample size

(compared with conventional statistics) when spatial dependence exists, and

semivariogram provides a suggestion for determining the suitable sampling methods.

Our future work will focus on a set of threads. First, we used two-dimensional

(learning rate – momentum) hyperparameter space in this study. We will extend our

approach into a higher-dimensional hyperparameter space such as three dimensions

(learning rate – momentum – training iterations). Second, we will investigate the utility

of second-phase sampling strategy in hyperparameter optimization. The second-phase

sampling strategy aims to optimize the sampling design and investigate the spatial

variability of hyperparameter optimization at small scale. Third, we will extend the

78

automated selection framework in more use cases to examine the applicability of this

hyperparameter optimization framework that takes into account spatial characteristics in

hyperparameters. Forth, we will involve more hyperparameter optimization methods in

our framework, such as genetic algorithm. Fifth, the vanishing gradient problem was

found in training a neural network with gradient-based backpropagation learning

algorithm. Although this problem greatly affects deep learning (the minimal number of

hidden layers is greater than 3), vanishing gradient problem is a worthy considering

problem in our future work.

79

CHAPTER 5: STUDY II. SPATIALLY EXPLICIT HYPERPARAMETER

OPTIMIZATION OF NEURAL NETWORKS ACCELERATED USING HIGH-

PERFORMANCE COMPUTING

The major purpose of this chapter is to demonstrate the performance of the

automated spatially explicit hyperparameter optimization (corresponding to objective 2).

More specifically, I use the same case study area and datasets as Chapter 4 to illustrate

the proposed spatially explicit hyperparameter optimization approach.

5.1. Introduction

The power of neural networks has been proved by a number of studies, but the

selection of hyperparameters of neural networks (i.e., parameter settings) is still a “black

or grey box” for a series of research fields, such as geography. Since the last century, a

number of researchers suggested that good results depend on appropriate

hyperparameters of neural networks and problem-specific parameter settings. Past

experiences of hyperparameter optimization demonstrated that the searching surface of

hyperparameters is “vast, undifferentiable, epistatic, complex, noisy, deceptive,

multimodal surface” (P381) (Miller, Todd, and Hegde 1989). And, the number of

possible hyperparameter sets can be unbounded, and changes in those hyperparameter

sets should have a discontinuous effect in order to achieve a stable and accurate result

(Miller, Todd, and Hegde 1989, Weiß 1994, Branke 1995). Moreover, these researchers

mentioned that a global hyperparameter optimization approach is needed for examining

hyperparameters of neural networks, such as evolutionary algorithm-based

hyperparameter optimization (Branke 1995).

80

EAs have four main operators, including initialization, representation, selection, and

variation operators. Only individuals get a competitive possibility, which is based on their

fitness values, to survive long enough to produce next generation. Also, EAs reduce the

risk of converging to local optimum because EAs search multiple regions (different

chromosomes here) in the search space simultaneously and use the probabilistic rules to

guide the search (Branke 1995). This searching process, in turn, can be seen as a topology

surface defined by trained network performance with related hyperparameters (Miller,

Todd, and Hegde 1989). For more details of EA, see Section 2.4.

A number of researchers already applied EAs to the hyperparameter optimization

study for neural networks. Jin et al. (2004) applied EAs to minimize the approximation

error and find the appropriate regularization terms. They used the scalarization approach

to transform bi-objective to one objective. Meanwhile, they take advantage of another

feature of EAs—their ability to run multiple models at the same time. Recently, some

studies optimize deep learning hyperparameters through EAs. Multi-node Evolutionary

Neural Networks for Deep Learning (MENNDL) was proposed to automatically select

optimal hyperparameters of convolutional neural networks based on GAs (Young et al.

2015). In order to address the computing challenges, they implemented MENDL in the

high-performance and parallel computing platform. But, they found that EAs are unable

to maximize the use of available computing resources. In other words, the computing

time for models with different hyperparameters is significantly varying. Some processors

might finish earlier and stay idle.

As Zheng et al. (2019) discussed, hyperparameter optimization with consideration of

spatial dependence could improve model- and computing-level computing performance.

81

Also, methods from GIScience (spatial statistics) could explore the landscape of

hyperparameter space, and generate generalization performance based on sampled

hyperparameters. However, there are several limitations in their study. First, their

hyperparameter optimization approach is a manual approach. The sampled

hyperparameters are manually selected through sampling methods. Second, although they

discussed second-phase sampling strategy is important and necessary to find the accurate

and stable results, they did not incorporate second-phase sampling strategy into their

framework. Third, the ability of exploration and exploitation is weak in their framework.

Thus, an automated and comprehensive hyperparameter optimization framework with

consideration spatial dependence is necessary for addressing these limitations.

The rest of this study is organized in the following manner. Section 5.2 discusses

study area and related datasets, the methodology of spatially explicit hyperparameter

optimization is presented in Section 5.3. Section 5.4-5.6 present implementation,

experimental results and discussions. The conclusion is shown in Section 5.7.

5.2. Study area and data

The study area in this case study is Mecklenburg County, North Carolina, USA (see

Figure 27). The largest city in Mecklenburg County is Charlotte with 905,318 population

in 2020, whose population ranks 15th in the USA. Also, Charlotte is one of the fastest-

growing cities, around 60 people moving to Charlotte every day. The median housing

price (sales price) in April 2020 was $290,380, which has 11.7% year-over-year change.

Over 4,500 housings (including single-family houses, townhouses, condos/apartments)

were sold between January to April, 2020.

82

Figure 27. Map of land price of single-family houses in Charlotte, North Carolina

Followed Zheng et al.’s study (2019), in this study, I adopt six driving factors to

investigate the relationship between social environmental variables and land price of

single-family houses. All datasets were obtained from Data Center of Mecklenburg

County (http://maps.co.mecklenburg.nc.us/openmapping), including land price, location of

uptown Charlotte, locations of parks (includes recreation parks and greenways), locations

of public and private schools (includes elementary, middle and high schools), locations of

major roads, and locations of hospitals. All distance-based variables are Euclidean

distance. I selected a part of records as the experimental dataset, please refer to Zheng et

al. (2019) for more information. The experimental dataset has 9.254 records, I further

split them into a training dataset (6,478 records; 70%) and a testing dataset (2,776; 30%).

http://maps.co.mecklenburg.nc.us/openmapping

83

5.3. Methodology

The framework covers three modules, generations of sampled hyperparameters,

evaluation of sampled hyperparameters, and hyperparameter analysis. In order to

implement and automate spatially explicit hyperparameter optimization approach, three

components (e.g., automatic search of hyperparameters, spatial prediction of

hyperparameter space, and acceleration of hyperparameter search) involve in the

framework. EA (automatic search of hyperparameters component) is used to automate the

framework from generation of sampled hyperparameter to evaluation of sampled

hyperparameters. Spatial interpolation methods (spatial prediction of hyperparameter

space component) focus on examining the spatial dependence of sampled

hyperparameters and generating a continuous space based on those discrete sampled

hyperparameters. HPC is in charge of accelerating the hyperparameter search from

computing-level. For detailed information about this framework, please see Chapter 3

and Zheng et al.’s study (2019).

 5.4. Implementation

Learning rate and momentum are examined in this case study. Moreover, referring to

other cases of applying EAs in the field of spatial problems (Xiao, Bennett, and

Armstrong 2002, Bennett, Xiao, and Armstrong 2004, Cao et al. 2011, Cao et al. 2014),

the total size of population, the number of generations, crossover rate, and mutation are

set to 100, 100, 0.8, and 0.01, respectively.

I apply the automated spatially explicit hyperparameter optimization approach in a

Linux computing cluster (Copperhead) from University Research Computing at the

84

University of North Carolina at Charlotte (https://urc.uncc.edu/). Copperhead cluster has

88 nodes with CPU (1980 computing cores) connected through an infiniband

interconnect network and eight nodes with GPU (80 computing cores). The spatially

explicit hyperparameter optimization approach is written in Python scripting language.

The libraries that we used in this study are Keras (https://keras.io/), TensorFlow

(https://www.tensorflow.org/), PyKrige (https://pypi.org/project/PyKrige/), and pandas

(https://pandas.pydata.org/).

5.5. Results

5.5.1. Model performance

Testing MSEs was used to evaluate the performance of spatially explicit

hyperparameter optimization. The maximum number of generations in this study is set to

100. Figure 28 illustrates the learning curve and distribution of testing MSEs

(generalization performance) for the conventional EA-based hyperparameter optimization

and our proposed approach. These scatterplots show the distributions of the original

sampled points, the middle generation of the evolutional process, and the last generation

that has the convergent results (i.e., the error difference among five generations is less

than 0.1%). The ranges of learning rate and momentum in this case study are from 0 to

0.01 and from 0 to 1, respectively.

From the results of learning curves, we could observe that my approach can get the

converged result more quickly than the conventional approach. In other words, the

learning curve of the conventional approach has a constant pattern after the 80th

generation (Figure 28A), whereas my approach only needs around 30 generations (Figure

https://urc.uncc.edu/
https://keras.io/
https://www.tensorflow.org/
https://pypi.org/project/PyKrige/
https://pandas.pydata.org/

85

28B). The scatterplots of MSEs visualize the training process. For those two approaches,

high testing errors concentrate around the upper right and right regions during the entire

process. The highest testing errors were caused by relatively larger learning rates (above

0.005) and larger momentum (above 0.7). In general, smaller values of learning rate and

momentum cause a high generalization performance of neural networks. In the

meanwhile, spatially explicit hyperparameter optimization approach uses less computing

time to get the final results.

86

F
ig

u
re

 2
8
.
L

ea
rn

in
g
 c

u
rv

e
an

d
 s

ca
tt

er
p
lo

ts
 o

f
M

S
E

s
fo

r
h
y
p
er

p
ar

am
et

er
 s

et
s

o
v
er

 d
if

fe
re

n
t

g
en

er
at

io
n
s

(A
:

re
d
 c

ir
cl

e
is

 s
am

p
le

d

p
o
in

ts
 t

h
at

 g
en

er
at

ed
 b

y
 c

o
n
v
en

ti
o
n
al

 E
A

-b
as

ed
 h

y
p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
;

B
:

b
lu

e
ci

rc
le

 i
s

sa
m

p
le

d
 p

o
in

ts
 t

h
at

 c
re

at
ed

 b
y

sp
at

ia
ll

y
 e

x
p
li

ci
t

h
y
p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
;

ci
rc

le
 s

iz
e

fr
o
m

 s
m

al
l

to
 l

ar
g
e

st
an

d
s

fo
r

lo
w

 M
S

E
 t

o
 l

ar
g
e

M
S

E
;

o
u
tl

ie
rs

 w
er

e

ex
cl

u
d
ed

).

87

5.5.2. Prediction performance of hyperparameters

Figure 29 shows the prediction maps for conventional EA-based hyperparameter

optimization approach and spatially explicit hyperparameter optimization approach. In

the processes of EA-based hyperparameter optimization approaches, larger predicted

errors concentrate on the upper right and upper right corner regions, particularly when

momentum is greater than 0.8. The patterns in the middle region (i.e., learning rate is

from 0.003 to 0.007 and momentum is from 0.3 to 0.6) of those prediction maps were

continuously changed. The lower prediction errors occur in the leftmost region (learning

rate is less than 0.002).

The prediction maps of the conventional EA-based approach is shown in Figure 29A

(RMSE4s of cross-validation is 2.35×10-3). The increasing learning rates along with

larger predicted errors. A higher prediction error occurs when momentum is larger than

0.8. We can obtain lower predicted errors with small learning rate (<0.002) and

momentum (< 0.5). For the prediction maps using spatially explicit hyperparameter

optimization approach (Figure 29B), RMSEs of cross-validation is 1.62×10-3. In other

words, the predicted error will slightly increase with increments in learning rates. Larger

momentum (above 0.7) causes a higher predicted error. In addition, these two approaches

obtain different results in the middle region (learning rate is from 0.003 to 0.007 and

momentum is from 0.3 to 0.6). The pattern of the conventional approach has a smooth

pattern, but our approach shows there are some hummocks and hollows. One of the

reasons is that the prediction map of our approach is updated each generation by

4 Root mean squared error (RMSE) is the square root of mean squared error (MSE).

88

considering spatial dependence, and all sampled points during the entire process are used

to generate the final prediction map.

Figure 30 shows the continuous patterns of standard errors for spatially explicit

hyperparameter optimization approach. Standard error is used to refer to the standard

deviation of a statistical sample population. Standard error serves as a measure of

variation, the smaller the standard error, the result is more accurate, and the sample

population is more representative of the overall population. The RMSE for cross-

validation for the standard error is 3.16×10-3. The results indicate that my approach is

robust and accurate (most standard errors are less than 2.5×10-3). The generalization

performance is high when small values of learning rate and momentum are used.

Specifically, the largest standard errors concentrated in the area with learning rate

between 0.005-0.01 and momentum between 0.6-1.0. The most stable results are located

in two areas: 1) learning rate is less than 0.003 and momentum within the range of 0.2-

0.5 and 0.7-1, or 2) learning rate between 0.006-0.01 and momentum is less than 0.5.

However, relatively larger standard errors occur when relatively large values of learning

rate (> 0.005) and momentum (>0.6).

