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ABSTRACT

JING JIN. Assured information sharing for ad-hoc collaboration.
(Under the direction of DR. GAIL-JOON AHN)

Collaborative information sharing tends to be highly dynamic and often ad hoc among

organizations. The dynamic natures and sharing patterns in ad-hoc collaboration impose a

need for a comprehensive and flexible approach to reflecting and coping with the unique

access control requirements associated with the environment.

This dissertation outlines a Role-based Access Management for Ad-hoc Resource Shar-

ing framework (RAMARS) to enable secure and selective information sharing in the het-

erogeneous ad-hoc collaborative environment. Our framework incorporates a role-based

approach to addressing originator control, delegation and dissemination control. A special

trust-aware feature is incorporated to deal with dynamic user and trust management, and

a novel resource modeling scheme is proposed to support fine-grained selective sharing

of composite data. As a policy-driven approach, we formally specify the necessary pol-

icy components in our framework and develop access control policies using standardized

eXtensible Access Control Markup Language (XACML). The feasibility of our approach

is evaluated in two emerging collaborative information sharing infrastructures: peer-to-

peer networking (P2P) and Grid computing. As a potential application domain, RAMARS

framework is further extended and adopted in secure healthcare services, with a unified

patient-centric access control scheme being proposed to enable selective and authorized

sharing of Electronic Health Records (EHRs), accommodating various privacy protection

requirements at different levels of granularity.
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CHAPTER 1: INTRODUCTION

The rise of Internet has led collaborators to face dramatic changes in managing and

sharing their resources. Subsequently, it has extremely influenced to the traditional infor-

mation sharing fashion. Collaborative information sharing has increasingly turned outward

to connect distributed participants across enterprise and institutions. By removing the bar-

riers of the time and geographical distance from the conventional collaborations, people

are able to work together regardless of their locations. And new terms such as virtual

organization, virtual laboratory, and collaboratorium have been introduced. Such a new

paradigm of collaboration and organization settings has turned the information sharing into

a widely spread and highly dynamic network-based environment, while formally accessing

the resources in a secure manner poses a difficult challenge. This dissertation addresses the

issues of advocating selective and secure information sharing for web-based collaborative

environments.

1.1 Ad-hoc Collaboration

Under many circumstances, the collaboration relationship among distributed parties is es-

tablished based on spontaneous interactions and use patterns in an ad-hoc fashion. For

example, groups of universities, laboratories, and industrial companies may collaborate

and mutually share research results for treatment of a particular human disease; different

educational agencies collaboratively implement, disseminate, and institutionalize effective

practices for supporting and promoting people from underrepresented groups in the field

of Computer Science; and federal, state and local government agencies share information

to coordinate the efforts of preventing terrorist attacks. As these examples indicate, a vari-

ety of distributed parties may need to collaborate with entities that they do not necessarily
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trust. And the establishment of collaboration relationship is highly dynamic and may vary

tremendously in purpose, scope, size, duration, and the number of participants. In this dis-

sertation, we informally denote such a new type of collaboration environment as ad-hoc

collaboration [105, 7, 67, 66]. Our definition of ad-hoc collaboration is as follows:

Based on common interests, distributed individual participants who belong to

many different organizations spontaneously establish or join collaborations,

and dynamically perform a variety of activities such as communication, infor-

mation sharing, cooperation, problem solving, and negotiation.

Among the various activities performed in ad-hoc collaboration, in this dissertation we

focus on the digital information sharing. Compared to well-structured and managed inter-

nal collaborations, the formulation of ad-hoc collaboration is more transient and there is

no pre-established global consensus of trustworthiness among all distributed participating

parties.

1.2 Emerging Collaborative Sharing Infrastructures

Traditionally, collaborative information sharing heavily relies on client-server based ap-

proaches or email systems. By recognizing the inherent deficiencies such as a central point

of failure and scalability issue, several distributed computing alternatives have been pro-

posed to support collaborative sharing of resources, including Grid computing [48, 19] and

Peer-to-Peer (P2P) networking [88].

Grid computing [48, 19] is a distributed computing infrastructure for advanced science

and engineering applications to share remote resources, federate datasets, and pool comput-

ers for large-scale simulations and data analysis. Researchers of many disciplines rely on

the established infrastructure to collaboratively compute and solve data intensive problems

that are too complex for the resources of a single institution. In Grid computing, the collab-

oration is organized in a form of virtual organization (VO) including dynamic collections

of geographically distributed individuals, institutions and resources. With open standards
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and communication protocols, the Grid computing infrastructure allows VO members to

uniformly share resources regardless of their locations and internal architectures.

While Grid computing suits for highly structured scientific collaborations with estab-

lished infrastructures, P2P networking works well on heterogeneous network environments

and promises to be more flexible and reliable for smaller ad-hoc collaborative interac-

tions [17, 45]. A pure P2P network does not have the notion of clients or servers but

only equal peer nodes that simultaneously function as both “clients” and “servers” to the

other nodes on the network. Especially, with its decentralized structure and load balancing

feature, P2P-based file sharing system offers better scalability and robustness connecting

millions of simultaneous peer nodes. As demonstrated in the newly proposed SciShare sys-

tem [17, 18], P2P networking technology also has great potentials to support information

sharing in collaborative environments.

1.3 Access Control Challenges

Nevertheless, given the diverse contexts of collaborative sharing and heterogenous support-

ive infrastructure settings, achieving effective access control is a critical requirement. The

sharing of sensitive information in collaboration is necessarily to be highly controlled by

defining what and how is to be shared, who is allowed to share and under which condi-

tion. This becomes extremely difficult in an open and dynamic environment when a large

number of collaborating users may leave or join the collaboration at any time.

In ad-hoc collaboration, users that have no pre-existing relationships may try to col-

laborate and share information. Therefore, the resource provider or authorization authority

should be able to cope with a large number of strangers. In this case, it has made the tradi-

tional identity-based access control approaches generally ineffective, as these approaches

rest on the principle that a user requesting access should be known a priori [33, 102, 44].

Instead, the critical issue in an open and dynamic collaborative environment is not “Who

exactly is this requester,” but “Do I trust this requester to share my resource?” The prop-

erties or attributes possessed by the requesting users (i.e., employment status, citizenship,
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group membership and qualifications) are more relevant to characterizing users and deter-

mining whether or not they should be trusted to conduct sensitive interactions for informa-

tion sharing. Usually, user properties or attributes are carried in a form of credentials, such

as academic diplomas, certifications, security clearances, and identification documents.

Meanwhile, the same attribute may be attested through a number of different credentials.

For instance, a user’s name may be testified in his driver’s license by a local DMV office or

in his passport by the U.S. government agency. However, when user attributes are utilized

as a generalized access control mechanism, different credentials may not always be trusted

to the same extent and thus fail to assert the attributes, resulting in the denial of access

to the shared data. Therefore, dealing with such trust management concerns is extremely

important in order to achieve effective access control in ad-hoc collaboration.

Another important aspect involved in collaborative sharing is to provide fine-grained

selective access control for the shared resources. In particular, the resource being shared in

a collaboration may be a composition of different types of sub-objects. Such resources need

to be shared fully or partially depending on different collaboration purposes and degrees

of sensitivity. A fine-grained access control mechanism is thus required to support a spec-

trum of protection granularity levels, where different access control policies are applied to

different portions of the same resource. As a motivation example, a patient’s electronic

health records may include the patient’s identification information, insurance information,

the doctor’s written notes for each office visit, lab results, X-ray images and so on. How-

ever, disclosing the complete patient’s profile to collaborators without discretion can cause

a great breach of the patient’s privacy. Sharing of such complex resources must comply

with legal and regulatory policies while simultaneously ensuring that access to sensitive in-

formation is limited only to those entities who have a legitimate need-to-know requirement.

For instance, only the patient’s disease symptoms and related medical histories in the pro-

file need to be shared with other health care professionals for disease diagnosis and research

purposes, while the sensitive personal identifiable information should be well protected.
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Given these complexities, we need to address several challenging questions:

• What are the unique access control requirements in ad-hoc collaboration?

• How trust can be managed among strangers within the collaboration? And to what

extent can trust management contribute to the access control solutions?

• How to promote fine-grained and selective information sharing among disparate col-

laboration parties?

• How can we build secure and interoperable systems to enable collaborative sharing

in heterogeneous network environments?

These are critical questions to be answered to assure the secure information sharing in

ad-hoc collaboration. Some approaches have been proposed – from formal access control

models to security policies, mechanisms and systems – to address information sharing and

general access control issues in dynamic environments [102, 10, 22, 38, 72, 65, 73, 5, 92,

11, 108, 27, 18, 76]. However, as ad-hoc collaboration is a newly emerged environment, our

study clearly indicates that there is a need to design a comprehensive access management

framework that is general and flexible enough to cope with the special access control as well

as trust management requirements associated with the environment. In this dissertation

work, we would make one step towards this direction.

1.4 Statement of the Hypothesis and Approaches

Therefore, this research hypothesizes that:

An effective access management framework is the key to enabling secure information

sharing in ad-hoc collaboration.

To accomplish our goal in this dissertation work, we consider two fundamental secu-

rity engineering questions to answer: “what” security needs to be enforced, and “how” the

security is enforced [101]. In ad-hoc collaboration, the environment is highly dynamic and

distributed, spanning organizational boundaries. Trying to answer these two questions in a
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Figure 1.1: Multi-layered Research Method

single step is hardly viable in such a complex environment. As a systematic approach to

analyzing and solving the problem, we first adopt an intuitive layered research process. As

illustrated in Figure 1.1, we need to clearly understand the target environment (or problem

domain) to identify access control requirements to be fulfilled in security solutions. These

requirements, however, are often informal since they are derived from a particular busi-

ness domain. From the security engineering domain, an access control model then should

be proposed to formally articulate these access control requirements. And based on the

identified formal access control model, we need to specify policies to realize the concepts

and components conveyed in the model. While the access control model and policy frame-

work focus on the “what” aspect, the system architecture and implementation mechanisms

address the “how” aspect in terms of detailed system components and operational proce-

dures to enforce the desired access control policies. Finally, the security system must be

evaluated against the target business domain to examine how well the access control re-

quirements have been accommodated. The main purpose of this approach is to guide our

research to proceed in a systematic way while keeping clear as to which decisions are being

made at each layer.

Following this research process, this dissertation work designs and develops an access

management framework advocating selective and secure information sharing for ad-hoc
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collaboration. In particular, we first scope and analyze the ad-hoc collaboration environ-

ment with a concrete scenario of public health surveillance collaboration. From the sce-

nario, we articulate the generic access control requirements and trust management issues

associated with the environment, and then we analyze the patterns of collaborative infor-

mation sharing and dissemination, from which more detailed requirements for secure infor-

mation sharing are derived. These requirements are reflected and addressed in our proposed

Role-based Access Management for Ad-hoc Resource Sharing framework (RAMARS). In

particular, RAMARS framework incorporates a role-based approach to addressing origina-

tor control, delegation and dissemination control, with a special trust-aware feature being

incorporated to deal with dynamic user and trust management. In order to evaluate the fea-

sibility of our approach, RAMARS framework has been applied in both P2P networking

and Grid computing infrastructures to support secure and authorized information sharing in

collaborations. In addition, we propose a comprehensive evaluation matrix to measure the

performance of our systems. Finally, we adopt RAMARS framework in healthcare domain

with an extended composite resource modeling and authorization scheme to enable selec-

tive sharing of patients’ Electronic Health Records (EHRs) at different levels of granularity,

accommodating various privacy protection requirements at different levels of granularity.

1.5 Summary of Contributions and Dissertation Organization

The contributions of our RAMARS framework are summarized as follows:

• We demonstrate a systematic research methodology to provide comprehensive and

realistic security solutions to newly emerged environments.

• We articulate the unique access control requirements and trust management concerns

of ad-hoc collaboration environments to address the issues of selective and secure

resource sharing, minimizing the risks of unauthorized access.

• We propose a comprehensive and integrated solution for supporting secure and selec-

tive sharing in ad-hoc collaboration, incorporating ideas of role-based access control,
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originator control, delegation, trust management and fine-grained access control on

composite resources.

• We demonstrate a policy-driven approach to achieving security in distributed com-

puting environments. A formal policy specification scheme is proposed and imple-

mented based on eXtensible Access Control Markup Language (XACML).

• We propose a comprehensive and well-designed system architecture that highlights

key design issues for distributed authorization systems.

• We provide first-hand experience in building practical authorization systems for both

P2P networking and Grid computing communities with rigorous performance evalu-

ation and system enhancement.

• We propose and demonstrate a possible approach to supporting privacy preserving

medical information sharing for secure healthcare services.

The remainder of this dissertation is organized as follows. Chapter 2 discusses general

security fundamentals and reviews existing authorization mechanisms for collaborative en-

vironments. In Chapter 3, we clearly define the scope of ad-hoc collaboration and analyze

the unique access control requirements within the environment. Chapter 4 elaborates the

detailed design and formalization of RAMARS framework. The policy specification and

evaluation is discussed in Chapter 5. Concrete implementations of the RAMARS frame-

work in the context of P2P networking and Grid computing infrastructures are described

in Chapter 6. A case study of possible applications of RAMARS framework in health-

care domain with fine-grained authorization and selective sharing feature is discussed in

Chapter 7. Finally Chapter 8 summarizes this dissertation and presents some directions for

future work.



CHAPTER 2: BACKGROUND AND RELATED WORK

In order to fully leverage an effective access control solution for secure information

sharing in ad-hoc collaboration, it is important to have thorough knowledge of related ac-

cess control models, the available security management mechanisms and existing security

systems for collaborative environments.

In an access control model, the entities that can perform actions in the system are called

subjects, and the entities representing resources to which access may need to be controlled

are called objects, and the ways in which a subject can access an object are called ac-

cess rights. A sound understanding of existing access control models helps us analyze the

strength and weakness of an access control model in regulating the subjects, objects and

access rights in its perspective domain, which in return help us design a comprehensive

access control model for the newly emerged ad-hoc collaboration environment.

The security management mechanisms elaborate the state-of-the-art technologies to re-

alize various access control models as concrete access control policies, security mech-

anisms and security architectures in building real security management systems. These

technologies are also utilized as part of our solutions to implement our proposed approach

and build secure information sharing systems for ad-hoc collaboration.

The literature review of existing security systems for collaborative environments lead

us a better understanding of the current state of security research in the field, so that we



10

could justify our research approach, compare and evaluate our security solutions.

2.1 Related Access Control Models

2.1.1 Traditional Access Control Models

Historically and traditionally, there are two fundamental types of access control models

defined by the Department of Defense Trusted Computer Security Evaluation Criteria (TC-

SEC) for the protection of data from unauthorized access and disclosure [33]: mandatory

access control (MAC) and discretionary access control (DAC).

MAC has been closely associated with multi-level secure (MLS) systems [41]. Infor-

mation (object) is classified with a security label based on its sensitivity, which often ranges

from unclassified to classified, secret, top secret and so forth. A user (subject) is associ-

ated with a certain security attribute, called clearance. The access control decision is then

contingent on verifying the compatibility of the security labels of the information and the

clearance properties of the requesting user. Based on elegant mathematics models, MAC

models could achieve a high degree of robustness and assurance, and their access con-

trol policies strongly restrict the scope and direction of information dissemination within a

closed environment [16, 32].

By contrast, DAC models [70, 103] are defined as “a means of restricting access to

objects based on the identity of subjects and/or groups to which they belong” [33]. The

access control list (ACL) [103] is a typical implementation of DAC model that maintains a

list of permitted subjects with their permissions attached to an object. The main difference

from MAC is that in DAC the owner of an object has discretionary authority over who else

can access to the object. DAC mechanisms are often not used in a stringent need-to-know

environment because they are widely considered lack of the required safety assurance [79].

During the last decade, Role-Based Access Control (RBAC) model has been widely

accepted as an alternative approach to MAC and DAC for managing and enforcing secu-

rity in large-scale and enterprise-wide systems [102, 44]. The central construct of RBAC

is the role. Permissions are associated with roles, and users acquire permissions by be-
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ing assigned to appropriate roles. Roles are always created based on the set of necessary

permissions to execute a specific job function in an organization, and organizational users

are then assigned according to their responsibilities and qualifications. Users can be easily

reassigned from one role to another. And permissions can be easily granted to or revoked

from roles as needed. With the abstraction between users and permissions through roles,

RBAC could tremendously reduce the complexities of security management for system ad-

ministrators. RBAC96 models and the later NIST standard RBAC model [102, 44] also in-

clude components of role hierarchies and constraints. Role hierarchies are a natural means

for structuring roles to reflect an organization’s lines of authority and responsibility. In

the hierarchical structures, senior roles generally inherit the permissions assigned to junior

roles, and this enables the role construct to be multi-layered, thereby further reducing the

number of relations between users and permissions. Constraints are applied to establish

higher level organizational policies. A well-known example of constraints is the separation

of duty. For instance, the same user cannot be a member of both purchasing manager

role and accounts payable manager role. The separation of duty constraint reduces

possible frauds or errors by controlling membership and use of roles as well as permission

assignment [102]. Figure 2.1 illustrates the basic elements and system functions in the

RBAC96 models. With all these features, RBAC systems enable users to carry out a broad

range of authorized operations and provide great flexibility and breadth of application. It

has been demonstrated that both MAC and DAC access control policies can be configured

using RBAC [89].

In traditional closed environments, access control policies rest on the principle that

a user requesting access should be known a priori. As a result, it is assumed that a user’s

identity information should exist within policy-effective domain(s) where an access control

decision can be made. MAC, DAC and RBAC all remain in line with the principle. They

regulate subjects’ access on the basis of their known security clearances, their identities or

groups, and roles, respectively. We generalize such access control models as identity-based
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U, R, P, and S (sets of users, roles, permissions and sessions, respectively); PA  P × R, a many-to-many permission-to-role assignment relation;UA  U × R, a many-to-many user-to-role assignment relation;RH⊆ R × R, a partial order on R called the role hierarchy or role dominance relation.user : S → U, a function mapping each session si to the single user user(si);roles : S → 2R, a function mapping each session si to a set of roles, formally, roles(si)={r|(∃r’≥r)[(user(si),r’) UA]}.
Permissions(P)Roles(R)Users(U) ...User RolesRole hierarchy(RH) Permission assignment (PA)User assignment (UA) ConstraintsSessions (S)

Figure 2.1: Basic Elements and Functions in RBAC96 Model

access control models. However, these conventional access control approaches are often

inadequate to meet all the requirements that today’s open network environments usually set

out when the aforementioned principle does not hold any more [74, 109].

2.1.2 Delegation and Trust Management

Delegation has been recognized to leverage a means of propagating authorities and respon-

sibilities in a distributed computing environment. Over years, many role-based delegation

models [116, 10, 14] have been proposed to formulate and control the behaviors where or-

ganizational users themselves delegate role authorities to others to carry out some functions

authorized on behalf of the former.

Trust management (TM) [23], as another generalized approach to utilizing delegation,

has attracted growing attention for authorization in open and distributed network environ-

ments. Central to TM approaches is the capability delegation, which is incorporated into a

credential chain from a resource owner to an access requester. An example usage of TM is

shown in Figure 2.2. The TM approach generally deals with the following components for

its proper functionality.
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Figure 2.2: Trust Management

• Policies: they serve as the ultimate sources of authority (i.e., resource owner) in the

local environment for controlling access.

• Credentials: they represent delegations of trust to prove the authorization of certain

requested actions.

• Compliance Checker: this represents an algorithm or mechanism for checking if a

set of credentials proves that a requested action complies with the policies.

Unlike traditional identity-based access control models, TM approaches essentially be-

long to the attribute-based access control that grants access to users based on the attributes

possessed by the requester without assuming the users being known a priori. Hence, it pro-

vides an authorization framework for unknown entities, whereby it is possible to express,

evaluate, and enforce decentralized access control policies and credentials in an open and

distributed computing environment. KeyNote, SPKI/SDSI, Delegation Logic (DL), SD3

and RT are all examples of TM systems designed along the line [22, 38, 72, 65, 73].

Even though the notion of “trust management” has been widely utilized, the TM sys-

tems limit the scope of “trust” for the purpose of distributed access control, where the trust

relationship between the requesting user and the local resource owner is treated as a boolean

value to directly derive the authorization decision. A common assumption made in these

systems is that the requesting user’s credentials are unconditionally accepted. However,

this may not be the case as trust is always considered as a subjective notion to the trusting
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entity, and some entities may be trusted more than others with respect to performing an

action [51, 34]. Therefore, the meaning of trust and the role of trust management in the

context of collaborative sharing environments need to be carefully examined before any

adoption of trust management approaches.

2.1.3 Models for Dissemination Control

Originator control (ORCON) is a special access control policy defined by a resource owner,

so called originator, to control the dissemination of restricted resources [5, 79]. In contrast

to MAC models where the authorization policy for information access and dissemination

is uniformly driven by security labels of the resources, ORCON shares with DAC the no-

tion that enables the resource owner to decide who should have access to it with a spe-

cial originator control label. ORCON policies also require that resource recipients obtain

the owner’s permission to re-disseminate protected resources. The enforcement of OR-

CON policies relies on a centralized control authority to maintain the ORCON resource

labellings, and a non-discretionary access control list to maintain the designated recipients

of the resource. Such approach limits the ability to enforce ORCON policies outside of a

closed system environment where a central control authority such as a reference monitor is

not available [90].

The concept of Usage Control (UCON) is introduced in [90, 91] for controlling ac-

cess and usage of digital information objects. In UCON, authorization decisions are not

only checked and made before the access, but may be continuously checked during the ac-

cess. Access rights may be revoked if some policies are not satisfied any more during the

access when the context of subjects, objects or environmental conditions changes. The re-

dissemination control addressed in ORCON is also one of the key concerns in UCON. By

introducing licensing and ticketing mechanisms [90], UCON has the potential to support

and enforce ORCON policies in more versatile and flexible ways for distributed environ-

ments. Most recently, the notion of dissemination control (DCON) has been introduced

with a broader concept concerning with controlling information during the usage and dis-
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semination activities [107].

The aforementioned models, although very relevant to controlling the digital informa-

tion sharing and dissemination in collaborative environments, mostly stay at a conceptual

and theoretical level. They lack of practical technologies or systems to support the concepts

and functions illustrated in these models.

2.2 Security Management Mechanisms

2.2.1 Authentication and Authorization Infrastructures

The public key cryptography has been widely used for encryption and digital signatures

to ensure data security and integrity during message exchanges between communicating

parties. To verify the authenticity of an entity’s identity or the signature on a signed mes-

sage, one needs to have that entity’s public key. In unsecured network environments such

as Internet, it is essential to verify the authenticity of the entity itself and make sure the en-

tity’s keys are not compromised. A Public Key Infrastructure (PKI) [6] is thus introduced

to leverage commonly trusted entities to securely associate identities with public keys. In

a PKI, a subject’s identity is bound to a public key via a certificate issued and signed by a

commonly trusted Certification Authority (CA). A CA issues digitally signed certificates to

certify that a specific identity to public key mapping is authentic. A widely used standard

identity certificate is the X.509 Public Key Certificate (PKC) as specified in RFC3280 [58].

Figure 2.3 illustrates the structure of an X.509 PKC. As a subject’s key may be compro-

mised or the mapping of the key to identity may become invalid, a Certificate Revocation

List (CRL) should be publicly made available to all relying parties that accept PKCs for

authentication.

While a PKI is generally for authentications that verify the authenticity of an entity’s

identity, a Privilege Management Infrastructure (PMI) manages an entity’s authorizations

as the entity’s attributes [64]. As illustrated in Table 2.1, there are many similar concepts

in PKIs and PMIs [28]. While an X.509 PKC is used to maintain a strong binding between
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Figure 2.3: Public Key Certificate and Attribute Certificate

Table 2.1: A Comparison of PKIs with PMIs
Concept PKI Entity PMI Entity
Certificate Public Key Certificate Attribute Certificate
Certificate issuer Certification Authority (CA) Attribute Authority (AA)
Certificate user Subject Holder
Certificate binding Subject’s name to public key Holder’s name to privilege attribute(s)
Revocation Certificate revocation list (CRL) Attribute certificate revocation list (ACRL)
Root of trust Root CA Source of authority (SOA)

a user’s identity and his/her public key, an X.509 Attribute Certificate (AC) [40] maintains

a strong binding between a user’s identity and arbitrary attributes (i.e., role membership

information, policy statements, accounting information) for authorization purposes. The

entity that signs an AC is called an Attribute Authority (AA). And the root of trust of

the PMI is called the Source Of Authority (SOA). If a user needs to have authorization

permissions revoked, an AA maintains an Attribute Certificate Revocation List (ACRL)

available to all relying parties for authorization.

