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ABSTRACT

SMITALI PATNAIK. Optimum Economic Dispatch and Pricing Strategy for
Localised Electricity Market with PV-Battery Integration. (Under the direction of

DR.MACIEJ NORAS)

As the ingress of Renewable Systems and Energy Storage is gaining pace, the con-

cept of local markets is emerging as an attractive alternative to utility grid services.

Although, local markets are naive and at emerging stage, their advantages are being

realized at both technical and �nancial aspects. The local market for trading elec-

tricity includes prosumers who own Distributed Energy Resources (like PV, Battery

Storage) and sell their surplus generation of energy to their existing peers in the com-

munity. The local market is based on co-operative sharing economy where all users

can participate to meet their demands at a chance of lower prices than that o�ered

by the utility companies. The Thesis looks forward to develop an e�ective model

containing PV and Battery combination in residential community based on two sets

of historical demand data and PV generation, and compare the results through per-

formance indices to see how PV and energy storage contribute to savings and help

reduce overall grid dependency. The local market has been set up for a community of

houses in New South Wales, Australia and local prices have been considered according

to the grid prices and feed-in tari� prices prevailing in the market. The overall aim of

the research is to optimize the electricity dispatch for these particular demand data

sets with an appropriate pricing strategy to achieve cost minimization in terms of

energy purchase, increase Self su�ciency, Self consumption and Social Welfare. The

simulation of the electricity trading has been carried out using Python programming

and Gurobi 9.0 (academic license) and SciPy library as the solver.
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CHAPTER 1: INTRODUCTION

1.1 Concept

A vertically integrated market is still �ourishing in many regions and consumers

have no choice or say on the prices they have to pay for consuming the electricity.

Increasing use of Distributed Energy Resources (DERs) and Battery storage systems

with smart trading platforms can help residential consumers to generate energy and

sell it to peers or inject to the grid. This newly emerging local market system using

DERs has opened a great opportunity for consumers to take control of the electricity

consumption and earn revenue as a new category of producers called Prosumers [1].

Energy trading in local market is being discussed for more than �ve years and many

countries are coming forward to utilize the idea for increasing sustainability, bring

down emissions and carve out a budget friendly model of buying electricity by house-

holds using small scale renewable generators [2]. The local energy trading seems to

be promising venture as it will not only solve these aforementioned problems but also

help create a free market model where consumer participation is prevalent and allows

them to choose from whom they want to buy electricity. Prosumers get advantage of

investment in residential DERs like Solar PV as solar energy is intermittent in nature

and during low demand, the surplus energy produced can be sold to energy de�cient

consumers or charge the Battery Storage. Thus, a small scale sharing economy can

be expected to be achieved within small communities, where neighbors can maximize

their utility function (which is to extract maximum savings for consumers and gen-

erate revenue for prosumers) by meeting their demand through co-operative actions

within their comfort zone.
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1.2 Objective

The thesis aims to study and analyze various local market con�gurations currently

being studied in the market through literature review and look forward to develop

suitable scenario based model for optimizing the dispatch of electricity with suitable

pricing strategy, using PV and Battery storage in a residential community set up

and see which model was suitable for the given community in terms of performance.

Battery Storage has been integrated into selected households based on their load or

PV generation pro�les. The research will help understand how the penetration of solar

and energy storage capabilities will impact the economics of community as a whole

and savings achieved with respect to the conventional trading with utility grid. The

pricing mechanism and dispatch models simulated in the thesis will help understand

the local market dynamics and required parametric for increasing e�ciency of local

trading.

1.3 Scope

A small set of housing community in New South Wales (Australia) with real time

demand and PV generation data is considered. Two sets Community mix containing

number of Prosumer and Consumer with PV/Battery ownership is created in which

dispatch and pricing models are tested for trading outputs. The prosumer households

have PV or both PV and Storage. A 48 hours trading instance is generated through

optimization and auction based algorithms. The model performance is measured

through Community and Individual Savings, Self-Su�ciency, Self-Consumption and

Fairness Index.



CHAPTER 2: LITERATURE REVIEW

Many studies and models have been implemented in the local market based energy

trading and lot of commercial platforms have been created through corporate invest-

ments which have successfully produced promising results in this �eld in terms of

reducing grid dependency, maximizing savings, managing surplus generation, earning

revenue etc. Some interesting model proposals and commercial solutions available

have been covered in this literature review in order to study about characteristics of

market, understand the governing policies, if any and observe the impact of the pro-

posed and commercial solutions on these markets. Local markets may di�er in load

usage patterns, income, total demand, utility prices, renewable policy implementation

etc. Thus, this uniqueness in market features necessitates �exible solution strategies

that suits all the users in a community considering all aspects like user interest, gen-

eration capacity of the households, grid integration and budget. For example, if the

residential batteries are cheaper in a given region, users can maintain individual large

sets of battery storage and use them in the local market for revenue. In some places,

bulk investment in a centralized battery storage can be more cost e�ective option as

it may be providing more risk sharing options to users with better lending rates and

returns.