89

F
ig

u
re

 2
9
.
M

ap
s

o
f

p
re

d
ic

ti
o
n
 p

er
fo

rm
an

ce
 f

o
r

co
n
v
en

ti
o
n
al

 E
A

-b
as

ed
 h

y
p

er
p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
 a

n
d

 s
p

at
ia

ll
y
 e

x
p
li

ci
t

h
y
p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
 (

A
:

co
n
v
en

ti
o
n
al

 E
A

-b
as

ed
 h

y
p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
 u

si
n
g
 t

h
e

1
0
0
th

 g
en

er
at

io
n
 r

es
u
lt

;
B

:

sp
at

ia
ll

y
 e

x
p
li

ci
t

h
y
p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
;

p
re

d
ic

ti
o
n
 e

rr
o
r:

 m
ea

n
 s

q
u

ar
ed

 e
rr

o
r)

.

90

Figure 30. Distribution of standard error based on testing MSEs using spatially explicit

hyperparameter optimization approach.

5.5.3. Parallel computing performance

In this study, I assigned the entire task into 100 sub-tasks because there are 100

sampled hyperparameter sets in each generation. That is, each CPU works on a single

sampled hyperparameter set. The estimated computing time (1 CPU used) of spatially

explicit hyperparameter optimization approach was around 1,169,280 seconds (about

324.8 hours) when 100,000 sampled hyperparameter sets involved. When I applied

spatially explicit hyperparameter optimization on the HPC platform (Linux-based

computing cluster), the computing time decreased to 77,868 seconds (about 21.6 hours).

The speedup was around 15. From Figure 28, the proposed EA-based hyperparameter

optimization can further reduce the computing time because it uses fewer generations to

91

get the convergent results. By considering the convergency (converged at 40th

generation), the hyperparameter optimization approach proposed in this study, only

needed 31,104 seconds (estimated value; about 8.64 hours). The speedup increased to

34.38 when our approach was adopted.

5.6. Discussions

In Zheng et al.’s study, they already demonstrated the ability of hyperparameter

optimization by taking into account spatial dependence (Zheng, Tang, and Zhao 2019). In

this study, an automated and comprehensive framework of spatially explicit

hyperparameter optimization approach is proposed, which considers spatial dependence,

landscape of hyperparameter space, and multiple optimization results at the same time.

5.6.1. The prediction of generalization performance

In the prediction maps of generalization performance (see Figure 29), both the

conventional approach and spatially explicit approach have a better generalization

performance when learning rates and momentums are small. As we know, learning rate

controls how much to change the model in response to the estimated error when the

model weights are updated. In this case study, the range of learning rate is set to 0 to

0.01, which are relatively small values for learning rates in most neural network-based

spatial models. Although learning rate does not show the prominent influence in this case

study, smaller learning rates have better generalization performance. Momentum can

accelerate the training process and avoid local minima issue (Yu and Chen 1997). The

result of the influence of momentum is that relatively smaller momentums and learning

rates have better and stable generalization performance.

92

Furthermore, in order to check the uncertainty of the generalization performance, the

continuous surface was generated based on standard errors of the generalization

performance. Standard error is measuring the variability of the sampled population. The

higher the value, the result has lower accuracy because it is not a good estimate of the

population parameter. The prediction results of standard errors (Figure 30) show that the

generalization performance of our approach tends to be more stable and accurate with

small values of learning rates and momentum. One of the reasons is that the sampled

hyperparameter sets with lower MSEs may have a larger chance to keep in the EA

process, and more sampled hyperparameters that are located in the lower MSE areas are

generated during the EA process.

Standard second-phase sampling strategy usually collects additional samples from

low accuracy areas (Delmelle 2014), which will increase computing time and obtain

inappropriate results (Delmelle and Goovaerts 2009). The hyperparameter optimization

approach proposed in this dissertation not only add the second-phase sample strategy into

the framework, but also collect additional samples from the area that has better

generalization performance. Therefore, our hyperparameter optimization approach has a

better model-level performance than the conventional EA-based hyperparameter

optimization approach.

5.6.2. Computing performance

Although a series of studies used EA-based hyperparameter optimization approach to

find the suitable hyperparameters for machine learning algorithms, such as artificial

neural networks (Leung et al. 2003), support vector machine (Wu et al. 2007), and deep

learning techniques (Young et al. 2015), there is no study that incorporates the landscape

93

pattern of the search space during the searching process. From Figure 28, we can see that

when the landscape pattern of the search space involved, the speed of convergence is

substantially improved. The average computing time for conventional EA-based

approach with 100 population size (i.e., 10,000 sampled hyperparameters, including

duplicate sampled hyperparameters) and 100 generations need 20.3 hours. However, our

EA-based approach only needs around 8 hours to complete the task and get similar results

as the conventional EA-based approach do. From the computing results of Case Study I,

the estimated parallel computing time is 281.6 hours even though we use effective sample

size and high performance computing (i.e., we run the 88 sampled hyperparameters 100

times using 88 CPUs).

Moreover, Xiao et al. (2002) mentioned that prior knowledge can be used to design

the crossover and mutation, and then convergence would be expedited. In this study, my

results demonstrated that prior knowledge (the results from spatial interpolation) can

expedite convergence and reduce the computing time (Figure 28). These findings are

consistent with Xiao et al.’s study.

5.7. Conclusion

In this study, I presented an automated spatially explicit hyperparameter optimization

framework, which covers three components: automatic search of hyperparameters, spatial

prediction of hyperparameter space, and acceleration of hyperparameter search. This

framework aims to explore the landscape of hyperparameter space and further accelerate

the computing performance at model- and computing-level. The results of generalization

performance demonstrated that the framework could help in exploring and exploiting the

94

landscape of hyperparameter space, and provide accurate and stable results. Also, from

the learning curves, my approach achieved a similar result as a conventional EA-based

hyperparameter optimization approach with less computing time, which showed that my

approach can further reduce computing time.

Future works will focus on the following three aspects. First, I will add more

hyperparameters in this framework. Second, I will extend the current framework to other

machine learning algorithms, such as random forest or convolutional neural networks.

Third, I will compare the performance of the current framework with the latest

hyperparameter optimization approaches, such as Population Based Training for neural

networks, and further improve the performance of this framework.

95

CHAPTER 6: STUDY III. AN INTEGRATION OF SPATIALLY EXPLICIT

HYPERPARAMETER OPTIMIZATION WITH CONVOLUTIONAL NEURAL

NETWORKS-BASED SPATIAL MODELS

In this chapter, the study shows the performance of an integration of spatially explicit

hyperparameter optimization approach with other machine learning algorithms (links to

objective 3). That is, I adopt a land change model with an integration of neural networks

and cellular automata.

6.1. Introduction

The factors of dynamic land changes are important contributors to understand and

interpret changes of natural systems (e.g., watershed ecosystem) and human systems

(Tang and Yang 2020). With the increasing population in the world, land cover and land

changes becomes a popular topic. Urbanization is one of the hot topics in land cover and

land change domain. According to the 2018 Revision of World Urbanization Prospects

from United Nations Department of Economic and Social Affairs (UNDESA), 55% of

the total population lived in urban areas. In 2050, the number is expected to increase to

68% (UNDESA 2018). The process of urbanization causes land changes, and leads to

urban land expansion and threaten natural systems (Wang and Zhang 2001). A review

paper mentioned climate changes, land use and land cover changes, and human activities

are closely linked to changes in wetland landscape patterns (Bai et al. 2005).

A number of land change models have been developed to handle the nonstationary

process and gain insight into human-environment interactions. Cellular automata (CA)

96

and its related extensions (e.g., CA-Markov models, CA-based future land use simulation

models, hybrid CA and neural network models) (Li and Yeh 2002, Liang et al. 2018, Li

and Reynolds 1997), and agent-based models (ABMs) are the most commonly used

approaches in landscape change simulation. Both CA and ABMs are bottom-up

simulation approaches, consider the neighborhood information and use the demand-

allocation framework (Batty and Xie 1994, Castle and Crooks 2006). However, the size

of neighborhood in CA is fixed, while the size of neighborhood in ABMs can be changed

vary on time because agents are free to move and interact with others or with their

environments. Furthermore, the structure of CA is simple and flexible, but it usually only

follows a few rules to update the state, whereas ABM allows us to simulate the complex

and uncertain landscape changes and provide more realistic simulations.

Although a series of studies of CA and ABMs revealed that we could simulate

complex geographic processes based on several simple rules and a few spatial variables

(Li and Yeh 2000, He et al. 2018), the complicated geographic process cannot examine

thoroughly by using CA and ABMs. With the development of computer technology,

more and more studies use machine learning algorithms (e.g., artificial neural networks,

random forests, genetic algorithm, and support vector machines) to optimize the

hyperparameters of a simulation model and obtain the best result efficiently (Choi, Liu,

and Chan 2001, Li and Yeh 2002, Yang, Li, and Shi 2008, Biau 2012, Li et al. 2013, He

et al. 2018). However, traditional machine learning algorithms have the ability to

optimize simulation models, but they still have some limitations. One of the limitations is

that it is hard to get a better simulation accuracy (Lin and Li 2015, He et al. 2018).

Another limitation is that when most traditional machine learning algorithms explore

97

each land unit (cell here) in evaluating development suitability according to a set of

driving factors, they usually ignore the neighborhood effect with those cells (Li and Yeh

2000, He et al. 2018, Zhai et al. 2020). Some pioneers found that convolutional neural

networks (CNNs), which is a deep learning algorithm, can address these limitations (He

et al. 2018, Zhai et al. 2020).

CNNs are a type of artificial neural networks, and the basic network structure of CNN

is similar to feedforward artificial neural networks (see Section 2.1). CNNs are made up

of an input layer, hidden layer(s), and an output layer. However, the hidden layers have

three types to build CNN architectures: convolutional layer, pooling layer, and fully

connected layer. The basic architecture of CNN is shown in Figure 31. The input of CNN

is converted to a tensor that abstracts multiple feature maps with shape information

through the convolution layer (LeCun, Bengio, and Hinton 2015). Pooling layers usually

follow convolution layers. The role of pooling layers is to decrease the computational

demand and reduce the dimensions of the data. There are two types of pooling: local

pooling and global pooling. Local pooling usually combines small clusters, the most

common form is the size of 2 x 2. While global pooling with pool size equals to the size

of the input. In addition, pooling can be computed using max or average function. Max

pooling returns the maximum value from each of the clusters. On the other hand, average

pooling returns the average value from the cluster. For example, we have 4 numbers in a

2 x 2 cluster (e.g., 1, 3, 3, 9). It returns 9 when we use max pooling, or 4 if we use

average pooling. Each node in the fully connected layer connects every node in the

previous layer. The purpose of the fully connected layer is to take advantage of the

features from convolution and pooling layers to classify the input into different classes

98

according to the training dataset (Krizhevsky, Sutskever, and Hinton 2012, LeCun,

Bengio, and Hinton 2015, Schmidhuber 2015).

Figure 31. Basic structure of a CNN.

The architecture of CNNs is designed to capture the spatial and temporal

dependencies from the input through a set of relevant filters (LeCun, Bengio, and Hinton

2015). In other words, CNNs consider the neighborhood effect for each cell. CNNs have

been used in image recognition, computer vision, and natural language processing

(LeCun, Bengio, and Hinton 2015), and a number of scholars from geography-related

fields also applied CNNs into geographic studies. For instance, Jean et al. (2016) adopted

CNNs to extract information from high-resolution satellite imagery in order to estimate

consumption expenditure and asset wealth in Africa. Du et al. (2018) developed a scheme

for analyzing measles outbreak using Twitter data and CNN models. Yao et al. (2018)

proposed Convolutional Neural Network for United Mining (UMCNN) for mapping

urban housing prices using spatial data from different resources at a very fine resolution.

At the same time, He et al. (2018) involved CNNs to get better simulation results for

urban growth simulation process.

99

Although the effectiveness and utilities of CNNs in land change models or other

geography-related studies have been demonstrated by the pioneers, how to automatically

adjust the hyperparameters of CNNs still an open question in those studies. Most of these

pioneers mentioned that their future work will investigate how to adjust hyperparameters

of CNNs in order to improve the overall accuracy and efficiency. Thus, the purpose of

this case study is to examine the capabilities of spatially explicit hyperparameter

optimization approach for improving the overall accuracy and efficiency of current deep

learning-based (CNNs) spatial simulation models.

Section 6.2 provides a literature review about hyperparameters in CNNs. Section 6.3

presents the study area and data. Section 6.4 discusses the experimental design of this

study, which includes the setting of CNNs, CNN-CA model, and implementation. Section

6.5-6.6 present experimental results and discussions. The conclusion is shown in Section

6.7.

