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ABSTRACT

JASPER PETER DE BLES. Calibrating Short Rate Models in Negative Interest Rate
Environments: An Application to Bermudan Swaptions.
(Under the direction of PROF. STEPHEN A. YOUNG)

The evolution of the interest rate has been modelled for a long time by a lognormal

distribution. Similar to stock prices, it was generally agreed upon that the lognormal

distribution provides the benefit of interest rates not falling below zero. However, gov-

ernmental interventions after the 2008 finanancial crisis forced interest rates of several

currencies to fall below zero. This event opened up a new area of research in mathemat-

ical finance. The contemporary negative interest rates can no longer be modelled by the

classical lognormal distribution. Rather, distributions that allow for negative values,

such as the normal distribution or the shifted lognormal distribution, are being tested.

In order to test for model differences in the years between 2016 and 2020, JPY

swaption market implied volatilities based on a lognormal and normal distribution are

collected. The moment when the JPY interest rate adopts a negative value, implied

volatilities for the lognormal distribution go missing. For the normal distribution, all

implied volatilities are returned. This observation confirms the failure of the Black

formula in a negative interest rate environment.

Two well-known one-factor short rate models, the Hull-White Extended Vasicek

model and the Black-Karasinski model, are calibrated to market data of JPY swap-

tions. The OIS rate is chosen because it has proven to be superior to the LIBOR in the

pricing of financial derivatives. The Hull-White Extended Vasicek model follows a nor-

mal distribution and can therefore accomodate negative values. The Black-Karasinski

model follows a lognormal distribution and can therefore only accomodate non-negative

values.

The interest rate plays a critical role in the pricing of any derivative. The calibrated

short-rate models are used to price 1Yx10Y Bermudan style JPY swaptions. The results

indicate that calibration with Bachelier implied volatilities is more accurate compared

to using Black implied volatilities.
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INTRODUCTION

Bermudan swaptions are among the most actively traded within the class of fixed

income derivatives. The valuation of Bermudan swaptions depends on, among other

things, the type of short rate model used to model the interest rate. A first distinction

is made between one- and two factor short rate models. In two factor models, the sec-

ond factor incorporates the joint distribution, and therefore depends on the correlation

between two rates with different tenors, as explained in Shreve [19]. Andersen and An-

dreasen [1] compare the effect of one- and two factor models on the prices of Bermudan

swaptions. They conclude that not including a second factor has no significant effect

on the price. A second crucial distinction made between the existing short rate models

used to model the interest rate is the distribution process that the model follows. The

Black-Karasinski model follows a lognormal distribution and can therefore only produce

strictly non-negative values. On the contrary, the Hull-White extended Vasicek model

follows a normal distribution and can therefore produce both positive and negative rates.

Since negatives were never a desired case, practicioners could implement a constraint

in the model to disallow negative values. The downside of this constraint is that it

influences the results of the calibration.

After the financial crisis at the beginning of the 21st century, governments started

to implement policies that forced the interest rate to adopt negative values. However,

short rate models that follow a lognormal distribution are not able to model negative

values. Russo and Fabozzi [18] were amongst the first to address the problem of cali-

brating short interest rate models in negative rate environments. Comparing the market

implied volatilities of European swaptions from 2014 to 2016 under the Black/lognor-

mal, shifted lognormal, and Bachelier/normal quotes, Russo and Fabozzi show that the

classical lognormal Black quotes become unstable when interest rates go negative, and

in some cases are not able to produce at all. In contrast, implied volatilities calculated

under shifted lognormal or normal distributed formulas are proven to be satisfactory.

Furthermore, Russo and Fabozzi callibrated the Hull-White model, the shift-extended

CIR model, and the shift-extended Gaussian model and use te Bayesian information

criterion (BIC) for evaluation.

The pricing of options started with the doctoral dissertation ”Theorie de la spec-

ulation” or ”Theory of speculating” of French Louis Bachelier in 1900. Although the
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dissertation is written in the French language, Sullivan and Weither [20] provide an

excellent translation of the insights. In this dissertation, Bachelier conducted research

toward the mathematical behavior of stocks, futures, and options on La Bourse, the

Paris stock exchange. Bachelier not only invented the now daily-used payoff diagrams,

but he was also able to describe the stock price movements by a normal distribution.

Unfortunately, a normal distribution would allow for negative stock prices which is not

possible due to the limited liability of stocks. Later, researchers therefore started to de-

scribe the stock price movement by means of a lognormal distribution [20]. This formula

is called the Black and Scholes (BS) pricing formula and was created by Fischer Black,

Robert C. Merton, and Myron Scholes.

One of the assumptions in the BS pricing formula is a constant interest rate. How-

ever, in reality the movement of interest rates is, just like the movement of stock prices,

random in itself. The same idea, i.e. the assumption that the stock price had to mod-

elled by a lognormal distribution, was applied to the movement of interest rates. As a

result, practioners started to describe the development of the interest rate by models

with a lognormal distribution, heavily criticizing the normal distribution. After 2008,

the market has proven now that interest rates can consistently be negative. Although

the normal distribution failed in accurately describing the stock price movement, it is

needed back in fixed income.

This thesis is structured as follows. Chapter 1 adresses the relative small history

of the negative interest rates. Time series of several currencies over the past 10 years

clearly indicate when the interest rates fall below zero. Furthermore, a distinction is

made between the London interbank offered rates (LIBOR) and overnight index swap

(OIS) rates. Interest rates can be modelled by several mathematical interest rate mod-

els. Chapter 2 reviews the mathematics and literature of the most common one-factor

short rate models. The basis behind these stochastic differential equations are tools

from stochastic calculus. Chapter 3 therefore mentions the most important aspect that

distinguishes stochastic calculus from regular calculus, that is the Brownian motion and

the Itô Integral. Furthermore, due to the discussion of non-European style derivatives,

Chapter 3 briefly mentions the importance of binomial and trinomial trees and stopping

times. It is now clear that most, if not all, financial derivatives are to a certain extent,

dependent on the interest rate. Therefore, Chapter 4 explains how one can work from
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the more basic interest rate derivatives, such as interest rate swaps, towards the more

complex Bermudan swaption. Several examples are provided, as well as timelines for

further clarification. Finally in Chapter 5, a numerical application is provided. The

Hull-White extended Vasicek and the Black-Karasinski short rate models are calibrated

to market JPY swaption implied volatilities and used to price JPY Bermudan swaptions.
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CHAPTER 1: NEGATIVE INTEREST RATES

The pricing of derivatives has been dependent, for years, on models that follow a

lognormal distribution. Ever since the interest rates went below zero, practicioners had

to adapt their thoughts and reconsider the classical models. Suppose a customer decides

to borrow a 1000 USD for one year from the bank and the interest rate is one per cent

per year. He or she must repay 1010 USD after one year. However, when the interest

rate is negative one per cent, the borrower only has to repay 990 USD. A strange thought

that has become reality.

1.1 Historical Facts

1.1.1 Pre-2008

Purchase and Constantine [16] mention the Gesell tax as one of the first ideas of imposing

a type of negative interest rate. This so-called ”stamp tax” was named after German

economist Silvio Gesell (1862 - 1930). Inspired by the crisis of the 1890s, Gesell argued

that the growth of capital is hold back by the interest rate, and that one could reduce

the interest rate by imposing carrying-costs on money.

Half a century later, Gesell’s unorthodox ideas became reality. In the 1970s, Switzer-

land imposed a negative interest rate for the first time. Because the Swiss Franc (CHF)

acted as a safe-haven currency, investors started to buy CHF which led to an apprecia-

tion of the CHF and consequently hurt Swiss exports. Therefore, to discourage investors

from buying CHF, the interest rate was set by the Swiss government to negative 2 per

cent in 1971 and even negative 12 per cent in 1974 [14].

1.1.2 Post-2008

The situation of Switzerland in the 1970s was still an exception on the norm. Nowadays,

negative interest rates are a common phenomenon. In 2014, the European Central

Bank (ECB) started to force negative rates as an experiment [17]. Due to the 2008

financial crisis, there was a shortage of credit. The rationale is that negative interest

rate would punish banks holding cash. The goal is to encourage lending, thereby pushing

for inflation. Denmark, Japan, Sweden, and Switzerland followed the ECB’s example

soon.
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(a) EUR (b) JPY

(c) USD (d) CHF

Figure 1.1: LIBOR and OIS rates

Figure 1.1 graphs the interest rate situation of the past 5 years for some of the

major currencies. The CHF is clearly negative whereas the EUR and JPY fell below

zero, indicated by the red line, in 2015 and 2016 respectively. The USD is still positive

but president Donald Trump already called for negative rates for the US at the 2020

World Economic Forum in Davos. The alternative rates for the LIBOR are also intro-

duced in the graphs. Europe has the Euro short term rate (ESTR), Japan the Tokyo

overnight average rate (TONAR), the US the secured overnight finance rate (SOFR),

and Switzerland the Swiss average rate overnight (SARON).

1.2 LIBOR vs OIS

Whether to use the LIBOR or an OIS rate to price dervative contracts has become

an important question after the LIBOR scandal. LIBOR is the average interest rate

that banks charge each other while OIS is the interest rate of a country’s central bank.

Usually, the LIBOR and OIS almost have the same value. During the 2008 financial

crisis, however, the gap started to widen significantly. The difference between LIBOR

and OIS is used as a measure for credit risk ever since. Traditionally, the LIBOR has been

used as a benchmark for the interest rate to price dervatives. In 2012, an investigation

started towards the collusion of banks to manipulate the rates during the crisis. This

5



lead to fines to banks totalling up to nine billion USD and even long-term convictions.

Since the LIBOR scandal, governments demanded a replacement and this will probably

be the OIS, or more specifically the ESTR, TONAR, SOFR, and SARON mentioned

above. Also for the pricing of derivatives, the question now is whether practioners should

use LIBOR or OIS. According to Hull and White [7], even though banks nowadays use

the OIS for collateralized portfolios and the LIBOR for uncollateralized portfolios, the

OIS should be used in both cases.

In Figure 1.1a and Figue 1.1c it can be seen that the new replacement rates for the

LIBOR in Europe and the US just got introduced in 2019 and 2018 respetively. Thus,

not much data for the ESTR and SOFR is available up until 2020. The SOFR has a

significant spike in September 2019. One of the three causes pointed out was the fact

that Saudi Arabia drew 80 billion USD from the repo market. The great demand for

cash and oversupply of Treasuries caused the SOFR to jump. This extremely volatile

event made investors start doubting SOFR as the right replacement for LIBOR [9]. In

Figure 1.1b and Figure 1.1d the TONAR and SARON are already available for a longer

time. These OIS rates seem more stable than their LIBOR counterparts. Furthermore,

one can see for the years 2016 and 2017 that there exists a more significant difference

between the OIS and LIBOR rates. It is possible that this can be linked to Brexit.