2.2.2 Security Enforcement Architecture Pull Vs. Push

In security engineering, the pull model and the push model designate two well-known

approaches to exchanging security data between a requesting client and an enforcement

server. The pull model is based on the request-response paradigm: the client sends an
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Figure 2.4: Security Enforcement Architecture

access request to the server, then the server is responsible to obtain the client’s authentica-

tion and authorization information in order to enforce the authorized access to the client.

The push model, in contrast, requires the client to deliver his/her authentication and au-

thorization credentials at the initial access request. Figure 2.4 illustrates these two system

enforcement architectures.

One significant advantage of the push approach is that the enforcement server is pro-

vided with the information required to take an access decision immediately. The compu-

tational and communication overheads of making an access decision using a push model

are negligible in principle. Especially, the push model has advantages in utilizing PKIs and

PMIs when the information contained in the certificate is static and the validity of the cer-

tificate can be assumed. However, if the information contained in the certificate is liable to

change or the certificate may be revoked, the pull approach is necessary for the enforcement

server to check that no CRL or ACRL exists for a certificate each time an access request

is made for authentication and authorization purposes. Clearly, this imposes considerable

computational and communication overheads on the decision-making process at the server

side, yet simplifies the overall interception by the client.

2.2.3 eXtensible Access Control Markup Language (XACML)

The eXtensible Access Control Markup Language (XACML) is an OASIS standard gen-

eral purpose policy specification language as well as an access decision language [84, 85].

XACML consists of a syntax definition for a policy language and specifies semantic rules
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to process and evaluate XACML policies.

A typical setup for XACML policy evaluation is illustrated in Figure 2.5. An access re-

quest is sent to a Policy Enforcement Point (PEP) that protects the resource. The PEP forms

an XACML Request based on the requester’s attributes (Subject), the resource in question

(Resource), the action (Action), and other information pertaining to the request (Environ-

ment). The PEP then sends this XACML Request to a Policy Decision Point (PDP), which

evaluates the request against XACML policies that applies to the request. XACML policies

are maintained and provided through a Policy Administration Point (PAP). An XACML

Response is returned from PDP back to PEP with an authorization decision, and PEP is

responsible to enforce the decision accordingly. An authorization decision included in an

XACML Response pertains to the following four values:

• PERMIT: The requested action is allowed.

• DENY: The requested action is not allowed.

• NOT APPLICABLE: The policies available to PDP are not applicable to the request.

• INDETERMINATE: Some errors occurred during evaluation.

The root of XACML policies is a Policy or a PolicySet. A PolicySet is a container that

can hold multiple Policies or PolicySets, as well as references to policies found in remote

locations. A Policy represents a single access control policy, expressed through a set of

Rules. Each Rule has a boolean function Condition that is associated with an Effect of
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Figure 2.6: XACML Policy Language Model

“Permit” or “Deny”. An XACML PDP finds a policy that applies to a given request by

comparing the Target conditions in a PolicySet, Policy or Rule. A Target basically defines

a set of conditions for the Subject, Resource, Action and Environment that must be met to

a given request. Once a Policy or Rule has been found and verified to apply to a request,

the Rule’s Condition is evaluated, then the Rule’s Effect is returned as the access control

decision with successful evaluation of the Rule. Because a Policy or PolicySet may contain

multiple Policies or Rules, each of which may evaluate to different authorization decisions,

XACML introduces a collection of Combining Algorithms to combine multiple decisions

into a single decision. There are Policy Combining Algorithms used by PolicySet and Rule

Combining Algorithms used by Policy. An example of these is the Permit-overrides al-

gorithm, which returns a “Permit” decision when any individual results of evaluation is

“Permit”. Figure 2.6 illustrates the overall policy language model of XACML [84].
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2.2.4 Security Assertion Markup Language (SAML)

The Security Assertion Markup Language (SAML) is an OASIS standard language and

protocol for exchanging authentication and authorization information between security do-

mains [82, 78]. SAML allows business entities to make SAML assertions regarding a

subject to relying parties. Each SAML assertion may encapsulate a set of statements per-

taining to a particular category (Authentication, Attribute or AuthorizationDecision) into a

standard XML structure. Each assertion holds metadata such as the issuer identity, asser-

tion identifier, and protocol version numbers as well as conditions and advice. Assertion

validity dates are a specific form of a condition. And other standard condition definitions

address caching and intended audience restrictions.

Three types of statements are provided by SAML:

• Authentication statement: An authentication statement asserts that a principal did

indeed authenticate with the asserting party at a particular time using a particular

method of authentication.

• Attribute statement: An attribute statement asserts that a subject is associated with

certain attributes. An attribute is simply a name-value pair. Relying parties use

attributes to make access control decisions.

• Authorization decision statement: An authorization decision statement asserts that a

subject is permitted or denied to perform certain action to specific resource.

In the SAML message exchange protocol, an entity that makes SAML assertions is

called an Identity Provider, and the relying party that consumes SAML assertions for se-

curity management purposes is called a Service Provider. A SAML protocol is a simple

request-response protocol, where a service provider sends a SAML Request element to

an identity provider requesting certain SAML assertions, and the identity provider returns

a SAML Response element to the requester with the SAML assertions being requested.

SAML assertions can be bound to many different underlying communications and transport



21

protocols such as HTTP POST requests or XML-encoded SOAP messages. Many security

frameworks, such as the Liberty Alliance [3], the Internet2 Shibboleth project [25], and

OASIS Web Services Security (WS-Security) [81], have all adopted SAML as an underly-

ing technology enabling cross-platform security management communications.

2.3 Current State of Security Systems in Collaborative Infrastructures

2.3.1 Grid Security Mechanisms

The open source Globus Toolkit [12] is the core Grid infrastructure that provides all nec-

essary functionalities for running Grid jobs including resource monitoring, discovery, and

management. Inside the current release of Globus Toolkit version 4 (GT4), the Grid Secu-

rity Infrastructure (GSI) [47, 113] is implemented as the de-facto Grid security standard for

authentication and message protection. GSI utilizes standard X.509 public key certificates

(PKCs) [58], public key infrastructure (PKI) [6], the SSL/TLS protocol [61], and X.509

Proxy Certificates [110] as its core components. In particular, an important requirement

for authentication in Grids is to support single-sign-on, which allows a user to authenticate

once and gain access to the resources of multiple software systems within a Grid VO with-

out being prompted to log in again. In addition, it is often the case that a Grid user needs

to delegate a subset of his/her privileges to another entity or process for a brief amount of

time. For example, a user who needs to move a large dataset for experiments may want

to grant to a reliable file transfer service to access the dataset and perform a set of file

transfers on the user’s behalf. Proxy Certificates [110] allow an entity holding a standard

X.509 PKC to delegate its identity or privileges to another entity, so that the bearer may

authenticate and establish secured connections with other parties in the same manner as

a normal X.509 end-entity certificate. Proxy Certificates share the same format as X.509

PKCs, binding a unique public key to a subject identity. Meanwhile, Proxy Certificates

also explore the legitimate extension fields of X.509 PKCs for carrying necessary policy

statements to constrain the privilege delegations.
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In terms of authorization, GSI elaborates a proprietary access control list (ACL) type

of policy as located in a gridmap file. A gridmap file specifies mappings of a user’s global

identity in his/her X.509 PKC (called distinguished name, DN) to a local account of the

resource operating system. Users are authorized to use the resources when their DNs ap-

pear in such list and the privileges are determined by the associated local account. This

allows the GSI to be layered securely on top of existing systems and to provide uniform

credentials and certification infrastructure without undermining local security mechanisms.

This method of security, however, is very coarse-grained and does not scale to ascertain the

privileges for a large number of Grid users. Many alternatives have been proposed in the

Grid community.

The CAS [92] framework from Globus Alliance [53] builds on the GSI infrastructure to

support group authorization. It segregates the administration of resources from the admin-

istration of Grid communities. Every Grid community instantiates a CAS server controlled

by a community administrator. The community administrator is trusted by all resource

providers in the community to manage authorization permissions among the community

users. A community user obtains an X.509 Proxy Certificate as his/her individual creden-

tial from the CAS server indicating the authorizations being assigned to him/her, and such

credential is then presented to the resources in the community to gain the access. An-

other community-based authorization framework is realized in VOMS system [11]. VOMS

and CAS are similar in which both implement a push architecture where the authorization

servers issue policy assertions to a user, then the user presents the assertions to obtain VO

issued rights. However, the VOMS-based system represents privileges in the form of X.509

ACs rather than X.509 Proxy Certificates. Another difference is that VOMS server asserts

the memberships of a user, and it is the responsibility of each resource provider site to de-

cide the rights granted to the user with those asserted memberships, while CAS grants a

user’s privileges centrally without any further interpretation by the resource site.
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The Akenti [108] system enforces access control on resources based on policies ex-

pressed by multiple distributed stakeholders. Akenti provides a policy language to define

infrastructure components for access control policies. Akenti makes an extensive use of

X.509 PKCs as the authorization token for encoding both user attributes and usage con-

ditions. Akenti allows the certificates to be stored in distributed remote repositories and

provides mechanisms based on the pull architecture to ensure that all applicable usage con-

ditions are retrieved and combined when making an access control decision. However,

Akenti, as a stand alone authorization system has not been fully explored to use with Grid

applications. PERMIS [27], on the other hand, provides a Privilege Management Infras-

tructure (PMI) [64] that leverages the role based access control. The RBAC policy, in a

self-defined XML format, is used to control access to all resources within the policy do-

main and is composed of a number of sub-policies. In PERMIS, policies and user attributes

are held in X.509 ACs. PERMIS has recently been integrated with GT4 infrastructure to

serve as an internal or external authorization service for Grid resources.

2.3.2 P2P Security Mechanisms

P2P networking has been popularized by grassroots, mass-culture (music) file-sharing and

highly parallel computing applications that may scale to hundreds of thousands of anony-

mous peer nodes. SciShare [18, 7] is among the few P2P-based information sharing sys-

tems that provide access control mechanisms. SciShare leverages X.509 PKCs to achieve

fully distributed membership and access control at each peer agent. However, the access

management in SciShare remains in a primitive group-based discretionary access control

(DAC) approach that each peer agent maintains an ACL of authorized peers and resources.

Waste [111] is a secure file-sharing system that provides information within a small trusted

group of peers. It secures all communications at the transport-level using TLS [61] and

builds a PKI web of trust [96] between peers. Waste assumes that all of the trusted peers

are equal, thus any peer that is allowed into the system has full access to all information in

the system. LionShare [76, 75] is an academic-oriented P2P system to share academic ma-
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terials among users at many different academic institutions. LionShare utilizes PKI based

authentication mechanisms and DAC based ACLs to protect resources. None of these so-

lutions provide adequate fine-grained access control for the resources being shared in the

collaboration.

Summary: In this Chapter, we reviewed and analyzed related access control models, secu-

rity management mechanisms and security systems for collaborative environments, which

we were motivated to propose an innovative approach to supporting secure information

sharing in ad-hoc collaboration. In Chapter 3, we clearly define the ad-hoc collaboration

problem domain and analyze the unique access control requirements as well as the trust

management concerns associated with the environment.



CHAPTER 3: PROBLEM DOMAIN ANALYSIS

In this chapter we proceed with a concrete scenario in the context of public health

surveillance where collaboration and information sharing are critical to achieve early de-

tection of outbreaks. From the scenario, we first identify the generic access control re-

quirements and trust management concerns associated with ad-hoc collaboration, and then

analyze the patterns of information sharing and dissemination in ad-hoc collaboration.

3.1 Ad-hoc Collaboration Scenario and Access Control Requirements

Public health and surveillance data are collected by various laboratories,

health care providers, pharmacies, and government agencies at local, state,

and national levels. As shown in Figure 3.1, the public health surveillance re-

quires immediate collaboration and information sharing among these sources

for real-time outbreak detection and monitoring. Abnormality at any point

would simultaneously trigger the establishment of collaborations.

Suppose Regional Medical Center (RMC) receives a dramatic increase in the

number of patients with suspicious flu-like symptoms. This could be a sign of

Figure 3.1: Ad-hoc Collaboration Scenario
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new disease breakout or an incident of bioterrorism attack. The medical data

need to be shared immediately with collaborating laboratories and specialities

to identify the causing virus or bacteria. Professionals in other hospitals and

clinics may also need to share the information for more effective diagnosis and

treatments. In addition, regional public health authorities have to be notified

to investigate and track the spread of the epidemics, where the surveillance

information may further be disseminated to state and federal level agencies.

However, sharing of sensitive medical data is restricted by privacy protection

regulations and federal laws. The owner of the data records (RMC) is respon-

sible to apply appropriate conditions restricting the access and dissemination

of the data. As multiple agencies and institutes may involve in the collabora-

tion with different duties, RMC has no priori knowledge on who exactly and in

which agencies the users are going to access the data. It has posed great chal-

lenges for RMC to apply effective control on the data access and dissemination

among all these remote users.

From the scenario above, we first differentiate the concepts of collaborating organiza-

tions and collaborating users. In our research, we assume that the resource owner (also

called originator) has limited trust on some collaborating organizations based on pre-

established relationships. The collaborating organizations do not directly share the data.

Instead, they carry out certain responsibilities to identify and nominate users from their

perspective domain. It is the individual users nominated by these organizations who actu-

ally access to the data, and we call these users as collaborating users. In our scenario, RMC

is the originator who is responsible to disseminate the surveillance data to other parties in

the collaboration. The laboratories, government bureaus, relevant clinics and pharmacies

are collaborating organizations, while the users within these organizations (i.e., lab investi-

gators, government staffs, doctors, assistants and pharmacists) are collaborating users who

need to access and/or disseminate the data to conduct their duties. As shown in the sce-
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nario, the collaboration is always triggered “on the fly” by sudden events. Ensuring secure

and authorized information sharing in such dynamic and spontaneous environment is a

challenging task.

• Originator control: The “on the fly” nature contributes to frequent changes in the

scope and structure of the collaboration. Users may leave and new users may join

the collaboration at any time. The space of collaboration spans across organizational

boundaries and cannot be determined by conventional attributes. Compared to the

ever-changing collaboration relationships and participants, the data being dissemi-

nated and its origination are relatively static. Therefore, entities towards the data

resource can then be separated into two parties: the resource owner (or originator)

who provides the data, and the resource recipients (or collaborating users) who con-

sume the data. An originator should have the ultimate authority over its data resource

to clearly define who is authorized to access the data and to what extent the data in-

formation can be distributed. We refer to the scope of information dissemination as

the originator’s collaborative sharing control domain.

• Flexible and manageable access control: Since ad-hoc collaboration may involve a

large number of distributed collaborating users, an originator lacks the knowledge on

who exactly needs access to the data. It is impossible for an originator to explicitly

specify authorizations based on users’ identities. Instead, abstractions are required to

manage unknown collaborating users and authorize their privileges in a flexible and

manageable way. More likely, collaborating users should be authorized in an indirect

fashion based on their attributes or properties, such as security clearance, affiliation,

membership and qualifications.

• Trust management and delegation: As there is no central administrative point or

global agreement of trust in ad-hoc collaboration, an originator is responsible to de-

fine its own trust relationships and delegate authorities among distributed collabo-

rating parties. In the paradigm of attribute-based access control, user attributes may
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be asserted by various attribute authorities, and these attribute authorities may not be

trusted by an originator to the same extent. For instance, a user may claim his/her

residence by presenting either a passport issued by US government or a driver’s li-

cense issued by a local DMV office. The originator may only trust the passport in

some cases. Therefore, the criteria to determine the trustworthiness of user attributes

should also be specified as part of the access control requirements [68].

• Effective dissemination control: Digital information sharing involves data trans-

mission among participating parties. In order for an originator to maintain the con-

trol power when information leaves the originator’s domain, a policy-driven approach

with distributed policy propagation and enforcement scheme is required in the shar-

ing infrastructure. Ideally, an originator should be able to specify access management

policies, and it is the responsibility for the authorization infrastructure to enforce

these policies on the originator’s behalf along with the information dissemination.

• Fine-grained selective sharing: The resource being shared in ad-hoc collaborations

may be a composition of different types of sub-objects. Such resources need to be

shared fully or partially depending on different collaboration purposes and degrees

of sensitivity. As a special requirement in our motivation scenario, the medical data

collected by the originator RMC involve a complex composition of sensitive infor-

mation, including patient demographic details, medical history, examination reports,

laboratory test results, radiology images (X-rays, CTs), and so on. There is a strong

need for protection models to comply with legal and regulatory policies, while si-

multaneously ensuring that access to sensitive information is limited only to those

entities who have a legitimate need-to-know requirement.

3.2 Collaborative Sharing Patterns and Dissemination Requirements

The originator and the collaborating user are two essential actors involved in the infor-

mation sharing process with different responsibilities and privileges. As shown in Fig-
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ure 3.2(a), an originator (OR) has the ownership privilege to the data resource and is re-

sponsible to make the data available in the collaboration. The collaborating users (Col),

on the other hand, are the consumers of the resource, whose sharing activities should be

authorized by the originator.

Despite the variety of supporting infrastructures (i.e., P2P and Grid computing), col-

laborative information sharing always involves a sequence of generic activities between

these two actors including resource publication, resource discovery, resource access and

resource dissemination/redissemination. The resource publication starts with an originator

making the data resource available in the collaborative community along with certain meta-

data information that describes the resource to facilitate the resource discovery. A remote

collaborating user locates the resource in the process of resource discovery by querying

certain desired properties of the resource. The user can further request to share the re-

source by either directly accessing (resource access) or indirectly obtaining a copy of the

data resource (resource dissemination). With an originator’s authorization, a collaborating

user may further re-disseminate the data resource to other legitimate users. In the perspec-

tive of resource dissemination, we consider the originator as an initial disseminator (ID)

as it triggers the initial resource distribution. And we call a collaborating user who is au-

thorized to further disseminate pre-obtained resource copies as a designated disseminator

(DD). Figures 3.2(b) and 3.2(c) illustrate the use cases as stepwise procedures for resource

dissemination and re-dissemination. With the requirement of originator control, an origi-

nator is responsible to authorize collaborating users based on each identified step and the

access control system should effectively enforce the originator’s policies throughout the

whole information sharing process.

In order to control the scope and direction of information dissemination, a virtual col-

laborative sharing domain towards a specific data resource should be clearly defined by

an originator to include the originator itself as the initial disseminator (ID) and a set of

collaborating users (Col) as intended recipients, among which some are promoted as des-
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Figure 3.2: Use Patterns of Resource Dissemination and Re-dissemination
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ignated disseminators (DD’s). Figure 3.2(d) shows a well-defined and highly regulated

information dissemination pattern within an originator’s collaborative sharing domain. In

particular, only ID and DD’s could distribute the information to other legitimate Col’s. The

root of the sharing tree should always be an ID and the information flows coming from

the ID belong to the type of dissemination. Similarly, the intermediate nodes should be

DD’s and the information flows coming from DD’s belong to the type of re-dissemination.

All other Col’s inside the domain form the leaf nodes of the sharing tree. The originator’s

collaborative sharing domain is a virtual control domain to restrict the scope of information

dissemination, and it should be independent of any physical organizational settings. There-

fore, it is essential to have a flexible yet effective way for an originator to define such virtual

domain and regulate the information dissemination flows among collaborating users.

Summary: In this Chapter, we started with a concrete collaboration scenario in public

health surveillance to identify the generic access control and trust management require-

ments associated with ad-hoc collaboration. We further derived the unique dissemination

control requirements for collaborative information sharing by analyzing information shar-

ing patterns within the environment. In Chapter 4, we formally articulate the identified ac-

cess control requirements and elaborate the design of RAMARS framework to meet these

requirements.



CHAPTER 4: RAMARS ACCESS MANAGEMENT FRAMEWORK

4.1 General Principles

As reviewed in Chapter 2, Role-based access control (RBAC) provides great advantages in

reducing the complexities of security management in large-scale and enterprise-wide sys-

tems by using the notion of role as the central construct to abstract users and privileges.

In an ad-hoc collaboration environment, an originator could indirectly define its collabo-

rative sharing domain and delegate information sharing capabilities through a set of roles,

such as “data analyst” or “lab coordinator”. By being assigned to these roles, collaborating

users are automatically included in the originator’s collaborative sharing domain and thus

could obtain various capabilities to access or disseminate the data resource. Meanwhile,

users are excluded from the collaboration if they are revoked from such roles. Therefore,

bringing role in our framework becomes a natural choice to achieve the manageability for

the originator.

Our role-based approach, however, distinguishes from traditional RBAC in terms of

the role construct, permission-role assignment and user-role assignment. Existing RBAC

models tend to rely on a single organizational policy to define roles within a physical ad-

ministrative domain. We view roles as more flexible and more widely applicable to be de-

fined independently across multiple administrative domains in a distributed environment.

Accordingly, we define the following two types of roles and introduce a special reference

relationship between the roles to address the permission-role assignment.

• Normative sharing roles: These roles need to be accomplished by all collaborative

sharing services to abstract the generic activities for resource publication, discovery,

access and dissemination. By defining these roles, a user’s privileges for each step of
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information sharing can be authorized. Meanwhile, the intended behaviors between

a normal collaborating user who is only supposed to access the data and a designated

disseminator who can further disseminate the data can be differentiated, so that the

intended information flow among collaborators can be defined.

• Originator roles and collaborator roles: These roles are introduced to reflect the

special characteristics of the two major actors: the originator and collaborating users.

Especially, an originator could abstract its collaborative sharing control domain through

a set of collaborator roles. As the information sharing relationship is based on spe-

cific data resource, the set of collaborator roles should be specified on per data re-

source basis. For different data resources, an originator could define different collab-

orative sharing domains including different sets of collaborator roles. Through this

approach, an originator could effectively tune the intended scope of data dissemina-

tion to accommodate different collaboration and information sharing purposes.

• Role reference: As another extension to the traditional RBAC permission-role as-

signment, our framework allows an indirect permission assignment as role reference,

where a collaborator role is mapped to a certain normative sharing role through which

to exercise information sharing capabilities.

Introducing roles effectively reduces the management complexity for an originator to

maintain its collaborative sharing domain, yet the user-role assignment remains as an issue.

Traditional RBAC models do not address unknown remote users and trust relevant aspects

encountered in distributed collaborative settings. Our approach introduces another layer of

abstraction, where users are assigned to collaborator roles based on their attributes instead

of identities. These attributes could be general information about a user’s name, address

and date of birth, or more relevant information such as the user’s security clearance, affilia-

tion, and qualification. Different from most trust management approaches [99, 22, 73], user

attributes do not directly associate with authorizations, but serve as a profile of the user to

gain the collaborator role membership within the originator’s collaborative sharing domain.
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Figure 4.1: RAMARS Approach Illustration

In addition, as the set of collaborator roles conveys an originator’s collaborative sharing do-

main, the originator has the ultimate localized authority over these roles, and such authority

is never delegated. Instead, without assuming any centralized trust base, a special type of

delegation of authority is introduced for an originator to delegate attribute authorities with

different degrees of trust. An originator may define different sets of required attributes

for remote users to be assigned to certain collaborator role(s), and collaborating organiza-

tions are delegated to nominate users with such attributes from their perspective domains.

By changing the sets of required attributes and delegation relationships, the unknown col-

laborating users could be dynamically assigned to different collaborator roles to exercise

various information sharing capabilities. A collaborating user should claim the possession

of required attributes by presenting credentials issued by certain attribute authorities. Yet

it is up to the originator’s discretion to determine the trustworthiness of these credentials,

thereafter to decide whether the claimant of such attributes can be accepted for the role

assignment. We therefore introduce a special type of trust management constraint, associ-
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ated with a set of evaluation policies and procedures, to determine the trustworthiness of

user attributes. In doing so, we embed the trust-aware feature to the dynamic role assign-

ment based on user attributes. Figure 4.1 summarizes the overall role-based approach with

trust management feature conveyed in our RAMARS framework to achieve the effective

originator control.

4.2 Formal RAMARS Model

We propose a framework called Role-based Access Management for Ad-hoc Resource

Sharing (RAMARS) that contains substantial extensions to traditional RBAC models. In

this Section, we define a collection of basic elements and relations that covers the core set

of features in RAMARS to achieve effective access management in collaborative resource

sharing systems.