6.2. Hyperparameters of convolutional neural networks

 CNNs are a very powerful machine learning technique, but, overfitting is a serious

problem (Srivastava et al. 2014). CNNs involve the idea of ensemble technique, which uses

the average result from all possible model configurations as the final result. However, even

though ensemble techniques have a strong ability to reduce overfitting, it requires an

additional computational expense of training and the high demand for storing multiple

models. It is still a challenge for ensemble techniques if the models are large and

complicated (Salakhutdinov and Mnih 2008, Xiong, Barash, and Frey 2011, Srivastava et

al. 2014). Dropout is an important hyperparameter in deep learning that can address

100

overfitting issues, expensive computation, and large storage space. Dropout was first

introduced by Hinton and Krizhevsky (Hinton et al. 2012, Krizhevsky, Sutskever, and

Hinton 2012), and then Srivastave et al. (2014) further discussed how to use dropout to

reduce overfitting. The mechanism of dropout is that it randomly and temporarily removes

one or more units from the network in the training process. In the testing process, we use

all units in the networks and trained weights to get the results based on the testing dataset.

The trained weights are scaled-down by the “removing probabilities”. For example, if we

run the network 10 times and a unit is removed 5 times, the outgoing weight of this unit

will be multiplied 0.5 ((10-5)/10).

The dropout refers to the percentage of dropping out units. I use dropout of 0.6 as an

example to show the working process of the dropout neural network model (Figure 32).

In this example, the number of hidden nodes is 5 and the dropout is 0.6, which means 3

(5*0.6) hidden nodes will be temporarily removed from the network. The independent

Bernoulli random variables5 assign to each unit and each of them has probability p of

being 1 (i.e., how many units will be used in the network). Besides the overfitting issue,

dropout can handle the computational challenge for ensemble techniques because the

architectures of networks are different for each iteration (Hinton et al. 2012, Srivastava et

al. 2014). Please refer to Srivastava (2014) for more information about dropout.

5 A Bernoulli random variable is the simplest kind of random variable that has only two possible outcomes.

It takes on 1 if an experiment is success with probability p and 0 otherwise.

101

Figure 32. The basic structure of network with dropout (B is bias).

Although dropout significantly reduces the overfitting issue in CNNs, starting with a

high learning rate, then it decays during the learning process provided a significant boost

in model performance (Hinton et al. 2012). Moreover, dropout with regularization

methods (e.g., L2, max-norm, and KL-sparsity) gives a lower generalization error

(Srivastava et al. 2014). Thus, in this study, I also involve a regularization method (L2

here) to further reduce overfitting issue. L2 regularization, commonly called weight

decay, is one of the most used regularization methods. The term “weight decay” refers to

for each weight update, the weights are multiplied by a small value, which prevents the

weights from growing too large. The updated weight formula (Zheng, Tang, and Zhao

2019) with weight decay is listed as follows:

∆𝑤𝑖𝑗
𝑙 (𝑛) = 𝜆[−𝛿

𝜕𝐸(𝑛)

𝜕𝑤𝑖𝑗
𝑙 (𝑛)

+ 𝛼∆𝑤𝑖𝑗
𝑙 (𝑛 − 1)] (20)

102

where −𝛿
𝜕𝐸(𝑛)

𝜕𝑤𝑖𝑗
𝑙 (𝑛)

+ 𝛼∆𝑤𝑖𝑗
𝑙 (𝑛 − 1) is the original updated weight formula, see Zheng et

al.’s study for detailed explanation (Zheng, Tang, and Zhao 2019). λ is the weight decay

coefficient.

The reasonable values of weight decay coefficient are between the range of 0 and 0.1

(Kuhn and Johnson 2013). However, some studies suggested that the values of weight

decay coefficient should be small enough. For example, Reed and Marksll chose the

value of 0.001 because it is the most used number (Reed and MarksII 1999). Krizhevsky

et al. found that weight decay of 5×10-4 was important for the model to learn using

ImageNet dataset (Krizhevsky, Sutskever, and Hinton 2012). Chollet (2017) also used

ImageNet dataset, but he found that the value of 4×10-5 was better than the value of 1×10-

5. Therefore, it is important to select a suitable weight decay coefficient specific to the

network and datasets. Because if the value of weight decay coefficient is very large, it

will lead to underfitting.

6.3. Study area and data

Lower High Rock Lake Watershed area (HRLW) is the study area. The lower HRLW

covers eight counties in North Carolina, including Davie, Forsyth, Davidson, Rowan,

Cabarrus, Randolph, Guilford, and Iredell. The total area of this region is 10,823 km2.

Forest is the major land cover type in the lower HRLW, percentage of forest is 49.07%,

47.71%, 46.78%, and 47% in year 2001, 2006, 2011, and 2016. Although forest covers

almost half of the area in the lower HRLW, Forsyth and Guilford are the most urbanized

counties in this region (See Figure 33 and Table 5).

103

Figure 33. Map of the study area.

The datasets used in this study were collected from U.S. National Land Cover Database

(NLCD; https://www.mrlc.gov/data). The spatial resolution of these four land cover is 1-

arc second or around 30 meters. In order to simplify the model, I further reclassified those

16 classes into five land cover types: farmland, natural, forest, urban, and water. The

datasets of major roads, city centers, and county boundaries were retrieved from U.S.

Census Bureau (https://www.census.gov/data.html). The dataset of streams (including

stream network and watershed data) was obtained from USDA National Hydrography

Dataset (https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-

national-hydrography-products). Elevation data was collected from NASA Shuttle Radar

Topography Mission (https://www2.jpl.nasa.gov/srtm/). The landscape size is 4,378 and

4,746 in terms of number rows and columns.

Using the statistics for urban areas in lower HRLW, each county’s urban proportion

and expansion rate are calculated and shown in Table 6. As the table shows, Cabarrus

https://www.mrlc.gov/data
https://www.census.gov/data.html
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products
https://www2.jpl.nasa.gov/srtm/

104

County had the largest growth rate from 2001 to 2016 (4.95%), followed by Guilford,

Forsyth, and Iredell counties, which increased by 3.38%, 2.88%, 2.08% respectively.

Cabarrus County had the largest expansion rate from 2001 to 2006 and 2011-2016, while

Guilford had the largest expansion rate from 2006 to 2011. The average urban expansion

rates of lower HRLW for these four periods increased from 19.06% to 21.15%. However,

the urban expansion rate of Randolph County was the lowest from 2001 to 2006 and 2011

to 2016, while Davie County had the lowest urban expansion rate from 2006 to 2011.

Meanwhile, due to the impact of the 2006-2011 economic recession, the urban expansion

rates for each county were lower than the previous period.

In this study, I use seven driving factors to decide whether the land converts into urban

area, which refers Tang and Yang’s study (2020), including elevation, slope, stream density,

distance to streams, distance to major roads, distance to city center, and development

pressure (see Figure 34). The development pressure calculates the percentage of urban

areas within a neighborhood (neighborhood size is 1050m by 1050m). The stream density

derived from a search radius of 500 meters. I use Euclidean distance to get the proximity

driving factors (i.e., distance to major roads, distance to streams, and distance to city center).

105

T
ab

le
 5

.
L

an
d
 c

o
v
er

 a
n
d
 l

an
d
 c

h
an

g
e

d
at

a
fo

r
ea

ch
 c

o
u
n
ty

 (
u
n
it

:
k
m

2
)

L
an

d

co
v
er

Y

ea
r

C
ab

ar
ru

s
D

av
ie

D

av
id

so
n

F

o
rs

y
th

G

u
il

fo
rd

Ir

ed
el

l
R

an
d
o
lp

h

R
o
w

an

T
o
ta

l

F
ar

m
la

n
d

2
0
0
1

2
4
6
.1

2

2
5

1
.6

6

3
5
8
.3

4

1
7
7
.2

1

4
0
5
.4

0

5
4
8
.8

3

5
2
3
.1

5

4
3
7
.2

7

2
9
4
7
.9

9

2
0
0
6

2
3
1
.2

7

2
4

5
.4

1

3
4
2
.7

5

1
6
2
.9

9

3
8
3
.1

5

5
3
2
.4

6

5
0
7
.2

4

4
2
7
.4

1

2
8
3
2
.6

8

2
0
1
1

2
2
4
.2

4

2
4

2
.0

8

3
3
3
.9

6

1
5
5
.1

7

3
6
9
.1

7

5
2
2
.7

0

4
9
5
.8

8

4
2
1
.4

2

2
7
6
4
.6

0

2
0
1
6

2
2
0
.4

0

2
4

1
.3

3

3
3
2
.8

6

1
5
3
.7

9

3
6
6
.5

1

5
2
1
.6

2

4
9
4
.2

2

4
2
0
.6

1

2
7
5
1
.3

3

N
at

u
ra

l

2
0
0
1

2
5
.5

0

1
2
.0

4

4
4
.1

5

1
5
.0

2

1
8
.8

4

2
9
.3

7

8
7
.8

3

2
7
.7

0

2
6
0
.4

6

2
0
0
6

4
4
.1

0

1
6
.0

3

5
9
.9

8

2
3
.3

0

4
2
.7

1

4
5
.5

8

1
2
8
.4

6

3
9
.9

2

4
0
0
.0

8

2
0
1
1

4
6
.4

9

2
4
.1

8

6
6
.7

5

3
0
.4

0

5
9
.1

0

5
2
.7

9

1
6
0
.0

2

5
0
.0

0

4
8
9
.7

3

2
0
1
6

3
3
.6

3

2
3
.9

0

5
6
.9

4

3
3
.8

7

5
6
.5

2

5
4
.7

3

1
3
9
.5

8

4
8
.5

2

4
4
7
.7

0

F
o
re

st

2
0
0
1

4
5
2
.1

0

3
5

4
.7

2

8
0
0
.5

8

4
6
8
.4

2

7
0
1
.2

8

6
8
1
.9

8

1
1
9
5
.8

7

6
5
4
.3

5

5
3
0
9
.2

9

2
0
0
6

4
2
0
.4

0

3
5

3
.9

7

7
8
8
.3

3

4
5
7
.3

7

6
6
6
.8

8

6
6
6
.3

2

1
1
6
4
.7

1

6
4
4
.4

6

5
1
6
2
.4

5

2
0
1
1

4
1
7
.3

2

3
4

8
.4

6

7
8
2
.6

6

4
4
7
.6

6

6
4
3
.7

3

6
5
6
.5

9

1
1
3
0
.9

0

6
3
4
.6

3

5
0
6
1
.9

4

2
0
1
6

4
2
2
.6

1

3
4

7
.6

3

7
9
1
.4

4

4
4
2
.1

9

6
4
4
.1

8

6
5
1
.8

9

1
1
5
1
.4

5

6
3
5
.3

9

5
0
8
6
.8

0

U
rb

an

2
0
0
1

2
0
0
.2

7

5
9
.9

9

2
2
1
.6

0

3
9
0
.1

7

5
3
1
.1

7

2
2
8
.6

9

2
1
4
.8

7

1
9
6
.5

9

2
0
4
3
.3

5

2
0
0
6

2
2
7
.7

9

6
2
.7

1

2
3
1
.8

3

4
0
7
.0

7

5
6
3
.6

7

2
4
4
.4

9

2
2
0
.1

7

2
0
2
.7

0

2
1
6
0
.4

3

2
0
1
1

2
3
5
.4

6

6
3
.3

6

2
3
6
.7

6

4
1
7
.8

4

5
8
3
.5

7

2
5
7
.3

0

2
2
4
.7

7

2
0
6
.1

0

2
2
2
5
.1

7

2
0
1
6

2
4
6
.9

3

6
5
.1

7

2
3
9
.2

7

4
2
0
.9

8

5
8
8
.6

8

2
6
0
.7

9

2
2
6
.5

8

2
0
8
.2

2

2
2
5
6
.6

1

W
at

er

2
0
0
1

1
9
.1

8

1
3
.3

5

4
4
.0

7

1
7
.9

5

4
6
.0

5

5
6
.4

8

2
2
.1

8

4
0
.6

0

2
5
9
.8

8

2
0
0
6

1
9
.6

0

1
3
.6

4

4
5
.8

4

1
8
.0

6

4
6
.3

4

5
6
.5

1

2
3
.3

1

4
2
.0

2

2
6
5
.3

1

2
0
1
1

1
9
.6

5

1
3
.7

0

4
8
.6

1

1
7
.7

1

4
7
.1

8

5
5
.9

8

3
2
.3

3

4
4
.3

6

2
7
9
.5

2

2
0
1
6

1
9
.6

0

1
3
.7

3

4
8
.2

2

1
7
.9

6

4
6
.8

5

5
6
.3

2

3
2
.0

7

4
3
.7

7

2
7
8
.5

2

106

T
ab

le
 6

.
U

rb
an

 p
ro

p
o
rt

io
n
 f

o
r

ea
ch

 c
o
u
n
ty

 (
N

o
te

:
(2

0
0
6
-2

0
0
1
)%

,
ex

p
an

si
o

n
 r

at
io

 f
ro

m
 2

0
0
1
 t

o
 2

0
0
6
;

(2
0
1
1

-2
0
0
6
)%

,
ex

p
an

si
o
n

ra
ti

o
 f

ro
m

 2
0
0
6
 t

o
 2

0
1
1
;

(2
0
1
1

-2
0
0
1
)%

,
ex

p
an

si
o

n
 r

at
io

 f
ro

m
 2

0
0
1
 t

o
 2

0
1
1
)