1.3 Probability Distributions

Interest rates that become negative can no longer be modelled by a lognormal distribu-

tion. Practioners have to turn back to the normal distribution, defined as:

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

(1.1)

Notation:

X ∼ N (µ, σ2)

A graphical representation of the normal distribution is given in Figure 1.2a. Thus,

the normal distribution can accommodate both positive and negative values, which is

perfectly suitable for the current situation. The problem of the lognormal formula is

that the natural log is strictly non-negative. This is because ln(x) = y is the same as
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eln(x) = x = ey and the limits of an exponential funciton are infinity and zero. The

lognormal distribution is defined as:

f(x) =
1

xσ
√

2π
e−

1
2( lnx−µσ )

2

(1.2)

Notation:

ln(X) ∼ N (µ, σ2)

or

X ∼ logN (µ, σ2)

A graphical representation of the lognormal distribution is given in Figure 1.2b.

Nevertheless, it is possible to take the entire lognormal distribution and shift it to the

left by a value θ, thereby pushing it into the negative environment. The shifted lognormal

distribution is defined as:

f(x) =
1

(x− δ)σ
√

2π
e
− 1

2

(
ln(x−δ)−µ

σ

)2
(1.3)

Notation:

ln(X + θ) ∼ N (µ, σ2)

or

X + θ ∼ logN (µ, σ2)

The δ and θ represent the shift in the above formulas. Figure 1.2c shows a shifted

lognormal distribution. The bound for the lognormal distribution is zero. Similarly,

the bound for the shifted lognormal distribution is the shift itself. Therefore, one has

to choose carefully and make the shift more negative than the minimum value of the

interest rate.
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(a) Normal distribution: r can be negative

(b) Lognormal distribution: r is strictly non-negative

(c) Shifted lognormal distribution: r can be negative but is bounded
by the shift θ

Figure 1.2: Probability distributions
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CHAPTER 2: STOCHASTIC CALCULUS

Stochastic calculus has contributed significantly to the progression made so far in

the field of mathematical finance. For the purpose of this thesis, some crucial tools

from stochastic calculus are discussed. The Brownian motion and it’s relation to Itô’s

integral helps us to creat short rate models with a random component. Furthermore,

the construction of bionomial or trinomial trees and it’s relation to stopping times is

important for non-European style derivatives. And, lastly, it is shown how the pricing

of derivatives under the risk-neutral measure works.

2.1 Brownian Motion

The interest rate level or stock price of tomorrow, next week, or next year, is uncertain.

If investors would know what the level or price is, they would all buy the right financial

product and make a certain profit, which is impossible. The uncertainty aspect is

characterized by the so-called Brownian motion (BM), named after Scottish botanist

Robert Brown (1773-1858). It is a concept that the finance industry borrowed from

physics. In physics, the BM is used to describe the motion of particles caused partially

by molecules that hit each other infinitely many times and therefore follow a random

path. In finance the BM is also knows as a Wiener process, named after American

mathematician Norbert Wiener (1894-1964). The BM is constructed from a scaled

symmetric random walk (RW) where n goes to infinity. To show this, one first has to

understand the rationale behind the simpler symmetric RW.

The symmetric RW is often described as a repeated fair coin toss where there is

equal probability on tossing heads (H) or tails (T ). The fair coin toss means that the

probability p of getting H and the probability q = 1 − p of getting T are 1
2 . In Shreve

[19] the symmetric RW is defined as follows: the successive outcomes of the coin tosses

are ω = ω1, ω2, ..., ωn. Let

Xj =


1, if ωj = H.

−1, if ωj = T .

(2.1)

Mk =

k∑
j=1

Xj , k = 1, 2, ... (2.2)

9



Figure 2.1: Symmetric random walk simulations with n = 10

Figure 2.2: Brownian motion simulations with n = 1000 and σ = 0.1

and M0 = 0. Then the process Mk, k = 0, 1, 2, ... is a symmetric RW. Figure 2.1

displays three simulations of the symmetric RW with 10 steps.

A scaled symmetric RW is similar to a symmetric RW. One difference is that the

time step is reduced from one to some smaller number. Another difference is that the

size of the up- or down movement is reduced from one to some number. In other words,

we speed up time and scale down the step size of a symmetric RW. The formula in

Shreve [19] is:

W (n)(t) =
1√
n
Mnt (2.3)

Finally, the Brownian motion can be obtained by taking the limit of the scaled RW,

i.e. n → ∞. Thus, with a BM one is able to model by how mucht e.g. the interest

rate has increased or decreased in a day, or even in a few hours or minutes. Figure 2.2

displays three simulations of a Brownian motion with 10 steps.

2.2 Itô’s Lemma

Ordinary calculus allows us to integrate over a certain function f(x). That is
∫ b
a f(x)dx

gives the area under, or in other circumstances above, the function f(x) in the range

10



[a, b]. In mathematical finance, the function for the movement of the interest rate or

stock price includes a Brownian motion due to its randomness. Therefore, one does not

know how the function f(x) exactly will look like and cannot use ordinary calculus to

integrate over a function with a BM. To solve this problem, Itô calculus, Itô’s integral,

or Itô’s Lemma was invented. These concepts are named after Japanese mathematician

Kiyosi Itô (1915-2008). Itô’s Lemma or the Itô-Doeblin formula, in recognition of French-

German mathematician Wolfgang Doeblin(1915-1940), is defined as:

df(Xt, t) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
dX2

t (2.4)

Consider the function f(t) = t. Standard integration gives
∫ T
0 f(t)dt =

∫ T
0 tdt =

1
2 t

2|T0 = 1
2T

2−02 = 1
2T

2. Now suppose f(t) is a BM instead. Thus, we need to calculate∫ T
0 Wtdt. Applying Itô gives d(tWt) = tdWt+Wtdt. Finally, integrating and rearranging

results in
∫ T
0 Wtdt = tWt −

∫ T
0 tdWt. The results of integrating over a normal function

and integrating over a BM are quite different. Itô calculus helps us to go back and forth

between a stochastic differential equation (SDE) and its explicit formula. Chapter 3

shows how to apply Itô on short rate model SDEs.

2.3 Binomial and Trinomial Trees

The price of a European style option can directly be approximated by using formulas

such as Black & Scholes. This is possible due to the fact that there is only one date to

be evaluated, that is the payoff at maturity time T . On this date, the holder decides

to exericise the option if it is in the money (ITM) or not exercise if the option is out

of the money (OTM), thereby losing the premium. Pricing gets more complicated if

options are of an American or Bermudan style. American options can be exercised at

any moment between the start of the contract and maturity. This means that the payoff

of the option has to be evaluated at any point in time and this makes a direct pricing

formula such as the BS obtain unreliable results. A common solution is the construction

of a binomial or trinomial tree.

A binomial tree starts with the price level of the underlying S at a certain time t, the

time at which we want to know the price of the option. At time t+1, the level of S goes

up or down by a certain amount, depending on the volatility σ of S, with probability p
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and q = 1 − p respectively. These up- and down movements at each node continue in

the same fashion until time T . At these final nodes, the pricing of the option starts by

calculating the payoff at each possible node. After discounting, the payoff at each node

at time T −1 is calculated. This process continues until we are back at time t to get the

price of the option and is called backward induction. For a European option, it can be

shown that the binomial tree, when the number of steps goes to infinity, approximates

the BS model. For American options, one has to compare the value at each node with

the value of immediately exercising the option. If the value of exercising right now is

superior, the value at the node has to be replaced. In this way, one can distinguish the

price of an American option from a European option.

The trinomial tree is similar to a binomial tree with the only difference that there

is also a possibility of a middle movement pm. Thus, it is possible that the the interest

rate or stock price does not go up or down in the next period, but remains at the same

level. Two simple examples are given in Figure 2.3a and Figue 2.3b. The probabilities

of going up, middle, or down, are given by the Hull-White tree formulas as:

Xj =


pup = 1

6 +
η2j,k
6V 2
i

+
ηj,k

2
√
3Vi

pmiddle = 2
3 −

η2j,k
3V 2
i

pdown = 1
6 +

η2j,k
6V 2
i
− ηj,k

2
√
3Vi

(2.5)

For Bermudan swaptions, it is pointed out that the discretizations are finer in those

sections of the tree where early exercise should be evaluated, and more coarse in other

sections such as the section following the last possible date to exercise [3].

2.4 Stopping Times

Related to the construction of trees and non-European style financial derivatives are

stopping times. The optimal stopping time is a time t between the start of the contract

t0 and the end of the contract T at which it is considered to be optimal to exercise

early. In stochastic calculus, the definition is as follows: a stopping time τ is a random

variable that takes a value in the space [0,∞] and must satisfy the condition:

τ ≤ t ∈ F (t) for all t ≥ 0 (2.6)
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(a) Binomial tree (b) Trinomial tree

Figure 2.3: Construction of lattices

Figure 2.4: Stopped process simulations with n = 1000 and σ = 0.1

Three simulations of a stopped process, that is simulations of a BM as in Figure 2.2

stopped at different stopping times, are graphed in Figure 2.4. Kolodko and Schoen-

makers [12] provide a mathematical derivation to find the optimal stopping time for

Bermudan swaptions.

2.5 Risk-Neutral Pricing

A key aspect in the pricing of financial derivatives is the concept of pricing in the

risk-neutral world. The probabilities for the up- and down states are the real world

probabilities. However, risk-neutral probabilities cause the expected discounted value

of the payoff of a derivative to equal the market price. Thus, the risk-neutral measure

incorporates risk. The connection between the real world probability measure and the

risk-neutral probability measure is the so-called Radon-Nikodým derivative [19], defined

as:

13



Z(ω) =
P̃(ω)

P(ω)
(2.7)

One can change the SDE of a stock price from the real-world measure to the risk-

neutral measure as follows [15]:

dSt = µStdt+ σStdWt = µStdt+ σSt(dW̃t +
r − µ
σ

dt) = rStdt+ σStdW̃t

where the connection between the two probability measures is:

W̃t = Wt −
r − µ
σ

t

Thus, it is assumed that the SDEs of the short rate models in Chapter 3 are defined

under the risk-neutral probability measure P̃ as well [5]. This is indicated by W̃ or W ∗.

14



CHAPTER 3: ONE FACTOR SHORT RATE MODELS

Various mathematical models for interest rates have been developed over the years.

In general, either one- or two-factor models are applied. Principal component analysis

has been used to determine what factors drive the term structure of interest rates. The

first factor is a shift of the entire term structure and accounts for around 80-90 per cent

of the variance. The second factor, the twist, is a situation in which the short-term rate

and long-term rate move in opposite directions and accounts for an additional 5-10 per

cent of the variance. Finally, the third factor called the butterfly is a situation in which

the mid-term structure moves in the opposite direction of the short- and long-term rates

[5]. Andersen and Andreasen [1] analyzed in their 2001 paper the factor dependence

of Bermudan swaptions and conclude that the Wall Street practice of using calibrated

single factor models does not lead to significant mispricing of Bermudan swaptions.

Therefore, the focus of this thesis is limited to one factor models.