All entities involved in the collaboration (i.e., organizations, institutes, individual users,

etc.) are generalized as E, and the collaborating users (U) are the individual users who need

to be authorized to gain access to the data. Each collaborating user is associated with col-

lections of attributes (AS), and we call such association relationship as a user-attributes en-

titlement denoted as ET L. Different user-attributes entitlements serve as different profiles

of a user for authorizations. As we do not assume that an originator accepts all attributes

claimed by a collaborating user, a special trust management (T M) constraint is in place to

determine the trustworthiness of user attributes. The details of T M constraint is discussed

in Section 4.4. In terms of roles, RAMARS contains the aforementioned normative sharing

roles (NSHR), originator roles (ORR) and collaborator roles (COL). The partition of origi-

nator and collaborator roles induces a parallel partition of role assignment. The entity who

owns the data resource, organizationally or individually, is assigned to the originator role

through a relation of UAO. The collaborating users, through their trusted user-attributes

entitlements, are assigned to collaborator roles in a relation of UAC. The identified sharing

activities/operations (OPN) are assigned to normative sharing roles through a relation of

CAPN. And role hierarchy (RHN) is also introduced to realize the capability dependen-
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Figure 4.2: RAMARS Model

cies among the normative sharing roles. Collaborator roles achieve information sharing

privileges through an indirect role-role reference relation as REFC. Finally in RAMARS,

the data resource is further separated into metadata (META) and physical resource (PHY ).

Even though we deal with digital information, we use the term “physical” to distinguish

the actual data resource from its metadata. The physical resource can be replicated dur-

ing information dissemination (REP). The structure of RAMARS model is summarized in

Figure 4.2. We organize the definitions of our model in a number of logical parts, similar to

the ones articulated in RBAC models, such as roles, users, resources (objects), capabilities

(permissions), and sessions.

Roles, Role Hierarchies and Role References.

Let ORR, COL and NSHR be the sets of originator roles, collaborator roles, and

normative sharing roles, respectively. We define:

• RHO⊆ ORR×ORR, partially ordered role hierarchy for originator roles.

RHC ⊆COL×COL, partially ordered role hierarchy for collaborator roles.

RHN ⊆ NSHR×NSHR, partially ordered role hierarchy for normative sharing

roles.

• REFC ⊆ COL×NSHR, a many-to-one collaborator-to-normative role refer-

ence relation.

• re f ers_to(col : COL)→ NSHR, a function mapping a collaborator role col in
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COL to a normative sharing role. Formally,

re f ers_to(col) = {nr ∈ NSHR|(col,nr) ∈ REFC}.

Entities and Users.

• E = {e1, . . . ,en}, a set of entities to generalize all related parties (individuals

and/or organizations) in the collaborative environment.

U ⊆ E, a subset of individual users who need to be authorized to access to the

resource.

AT T R = {attr1, . . . ,attrn}, a set of attributes, and each attri (i ∈ [1,n]) is rep-

resented as an (Aname,Value) pair.

• AS = {as1, . . . ,ass}, a collection of attribute sets associated with individual

users U , where asi = {attri, . . . ,attrt} ⊆ AT T R, i ∈ [1,s], and s denotes the

number of user profiles used for authorization.

ET L⊆U×AS, a many-to-many user-attributes entitlement relation, indicating

the possession of user attributes.

etls(u : U)→ 2AS, a function mapping a user u in U to all attribute sets he/she

is entitled to. Formally, etls(u) = {as ∈ AS|(u,as) ∈ ET L}.

• UAO⊆E×ORR, a many-to-many entity-to-originator role assignment relation.

UAC⊆ ET L×COL, a many-to-many user-attributes entitlement to collaborator

role assignment relation.

• role_etls(col : COL)→ 2ET L, a function mapping each collaborator role col in

COL to a set of user-attributes entitlements in the presence of a role hierarchy.

Formally,

role_etls(col) = {etl ∈ ET L|(∃col′ º col)[(etl,col′) ∈UAC]}.

Resources.

Let RES (PHY and META) be a set of resources including physical resource set and

metadata set. We define:
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• RES = PHY ∪META.

• DES⊆META×PHY , a one-to-one resource description relation.

• REP⊆ PHY ×PHY , a one-to-many resource replication relation.

• replicate(phy : PHY )→ 2PHY , a function mapping an original resource phy in

PHY to a set of replicated resource copies. Formally,

replicate(phy) = {phy′ ∈ PHY |(phy, phy′) ∈ REP}.

Capabilities.

Let OPO and OPN be sets of operations for originator roles and normative sharing

operations, respectively. We define:

• CAPO = 2(OPO×RES), a set of capabilities for originator roles.

PAO⊆CAPO×ORR, a many-to-many capability-to-originator role assignment

relation.

• CAPN = 2(OPN×RES), a set of normative capabilities.

PAN ⊆CAPN×ORR, a many-to-many capability-to-normative sharing role as-

signment relation.

• cap_n(nr : NSHR)→ 2CAPN , a function mapping a normative sharing role nr

in NSHR to a set of normative sharing capabilities in the presence of a role

hierarchy. Formally,

cap_n(nr) = {cap ∈CAPN|(∃nr′ ¹ nr)[(cap,nr′) ∈ PAN]}.

• cap_o(or : ORR) → 2CAPO, a function mapping an originator role or in ORR

to a set of originator specific capabilities in the presence of a role hierarchy.

Formally,

cap_o(or) = {cap ∈CAPO|(∃or′ ¹ or)[(cap,or′) ∈ PAO]}.

• capabilities_c(col : COL) = cap_n(re f ers_to(col)), a function indirectly map-

ping a collaborator role col in COL to a set of normative sharing capabilities

through reference.
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Sessions.

Let S be a set of sessions. We define:

• usr_attrs_etl(si : S)→ ET L, a function mapping each session si in S to a single

user-attributes entitlement.

• roles(si : S)→ 2COL, a function mapping each session si in S to a set of collab-

orator roles in the presence of a role hierarchy. Formally,

roles(si) = {col ∈COL|(∃col′ º col)[(usr_attrs_etl(si),col′) ∈UAC]}.

4.3 An Extended Example

Before proceeding to introduce the trust-aware feature conveyed in T M constraint, we dis-

cuss an extended example for the health surveillance scenario. The example serves for two

purposes: to demonstrate how our framework introduced so far can be realized through

the example; and to introduce a scenario with detailed trust management requirements that

motivated our approach.

Assume ABC Community Hospital (ABC) is a registered institute in the public

health surveillance scenario. The Emergency Care Center (ECC) in ABC hos-

pital needs to share RMC’s medical information for patient treatment. RMC

requires that an individual user must be a US citizen according to the security

clearance guidelines, and he must be a member of ECC in ABC hospital. In

order to expedite the data dissemination in emergency situations, RMC allows

the chair of ECC to re-disseminate the data to relevant on-duty employees.

Suppose Dr. John Doe is in charge of ECC and Dave is one of the on-duty

physician assistants. In order for Dave to access the data, he must prove that

he is a US citizen and is an on-duty employee in ECC. In particular, Dave

could present both his passport and driver’s license to prove his US citizenship.

Suppose ABC has outsourced its human resource division to another company

called AdminiStaff, AdminiStaff is then responsible to assert Dave’s affiliation



40

and department membership on behalf of ABC. And finally, Dr. John Doe as

the chair of ECC could confirm that Dave is an on-duty physician assistant to

share the information with RMC.

In this example, RMC is the originator of the medical data, and each individual mem-

ber in ECC of ABC hospital (i.e., John and Dave) is considered as a collaborating user

who needs to be authorized to access and/or disseminate the data. In terms of infor-

mation sharing operations, we consider very simple ones as discussed in Section 3.2:

CAPN = {query,obtain, post,(re)disseminate}. Accordingly, there are three normative

sharing roles associated with these sharing operations: Designated Disseminator role (DD),

Common Collaborator role (CC) and Potential Collaborator role (PC). In particular, query

is the most fundamental resource discovery capability associated with PC role, obtain is

an advanced resource access capability of CC role with query as a prerequisite, post and

(re)disseminate are the most advanced dissemination capabilities associated with DD role.

Therefore the role inheritance is defined as DDºCC º PC.

RMC defines two collaborator roles – Coordinator role and Health Care Professional

(HCP) role – as its collaborative sharing domain, where Coordinator is a senior role

mapped to DD role, and HCP is a junior role mapped to CC role. By this definition,

all collaborating users must be assigned to either Coordinator role or HCP role in order to

share the medical information. The collaborating user who is a member of HCP role can

obtain the data resource, but cannot further distribute the data resource. Yet a user with

Coordinator role could redistribute the data to other legitimate users within RMC’s col-

laborative sharing domain. In our example, all users within ABC must be US citizens and

work in ECC. In addition, John as the chair of ECC should be assigned to the Coordinator

role, so that he is able to re-disseminate the data. Dave, on the other hand, as an on-duty

physician assistant (PA), is assigned to the HCP role for data access. Figure 4.3 summarizes

the example using concepts introduced in RAMARS framework and lists several sample

credentials presented by John and Dave to claim their attributes. When Dave tries to access



41Originator: RMCCollaborating organization: ABCCollaborating users: John, DaveEntities: E = {RMC, ABC, ECC, AdminiStaff, John, Dave}Users: U = {John, Dave}Roles, role hierarchy and role references:Originator role: ORR = {OR}    Normative sharing roles: NSHR = {DD,CC,PC}Collaborator roles: COL = {Coor., HCP}Resources: RES = {medical data}Capabilities:Originator’s capabilities: CAPO = {own, admin, init_disseminate}Normative sharing capabilities: CAPN= {query, obtain, post, (re)disseminate}
Capability-role assignment:OR own, admin, init_dissDD post, (re)disseminateCC obtainPC queryAttribute requirements for user-role assignment:Coor: citizenship=US, affiliation=ABC, department=ECC, position=ChairHCP: citizenship=US, affiliation=ABC, department=ECC, position=PAUser credentials: John: passport assert citizenship by US governmentemployment letter assert affiliation, department and role of ABC by AdminiStaffoutsourcing letter delegate affiliation, department and role assertion authority to AdminiStaff by ABC through outsourcingDave: passport assert citizenship by US governmentdriver’s license assert citizenship by DMV officeemployment letter assert affiliation and department of ABC by AdminiStaffoutsourcing letter delegate affiliation, department assertion authority to AdminiStaff by ABC through outsourcingon-duty authorization assert PA position by Johnentitlement letter delegate PA position assignment to John by ABCDDCCPCCoor.HCP refers_toOR (DSM)(ACS)(DCY)

Figure 4.3: Collaborative Sharing Example

the data resource, how could the originator RMC evaluate the trustworthiness of Dave’s

attributes based on his credentials? The issue is handled by the TM constraint.

4.4 RAMARS in Trust Management Layer – TM Constraint

TM constraint is an important component in RAMARS for an originator to determine the

trustworthiness of a user’s attributes based on his/her credentials. An attribute (attr) is

uniquely identified by its attribute name (AName). Each attribute name determines a spe-

cific domain for the values of the attribute, denoted as domain(AName). In particular,

the value of a user’s attribute is a specific value within the attribute value domain or null,

formally, value ∈ domain(AName)∪{null}. In simplicity, we denote an attribute as an

(AName, value) pair. In a collaborative community, we assume that there is a fixed set of

attribute names agreed by all the participating parties.

A collaborating user claims an attribute by presenting supportive credential(s). We

consider two types of credentials in our framework: attribute credential and delegation

credential. An attribute credential is an attestation of one or more attributes issued to a

user (holder) by an attribute authority (certifier). A delegation credential, on the other

hand, is a statement specifying the delegation relationship between two attribute authorities

to transfer assertion rights over certain attribute(s), where the delegator as the certifier and



42

the delegatee as the credential holder. In our example, ABC delegates two attributes of

(affiliation,ABC) and (department,ECC) to AdminiStaff through outsourcing. Many often,

a credential is associated with certain validation constraints, such as the validity period and

maximum delegation depth [9]. We use the notion of context to abstract these constraints

that may be used to determine the validity of a credential. And each validation constraint

in context can be identified through a type indicator. For instance, given context constraints

Ctx of a credential, CtxT indicates the constraint of the validity time period, and CtxD

indicates the constraint of the maximum delegation depth. To summarize, we define a

credential as follows:

Definition 1 (Credential). A credential is defined as a tuple of

cred = (holder,attrs,certi f ier,Ctx), where holder,certi f ier ∈ E, attrs⊆ AT T R is the as-

serted user attributes, and Ctx is the validation constraints. We use the dot notation to refer

to the elements in a credential, such as cred.holder.

When the delegation of attribute authority is considered, a chain of attribute assertion

can be constructed to realize the trust propagation extending from the initial attribute au-

thority to the end user via several intermediate delegated attribute authorities. We refer

this chain as an assertion path. User attributes can be asserted through multiple assertion

paths, for instance, directly asserted by an attribute credential, and/or indirectly asserted by

chains of delegations. In our example, the passport realizes a direct assertion path with one

attribute credential to assert the attribute of (citizenship,US) for Dave, while the delega-

tion credential issued by ABC and the attribute credential issued by AdminiStaff realize an

indirect path of ABC→AdminiStaff→Dave to assert the attributes of (affiliation,ABC) and

(department,ECC).

Definition 2 (Assertion path). An assertion path ap[attrs] is defined as a sequence of

credentials ap[attrs] = cred1cred2 . . .credn, where attrs⊆ AT T R,

credi.attrs = credi+1.attrs, and credi.holder = credi+1.certi f ier for all i ∈ [1,(n−1)] and
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n≥ 1. We also define a function to retrieve the number of credentials in an assertion path:

depth(ap[attrs]) = |ap[attrs]|. Especially,

• if depth(ap[attrs]) = 1, attrs is directly asserted by an attribute certificate;

• otherwise, attrs is indirectly asserted through a delegation chain.

As the same attribute can be possibly asserted by multiple assertion paths, we further

define a function of num_aps(attrs) to capture the total number of assertion paths asserting

same attrs. For example, Dave’s passport and driver’s license establish two direct assertion

paths for his citizenship attribute. It can be denoted as: num_aps({(citizenship,US)}) = 2.

Utilizing assertion paths establishes a means for an originator to build trust relation-

ships with remote collaborating users through several delegated mediators. The first step

towards the trust evaluation then is to check the validity of an assertion path. We define

the following validation function for the evaluation. Any invalid assertion path with a false

value being returned by the evaluation function should be discarded before any further trust

evaluations.

Definition 3 (Assertion path validation function). Let ap[attrs] := cred1cred2 . . .credn

be an assertion path. The validation function is defined by a boolean function:

validate_ap(ap[attrs],EN) cred.Ctx∗→ {true, f alse}, where ap[attrs] is the assertion path

to be validated, cred.Ctx∗ v cred1.Ctx⊗cred2.Ctx⊗·· ·⊗credn.Ctx denotes the validation

constraints for all credentials in the assertion path, and EN captures the environmental

parameters required for the evaluation. For instance, CurrentDate is an environmental

parameter captured for validity period evaluation.

The function evaluates the validity using the algorithm shown in Figure 4.4. In partic-

ular, each credential element in the assertion path credi (i ∈ [1,n]) is validated against its

context constraints Ctx. Any invalid credential would result in a false value being returned

by the validation function. Otherwise, the credential is further evaluated against the del-

egation constraint when the position of the credential in an assertion path is considered.



44Algorithm validate_apInput: ap[attrs], EN /* ap[attrs] is a particular assertion path to be validated, EN is the environmental parameters */Output: true if valid, otherwise false/* check validity for direct assertion */IF depth(ap[attrs]) = 1 THEN     /* if there’s only one attribute credential in the assertion path */ result = validate_cred(credi, EN);return result;                           /* validate the credential and return the result *// * check validity for indirect assertion */ELSE                                                         FOR each (credi∈ap[attrs]) DOresult = validate_cred(credi, EN);IF result = false THEN                             return false;                     /* validate each individual credential */ELSE IF credi.Ctx.D< (depth(ap[attrs])-i) THEN   return false;                     /* validate the depth against delegation constraints */return true;
Figure 4.4: Algorithm for Assertion Path Validation Function

Neither the position of a credential in an assertion path, nor the total depth of an assertion

path can exceed the maximum delegation depth defined in its delegation constraint.

Given multiple assertion paths for certain user attributes, the attributes may not be

trusted with the same degree by an originator. Therefore, the originator should have its own

interpretation on the degree of trustworthiness for the user attributes. We thus introduce a

notion of trust level, defined as a partial order (T L,¹), for an originator to subjectively

rank and compare different assertion paths for the user attributes. We suggest the follow-

ing three major factors for an originator to determine the trust level: (1) the certifier of

the credential; (2) the depth of an assertion path extended to an end user; (3) the number

of (unfamiliar) certifiers asserting the same attributes as references. In particular, an orig-

inator may have various collaboration and trust relationships with different collaborating

organizations. The attributes asserted by different collaborating organizations result in dif-

ferent trust levels. In addition, an assertion path is considered as a way for the originator

to propagate trust to a remote user. Both the delegated collaborating organizations and the

steps of delegation may vary the degree of trust. Finally, an originator may consider to

trust certain user attributes even when the certifiers are unfamiliar. This is often the case

in recommendation-based systems [96]. These factors, individually or combined together,

may contribute to the trust level assessment. A trust assessment policy then should be in
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Table 4.1: Function Specifications for TM Evaluation

Functions Semantics

validate_ap(ap[attrs],EN) cred.Ctx∗→ {true, f alse} Return true if the assertion path for attrs is
valid.

trustAssessment(attrs,aps) TAP.T L→ T L Return a trust level tl of an assertion path
ap[attrs] given a trust assessment policy
TAP.TL.

trustDecision(attrs, tl) TAP.T D→ {true, f alse} Return true for the asserted attrs if the trust
level tl achieved by a supportive assertion path
ap[attrs] meets the trust assessment policy
TAP.TD.

depth(ap[attrs])→ N A utility function that returns the depth of an
assertion path ap[attrs].

num_aps(attrs)→ N A utility function that returns the total number
of assertion paths for the same set of attributes.

place accordingly to derive a specific trust level for each user attribute under evaluation

considering these trust evaluation factors. Given different trust levels achieved by a user’s

claimed attributes, the ultimate question for TM constraint is whether these attributes can

be trusted by the originator to determine the user’s role membership. Again, this should be

expressed in the originator’s trust assessment policy as well.

Definition 4 (Trust level assignment function). We define the function mapping a trust

level to the asserted user attributes given a set of assertion paths:

trustAssessment(attrs,aps) TAP.T L→ T L, where attrs ∈ AT T R is a set of claimed attributes

under evaluation, aps is a set of assertion paths of the claimed attrs, and TAP.T L is a policy

used by the assessment function to derive a single trust level.

Definition 5 (Trustworthiness assessment function). We define the function of mapping

the trust level of the claimed attributes to a boolean trustworthiness evaluation decision:

trustDecision(attrs, tl) TAP.T D→ {true, f alse}, where attrs ∈ AT T R is the claimed attributes

under evaluation, tl ∈ T L is the achieved trust level, and TAP.T D is a policy used by the

assessment function to derive the trust decision as a boolean value.



46Algorithm evalTrustInput: attrs, CredSet, EN, TAP       /* attrs is the attributes to be evaluated, CredSet is the supportive credential set, EN is current environmental parameters, TAP is Trust Assessment Policy */Output: true if attrs is trusted, false otherwise/* Step 1: Finding credential paths and path validation */APaths := findAssertionPaths(attrs, CredSet); FOR each (ap∈APaths) DOIF validate_ap(ap, EN) ≠ true THEN                    APaths.remove(ap);                           /* validate each path ap in APaths, and remove invalid ones *//* Step 2: Trust level assessment */tl = trustAssessment(attrs, APaths, TAP.TL);      /* assign trust level tl to attrs given APaths according to TAP.TL policy *//* Step 3: Trustworthiness evaluation */IF trustDecision(attrs, tl, TAP.TD) = true THENreturn true;                                           /* return true if any tl achieves true in trust decision against TAP.TD policy */return false;                                                      /* return false otherwise */Algorithm findAssertionPathsInput: CredSet, attrs /* CredSet is the available credential set, attrs is the asserted attributes */Output: APs /* a set of assertion paths APs that can be derived from CredSet for the given attr */Set relevantCreds := null;FOR each (c∈CredSet) DOIF c.Attrs = attrs THENrelevantCreds.add(c);                        /* add all relevant credentials asserting attrs to relevantCreds set */FOR each (c∈relevantCreds) DOIF c.Ctx.CtxD = 0 THEN                             List ap.add(c);                                   /* initiate a new assertion path for each single attribute credential */APs.add(ap);                                     /* add the path to APs */remove(c, relevantCreds);WHILE size(relevantCreds) > 0 DOFOR each (ap∈APs) DOc := ap.get(size(ap)-1);                            /* retrieve the last credential in the assertion path */FOR each (cred∈relevantCreds) DOIF cred.Holder = c.Certifier THEN     ap.add(cred);                               /* find and add the immediate precedent delegation credential to the path */remove(cred, relevantCreds);     /* remove the just added delegation credential from relevantCreds */FOR each (ap∈APs) DOreverseElements(ap);                              /* reverse all elements in each ap to get the correct order of an assertion path */return APs;
Figure 4.5: Trustworthiness Evaluation Algorithm

Given a set of supportive credentials, we design an algorithm, called evalTrust, to eval-

uate the trustworthiness of the user attributes (Figure 4.5). The algorithm works as follows.

In Step 1, the supportive credentials are categorized into a set of assertion paths (APaths)

based on the asserted attributes (attrs). This is realized in another algorithm findAsser-

tionPaths. Each path ap is validated using the function validate_ap(ap,EN) as defined

in Definition 3. Invalid assertion paths are discarded. In Step 2, the user attributes with

all valid assertion paths are evaluated against TAP.TL, resulting in a trust level (tl) being

assigned to the user attributes. This procedure utilizes the trust level assessment function

defined in Definition 4. Finally in Step 3, the trust level achieved by the user attributes is

evaluated against the trust decision policy (TAP.TD) to make the final decision on whether
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the user’s claimed attributes are trusted for further role assignment. A value of true is

returned if the trust level achieved by the user attributes satisfies the threshold defined in

TAP.TD. This step utilizes the trustworthiness assessment function defined in Definition 5.

And trusted user attributes are promoted to determine the user’s role membership.

As a summary, Table 4.1 lists all trust evaluation and relevant utility functions in TM

constraint, participating in a sequence of evaluation procedures as the assertion path val-

idation, the trust level assignment, and the trustworthiness assessment. Each evaluation

procedure requires a specific policy component to be available. The details of these policy

components are discussed in Chapter 5.

Summary: In this Chapter, we elaborated the design and formalization of RAMARS

model. RAMARS model incorporates the role-based approach and trusted attribute-based

role assignment to accommodate the originator control, delegation and dissemination con-

trol requirements as we identified in Chapter 3. A special trust management constraint is

introduced in RAMARS that includes a series of evaluation procedures to determine the

trustworthiness of a user’s attributes for the role assignment. In Chapter 5, we formally

specify the policies to realize all elements in RAMARS model, and we demonstrate an

implementation of the policies using standard XACML policy language.



CHAPTER 5: POLICY SPECIFICATION

5.1 Policy Components

As a policy-driven approach, we now present the policy specification to realize the elements

conveyed in RAMARS model. From the requirement of originator control, an originator

defines collaborator roles as its collaborative sharing domain and delegates information

sharing capabilities to the normative sharing roles. An originator also specifies the policies

to govern the user to collaborator role assignment in terms of required attributes, while

the trust evaluation rules are also specified to determine the trustworthiness of user at-

tributes. In our policy framework, all these policies are conveyed inside the Role-based

Originator Authorization policy set (ROA). As information may be disseminated among

collaborating users, the system should guarantee the originator’s ROA policies be enforced

correspondingly along with the information dissemination. In order to facilitate such dis-

tributed enforcement of the originator’s policies, we design a lightweight Root Meta Policy

Set (RMPS) to declare the ownership of a particular resource and associate the originator’s

ROA policies with the data resource. By doing this, an originator can modify its ROA

policies locally, and the RMPS policy is supposed to be propagated among collaborating

users to guarantee the originator’s ROA policies are retrieved and enforced at run time. In

addition, the separation of RMPS from ROA policies also promotes the policy reusability

and portability as an originator could easily associate the same set of ROA policies to dif-

ferent data resources for authorizations. Besides the policy sets of ROA and RMPS, the

validation constraints for each credential (as represented in cred.Ctx) specifies the rules to

restrict the validity of a credential, which also requires clear definition of their syntax and

semantics. Such definition is specified in CREDPolicy. Our policy specification follows



49

Table 5.1: Policy Specification Notions and Usage

Notation Usage
= definition
, concatenation
; termination
| separation
[ . . . ] option
{ . . . } repetition
( . . . ) grouping
“ . . . ” double quotation marks
? . . . ? special sequence

the same notion of terminals and nonterminals as defined in the ISO standard for extended

Backus-Naur form (EBNF) [4]. Table 5.1 lists the notations that we use for our policy

specification based on the standard.