2.1 Local Energy Trading Platforms

Various small and medium level trading models have been introduced in many

countries as pilot projects or commercialized solutions. For example, Vandebron in

Netherlands [3] was introduced in 2013, which facilitated trading electricity gener-

ated from solar, wind and biomass and the prosumers were free to set their prices and
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consumers were free to choose their suppliers. Another platform called Piclo [4], was

introduced by a start up company called Open Utility in 2015 in partnership with

Good Energy and due to its popularity, it got approval from the Energy Regulator

in UK. Piclo o�ered transaction services similar to Vendebron for a time span of ev-

ery half an hour and allowed users to select electricity supplier during the trading

process. Peer Energy Cloud [5] and SmartWatts [6] were Information and Commu-

nications Technology (ICT) platforms which provided cloud based virtual trading

platform and used excess generation from DERs for setting local market conditions.

Sonnen Batteries in Germany introduced Sonnen Community in which the battery

owners could charge their batteries with PV and sell the excess power in the market

through virtual market platform eradicating most of the dependency on utility grid

[7]. Mosaic was a test project in USA which focused on community sharing through

investments in PV and allowed consumers without PV to participate in local trading

and get opportunity for savings [8]. Yelaho was a similar project, but got discontinued

within a year of operation due to its unpopularity among users, because of lack of

credit and funding, prevailing apartment based communities, regulatory constraints

like restriction to integrate more solar systems with grid after speci�ed solar cap is

met [8][9]. Lichblick Swarm Energy by Lichtblick Swarm Conductor used cloud-based

platform solution for integrating DERs, known as Swarm Dirigent[10]. The platform

could integrate more than 1000 DERs, that included photovoltaics, energy storage,

wind power and electric vehicles thereby balancing the generation from DERs and

managing peak shaving, solar load shifting and grid operation. A solution provided

by investment from LO3 and next47 called Transactive Grid had capacity to integrate

more than 40 homes in a local market network using Ethereum Blockchain concept

and power was tokenized for convenience and transactions were carried out using

smart contracts. The Brooklyn microgrid implemented for NewYork was one of the

most promising pilot projects [11]. Another popular model was Elecbay, which used
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game theory for local market transactions. The format used non-cooperative game

theory between users for �nding nash equilibrium, and individual utility was based

on price of electricity supply and �exible demand of the user [12][13]. Blockchain

based platforms are gaining popularity due to the transparency in operations, pro-

vide valid transactions and do not allow tampering of records. Some models related

to Blockchain can be referred in a paper by Goravonic [14]. Powerledger is another

blockchain based platform and provides security and privacy in transactions [15].

Many Blockchain models are proposing the use of crypto-currency for fast transac-

tions like Bankymoon, which is a pilot project that focuses on developing African

schools, and has prepaid meters installations that work on blockchain. The users

who want to support can directly put crypto-currencies like Bitcoins to the meter to

�nance electricity to the school, thereby providing means to fund for the community

development [16].

One of the key factors for the success of trading platforms is the security and pri-

vacy, that is why models like Sonnen and Powerledger have been popular. Power

ledger has a Ethereum-based platform, where trading of energy tokens are democ-

ratized and there is full privacy to the users with transparency in transactions and

pricing. Another reason for Powerledger's success and expansion in other countries

is the government policies in these locations where use of DERs are being supported

extensively. For example, to make such platforms popular Australia adopted strat-

egy where through local market consumers can get reward for purchasing and selling

energy in real time [17]. Another factor is the adaptability to the local policies and

existing power infrastructure through experimental setup. Thus, Power Ledger is cur-

rently setting up projects in the US, Thailand, Japan, Austria etc., where focus is on

testing and customizing their platform with existing renewable energy infrastructure

[18].

Market solutions discussed above are an e�ective platform similar to ebay, AirBnB
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,etc., providing more alternatives to consumers for purchasing electricity. However,

considering electricity consumption to be a never ending process, it is di�cult to

set one hour or half an hour transactions, and to be always dependent on manual

decisions for initiating transactions. Hence, e�ective market model not only requires

a good communication platform for trading but also needs consideration of e�cient

pricing and dispatch in order to be economically attractive to the users and capable

of automatic implementation, that satis�es all aspects user comfort and utility. Many

novel market mechanisms have been proposed, and a lot of research studies are under

development to shape a generalized energy trading market for local communities

considering balance between social welfare, revenue generation, market trends and

regulations. Some of these are discussed below.