2
0
0
1

2
0
0
6

2
0
1
1

2
0
1
6

(2
0
0
6
-

2
0
0
1
)%

(2
0
1
1
-2

0
0
6
)%

(2

0
1
6
-2

0
1
1
)%

(2

0
1
6
-2

0
0
1
)%

C
a
b

a
rr

u
s

2
1
.2

3
%

2
4
.1

5
%

2
4
.9

7
%

2
6
.1

8
%

2
.9

2
%

0
.8

1
%

1
.2

2
%

4
.9

5
%

D
a

v
ie

8
.6

7
%

9
.0

7
%

9
.1

6
%

9
.4

2
%

0
.3

9
%

0
.0

9
%

0
.2

6
%

0
.7

5
%

D
a
v
id

so
n

1
5
.0

9
%

1
5
.7

8
%

1
6
.1

2
%

1
6
.2

9
%

0
.7

0
%

0
.3

4
%

0
.1

7
%

1
.2

0
%

F
o
rs

y
th

3
6
.5

1
%

3
8
.0

9
%

3
9
.1

0
%

3
9
.3

9
%

1
.5

8
%

1
.0

1
%

0
.2

9
%

2
.8

8
%

G
u

il
fo

rd

3
1
.2

0
%

3
3
.1

0
%

3
4
.2

7
%

3
4
.5

7
%

1
.9

1
%

1
.1

7
%

0
.3

%

3
.3

8
%

Ir
ed

el
l

1
4
.8

0
%

1
5
.8

2
%

1
6
.6

5
%

1
6
.8

8
%

1
.0

2
%

0
.8

3
%

0
.2

3
%

2
.0

8
%

R
a
n

d
o
lp

h

1
0
.5

1
%

1
0
.7

7
%

1
1
.0

0
%

1
1
.0

9
%

0
.2

6
%

0
.2

3
%

0
.0

9
%

0
.5

7
%

R
o
w

a
n

1
4
.4

9
%

1
4
.9

4
%

1
5
.1

9
%

1
5
.3

5
%

0
.4

5
%

0
.2

5
%

0
.1

6
%

0
.8

6
%

A
v
er

a
g
e

1
9

.0
6

%

2
0

.2
2

%

2
0
.8

1
%

2
1
.1

5
%

1
.1

5
%

0
.5

9
%

0

.3
4

%

2
.0

8
%

107

Figure 34. Selected driving factors used in this study.

6.4. Experimental design

The urban growth data are obtained from historical data, and I focus on examining the

transformation of non-urban areas to urban areas. Thus, I aggregated five land use types

into two categories: 0 and 1. Code 0 means unchanged, including non-urban areas

(farmland, natural, forest and water) converted to non-urban areas, and urban areas

converted to non-urban areas; code 1 means non-urban areas converted to urban areas. I

excluded the unchanged urban areas in the previous period (e.g., for simulating the urban

land change from 2001 to 2006, we removed urban cells in 2001). In this study, I adopt the

CNN framework to calculate the urban development probability. Figure 35 describes the

flowchart of the CNN-CA model. This study is divided into the following steps. (1) I

generate driving factors with the consideration of neighborhood information. (2) The CNN

model is trained, and then I use spatially explicit hyperparameter optimization approach to

108

find the appropriate hyperparameters in order to get the best model performance. (3) The

overall development probability is derived from the CNN-CA model and then simulate

future urban patterns.

Figure 35. Flowchart of urban land change simulation through CNN, CA and spatially

explicit hyperparameter optimization. T stands for the simulated year.

6.4.1. Setting of CNN model

The CNN model used in this study has nine layers, including one input layer, seven

hidden layers, and one output layer. More specifically, there are one input layer with seven

nodes (links with the input variables), three convolution layers, two max pooling layers,

one fully connected layer, one softmax layer, and one output layer with two nodes (links

with the two outcomes). Table 7 presents detailed information of the hidden layers. Figure

36 shows the structure of the CNN model used in this study. I use rectified linear units

(ReLU) activation function in these convolution layers. Compared with sigmoid (logistic)

109

activation function and hyperbolic (tanh) activation function, ReLU has the ability to avoid

saturation (Goodfellow, Bengio, and Courville 2016). The general equation of ReLU is:

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 (21)

where f() is the function of ReLU, and x is the random variable. From this equation,

ReLU is a linear function when values of random variable is greater than zero. As

mentioned by Goodfellew et al. (2016), ReLU has a number of advantages of linear

models, such as a good generalization performance and a simple way to optimize

gradient-based methods.

Figure 36. Structure of CNN model used in this study

110

Table 7. The information of hidden layers used in this study.

Layer Feature map Note

1st convolution layer 48×48×16 3×3 convolution kernel

1st max pooling layer 24×24×16 size of 2×2

2nd convolution layer 22×22×32 3×3 convolution kernel

2nd max pooling layer 11×11×32 size of 2×2

3rd convolution layer 9×9×32 3×3 convolution kernel

Fully connected layer 96 nodes

Softmax layer probabilities of outcomes sum to 1

Typically, softmax layer or sigmoid function is adopted in the last layer of CNN

(except the output layer). The major contribution of this layer is to calculate multi-class

classification results. However, when the classes are mutually exclusive, softmax layer is

better than sigmoid function. One of the reasons is that the probabilities of outcomes sum

to 1 for softmax layer. Another reason is that sigmoid function exists gradients vanish issue

when the probability gets close to 0 or 1 (LeCun, Bengio, and Hinton 2015, Goodfellow,

Bengio, and Courville 2016). In this case study, the results are mutually exclusive, i.e.,

non-urban to urban or non-urban to non-urban, thus, softmax layer is adopted in here.

Moreover, I involve weight decay and dropout in the CNN model in order to avoid

overfitting issue.

As suggested by Srivastava et al. (2014), dropout should use 10-100 times the learning

rate, and the better values of momentum should be around 0.95 to 0.99. Based on their

suggestions and my preliminary experiment, I adopt the value of 0.001 as the learning rate

and value of 0.9 for momentum. The values of dropout and weight decay range from 0 to

111

1 and from 0 to 0.001, respectively. In the training process of the CNN model, batch size

is also an important hyperparameter of the model training. The best training stability and

generalization performance usually along with smaller batch size, whereas larger batch

sizes may accelerate the convergence. Based on previous studies’ suggestions (Bengio

2012, Zhai et al. 2020), I adopt the batch size of 32 in this study.

6.4.2. CNN-based cellular automata

Neighborhood effect (NE) is one of the essential components in exploring spatial

process (First Law of Geography (Tobler 1970)) and a part of the traditional CA model.

Besides neighborhood effect, the remaining three parts are the suitability of occurrence

(OP), growth constraints (β), and stochastic factor (α) (Wolfram 1983, Li and Yeh 2002).

The overall development suitability is usually based on related biophysical and

socioeconomic factors through logistic regression. However, with the advances in

computing techniques, a set of machine learning models were adopted to determine the

coefficients of those driving factors because the spatial process is complex and nonlinear,

such as artificial neural networks and random forest. The neighborhood effect is a key

component in CA model. Von Neumann neighborhood and Moore neighborhood are the

commonly used ways to examine the neighborhood effect (Batty, Couclelis, and Eichen

1997). Von Neumann neighborhood is a diamond shape neighborhood (2-dimensional

space), whereas Moore neighborhood is a square shape neighborhood (2-dimensional

space). Figure 37 describes Von Neumann neighborhood and Moore neighborhood with

first-order zone. The neighborhood effect is defined as:

𝑁𝐸𝑡,𝑖 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑟𝑏𝑎𝑛 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑

𝑛×𝑛−1
 (22)

112

where the neighborhood region is depicted by a nⅹ n square regions. NEt,i is the

neighborhood effect of cell i at time t. The focal cell i does not belong to the part of

estimating the neighborhood effect on urban growth, thus, we should remove this cell in

estimating neighborhood effect.

Figure 37. Von Neumann neighborhood and Moore neighborhood with the first-order

zone (square with black color is focal cell; square with white color is neighbor of the

focal cell).

Growth constraint is used to control the unallowable transition, for example, water

areas are usually not allowed to convert to other types of land use. In this study, the growth

constraint is a binary variable. 0 denotes the cell is water, and 1 denotes the cell is other

types of land use. The purpose of stochastic factor is to maintain the randomness of the

transition process. The range of stochastic factor in this study is a random number in [0,1]

follow the uniform distribution. Overall, the transition probability is defined as:

𝑃𝑖 = 𝑃𝑂𝑡,𝑖 ∙ 𝑁𝐸𝑡,𝑖 ∙ 𝛽𝑡,𝑖 (23)

where Pt,i is the transition probability of non-urban cell i at time t convert to urban cell at

time t+1. POt,i is the suitability of occurrence of cell i at time t, and NEt,i is the

neighborhood effect of cell i at time t. βt,i is a growth constraint of cell i at time t.

113

Specifically, the CA part of the CNN-CA model is shown in Figure 38. First, I

estimate the suitability of occurrence through the CNN model. And then I find the values

of neighborhood effect based on 5ⅹ5 Moore neighborhood and growth constraints for

cell i. Next, the transition probability can be estimated using Eq. 23. Then, the transition

probability of cell i is compared with a random number to determine whether the cell

converts to a urban cell. If the transition probability of cell i is greater than the random

variable, cell i will convert to urban cell at time T+1.

Figure 38. The processing architecture of CA (Pt,i is the transition probability of non-

urban cell i at time T convert to urban cell at time T+1. POt,i is the suitability of

occurrence of cell i at time T, and NEt,i is the neighborhood effect of cell i at time T. βt,i is

the growth constraint of cell i at time T)

6.4.3 Implementation

The script of this CNN-CA model was written in Python programming language using

Pytorch library (https://pytorch.org/), the scripts of preprocessing and post-processing were

also written in Python programming language. ESRI ArcGIS Pro processed all GIS data.

https://pytorch.org/

114

Euclidean distance tool from ArcGIS was used to calculate all distance-based variables.

Our CNN model with spatially explicit hyperparameter optimization was deployed on a

Redhad Linux-based high performance computing environment at University Research

Computing (URC; https://urc.uncc.edu). Specifically, Copperhead cluster was used for this

study.

6.5. Results

6.5.1. Accuracy assessment

To evaluate the simulation results, the similarity metrics based on confusion matrix

were used. Most previous studies adopted overall accuracy, Kappa coefficients, producer

accuracy, user’s accuracy at the cell level (Fielding and Bell 1997, Li, Yang, and Liu

2008). In this study, we adopted Figure of Merit (FoM). FoM is “a ratio of the

intersection of the observed change and predicted change to the union of the observed

change and predicted change” (Page 22, (Pontius et al. 2008)). The formula of FoM is

shown in the following equation (Pontius et al. 2008):

FoM =
𝐵

𝐴+𝐵+𝐶+𝐷
 (24)

where, for all observed change cells, A is the total number of the cells that simulate

unchange, B is the total number of the cells that simulate change, and C is the total

number of the cells that simulate to wrong category. For all observed unchange cells, D

is the total number of the cells that simulate change.

https://urc.uncc.edu/

115

6.5.2. Model performance

To evaluate the model performance of spatially explicit hyperparameter optimization

approach, I use cross-entropy (Eq. 25) loss function to optimize the CNN model and

accuracy (Eq. 26) to measure the performance of the model. The equations are shown as

follow:

cross_entropy = − ∑ ∑ 𝑦𝑖,𝑗log (𝑃𝑖)
𝑚
𝑗=1

𝑛
𝑖=1 (25)

accuracy =
𝐴𝑐

𝐴𝑐+𝐴𝑢
 (26)

where yi,j stands the observed value that cell i belongs to class j, and Pi denotes the

probability of predicted sample i belonging to class j. Ac stands for the number of

correctly simulated cells, Au is the number of incorrectly simulated cells.

Figure 39 illustrates the learning curve and scatterplot of values of accuracy

(generalization performance) for the conventional EA-based hyperparameter optimization

and spatially explicit hyperparameter optimization. These scatterplots showed the

distributions of original sampled points, the middle generation of the evolutional process,

and the last generation that has the convergent results (i.e., the error difference among

five generations is less than 1%). The scatterplots of values of accuracy visualize the

training process. For those two approaches, the lowest accuracy concentrates around the

upper right and right regions during the entire process. The higher value of accuracy is

caused by relatively smaller dropout (under 0.5) and relatively smaller weight decay

(under 6×10-4). In general, the generalization performance of CNN model is high (i.e.,

high value of accuracy) when both dropout and weight decay are low. In the meanwhile,

spatially explicit hyperparameter optimization uses less computing time to get the results.