5.1.1 ROA Policy Set

The ROA policy set is the major component for an originator to express the authorization

as well as trust management policies for the data resource being shared. ROA policy set

contains the following policy elements:

Role Policy Set (RPS) is a role specification policy and each role is defined as a single Role

Policy (RP) element. A RP contains an optional policy id and a RoleName as the unique

role identifier. There are two types of roles that an originator could define, the normative

sharing role (N) and the collaborator role (C). Each role is associated with a specific Capa-

bility Policy (CapPolicy) that contains the capabilities being assigned to the role. Therefore

the permission-role assignment relation is achieved through the reference from a RP to the

unique identifier of the associated CapPolicy denoted as CapPolicyId. In our specifica-

tion, elements such as policy id and RoleName are specified as “?arbitrary string?”, which

means an originator has the freedom to name these elements. Figure 5.1(a) shows the

specification of RPS.
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Capability Policy Set (CPS) specifies the actual capabilities assigned to each role. In

a CapPolicy, CapPolicyId serves as a unique identifier that is referenced from the corre-

sponding role specification policy. As discussed in our RAMARS model, the normative

sharing roles abstract specific sharing operations, and the collaborator roles obtain such

capabilities by mapping to one of the normative sharing roles. Therefore, for the “N” type

of roles, the capability policy defines a set of operations being assigned to the role. And

for the “C” type of roles, it references to the mapped “N” type role via the element of

CapPolicyId_MappedRole. With this reference, all collaborator roles can eventually be led

to the actual authorized sharing operations. In addition, the role hierarchy relationship is

captured in a similar way through policy references from the senior role to its junior roles.

We directly represent role mapping and role hierarchy as capability set references, since the

authorization consequence of role mapping and role hierarchy is the capability aggregation,

where the target role is capable to exercise all permissions being assigned to the mapped

roles and its junior roles. By doing this, we are able to simplify the policy structure and

reduce the number of potential policies to be evaluated. Another important feature worth

mentioning here is that only the authorized operations are defined in each CapPolicy, while

the target object (data resource) of the operation is defined in a separate policy – RMPS.

This is different from the normal permission definition as operations towards objects. We

apply this special design for two reasons. On the one hand, the generic sharing operations

should be supported by all sharing infrastructures regardless of the specific resources being

shared. On the other hand, by separating the resource from the operations, the capability

policies can be re-used where multiple resources could share the same set of authorization

policies. Figure 5.1(b) shows the specification of CPS.

Role Assignment Policy Set (RAPS) contains one or more sub-policies (RAPolicy) to de-

fine the required attributes for each collaborator role. A collaborator role can be assigned

according to different sets of required attributes, each denoted as a ReqAttrGroup. A Re-

qAttrGroup defines a set of attribute predicates mapping the values of a user’s attributes
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RolePolicySet = {RolePolicy} ;RolePolicy = [id] RoleName ("N"|"C") CapPolicyId  ;id            = ? arbitrary string ? ;RoleName      = ? arbitrary string ? ;CapPolicyId   = ? arbitrary string ? ;
(a) ROA-RPS Specification

CapPolicySet           = CapPolicy, {CapPolicy} ;CapPolicy              = CapPolicyId, (("N", (Operation, {Operation})) | ("C", CapPolicyId_MappedRole)), {CapPolicyId_JuniorRole} ;CapPolicyId            = ? arbitrary string ? ;Operation              = ? arbitrary access operation ? ;CapPolicyId_MappedRole = CapPolicyId ;CapPolicyId_JuniorRole = CapPolicyid ;
(b) ROA-CPS Specification

RoleAssignmentPolicySet = RAPolicy, {RAPolicy} ;RAPolicy                = RoleName, (ReqAttrGroup, {ReqAttrGroup}) ;ReqAttrGroup            = CombinationOP, (Aname, ComparisonOP,  TargetValue), {Aname, ComparisonOP,  TargetValue} ;CombinationOP           = "AND" | "OR" | "NOT" ;ComparisonOP            = "="|"!="|">"|">="|"<"|"<=" ;RoleName                = ? arbitrary string ? ;Aname                   = ? arbitrary string ? ;TargetValue             = ? arbitrary string ? ;
(c) ROA-RAPS Specification

Figure 5.1: ROA Policy Set Specification - Authorization
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to the required attributes with expected values. In particular, each required attribute is

identified by the Aname, and the TargetValue specifies the expected attribute value within

domain(Aname) that is to be checked against the user’s attribute based on the compari-

son operator ComparisonOP. A boolean value is returned if the attribute value satisfies the

predicate. For instance, in expressing an attribute predicate that requires “a user must be

a US citizen”, the Aname is “citizenship”, and the TargetValue is “US” with the Compar-

isonOP as “=”. If a user has an attribute of (citizenship,US), then a boolean value true is

returned according to this predicate. In order to aggregate the boolean values for all spec-

ified predicates, a CombinationOP is in place to specify the logical combination rule: (i)

“AND” implies that all attribute predicates must be true; (ii) “OR” implies that at least one

attribute predicate must be true; and (iii) “NOT” implies that none of the attribute predi-

cates must be true. The collaborator role is assigned after a true value is eventually derived

from the ReqAttrGroup evaluation. Figure 5.1(c) shows the specification of RAPS.

Trust Assessment Policy (TAP) is used in two types of functionalities achieved by TM

constraint: (i) to determine the trust level of a user’s claimed attributes; and (ii) to make the

trust decision on the claimed attributes. We realize these functionalities using two policy

elements referred to as TAP.TL and TAP.TD, respectively.

As mentioned in previous Chapter, TAP.TL is used for an originator to consider the

affecting factors and have a discretionary interpretation of the degree of trust using self-

defined scale of trust levels. We suggested three affecting factors for trust evaluation in Sec-

tion 4.4 as the credential certifier, the depth of an assertion path, and the number of assertion

paths for the claimed attributes. Accordingly, the TAP.TL defines the target Attribute(s) un-

der evaluation, the predicates for evaluation based on the deciding factors (Factors), and

the trust level (TrustLevel) to be assigned. Each attribute is represented as an Aname and an

optional Avalue, which gives an originator more flexibility to define the attribute in a gen-

eral way to specify the attribute name only, or in a specific way to narrow down the value

of the attribute. The factor evaluation predicates are specified around the above mentioned
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TAP_TLPolicySet = TAP_TLPolicy, {TAP_TLPolicy} ;TAP_TLPolicy = Attribute, {Attribute}, (CombinationOP, Factors, {Factors}), TrustLevel ;Factors         = ("Certifier" | "DlgtDepth" | "Recommenders"), ComparisonOP, TargetValue ;Attribute       = Aname, [Avalue] ;CombinationOP   = "AND" | "OR" | "NOT" ;ComparisonOP    = "="|"!="|">"|">="|"<"|"<=" ;TrustLevel      = ? arbitrary string ? ;TargetValue     = ? arbitrary string ? ;Aname           = ? arbitrary string ? ;Avalue          = ? arbitrary string ? ;
(a) ROA-TAP.TL Specification

TAP_TDPolicySet = TAP_TDPolicy, {TAP_TDPolicy} ;TAP_TDPolicy = Attribute, {Attribute}, ComparisonOP, Threshold ;Attribute       = Aname, Avalue ;ComparisonOP    = "="|"!="|">"|">="|"<"|"<=" ;Threshold       = ? arbitrary string ? ;Aname           = ? arbitrary string ? ;Avalue          = ? arbitrary string ? ;
(b) ROA-TAP.TD Specification

Figure 5.2: ROA Policy Set Specification - Trust Management

three factors: the Certifier, the DlgtDepth and the Recommenders. Given an assertion

path ap[attrs] := cred1cred2 . . .credn, the Certifier can be captured by cred1.certi f ier; the

DlgtDepth of the assertion path is derived by the function depth(ap[attrs]); and the Recom-

menders of the attributes can be captured through the function num_aps(attrs) as defined

in Definition 2. Each factor is evaluated separately against the TargetValue according to

the specified ComparisonOP. A boolean value is derived for each factor predicate, and a

CombinationOP is then specified to combine the results of factor evaluations. A TrustLevel

is finally assigned if a true value is derived from all factor evaluations. Figure 5.2(a) shows
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the specification of TAP.TL.

TAP.TD policy, on the other hand, specifies the threshold of the trust level for the

claimed attributes to be trusted. TAP.TD is specified as one or more Attributes to be eval-

uated including the Threshold and the ComparisonOP. Since the trust level is defined as

a partial order, we assume the default ComparisonOP is “≥”. The evaluation returns true

when the trust level of the attributes is equal or greater than the specified threshold. By

returning true, the attributes are trusted and can be promoted for the role assignment eval-

uation. Figure 5.2(b) shows the specification of TAP.TD.

5.1.2 Root Meta Policy Set (RMPS)

In general, ROA policies are specified independently from the data resource and can be

deployed in an originator’s local domain for easy maintenance and update. RMPS is es-

pecially designed to declare the ownership of an originator’s resource and associate the

ROA policies with the Resource so that the policy enforcement system is able to locate

and enforce ROA policies on behalf of the originator when data is disseminated within the

collaboration community. In RMPS, the Resource is represented by a URI conforming to

RFC2396 [98], and the originator is identified by the OriginatorId element in the format

of an X.500 distinguished name (DN) [62]. The originator’s ROA policies are referenced

through the ROAPolicyLocation URI. Figure 5.3(a) illustrates the specification of RMPS.

5.1.3 Credential Policy (CREDPolicy)

A CREDPolicy specifies the validation constraints for a credential. Besides the elements

of Holder, Certifier, and asserted/delegated Attributes, each CREDPolicy defines one or

more Context constraint predicates. And a logical combination operator CombinationOP is

specified to aggregate the boolean evaluation values for each Context constraint predicate.

In particular, the validity period constraint ValidityPeriod is defined with Start date and

End date. To evaluate, an environmental parameter “CurrentDate” should be compared, a

true value is derived when the current date is in between the period of Start and End. In



55RootMetaPolicy     = ((Resource, {Resource}), (ROAPolicyLocation, {ROAPolicyLocation})), {(Resource, {Resource}),(ROAPolicyLocation, {ROAPolicyLocation})} ;Resource           = (OriginatorId, {OriginatorId}), ResourceId ;OriginatorId       = ? X.500 RFC2253 DN ? ;ResourceId         = ? RFC2396 URI ? ;ROAPolicyLocation  = ? RFC2396 URI ? ;
(a) RMPS SpecificationCREDPolicy     = Holder, Certifier, Attribute, {Attribute}, [(CombinationOP, Context, {Context})] ;Context        = ValidityPeriod | Delegation ;ValidityPeriod = Start, End ;Delegation     = Z ;Holder         = ? X.500 RFC2253 DN ? ;Certifier      = ? X.500 RFC2253 DN ? ;Attribute      = Aname, [Avalue] ;CombinationOP   = "AND" | "OR" | "NOT" ;Z              = ? arbitrary natural number ? ;

(b) CREDPolicy Specification

Figure 5.3: Root Meta Policy and Credential Policy Specification

terms of the Delegation constraint, a natural number Z is defined to restrict the depth of

delegation. A credential is valid when a true value is derived from all Context constraints.

Figure 5.3(b) illustrates the specification of CREDPolicy.

As a summary, Table 5.2 elaborates all policy components and their design purposes in

our RAMARS policy framework.

5.2 Policy Framework Realization Using XACML

The OASIS standard for XACML [84, 85] has been well adopted as a general policy lan-

guage as well as an access decision language used to protect resources. In supporting

RBAC, OASIS has recommended a specification for RBAC policies [83] (“OASIS RB-

XACML” for simplicity). Inside OASIS RB-XACML, roles are specified in Role Policy-

Set (RPS), permissions assigned to roles are defined in Permission PolicySet (PPS), and

user-role assignment are defined in Role Assignment PolicySet (RAPS) where users are as-
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Table 5.2: Policy Framework
Component Policy Element Purpose

ROA Policy Set

Role Policy Set (RPS) Declares roles and associates roles to
assigned capabilities.

Capability Policy Set (CPS) Declares the capabilities assigned to a role;
and realizes the role hierarchy and role map-
ping through capability aggregation.

Role Assignment Policy Set
(RAPS)

Defines rules for user-to-role assignments
based on a user’s attributes.

Trust Level Assessment
Policy (TAP.TL)

Defines rules to determine the trust level of
user’s attributes given certain supportive cre-
dentials within an assertion path.

Trust Decision Assessment Pol-
icy (TAP.TD)

Defines rules to determine the trustworthiness
of a user-attributes entitlement given the trust
level achieved by the supportive credentials.

RMPS Root policy to declare the ownership of the
resource and locate an originator’s ROA poli-
cies.

CREDPolicy Credential policies defined by a credential cer-
tifier to specify context validity rules for a
credential.

signed to the role by their user IDs. With XACML 3.0, the delegation chain is derived

and validated through a process of policy reduction back to the original delegator’s pol-

icy. Integrating these features and accommodating the standard syntax, we design a set

of XACML-based policies as an implementation of our proposed RAMARS policy frame-

work. Figure 5.4 illustrates the policy examples based on the scenario in Section 4.3.

Figure 5.4(a) shows an overview of the policy structure for RMPS and ROA. In RMPS,

the Resources element specifies the resource in the RFC2396 URI format such as

“file:///usr/data”. The Resources element also associates with an Issuer attribute to in-

dicate the originator of the resource in an X.500 DN format such as “cn=RMC,...”. In-

side RMPS, an element of PolicySetIdReference is included referring to the location of

RMC’s ROA policies. Using LDAP as an example, the reference may be specified as

“ldap://rmc.com:389/o=RMC”.

RMC’s ROA policy set is composed of RPS, CPS, RAPS, TAP.TL and TAP.TD. RPS

defines two collaborator roles in RMC’s collaborative sharing domain as Coordinator role

and HCP role. Meanwhile, three normative sharing roles of DD, CC and PC are defined
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Root Meta <PolicySet><Target>resource-id= file:///usr/dataIssuer = cn=RMC,...<PolicySetIdReference> Capability <PolicySet> -- CAP<PolicySetIDReference>locates
PARH / refers_to via capability aggregationRole Assignment <PolicySet> -- UACTAP_TL <PolicySet> -- TM

Originator’s ROA policy setsRole <PolicySet> -- COL<PolicySetIDReference>
TAP_TD <PolicySet> -- TM

(a) RMPS-ROA Overview

Role <PolicySet> -- COLRPSC -- Coordinator role
Capability <PolicySet> -- CAPCPAC RHC 

RPSC -- HCP Role Role <PolicySet> -- NSHR
CPSC -- Coordinator roleCPSC -- HCP role Capability <PolicySet> -- CAPNCPSN -- DD rolecapability to redisseminateCPSN – CC rolecapability to obtainCPSN -- PC rolerefers_to PANrole = Coordinatorrole = HCP

RHN refers_to 
RPSCPS

RPSN -- DD rolerole = DDRPSN -- CC rolerole = CCRPSN -- PC rolerole = PC
capability to querycapability to post

(b) RPS-CPS DetailsRole Assignment <PolicySet>--UAC RA <Policy> -- Coordinator role<Target><Subjects> citizenship = US affiliation = ABC    department = ECCposition = Chair<Resources> role = Coordinator<Actions> action = enable<Rule> Permit
RAPS TAP.TL <PolicySet> --TMTAP.TL <Policy> -- 1TAP.TL PolicySet<Target><Subjects> US GovernmentTAP.TL <Policy> -- 2

TAP.TD <PolicySet> --TMTAP.TD <Policy> --1TAP.TD PolicySet<Target><Subjects> trust_level = high<Actions> trust<Resources> citizenship = USTAP.TD <Policy> -- 2<Target><Subjects> trust_level >= medium<Actions> trust<Resources> affiliation = ABC<Resources> citizenship = US<Target><Subjects> certifier = ABCdlgt_depth <= 2<Actions> medium<Resources> affiliation = ABC<Actions> high<Rule> Permit
<Rule> Permit

<Rule> Permit<Rule> PermitRA <Policy> -- HCP role<Target><Subjects> citizenship = US affiliation = ABC    department = ECCposition = PA<Resources> role = HCP<Actions> action = enable<Rule> Permit
(c) RAPS-TAP Details<Policy> <Target><Rule> Permit<PolicyIssuer> CN=ABC...Delegated resource: affiliation = ABCDelegate: CN=AdminiStaff...<Condition> current-date <= 12/31/2007current-date >= 1/1/2007    max_dlgt_depth = 1

DLGT Policy(ABC AdminiStaff)<Policy><Target><Rule> Permit<PolicyIssuer> CN=US GovernmentSubject: subject-id = CN=Dave...Resource:  citizenship = US<Condition> current-date <= 12/31/2007current-date >= 12/31/2002
ATTR Policy -- 1(assert citizenship) <Policy><Target><Rule> Permit<PolicyIssuer> CN=AdminiStaff...Subject: subject-id = CN=Dave...Resource:  affiliation = ABC<Condition> current-date <= 12/31/2007current-date >= 1/1/2007

ATTR Policy -- 2(assert affiliation)
ABC AdminiStaff Dave (affiliation=ABC)

(d) CREDPoicy Examples

Figure 5.4: XACML Policy Examples
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in RPS as well. The roles are defined as Subjects elements, and the capabilities assigned to

roles are referenced by PolicySetIdReference elements.

CPS policy specifies the capabilities associated with these roles. The role hierarchy

and role mapping are achieved by policy references. In particular, in order to represent

the Coordinator role is senior to the HCP role, the PolicyId in the CPS for HCP role is

referenced by the CPS for Coordinator role through the PolicySetIdReference element, so

that all capabilities assigned to HCP role (CPSC - HCP role) could be loaded as part of the

capability policy for Coordinator role during evaluation. The role mapping is carried out

in similar ways where the Coordinator and HCP roles are mapped to DD role and CC role,

respectively. Figure 5.4(b) shows the detailed definitions in the policy sets.

In terms of role assignment, RAPS specifies the required attributes for Coordinator

role and HCP role. Both roles require the following attributes: citizenship=US AND af-

filiation=ABC AND department=ECC. These required attributes are expressed as Subjects

conditions in the policy. In addition, the chair of ECC (position=Chair) is assigned to the

Coordinator role, while the normal physician assistants (position=PA) could be assigned

to the HCP role.

In order to evaluate the trustworthiness of user attributes, RMC also defines the trust

assessment policies. We assume RMC defines three levels of trust: low, medium and high,

where low¹medium¹high. TAP.TL PolicySet realizes the rules on how these trust lev-

els can be assigned to user attributes. For example, Policy 1 of TAP.TL in Figure 5.4(c)

specifies that when the (citizenship,US) attribute is asserted by “CN=US Government”, a

“high” level is assigned. Policy 2 specifies that when the (affiliation,ABC) attribute is as-

serted/delegated by “CN=ABC”, and the maximum delegation depth dlgt_depth≤ 2, then

a “medium” level of trust is assigned. Inside the policy, the trust factors are specified in

the Subjects element, the targeted attributes are specified in the Resources element, and the

assigned trust level is specified in the Actions element. The effect of the Rule is always

specified as Permit, so that no negative rules are defined in our framework. In TAP.TD
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PolicySet, Policy 1 specifies that the (citizenship,US) attribute is trusted when its achieved

trust level is equal to high, where Policy 2 specifies that the (affiliation,ABC) attribute is

trusted when its achieved trust level is larger or equal to medium. Inside TAP.TD policy,

the trust level threshold is specified in the Subjects element, the attributes are specified in

the Resources element, and “trust” is specified in the Actions element. We omit the trust

assessment policies for other attributes as they are specified exactly in the same way.

According to XACML 3.0 with delegation being considered, all trusted policies do not

specify the PolicyIssuer by default, while untrusted policies need to contain such element

to check whether the policy issuer is authorized to define the policy or not. In our XACML

policy implementation, all originator defined policies are considered as trusted policies that

do not have the PolicyIssuer element, while the credential policies (CREDPolicy) defined

by credential certifiers must have such elements to indicate the credential issuer, allowing

to further evaluate the validity of the credentials. We define two separate policies as at-

tribute credential policy (ATTR Policy) and delegation credential policy (DLGT Policy) for

attribute credentials and delegation credentials, respectively. Figure 5.4(d) shows three ex-

amples in both types. In particular, ATTR Policy 1 specifies an example of passport attribute

credential/policy that “CN=US government” as the policy issuer asserts Dave’s (citizen-

ship,US) attribute. The credential is valid within the validity period between 12/31/2002

and 12/31/2007. The credential issuer is specified in the PolicyIssuer element. The holder

of the credential is specified in the Subjects element, and the asserted attribute(s) are speci-

fied in the Resources element. The context constraints are specified as Condition within the

Rule in order for the credential to be validated. The DLGT Policy specifies that “CN=ABC”

delegates to “CN=AdminiStaff ” the right over (affiliation,ABC) attribute within the period

between 1/1/2007 and 12/31/2007. Besides, ABC also specifies the max_dlgt_depth=1 as

the delegation constraint to restrict further delegations by AdminiStaff. The delegated at-

tributes are specified with Delegated Resource category, and the delegatee is specified in

Delegate element. ATTR Policy 2 specifies another credential issued by AdminiStaff to as-



60

sert Dave’s affiliation attribute. With these two credentials, an assertion path could be estab-

lished extending from ABC to Dave via AdminiStaff for the attribute of (affiliation,ABC).

Given these three credentials, consider RMC’s TAP policies again. From the TAP.TL Poli-

cySet example, we could derive that Dave’s (citizenship,US) attribute asserted by US gov-

ernment is assigned to a high level of trust, and his (affiliation,ABC) attributed asserted

through the assertion path is assigned to a medium level of trust. From the TAP.TD Poli-

cySet, we could further derive that both attributes are trusted since they meet the threshold

trust levels of high and medium, respectively. Therefore, both attributes can be promoted

for further role assignment evaluation.

5.3 Policy Evaluation

Figure 5.5 and Figure 5.6 depict the overall policy evaluation procedures and those are im-

plemented in XACML by request context generation and policy evaluation. In a typical

XACML evaluation environment setup, a Policy Enforcement Point (PEP) forms an access

decision request. Upon receiving the request, a Policy Decision Point (PDP) retrieves rel-

ative policies from a Policy Administration Point (PAP), and evaluates the request against

the retrieved policies. A response with an access Decision element of value Permit, Deny,

Indeterminate or NotApplicable is made and returned to the PEP for further authorization

enforcement. Accordingly, we introduce a Context Handler as a subcomponent of the PDP

to conduct a series of XACML request generation and decision processing operations for

a single access request sent by the PEP. We further introduce three sub-PDP components

– TM PDP, Role PDP and AuthZ PDP – to take the responsibilities of different evaluation

stages. We now focus on the evaluation process, and leave the detailed explanation of sys-

tem components to Chapter 6. As an example, we try to evaluate whether Dave is allowed to

obtain the data file (file:///usr/data) with all six credentials as listed in Figure 4.3: passport,

driver’s license, employment letter, outsourcing letter, PA position on-duty authorization

and PA position entitlement letter.



61Credential categorizationCredentials are categorized (CredSet) with same asserted attributes (attrs)Assertion paths validation Policies are categorized with same Resources specificationPolicy categorizationATTR & DLGT Policy evaluation and reductionfindAssertionPaths(attrs, CredSet)validate(ap, EN), Cred.Ctx* Context Handler generates ATTR and DLGT validation requests, which are evaluated against relative policies and valid assertion path is reduced accordingly.Trust level assessmentTrust decision making trustAssessment(ap), TAP.TL TAP.TL Policy evaluation Context Handler generates a trust level assessment request for each valid assertion path. The request is evaluated against TAP.TL Policy. The trust level is assigned when a Permit value is derived. trustDecision(attrs, ap, tl), TAP.TD TAP.TD Policy evaluation Context Handler generates a trust decision assessment request for the asserted attributes based on the achieved trust level. The request is evaluated against TAP.TD Policy. The attributes are trusted when a Permit value is derived. Role assignment roleAssignment(etl), RAPS RA Policy evaluation Context Handler generates role request based on trusted user attributes. The request is evaluated against RA Policy. The role specified in the Resources is assigned when a Permit value is derived. 
Pre-processing
Trust evaluation

Trusted attribute-based role assignment

Realization in XACML

Assigned roles ( {r} )
Valid assertion paths ( {ap} ) Attributes with trust levels ( {attrs, tl} )Trusted usr-attrs etl ( etl )Authorization checkAccess(r,action,res), RPS, CPS, RMPSDecision (grant/deny)Authorization Evaluation Enforcement RPS, CPS and RMPS Policy evaluation Context Handler generates role access request for the assigned roles towards the requested resource. The request is evaluated against RPS,CPS and RMPS policies. The access is granted when a Permit value is derived. PEP Context Handler returns the decision to PEP for decision enforcement. 