For the purpose of this research, models that allow for negative interest rates are of

interest. This goal is in sharp contrast with most literature, where the positive proba-

bility of getting a negative value for the interest rate is being regarded as a drawback,

as seen in the quotes below:

”...the theoretical possibility of r going below zero is a clear drawback of the

model...” [3]

”Unfortunately, by definition, Gaussian interest rate models do not prevent

the interest rate from becoming negative, which is economically unrealistic.”

[5]

In general, short rate models have the form:

drt = µtdt+ σtdWt (3.1)

Where µ is the drift, σ is the volatility, and W is a Brownian motion. Therefore,

the evolution of the interest rate level depends on time and a BM. This chapter gives an

overview of the most famous one factor short rate models, their SDEs, and probability

distributions.
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3.1 Merton

In his 1974 paper, Merton notes that ”While a number of theories and empirical studies

has been published on the term structure of interest rates, there has been no systematic

development of a theory for pricing bonds when there is a significant probability of

default” [13]. He assumes the general SDE like in equation 3.1:

drt = rtdt+ σdW ∗t (3.2)

The explicit solution is:

rt = r0 + rtt+ σW ∗t (3.3)

The Merton model is normally distributed and can therefore accommodate negative

values.

3.2 Vasicek

Vasicek [21] assumed in his 1977 model that the spot rate evolves as an Ornstein-

Uhlenbeck process, which is a stochastic proces that tends to drift, or revert, towards

its long-term mean. The SDE is given by:

drt = k[θ − rt]dt+ σdW ∗t (3.4)

Where θ is considered to be the long-term mean. One can see that the drift is

negative when rt > θ and positive when θ > rt. The process rt is normally distributed

and can therefore accommodate negative values. Despite the fact that past literature

sees this as a drawback, the possibility for negative values is of interest to this research.

Applying Itô to f(t, r(t)) = ekt(rt − θ):

df(t, r(t)) = kekt(rt − θ)dt+ ektdrt

Substitution for dr(t) gives:

df(t, r(t)) = ekt(rt − θ)dt+ ekt(k[θ − r(t)]dt+ σdW (t)) = σektdWt
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Integration gives:

ekt(rt − θ)− ek0(r0 − θ) = σ

∫ t

0
ekudW ∗u

Taking exponentials on both sides and rearrangement results in :

r(t) = e−ktr0 + θ(1− e−kt) + σe−kt
∫ t

0
ekudW ∗u (3.5)

3.3 Dothan

One year later, Dothan [4] introduced a model that followed a geometric Brownian

motion. Initially, the model was presented without drift but the drift was later added

under the following SDE:

drt = artdt+ σrtdW
∗
t (3.6)

Where a is a constant. In the case of the Dothan model, r(t) is lognormally dis-

tributed and results therefore in strictly non-negative values. Consequently, pricing

interest rate derivatives with the Dothan model in countries where interest rates are

negative leads to flawed results. The process is only mean-reverting if a < 0.

Applying Itô to f(t, r(t)) = ln(r):

df(t, r(t)) =
1

r
drt −

1

2

1

r2
dr2t

Substitution for dr(t) gives:

df(t, r(t)) =
1

r
[ardt+ σrdW ∗t ]− 1

2

1

r2
[σ2r2dt] = (a− 1

2
σ2)dt+ σdW ∗t

Integration gives:

ln(r(t))− ln(r(0)) =

∫ t

0
(a− 1

2
σ2)du+

∫ t

0
σdW ∗u

Taking exponentials on both sides and rearrangement results in the explicit solution:

r(t) = r(0)e
∫ t
0 (a−

1
2
σ2)du+

∫ t
0 σdW

∗
u (3.7)
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3.4 CIR

In 1985, Cox, Ingersoll, and Ross [10] presented an adapted version of the Vasicek model.

This so-called CIR model has an additional square-root term in the diffusion coefficient

and its SDE is given as:

drt = k[θ − rt]dt+ σ
√
rtdW

∗
t (3.8)

The process r(t) follows a noncentral Chi-squared distribution. Specifically, the

condition 2kθ > σ2 is imposed to ensure positive values [3]. Consequently, if one does

not include this condition, values can become negative and the model can be used in a

negative interest rate environment.

Applying Itô to f(t, r(t)) = ektr(t):

df(t, r(t)) = krte
ktdt+ ektdrt

Substitution for dr(t) gives:

df(t, r(t)) = krte
ktdt+ ekt[k[θ − r(t)]dt+ σ

√
r(t)dW ∗t ] = kθektdt+ ektσ

√
rtdW

∗
t

Integration gives:

ektr(t)− ek0r(0) = θk

∫ t

0
ekudu+ σ

∫ t

0
eku
√
r(u)dW ∗u

Taking exponentials on both sides and rearrangement results in the explicit solution:

r(t) = e−ktr(0) + θ[1− e−kt] + σe−kt
∫ t

0
eku
√
rudW

∗
u (3.9)

3.5 Hull-White Extensions

In 1990, Hull and White [8] showed that the Vasicek and CIR models can be extended so

that they are consistent with the term structure of interest rates and the term structure

of either spot rate or forward rate volatilities. The HW extended Vasicek SDE is:
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drt = [ϑ− atrt]dt+ σtdW
∗
t (3.10)

This model is, just like the Vasicek model, is normally distributed and can therefore

accommodate negative values. It is also a mean-reverting Ornstein Uhlenbeck process.

ϑ is the long-term mean and a represents the speed of mean-reversion. The drift is

negative when atrt > ϑ and positive when ϑ > atrt.

Applying Itô to f(t, r(t)) = e
∫ t
0 αtdtrt:

df(t, r(t)) = e
∫ t
0 αtdt(rtαtdt+ drt)

Substitution for drt gives:

df(t, r(t)) = e
∫ t
0 αtdt(ϑtdt+ σtdW

∗
t )

Integration gives:

e
∫ t
0 αtdtrt = e

∫ t
0 αtdtr0 +

∫ t

0
e
∫ t
0 αtdtϑtdu+

∫ t

0
e
∫ t
0 αtdtσtdW

∗
u

Finally, the explicit solution is:

rt = e−αtr0 +
ϑ

α
(1− e−αt) + σe−αt

∫ t

0
eaudW ∗u (3.11)

3.6 Black-Karasinski

In 1991, Black and Karasinski [2] came up with a lognormal short rate model that

did not produce, what were deemed, undesirable negative rates. It is also called the

extended exponential Vasicek model. The SDE is given by:

dln(rt) = [θt − atln(rt)]dt+ σtdW
∗
t (3.12)

The explicit solution is:

rt = elnr0e
−at+

∫ t
0 e

−auθudu+σ
∫ t
0 e

−audW ∗
u (3.13)

Originally, Black Karasinski calibration was executed with a binomial tree but it has
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Table 3.1: Summary of one-factor short rate models

Author SDE Distribution Can r <0?

Merton (1974) drt = rtdt+ σdW ∗t Normal Yes

Vasicek (1977) drt = k[θ − rt]dt+ σdW ∗t Normal Yes

Dothan (1978) drt = artdt+ σrtdW
∗
t Lognormal No

CIR (1985) drt = k[θ − rt]dt+ σ
√
rtdW

∗
t Chi-squared Yes

HW ext. Vasicek (1990) drt = [ϑ− atrt]dt+ σtdW
∗
t Normal Yes

BK ext. exp. Vasicek (1991) dln(rt) = [θt − atln(rt)]dt+ σtdW
∗
t Lognormal No

become common practice to use a Hull White trinomial tree.

The short rade models discussed are summarized in Table 3.1. Merton, Vasicek, and

CIR are affine or time-invariant models, in which the term structure is a linear function

of the short rate. In the real world, term structures are never linear. The extended

Vasicek and Black Karasinski are time-variant models and are able to exactly fit the

term structure due to the time-varying parameters. As a consequence, these type of

models will provide better calibration results.
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CHAPTER 4: TOWARDS BERMUDAN SWAPTIONS

A Bermudan swaption is an option on an underlying interest rate swap that can be

exercised on multiple dates, i.e. Bermudan style.

4.1 Related Instruments

This section discusses how the rather complex Bermudan swaption is related to- and

constructed from the more basic financial derivatives that are traded on the market.

4.1.1 Swaps

Interest rate swaps (IRS) are derivative constracts where a fixed interest rate is swapped

for a floating interest rate or vice versa. The IRS as underlying is the focus of this

research but other swaps exist such as credit default swaps (CDS), commodity swaps,

currency swaps, and even variance or volatility swaps. The volatility index (VIX) traces

the volatility of the S&P500 and e.g. a variance swap exchanges a fixed variance for the

floating variance or vice versa.

For an IRS, let the fixed interest rate be:

NτiK

where N is the nominal value, K is the fixed interest rate set before the contract,

and τi is the time fraction. The floating interest rate is:

NτiL(Ti−1, Ti)

where the part L(Ti−1, Ti) is the interest rate resetting after every payment. The

fixed interest rate is acting as the strike price and is determined by looking at the

expected interest rate from the start date to the end date of the contract in order to

have a value of zero at inception. If one pays a fixed interest rate and receives the

floating interest rate, it is called a Payer IRS (PFS). Similarly, if one pays the floating

interest rate and receives a fixed interest rate, it is called a Receiver IRS (RFS). The

discounted payoff of a PFS is [3]:
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β∑
i=α+1

D(t, Ti)Nτi(L(Ti−1, Ti)−K) (4.1)

The discounted payoff of an RFS is [3]:

β∑
i=α+1

D(t, Ti)Nτi(K − L(Ti−1, Ti)) (4.2)

One needs to take into account that fixed and floating payments might not occur at

the same date and with the same frequency.

Figure 4.1a displays a 2-Year IRS with the JPY LIBOR as floating rate and a fixed

rate of 1.2 per cent. The first year, the holder of a PFS would make a profit because

the LIBOR exceeds the fixed rate of the swap contract, as can be seen in Figure 4.1b.

However, at the second quarterly payment of 2017, the PFS starts to lose money and

the RFS starts to gain.

4.1.2 Options

Options are derivative contracts where the owner has the right, but not the obligation,

to exercise the option and buy or sell the underlying for a strike price K. A call option

gives the owner the right to buy the underlying. Thus, if at maturity the stock price is

S > K, the owner can buy the stock for K and sell immediately for S, thereby making

a profit of S −K. If K > S the option will not be exercised and the payoff will be 0.

Thus, the payoff for a call option is of the form:

(S −K, 0)+

Similarly, a put option gives the owner the right to sell the underlying. Thus, if at

maturity the stock price is S > K, the owner will not exercise the option. However, if

K > S the owner can buy the stock for S and sell for K, thereby making a profit of

K − S. Thus, the payoff for a put option is of the form:

(K − S, 0)+

Because options give the upside but not the downside, as is the case with forwards

and futures, one needs to pay a premium when buying the option. The price of options

22



(a) LIBOR IRS with K = 1.2%

(b) Change in Account Balance

Figure 4.1: 2-year JPY IRS
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depends on the time to maturity, the strike price, the stock price, the interest rate, and

the implied volatility and is calculated by the Black & Scholes pricing formula or an

extension thereof. The price of a European call option is:

C = SN(d1)− e−r(T−t)KN(d2) (4.3)

The price of a European put option is:

P = e−rt(T−t)KN(−d2)− SN(−d1) (4.4)

where

d1 =
ln S

K + (r + 1
2σ

2)T

σ
√
T

and

d2 =
ln S

K + (r − 1
2σ

2)T

σ
√
T

If the strike price K is far out of the money (OTM), the probability of making money

is lower and the price of the option will therefore be low. In contrast, if the strike price

is already in the money (ITM) one has to pay a significant premium to buy the option.