2.2 Market Models

A model using di�erent scenarios: 1) a Peer to Peer (P2P) energy trading, 2) Order

Book Market, 3) Zero Intelligence Agent and 4) Intelligent Agent was simulated by

Mengelkamp [19]. In P2P trading scenario, agents were randomly matched and a

transaction was carried out, whereas in Order Book Market, the trading was based

on function of buying price and selling price. The Zero Intelligence Agent used single

random pricing between grid price and Feed in Tari�, while the Intelligent Agent

model considered agents' behavior based on their savings and revenue to plan their

decisions. The P2P, Order Booklet and Intelligent Agent model showed self consump-

tion of about 38% while, that provided by Zero Intelligence model was at 35%. The

lowest local pricing was achieved with P2P market model combined with Intelligent

pricing scenario and the lower self-consumption (ratio of local use to total DER gen-

eration) was visible due to timed gap between PV generation and night consumption.

A model using Supply and Demand Ratio (SDR) was proposed for determining local

pricing by Liu et al [20]. This model used load shifting and had provision to select

time horizon (day ahead or hour ahead) for transaction. The SDR >1 denoted ex-
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cess supply in the pool, whereas SDR <1 signi�ed greater demand in the trading

period. Thus, pricing mechanism followed simple economic demand-supply principle

with fairness index of 0.165 indicating unfair allocation of cost bene�t achieved from

the solution, with fairness index calculated as variance in ratio of bene�t to cost of

all users. Another model using the Bill sharing, MMR (Mid Market Rate) and SDR

mechanism used game theory with shapely value for optimization of allocation [21].

The results showed that individual savings was improved but community savings did

not improve signi�cantly. A Linear Programming Optimization based feasibility test

model was proposed by Long [22], which focused on checking the possibility of trad-

ing by maximizing the balance between demand and supply and establishing P2P

index number. It used k-means clustering for classifying the demand and usage pro-

�les in to di�erent categories of low voltage distribution networks which was further

feeded into LP for optimization. The P2P index number of 1 was the desired value

to establish the feasibility and case results were used to establish the required DERs

penetration in the network. The model used excel based demand pro�le calculator by

Centre for Renewable Energy Systems Technology (CREST) to establish the load and

DERs pro�les, however, with real time data whether the model can be e�ective or

not, cannot be determined as generation undergoes lot of impact due to local climate

changes. Another trading model by Long [23] included three types: 1) Bill sharing

scenario in which users share the single community bill at the meter and pay their

share as per their import and export. 2) The Mid Market Rate pricing model where

local price is the midpoint of buy price and sell price based on supply and demand

totals. 3) Auction based model using Reclusive Least Square method for �nding

clearing price of the market. The savings from these three models achieved were close

to 30%. Demand Side Management was simulated in the P2P trading model by Alam

[24] that proposed to reduce unfair cost distribution among the users through Pareto

Optimality by restricting the maximum cost payable by a household. It considered
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loads, disutility (discomfort from delaying or reducing appliance use), energy storage,

renewables, and focused on using all the energy in trading model in order to minimize

overall community costs through Mixed Integer Non Linear Programming(MILNP).

Demand Side Management (DSM) can be a critical factor in implementing energy

trading in local market as the consumption pro�le has direct impact on the costs of

households. A model using combination of Battery and PV was proposed by Long

[25] in which two stage control was applied for a location UK using CREST demand

modeling tool (by Centre for Renewable Energy Systems Technology). At the �rst

stage, the billing and payment was set up after 24 hours of transaction which was op-

timized using constrained non Linear optimization using data points from forecasting

of load and PV and using previous 24 hour battery discharging and charging schedule.

The local pricing was decided by modi�ed SDR model that provided compensation.

The second stage used rule based control for sending equal control signals to pro-

sumers for charging and discharging batteries based on surplus energy and demand

by Energy Sharing Coordinator (ESC). The savings achieved through this model was

around 30% with consumers saving around 12.5% and prosumers making extra 57

Euros per household. The model performance was measured with di�erent battery

sizes and seasons for 100 households. The self su�ciency ranged from 24.2% to 63.3%

for battery sizes ranging from 0 to 16 and self consumption from 62% to 100% for

similar battery range. Another model for UK was tested by [26] in which �rst scenario

used decentralized battery penetration at individual premises and another scenario

proposing centralized battery storage common for the community. The decentralized

model achieved maximum savings and least transactions with the grid compared to

the centralized battery storage model. A MILP based model using McCormick relax-

ation by Jing [27] was applied to three cases comprising of residential and commercial