Figure 5.5: Evaluation Realization in XACML

Context HandlerPEP 1 role queryuser access query + RMPS + CRED policies 5 7trust query + CRED policies role responseuser access response TM PDP Role PDPPAP
11 PDP

AuthZ PDP2 4trust response3TAP.TLTAP.TD 6 RAPS 8 10role access query + RMPS9RPS, CPS role access response
Figure 5.6: XACML Evaluation Flow
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1. Pre-processing: The evaluation process is triggered when PEP forwards Dave’s file

access request with supportive credentials to PDP. In our system settings, the root

policy RMPS is associated with the resource, from which PDP engine could locate

and retrieve all ROA policies from the originator’s PAP policy store. A preprocess-

ing operation is conducted to categorize the user credentials according to their as-

serted attributes. In XACML evaluation environment, the Context Handler parses

and groups the CRED Policies based on same Resource and Delegated resource at-

tributes. In our example, Dave’s six credentials are categorized into four groups to

assert the attributes of citizenship, affiliation, department and position. The Con-

text Handler then generates a series of trust evaluation queries for the TM PDP to

evaluate.

2. Trust evaluation: The first step of trust evaluation is to derive and validate the as-

sertion paths for each attribute under evaluation. This is realized in XACML through

a process of policy reduction. In particular, the Context Handler first generates an

attribute validation request for TM PDP to evaluate. As shown in Figure 5.7, the

attribute validation request queries whether Dave (CN=Dave...) is authorized to

possess the (affiliation,ABC) attribute on current date (6/1/2007). The TM PDP

locates the employment credential issued by AdminiStaff (ATTR Policy 2) as the

Target matches the request, and evaluates the validity period constraint against the

environmental parameter current date. As the current date meets the Condition in

the Rule (1/1/2007≤current-date≤12/31/2007), a Permit decision is derived from

the evaluation. Since ATTR Policy 2 is issued by AdminiStaff, the Permit decision

means that AdminiStaff asserts Dave’s affiliation attribute. However, the system has

to further make sure that AdminiStaff is an authorized/trusted certifier to assert the

attribute. The Context Handler then generates a delegation validation request to

query whether the attribute affiliation=ABC is delegated to CN=AdminiStaff on cur-

rent date (6/1/2007) as delegation depth=1. The TM PDP locates ABC’s outsourcing



63<Request>  -- 1Subject: subject-id = CN=Dave...Resource:  affiliation = ABC <Response><Result><Decision> Permit(by AdminiStaff)Attribute validation query
<Request> -- 2Resource: affiliation = ABCDelegate: CN= AdminiStaff...depth = 1<Response><Result><Decision> Permit(by ABC)

Response

Delegation validation queryValidation Response <Policy> <Target><Rule> Permit<PolicyIssuer> CN=ABC...Delegated resource: affiliation = ABCDelegate: CN=AdminiStaff...<Condition> current-date <= 12/31/2007current-date >= 1/1/2007    max_dlgt_depth = 1DLGT Policy(ABC AdminiStaff)

<Policy><Target><Rule> Permit<PolicyIssuer> CN=AdminiStaff...Subject: subject-id = CN=Dave...Resource:  affiliation = ABC<Condition> current-date <= 12/31/2007current-date >= 1/1/2007
ATTR Policy -- 2(assert affiliation)

ABC AdminiStaff Dave (affiliation=ABC)
AdminiStaff Dave (affiliation=ABC)Environment:  current-date = 6/1/2007

Environment:  current-date = 6/1/2007
Figure 5.7: Assertion path validation through policy reduction

credential (DLGT Policy) and a Permit decision indicates that AdminiStaff is a legit-

imate entity to assert (affiliation,ABC) attribute on behalf of ABC. Since there are no

other credentials available regarding the (affiliation,ABC) attribute, the policy reduc-

tion stops here and a valid assertion path is derived as ABC→AdminiStaff→Dave,

with Certifier=ABC and DlgtDepth=2. Figure 5.7 shows the whole process of policy

reduction.

The next step of evaluation is to determine the trust level of the asserted attributes

given valid assertion paths. In particular, the Context Handler generates a trust level

assessment request for TM PDP to evaluate whether a particular trust level can be

assigned to an attribute given the assertion path. TM PDP retrieves TAP.TL from

PAP and evaluates the request. And when a Permit decision is derived, the trust level

is assigned to the asserted attribute. According to Policy 2 in TAP.TL (Figure 5.4(c)),

the assertion path for the (affiliation,ABC) attribute with Certifier=ABC and Dlgt-

Depth=2 is assigned to a trust level of medium.

Finally, the system decides on the trustworthiness of the attribute given the achieved
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trust level. For example, the Context Handler generates a trust decision request to

query whether the attribute (affiliation,ABC) with a medium level of trust can be

trusted or not. TM PDP evaluates the request against the TAP.TD. A Permit decision

indicates that the attribute is trusted. According to the example TAP.TD policy in

Figure 5.4(c), the attribute meets the minimum required trust level (º medium) and

thus is trusted for the role assignment. A trust response with Permit decision is then

sent back from TM PDP to the Context Handler for further evaluation.

3. Role assignment evaluation: After the trust evaluation, all trusted user attributes

are promoted. For each role in the system, the Context Hander generates a role

query for Role PDP to evaluate. For example, if Dave’s attributes of citizenship,

affiliation, membership and role are all trusted in the trust evaluation, a role query

is generated to query whether Dave is authorized to enable an HCP role given his

trusted attributes. The RAPS policy is retrieved from PAP for evaluation. According

to the example RAPS policy in Figure 5.4, a Permit decision is derived, and the HCP

role is eventually assigned to Dave.

4. Authorization evaluation: Finally, the Context Handler generates a role access

query for AuthZ PDP to evaluate whether HCP role is authorized to conduct the

“obtain” action on the file resource (file:///usr/data). The request is evaluated against

RMPS, RPS and CPS policies. As stated in the example policies in Figure 5.4, HCP

role is mapped to CC role and CC role is allowed to obtain the file. Hence HCP role

is allowed to obtain the file. A Permit decision is sent back to the Context Handler

as the role access response. The final decision is forwarded from Context Handler

back to PEP for decision enforcement, where Dave’s access to the medical files is

eventually granted.

Summary: In this Chapter, we introduced the formal policy specification for RAMARS

framework in EBNF format. The RAMARS policies were implemented using standard
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XACML policy language and we discussed the policy evaluation procedure for the pol-

icy engine to evaluate the policies and make an authorization decision. In Chapter 6, we

introduce necessary system components to carry out the policy evaluation functionalities.

We further demonstrate the feasibility of our proposed RAMARS authorization system by

implementing prototype systems in supporting secure information sharing in both P2P net-

working and Grids computing environments.



CHAPTER 6: SYSTEM DESIGN AND PROTOTYPE IMPLEMENTATION

6.1 RAMARS Authorization System Architecture

We have designed and implemented a prototype system to demonstrate how the proposed

RAMARS access management framework and policy specification can be realized as com-

prehensive authorization services within the context of collaborative sharing applications.

RAMARS system is designed to be deployed in distributed collaborative environments

without assuming any centralized policy store. The architecture of RAMARS system can

be segregated into three domains as shown in Figure 6.1(a). In the administration domain,

resource originators edit and maintain their ROA authorization policies by using the Policy

Editor, which is a facility toolkit for originators to create and modify ROA policies. These

policies are stored in the originator’s perspective policy store (i.e., LDAP directory server)

serving as the Policy Administration Point (PAP) for RAMARS authorizations. Once ROA

policies are created, they are expected to be automatically enforced by the RAMARS au-

thorization system without further interception by the originators in the collaborative shar-

ing service systems. In the authorization domain, the RMPS policy is always associated

with the data resource for RAMARS PDP to locate the originator’s ROA policies. Upon

receiving an access request and supportive credentials coming from the user domain, the

Policy Enforcement Point (PEP) invokes RAMARS PDP with a formulated access deci-

sion request, RMPS policy and the user’s credentials. RAMARS PDP, as illustrated in

Figure 6.1(b), consists of four subcomponents to carry out the necessary policy evaluation

functionalities as discussed in Chapter 5: Context Handler, Trust Evaluation Engine, Role

Engine and Authorization Engine. In particular, the Context Handler dynamically retrieves

ROA policies from the originator’s policy store based on the location references specified
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Figure 6.1: RAMARS System Architecture

in RMPS. The requester’s credentials and the originator’s TAP policies are sent to Trust

Evaluation Engine where trusted attributes are derived. These trusted attributes and RAPS

policy are carried out by the Role Engine to determine the user’s assigned collaborator

roles. Given the assigned roles, the user’s access request is evaluated against policies of

RMPS, RPS and CPS, and the Authorization Engine makes the final access decision. This

access decision is sent back to PEP as an XACML response for decision enforcement.

In the RAMARS system, the user’s credentials are “pushed” by the requester to the

authorization system, while the originator’s ROA policies are dynamically “pulled” at run-

time upon policy evaluation. Therefore, the deployment of RAMARS PDP does not rely

on any static configuration with any centralized policy store, making RAMARS PDP a

general purpose authorization engine to serve various collaborative sharing applications.

To demonstrate the feasibility of our proposed RAMARS system, we adapt and integrate
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our RAMARS system into both P2P networking and Grid computing collaborative infras-

tructures as ShareEnabler and RamarsAuthZ service, respectively, to support secure and

authorized information sharing within collaborations.

6.2 RAMARS in P2P – ShareEnabler System

6.2.1 ShareEnabler System Architecture and Operation

ShareEnabler adopts a specific communication infrastructure from a P2P based scientific

information sharing toolkit SciShare [18] developed by Lawrence Berkeley National Lab-

oratory. In our P2P-based collaborative sharing system, each participating entity is repre-

sented by a ShareEnabler agent that executes sharing services on the participant’s behalf.

An originator uses the agent to post file resources and share those resources with other col-

laborators, and collaborators operate on their agents to query and download files. Similar

to existing P2P file sharing systems, the resource discovery involves broadcasting a query

to all known peers, while sending response and disseminating files are bound to unicast-

ing communications between a pair of peer agents. Figure 6.2 shows an overview of the

system infrastructure. Suppose the collaborative sharing group consists of six peer par-

ticipants, each participant is represented as a ShareEnabler agent. Agent 1 broadcasts a

query message to all known peers in the group (step 1 - 5 in Agent 1). Upon receiving the

query message, Agents 2 - 5 look up their own posted contents. Agent 2 finds the matched

content(s), evaluates the originator’s ROA policies and sends a unicast query response with

the metadata of the authorized content(s) back to Agent 1 (step 2’ - 13’ in Agent 2), while

Agents 3 - 5 are not necessary to respond to the requester. We call this process as meta-

data sharing. Agent 1 then can send a download request to Agent 2, while Agent 2 further

checks with the originator’s ROA policies and initiates the data transferring process if the

requester is authorized to download the resource. We call this process as data sharing. The

access control for processes of both metadata sharing and data sharing is carried out by our

proposed RAMARS system.
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Figure 6.2: ShareEnabler System Infrastructure and Architecture

Figure 6.2 also shows the system components inside a ShareEnabler Agent and their in-

teractions in the process of metadata sharing between the ShareEnabler Agent 1 as the re-

quester and Agent 2 as the responder. Each ShareEnabler agent is composed of five compo-

nents: Graphical User Interface (GUI), Executive Services, RAMARS AuthZ/Enforcement

service, Secure Group Layer/InterGroup protocol (SGL/IG)) [8, 69] and Transport Layer

Security/Transmission Control Protocol (TLS/TCP). GUI is the interface through which a

user operates and executes sharing services. Executive Services are the real services re-

quired by P2P collaborative sharing behaviors, which include Search, Download and Share

Services. All these services interact with a Data Management Service serving as the back-

ground database in the agent. The RAMARS AuthZ/Enforcement service is the central

component that conveys our proposed

RAMARS system for the core access and dissemination control services. As shown in Fig-

ure 6.3, the PEP is responsible for the request processing and access decision enforcement.
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Figure 6.3: Detailed Components in a ShareEnabler Agent

The RAMARS Engine is designed for the policy retrieval and all policy related evaluations,

and the detailed internal architecture of RAMARS Engine complies to the RAMARS PDP

in Figure 6.1(b). The Administrative Policy Editor can also be invoked from this com-

ponent for an originator to create and edit ROA policies at anytime while operating the

ShareEnabler Agent. The secure and reliable multicast communication is achieved by the

combination of the Secure Group Layer (SGL) [8] and the InterGroup protocol (IG) [69].

In particular, SGL supports group key-exchange and symmetric cryptography algorithms

to enable group peers to establish a shared session key, authenticate each other and en-

crypt all communication channels. IG protocol provides reliable ordered message delivery,

membership notification, group control as well as fault detector mechanisms for the multi-

cast communications. In the category of unicast communication, similar functionalities are

achieved by the Transport Layer Security (TLS) and Transmission Control Protocol (TCP)

when two peers play the traditional roles of a client and a server, respectively.

In the process of metadata sharing, on the requester agent side (ShareEnabler Agent 1),

a user interacts with the GUI to specify the query criteria and choose his/her credentials1

1Here we assume all users’ credentials are locally stored for the demonstration purpose of authoriza-
tion services. We demonstrate how our system can be extended to support credential retrievals from online
credential providers in Section 6.3.
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(step 1). GUI invokes the Search Service to formulate and embed the user’s credentials

into a query message, and broadcast to all peers in the collaborative sharing group through

SGL/IG (step 2 - 5). Upon receiving responses from other peers, TLS/TCP notices the

Search Service with the response messages (step 6 - 7), and these responses are parsed and

then shown in the GUI (step 8). The search results are backed up through Data Management

as well (step 9).

On the responder agent side (ShareEnabler Agent 2), the SGL/IG module notices the

Metadata Sharing Service (step 1’ - 2’) upon receiving the query message. The Metadata

Sharing Service separates the content request and the requester’s credentials from the query,

then invokes the Data Management Service to find matched resources against the content

request (step 3’). For resources listed in the agent, the originator defines and stores its

ROA policies in a localized LDAP policy repository using a facility Administrative Policy

Editor tool, while the root policy RMPS is attached with the resource in the ShareEnabler

agent. The Data Management Service returns a list of matched resources along with their

associated root policies (RMPS) to the Metadata Sharing Service, through which the PEP

is invoked for access checking and enforcement (step 4’ - 5’). The PEP generates an access

request and forwards the requester’s credentials to the RAMARS Engine for the access

decision evaluation (step 6’). According to the information specified in RMPS, the RA-

MARS Engine retrieves relative ROA policies from the originator’s LDAP directory and

examine whether the requester is allowed to query the resource following the whole eval-

uation process as we discussed in Section 5.3 (step 7’ - 9’). Upon receiving the access

decision from the RAMARS Engine, PEP enforces the decision by removing unauthorized

resources from the list, so that only authorized resources are returned to the Metadata Shar-

ing Service (step 10’ - 11’). Finally, the Metadata Sharing Service formulates the response

message and sends back to the requester using the TLS/TCP protocol (step 12’ - 13’).

In our system, ROA policies are maintained in an originator’s administrative domain,

which are deployed separately from the major ShareEnabler application and enforcement
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components. A lightweight RMPS policy is attached with the originator’s resources in Sha-

reEnabler so that the ROA policies are located and pulled at runtime when the RAMARS

AuthZ/Enforcement module needs to make an authorization decision. Hence, an origina-

tor can easily maintain and change the policies without requiring changes to the sharing

service systems. We decide to apply X.509 Attribute Certificates to encapsulate an origi-

nator’s ROA policies. The X.509 Attribute Certificate (AC) is a basic data structure in Priv-

ilege Management Infrastructure (PMI) [64] to bind a set of attributes to its holder. With

its portability and flexibility, AC is considered as an ideal container of subject attributes

as well as authorization policies in ShareEnabler. We also developed a separate facility

application, called Administrative Policy Editor, for an originator to create ROA policies,

generate policy attribute certificates and store in the originator’s LDAP policy repositories.

In terms of a user’s credentials, X.509 public key certificate (X.509 PKC) is the ma-

jor identity credential for each ShareEnabler agent to authenticate itself to other agents for

secure communications within the P2P sharing community. The certificate can be either

self-signed or signed by a trusted certificate authority. The self-signed certificate could be

used by a new peer agent (called pseudo user) to join the community quickly. However,

the X.509 PKC is not the major credential to determine a user’s privileges. As illustrated in

our RAMARS framework, a user’s privileges are determined through the attributes he/she

possesses, which are bound into X.509 ACs. We have demonstrated how XACML policies

can be utilized to specify credential policies and how the credentials could be validated

through XACML policy evaluation mechanisms. To make the implementation consistent,

we directly encode the XACML CRED Policies as attributes in ACs to be transferred be-

tween peer agents for authorization purposes.

6.2.2 Dissemination Control Mechanisms

The goal of access and dissemination control for ShareEnabler is to guarantee that the

resource is shared within an originator’s collaborative sharing domain as defined by ROA

policies. Our system applies a distributed policy propagation and enforcement scheme
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with decentralized, self-enforcing, and self-monitoring features at each ShareEnabler agent

level. In particular, each ShareEnabler agent ensures that an originator’s ROA policies are

enforced locally by the RAMARS AuthZ/Enforcement component, so that only legitimate

peers can obtain the requested file. Meanwhile, these ROA policies should be propagated

and enforced by recipient ShareEnabler agents as well when they act as disseminators to

respond requests from other peers. Since RMPS plays an important role for a ShareEnabler

Agent to locate and enforce an originator’s ROA policies, it is essential to make sure that

RMPS is propagated along with the file dissemination, and its confidentiality and integrity

are properly protected when it leaves the originator’s domain.

In order to achieve these requirements, we introduce a new self-contained cryptographic

data structure, called SEFile, to encapsulate an original data file with its associated RMPS

policy. When an originator tries to publish a file in its ShareEnabler agent, the originator is

prompted to interact with the Administrative Policy Editor to edit and store ROA policies

in the originator’s LDAP policy directory. Meanwhile, the PEP creates the SEFile from

the original data file and RMPS policy. The SEFile is encrypted with a predefined secrete

key and stored in the ShareEnabler agent to be shared with all other collaborators. There-

fore, instead of receiving the raw data file, the collaborators receive the encrypted SEFiles.

The SEFile can only be decrypted at runtime when the receiver uses a particular SEFile

parser associated with ShareEnabler agent. By doing this, we empower the ShareEnabler

agent to be extensible for more advanced dissemination control and tracking mechanisms.

Figure 6.4(a) illustrates the sequence diagram for an originator to publish a data file in its

ShareEnabler agent with ROA policies creation and SEFile generation.

To prevent unauthorized dissemination, when a collaborator tries to post a pre-obtained

data file in his/her ShareEnabler agent for re-distribution purpose. The SEFile is detected

and decrypted by the PEP to get the original RMPS policy. RAMARS Engine is prompted

to retrieve the originator’s ROA policies as indicated in RMPS and makes an access control

decision on whether the user is authorized to post and redisseminate the resource. In other
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words, the ShareEnabler agent would check whether the user is a legitimate designated dis-

seminator in every re-dissemination attempt. PEP declines the user’s post request if he/she

is not authorized to do so. Otherwise, ShareEnabler automatically posts the resource in the

SEFile format and allows it to be re-disseminated. Figure 6.4(b) illustrates the sequence

diagram of this process.

6.2.3 Implementation

We have implemented a prototype ShareEnabler system using Java. In our prototype, we

use JDK1.5 core packages as well as other necessary libraries to develop components spec-

ified in the system architecture. Especially, we adopt SciShare’s Reliable and Secure Group

Communication (RSGC) package [18] for the implementation of SGL/TLS communication

protocol as well as the basic authentication mechanisms underneath. We extend SICS’s

XACML3.0 implementation [106] to accommodate the functionalities utilized in XACML

policy evaluations. A special path tracker has been embedded in the implementation to

record the credential policy evaluation paths so that the valid assertion paths can be cap-

tured. In addition, IAIK’s Java crypto library [59] is used to implement major cryptographic

and X.509 attribute certificate related modules. Finally, the IPlanet Directory Server serves

as the back-end LDAP policy repository.

Figure 6.5(a) shows an interface when a user Dave searches a particular file resource.

For the responding agent, only the data resources that Dave is authorized to query are re-

turned back and shown in Dave’s agent. A sample authorization message on the responder

side is also shown under the interface. Figure 6.5(b) shows an interface of Administrative

Policy Editor for the originator RMC to create ROA policy X.509 AC. All ROA policies are

encoded as attributes in the certificate.

6.2.4 Performance Evaluation and System Improvement

The purpose of performance evaluation is to examine the scalability as well as efficiency

of our ShareEnabler system. In particular, we evaluate how well the RAMARS Engine as
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Figure 6.5: User Interfaces of ShareEnabler Agent and Administrative Policy Editor
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the authorization module scales along with the increased evaluation complexity and also

analyze the overhead that RAMARS Engine has put on the underlying P2P based scientific

file sharing infrastructure where ShareEnabler is built upon.

To examine the scalability of RAMARS Engine, each procedure of the policy evalua-

tion, such as trust evaluation (TM evaluation), role assignment evaluation (RA evaluation)

and authorization evaluation (AuthZ evaluation), is measured when we change the number

of attributes, credentials and roles involved in the evaluation. RAMARS Engine takes an

access request along with a set of supportive credentials in X.509 ACs as an input, and

returns a boolean valued decision indicating whether the access is granted or not. We have

developed tools to generate and monitor workloads of the policy evaluation. Monitors are

embedded in RAMARS Engine to measure the time spent for each evaluation step. The

total time consumption of RAMARS Engine is also measured between the acceptance of

request and the return of final decision. In our workload generation, all roles and attributes

are uniformly created without hierarchies. The assignment of each role requires the same

set of attributes and the trust evaluation for each attribute requires the same level of trust

for its supportive assertion paths. The number of credentials are varied by increasing the

depth of a delegation path. Figure 6.6 shows a general testcase setting for the relation-

ships of roles, attributes and credentials. In particular, there are n roles involved in the

system, and a user must possess m attributes to be assigned to each role. In supporting the

claims of m attributes, a total of p credentials are presented with p/m credentials for each

attribute claim. To claim m attributes, it requires at least p = m credentials (one credential

for each attribute claim). When there is one step of delegation, each attribute is supported

by an assertion path with the depth of 2, which then implies p = 2m credentials in total.

Therefore, any incremental change of delegation depth results in an increase of the num-

ber of credentials. The experiments ran on a Pentium M with 512MB RAM running at

1.8GHz with Windows XP. The time consumption for each evaluation process is measured
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in milliseconds and calculated as the average of 100 independent test runs 2.

Test 1 – Credential increase and credential indexing

In collaborative environments, we expect the number of roles and attributes involved

in the authorization are relatively stable, while a user’s submitted credentials may vary

dramatically. In this sense, the performance of RAMARS Engine to handle credentials

is a major factor to the overall scalability of the system in practice. Our first experiment

is conducted by fixing the number of roles and attributes, but increasing the number of

credentials. Figure 6.7(a) indicates the initial testing result when there are 10 roles and

10 attributes, as the number of credentials gradually increases from 10 to 80. This initial

result indicates that the time spent in TM evaluation grows fast along with the increase in

the number of credentials. We revisit our implementation of TM evaluation and observe

that the pooling of all credentials in TM evaluation puts heavy burdens on the evaluation

engine, as it must scan all credentials in each step of trust evaluation. For such a root cause,

we implement an indexing mechanism based on a Map data structure. In particular, as a

Map structure associates keys with values, we use the claimed attribute as the key and a

set of relevant credentials as the value. For instance, when there are p credentials asserting

m attributes. The credential index then keeps m entries of records, where each record

maintains the attribute as the key and p/m credentials as the value. The trust evaluation

engine only takes one entry of (attribute, credentials) at each time for evaluation so that

the amount of credentials to be scanned could be reduced significantly. Compared to the

2For brevity, our performance analysis omitted the network-related overhead.
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result of our initial test, as shown in Figure 6.7(b), the indexing mechanism demonstrates

dramatic advantages. When there are 80 credentials, the total evaluation time for RAMARS

Engine is reduced from nearly 3.5 seconds to less than 2 seconds with a flatter increase

trend. The time consumption of TM evaluation stays almost stable at around 0.3 seconds.

This is a desirable property and has made the system more scalable to a large number of

credentials.