116

F
ig

u
re

 3
9
.
L

ea
rn

in
g
 c

u
rv

e
an

d
 s

ca
tt

er
p
lo

ts
 o

f
v
al

u
es

 o
f

ac
cu

ra
cy

 f
o
r

h
y
p

er
p

ar
am

et
er

 s
et

s
o
v
er

 d
if

fe
re

n
t

g
en

er
at

io
n
s

(A
:

re
d
 c

ir
cl

e
is

 s
am

p
le

d
 p

o
in

ts
 t

h
at

 g
en

er
at

ed
 b

y
 c

o
n

v
en

ti
o
n
al

 E
A

-b
as

ed
 h

y
p

er
p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
;

B
:

b
lu

e
ci

rc
le

 i
s

sa
m

p
le

d
 p

o
in

ts
 t

h
at

 g
en

er
at

ed
 b

y
 s

p
at

ia
ll

y
 e

x
p
li

ci
t

h
y
p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
;

ci
rc

le
 s

iz
e

is
 p

ro
p
o

rt
io

n
al

 t
o
 M

S
E

,
ci

rc
le

si
ze

 f
ro

m
 s

m
al

l
to

 l
ar

g
e

st
an

d
s

fo
r

lo
w

 M
S

E
 t

o
 l

ar
g
e

M
S

E
;

o
u
tl

ie
rs

 w
er

e
ex

cl
u
d
ed

)

117

6.5.3. Generalization performance of hyperparameters

Given the values of the accuracy of sampled hyperparameters, a continuous surface of

the values of accuracy was conducted using spatial interpolation methods. Figure 41

shows the generalization performance maps of the values of accuracy using conventional

EA-based approach and spatially explicit approach. In the processes of both EA-based

approaches, the highest accuracy concentrates in the lower-left corner region, particularly

when dropout is less than 0.6 and weight decay is less than 4×10-4. However, when

dropout ranges from 0.8 to 1, the accuracy of the model achieves the lowest values for

both approaches. In general, the generalization pattern of hyperparameter space is similar

to the conventional approach and the approach proposed in this dissertation.

From Figure 41, the high accuracy occurs as dropout and weight decay decrease. A

relatively larger dropout (above 0.8) leads to the lowest accuracy. The small weight

decay (below 4×10-4) and small dropout (below 0.5) can obtain the best model

performance (highest accuracy here). The patterns of conventional EA-based

hyperparameter optimization approach and my approach are similar (Figure 41A and B).

That is, dropout ranges from 0 to 0.5 and weight decay ranges from 0 to 4×10-4 lead to

high generalization performance. I used RMES to measure the prediction errors of these

two generalization performances. The RMSE of cross-validation is 7.56×10-3 for

conventional EA-based hyperparameter optimization approach, 3.15×10-3 is for spatially

explicit hyperparameter optimization. However, some regions show different patterns.

118

Figure 40. Distribution of standard error based on the values of accuracy using spatially

explicit hyperparameter optimization methods

Figure 40 illustrates the map of a continuous pattern of standard errors in response to

hyperparameter sets based on spatially explicit hyperparameter optimization. The value

of standard error was calculated based on the values of accuracy for each sampled

hyperparameter set. Standard error serves as a measure of variation, the smaller the

standard error, the result is more accurate and the sample population is more

representative of the overall population. The RMSE for cross-validation for the standard

error is 9.17×10-3. The results of standard errors show that my approach is robust and

accurate (most values of standard error are less than 1.6×10-2). The generalization

performance is becoming worst when dropout and weight decay are large. Specifically,

the larger standard errors occur when dropout between 0.7-1. When dropout is less than

0.6 and weight decay is less than 4×10-4, the results of hyperparameter optimization are

119

the most stable. However, relatively larger standard errors occur when weight decay

ranges from 4×10-4 to 1×10-3. In general, smaller dropout and weigh decay have stable

generalization performance.

120

F
ig

u
re

 4
1
.
M

ap
s

o
f

g
en

er
al

iz
at

io
n

 p
er

fo
rm

an
ce

 f
o
r

co
n
v
en

ti
o
n
al

 E
A

-b
as

ed
 h

y
p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
 a

n
d

 s
p
at

ia
ll

y
 e

x
p

li
ci

t

h
y

p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
 (

A
:

co
n
v

en
ti

o
n
al

 E
A

-b
as

ed
 h

y
p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
 u

si
n
g
 t

h
e

6
0

th
 g

en
er

at
io

n
 r

es
u
lt

;
B

:

sp
at

ia
ll

y
 e

x
p
li

ci
t

h
y
p
er

p
ar

am
et

er
 o

p
ti

m
iz

at
io

n
).

121

6.5.4. Prediction performance

From the results of hyperparameter optimization, I adopt the hyperparameter set

(dropout: 0.18; weight decay: 1×10-4) with the highest accuracy to train the CNN model.

The CNN model is established through data from 2001-2006, and the data from 2006-

2011 is used to validate the model. In the training process, I adopted a stratified random

sampling method to selected 40,000 sampled cells (20,000 for urban, 20,000 for

nonurban) to fit the model. Then, 80% of the sample data is used as the training dataset

and remaining 20% sample data is employed as the testing dataset. The accuracy and loss

values are calculated using the testing dataset. During the urban expansion process, the

land use type of the cell’s neighborhood determines its transition state, that is, within a

neighborhood, the closer to the cell, the greater effect on the state transition.

Due to the size of the dataset (around 600G), I ran the simulation model in a single

county. Forsyth County was selected for validation because this county was one of the

most urbanized counties in the lower HRLW, and the urban growth ratio also was top-

ranking in 2001-2006, 2006-2011, and 2011-2016 periods. The landscape size of Forsyth

is 1,438ⅹ1,223 in terms of number rows and columns, and we removed the cells that are

urban type in the previous period. For example, if a cell in 2006 is an urban type, I

assume this cell will not convert to other land use types (urban or non-urban) in 2011.

Moreover, another model (logistic regression-CA) was compared to test the utilities of

our CNN-CA model. In order to ensure the data consistency, the logistic regression adopt

the same sample data as CNN model, that is, I use the same training and testing datasets

to construct those two models. I adopt 0.4 as a threshold of logistic regression (i.e.,

simulated probability is greater than 0.4, the non-urban cell will transform to urban cell).

122

The overall development probability usually derives based on related biophysical and

socioeconomic factors through CNN. The map of development probability is shown in

Figure 42.

Figure 42. Probability-of-occurrence of urban growth changes for 2006-2011 period.

The results of validation accuracy are shown in Table 8. As shown in Table 8, the

overall accuracy of logistic regression achieves to 75.39%, and the overall accuracy of

CNN is 90.79%. Meanwhile, the accuracy of identifying non-urban to urban cells for

CNN is higher than logistic regression. CNN model can identify 78% of the non-urban to

urban cells, whereas logistics regression can identify 2.4% of non-urban to urban cells.

Furthermore, logistic regression only correctly identifies 76.7% of non-urban to non-

urban cells, but the accuracy of identifying non-urban to non-urban cells for CNN is over

90%.

123

Table 8. The accuracy of the validation results via logistic regression and CNN (0, non-

urban cells convert to non-urban cells; 1, non-urban cells convert to urban cells)

Results Logistic regression CNN

Accuracy of 0s as 0s 76.7.% 91%

Accuracy of 1s as 1s 2.4% 78%

Overall accuracy 75.39% 90.79%

FoM 0.04% 1.23%

Figure 43 shows the maps of observed and simulated land change patterns for 2006-

2011 period, and the areas with white color mean the cells were urban in 2006. From

these maps, we can see that most non-urban cells remain persistent. Although the urban

growth rate in Forsyth County was top-ranking in the study area, land change quantity

(exclude urban cells in the previous period) only occupies about 1.63% and 0.48% of the

entire county in 2006-2011 and 2011-2016 periods. The validation accuracy for both land

change types (non-urban to urban and non-urban to non-urban) are high even though

most regions do not experience land change. Furthermore, I simulate the urban growth

for 2011-2016 period. Figure 44 shows the simulated urban growth for 2011-2016. The

total changed cells for urban areas was 3,480, and my simulated result got 2,436 non-

urban cells to urban cells. The simulation accuracy of non-urban to urban is 0.70, and the

simulation accuracy of non-urban to non-urban is 0.997. The overall simulation accuracy

is 0.9956 and FoM is 0.34%.

124

Figure 43. Maps of observed and simulated urban growth for 2006-2011 period.

Figure 44. Maps of observed and simulated urban growth for 2011-2016 period.

125

6.5.5. Parallel computing performance

The spatially explicit hyperparameter optimization approach randomly generated

100,000 sampled hyperparameter sets (100 sampled hyperparameter sets for each

generation). For each generation, each CPU handled only one sampled hyperparameters.

Thus, I adopted 100 CPUs in this study. The estimated sequential computing time of

spatially explicit hyperparameter optimization is around 5,169,630 seconds (about 59.83

days). However, the parallel computing time of conventional EA-based hyperparameter

optimization approach was around 692,381 seconds (about 8 days). The speedup was

7.47. Moreover, the hyperparameter approach used in this study can further reduce the

computing time (Figure 39). The estimated parallel computing time was 207,714 seconds

(around 2.4 days), where speedup achieves to 24.89.

6.6. Discussions

6.6.1. The simulation performance of CNN-CA model

Simulation models involved deep learning techniques, and these have been a hot

research topic in the GIScience community. Some pioneers already discussed the ability

of deep learning techniques in spatial simulation models. One benefit of deep learning-

based spatial simulation models is that it considers the neighborhood information (i.e.,

neighborhood effects) of the driving factors. Also, the simulation accuracy increases

compared to other models, such as artificial neural networks and random forests.

However, how to further improve model performance (i.e., find the optimal

hyperparameters atomically) is an open question in current research (He et al. 2018, Zhai

et al. 2020). Due to the complexity of deep learning techniques, hyperparameters of deep

126

learning techniques will affect the computing performance and validation accuracy. The

purpose of this case study is to demonstrate the utility of spatially explicit

hyperparameter optimization approach in deep learning-based simulation models.

As evidenced by comparing two hyperparameter optimization approaches, the best

overall generalization performance (validation accuracy) using spatially explicit

hyperparameter optimization is around 0.86. In contrast, the best generalization

performance using the conventional approach is around 0.84. Furthermore, the standard

errors indicate that the results of the spatially explicit approach are robust and accurate

(Figure 40). Although these two approaches have very close generalization performances,

the spatially explicit approach uses less time. Moreover, the approach proposed in this

dissertation provides an answer to the question mentioned above (i.e., how to find the

optimal hyperparameters automatically). In general, the spatially explicit hyperparameter

optimization approach could provide accurate results with less computing time.

I compare the validation accuracy of CNN model with logistic regression (Table 8).

My CNN model has a better overall performance than logistic regression (overall

accuracy of CNN is 90.79%, and overall accuracy of logistic regression is 75.39%).

Moreover, CNN model has a better performance than logistic regression when identifying

non-urban to urban cells. Although the study area is not highly urbanized (the percentage

of the urban area was 39.39% in 2016) and most of non-urban cells do not convert to

urban cells, the CNN model still can correctly identify 78% changed cells (non-urban to

urban cells). FoM is used to measure the amount of variation in the urban growth process,

and the overall accuracy focuses on the amount of correctly identify cells. The validation

accuracy of FoM is 1.23%, which is a small number. However, land change quantity

127

(non-urban to urban; exclude urban cells in the previous period) only occupies about

1.63% of the entire county in 2006-2011 period. Thus, for a low net land change area, a

single accuracy measurement cannot fully explain the model performance. Moreover, the

map of simulated urban growth (Figure 43 and 44) determined by the CNN-CA model is

mostly consistent with the actual patterns, particularly for the spatial distribution. Some

cells are exactly the same as the actual pattern. Therefore, the results indicate that the

CNN-CA model improves the simulation accuracy of a low net land change study area.

6.6.2. Computing performance

In Chapter 5, I already showed that spatially explicit hyperparameter optimization

could expedite convergence and reduce computing time for ANN-based spatial models.

However, in this study, I applied my approach to deep learning-based spatial models, the

performance of our approach is still significantly effective.

The results showed that this approach can automatically find the optimal

hyperparameters for deep learning techniques and effectively speed up the computing

time. The spatially explicit hyperparameter optimization considers spatial dependence in

the search space, which significantly accelerates the search process (about 70 generations

down to about 30 generations; Figure 39). The entire running time decreased to 207,714

seconds (estimated value; about 57.7 hours). This approach significantly handles

computational intensity. Furthermore, the results showed that prior knowledge (the

results from spatial interpolation) could expedite convergence and reduce the computing

time (Xiao, Bennett, and Armstrong 2002).

Meanwhile, this approach answered the open question that exists in current deep

learning-based spatial simulation models, that is, how to avoid increasing the overall

128

running time when involving hyperparameter optimization. By adopting our approach, it

can not only handle the computational intensity issue in deep learning and

hyperparameter optimization, but it also can improve the entire model performance

without introducing subjective factors.

6.7. Conclusion

In this study, I proposed a CNN-CA spatial simulation model with integration of

spatially explicit hyperparameter optimization approach. The result of hyperparameter

optimization demonstrated the spatially explicit hyperparameter optimization can help

CNN to find the appropriate settings within a short time. My approach also addressed the

challenge of parameter setting in current CNN-based spatial simulation model. The

simulation results showed that CNN-CA model has better performance than logistic

regression-CA model. Although the study area is not highly urbanized, the overall

accuracy of our model can achieve to 90.79%. More specifically, my approach has a

better performance when identifying non-urban areas to urban areas (accuracy of CNN-

CA model is 78%, whereas the accuracy of logistic regression-CNN model is 2.4%).

While the approach in this study presents the ability of deep learning techniques and

the practicability of spatially explicit hyperparameter optimization, future work can

concentrate on the following aspects. First, I will apply the CNN-CA model to other

study regions and compare the local-level (county-based) accuracy and global-level

accuracy (entire study area). Second, I will adopt agent-based model in order to further

investigate the land change process. Third, I will further address the computational

challenge for big data-driven CNN model.