Furthermore if the volatility is high, the probability that asset price S will either go up

or drop increases, and hence the proability that S−K or K−S will have a higher value

increases. Because there is no downside, a higher volatility is associated with a higher

premium for both calls and puts.

Finally, a distinction is made between European style and American style options.

European options can only be exercised at maturity. American options can be exercised

at any time between the start of the contract and maturity. Due to the possibility of

early exercise, the Black & Scholes model is not appropriate for American style options.

As an alternative, the construction of binomial or trinomial trees is used. This will play

an important role in the pricing of Bermudan swaptions.

Figure 4.2 shows the payoffdiagrams for Tesla (ticker: TSLA) put and call options

with the same strike price, K = 540, expiring March 20, 2020. Because the stock price

was 546.62 on March 13, it means that the call option is ITM and the put option is
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(a) Tesla Call with K=540 and C=35.5

(b) Tesla Put with K = 540 and P=41

Figure 4.2: TSLA option payoff diagram

OTM. Nevertheless, the premium of the put is higher than that of the call.

4.1.3 Caplets and Floorlets

Caplets and floorlets, or caps and floors, are a special type of interest rate swap in which

the holder only receives the positive cashflow. Thus, in the case of a cap, the holder

will receive the difference between the fixed and floating leg only if the the fixed leg is

smaller than the floating rate. The payoff for a cap is given as [3]:

β∑
i=α+1

D(t, Ti)Nτi(L(Ti−1, Ti)−K)+

Similarly, a floor will only pay out when the fixed leg is bigger than the floating rate.

The payoff for a floor is [3]:
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β∑
i=α+1

D(t, Ti)Nτi(K − L(Ti−1, Ti))
+

Because caps and floors have the upside but not the downside, it is required to pay

a premium for such a contract.

4.1.4 Swaptions

A swaption is an option on a swap. In the case of a European swaption, the owner has

the right but not the obligation to exercise at maturity and enter the underlying swap,

the IRS. A receiver swaption is a put- and a payer swaption a call option on a bond.

In forward rate agreements (FRA) a swap is usually quoted in ”Maturity x Tenor”.

The maturity refers to the time to maturity of the option and the tenor to the length

of the underlying swap. For example, a 5Yx10Y swaption gives the owner an option

that matures in five years the right to enter a 10 year swap. In Brigo and Mercurio

[3] the swaption notation of the option’s maturity is Tα. When one assumes that that

date coincides with the start of the underlying IRS, the reset date, the IRS length is

Tβ −Tα. Just like with any option, the holder will exercise only if the value at maturity

is positive. Therefore, the payer swaption payoff is given by [3]:

ND(t, Tα)

(
β∑

i=α+1

P (Tα, Ti)τi(F (Tα;Ti−1, Ti)−K)

)+

(4.5)

where N is the notional amount, D(t, Tα) is the discount factor between now and

the reset date Tα, K is the fixed interest rate of the underlying IRS, P the pure discount

bond price between time α and i, F (Tα;Ti−1, Ti) is the forward rate at the reset date α

for the expiry-maturity pair i − 1 and i. For a receiver swaption, the floating rate and

strike change sign to get to [3]:

ND(t, Tα)

(
β∑

i=α+1

P (Tα, Ti)τi(K − F (Tα;Ti−1, Ti))

)+

(4.6)

Figure 4.3a shows the timeline of a European swaption. Ti is the start date of the

swaption and at time Tl the holder has to decide whether to exercise and enter the

underlying interest rate swap until Tn.

Suppose a JPY OIS swaption trades in the market with expiration at 02−03−2020,
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Table 4.1: Discount factors for a 1-year swap

Expiration (days) Term structure PV discount factors

90 -0.0425 1.010739103

180 -0.06 1.030927835

270 -0.071 1.056245049

360 -0.081 1.088139282

the option to enter a 1-year swap with exercise rate −0.05 . To calculate the price of

the swaption at expiration, one needs the market price of entering into a 1-year swap at

expiration. The term structure values in Table 4.1 are taken from the JPY OIS rate for

02-03-2020 in Table C1 in the appendix. Because swaps usually have quarterly payments

and it is a 1-year swap, four rates are necessary. The discount factors are positive because

the OIS rates are all negative. The market swap is calculated as 1−PV Fn∑n
i PV Fi

and adjusted

for the payment frequency, which results in this case in −0.084. Usually for a payer

swaption, S > K is required in order to make a profit. However, because the interest

rates of the JPY are negative it turns out that K > S for a payer swaption. Since

−0.084 > −0.05 the payer swaption at maturity is worth zero. However, the receiver

swaption is worth 0.0358. With a notional amount of 100.000.000, 00 JPY, the swaption

is worth 3581364 JPY.

The Black & Scholes model for swaptions changes to the Black ’76 model where d1

is specified as:

d1 =
ln FK + (12σ

2)T

σ
√
T

In a negative interest rate environment, it is not possible to take the natural log in

the formula for d1. Therefore, one has to use the normal model or the shifted lognormal

model. The Black model with a shift is specified as:

C = (S − θ)N(d1)− e−r(T−t)(K − θ)N(d2) (4.7)

where

d1 =
ln F−θK−θ + (r + 1

2σ
2)T

σ
√
T
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4.2 Bermudan Swaptions

Bermudan swaptions are unique in the sense that the swaptions cannot only be exer-

cised at maturity of the option and the first reset date of the underlying swap, but

also on subsequent reset dates, mainly coupon paying dates. This makes the Bermu-

dan style swaption an intermediate case between its European and American coun-

terparts. A Bermudan swaption is more valuable than a European swaption. Sup-

pose if on the first reset date of the underlying swap, the payer swaption is OTM, i.e.

(F (Tα;Ti−1, Ti) < K, a European swaption holder would not exercise the option on the

underlying swap because it is out of the money. However, in the same case a Bermudan

swaption holder has the possibility to wait until the next reset dates and will not exer-

cise until (F (Tα;Ti−1, Ti) > K. This is where stopping times from Section 2.4 come in.

When the Bermudan Swaption goes ITM, there will be an exercise at stopping time τ .

Obviously, the possibility of exercising prior to maturity makes the Bermudan swaption

more expensive.

Figure 4.3b shows the timeline of a Bermudan swaption. Ti is the start date of the

swaption and between Tk and Th the holder has to decide whether to exercise and enter

the underlying interest rate swap until Tn. Thus, the longest potential swap is when

Tl = Tk and the shortest when Tl = Tn.
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(a) European swaption

(b) Bermudan swaption

Figure 4.3: Swaption timelines
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CHAPTER 5: NUMERICAL APPLICATION

This chapter adresses a numerical application of the calibration of two short rate

models, the Hull-White extended Vasicek and the Black-Karasinsky models, to market

swaption implied volatilities. Consequently, the calibration results are used to price

Bermudan swaptions. Research has generally focused on numerical applications with

EUR swaptions. This is the reason that this application uses another currency that

finds itself in a negative interest rate environment, the JPY. Khwaja [11] displays that

the most traded tenors for swaptions are 10Y, the most traded maturities 1M, 3M, 6M,

1Y, and 3Y, and the most traded contracts 1Mx10Y and 3Mx10Y. 3Yx10Y, 3Yx30Y,

5Yx10Y, and 10Yx10Y contracts traded more frequently as well. In this application is

chosen for a 1Yx10Y Bermudan swaption contract.

5.1 Data

Three types of datasets were collected from Bloomberg. First, the LIBOR and OIS

rates for the EUR, JPY, USD, and CHF were collected for the plots in Chapter 1. The

plot for the JPY is useful to keep as a reference to see when the JPY interest rate

goes negative. Second, JPY swaption implied volatilities for the 1st of February 2016,

the 1st of February 2018, and the 3rd of February 2020 were collected. For the year

2020, the 1st of February was not a business day and is therefore shifted to the 3rd.

The maturities range from one month to 30 years and the tenors from 1 year to 30

years. Because of the aforementioned research from Hull and White [7], the swaption

volatilities are gathered under the OIS rate. The volatility swaptions are collected for

both the Black/lognormal and the Bachelier/normal. The Black implied volatilities can

be viewed in Table A1, Table A2, and Table A3 of the appendix. The Bachelier implied

volatilities can be viewed in Table B1, Table B2, and Table B3 of the appendix. The

swaption implied volatilities are used for creating volatility surfaces and the calibration

of short rate models to the market. Finally, OIS rates on the 1st of February 2016, the

1st of February 2018, and the 3rd of February 2020 were collected for different tenors.

These are used to construct the zero curves for the JPY OIS on the aforementioned

dates. The data can be found in Table C1 of the appendix.
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5.2 Results

5.2.1 Volatility Surfaces

Figure 5.1 displays six graphs: the Black and Bachelier volatatility surfaces, each plotted

for the years 2016, 2018, and 2020. The normal implied volatilities are all present for

each maturity and tenor combination. Furthermore, they are also relatively stable as can

be seen from the flatness of the surface. Long-term implied volatility is more influenced

by the long-term average. Short-term implied volatility is higher during high- and lower

during low realized volatility periods. The JPY interest rate seems to deal with the

latter case with the Bachelier approach. The more interesting plots are those of the

lognormal implied volatilities. For all years, data is missing, as can be seen in the

appendix as well. In 2016, a significant amount of data is missing; in 2018, only one

entry is missing; and in 2020, even more data compared to 2016 is missing. How can

this be explained? By looking back at Figure 1.1b, one can see that the JPY LIBOR

and TONAR suddenly drop below zero at the beginning of 2016. In 2017, the LIBOR

goes up again to a positive value but after 2018 the rates decrease even more below

zero than before. The Black formula returns NA for the implied volatilities because due

to its lognormal character it is not able to accomodate negative the negative interest

rates. Thus, it is confirmed that the lognormal approach fails when interest rates go

negative. Why is it that some values are available, especially for the year 2018? This

can be explained by the zero curves in subsection 5.2.2. Finally, it should be noted that

the swaption volatility matrix may be biased because some contracts are more liquid

than others [3].
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(a) Black 2016 (b) Bachelier 2016

(c) Black 2018 (d) Bachelier 2018

(e) Black 2020 (f) Bachelier 2020

Figure 5.1: JPY OIS swaption IV surfaces
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5.2.2 Term Structures

The zero curve, the yield curve, or the term structure of interest rates is a curve that

is constructed from similar contracts, and plots the interest rate but with different

contract lengths at a specific point in time. For the pricing of swaptions, usually a

quarterly payment frequency is set. Thus, one needs the discount factors calculated

from the yield curve on these dates. Because some contracts do not exist for specific

maturities, interpolation is used. The straightforward interpolation formula is given as:

yi = ys +
(yt)− ys
xt − xs

(̇xi − xs) (5.1)

Where y is the zero rate, x the number of days until expiration, and s < i < t. More

advanced interpolation methods are discussed by Hagan and West [6].