Test 2 – Role / attribute increase and bitmap indexing

Our next experiment is conducted to examine how well the authorization module scales

when the roles and required attributes increase in ROA policies. Figure 6.7(c) shows the

result when we increase the number of roles and attributes ranging from 1 to 100. To

avoid confusions, each attribute is supported only by one credential in this experiment. In

real collaborative environments, an originator does not likely define 100 collaborator roles

in its collaborative sharing domain and require 100 attributes for each role assignment.

However, it is important to understand our system’s behavior under extreme workload. In

the worst case scenario, it takes less than 6 seconds for RAMARS Engine to go through all

evaluations and derive an authorization decision. It is obvious in the graph that the policy

loading and pre-processing time are major causes. We observe that the size of a single

role assignment policy (RAPS) exceeds 3.5M bytes when 100 roles and relevant attributes

are involved. As discussed in [49], the DOM XML parser is not efficient in handling

large XML files. This could explain the high cost of policy loading and parsing. Better

performance can be achieved by adopting a more efficient XML parser. We leave this issue

as our future work since the development of an efficient XML parser is beyond the scope

of this research.

As another effort in improving the performance of policy evaluation, we investigate

bitmap-based indexing technologies [115] for the process of role assignment evaluation. In

bitmap indexing, data is abstracted as bit arrays, and queries are answered in a very efficient

way by performing bitwise logical operations. We could further improve the performance
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Figure 6.8: Bitmap Policy Indexing

to quickly locate the matched policies with the help of bitmap indexing and bitwise match-

ing operations.

Consider RAPS as an example, RAPS specifies a set of role assignment policies, and

each policy defines the required attributes for a particular role. The role assignment eval-

uation then takes a set of a user’s trusted attributes as an input and tries to derive the roles

that could be assigned based on the role assignment policy. The performance of XACML

PDP can be affected by scanning irrelevant policies that define the role with attributes other

than the ones the user possesses. For example, if a policy defines role r1 requires attributes

a1, a2 and a3, while a user has attributes a4 and a5, then the policy is definitely irrelevant to

the evaluation. A bitwise match could be applied to expedite the matching process to make

sure only the relevant policies are fed into XACML PDP for policy evaluation. Suppose

there are n attributes involved in the system AT T R = {a1,a2, . . . ,an}. We follow the steps

as illustrated below:

1. Encoding a user’s attributes into a bit array: an n-bit bit array is introduced where the

user’s attribute is encoded as “1” at its position and “0” otherwise. As an example

shown in Figure 6.8, when there are 5 attributes involved in the system (n = 5), the

user’s attributes {a1,a2,a3,a4} is encoded as a 5-bit bit array (11110).

2. Encoding RAPS policies into a bit array indexed by the role: for each role assignment

policy element with a certain set of required attributes, an n-bit bit array is introduced.

“1” is set to the position of each required attribute, and “0” otherwise. For example,
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when policy P1 defines r1, requiring attributes {a1,a2,a3}, it is encoded as r1 −
(11100).

3. Bitwise OR to find relevant policies: when a user’s attributes cover all required at-

tributes in a policy, the policy is a relevant policy that PDP needs to evaluate. In

bitmap matching, a bitwise OR operation is performed between the user’s attribute

bit array and each policy bit array. If the derived bit array is equal to the user’s bit

array, the associated policy is a relevant one and should be promoted to PDP for pol-

icy evaluation. As shown in Figure 6.8, after the bitwise match, only P1 and P3 are

relevant ones for policy evaluation.

Theoretically, bitwise matching is more efficient than normal element-level matching

in XML. Bitmap indexing could pre-parse the policies and quickly filter out relevant poli-

cies for PDP to evaluate. The more redundant policies are removed, the better performance

PDP could achieve. We use t1 to indicate the PDP evaluation time. However, the applica-

tion of bitmap indexing also introduces extra burden to index policies and conduct bitwise

matching operations. We use t2 to indicate this overhead. In our experiments, we analyze

the possible performance improvement that could be achieved by bitmap policy indexing.

With 100 roles and 100 attributes involved in the system, there are 100 records of role as-

signment policies. We adjust our original testing settings by varying the required attributes

for each role and the user’s attributes, so that we could control the number of relevant poli-

cies being promoted through bitmap indexing from 1 (the best case when bitmap indexing

effectively removes 99 irrelevant policies) to 100 (the worst case when bitmap indexing

finds all 100 policies are relevant ones). We measure and compare the time consumption

of PDP evaluation alone (t1) to the total time including the indexing process (t1 + t2). As

shown in Figure 6.7(d), the bitmap indexing has more performance advantage when there

are more irrelevant policies in the policy pool. Along with the increase of relevant policies

in the pool, the advantage of bitmap indexing is reduced by the cost of dynamic index-

ing and matching operations at runtime. However, we have clearly observed the potential
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Table 6.1: RAMARS Overhead Analysis

Testcase (attr,cred,role) Base (10,10,10) (20,20,20) (30,30,30)
Total time (seconds) 487.5 488.0 489.0 490.8
Overhead (%) 0.00 0.10 0.30 0.68
Testcase (attr,cred,role) (40,40,40) (50,50,50) (80,80,80) (100,100,100)
Total time (seconds) 492.8 495.4 499.8 508.3
Overhead (%) 1.07 1.61 2.53 4.27

for the bitmap indexing mechanism to possibly improve our policy evaluation process.

Meanwhile, we also acknowledge that the bitmap indexing has limited expressiveness, and

the bitwise comparison cannot replace the richness of XACML evaluation functionalities.

Therefore, the application of bitmap indexing in our system is restrict to assist PDP to lo-

cate the relevant policies, while PDP is still responsible to evaluate the policies following

the XACML evaluation procedures. In addition, some enhanced PDP engines [77] can be

applied together with the bitmap indexing to further improve the performance of policy

evaluation.

Test 3 – RAMARS overhead to scientific P2P file sharing

Our final experiment is conducted to measure the overhead of RAMARS authorization

to the P2P based scientific file sharing infrastructure. The major overhead lies both at

the requesting and the responding sides. On the requesting peer side, the requester sends

supportive credentials along with the file request. On the responding peer side, the agent

extracts the credentials from the file request, retrieves and evaluates ROA policies through

RAMARS Engine.

According to a typical scientific collaboration of DØ Experiment [42, 45], 300 DØ

users submitted 15,000 requests involving 2-4TB data transfer per day with an average of

130M bytes data transfer per query. We choose a sample data file of size 121,781KB to be

transferred between two ShareEnabler agents for our experiment. We put one more monitor

at the requesting peer side to measure the time between sending out the file request and

finishing the file transfer. The base time is measured by turning off credential loading at the
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requester side and RAMARS Engine evaluation at the responder side. Both ShareEnabler

agents are running within the same network domain. The requesting agent ran on a Pentium

IV with 512MB RAM running at 2.52GHz with Windows XP. Table 6.2 shows the results

of our experiment when we adjust the number of attributes, credentials and roles involved

in the system. With the extreme complexity of evaluation, RAMARS introduces less than

5% overhead to the P2P file sharing infrastructure, which we believe is promising outcome

with respect to the performance of ShareEnabler.

6.3 RAMARS in Grid Computing – RamarsAuthZ System

Grid computing is considered as another important technology aiming at secure and effi-

cient resource sharing within virtual communities. Being proposed as a generic approach,

the RAMARS framework should be flexible and extensible to support secure information

sharing in various collaborative environments. Therefore, we further evaluate how RA-

MARS framework can be adapted for collaborations in Grid computing environments en-

abling the same effective access control as it has been demonstrated in P2P environments.

6.3.1 Access Control Challenges in Grid Computing

Grid data and resources by nature are diverse in their locations, types, structures, own-

erships, naming conventions and access capabilities. By embracing the service-oriented

approach [46, 54] and the recent Web Services technologies, resources in Grid commu-

nities are uniformly represented and shared through Grid services with well-defined in-

terfaces for dynamic service creation, resource discovery, lifetime management, and so

on [46]. Examples of such Grid data sharing services are Data Replication Service (DRS)

in Globus Toolkit [29, 1], Open Grid Services Architecture - Data Access and Integra-

tion (OGSA-DAI) [13] and Storage Resource Broker (SRB) [97]. However, the facility

provided to Grid clients requires more advanced Grid access control mechanisms to ac-

commodate unique challenges ranging from from the authorization model to the system

architecture and deployment.
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Firstly, Grid systems are usually composed of a number of dynamic and autonomous

domains involving a large number of distributed users. An effective and manageable autho-

rization scheme is necessary for the resource owners to control the access and sharing of

their resources. Attribute-based access control (ABAC), which makes decisions relying on

attributes of requesters, resources, and environment, has been widely adopted as a scalable

and flexible authorization solution for highly distributed Grid environments [71]. In an

attribute-based authorization system, the entity that manages user attributes is referred to

as an Identity Provider (IdP). A user’s attributes are normally collected by multiple IdPs in

Grids. For example, a user is associated with a “home institution” which typically manages

his employment status and affiliation attributes, while another IdP is associated with a Grid

Virtual Organization (VO) that maintains attributes such as membership and role informa-

tion within the Grid. The authorization system that supports ABAC in Grids then needs to

be seamlessly integrated with all related IdPs and delivers user attributes in a secure and

trusted manner.

Secondly, from the system architecture and deployment perspective, there are a number

of dimensions to be considered for an attribute-based authorization system. In terms of

the attribute collection process, the “push” strategy requires the clients to obtain and push

their attributes to the Grid service at the initial request. The “pull” strategy, on the other

hand, does not require the clients to submit any attribute. Instead, it is the responsibility

for the authorization system to acquire attributes from the client’s IdPs. While the clients

have more options to select the attributes being released for authorization in the “push”

mode, the “pull” mode simplifies the overall interception by the clients. It is impossible

to determine which mode is more suitable for dynamic Grid environments. However, it is

highly desirable for the authorization system be flexible enough to cope with both options.

In terms of system deployment, the reliance on statically configured modules to render an

authorization decision such as policy and attribute management should be minimized, as

the authorization system may serve the authorization functions for various Grid services
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running within the infrastructure.

Finally, the data resources being shared through the Grid data sharing service normally

belong to different institutions. These institutions, as the owners of the data resources,

should directly participate in defining authorization policies for their data sets, and their

authorizations need to be efficiently conveyed and effectively enforced within the Grid

data sharing service. Meanwhile, the access and invocation of Grid data sharing service

itself apparently needs to be well protected to accommodate the security requirements of its

service provider. Therefore, it is required for authorization systems to be flexible enough to

synthesize both service-level and data-level controls accommodating security policies from

different stakeholders such as the data resource providers and the service providers.

In accommodating the above-mentioned requirements, we design and extend our RA-

MARS framework as a flexible policy-driven authorization system, called RamarsAuthZ,

for data sharing and management services in Grids. We seamlessly incorporate the trust-

aware role-based authorization functions of RAMARS authorization infrastructure in the

Grid Data Replication Service (DRS) to provide a fine-grained originator control for both

the Grid DRS service and the data being shared through the service. RamarsAuthZ does

not rely on centrally configured policy stores to make authorization decisions. It is inter-

operable with several state-of-the-art Grid technologies including Globus Toolkit version 4

(GT4) [12], Globus DRS service [29, 1], Shibboleth [25] and GridShib [55].

6.3.2 Leveraged Technologies

In this Section, we give a brief overview of the leveraged technologies in our system to

fully integrate with the existing Grid computing infrastructure.

Globus Toolkit: The open source Globus Toolkit [12] is the core Grid infrastructure that

serves as a container hosting a number of Grid services for running Grid jobs including

resource monitoring, discovery, and management. Inside Globus Toolkit version 4 (GT4),

the Grid Security Infrastructure (GSI) [113] is implemented as the de-facto solution to
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provide the fundamental security services such as authentication and message protection

for Grid environments. In particular, X.509 Proxy Certificate [110] is utilized in GSI to

allow a Grid user to periodically delegate his/her identity and privileges to another entity so

that the bearer is able to authenticate and establish secure connections with other parties on

the Grid user’s behalf. In our system, we explore the proxy certificate to convey attributes

and other necessary information from Grid client to RamarsAuthZ authorization system

so that the system can be dynamically configured to support both the “push” and “pull”

modes.

GT4 server-side authorization framework encapsulates a set of built-in Policy Decision

Point (PDP) modules. The default authorization PDP in GT4 evaluates an access control

list (ACL) type of policy located in a gridmap file, which specifies mappings of a user’s

global identity (called distinguished name, DN) to a local account. Users are authorized to

use the resources when their DNs appear in such list and the privileges are determined by

the associated local account. This authorization approach is primitive and does not scale to

a large number of Grid users. More recently, the Global Grid Forum (GGF) has proposed

a SAML AuthZ specification [112] using SAML [78] as a standard message format for

requesting and expressing authorization assertions so that external authorization systems

can remotely make authorization decisions and respond authorization queries. With this

approach, it is required for the external authorization system to render an access decision

based on the information conveyed by a SAML request with least dependency on static

configurations. Our RamarsAuthZ authorization system fully supports the SAML-based

method to make authorization decisions for the enhanced DRS.

Globus Data Replication Service (DRS): GT4 provides a number of components to en-

able collaborative data sharing concerning with the discovery, access and dissemination [52].

The Replica Location Service (RLS) is responsible for the data registration and enables

the discovery of data resources. Inside an RLS, a unique identifier called logical name

is created for each registered data item. A mapping of logical name–physical location is
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maintained for the data item and its replicas. For instance,

“GeneSequence–gsiftp://abc.com/var/gseq.tar” states an entry in RLS. By querying the

logical name “GeneSequence,” a user could locate his/her desired data item at

“gsiftp://abc.com/var/gseq.tar.” When a data resource is discovered, the Reliable File

Transfer service (RFT) is in charge of data replication to the target location. Globus Data

Replication Service (DRS) [29, 1] is developed as a higher-level data management service

incorporating the functionalities of both RLS and RFT services. In particular, upon re-

ceiving a user’s file replication request, the DRS begins by querying RLS to discover the

existence of the desired files. Then the DRS invokes RFT to replicate the files. When

the file transfers are completed, the new replicas are finally registered with RLS so that

they can be further discovered and disseminated. In terms of authorization, the DRS ser-

vice alone can be configured with GT4 built-in authorization mechanisms. Therefore, only

authorized Grid users can invoke the service and exercise the data replication functions.

However, such configuration cannot further protect the actual data resources that are repli-

cated through DRS. Our system largely enhances the authorization in DRS by enforcing

both the service-level and data-level controls based on different stakeholders’ policies.

Shibboleth and GridShib: Shibboleth is an Internet2 middleware initiative project aim-

ing at providing cross-domain single sign-on and attribute-based authorization based on

SAML [25]. Shibboleth leverages the identity federation between educational organiza-

tions so that a user can authenticate on his/her own campus and access to remote resources

where his attributes are passed to the resource providers for authorization. There are two

major separately deployed components in Shibboleth infrastructure: the Identity Provider

(Shib-IdP) and Service Provider (Shib-SP). A Shib-IdP manages a user’s identities and

asserts his/her attributes. A Shib-SP, on the other hand, resides at the resource side to re-

quest the remote user’s attributes from his/her Shib-IdP and enforces attribute-based access

control. All participating Shib-IdPs and Shib-SPs are managed in a Shibboleth federation,

where their trust relationships are bridged through the centralized Shibboleth federation
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certificate authority.

GridShib [55] project is initiated to integrate Shibboleth infrastructure with Grid tech-

nology. A set of tools has been developed to facilitate Grid resources to fetch attributes

from Shibboleht IdP. However, very limited attribute-based authorization functionalities

can be achieved by GridShib. Most of early adopters [37, 56] of GridShib only implement

the “pull” mode of attribute acquisition, relying on pre-configured single source of Shib-

IdP. This approach lacks flexibility and is insufficient to support the attribute-based access

control based on multiple IdP sources. In addition, as Shibboleth federation is separated

from the common trust base established in Grid VO, the attributes issued by Shibboleth

IdP are not necessarily trusted by Grid resources. The trust management issue is not well

addressed either in current available systems. In our system, we explore a feasible and

integrated solution to these issues.

6.3.3 Integrated RamarsAuthZ System

Recall in our original RAMARS system, a user “pushes” an access request along with

his/her credentials to the authorization system, while RAMARS PDP dynamically locates

and pulls an originator’s ROA policies upon policy evaluation. The deployment of RA-

MARS PDP does not need to be configured with any centralized policy store. In our

RamarsAuthZ system, we enhance the existing system by supporting the hybrid “push”

and “pull” modes for attribute acquisition. And we also extend the RAMARS PDP as a

Grid Authorization Service exchanging standard SAML authorization messages with Grid

services.

Figure 6.9 illustrates the integrated system architecture for RAMARS, Globus Toolkit,

Shibboleth and Globus DRS data sharing service. Inside a Globus Toolkit Container, a

RAMARS Adaptor is introduced for the DRS service as an authorization plugin to com-

municate with the RamarsAuthZ service which is essentially based on RAMARS PDP. The

RamarsAuthZ service can be deployed and called out by the RAMARS Adaptor through

two mechanisms: a localized function call by API or a remote service invocation by SAML
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Figure 6.9: Integrated RamarsAuthZ Authorization System Overview

messages. In terms of attribute acquisition, both “push” and “pull” modes are supported.

A Grid client can retrieve his/her attributes from the Shibboleth IdPs and “push” these at-

tribute assertions upon the Globus DRS service invocation as legitimate extensions in the

proxy certificate. In addition, the Grid clients can also embed the information about his/her

preferred Shibboleth IdPs within the proxy certificate so that RamarsAuthZ is able to dy-

namically locate and retrieve the attributes for authorization. We call this proxy certificate

with specialized extensions as a RamarsAuthZ proxy certificate.

The overall authorization flow for DRS service works as follows: the service provider of

DRS first specifies and stores the ROA authorization policies in his administrative domain.

The DRS service maintains the location reference of the ROA policies when the service is

deployed in the Grid infrastructure. When a Grid client sends a RamarsAuthZ proxy cer-

tificate and his data replication request to the Grid DRS service, the client is authenticated

through the Grid GSI module. Then RAMARS Adaptor is invoked to parse the extensions

in the proxy certificate and prepare an authorization request for RamarsAuthZ service to

check whether the Grid client is authorized to invoke the DRS service. The authorization

request includes information on the requester’s attributes and/or preferred IdPs passed by

the proxy certificate, and the location reference of the service provider’s ROA policies.

Based on the authorization request, the RamarsAuthZ service can dynamically retrieve the

service provider’s ROA policies and the requester’s attributes to make the authorization
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decision. The decision is sent back to RAMARS Adaptor and enforced accordingly by the

DRS service.

Substantial extensions and system modules have to be introduced to the original RA-

MARS system in order to enable the proposed functionalities and workflows. In the next

several sections, we first share the experience in integrating RAMARS with Globus and

Shibboleth. We then discuss the enhanced DRS service for data-level access control. The

general trust management issues in our system are also discussed.

6.3.4 RAMARS-Globus-Shibboleth Integration Details

In our system design and implementation, we identify three key challenges and introduce

multiple system components to solve these issues:

• How does a Grid client generate RamarsAuthZ proxy certificates to “push” attributes

or convey preferred IdPs information to the DRS service for authorization?

• How does the RAMARS Adaptor formulate authorization requests and invoke Ra-

marsAuthZ service with different deployment options?

• How does a RamarsAuthZ service operate to render an authorization decision?

To address the first question, a Ramars-proxy-init tool is introduced to facilitate a Grid

user to create a RamarsAuthZ proxy certificate. In particular, a Grid user can collect SAML

attribute assertions from his/her Shibboleth IdPs by using any client tools that can commu-

nicate with a Shibboleth IdP. Then the user triggers the Ramars-proxy-init tool to generate

an X.509 proxy certificate including the attribute assertions as SAMLX509Extension. In

case when the Grid user wants the system to operate in a “pull” mode, we also introduce

another extension as IdPInfoExtension for the user to include a list of metadata informa-

tion about his/her preferred IdPs. The IdP metadata contains important information for

RamarsAuthZ to locate and communicate with an IdP, such as the IdP’s unique provider

ID, the endpoint location, the IdP’s certificate for SSL communications, and so on. Such

metadata can be easily retrieved from the Shibboleth IdP site or Shibboleth federations.
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Figure 6.10: RamarsAuthZ Service

Since the proxy certificate is a self-issued certificate by the Grid user, all embedded SAML

assertions and IdP’s metadata must be signed by the issuing IdP and the metadata dis-

tributor, respectively. Any unsigned attribute assertions and IdP metadata without proper

integrity protection are discarded and cannot be used by RamarsAuthZ for the authoriza-

tion evaluation. By including these information in the legitimate extension fields of an

X.509 certificate, the RamarsAuthZ proxy certificate can be accepted and verified by the

GSI authentication module in GT4 without requiring any further changes.

To address the second question, the RamarsAuthZ service requires three sources of

information to make authorization decisions: the access request to the Grid service, the

location of the originator’s ROA policies, and the requester’s attribute credentials in the

“push” mode or preferred IdPs information in the “pull” mode. The RAMARS Adaptor

is the major component we plug into GT4 to convey these information. For now, we only

focus on the service-level authorization and leave the data-level control to next section. The

service provider of the Grid services, as the originator, is responsible to control the invo-

cation of its services by notifying RamarsAuthZ its ROA policies. This is achieved by the

Grid service provider to configure the originator information and the location of its ROA

policies as RamarsAuthZ specific parameters at the time when the Grid service is deployed

in GT4. And these parameters can be automatically passed on to the RAMARS Adaptor

by GT4 when the Grid service is invoked. Upon receiving a Grid client’s access request,

the user’s RAMARSAuthZ proxy certificate is received by the GT4 container as well. By
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parsing the extension fields in the proxy certificate, the requester’s credentials or IdPs in-

formation can be achieved. Thus, the RAMARS Adaptor can formulate the authorization

decision query with all information required by the RamarsAuthZ service.

The invocation of RamarsAuthZ is fairly simple via function calls when RamarsAuthZ

service is deployed locally. Yet it is more challenging when RamarsAuthZ service is de-

ployed remotely as a Grid authorization service. In particular, the RamarsAuthZ service

must be exposed through a standard SAML callout interface, and the SAML message is the

only media for requesting and expressing authorization assertions and decisions from Ra-

marsAuthZ service. According to GGF’s SAML AuthZ specification [112], there are two

SAML extensions being defined for message exchange between the calling service and the

Grid authorization service:

• ExtendedAuthorizationDecisionQuery: Besides specifying the common elements in

a SAML authorization decision query, such as the requested Subject, Resource, Ac-

tion and Evidence, the ExtendedAuthorizationDecisionQuery allows the calling ser-

vice to include an AuthorizationAdvice element to convey additional information

such as where the remote Grid authorization service may obtain the subjects’s at-

tributes in the “pull” mode of operations. In addition, the ExtendedAuthorization-

DecisionQuery also allows the calling service to specify whether a simple or full

authorization decision needs to be returned by the Grid authorization service as a

boolean value of the RequestSimpleDecision attribute.

• SimpleAuthorizationDecisionStatement: When the calling service only requests a for

simple decision (the RequestSimpleDecision attribute is set to true in the SAML re-

quest), a SimpleAuthorizationDecisionStatement is returned by the Grid authoriza-

tion service without tedious enumeration of whole authorized actions. Such simpler

response, in turn, could improve the efficiency for the calling service to process the

response.
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We further explore the ExtendedAuthorizationDecisionQuery (simply called Query)

to include authorization related information for RamarsAuthZ service. In particular, a

user’s pushed SAML attribute assertions are directly included as Evidence in the Query.

As the ROA policy information and the user’s IdPs information are also important for

RamarsAuthZ to render an authorization decision, they are encapsulated in the legiti-

mate extension elements as ROAReferenceAdvice and AAReferenceAdvice, respectively.

Figure 6.11(a) shows an example of SAML Request captured in our system for a user

“CN=JJin” to request the DRS service, and Figure 6.11(b) shows a detailed attribute asser-

tion issued by a Shibboleth IdP asserting that ‘CN=JJin” is affiliated with “LIISP” lab. The

request is sent to RamarsAuthZ service to evaluate, and a “Permit” decision is sent back

in a SimpleAuthorizationDecisionStatement as shown in Figure 6.11(c). With a “Permit”

decision, the user “CN=JJin” is granted to invoke the DRS service.