129

CHAPTER 7: CONCLUSION

The primary purpose of this dissertation is to propose a framework that could apply to

machine learning algorithm-based spatial models with consideration of spatial features.

The integration of machine learning and GISsience (the central topic in this dissertation)

provides support for improving current hyperparameter optimization approaches. The

spatially explicit hyperparameter optimization approach proposed in this dissertation

focuses on achieving three research objectives: (1) examining the feasibility and

necessity of spatially explicit hyperparameter optimization in spatial models, (2)

addressing the computational efficiency issue from model- and computing-level, and (3)

investigating the practicability of spatially explicit hyperparameter optimization in

different spatial models. To author’s knowledge, this study is the first to integrate

methods from GIScience with conventional hyperparameter optimization approaches

from computer science field.

In Chapter 4, I proposed a spatially explicit hyperparameter optimization approach for

neural network-based spatial models. In this approach, I incorporated methods from

GIScience (e.g., spatial statistics) to explore the local variation structure of the search

space of hyperparameters, and further to adjust the local variation structure based on

spatial dependence. Further, methods from GIScience (i.e., spatial sampling and second-

phase sampling) addressed the computational-intensity issue from the model level. This

conclusion links to objective 1.

Chapter 5 (corresponding to objective 2) discussed the automated framework of

spatially explicit hyperparameter optimization. This framework has three components:

130

automatic search of hyperparameters, spatial prediction of hyperparameter space, and

acceleration of hyperparameter search. The results demonstrate that spatially explicit

hyperparameter optimization can excavate the landscape of hyperparameters space and

adjust the local landscape with spatial dependence. Also, spatially explicit

hyperparameter optimization significantly accelerates the search process of EA (about

100 generations down to about 40 generations).

In order to examine the practicability of spatially explicit hyperparameter

optimization (links to objective 3), I applied this approach in a CNN-CA model. The

results from Chapter 6 indicate that spatially explicit hyperparameter optimization

approach could find appropriate hyperparameters for CNN model in a short time. The

CNN-CA model with appropriate hyperparameters has a better performance than logistic

regression-CA model. The overall accuracy can achieve to 90.79%.

The research presented here contributes to the GIScience community in several ways.

First, spatially explicit hyperparameter optimization is an important addition to the field

of GIScience. The importance of hyperparameters for improving the performance of

machine learning algorithms has been discussed in the computer science field for some

time. Spatially explicit hyperparameter optimization opens a new world for researchers to

use appropriate hyperparameters to improve model performance in GIScience. Second,

spatially explicit hyperparameter optimization fills the gap where there is no

hyperparameter optimization approach considering spatial dependence in the search

space. Also, the approach proposed in this dissertation can explore the landscape of the

search space of hyperparameters. Last but not least, spatially explicit hyperparameter

optimization further reduces computational burden at both model and computing levels.

131

Of course, each method holds its own limitations and has potential room for

improvement. Based on current work, the future study should explore the following

areas: (1) integration of a stand-alone application that covers all components of spatial

explicit hyperparameter optimization; (2) comparison of the current framework with the

latest population-based hyperparameter optimization, such as PBT (Population Based

Training) for neural network; (3) optimization of the current evolutionary algorithm; (4)

automate generation of the landscape map of the search space; and (5) addition of user-

defined components into current framework, such as accuracy metrics.

132

REFERENCES

Almeida, CM, JM Gleriani, Emiliano Ferreira Castejon, and BS Soares‐Filho. 2008.

"Using neural networks and cellular automata for modelling intra‐urban land‐use

dynamics." International Journal of Geographical Information Science 22

(9):943-963.

Andrews, Jeffrey G, Radha Krishna Ganti, Martin Haenggi, Nihar Jindal, and Steven

Weber. 2010. "A primer on spatial modeling and analysis in wireless networks."

IEEE Communications Magazine 48 (11).

Armstrong, Marc P. 2000. "Geography and computational science."

Armstrong, Marc P, Claire E Pavlik, Richard %J Computers Marciano, and Geosciences.

1994. "Parallel processing of spatial statistics." 20 (2):91-104.

Armstrong, Marc P, Ningchuan Xiao, and David A Bennett. 2003. "Using genetic

algorithms to create multicriteria class intervals for choropleth maps." Annals of

the Association of American Geographers 93 (3):595-623.

Armstrong, Marc P. . 2020, in press. "High Performance Computing for Geospatial

Applications: A Retrospective View " High Performance Computing for

Geospatial Applications.

Arribas, Iván, Fernando García, Francisco Guijarro, Javier Oliver, and Rima

Tamošiūnienė. 2016. "Mass appraisal of residential real estate using multilevel

modelling." International Journal of Strategic Property Management 20 (1):77-

87.

Attoh-Okine, Nii O. 1999. "Analysis of learning rate and momentum term in

backpropagation neural network algorithm trained to predict pavement

performance." Advances in Engineering Software 30 (4):291-302.

Bai, JH, Hua Ouyang, Zhifeng Yang, Baoshan Cui, Lijuan Cui, and Qinggai Wang. 2005.

"Changes in wetland landscape patterns: A review." Progress in Geography 24

(4):36-45.

Batty, M. 1976. "Urban modelling; algorithms, calibrations, predictions."

Batty, Michael, Helen Couclelis, and Mark Eichen. 1997. Urban systems as cellular

automata. SAGE Publications Sage UK: London, England.

Batty, Michael, and Yichun Xie. 1994. "From cells to cities." Environment planning B:

Planning design 21 (7):S31-S48.

Batty, Michael, Yichun Xie, and Zhanli Sun. 1999. "Modeling urban dynamics through

GIS-based cellular automata." Computers, environment and urban systems 23

(3):205-233.

Belew, Richard K, John McInerney, and Nicol N Schraudolph. 1990. "Evolving

networks: Using the genetic algorithm with connectionist learning." In.

Bengio, Yoshua. 2012. "Practical recommendations for gradient-based training of deep

architectures." In Neural networks: Tricks of the trade, 437-478. Springer.

Bennett, David A, Ningchuan Xiao, and Marc P Armstrong. 2004. "Exploring the

geographic consequences of public policies using evolutionary algorithms."

Annals of the Association of American Geographers 94 (4):827-847.

133

Berberoglu, S, Christopher D Lloyd, PM Atkinson, and Paul J Curran. 2000. "The

integration of spectral and textural information using neural networks for land

cover mapping in the Mediterranean." Computers & Geosciences 26 (4):385-396.

Bergstra, James, and Yoshua Bengio. 2012. "Random search for hyper-parameter

optimization." Journal of Machine Learning Research 13 (Feb):281-305.

Bergstra, James, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. 2015.

"Hyperopt: a python library for model selection and hyperparameter

optimization." Computational Science & Discovery 8 (1):014008.

Bergstra, James S, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. "Algorithms

for hyper-parameter optimization." Advances in Neural Information Processing

Systems.

Bergstra, James, Dan Yamins, and David D Cox. 2013a. "Hyperopt: A python library for

optimizing the hyperparameters of machine learning algorithms." Proceedings of

the 12th Python in Science Conference.

Bergstra, James, Daniel Yamins, and David D Cox. 2013b. "Making a Science of Model

Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision

Architectures." ICML (1) 28:115-123.

Biau, GÃŠrard. 2012. "Analysis of a random forests model." Journal of Machine

Learning Research 13 (Apr):1063-1095.

Bishop, Christopher M. 2006. Pattern recognition and machine learning: springer.

Biswajeet, Pradhan, and Lee Saro. 2007. "Utilization of optical remote sensing data and

GIS tools for regional landslide hazard analysis using an artificial neural network

model." Earth Science Frontiers 14 (6):143-151.

Borcard, Daniel, François Gillet, and Pierre Legendre. 2011. "Spatial analysis of

ecological data." In Numerical ecology with R, 227-292. Springer.

Bradshaw, Corey JA, Lloyd S Davis, Martin Purvis, Qingqing Zhou, and George L

Benwell. 2002. "Using artificial neural networks to model the suitability of

coastline for breeding by New Zealand fur seals (Arctocephalus forsteri)."

Ecological Modelling 148 (2):111-131.

Branke, Jürgen. 1995. "Evolutionary Algorithms for Neural Network Design and

Training."

Brigham, Eugene F. 1965. "The determinants of residential land values." Land

Economics 41 (4):325-334.

Brondino, Nair Cristina Margarido, and ANR Silva. 1999. "Combining artificial neural

networks and GIS for land valuation purposes." Proceedings of 6th international

conference on computers in urban planning and urban management, Venice, Italy.

Brown, Charles E. 1998. "Coefficient of variation." In Applied multivariate statistics in

geohydrology and related sciences, 155-157. Springer.

Brunsdon, Chris, and Alex Singleton. 2015. Geocomputation: A Practical Primer: Sage.

Cao, Kai, Michael Batty, Bo Huang, Yan Liu, Le Yu, and Jiongfeng Chen. 2011. "Spatial

multi-objective land use optimization: extensions to the non-dominated sorting

genetic algorithm-II." International Journal of Geographical Information Science

25 (12):1949-1969.

Cao, Kai, Bo Huang, Manchun Li, and Wenwen Li. 2014. "Calibrating a cellular

automata model for understanding rural–urban land conversion: A Pareto front-

134

based multi-objective optimization approach." International Journal of

Geographical Information Science 28 (5):1028-1046.

Casas, Noe. 2015. "Genetic Algorithms for multimodal optimization: a review." arXiv

preprint arXiv:1508.05342.

Castle, Christian JE, and Andrew T Crooks. 2006. "Principles and concepts of agent-

based modelling for developing geospatial simulations."

Chapelle, Olivier, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. 2002.

"Choosing multiple parameters for support vector machines." Machine learning

46 (1-3):131-159.

Chen, Sheng, SA Billings, and PM Grant. 1990. "Non-linear system identification using

neural networks." International journal of control 51 (6):1191-1214.

Choi, Samuel PM, Jiming Liu, and Sheung-Ping Chan. 2001. "A genetic agent-based

negotiation system." Computer Networks 37 (2):195-204.

Chollet, François. 2017. "Xception: Deep learning with depthwise separable

convolutions." Proceedings of the IEEE conference on computer vision and

pattern recognition.

Couclelis, Helen. 1998. "Geocomputation in context." Geocomputation: A primer.

Creutin, JD, and Ch Obled. 1982. "Objective analyses and mapping techniques for

rainfall fields: an objective comparison." Water resources research 18 (2):413-

431.

Delmelle, Eric M. 2014. "Spatial sampling." In Handbook of Regional Science, 1385-

1399. Springer.

Delmelle, Eric M, and Pierre Goovaerts. 2009. "Second-phase sampling designs for non-

stationary spatial variables." Geoderma 153 (1-2):205-216.

Ding, Shifei, Hui Li, Chunyang Su, Junzhao Yu, and Fengxiang Jin. 2013. "Evolutionary

artificial neural networks: a review." Artificial Intelligence Review 39 (3):251-

260.

Ding, Yuemin, and Paul J Densham. 1996. "Spatial strategies for parallel spatial

modelling." International journal of geographical information systems 10

(6):669-698.

Du, Jingcheng, Lu Tang, Yang Xiang, Degui Zhi, Jun Xu, Hsing-Yi Song, and Cui Tao.

2018. "Public perception analysis of tweets during the 2015 measles outbreak:

comparative study using convolutional neural network models." Journal of

medical Internet research 20 (7):e236.

Eiben, Agoston E, and James E Smith. 2003. Introduction to evolutionary computing.

Vol. 53: Springer.

Erbek, F Sunar, C Özkan, and M Taberner. 2004. "Comparison of maximum likelihood

classification method with supervised artificial neural network algorithms for land

use activities." International Journal of Remote Sensing 25 (9):1733-1748.

Erhan, Dumitru, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal

Vincent, and Samy Bengio. 2010. "Why does unsupervised pre-training help deep

learning?" Journal of Machine Learning Research 11 (Feb):625-660.

Falkner, Stefan, Aaron Klein, and Frank Hutter. 2018. "BOHB: Robust and efficient

hyperparameter optimization at scale." arXiv preprint arXiv.

135

Fielding, Alan H, and John F Bell. 1997. "A review of methods for the assessment of

prediction errors in conservation presence/absence models." Environmental

conservation 24 (1):38-49.

Fischer, Manfred M, Martin Reismann, and Katerina Hlavackova–Schindler. 2003.

"Neural network modeling of constrained spatial interaction flows: Design,

estimation, and performance issues." Journal of Regional Science 43 (1):35-61.

Flatman, George T, and Angelo A Yfantis. 1984. "Geostatistical strategy for soil

sampling: the survey and the census." Environmental monitoring and assessment

4 (4):335-349.

Fotheringham, A Stewart, Chris Brunsdon, and Martin Charlton. 2000. Quantitative

geography: perspectives on spatial data analysis: Sage.

Gahegan, Mark. 1999. "Four barriers to the development of effective exploratory

visualisation tools for the geosciences." International journal of geographical

information science 13 (4):289-309.