Figure 5.2 plots the term structure of the JPY OIS on the three dates that were

selected for this research. Lengths range from a day, to a week, to a month, up to 40

years. The data can be reviewed in Table C1 of the appendix. The term structures

in 2016, 2018, and 2020, all have a similar shape. The JPY OIS starts negative but

goes the longer the lenght of the contract, the higher the rate. The longer tenors have a

concave shape, meaning that the yield increases the longer the tenor, but at a decreasing

rate. The rate becomes positive between a tenor of 10 and 15 years for 2020 and a tenor

of 3 years for 2018. For 2016, the rate is positive for the tenors from 1 day to 1 month

and from a tenor of 7 years onwards. These results are directly connected with the

development of the JPY LIBOR and TONAR in Figure 1.1b and the volatility surfaces

in Figure 5.1. In February 2016, the interest rate is still positive but goes negative

around April 2016. The term structures help explain why the Black formula is still able

to return implied volatilities in negative environments: because for longer terms, the

investor is rewarded and gets a positive rate nonetheless. It also explains why more

data is missing for 2020 than for 2016. The term structure of 2016 initially started with

a positive value and goes back to positive before 2020 does. Finally, the Black implied

volatilities for 2018 are all available with the exception of one value for a 1Y tenor. This

does not completely agree with the term structure, where the value goes positive after

a 3 year tenor.
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Figure 5.2: JPY OIS term structures

5.2.3 Calibration with Bermudan Swaptions

The calibration of a model means choosing the values of the parameters of the model in

order to minimize the square root of the sum of the squares of the relative differences

between market and model prices [18]. In the models, the parameters θ or ϑ are calcu-

lated from the yield curve whereas σ is calculated from the swaption volatility matrix.

The calibration formula is:

argmin

√√√√ n∑
i=1

(
SwptMi − Swpti

Swpti

)2

(5.2)

The results of the calibration of the Hull-White extended Vasicek and the Black-

Karasinski to the volatility surface of JPY swaptions on 02-01-2018 in RQuantLib are

displayed in Table 5.1, Table 5.2, Table 5.3, and Table 5.4. The comparison between the

use of the Black or Bachelier implied volatilities clearly shows that the calibration of both

the models is more accurate when using the normal implied volatilities. The differences

between model prediction and market value, as displayed in the third column, are all a

hundredth value in Table 5.3, and Table 5.4, and a tenth in Table 5.1 and Table 5.2.

Thus, the Bachelier/normal swaption implied volatilities should be used in favor of the

Black/lognormal implied volatilities.
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Table 5.1: Calibration of Black-Karasinsky to 2018 swaption Black IV

Calibration with Black/Lognormal IV

Black Karasinsky Market Difference

0.309164 0.536955 -0.227791
0.322614 0.620961 -0.298347
0.337289 0.695717 -0.358428
0.352864 0.730815 -0.377951
0.982673 0.775065 0.207608
1.030179 0.808926 0.221253
0.970220 0.889253 0.080967
1.011325 0.798431 0.212894

Table 5.2: Calibration of HW ext. Vasicek to 2018 swaption Black IV

Calibration with Black/Lognormal IV K=-0.05 ts=0.01

HW ext. Vasicek Market Difference

0.461607 0.536955 -0.075348
0.461666 0.620961 -0.159295
0.461771 0.695717 -0.233946
0.461863 0.730815 -0.268952
0.955154 0.775065 0.180089
0.955391 0.808926 0.146465
0.999477 0.889253 0.110224
1.051966 0.798431 0.253535

Table 5.3: Calibration of Black-Karasinsky to 2018 swaption normal IV

Calibration with Bachelier/Normal IV

Black Karasinsky Market Difference

0.066699 0.149667 -0.082968
0.066769 0.154499 -0.087730
0.066832 0.159028 -0.092196
0.066886 0.152206 -0.085320
0.177153 0.144104 0.033049
0.177327 0.148242 0.029085
0.183458 0.152117 0.031341
0.184873 0.157676 0.027197

Table 5.4: Calibration of HW ext. Vasicek to 2018 swaption normal IV

Calibration with Bachelier/Normal IV K=-0.05 ts=0.01

HW ext. Vasicek Market Difference

0.090381 0.149667 -0.059286
0.090395 0.154499 -0.064104
0.090406 0.159028 -0.068622
0.090422 0.152206 -0.061784
0.180350 0.144104 0.036246
0.180377 0.148242 0.032135
0.180998 0.152117 0.028881
0.181376 0.157676 0.023700
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Table 5.5: Model parameters and price Bermudan swaption

Summary with Black/Lognormal IV

Model Price Bermudan
Swaption

a sigma

HW ext. Vasicek 890.5963 0.0004001 0.009224
Black Karasinsky 724.7189 1.056e-06 1.112

Summary with Bachelier/Normal IV

Model Price Bermudan
Swaption

a sigma

Black Karasinsky 723.6029 4.606e-06 0.1838
HW ext. Vasicek 723.6031 0.0003026 0.001806
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CONCLUSION

This thesis adressed a relatively new area in finance: the appearance of negative

interest rates for multiple currencies. Negative interest rates caused the return of the

normal distribution, the downfall of the lognormal distribution, and the rise of the

shifted lognormal distribution.

A brief history of negative interest rates was given. Before the 2008 financial crisis,

there existed negative interest rates but these appearances were very much short-term.

The general sense was that negative interest rates could not, and should not exist.

However, the 2008 financial crisis was the cause of changes in government regulations

that made several interest rates go negative. These appearances are already lasting for

a longer time than ever before.

Stochastic calculus plays a crucial role in the mathematics behind finance. The

randomness of a stock price or in this case, the interest rate, is directly associated with

the Brownian Motion and Itô’s Integral. The Brownian Motion is used in all the short-

rate models that are used to model the interest rate. An overview of the most important

short rate models and their characteristics was provided.

The interest rate can be found in basically any formula of a financial product. There-

fore, it’s negativity has a direct impact on the pricing of these financial products. The

most important interest rate products are interest rate swaps, swaptions and, lastly,

Bermudan swaptions. Bermudan swaptions are options on interest rate swaps where

there is a possibility of exercise on multiple predetermined dates before expiration. As a

numerical application, two short rate models, the Black Karasinski model and the Hull

White model, are calibrated to market data to price Bermudan swaptions. For this,

JPY OIS market swaption implied volatilitities for different tenors and maturities were

collected at three dates, February 2016, 2018, and 2020, to construct implied volatility

surfaces. Furthermore, the OIS rates were collected to construct the term structure of

JPY interest rates on these specific dates. The JPY is of interest because the interest

rate finds itself in a negative environment. The implied volatility surfaces and the term

structures are used for calibration to determine the parameters of the two short rate

models. With the defined model parameters, 1Yx10Y Bermudan swaptions are priced.

The results indicate that the calibration with Bachelier implied volatilities is superiour

to calibration with Black implied volatilitities.
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The possibilities in this new area of research seem endless. First, there are multiple

currencies that experience a negative interest rate at the moment. The CHF, DKK,

JPY, EUR, can all be used for research and results can be compared between currencies.

Second, there are many different short rate models, both one- and two factor. The one

factor short rate models did not prove to generate unrealistic prices than their two factor

counterparts. Third, there are different distributions that can all be compared: normal,

lognormal, and shifted lognormal distributions. Fourth, different timeframes can be

applied in the numerical applications. And finally, as stated before, all the financial

products are partially dependent on the interest rate. Numerical applications can be

executed for any of these financial derivatives such as swaps, caps, floors, or European

swaptions. The models can then be used in the hedging of portfolios.
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APPENDIX A: BLACK SWAPTION IMPLIED VOLATILITIES

Table A1: JPY swaption Black IV - (02/01/2016)

1M 2M 3M 6M 9M 1Y 1.5Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 15Y 20Y 25Y 30Y

30Y 63.08 59.36 53.54 49.46 44.92 41.05 40.08 38.93 37.47 36.19 35.38 33.66 32.97 32.21 31.86 30.91 28.83 28.89 28.19 27.05
25Y 33.79
20Y 73.89 63.50 59.67 58.06 51.55 46.29 43.85 42.39 40.64 39.03 37.05 34.64 33.57 32.04 31.52 30.55 28.80 29.28 30.23 29.71
15Y 111.01 83.32 87.77 77.88 67.10 60.06 52.75 50.34 45.68 42.35 39.60 36.76 34.97 33.19 32.11 31.03 28.16 29.37 30.58 30.58
10Y 217.29 164.73 183.47 155.37 128.95 108.48 90.88 85.33 67.37 58.52 51.61 44.55 40.66 36.93 34.42 32.90 27.82 29.26 31.38 31.70
9Y 242.68 166.94 208.32 179.38 136.72 135.61 104.81 96.09 79.27 64.10 55.48 47.57 43.27 38.27 35.35 34.13 28.27 29.31 31.37 31.73
8Y 296.15 166.14 252.72 227.78 162.64 174.34 125.25 113.54 87.93 73.98 60.75 50.14 46.59 40.28 36.73 35.16 28.48 29.52 31.45 31.84
7Y 660.19 169.19 546.18 386.53 292.29 236.62 156.42 138.84 101.98 81.21 69.95 54.38 49.37 43.29 38.67 35.98 28.35 29.28 31.49 32.04
6Y 317.21 249.36 216.64 184.43 126.95 95.95 76.88 63.26 54.34 46.17 41.92 38.59 29.17 30.15 31.68 32.65
5Y 209.73 156.89 114.40 88.30 69.08 62.37 50.79 44.52 41.02 29.02 29.83 31.78 33.59
4Y 201.05 252.06 136.98 99.87 76.46 65.74 58.62 48.53 43.59 29.98 30.74 32.20 33.30
3Y 113.44 84.77 74.32 62.12 57.29 48.54 31.16 31.93 32.53 32.97
2Y 160.21 88.73 84.14 70.35 59.86 60.42 32.29 33.34 32.60 32.72
1Y 101.87 91.02 80.48 68.22 62.89 33.95 34.92 32.34 32.58

Table A2: JPY swaption Black IV - (02/01/2018)

1M 2M 3M 6M 9M 1Y 1.5Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 15Y 20Y 25Y 30Y