To address the third question, we design RamarsAuthZ service as illustrated in the right

portion of Figure 6.10. All communications to and from the service are through a stan-

dard SAML interface (step 1). The RamarsAuthZ Context Handler is responsible to parse

the incoming SAML Request. Then Shib IdP Connector is invoked to initiate communi-

cations with the specified IdPs, one at each time, to acquire the user’s attribute assertions

(steps 2-4). The Message Translator is responsible to convert the messages from SAML to

the XACML-based input that is accepted by the original RAMARS PDP. With conflicting

message formats being transformed, the policy evaluation is carried out by the original RA-

MARS PDP without any additional changes (steps 5, 6, 8 and 9). And finally the authoriza-

tion is returned back as a SAML Response to the Ramars Adaptor for decision enforcement

(step 10). Yet from the originator’s policy specification perspective, ROA policies have to

be adjusted for the integrated Grid environments. Especially, since attributes are asserted

from multiple Shibboleth IdPs, the trustworthiness of each attribute assertion should be

based on the trust level an originator has assigned to the issuing Shibboleth IdP.
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Figure 6.11: SAML Messages
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6.3.5 Enhanced DRS for Access Control

Data resource originators delegate the data sharing responsibilities to the Globus DRS ser-

vice, yet the DRS service should also be able to enforce access control on their behalf. The

RAMARS framework is specialized to provide efficient access control for data sharing ac-

tivities including the data discovery, data access, and data dissemination. We demonstrate

such capabilities by implementing an enhanced DRS service where DRS acts as the PEP to

enforce an originator’s policies during each single step of the sharing operations. The data

discovery functionality in DRS is performed by the RLS registry, where a logical name–

physical location mapping is maintained for each data resource and its replicas. In order to

enable the originator control, we add additional attributes associated with each RLS entry,

namely originator and roa_location. With these two attributes being specified by the data

originator, DRS service can not only discover the physical location of the data resource,

but also collect the necessary information for the RamarsAuthZ service to locate the data

originator’s ROA policies.

In the enhanced DRS, the access control for data discovery is conducted when DRS

receives the response from the RLS registry. An access request is generated to query Ra-

marsAuthZ service whether or not the requester is authorized to “query” the physical loca-

tion of the requested data file. A “Deny” decision results in the failure of file location, and

all further data replication operations are aborted by the enhanced DRS. With a “Permit”

decision, on the contrary, the enhanced DRS needs to further check with RamarsAuthZ

to determine whether the requester is authorized to “replicate” the data, and a “Permit”

decision would trigger the replication operation in RFT. After the data file is successfully

replicated, a final data dissemination authorization request is sent to the RamarsAuthZ ser-

vice to check whether the requester is authorized to further “disseminate” the replica to

others. The replica is registered back in the RLS registry for other DRS queries only if the

requester is authorized to do so. Figure 6.12 shows the complete workflow for the enhanced

DRS to conduct the data replication and registration while enforcing originator’s policies.
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Figure 6.12: Sequence Diagram for Enhanced DRS Operations

Figure 6.13(a) shows a snapshot where a Grid client utilizes the Ramars-proxy-init

tool to generate the RamarsAuthZ proxy certificate before invoking the enhanced DRS

service. The proxy certificate includes two SAML attribute assertions and metadata of

two preferred IdPs as extensions. Figure 6.13(b) shows a snapshot for the RamarsAuthZ

service, deployed as the 17th service in a GT4 container, to receive and process a SAML

authorization request as shown in Figure 6.11(a).
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(a) RamarsAuthZ Proxy Certificate Generation

(b) RamarsAuthZ Service and Policy Evaluation

Figure 6.13: Implementation of RamarsAuthZ Service

6.3.6 Trust management

Trust management in our proposed architecture is considered with two aspects: the organi-

zational level concerning the necessary trust relationships between the involved parties and

the technical level with respect to the implementation details.

At the organizational level, we consider four main entities, a Grid client, a Grid ser-

vice provider (SP), the Grid resource providers (RPs) and the attribute providers (APs).

In our system, the Globus DRS is a particular SP, the data resource originators are RPs

and Shibboleth IdPs are APs. To simplify the analysis, we treat the RamarsAuthZ service

as part of the SP as it provides authorization decisions for the SP to enforce. Since the

Grid client does not directly interact with the RP, the RP has to rely on the SP to perform

some of the authentication and authorization tasks. As a policy-driven approach, the RPs

maintain their control through defining the ROA authorization policies, within which the
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trust relationships between RPs and APs are explicitly defined as various trust levels in the

Trust Assessment policies (TAP). However, the RPs still have to trust the SP to a consid-

erable degree with which the authentication and ROA policies can be faithfully enforced.

Additionally, the RPs also need to trust the APs for providing right attributes while these

attributes are correctly handled by the SP associated with the RamarsAuthZ service.

At the technical level, the trust management among the Grid client, SP and RPs is car-

ried out by the GSI infrastructure implemented in the Globus Toolkit where a Grid VO-CA

is the centralized trust anchor. However, the APs leveraged by RamarsAuthZ for authoriza-

tion is managed in Shibboleth environment. It is necessary to bridge the trust relationships

between these two distinct environments. In our implementation, we adopt the GridShib

plugin to query Shibboleth IdPs (Shib-IdPs) for user attributes. The trust relationship is

based on a bilateral arrangement between the two parties by exchanging and consuming

each other’s metadata. In other words, the RamarsAuthZ service maintains a set of certifi-

cates identifying trusted IdPs for authentication and secure communication purpose, while

those IdPs keep the certificate of RamarsAuthZ. Therefore, with n entities being involved,

there are O(n2) bilateral relationships to be managed. With the Shibboleth federation being

involved, a single trusted Shibboleth federation CA is introduced to all involved Shib-IdPs

and Shib-SPs where the metadata are centrally maintained by the federation. This could

partially ease the trust relationships managed by the Shib-IdPs and the RamarsAuthZ. In

particular, it is possible for RamarsAuthZ to maintain two parallel certificates: one is is-

sued by Grid-VO CA for authentication with all parties in Grid environments, and the

other is issued by Shibboleth federation CA for the RamaraAuthZ to retrieve attributes

from Shib-IdPs. In addition, other approaches such as bridge CA and online CA can be

further explored for more seamless integration solutions on the trust relationships between

Grid VO-CA and Shibboleth federation CA.
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6.3.7 Performance Evaluation

We conduct a series of experiments to evaluate how well the system scales along with the

increased evaluation complexity and also analyze the application overhead of RamarsAuthZ

authorization service over Globus DRS service. In our testbed, the enhanced DRS service

and RAMARS Adaptor are deployed within Globus Toolkit version 4.0.5 on a Pentium IV

machine with Fedora Core 6. The Ramars-proxy-init tool is also deployed at the same ma-

chine for a Grid client to generate X.509 RamarsAuthZ proxy certificates and invoke the

DRS service. The RamarsAuthZ service is employed within a WSRF-compliant WS Java

container on a Pentium M machine with Windows XP. The Shibboleth IdP 1.3.3 is installed

on a Pentium IV machine with Fedora Core 4. And IPlanet Directory Server is installed

on a Pentium IV Windows XP machine as the back-end LDAP repository for the origina-

tor’s ROA policies. All machines are located within the University’s domain. We develop

metrics to evaluate the performance of the system and the measurement of these metrics is

performed by applying monitors at various locations of the system. Figure 6.14(a) illus-

trates our testbed and the monitors we put in our system based on the following metrics:

• Attribute Retrieval Time (Tattr): Tattr is the time taken by a Grid client to retrieve

his/her attribute assertions from Shibboleth IdPs.

• Proxy Generation Time (Tproxy): Tproxy is the time taken by a Grid client to invoke

Ramars− proxy− init tool to embed attribute assertions and Shibboleth IdP infor-

mation within a proxy certificate.

• DRS Invocation Time (Tinvo): Tinvo is the time taken by a Grid client to invoke the

enhanced Globus DRS service for completing a file replication task.

• SAML Message Transfer Time (Tsaml): Tsaml is the time taken by the Globus DRS

service to send out an authorization request to RamarsAuthZ service and get the

response back over SAML message exchange protocol.
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(a) RamarsAuthZ System Evaluation Testbed
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Figure 6.14: RAMARS System Evaluation

• Policy Retrieval Time (Tpolicy): Tpolicy is the time taken by the RamarsAuthZ service

to retrieve the originator’s ROA policies from LDAP policy store.

• Policy Evaluation Time (Teval): Teval is the time taken by the RamarsAuthZ service

to make the authorization decision based on the originator’s ROA policies.

As a Grid client’s authorization privileges are determined by his/her attributes, the

client’s attribute assertions need to be transferred all the way from the client through the

Globus DRS service to the RamarsAuthZ service for making authorization decisions. In

this sense, the scalability of the system is largely affected by the number of attribute asser-

tions handled by the system. Therefore, our first experiment is conducted by increasing the

number of attribute assertions 3. Figure 6.14(b) indicates the testing result as the number of

attribute assertions gradually increases. In particular, SAML message transfer time Tsaml

3Shibboleth IdP can only assert very limited number of user attributes. In our experiment, we assume the
Grid client already has the attribute assertions stored locally. And the performance evaluation of Shibboleth
IdP (Tattr) is beyond the scope of this research.
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and proxy generation Tproxy increase linearly as they have direct associations with the size

of attribute assertions. The increase of attributes, however, has an indirect effect on the

size of the originator’s ROA policies. Therefore, LDAP policy retrieval Tpolicy increases

with a flatter rate. The RamarsAuthZ policy evaluation Teval , on the other hand, shows a

polynomial trend with the increase of policy evaluation complexities, which is a desirable

property that makes the system more scalable to a large number of attributes.

Our next experiment is conducted to analyze the overhead of RamarsAuthZ with the

Globus DRS data sharing service. In particular, not only the DRS service itself needs to

be authorized, but also the data replication operations require a series of fine-grained au-

thorizations for each step of data replication. The overhead introduced to achieve such

fine-grained authorizations should be measured. We use the same sample data file of size

121,781KB as we conducted for ShareEnabler evaluation to be replicated in Globus DRS

service for our experiment. The base time for DRS invocation time Tinvo is measured by

applying the default GridMap authorization. We deploy RamarsAuthZ as a remote SAML-

enabled authorization service to measure the overhead of the one-step authorization for

DRS service, and then measure the fine-grained multiple-step authorizations for DRS op-

erations. In addition, to better understand the overhead of standard SAML authorization

protocols, we deploy RamarsAuthZ as a local authorization module so that SAML mes-

sage exchange is replaced by a local procedure call. Table 6.2 shows the detailed results

of our experiment when we adjust the number of attributes from 1 to 80. The results are

measured in milliseconds and computed based on the average of 100 test runs. With the

extreme complexity of evaluation, the one-step RamarsAuthZ authorization for DRS ser-

vice introduces less than 8% overhead compared to the traditional GridMap authorization,

which we believe is a promising outcome with respect to the performance of RamarsAuthZ

authorization service. Same to our expectation, achieving a fine-grained authorization for

stepwise data sharing involves considerable cost. However, considering the potential reduc-

tion of the administrative overhead against the practices of manually maintaining individual
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Table 6.2: RamarsAuthZ Overhead Analysis
Attr # Base For DRS Service For DRS Operations Local Module

Time (ms) Time (ms) Overhead Time (ms) Overhead Time (ms) Overhead
1 42584 43910 3.11% 45614 7.12% 44834 5.28%
3 42584 44081 3.52% 45948 7.90% 45132 5.98%
10 42584 44388 4.24% 46598 9.43% 45706 7.33%
20 42584 44839 5.30% 47530 11.61% 46434 9.04%
30 42584 45042 5.77% 48021 12.77% 46709 9.69%
40 42584 45272 6.31% 48527 13.96% 47043 10.47%
50 42584 45481 6.80% 49006 15.08% 47294 11.06%
80 42584 45931 7.86% 50256 18.02% 47856 12.38%

user accounts, RamarsAuthZ service still shows clear advantages both architecturally and

technologically. Compared to the locally deployed authorization module, the overhead of

SAML authorization messages cannot be neglected. Therefore, the usage of SAML for

authorization in Grid environments needs to be limited for simple and optimized message

assertion exchanges. Especially, instead of transferring a large number of attribute asser-

tions as “push” mode, a reference to the Grid client’s IdPs should be transferred within

SAML message for RamarsAuthZ to operate under “pull” mode.

In order to further justify our approach, we compare our RamaraAuthZ system with

a number of existing authorization systems proposed for Grids environments, including

Globus Community Authorization Service (CAS) [92], Virtual Organization Membership

Service (VOMS) [11], Akenti [108] and PERMIS [27]. According to the access control

challenges as we identified in Section 6.3.1, we compare the systems from the following

aspects:

• Originator control: to examine whether the authorization system provides facility for

the resource owner to control the access.

• Attribute-based access control: to examine whether the authorization system estab-

lishes authorization based on user attributes.

• Policy engine: to examine whether the authorization system consists of a policy en-

gine for complex policy evaluations.
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Table 6.3: Comparison With Existing Grid Authorization Systems
CAS VOMS Akenti Permis RamarsAuthZ

Originator control No Partial Yes Partial Yes
Attribute-based
access control

No Yes Yes Yes Yes

Policy engine No No Yes Yes Yes
Policy store Centralized,

single
Centralized,
single

Distributed,
multiple

Centralized,
single

Distributed,
multiple

Supported IdPs N/A Multiple Multiple Single Multiple
Policy and IdP
configuration

Static Static Static Static Dynamic

Operation modes Push Push Pull Pull Push, pull
Service-level con-
trol

Yes Yes N/A Yes Yes

Data-level control Yes Maybe N/A No Yes

• Policy store: to examine the operation mode of the policy store for the authorization

system.

• Supported IdPs: to examine the number of IdPs that could be configured with the

authorization system.

• Policy and IdP configuration: to examine whether the authorization system relies on

static configurations for policy and attribute management.

• Operation modes: to examine the policy and attribute retrieval mode of the autho-

rization system.

• Service-level control: to examine whether the authorization system supports service-

level control to protect Grid services.

• Data-level control: to examine whether the authorization system supports data-level

control to protect data resources being process by Grid data management services.

Table 6.3 summarizes comparisons between our proposed RamarsAuthZ system with

the above-mentioned authorization systems. It is evidently shown that RamarsAuthZ sys-

tem has advantages in various aspects such as established access control model and policy,

system architecture and deployment, and the protection ranges.
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Summary: In this Chapter, we introduced the design and implementation of the RAMARS

authorization system. We demonstrated the feasibility of our proposed system by im-

plementing and evaluating proof-of-concept prototypes – ShareEnabler and RamarsAuthZ

systems – to support secure information sharing in P2P and Grids environments, respec-

tively. In Chapter 7, we elaborate a case study as a feasible application of RAMARS in

healthcare domain to support the sharing of medical information. Especially, we introduce

a substantial extension to allow patients to define fine-grained policies to authorize and

selectively share sensitive medical information.



CHAPTER 7: CASE STUDY IN HEALTHCARE

Healthcare environments involve a wide range of individuals and organizations with

diverse perspectives within the healthcare process. The recent endeavor of the Nationwide

Health Information Network (NHIN) initiative [60] requires a nationwide electronic com-

munication infrastructure being established to allow patients, physicians, hospitals, public

health agencies, and other authorized users to share clinical information in real-time and

authorized manner. This coincidently reflects the motivation scenario of our proposed RA-

MARS framework. Therefore, healthcare is one of the perfect application domains where

RAMARS may play a major role to enable secure and authorized medical information

sharing. In particular, our RAMARS framework leverages role-based approach to achiev-

ing effective and manageable authorization, and promotes attribute-based role assignment

and trust evaluation to dynamically identify unknown users for data sharing. These are the

essential features, as we have demonstrated through this entire dissertation work, to be in-

corporated in secure healthcare applications for the originators of the medical information

to effectively manage access control among distributed healthcare stakeholders for sharing

sensitive medical information.

Nevertheless, sharing of medical information is an important and challenging issue.

Patient privacy concerns, along with threats that could expose sensitive medical informa-

tion, highlight the need for security and privacy technologies to be well-integrated into the

healthcare system so that we can ensure access to sensitive information is limited only to

those entities who meet a legitimate need-to-know requirement. For instance, a patient’s

medical information pertaining to an HIV/AIDS diagnosis may be explicitly hidden from

surveillance data sharing unless a specific monitoring option is indicated. Considering this

special requirement, the medical information itself must be further analyzed and classified
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Figure 7.1: Motivation EHR Document

in order for the originator to define fine-grained RAMARS policies being applied to the

entire medical data set or a partial data set. In this Chapter, we conduct a case study to ex-

plore the necessary elements and policies for RAMARS to support the sharing of medical

information.

7.1 Access Control Challenges in Sharing EHRs

The adoption of electronically formatted medical records, so called Electronic Health Records

(EHRs), has become the primary concern for a broad range of health information technol-

ogy applications and practitioners. In order to better illustrate the special access control

challenges on sharing of EHRs, we consider a typical clinical EHR document and we

demonstrate our proposed approach using the same EHR document throughout our case

study.

Suppose RMC Clinic is a member of a regional healthcare collaboration network, where

health information can be exchanged through an established infrastructure with other col-

laborating institutions. Figure 7.1 illustrates a sample Continuity of Care Document in the

clinic for a patient named Susan Sample [36]. The EHR document includes Susan’s de-

mographics, medical problems, medications, labs, and so on. The medical information is

recorded in various data types such as texts, numbers and images. Some fields inside the

document may refer to other external clinical documents. For example, Susan’s HIV/AIDS

disease history may be maintained in another folder of the patient, and Susan’s current
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medications may be directly linked to the records operated by her pharmacist.

The example clinical document has demonstrated the unique characteristics of an EHR

including the composition of various data types and connections among different pieces

of information from multiple sources. Given the complexity of EHR documents, the con-

tained information should be legitimately exchanged to satisfy needs of different parties

within the collaboration network. In particular, the lab orders need to be communicated

with appropriate laboratories and specific test codes are used to trigger the billing process.

The doctor’s prescriptions, on the other hand, are necessary to be filled by the pharmacist,

and proper referrals are exchanged with specialists for complex medical problems. In other

words, the need-to-know principle must be strictly enforced for each responsible party to

obtain only the necessary information to carry out its task. This requires the data originator

to distinguish different portions of the document and define fine-grained RAMARS poli-

cies to control the selective sharing of EHRs. In order to achieve this goal, it is essential to

explicitly identify the data structure within an EHR document, and the data items inside the

document must be classified with regard to different sources, data types, and sensitivity lev-

els to guide the selection of specific parts with various protection granularity levels within

the document. We thus propose an approach with a series of complementary policies for an

originator to modeling the selection and authorization of EHRs. Our model first introduces

a level of abstraction to formulate the logical structure of an EHR document in terms of its

internal data items under protection and relationships among them. The data items within

the structure are categorized by three dimensional properties – origin, sensitivity classifica-

tion and object type – to facilitate the authorization model and accommodate the protection

requirements. By manipulating the selection criteria of these properties, different subsets

of data items within the document can be dynamically selected to apply RAMARS policies.

The rest of this Chapter is organized as follows. In Section 7.2, we provide a brief

background overview of the emerging EHR standards and existing security solutions for

EHR systems. In Section 7.3, we introduce the the logical model to formulate the semantics
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and structure of EHRs, and discuss the access control policy scheme around the logical

structure. Finally in Section 7.4, we introduce the design and implementation of our proof-

of-concept EHR sharing system – InfoShare.

7.2 Related Work

EHR Standards: There are several standards currently under development to specify

EHRs, such as openEHR [87] and Health Level 7 (HL7) Clinical Document Architecture

(CDA) [57, 36]. These standards aim to structure and markup the clinical content of an

EHR for the purpose of exchange. The most important concept introduced in openEHR

is the archetype, which is used to model healthcare concepts such as blood pressure and

lab results. These archetypes serve as fundamental building blocks to form various clinical

EHR documents. Meanwhile, these archetypes and the contents contained in them should

be legitimately distinguished and authorized in the process of information exchange across

healthcare systems. Similarly, CDA defines the structure and semantics of medical docu-

ments in terms of a set of coded components (called vocabulary) to model basic medical

concepts.

A common feature of all emerging EHR standards is that the clinical concepts are mod-

eled and expressed independently from how the data is actually stored in the underlying

database. By implementing or converting to the EHR standards, a “common language" is

established between different medical information systems to communicate and share stan-

dardized medical information with each other. Therefore, instead of being carried out at

the lower database level, data selection and authorization should be defined and enforced

with common understanding of EHR standards.

Access Control for EHR Systems and e-Consent Systems: A number of solutions have

been proposed to address the security and access control concerns associated with EHR

systems. In [26], the authors propose a set of authorization policies enforcing role-based

access control for the electronic transfer of prescriptions. In [39], the paper demonstrates
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an implementation of EHR prototype system including a basic network and role-based se-

curity infrastructure for the United Kingdom National Health Service. In [21], the paper

presents a policy-based security management framework to enforce context based autho-

rizations for federated healthcare databases. Role-based access control has become the

common theme applied in these approaches. However, as illustrated in our RAMARS

framework, RBAC alone cannot effectively authorize the unknown users across domains.

This has posed serious scalability limitations for these systems to be applied in supporting

the sharing of EHRs in large-scale distributed healthcare collaborations. In addition, the

EHR considered in these approaches is either a general abstract object or an isolated prim-

itive object. None of these approaches took into account of the complex structure of EHR

documents, and thus cannot support a more fine-grained access control as illustrated in the

above-mentioned example.

Achieving privacy preservation in medical information sharing is a critical concern for

an EHR system. Several purpose-based access control models have been proposed recently

to control access to the sensitive data [24, 114]. These models associate the intended pur-

pose with a given data element, and the access purpose should be consistent with the data

element’s intended purpose. As healthcare is such a complex domain where a patient’s

EHRs need to be shared among several parties with different duties and objectives, the

purpose-based access control alone cannot meet all the patient’s privacy protection require-

ments. In our case study, we consider additional deciding factors beyond purpose to control

the selective sharing of EHRs in a more flexible and effective way.

As the patient is considered as the ultimate owner of his medical information, the

essence of originator control highlights the need for patients to control the sharing of his

own medical information between healthcare providers. “e-Consent” mechanisms allow

patients to issue or withhold authorization policies as electronic consents to those who wish

to access their electronic health information [30, 100, 86, 94]. Several consent models with

associated consent templates have been identified [30, 100], and a few e-Consent based
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systems have been built upon these guidelines in Europe and Australia [94, 86]. However,

it is still essential to develop a systematic approach to determining how a patient’s consent

is expressed and at what granularity the consent is applied to which portion of the EHRs.

Authorization Models for Structured Data: Authorization of EHRs requires clear un-

derstanding of the internal data items/clinical concepts and their structural relationships.

There has been a considerable amount of work in regulating access to structured or semi-

structured data.

The access control models proposed in [43] and [95] are especially tailored to object-

oriented databases storing conventional structured data, where information is represented

in the form of objects. These models consider a rich semantic structure of objects incorpo-

rating inheritance, aggregation, and composition associations. The relationship of objects

in the database is modeled as a hierarchical structure so that the validity of an authorization

rule written at some level can be efficiently propagated to its descendants. Such features

can be adopted in modeling the logical structure of EHRs. However, these models have

several shortcomings. On the one hand, EHR documents are stored and exchanged based

on standards, which are defined independently from underlying database structures. The

object relationships and navigational patterns defined in standards may be totally different

from the ones enforced by access control mechanisms. On the other hand, as identified in

our motivation scenario, the medical information may be distributed at different sites. This

unique feature cannot be addressed by a localized object-oriented database.

XML has become the de facto mechanism for sharing data between disparate informa-

tion systems. It is essentially adopted by HL7 to carry out its standardization efforts to

describe, store and exchange health records. Regulating access to XML documents has

attracted considerable attentions in recent years [20, 31, 50]. All these work represent an

XML document as a hierarchical tree structure and its authorizations are propagated along

with the association links to achieve different granularity levels. However, all these ap-

proaches define access control rules for particular elements and attributes of an XML doc-
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ument. The selection of a collection of data elements requires a number of authorization

rules to be defined and evaluated. This is obviously not effective and efficient in practice

to authorize and share a specific part of the document for fulfilling the specific functional

purpose of the requesting party. In addition, an XML document itself is not semantically

enough to represent a variety of data types as encountered in EHRs (i.e., image, audio and

video). Thus the access control mechanisms proposed for XML documents cannot meet

the special requirements for sharing EHRs.

7.3 Authorization for Sharing EHRs

7.3.1 Logical EHR Model

In our model, an EHR document is logically modeled as a labelled hierarchical struc-

ture. The nodes represent the clinical data elements that need to be protected for sharing.

Their relations are captured as the association links between the nodes within the hierarchy.

Each node is associated with specific properties to address essential features regarding the

sources of data and their sensitivity levels. The properties can be categorized into three

dimensions: origin, sensitivity, and object type. The origin property is specified to indicate

the source(s) of data within the EHR document. For instance, the information of CD4 lab

test in Figure 7.2 comes from AAA laboratory. The sensitivity property is designed to label

a node based on the sensitivity of the content contained in it, which eventually can be used

to prevent the patient’s sensitive medical information from being disclosed unintentionally.