Gahegan, Mark. 2003. "Is inductive machine learning just another wild goose (or might it

lay the golden egg)?" International Journal of Geographical Information Science

17 (1):69-92.

Gelfand, Alan E, Athanasios Kottas, and Steven N MacEachern. 2005. "Bayesian

nonparametric spatial modeling with Dirichlet process mixing." Journal of the

American Statistical Association 100 (471):1021-1035.

Girouard, Nathalie, and Sveinbjörn Blöndal. 2001. "House prices and economic activity."

Godden, Bill. 2004. "Sample size formulas." Retrieved on December 3:2013.

Goldberg, David E. 1989. "Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison Wesley, Reading, MA." SUMMARY THE APPLICATIONS

OF GA-GENETIC ALGORITHM FOR DEALING WITH SOME OPTIMAL

CALCULATIONS IN ECONOMICS.

Goodchild, Michael F. 2003. "Geographic information science and systems for

environmental management." Annual Review of Environment and Resources 28.

Goodchild, Michael F %J Computers, and Geosciences. 1992. "Geographical data

modeling." 18 (4):401-408.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep learning: MIT press.

Gopal, Sucharita, and Curtis Woodcock. 1996. "Remote sensing of forest change using

artificial neural networks." IEEE Transactions on Geoscience and Remote

Sensing 34 (2):398-404.

Graham, E. 1997. Philosophies underlying human geography research in Flowerdew R

and Martin D eds Methods in human geography. Longman, Harlow.

Griffith, Daniel A. 2005. "Effective geographic sample size in the presence of spatial

autocorrelation." Annals of the Association of American Geographers 95 (4):740-

760.

Guan, Qingfeng, Liming Wang, and Keith C Clarke. 2005. "An artificial-neural-network-

based, constrained CA model for simulating urban growth." Cartography and

Geographic Information Science 32 (4):369-380.

Hahnloser, Richard HR, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas, and

H Sebastian Seung. 2000. "Digital selection and analogue amplification coexist in

a cortex-inspired silicon circuit." Nature 405 (6789):947-951.

136

He, Jialv, Xia Li, Yao Yao, Ye Hong, and Zhang Jinbao. 2018. "Mining transition rules

of cellular automata for simulating urban expansion by using the deep learning

techniques." International Journal of Geographical Information Science 32

(10):2076-2097.

Heermann, Philip Dale, and Nahid Khazenie. 1992. "Classification of multispectral

remote sensing data using a back-propagation neural network." IEEE

Transactions on Geoscience and Remote Sensing 30 (1):81-88.

Hinton, Geoffrey E, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R

Salakhutdinov. 2012. "Improving neural networks by preventing co-adaptation of

feature detectors." arXiv preprint arXiv:1207.0580.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. "Multilayer feedforward

networks are universal approximators." Neural networks 2 (5):359-366.

Hsu, Kuo‐lin, Hoshin Vijai Gupta, and Soroosh Sorooshian. 1995. "Artificial neural

network modeling of the rainfall‐runoff process." Water resources research 31

(10):2517-2530.

Isik, Sabahattin, Latif Kalin, Jon E Schoonover, Puneet Srivastava, and B Graeme

Lockaby. 2013. "Modeling effects of changing land use/cover on daily

streamflow: an artificial neural network and curve number based hybrid

approach." Journal of Hydrology 485:103-112.

Jean, Neal, Marshall Burke, Michael Xie, W Matthew Davis, David B Lobell, and

Stefano Ermon. 2016. "Combining satellite imagery and machine learning to

predict poverty." Science 353 (6301):790-794.

Jeffrey, Stephen J, John O Carter, Keith B Moodie, and Alan R Beswick. 2001. "Using

spatial interpolation to construct a comprehensive archive of Australian climate

data." Environmental Modelling & Software 16 (4):309-330.

Jin, Yaochu, Tatsuya Okabe, and Bernhard Sendhoff. 2004. "Neural network

regularization and ensembling using multi-objective evolutionary algorithms."

Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.

04TH8753).

Joy, Michael K, and Russell G Death. 2004. "Predictive modelling and spatial mapping

of freshwater fish and decapod assemblages using GIS and neural networks."

Freshwater Biology 49 (8):1036-1052.

Karsoliya, Saurabh. 2012. "Approximating number of hidden layer neurons in multiple

hidden layer BPNN architecture." International Journal of Engineering Trends

and Technology 3 (6):714-717.

Kia, Masoud Bakhtyari, Saied Pirasteh, Biswajeet Pradhan, Ahmad Rodzi Mahmud, Wan

Nor Azmin Sulaiman, and Abbas Moradi. 2012. "An artificial neural network

model for flood simulation using GIS: Johor River Basin, Malaysia."

Environmental Earth Sciences 67 (1):251-264.

Kitano, Hiroaki. 1994. "Neurogenetic learning: an integrated method of designing and

training neural networks using genetic algorithms." Physica D: Nonlinear

Phenomena 75 (1-3):225-238.

Klesk, Przemyslaw %J IEEE Transactions on Fuzzy Systems. 2008. "Construction of a

Neurofuzzy Network Capable of Extrapolating (and Interpolating) With Respect

to the Convex Hull of a Set of Input Samples in Rn." 16 (5):1161-1179.

137

Kotthoff, Lars, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-Brown.

2016. "Auto-WEKA 2.0: Automatic model selection and hyperparameter

optimization in WEKA." Journal of Machine Learning Research 17:1-5.

Krejcie, Robert V, and Daryle W Morgan. 1970. "Determining sample size for research

activities." Educational and psychological measurement 30 (3):607-610.

Krewski, Daniel, Michael Jerrett, Richard T Burnett, Renjun Ma, Edward Hughes, Yuanli

Shi, Michelle C Turner, C Arden Pope III, George Thurston, and Eugenia E Calle.

2009. Extended follow-up and spatial analysis of the American Cancer Society

study linking particulate air pollution and mortality: Health Effects Institute

Boston, MA.

Krieder, Scott, Ben Grimmer, and Ioan Raicu. 2012. "Early experiences in running many-

task computing workloads on gpgpus." XSEDE Poster Session.

Krige, Danie G. 1978. Lognormal-de Wijsian geostatistics for ore evaluation: South

African Institute of mining and metallurgy Johannesburg.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. "Imagenet classification

with deep convolutional neural networks." Advances in neural information

processing systems.

Kuhn, Max, and Kjell Johnson. 2013. Applied predictive modeling. Vol. 26: Springer.

Lam, Nina Siu-Ngan. 1983. "Spatial interpolation methods: a review." The American

Cartographer 10 (2):129-150.

Lark, RM. 2002. "Optimized spatial sampling of soil for estimation of the variogram by

maximum likelihood." Geoderma 105 (1-2):49-80.

Le, Nhu D, and James V Zidek. 2006. Statistical analysis of environmental space-time

processes: Springer Science & Business Media.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. "Deep learning." nature 521

(7553):436-444.

Leung, Frank Hung-Fat, Hak-Keung Lam, Sai-Ho Ling, and Peter Kwong-Shun Tam.

2003. "Tuning of the structure and parameters of a neural network using an

improved genetic algorithm." IEEE Transactions on Neural networks 14 (1):79-

88.

Li, H, and JF Reynolds. 1997. "Modeling effects of spatial pattern, drought, and grazing

on rates of rangeland degradation: A combined Markov and cellular automaton

approach." Scale in remote sensing and GIS:211-230.

Li, Jin, and Andrew D Heap. 2014. "Spatial interpolation methods applied in the

environmental sciences: A review." Environmental Modelling & Software

53:173-189.

Li, Jin, Andrew D Heap, Anna Potter, James J %J Environmental Modelling Daniell, and

Software. 2011. "Application of machine learning methods to spatial interpolation

of environmental variables." 26 (12):1647-1659.

Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.

2017. "Hyperband: A novel bandit-based approach to hyperparameter

optimization." The Journal of Machine Learning Research 18 (1):6765-6816.

Li, Xia, Jinyao Lin, Yimin Chen, Xiaoping Liu, and Bin Ai. 2013. "Calibrating cellular

automata based on landscape metrics by using genetic algorithms." International

Journal of Geographical Information Science 27 (3):594-613.

138

Li, Xia, Qingsheng Yang, and Xiaoping Liu. 2008. "Discovering and evaluating urban

signatures for simulating compact development using cellular automata."

Landscape and Urban Planning 86 (2):177-186.

Li, Xia, and Anthony Gar-On Yeh. 2000. "Modelling sustainable urban development by

the integration of constrained cellular automata and GIS." International Journal

of Geographical Information Science 14 (2):131-152.

Li, Xia, and Anthony Gar-On Yeh. 2002. "Neural-network-based cellular automata for

simulating multiple land use changes using GIS." International Journal of

Geographical Information Science 16 (4):323-343.

Liang, Xun, Xiaoping Liu, Xia Li, Yimin Chen, He Tian, and Yao Yao. 2018.

"Delineating multi-scenario urban growth boundaries with a CA-based FLUS

model and morphological method." Landscape and urban planning 177:47-63.

Limsombunchai, Visit. 2004. "House price prediction: hedonic price model vs. artificial

neural network." New Zealand Agricultural and Resource Economics Society

Conference.

Lin, Jinyao, and Xia Li. 2015. "Simulating urban growth in a metropolitan area based on

weighted urban flows by using web search engine." International Journal of

Geographical Information Science 29 (10):1721-1736.

Linares-Rodriguez, Alvaro, José Antonio Ruiz-Arias, David Pozo-Vazquez, and Joaquin

Tovar-Pescador. 2013. "An artificial neural network ensemble model for

estimating global solar radiation from Meteosat satellite images." Energy 61:636-

645.

Lipowski, Adam, and Dorota Lipowska. 2012. "Roulette-wheel selection via stochastic

acceptance." Physica A: Statistical Mechanics and its Applications

 391 (6):2193-2196.

Logan, John R. 2012. "Making a place for space: Spatial thinking in social science."

Annual review of sociology 38:507-524.

Longley, Paul A, and Michael Batty. 1996. Spatial analysis: modelling in a GIS

environment: John Wiley & Sons.

Longley, Paul A, Susan Brooks, W Macmillan, and RA McDonnell. 1998.

Geocomputation: a primer: Wiley.

Lorenzo, Pablo Ribalta, Jakub Nalepa, Luciano Sanchez Ramos, and José Ranilla Pastor.

2017. "Hyper-parameter selection in deep neural networks using parallel particle

swarm optimization." Proceedings of the Genetic and Evolutionary Computation

Conference Companion.

Mas, Jean-François, Henri Puig, José Luis Palacio, and Atahualpa Sosa-López. 2004.

"Modelling deforestation using GIS and artificial neural networks."

Environmental Modelling & Software 19 (5):461-471.

Mas, Jean F, and Juan J Flores. 2008. "The application of artificial neural networks to the

analysis of remotely sensed data." International Journal of Remote Sensing 29

(3):617-663.

Matheron, Georges. 1963. "Principles of geostatistics." Economic geology 58 (8):1246-

1266.

McBratney, AB, and R Webster. 1983. "HOW MANY OBSERVATIONS ARE

NEEDED FOR REGIONAL ESTIMATION OF SOIL PROPERTIES?" Soil

Science 135 (3):177-183.

139

McKay, Michael D, Richard J Beckman, and William J Conover. 1979. "Comparison of

three methods for selecting values of input variables in the analysis of output from

a computer code." Technometrics 21 (2):239-245.

Mera, Koichi, and Bertrand Renaud. 2016. Asia's financial crisis and the role of real

estate: Routledge.

Miller, Diane M, Edit J Kaminsky, and Soraya Rana. 1995. "Neural network

classification of remote-sensing data." Computers & Geosciences 21 (3):377-386.

Miller, Geoffrey F, Peter M Todd, and Shailesh U Hegde. 1989. "Designing Neural

Networks using Genetic Algorithms." ICGA.

Miller, Harvey J. 1999. "Potential contributions of spatial analysis to geographic

information systems for transportation (GIS‐T)." Geographical Analysis 31

(4):373-399.

Miller, Harvey J, and Michael F %J GeoJournal Goodchild. 2015. "Data-driven

geography." 80 (4):449-461.

Mitas, Lubos, and Helena Mitasova. 1999. "Spatial interpolation." Geographical

information systems: principles, techniques, management and applications 1:481-

492.

Mitchell, Tom M. 1997. "Machine learning. 1997." Burr Ridge, IL: McGraw Hill 45

(37):870-877.

Močkus, J. 1975. "On Bayesian methods for seeking the extremum." Optimization

Techniques IFIP Technical Conference.

Nasrabadi, Nasser M. 2007. "Pattern recognition and machine learning." Journal of

electronic imaging 16 (4):049901.

Nayak, Purna C, YR Satyaji Rao, and KP Sudheer. 2006. "Groundwater level forecasting

in a shallow aquifer using artificial neural network approach." Water Resources

Management 20 (1):77-90.

Nevtipilova, Veronika, Justyna Pastwa, Mukesh Singh Boori, and Vit Vozenilek. 2014.

"Testing artificial neural network (ANN) for spatial interpolation." International

Journal of Geology and Geosciences (JGG), ISSN 2329 6755:01-09.