30Y 25.08 27.34 29.59 30.28 31.30 31.44 31.18 31.98 30.72 30.06 29.59 29.93 29.78 29.53 29.32 29.98 30.96 33.34 34.25 35.09
25Y 26.74 28.92 31.00 31.44 32.00 31.97 31.64 31.88 30.51 30.10 29.50 29.42 29.15 28.90 28.73 29.05 29.95 31.77 32.53 33.20
20Y 26.42 28.96 31.42 32.45 32.96 33.07 32.65 32.23 30.66 30.50 29.66 29.07 28.65 28.35 28.17 28.12 29.01 30.27 30.90 31.40
15Y 30.81 33.83 36.69 37.98 38.86 39.38 37.94 36.64 34.02 32.20 30.87 29.85 29.13 28.47 27.99 27.70 27.72 29.58 30.12 30.48
10Y 42.90 47.66 53.60 56.20 56.12 55.98 53.53 51.59 45.29 40.59 37.69 34.62 32.49 30.74 29.45 28.56 26.55 28.86 29.64 29.81
9Y 47.66 53.70 57.89 60.63 60.47 60.60 56.99 54.46 48.77 42.79 39.10 36.40 33.53 31.33 29.74 28.64 26.33 28.48 29.25 29.46
8Y 53.17 58.55 62.10 64.88 64.44 64.44 61.48 59.14 51.42 46.25 41.00 37.44 35.00 32.16 30.17 28.81 26.12 28.05 28.83 29.09
7Y 62.18 64.41 66.87 69.57 68.64 68.29 65.75 63.34 55.94 48.88 43.86 38.98 35.96 33.55 30.91 29.12 25.93 27.51 28.32 28.64
6Y 67.40 69.12 71.02 74.03 73.08 72.37 68.91 66.63 59.14 52.60 45.99 42.02 37.50 34.50 32.46 29.98 25.81 27.02 27.88 28.34
5Y 74.09 74.80 75.78 80.26 78.84 77.51 72.87 70.66 62.77 55.73 50.15 43.80 40.41 35.81 32.97 31.29 25.71 26.68 27.67 28.36
4Y 89.59 89.24 86.51 87.42 86.77 86.12 80.89 79.61 67.84 60.04 53.53 47.78 42.24 38.71 34.35 31.90 25.66 26.61 27.61 28.30
3Y 115.38 111.71 106.81 101.81 98.94 97.23 89.65 88.93 74.94 64.56 57.18 50.77 46.04 39.98 37.02 32.93 25.65 26.64 27.65 28.34
2Y 136.01 128.19 122.29 117.23 116.29 116.89 101.75 104.41 79.84 71.87 61.99 54.38 49.51 44.31 38.00 35.63 25.67 26.75 27.70 28.44
1Y 215.27 217.84 198.75 152.84 137.18 121.94 160.13 97.76 81.25 68.67 57.68 53.34 47.85 42.94 35.45 25.91 27.20 28.22 28.93

Table A3: JPY swaption Black IV - (02/03/2020)

1M 2M 3M 6M 9M 1Y 1.5Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 15Y 20Y 25Y

30Y 103.95 102.30 100.62 98.62 97.42 95.98 95.65 95.07 95.03 94.87 94.62 94.27 94.33 95.22 97.09 100.63
25Y 113.35 111.02 108.67 106.02 103.82 98.61 99.64 97.43 93.93 90.34 86.85 86.94 87.50 88.59 90.69 94.52
20Y 126.30 123.31 120.58 118.23 115.68 113.54 111.47 108.89 104.65 100.47 96.45 91.77 87.96 84.62 82.19 80.91 110.17
15Y 190.93 184.09 177.50 168.35 160.07 155.42 145.23 134.50 117.51 105.39 95.14 89.11 84.52 81.58 79.82 79.58 77.85
10Y 893.71 263.91 163.67 119.46 98.84 88.58 82.42 79.49 81.13 113.61
9Y 264.85 147.90 108.32 92.40 83.46 78.87 77.20 126.88
8Y 193.66 127.36 99.16 85.66 78.89 73.45 133.74
7Y 216.77 148.12 112.87 89.98 79.62 69.43 107.53
6Y 188.86 128.14 102.77 84.77 67.38 121.47 72.64
5Y 174.90 108.96 94.75 64.97 98.45 76.55
4Y 144.77 125.79 98.84 63.69 123.86 70.91
3Y 154.58 145.08 107.72 62.58 121.12 66.20
2Y 132.97 168.06 61.43 116.14 62.72
1Y 136.82 148.99 60.75 106.87 62.05
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APPENDIX B: NORMAL SWAPTION IMPLIED VOLATILITIES

Table B1: JPY swaption normal IV - (02/01/2016)

1M 2M 3M 6M 9M 1Y 1.5Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 15Y 20Y 25Y 30Y

30Y 65.59 61.89 56.04 52.22 47.99 44.39 44.30 44.00 44.14 44.26 44.70 43.96 44.31 44.38 44.87 44.37 42.81 41.48 39.58 37.65
20Y 60.80 52.63 49.84 49.38 44.87 41.25 40.81 41.15 42.56 43.70 43.98 43.24 43.75 43.34 44.04 43.86 42.91 41.90 41.76 40.51
15Y 62.92 47.98 51.24 47.17 42.52 39.75 37.87 38.92 40.19 41.52 42.49 42.57 43.23 43.36 44.03 44.27 42.99 41.85 41.87 41.30
10Y 55.65 43.34 48.92 43.99 39.73 36.28 34.93 36.83 38.26 40.55 41.60 41.92 43.25 43.40 44.03 44.95 43.53 42.71 41.94 42.11
9Y 48.33 34.41 43.31 39.84 33.77 36.08 33.92 36.09 37.95 39.79 41.44 41.24 43.36 43.17 43.96 45.65 44.25 42.89 42.04 41.99
8Y 43.78 25.71 38.84 37.35 30.67 35.12 32.34 34.71 37.19 39.09 40.88 40.61 43.12 43.00 44.00 45.86 44.65 43.34 42.27 41.90
7Y 55.86 17.02 44.91 37.22 34.58 33.35 30.79 33.24 35.80 38.40 40.18 39.98 42.87 42.83 44.04 45.44 44.62 43.28 42.50 41.81
6Y 37.74 15.08 33.25 31.48 19.24 32.56 28.47 32.14 35.44 37.97 39.88 39.83 42.91 43.03 44.37 46.41 45.95 44.67 42.96 41.96
5Y 39.64 6.97 31.42 28.29 40.57 37.90 18.55 29.50 33.82 37.07 38.86 39.75 42.28 43.22 44.72 46.07 46.02 44.68 43.41 42.11
4Y 36.97 1.53 49.38 27.67 22.61 38.38 9.31 26.04 31.06 35.72 37.06 38.08 41.40 42.73 44.85 46.79 47.39 45.84 43.87 41.84
3Y 55.31 0.02 48.97 45.54 42.97 23.96 1.76 22.98 27.87 34.36 35.51 36.37 40.50 42.33 45.03 48.02 49.03 47.34 44.23 41.53
2Y 53.97 0.02 49.25 46.19 43.54 41.23 0.03 34.09 26.05 30.26 33.94 34.01 39.50 41.33 44.99 49.21 50.60 49.08 44.30 41.29
1Y 52.40 0.02 49.64 46.81 44.07 42.37 0.02 37.92 36.06 28.85 32.62 31.15 38.95 39.86 44.52 50.63 52.84 50.98 44.02 41.16

Table B2: JPY swaption normal IV - (02/01/2018)

1M 2M 3M 6M 9M 1Y 1.5Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 15Y 20Y 25Y 30Y

30Y 22.19 24.29 26.39 27.28 28.52 28.94 29.28 30.63 30.54 30.94 31.46 32.74 33.43 33.94 34.41 35.74 38.25 40.32 40.34 40.44
20Y 18.46 20.39 22.29 23.48 24.35 24.93 25.55 26.15 26.60 28.08 28.82 29.59 30.36 31.13 31.90 32.67 35.70 36.97 37.00 37.15
15Y 16.06 17.85 19.63 21.01 22.28 23.29 23.85 24.37 25.06 25.92 26.85 27.88 28.90 29.77 30.63 31.49 34.23 36.01 36.05 36.23
10Y 13.38 15.17 17.39 19.22 20.22 21.13 22.03 22.93 24.02 24.84 25.90 26.96 28.00 28.83 29.65 30.45 32.95 35.29 35.19 35.45
9Y 13.04 14.97 16.50 18.19 19.09 20.04 21.02 22.08 23.25 24.28 25.47 26.51 27.52 28.38 29.22 30.04 32.62 34.94 34.80 35.06
8Y 12.66 14.25 15.45 17.08 17.92 18.82 19.98 21.08 22.48 23.66 24.86 25.97 26.94 27.85 28.74 29.60 32.29 34.54 34.36 34.62
7Y 12.65 13.47 14.34 15.90 16.66 17.48 18.90 20.05 21.59 23.06 24.07 25.29 26.46 27.30 28.22 29.10 31.95 34.05 33.82 34.07
6Y 11.41 12.09 12.81 14.40 15.22 16.02 17.37 18.63 20.43 22.01 23.42 24.71 25.91 26.98 27.92 28.81 31.65 33.62 33.32 33.58
5Y 10.26 10.75 11.28 12.98 13.74 14.41 15.82 17.21 19.32 21.01 22.70 24.05 25.34 26.41 27.43 28.40 31.30 33.38 33.01 33.27
4Y 9.96 10.36 10.41 11.59 12.49 13.29 14.82 16.34 18.35 20.29 21.95 23.39 24.85 25.93 27.11 28.21 31.23 33.31 32.95 33.20
3Y 9.79 10.07 10.17 10.74 11.43 12.12 13.71 15.21 17.32 19.37 21.20 22.64 24.11 25.37 26.57 27.86 31.22 33.34 32.99 33.23
2Y 8.91 9.14 9.26 9.90 10.62 11.32 12.84 14.24 15.77 18.55 20.59 22.11 23.61 24.88 26.21 27.38 31.23 33.46 33.05 33.36
1Y 7.48 8.33 8.07 8.93 10.00 11.03 12.47 13.20 15.81 17.93 19.72 21.43 23.19 24.49 25.92 27.23 31.48 33.96 33.56 33.85

Table B3: JPY swaption normal IV - (02/03/2020)

1M 2M 3M 6M 9M 1Y 1.5Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 15Y 20Y 25Y 30Y