In the practice of Iowa HISPC [63], the sensitivity classifications of medical data include

general medical data, drug and alcohol treatment, substance abuse treatment, mental health,

communicable disease (HIV, STDs, etc.), decedent, immunizations, and so on. Based on

these classifications, the data elements representing the patient’s HIV history and CD4 lab

test should be marked with a property of “communicable disease" (“HIV" for simplicity).

The object type property gives another dimension on data node selection and protection.

The nodes can be primitive types such as plain texts, dates and images. They can also be a



113Continuity of Care Document EHRDemographics ProblemsCERVICAL VERT HIV MV COLL W OTH OBJ Allergies Encounters LabsCXR CD4Order Result Procedures InstructionsCode Instr Note X-ray img ResultMedicationsTheodur Prescription 2 {AAA}{HIV}composite{RMC}{general}composite{RMC}{general}code {RMC}{general}text {RMC}{general}text {RMC}{general}img {AAA}{HIV}text{RMC}{general}composite {RMC}{general}composite{RMC}{HIV}composite {RMC}{general}text{RMC}{general}text {XXX}{general}text {XXX}{HIV}text Target Object for ao1Target Object for ao2ao1 = ( /EHR/Labs//*,<{RMC},{general},*>)ao2 = (/EHR/Labs//*,<{*},{HIV},*> )
Figure 7.2: Virtual Composite EHR in a Hierarchical Structure

composite type in the hierarchical structure including other types of data nodes. Formally,

an EHR can be uniformly modeled and defined as follows:

Definition 6 (Logical EHR Model). An EHR is a tuple C = (vc,Vo,Eo,τVo), where

• vc is the root representing the whole EHR object;

• Vo is a set of nodes within the hierarchical structure;

• Eo ⊆Vo×Vo is a set of links between nodes; and

• τVo : Vo → P is a node labelling function to specify the property of a node. P is a set

of properties defined in Definition 7.

Definition 7 (Property). Let O, S, and T be the sets of data origins, sensitivity classifica-

tions, and object types, respectively. And let n = |Vo| be the number of nodes in an EHR

structure C.

• Po = {po1, . . . , pon} is a collection of origin sets, where poi ⊆ O is a set of origins

associated with a node, i ∈ [1,n];
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Table 7.1: Path Expression for Node Selection
Expression Description Example
nodename Select the named nodes CXR
/ Select the node through absolute path from root node /EHR/Labs/CXR
// Select the node through relative path //Labs/CXR
* Select all immediate children nodes //Labs/CXR/*
//* Select all descendant nodes //Labs/CXR//*

• Ps = {ps1, . . . , psn} is a collection of sensitivity classification sets, where psi ⊆ S is

a set of sensitivity classifications associated with a node, i ∈ [1,n]; and

• P = Po×Ps×T is a set of three dimensional properties of origin, sensitivity, and data

type.

Given a node vi ∈ Vo inside an EHR structure C, the function τ(vi) = p retrieves the

property label p for the node. And we use the dot notation to refer to a specific property

dimension. For instance, p.po refers to the data origin property; p.ps refers to the sensitiv-

ity property; and p.t refers to the object type. Within a logical EHR structure, nodes can

be explicitly denoted by their identifiers, or can be implicitly addressed by means of Path

Expressions. We apply an XPath-like expression for the path representation. Table 7.1

describes the notions and examples we use to select nodes inside an EHR illustrated in

Figure 7.2.

7.3.2 Complementary Policy Specification

Our policy specification scheme is built upon the identified logical EHR model so that RA-

MARS policies can be effectively defined at different granularity levels within the struc-

ture. In addition, to accommodate the special privacy protection requirement, the purposes

of sharing EHRs must also be explicitly specified. Therefore, the fundamental question

towards the selective authorization of an EHR is to which portion of an EHR document

RAMARS policies can be applied for what purposes of sharing. The role of the com-

plementary policies is then to articulate and determine the selected objects with intended

purposes of use within an EHR structure, and these selected objects would eventually con-
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tribute to the Resource element specification in the Root Meta Policy Set (RMPS) for the

entire RAMARS policies to apply.

In our hierarchical EHR model, XPath-like path expressions are utilized to specify the

scope of data elements to which an authorization policy applies. Meanwhile, the filtration

properties are defined to be compared with the property label of each node within the EHR,

and only matched nodes are selected as the Target Objects of the RAMARS authorization.

We formally define these concepts as follows:

Definition 8 (Filtration Property). Let O, S, and T be the sets of data origins, sensitivity

classifications, and object types, respectively as defined in Definition 7. A filtration prop-

erty is specified as a tuple prop =< po, ps, pt >, where po ⊆ O is the filtration property

for origins; ps⊆ S is the filtration property for sensitivity classifications; and pt ⊆ T is the

filtration property for object types.

Definition 9 (Property Match). Suppose prop =< po, ps, pt > is a filtration property

specification, and p′ = (po′, ps′, t ′) is the property label of a node, the node matches the

filtration property if the following conditions are satisfied:

1. p′.po′ ⊆ prop.po;

2. p′.ps′ ⊆ prop.ps; and

3. p′.t ′ ∈ prop.pt.

Definition 10 (Object Specification). Let scp_expr be a scope expression to denote a set

of nodes within the composition, and prop be a filtration property specification, the object

selection specification is defined as a tuple ao = (scp_expr, prop). Given an EHR logical

model C = (vc,Vo,Eo,τVo) and an object selection specification ao, we define a function:

select(C,ao)→Va, where Va ⊆Vo, to select the matched nodes within the specified scope

as the Target Objects.

In specifying filtration properties, we also allow patterns to be used. Pattern “*" is to
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indicate any value within a property dimension, and pattern “{*}" is to specify any set

within a property dimension.

Example 1 The followings are two examples of object selection specifications against the

EHR structure in Figure 7.2.

ao1: ao1 = (/EHR/Labs//∗,< {RMC},{general},∗>); and

ao2: ao2 = (/EHR/Labs//∗,< {∗},{HIV},∗>).

The two object specifications select the same scope as the Labs in the EHR structure.

ao1 selects the nodes that come from RMC with general level of sensitivity and any object

types. ao2 selects the nodes from any origins with HIV level of sensitivity and any object

types. Figure 7.2 illustrates the target objects being selected according to the select() func-

tion in Definition 10 as two dashed zones. In particular, ao1 results in the CXR lab test and

all its children nodes being selected, and ao2 results in the CD4 lab test and all its children

nodes being selected.

To further address the privacy concerns in sharing medical information, an attribute of

“purpose” is necessary to be specified in the authorization policy to confine the intended

purposes/reasons for data access in healthcare practice. According to [35], business prac-

tices for health information exchange can be organized by 11 purposes including payment,

treatment, research, and so on. Formally, intended purpose is specified as follows:

Definition 11 (Intended Purpose). Let P be a set of purposes for business practices in

healthcare domain. And let m be the total number of authorizations in the system. The

intended purpose set Pp = {pp1, . . . , ppm} is a collection of possible intended purpose sets,

where ppi ⊆ P specifies the intended purposes for a particular authorization, i ∈ [1,m].

To summarize the above-mentioned policy elements, we could introduce the overall

definition of an access control policy. For simplicity, we consider the users are authorized

through their roles, and we use “ramars-priv” to indicate the detailed authorizations to the

role that are determined by RAMARS ROA policies.
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Definition 12 (Access Control Policy). Let R be the system-wide set of roles in a health-

care system, and ramars_priv be the RAMARS authorizations being assigned to the role.

An access control policy is a tuple acp =< role,ao, pp,ramars_priv >, where

• role ∈ R is a specific role in the system;

• ao is an object selection specification resulting in a set of nodes Va ⊆ Vo being

selected as target objects;

• pp ∈ Pp is the intended purposes; and

• ramars_priv is the originator’s authorizations being assigned to the role.

Example 2 Let ao1 and ao2 be specified as same as those in Example 1, the following

access control policies can be articulated :

P1: (“GP′′,ao1,{treatment},{query,access}); and

P2: (“SP′′,ao2,{treatment,research},{access}).

In P1, the general practitioners (GP) are authorized to query and access the patient’s

general lab tests from RMC for the treatment purpose. In P2, the specialists (SP) are

authorized to access the patient’s HIV related lab tests for treatment and research purposes.

In healthcare practice, a default policy may be established to satisfy most patients’ pri-

vacy requirements. Once a patient understands the default policy and agrees that it meets

his/her needs, the patient may not need to further specify any specific access control poli-

cies to control the sharing of his/her medical information. In particular, HIPAA regulations

are widely adopted by healthcare practitioners in the United States. With the agreement

of the default setting, HIPAA generally allows health care providers to share clinical in-

formation without the individual’s explicit permission for treatment, payment and health

care operations [94]. In addition, in order to accommodate the emergency situations, a

“break-of-glass” policy (“BG” policy for simplicity) should be specified to allow staffs in

emergency rooms to access the patient’s medical information without the patient’s explicit
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authorizations. Both the default policy and “BG” policy can be specified conforming to our

policy schema.

Example 3 The default policy and BG policy can be specified as follows:

PD: (“HP′′,({∗},{∗},∗),{treatment, payment,HCO},{query,access}); and

PBG: (“ERSta f f ′′,({∗},{∗},∗),{treatment},{query,access}).

7.4 EHR Sharing System – InfoShare

We have designed and implemented a proof-of-concept system, called InfoShare, which

is a simplified clinical information sharing system that utilizes our proposed model for a

patient to control access of his/her medical information. In particular, InfoShare collects the

patient’s access control policies as patient consents, and uses these consents to selectively

share the patient’s medical information with different requesting parties through a point of

service (POS) web application.

Architecturally, health information as EHRs is maintained and managed at each geo-

graphically distributed care provider’s site with the notation of federation. The data el-

ements in each EHR document should be associated with special properties for data fil-

tration and authorization purposes. We therefore establish an EHR data labelling system

in the federation to facilitate the property labelling for the care providers’ EHRs. Our

InfoShare system serves as a middleware application to create the logical structure of an

integrated EHR document connecting a group of care providers and organizations within

the federation. Meanwhile, InfoShare also serves as a gatekeeper to enforce the patient’s

authorizations to selectively share the patient’s medical information. Figure 7.3 illustrates

the overall architecture of an integrated InfoShare information system. As a general clini-

cal information sharing system, the Registry Service, EHR Data Service, General Security

Service and Health Information Communication Bus are common system components to

achieve the required functionalities of secure data retrieval, logical EHR structure creation

and communication with requesting POS applications. Especially, we inject the Consent

Management Service, Policy Service, and EHR Authorization & Selection Service as the



119Clinical System nClinical System 2Clinical System 1Patient RegistryProvider RegistryLocation RegistryRegistry Service EHR Data ServiceBusiness rules EHR Index Aggregation rules Terminology repository Schema repositoryLogical EHR StructureDemographics Present Illness LabsMedical History ...EncountersObservations Consent Mgt ServiceCertificate Verification ServiceConsent Validation ServiceConsent DBEHR Authorization & Selection ServiceEnforcementPolicy LocationGeneral Security ServicesIdentity Mgt Service Authentication Service Access Control Service Secure Auditing ServiceSecure Messaging ServicePoint of Service

Consent EditorSmartcardsHardware Tokens

Health Information Communication Bus
Input …...

POS 1Clinical Viewer POS 2Clinical Viewer POS nClinical Viewer…...

Patient
...Policy ServicePolicy Analysis Policy EvaluationRequest Handling Medications

EHR Data Labelling System Prop DB

Figure 7.3: InfoShare System Architecture

major system modules to convey the core features of our proposed approach. In particular,

the Consent Management Service enables the patient control by collecting and verifying

the patient’s access control policies as encapsulated in consents. A web-based consent ed-

itor tool is implemented to facilitate a patient to edit his/her policy consents, and interact

with the Consent Management Service for the patient to store and update his/her consents.

Besides, the patient consents can also be directly inserted into the Consent Management

Service by the patient using smart cards or other hardware tokens. The Policy Service

serves as the PDP to evaluate the patient’s access control policies and derive the authorized

medical data. The EHR Authorization & Selection Service is responsible to handle the data

access requests, and enforce the access control decision by only sharing the authorized data

with the requester.

In our InfoShare system, the expressed access control policies are encapsulated as con-

sents. There are three types of consents in the system: the patient’s specific consents, the
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Figure 7.4: Consent Evaluation Procedure

default consent, and the “BG” consent, where the default consent and “BG” consent specify

the default policy PD and “BG” policy PBG, respectively as shown in Example 3. The prece-

dence order of evaluating these consents is defined as BG_consent º patient_consent º
de f ault_consent. Figure 7.4 illustrates the procedures for the EHR Authorization & Se-

lection Service to handle access requests and derive the authorized data to be shared. An

access request includes information of the requester’s role, the requested data, the intended

purposes of use, and an optional “BG” consent in emergency situations. The “BG” con-

sent in emergency has the highest priority in execution, therefore such consents are directly

evaluated to get the authorized data. In other situations, the authorization service interacts

with the Consent Management Service to locate the related patient consents based on the

specified subject and intended purposes. If certain matched consents are located, the Pol-

icy Service is invoked to evaluate and derive the authorized portion of data. If there are

no patient consents being located, our system asks for the patient to insert a patient con-

sent at run-time and the consent is evaluated accordingly. Otherwise, the default consent is

evaluated to derive the authorized data. After the authorized data portion is determined, it

is compared with the requester’s requested data and only matched data portion is returned

to the requester. If the requester is not authorized to access all the data he requested, the
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requester is notified with a warning, so that the requester may further ask for new patient

consents to access the data for the need of medical practice. Such an effective mechanism

is utilized to balance the data integrity concern of the practitioners and the privacy concern

of the patients for shared EHRs.

In terms of implementation, the standard HL7 Clinical Document Architecture (CDA) [36]

is utilized in our InfoShare system for the formal representation of EHRs. We use Jaxe

XML editor [2] as the EHR data labelling service to associate properties with data elements

in CDA EHRs. We implement the patient consents as X.509 attribute certificates [58],

where the access control policies are encapsulated as attributes within the certificate. The

InfoShare system implements a Java Servlet based web portal as the POS application for a

healthcare practitioner to query and view the authorized medical information of a patient.

Figure 7.5(a) shows an interface of the InfoShare POS portal for a practitioner to view a

patient’s integrated medical information, where only authorized information is displayed.

Figure 7.5(b) shows the interface of the Consent Editor for a patient to edit his/her policy

consents.

Summary: In this Chapter, we elaborated a case study to demonstrate a possible appli-

cation of RAMARS to support fine-grained authorization and selective sharing of EHRs

in healthcare domain. We introduced a logical EHR model to facilitate the selection of

different portions of data within an EHR document for the originators or healthcare stake-

holders to apply RAMARS policies. We demonstrated the feasibility of our approach by

implementing InforShare prototype system enabling the patient to control the sharing of

his/her medical information. The logical resource model and policy schema could be even-

tually integrated in the formal RAMARS model providing fine-grained control for selective

sharing of distributed composite resources. In addition the case study would lead to more

vigorous research and experiments in applying RAMARS to secure healthcare systems. In

Chapter 8, we summarize the research work described in this dissertation and discuss the

potential challenging research areas we would explore in the near future.
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(a) InfoShare System Portal

(b) Consent Editor

Figure 7.5: InfoShare: Patient-centric EHR Sharing



CHAPTER 8: CONCLUDING REMARKS

8.1 Summary

In this research, we proposed RAMARS framework for assured information sharing in

ad-hoc collaboration. This work is particularly motivated by the desire to securely share

information in spontaneous and dynamic collaboration among all distributed institutes and

users. We articulated our research problems and proposed solutions in a systematic ap-

proach. Figure 8.1 summarizes the complete structure and research components that we

proposed for the identified challenges.

Inside ad-hoc collaborations, a fundamental question for assured information sharing is

to answer how distributed institutes and users could share distribute information resources

in an authorized manner. In order to answer the question from security engineering per-

spective, we first clearly defined the ad-hoc collaboration environment and analyzed the

generic sharing patterns for the information sharing within the environment. Instead of

directly dealing with the ever-changing collaboration scopes and structures, we chose a rel-

atively static resource-centric approach to analyzing the relationships towards the resource

being shared and protected within ad-hoc collaboration, from which we addressed the fun-

damental need for a resource originator to be the ultimate authority over the resource and

be responsible for maintaining access rights for the resource dissemination. We further

derived a concept of virtual collaborative sharing control domain as the target domain for

an originator to regulate the information sharing activities and control the information dis-

semination flow in distributed environments. Thereafter, we articulated the access control

and trust management requirements and identified “what” security needs to be enforced.

To tackle “how” the security is enforced, we divided these identified requirements into
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Figure 8.1: Proposed research tasks

three interrelated components and proposed solutions to each component: trust manage-

ment, authorization and resource definition. Authorization plays a central role in bridging

and enabling distributed users towards the shared resources. We proposed the originator

control as the first element of authorization ensuring the originator to be the authorization

authority within the virtual collaborative sharing control domain of its respective resource.

We proposed a flexible role-based approach for an originator to effectively and efficiently

define its collaborative sharing domain as a set of collaborator roles, and delegate various

sharing capabilities to the roles. Through a set of normative sharing roles, information dis-

semination flow could be well regulated between the common collaborators and designated

disseminators.

As an important enabling component for our role-based approach, the distributed and

unknown users must be properly “identified” to be assigned the collaborator roles for shar-

ing the originator’s resources. Therefore, trust management became another component

in our solution. In particular, attribute-based user classification is an effective means to

abstract a large amount of distributed users. In the shadow of role-based authorization,

distributed users are assigned to collaborator roles based on their attributes. Different from
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traditional attribute-based access control approaches, we do not trust the user attributes by

default. Instead, the evaluation of the trustworthiness of a user’s attributes formulates an-

other layer of originator control, while the delegation of attribute authority serves as an

essential deciding factor in the trust evaluation process.

In terms of the distributed resources, the resource definition is the key component to en-

able fine-grained selective sharing, as we shifted the focus to healthcare application domain

for sharing a more specific resource – Electronic Health Records (EHRs). We proposed an

innovative approach to modeling the semantics and structure of EHRs, so that RAMARS

policies can be applied to specific portions of the EHR structure taking into consideration

critical privacy protection concerns of a patient.

These three salient components are closely coupled since they are complimentary to

each other to build a comprehensive and integrated solution for assured information sharing

in ad-hoc collaboration. They are seamlessly realized in our proposed RAMARS frame-

work, with detailed formulation of access control model, policy specification, system ar-

chitecture and implementation mechanisms. A P2P-based file sharing system ShareEn-

abler and an integrated Grid authorization system RamarsAuthZ were presented as proof-

of-concept prototypes of our proposed approach. Both systems facilitate a fully distributed

approach on both authorization policies and policy enforcement mechanisms, while the

adoption of standardized XACML policies could achieve consistent policy interpretation

and decision making across domains. The performance evaluation and system improve-

ment demonstrated the scalability and efficiency of our RAMARS systems. As a case

study of possible applications of RAMARS framework, a prototype InfoShare system was

implemented using e-Consent mechanism to enable the patient-centric medical information

sharing with different parties in the healthcare environment. The e-Consent mechanism

used in our InfoShare system simultaneously reflects the concept of originator-control for

distributed resources in the healthcare application domain.

The results of this research have potential impacts to the community in several ways.
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As a general access control model, RAMARS has significant impacts to broaden RBAC’s

applicability into open and distributed environments. As a concrete authorization solution

for ad-hoc collaboration, the ShareEnabler and RamarsAuthZ systems contribute to both

P2P and Grid computing communities with first-hand practical experience for implement-

ing advanced security services. Finally, our research practice provides a privacy protection

model that could be adopted in larger electronic communication infrastructure, such as

Nationwide Health Information Network (NHIN), to allow patients, physicians, hospitals,

public health agencies, and other authorized users to share clinical information in a real-

time and authorized manner.

8.2 Future Work

This section outlines possible future research directions based on the research work de-

scribed in this dissertation.

8.2.1 Security and Compliance Analysis for Policies

Safety is a fundamental problem of access control models. In RAMARS, both the per-

mission distribution and information dissemination flow are determined by an originator’s

policies. The granting of a permission or the data dissemination may consequently change

the configuration of the system, and this, in turn, may introduce other permissions or in-

formation dissemination flows. The dynamic property of a distributed environment (i.e.,

ad-hoc collaboration environment) and distribution of trust authorities make it difficult for

an authorizing authority (i.e., an originator) to foresee any possibility of permission leakage

at a certain system state. Therefore, a natural security concern is whether the authorizing

authority can guarantee the resource is shared legitimately. This is referred to as the safety

problem in access control models. In a RAMARS system, the safety question asks, from

an initial state of the system, whether or not a user can obtain a permission to access the

originator’s resource after a sequence of enforced policies – in other words, indirectly from

certain legitimate disseminators or by updating attributes. Studying the safety and decid-
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ability properties of RAMARS policies can give higher assurance for RAMARS security

framework.

In addition, RAMARS systems specify and enforce XACML-based access control poli-

cies. XACML is intentionally designed to be generic and it provides great flexibility in

describing access control policies. However, the flexibility and expressiveness provided by

XACML come at the cost of complexity and verbosity. Especially, properties in RAMARS

model may not be satisfied when these policies are specified in XACML, causing the dis-

crepancy between what an originator intends to specify and what the actually specified

XACML policies reflect. Therefore, conducting conformance checking of access control

policies specified in XACML is extremely important to assure the RAMARS model being

correctly enforced in RAMARS systems.

8.2.2 Trusted Computing for Originator Control

The essence of originator control is to empower an originator with ultimate control over

its respective resource during the entire sharing process, within and out of the originator’s

administrative domain. The proposed policy-driven approach in RAMARS must be ac-

companied by an effective and trusted enforcement platform as the originator’s policies

are often enforced on the receiving client or a third-party service. As enlightened in our

ShareEnabler system, on the one hand, the originator’s policies and the secret key that is

used to encrypt and decrypt the SEFile during distribution have to be well protected and

only available to target ShareEnabler platforms. On the other hand, the target ShareEnabler

platform has to be trusted not to release the file inappropriately, either by incorrect config-

uration or compromised software. It is commonly recognized that software alone does not

provide an adequate foundation for building such a high-assurance trusted platform, since

software is vulnerable to various forms of attacks such as Trojan Horses and malware. Ma-

licious software not only can illegally read or modify sensitive data in persistent storages

and memories, but also change the request for information and initiate communications

to send sensitive data to other computers, which is totally unacceptable for the intention of
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originator control. Fortunately, the emergence of some industry-standard trusted computing

(TC) technologies [80, 104], such as Trusted Platform Module (TPM), promises a potential

solution by providing hardware-based root of trust upon which secure applications can be

developed. For instance, a TPM is a hardware component attached on the motherboard

that never releases the root key required to access the sensitive data outside the TPM. It

also provides mechanism of integrity measurement and reporting, from which strong pro-

tection capabilities and remote attestations can be achieved by an originator. Therefore, an

innovative architecture with trusted computing should be investigated and integrated with

current RAMARS system to guarantee an originator’s authorization policies to be enforced

for building high assurance systems.

8.2.3 Issues in Selective Health Information Sharing

The current research on secure and selective sharing of EHRs is just a starting point and

there are still many unsolved security issues to apply RAMARS framework in building

secure healthcare information sharing systems.

The concept of originator control in medical information sharing is realized in a patient-

centric approach, where the patient plays a central role to control the sharing of his/her

sensitive medical records among various parties. A critical prerequisite is how easily a

common patient can maintain his/her access control and privacy preferences for such a

huge amount of sensitive and complex information across sites, while still making the

information highly usable for healthcare professionals. Therefore, a variety of analytical

and empirical methods from the area of usability engineering can be also studied to verify

and optimize usability of our systems.

In addition, to achieve high quality of treatment, a patient may wish to delegate the

capability to grant consents to nominated representatives or medial practitioners, who may

further wish to delegate the power to consent to other health professionals. Meanwhile, the

patient should still maintain his control power on his medical data with proper privacy pro-

tections. Therefore, practical consent delegation and control mechanisms are crucial while
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ensuring the patient’s control power on his medical data with proper privacy protections.

Finally, as our approach is complementary to other existing security solutions (i.e.,

RBAC [15, 39] and situation-based access control [93]) for providing a fine-grained access

control in healthcare systems. More in-depth research is necessary to investigate how to

adapt our approach to providing a broader range of privacy preserving medical information

sharing for secure healthcare services.
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