Nickolls, John, and William J Dally. 2010. "The GPU computing era." IEEE micro 30

(2):56-69.

NSF. 2007. "Cyberinfrastructure Vision for 21st Century Discovery." doi:

https://www.nsf.gov/pubs/2007/nsf0728/.

Olden, Julian D, and Donald A Jackson. 2002. "Illuminating the “black box”: a

randomization approach for understanding variable contributions in artificial

neural networks." Ecological modelling 154 (1):135-150.

Omrani, Hichem, Amin Tayyebi, and Bryan Pijanowski. 2017. "Integrating the multi-

label land-use concept and cellular automata with the artificial neural network-

based Land Transformation Model: an integrated ML-CA-LTM modeling

framework." GIScience and Remote Sensing 54 (3):283-304.

Openshaw, Stan, and RJ Abrahart. 2014. "Geocomputation." GeoComputation, 2nd edn.

CRC Press, Boca Raton:1-21.

Openshaw, Stan, and Robert J Abrahart. 2000. GeoComputation. Vol. 24: Taylor &

Francis London.

https://www.nsf.gov/pubs/2007/nsf0728/

140

Özesmi, Stacy L, and Uygar Özesmi. 1999. "An artificial neural network approach to

spatial habitat modelling with interspecific interaction." Ecological modelling

116 (1):15-31.

Pebesma, Edzer J. 2004. "Multivariable geostatistics in S: the gstat package." Computers

& Geosciences 30 (7):683-691.

Pijanowski, Bryan C, Daniel G Brown, Bradley A Shellito, and Gaurav A Manik. 2002.

"Using neural networks and GIS to forecast land use changes: a land

transformation model." Computers, environment and urban systems 26 (6):553-

575.

Pijanowski, Bryan C, Snehal Pithadia, Bradley A Shellito, and Konstantinos

Alexandridis. 2005. "Calibrating a neural network‐based urban change model for

two metropolitan areas of the Upper Midwest of the United States." International

Journal of Geographical Information Science 19 (2):197-215.

Pijanowski, Bryan C, Amin Tayyebi, Jarrod Doucette, Burak K Pekin, David Braun, and

James Plourde. 2014. "A big data urban growth simulation at a national scale:

Configuring the GIS and neural network based Land Transformation Model to run

in a High Performance Computing (HPC) environment." Environmental

Modelling & Software 51:250-268.

Pitiot, Paul, Thierry Coudert, Laurent Geneste, and Claude Baron. 2009. "A priori

knowledge integration in evolutionary optimization." International Conference on

Artificial Evolution (Evolution Artificielle).

Pontius, Robert Gilmore, Wideke Boersma, Jean-Christophe Castella, Keith Clarke, Ton

de Nijs, Charles Dietzel, Zengqiang Duan, Eric Fotsing, Noah Goldstein, and

Kasper Kok. 2008. "Comparing the input, output, and validation maps for several

models of land change." The Annals of Regional Science 42 (1):11-37.

Pradhan, Biswajeet, and Saro Lee. 2010. "Landslide susceptibility assessment and factor

effect analysis: backpropagation artificial neural networks and their comparison

with frequency ratio and bivariate logistic regression modelling." Environmental

Modelling & Software 25 (6):747-759.

Quan, Daniel C, and Sheridan Titman. 1999. "Do real estate prices and stock prices move

together? An international analysis." Real Estate Economics 27 (2):183-207.

Quigley, John M. 2002. "Real estate prices and economic cycles." Berkeley Program on

Housing and Urban Policy.

Ratle, Alain. 2001. "Kriging as a surrogate fitness landscape in evolutionary

optimization." AI EDAM 15 (1):37-49.

Reed, Russell, and Robert J MarksII. 1999. Neural smithing: supervised learning in

feedforward artificial neural networks: Mit Press.

Rigol-Sanchez, JP, M Chica-Olmo, and F Abarca-Hernandez. 2003. "Artificial neural

networks as a tool for mineral potential mapping with GIS." International

Journal of Remote Sensing 24 (5):1151-1156.

Rigol, Juan P, Claire H Jarvis, and Neil Stuart. 2001. "Artificial neural networks as a tool

for spatial interpolation." International Journal of Geographical Information

Science 15 (4):323-343.

Robinson, TP, and G Metternicht. 2006. "Testing the performance of spatial interpolation

techniques for mapping soil properties." Computers and electronics in

agriculture 50 (2):97-108.

141

Rosenblatt, Frank. 1958. "The perceptron: a probabilistic model for information storage

and organization in the brain." Psychological review 65 (6):386.

Salakhutdinov, Ruslan, and Andriy Mnih. 2008. "Bayesian probabilistic matrix

factorization using Markov chain Monte Carlo." Proceedings of the 25th

international conference on Machine learning.

Sanger, Terence D. 1989. "Optimal unsupervised learning in a single-layer linear

feedforward neural network." Neural networks 2 (6):459-473.

Sareni, Bruno, and Laurent Krahenbuhl. 1998. "Fitness sharing and niching methods

revisited." IEEE transactions on Evolutionary Computation 2 (3):97-106.

Särndal, Carl-Erik, Ib Thomsen, Jan M Hoem, DV Lindley, O Barndorff-Nielsen, and

Tore Dalenius. 1978. "Design-based and model-based inference in survey

sampling [with discussion and reply]." Scandinavian Journal of Statistics:27-52.

Schmidhuber, Jürgen. 2015. "Deep learning in neural networks: An overview." Neural

Networks 61:85-117.

Schwarz, Josef, and Jifi Ocenasek. 2000. "A problem knowledge-based evolutionary

algorithm KBOA for hypergraph bisectioning." Proceedings of the 4th joint

conference on knowledge-based software engineering. IOS Press.

Shannon, Robert E. 1975. Systems simulation; the art and science.

Specht, Donald F. 1990. "Probabilistic neural networks." Neural networks 3 (1):109-118.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. "Dropout: a simple way to prevent neural networks from

overfitting." The journal of machine learning research 15 (1):1929-1958.

Stathakis, D. 2009. "How many hidden layers and nodes?" International Journal of

Remote Sensing 30 (8):2133-2147.

Sui, DZ, and RC Maggio. 1999. "Integrating GIS with hydrological modeling: practices,

problems, and prospects." Computers, environment and urban systems 23 (1):33-

51.

Tabios, Guillermo Q, and Jose D Salas. 1985. "A comparative analysis of techniques for

spatial interpolation of precipitation." JAWRA Journal of the American Water

Resources Association 21 (3):365-380.

Tang, Wenwu, and David A Bennett. 2009. "Parallel Agent-based Modelling of Land-

Use Opinion Dynamics Using Graphics Processing Units." Proceedings of the

10th International Conference on GeoComputation.

Tang, Wenwu, Wenpeng Feng, Jing Deng, Meijuan Jia, and Huifang Zuo. 2018. "Parallel

Computing for Geocomputational Modeling." In GeoComputational Analysis and

Modeling of Regional Systems, 37-54. Springer.

Tang, Wenwu, George P Malanson, and Barbara Entwisle. 2009. "Simulated village

locations in Thailand: A multi-scale model including a neural network approach."

Landscape ecology 24 (4):557-575.

Tang, Wenwu, and Jianxin Yang. 2020. "Agent-Based Land Change Modeling of a Large

Watershed: Space-Time Locations of Critical Threshold." Journal of Artificial

Societies and Social Simulation 23 (1):1-15.

Thornton, Chris, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013. "Auto-

WEKA: Combined selection and hyperparameter optimization of classification

algorithms." Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining.

142

Tobler, Waldo R. 1970. "A computer movie simulating urban growth in the Detroit

region." Economic geography 46 (sup1):234-240.

UNDESA. 2018. "World urbanization prospects 2018."

Wackernagel, H, L Bertino, JP Sierra, and J González del Río. 2002. "Multivariate

kriging for interpolating with data from different sources." In Quantitative

methods for current environmental issues, 57-75. Springer.

Wackernagel, Hans. 2013. Multivariate geostatistics: an introduction with applications:

Springer Science & Business Media.

Wanas, Nayaer, Gasser Auda, Mohammad S Kamel, and FAKF Karray. 1998. "On the

optimal number of hidden nodes in a neural network." IEEE Canadian Conference

on Electrical and Computer Engineering.

Wang, Shaowen. 2010. "A CyberGIS framework for the synthesis of cyberinfrastructure,

GIS, and spatial analysis." Annals of the Association of American Geographers

100 (3):535-557.

Wang, Shaowen, and Yan Liu. 2009. "TeraGrid GIScience gateway: bridging

cyberinfrastructure and GIScience." International Journal of Geographical

Information Science 23 (5):631-656.

Wang, Yeqiao, and Xinsheng Zhang. 2001. "A dynamic modeling approach to simulating

socioeconomic effects on landscape changes." Ecological Modelling 140 (1-

2):141-162.

Waters, Nigel. 2017. "Tobler’s First Law of Geography." doi:

10.1002/9781118786352.wbieg1011.

Weiß, Gerhard. 1994. "Neural networks and evolutionary computation. I. Hybrid

approaches in artificial intelligence." Proceedings of the First IEEE Conference

on Evolutionary Computation. IEEE World Congress on Computational

Intelligence.

Wilkinson, Barry, and Michael Allen. 1999. Parallel programming. Vol. 999: Prentice

hall Upper Saddle River, NJ.

Williams, Christopher KI, and Carl Edward Rasmussen. 2006. Gaussian processes for

machine learning. Vol. 2: MIT press Cambridge, MA.

Wolfram, Stephen %J Reviews of modern physics. 1983. "Statistical mechanics of

cellular automata." 55 (3):601.

Wu, Chih-Hung, Gwo-Hshiung Tzeng, Yeong-Jia Goo, and Wen-Chang Fang. 2007. "A

real-valued genetic algorithm to optimize the parameters of support vector

machine for predicting bankruptcy." Expert systems with applications 32 (2):397-

408.

Xiao, Ningchuan, David A Bennett, and Marc P Armstrong. 2002. "Using evolutionary

algorithms to generate alternatives for multiobjective site-search problems."

Environment and Planning A 34 (4):639-656.

Xiong, Hui Yuan, Yoseph Barash, and Brendan J Frey. 2011. "Bayesian prediction of

tissue-regulated splicing using RNA sequence and cellular context."

Bioinformatics 27 (18):2554-2562.

Yang, Chaowei, Robert Raskin, Michael Goodchild, and Mark Gahegan. 2010.

"Geospatial cyberinfrastructure: past, present and future." Computers,

Environment and Urban Systems 34 (4):264-277.

143

Yang, Qingsheng, Xia Li, and Xun Shi. 2008. "Cellular automata for simulating land use

changes based on support vector machines." Computers & geosciences 34

(6):592-602.

Yao, Xin. 1994. "The evolution of connectionist networks." In Artificial Intelligence and

Creativity, 233-243. Springer.

Yao, Yao, Jinbao Zhang, Ye Hong, Haolin Liang, and Jialv He. 2018. "Mapping fine‐

scale urban housing prices by fusing remotely sensed imagery and social media

data." Transactions in GIS 22 (2):561-581.

Yeh, Anthony Gar-On, and Xia Li. 2001. "A constrained CA model for the simulation

and planning of sustainable urban forms by using GIS." Environment Planning

B: Planning Design 28 (5):733-753.

Yeh, Anthony Gar-On, and Xia Li. 2003. "Simulation of development alternatives using

neural networks, cellular automata, and GIS for urban planning."

Photogrammetric Engineering Remote Sensing 69 (9):1043-1052.

Young, Steven R, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and Robert M

Patton. 2015. "Optimizing deep learning hyper-parameters through an

evolutionary algorithm." Proceedings of the Workshop on Machine Learning in

High-Performance Computing Environments.

Yu, Jianbo, Shijin Wang, and Lifeng Xi. 2008. "Evolving artificial neural networks using

an improved PSO and DPSO." Neurocomputing 71 (4-6):1054-1060.

Yu, Xiao-Hu, and Guo-An Chen. 1997. "Efficient backpropagation learning using

optimal learning rate and momentum." Neural Networks 10 (3):517-527.

Zhai, Yaqian, Yao Yao, Qingfeng Guan, Xun Liang, Xia Li, Yongting Pan, Hanqiu Yue,

Zehao Yuan, and Jianfeng Zhou. 2020. "Simulating urban land use change by

integrating a convolutional neural network with vector-based cellular automata."

International Journal of Geographical Information Science:1-25.

Zhang, Chunkai, Huihe Shao, and Yu Li. 2000. "Particle swarm optimisation for evolving

artificial neural network." Systems, Man, and Cybernetics, 2000 IEEE

International Conference on.

Zhang, Lingqi, Tianyi Wang, Zhenyu Jiang, Qian Kemao, Yiping Liu, Zejia Liu, Liqun

Tang, and Shoubin Dong. 2015. "High accuracy digital image correlation

powered by GPU-based parallel computing." Optics Lasers in Engineering 69:7-

12.

Zheng, Minrui, Wenwu Tang, and Xiang Zhao. 2019. "Hyperparameter optimization of

neural network-driven spatial models accelerated using cyber-enabled high-

performance computing." International Journal of Geographical Information

Science. doi: 10.1080/13658816.2018.1530355.