30Y 33.00 32.45 31.91 31.25 30.89 30.49 30.46 30.42 30.61 30.73 30.84 30.98 31.13 31.30 31.46 31.62 33.12 33.75 33.73 33.58
20Y 28.02 27.45 26.96 26.70 26.48 26.39 26.65 26.91 27.46 27.92 28.37 28.78 29.18 29.45 29.72 29.99 30.57 31.60 31.58 31.37
15Y 24.68 24.04 23.47 22.97 22.73 22.96 23.23 23.50 24.01 24.68 25.27 25.73 26.19 26.67 27.14 27.59 28.98 30.08 30.05 29.82
10Y 21.72 21.33 20.65 20.39 20.35 20.47 20.86 21.09 21.85 22.68 23.34 23.93 24.52 25.31 26.10 26.87 27.75 28.95 28.69 28.43
9Y 21.09 20.75 20.20 19.66 19.51 19.97 20.38 20.61 21.37 22.09 23.01 23.55 24.06 24.79 25.51 26.22 27.29 28.50 28.34 28.04
8Y 20.71 20.12 19.59 19.04 19.24 19.32 19.78 20.05 21.12 21.73 22.62 23.05 23.56 24.24 24.91 25.56 26.83 28.04 27.99 27.64
7Y 19.65 19.57 18.97 18.41 18.44 18.55 19.13 19.73 20.56 21.10 22.06 22.50 23.13 23.68 24.27 24.83 26.28 27.50 27.57 27.15
6Y 18.62 18.37 18.36 17.74 17.50 17.50 18.38 18.97 19.88 20.86 21.80 22.33 22.98 23.49 24.01 24.51 26.13 27.22 27.47 26.94
5Y 17.55 17.34 17.19 17.16 16.90 16.76 17.34 18.23 19.18 20.34 21.16 21.85 22.68 22.99 23.59 24.13 25.97 26.91 27.41 26.71
4Y 15.91 15.84 15.80 15.78 15.88 16.21 16.51 17.22 18.57 19.67 20.77 21.22 22.11 22.69 23.16 23.84 25.67 26.57 26.82 26.67
3Y 14.31 14.21 14.13 14.62 14.75 15.46 15.99 16.74 18.01 19.15 20.19 21.02 21.66 22.13 22.60 23.38 25.41 26.22 26.18 26.62
2Y 12.91 12.91 12.92 13.18 14.02 14.62 15.43 16.05 17.19 18.61 19.69 20.59 21.28 21.75 22.20 22.92 25.13 25.92 25.63 26.57
1Y 11.86 11.95 12.22 12.59 13.27 14.27 15.10 15.95 16.86 18.24 19.26 20.00 20.93 21.36 21.99 22.41 24.95 25.75 25.51 26.35
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APPENDIX C: JPY OIS RATES

Table C1: JPY OIS rates (2016, 2018, 2020)

Time Year JPY.OIS.02.03.20.Mid.YTM JPY.OIS.02.01.18.Mid.YTM JPY.OIS.02.01.16.Mid.YTM

1 1D 0.00 -0.03 -0.04 0.06
2 1W 0.02 -0.04 -0.05 0.06
3 2W 0.04 -0.04 -0.05 0.06
4 3W 0.06 -0.04 -0.05 0.03
5 1M 0.08 -0.05 -0.05 0.02
6 2M 0.17 -0.05 -0.05 -0.01
7 3M 0.25 -0.04 -0.05 -0.03
8 4M 0.33 -0.05 -0.05 -0.03
9 5M 0.42 -0.06 -0.04 -0.04

10 6M 0.50 -0.06 -0.04 -0.05
11 7M 0.58 -0.06 -0.04 -0.06
12 8M 0.67 -0.07 -0.04 -0.06
13 9M 0.75 -0.07 -0.04 -0.07
14 10M 0.83 -0.07 -0.03 -0.08
15 11M 0.92 -0.08 -0.03 -0.09
16 1Y 1.00 -0.08 -0.03 -0.10
17 18M 1.50 -0.10 -0.02 -0.12
18 2Y 2.00 -0.10 -0.01 -0.14
19 3Y 3.00 -0.12 0.01 -0.13
20 4Y 4.00 -0.12 0.03 -0.12
21 5Y 5.00 -0.12 0.05 -0.08
22 6Y 6.00 -0.12 0.07 -0.04
23 7Y 7.00 -0.10 0.10 0.00
24 8Y 8.00 -0.09 0.12 0.05
25 9Y 9.00 -0.07 0.15 0.09
26 10Y 10.00 -0.04 0.18 0.14
27 15Y 15.00 0.06 0.36 0.44
28 20Y 20.00 0.15 0.52 0.70
29 25Y 25.00 0.21 0.62 0.84
30 30Y 30.00 0.25 0.69 0.91
31 35Y 35.00 0.26 0.74 0.98
32 40Y 40.00 0.27 0.78 1.03
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R SCRIPT

Probability Distributions

#Load packages

l ibrary ( greybox )

# Normal D i s t r i b u t i o n ( B a c h e l i e r )

gr id1 = seq (−5 ,5 , length = 100)

plot ( gr id1 , dnorm( g r id1 ) , type=” l ” , l t y =1, xlab=” I n t e r e s t Rate”

,

ylab=” Density ” )

# Lognormal D i s t r i b u t i o n ( Black )

gr id2 = seq (0 ,10 , length = 100)

plot ( gr id2 ,dlnorm( g r id2 ) , type=” l ” , l t y =1, xlab=” I n t e r e s t Rate” ,

ylab=” Density ” )

# S h i f t e d Lognormal D i s t r i b u t i o n

x <− dtplnorm (c (−1000:1000)/200 , 0 , 1 , −2)

plot (c (−1000:1000)/200 , x , type=” l ” , l t y = 1 , xlab=” I n t e r e s t

Rate” ,

ylab = ” Density ” )
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OIS and LIBOR

# Cleaning the workspace

rm( l i s t=l s ( ) )

suppressMessages ( l ibrary ( s t a r g a z e r ) )

suppressMessages ( l ibrary ( ggp lot2 ) )

suppressMessages ( l ibrary ( t i m e S e r i e s ) )

suppressMessages ( l ibrary ( xts ) )

suppressMessages ( l ibrary ( graphics ) )

suppressMessages ( l ibrary ( zoo ) )

# import the data

LIBOR = read . csv ( ”LIBOR. csv ” )

LIBOR$Date = as . Date (LIBOR$Date , format = ”%m/%d/%Y” )

LIBOR. xts = as . x t s (LIBOR, order .by = LIBOR$Date )

LIBOR. xts = LIBOR. xts [ ,−1]

#c r e a t e x t s f o r a l l the c u r r e n c i e s

CHF.LIBOR = as . x t s (LIBOR$CHF.LIBOR. Ask . Price , order .by = LIBOR$

Date )

CHF.LIBOR = setNames (CHF.LIBOR, ”LIBOR” )

CHF.SARON = as . x t s (LIBOR$SSARON. Mid . Price , order .by = LIBOR$

Date )

CHF.SARON = setNames (CHF.SARON, ”SARON” )

US.LIBOR = as . x t s (LIBOR$US.LIBOR. Ask . Price , order .by = LIBOR$

Date )

US.LIBOR = setNames (US.LIBOR, ”LIBOR” )

US.SOFR = as . x t s (LIBOR$SOFR. Mid . Price , order .by = LIBOR$Date )

US.SOFR = setNames (US.SOFR, ”SOFR” )

JPY.LIBOR = as . x t s (LIBOR$JPY.LIBOR. Ask . Price , order .by = LIBOR$

Date )

JPY.LIBOR = setNames (JPY.LIBOR, ”LIBOR” )
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JPY.TONAR = as . x t s (LIBOR$TONAR. Mid . Price , order .by = LIBOR$Date

)

JPY.TONAR = setNames (JPY.TONAR, ”TONAR” )

LIBOR. xts$ z e r o l i n e = 0

z e r o l i n e = LIBOR. xts$ z e r o l i n e

EUR.LIBOR = as . x t s (LIBOR$EUR.LIBOR. Ask . Price , order .by = LIBOR$

Date )

EUR.ESTR = as . x t s (LIBOR$ESTR. Last . Price , order .by = LIBOR$Date )

#p l o t the data

plot . x t s (merge . x t s (CHF.LIBOR, CHF.SARON) , legend . l o c = ”bottom”

, col = c ( ” black ” , ”#CC0033” ) , main = ”CHF LIBOR vs SARON” )

plot . x t s (merge . x t s (US.LIBOR, US.SOFR) , legend . l o c = ”bottom” ,

col = c ( ” black ” , ”#339900” ) , main = ”USD LIBOR vs SOFR” )

plot . x t s (merge . x t s (JPY.LIBOR, JPY.TONAR) , legend . l o c = ”bottom”

, col = c ( ” black ” , ”#33CCCC” ) , main = ”JPY LIBOR vs TONAR” )

l ines ( z e r o l i n e , col = ” red ” )

plot . x t s (merge . x t s (EUR.LIBOR, EUR.ESTR) , legend . l o c = ”bottom” ,

col = c ( ” black ” , ”#CC33CC” ) , main = ”EUR LIBOR vs ESTR” )

l ines ( z e r o l i n e , col = ” red ” )
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RW, BM, and Stopping Times Simulations

# Symmetric Random Walk

SymRW = function ( k = 10 , i n i t i a l . va lue = 0) {

samples = rbinom(k , s i z e = 1 , prob = 0 . 5 )

samples [ samples==0] = −1

i n i t i a l . va lue + c (0 , cumsum( samples ) )

}

plot (SymRW( ) , type = ’b ’ , x lab = ’ k ’ , y lab = ”M” )

abline (h=0, col = ’ red ’ )

# Brownian Motion

N = 1000

BM = rnorm(N, 0 , 0 . 1 )

BM = cumsum(BM)

plot (BM, type = ’ l ’ , x lab = ” s t ep s ” , ylab = ” s c a l e ” )

# A stopped pro cess

N = 1000

BMstop = rnorm(N, 0 , 0 . 1 )

BMstop = cumsum(BMstop)

BMstop = data . frame (BMstop)

BMstop [ 4 0 0 : 1 0 0 0 , ] = BMstop [ 3 9 9 , ]

BMstop = data . matrix (BMstop , rownames . f o r c e = NA)

plot (BMstop , type = ’ l ’ , x lab = ” s t ep s ” , ylab = ” s c a l e ” )

abline ( v = 399 , l t y = 3)

text (350 ,−1 , expression ( tau ) )
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Timelines European and Bermudan Swaption

# Timeline Swaption and Bermudan Swaption

# Load packages

suppressMessages ( l ibrary ( html too l s ) )

suppressMessages ( l ibrary ( t imev i s ) )

# Timeline f o r a European swaption

time . eur <− data . frame (

id = 1 : 3 ,

content = c ( ”T i ” , ”T l ” , ”T n” ) ,

start = c ( ”2018−02−01” , ”2019−02−01” , ”2024−02−01” ) ,

end = c (NA, ”2024−02−01” , NA) )

t imev i s ( time . eur , showZoom = FALSE)

# Timeline f o r a Bermudan swaption

time . berm <− data . frame (

id = 1 : 5 ,

content = c ( ”T i ” , ”T k” , ”T l ” , ”T h” , ”T n” ) ,

start = c ( ”2018−02−01” , ”2019−02−01” , ”2020−02−01” , ”

2023−02−01” , ”2024−02−01” ) ,

end = c (NA, NA, ”2024−02−01” , NA, NA) )

t imev i s ( time . berm , showZoom = FALSE)
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Implied Volatility Surfaces

# Import the data and a d j u s t to R and p l o t the v o l a t i l i t y

s u r f a c e

# Black V o l a t i l i t y s u r f a c e 2016

black16 = read . csv ( ’ jpyswapvolblack02 . 0 1 . 1 6 . csv ’ )

b lack16 = black16 [ ,−1] # Remove

t e n o r s column 1

black16 = black16 [ c ( ’ 14 ’ , ’ 13 ’ , ’ 12 ’ , ’ 11 ’ , ’ 10 ’ , ’ 9 ’ , ’ 8 ’ , ’ 7 ’

, ’ 6 ’ , ’ 5 ’ , ’ 4 ’ , ’ 3 ’ , ’ 2 ’ , ’ 1 ’ ) , ] # Last row s t a r t s f i r s t

now , e t c .

black16 = t ( black16 ) # Switch

matur i ty wi th tenor

black16 = black16/100 # Make

v a l u e s percentage

persp ( black16 , theta = 120 , phi = 15 , t i c k type = ” s imple ” , col

= ’ l i g h t b l u e ’ ,

x lab = ’ Maturity ’ , y lab = ’ Tenor ’ , z l ab = ’Imp .

V o l a t i l i t y ’ ,

shade = 0 . 2 , expand = 0 . 8 )

# Black V o l a t i l i t y s u r f a c e 2018

black18 = read . csv ( ’ jpyswapvolblack02 . 0 1 . 1 8 . csv ’ )

b lack18 = black18 [ ,−1]

black18 = black18 [ c ( ’ 14 ’ , ’ 13 ’ , ’ 12 ’ , ’ 11 ’ , ’ 10 ’ , ’ 9 ’ , ’ 8 ’ , ’ 7 ’

, ’ 6 ’ , ’ 5 ’ , ’ 4 ’ , ’ 3 ’ , ’ 2 ’ , ’ 1 ’ ) , ]

b lack18 = t ( black18 )

black18 = black18/100
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persp ( black18 , theta = 120 , phi = 15 , t i c k type = ” s imple ” , col

= ’ l i g h t b l u e ’ ,

x lab = ’ Maturity ’ , y lab = ’ Tenor ’ , z l ab = ’Imp .

V o l a t i l i t y ’ ,

shade = 0 . 4 , expand = 0 . 8 )

# Black v o l a t i l i t y s u r f a c e 2020

black20 = read . csv ( ’ jpyswapvolblack02 . 0 3 . 2 0 . csv ’ )

b lack20 = black20 [ ,−1]

black20 = black20 [ c ( ’ 14 ’ , ’ 13 ’ , ’ 12 ’ , ’ 11 ’ , ’ 10 ’ , ’ 9 ’ , ’ 8 ’ , ’ 7 ’

, ’ 6 ’ , ’ 5 ’ , ’ 4 ’ , ’ 3 ’ , ’ 2 ’ , ’ 1 ’ ) , ]

b lack20 = t ( black20 )

black20 = black20/100

persp ( black20 , theta = 120 , phi = 15 , t i c k type = ” s imple ” , col

= ’ l i g h t b l u e ’ ,

x lab = ’ Maturity ’ , y lab = ’ Tenor ’ , z l ab = ’Imp .

V o l a t i l i t y ’ ,

shade = 0 . 6 , expand = 0 . 8 )

# B a c h e l i e r v o l a t i l i t y s u r f a c e 2016

bach16 = read . csv ( ’ jpyswapvolnorm02 . 0 1 . 1 6 . csv ’ )

bach16 = bach16 [ ,−1]

bach16 = bach16 [ c ( ’ 14 ’ , ’ 13 ’ , ’ 12 ’ , ’ 11 ’ , ’ 10 ’ , ’ 9 ’ , ’ 8 ’ , ’ 7 ’ ,

’ 6 ’ , ’ 5 ’ , ’ 4 ’ , ’ 3 ’ , ’ 2 ’ , ’ 1 ’ ) , ]

bach16 = t ( bach16 )

bach16 = bach16/100

persp ( bach16 , theta = 120 , phi = 15 , t i c k type = ” s imple ” , col =
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’ l i g h t g r e e n ’ ,

x lab = ’ Maturity ’ , y lab = ’ Tenor ’ , z l ab = ’Imp .

V o l a t i l i t y ’ ,

shade = 0 . 2 , expand = 0 . 8 )

# B a c h e l i e r v o l a t i l i t y s u r f a c e 2018

bach18 = read . csv ( ’ jpyswapvolnorm02 . 0 1 . 1 8 . csv ’ )

bach18 = bach18 [ ,−1]

bach18 = bach18 [ c ( ’ 14 ’ , ’ 13 ’ , ’ 12 ’ , ’ 11 ’ , ’ 10 ’ , ’ 9 ’ , ’ 8 ’ , ’ 7 ’ ,

’ 6 ’ , ’ 5 ’ , ’ 4 ’ , ’ 3 ’ , ’ 2 ’ , ’ 1 ’ ) , ]

bach18 = t ( bach18 )

bach18 = bach18/100

persp ( bach18 , theta = 120 , phi = 15 , t i c k type = ” s imple ” , col =

’ l i g h t g r e e n ’ ,

x lab = ’ Maturity ’ , y lab = ’ Tenor ’ , z l ab = ’Imp .

V o l a t i l i t y ’ ,

shade = 0 . 4 , expand = 0 . 8 )

# B a c h e l i e r v o l a t i l i t y s u r f a c e 2020

bach20 = read . csv ( ’ jpyswapvolnorm02 . 0 3 . 2 0 . csv ’ )

bach20 = bach20 [ ,−1]

bach20 = bach20 [ c ( ’ 14 ’ , ’ 13 ’ , ’ 12 ’ , ’ 11 ’ , ’ 10 ’ , ’ 9 ’ , ’ 8 ’ , ’ 7 ’ ,

’ 6 ’ , ’ 5 ’ , ’ 4 ’ , ’ 3 ’ , ’ 2 ’ , ’ 1 ’ ) , ]

bach20 = t ( bach20 )

bach20 = bach20/100

persp ( bach20 , theta = 120 , phi = 15 , t i c k type = ” s imple ” , col =

’ l i g h t g r e e n ’ ,

x lab = ’ Maturity ’ , y lab = ’ Tenor ’ , z l ab = ’Imp .
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V o l a t i l i t y ’ ,

shade = 0 . 6 , expand = 0 . 8 )
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Calibration with Bermudan Swaptions

# CALIBRATION OF Hull−White EXTENDED VASICEK MODEL

# Hull−White i s normal and a l l o w s f o r n e g a t i v e r a t e s

# Load packages

suppressMessages ( l ibrary ( RQuantLib ) )

# S p e c i f y the parameters

parameters = l i s t ( tradeDate = as . Date ( ’ 2018−02−01 ’ ) , # S t a r t

date o f Bermudan Swaption

s e t t l e D a t e = as . Date ( ’ 2018−02−04 ’ ) , # 2

b u s i n e s s days between tradeDate and

s e t t l e D a t e

s tar tDate = as . Date ( ’ 2019−02−04 ’ ) , # F i r s t

time p o s s i b l e to e x e r c i s e

maturity = as . Date ( ’ 2029−02−04 ’ ) , # Last

time p o s s i b l e to e x e r c i s e

s t r i k e = 0 .03 , # S t r i k e

r a t e

dt = 0.25 , #

Quarter ly r e s e t d a t e s

payFixed = TRUE, # Payer

or Receiver Swaption , no put−c a l l p a r i t y

f o r Bermudan swapt ion !

method = ”BKTree” , # Hull−White

model , BKTree i s a l s o p o s s i b l e

interpWhat = ” zero ” , # Curve

c o n s t r u c t i o n

interpHow = ” l i n e a r ” ) #

I n t e r p o l a t i o n method
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# Set the date to be e v a l u a t e d

setEvaluat ionDate ( as . Date ( ’ 2018−02−01 ’ ) )

tsQuotes = l i s t (d1w = 0.0001 ,

s3y =0.004 ,

s5y =0.005 ,

s7y = 0 .006 ,

s10y =0.007 ,

s20y =0.008)

t imes = seq (0 , 19 . 75 , 0 . 2 5 ) #

swcurve=DiscountCurve ( parameters , tsQuotes , t imes ) #

#Swaption tenors , m a t u r i t i e s , i m p l i e d v o l a t i l i t i e s from

Bloomberg market data

# These can and shou ld be a d j u s t e d based on the matur i ty and

tenor o f your product

swapt ionMatur i t i e s = c (1/12 , 2/12 , 3/12 , 6/12 , 9/12 , 1 , 1 . 5 ,

2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ,15 , 20 , 25 , 30) # rows

swapt ionMatur i t i e s = swapt ionMatur i t i e s [ 2 : 9 ]

# a d j u s t rows

swaptionTenors = c (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 15 , 20 ,30)

# columns

swaptionTenors = swaptionTenors [ 2 : 9 ]

# a d j u s t columns

# Adjus t ing the raw data o f the i m p l i e d v o l a t i l i t i e s

# v o l s u r f i s normal IV

v o l s u r f = read . csv ( ” jpyswapvolnorm02 . 0 1 . 1 8 . csv ” ) # Read data

from Bloomberg

v o l s u r f = v o l s u r f [ ,−1] # Remove
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t e n o r s column 1

v o l s u r f = v o l s u r f [ c ( ’ 13 ’ , ’ 12 ’ , ’ 11 ’ , ’ 10 ’ , ’ 9 ’ , ’ 8 ’ , ’ 7 ’ , ’ 6 ’ ,

’ 5 ’ , ’ 4 ’ , ’ 3 ’ , ’ 2 ’ , ’ 1 ’ ) , ] # Last column s t a r t s f i r s t now ,

e t c .

v o l s u r f = t ( v o l s u r f ) # Last row

s t a r t s f i r s t now , e t c .

v o l s u r f = v o l s u r f/100 # Data from

Bloomberg i s in bp but shou ld be in R in percentage

v o l s u r f . s e l e c t = v o l s u r f [ 2 : 9 , 2 : 9 ] # S e l e c t par t

o f the IV s u r f a c e to be used

# v o l s u r f 2 i s lognormal IV

v o l s u r f 2 = read . csv ( ” jpyswapvolblack02 . 0 1 . 1 8 . csv ” )

v o l s u r f 2 = v o l s u r f 2 [ ,−1]

v o l s u r f 2 = v o l s u r f 2 [−2 , ] # Remove 25Y becaue i t i s miss ing f o r

Normal

v o l s u r f 2 = v o l s u r f 2 [ c ( ’ 14 ’ , ’ 13 ’ , ’ 12 ’ , ’ 11 ’ , ’ 10 ’ , ’ 9 ’ , ’ 8 ’ , ’ 7

’ , ’ 6 ’ , ’ 5 ’ , ’ 4 ’ , ’ 3 ’ , ’ 1 ’ ) , ]

v o l s u r f 2 = t ( v o l s u r f 2 )

v o l s u r f 2 = v o l s u r f 2/100

v o l s u r f 2 . s e l e c t = v o l s u r f 2 [ 2 : 9 , 2 : 9 ]

# C a l i b r a t i o n and Pr ic ing o f the Bermudan Swaption

p r i c e = BermudanSwaption ( parameters , swcurve ,

swapt ionMatur i t i e s , swaptionTenors , v o l s u r f . s e l e c t )

summary( p r i c e )

p r i c e 2 = BermudanSwaption ( parameters , swcurve ,

swapt ionMatur i t i e s , swaptionTenors , v o l s u r f 2 . s e l e c t )

summary( p r i c e 2 )
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