prosumers interacting with grid and in second, in which a residential community is

connected to commercial prosumers. The cost savings achieved was about 4.9% cost
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savings when second model was implemented with allocation fairness. A concept

called Smart Electricity Exchange Platform (STEP) was proposed by Zepter [28] us-

ing residential buildings in UK that used the excerpts from intra-day and day-ahead

trading markets to model a stochastic programming based sequenced decision-making

energy trading system with battery banks, wind and PV and concluded savings of

about 60% when the battery storage was used with PV. The forecasting of demand

is a good concept to model an e�cient demand- response based system, however,

switching the system continuously to balance demand and supply and interact with

the grid can be an expensive set o�. A multi-objective optimization environment

was set up for implementing a User Dominated Demand Response schema with P2P

energy trading by Zhou et al [29] in which demand response bids were set up with

schedules and optimization algorithm optimized the demand in the pool along with

energy trading process to divert surplus generation in the pool. The results showed

savings up to 13.6% for higher PV generation levels. A hierarchical model using two

step process was proposed by Park et al [30]. It used self scheduling by prosumers

to optimize their utility function (extract maximum revenue), consider depreciation

cost of Battery etc. The results were further fed to derive pricing to increase social

welfare and a MILP based algorithms was implemented for a 24 hour trading and

decrease in operational costs was the criteria for consideration. Nash equilibrium

and Lyapunov-based methods were implemented by De Paola [31], to devise a new

iterative control algorithm to always converge at minimizing energy costs of the con-

sumers by changing their scheduled power �at demand pro�le. The Nash equilibrium

strategy provided 24% savings in the pool.

It is di�cult to compare the models proposed by di�erent works discussed above

in the literature review and conclude which model is better and in what perspective,

as various metrics have been emphasized for each work and the models are applied

on di�erent geographical locations, commercial and households setups with varied
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incomes, consumption levels, and di�erent user willingness criteria to participate.

The previous work as been enlisted to throw light into developments, and get idea of

the technical terms used in methodologies of pricing, dispatch, and various trading

platforms persisting in local market system and use excepts from these works to

develop suitable solution for the selected market in the thesis.

2.3 Thesis Statement

The research work associated with local market trading is still in its naive state as

di�erent locations have distinct climate conditions, usage patterns, generation from

DERs like solar and wind, regulations etc., and to study the diversity of all these

factors is time consuming exercise. The study of these variations is necessary as this

can help construct customized solutions for the di�erent community features, which

requires detailed analysis of historical data for these locations in terms of demand

patterns, generation or weather, electricity bills etc. It was observed from literature

review, many proposed mechanisms for price optimizations and dispatch have utilized

simulation tools to generate demand and generation patterns and have not utilized

historical datasets for trading simulations except a very few. Also, both community

and individual savings were not considered together in many previous works. Hence,

much focus has not been put on the overall e�ciency of models at both individual

and community levels. Thus, performance measurement becomes a key requirement

to know whether the model is feasible solution for the given community or not and

whether social welfare can be achieved for all the participants of the trading. Social

welfare is one of key requirement for a market model, as one user not gaining welfare

from the trading will lose the willingness to participate. The individual social welfare

in local trading can be in terms of savings and receiving appropriate share from the

local market.

The main contributions of this work is to introduce a new pricing strategy based

on demand and perform a dispatch using known Mixed Integer Linear Programming



11

(MILP) optimization techniques. It also looks forward to utilize excerpts from Vickrey

Clarke Groves(VCG) mechanism in a novel way to setup another trading dispatch

through transparent bids based on the new pricing strategy developed. And also

deduce which model was suitable for the given community. It is expected from this

work that, by consolidating known performance metrics like Self-Su�ciency and Self-

Consumption in dispatch models used here, the importance of performance metrics in

deciding suitable dispatch and pricing model for Local market trading can be realized.

It is important to look at every aspect of performance while working with trading

mechanisms, as the dispatch scheme needs to be modeled considering requirements

at both community and individual level in order to make model lucrative for users

to adopt. One of the performance metrics, the work focuses on is the Fairness Index

adopted from Jain's Fairness Index [32], which can be used as another metric for

measuring equal allocation of electricity by taking demand as the benchmark for the

measurement.



CHAPTER 3: MARKET SELECTION

3.1 About Australian Electricity Market

The National Electricity Market (NEM) in Australia was created during the process

of privatization of electricity generation and retail sectors between the year 1995 and

2010. There are 22 electricity networks in Australia with both public and private

ownership. The Australian Market has been witnessing hike in adoption of local

energy trading schemes after many households are opting for renewables and storage

to shift focus from conventional utility purchases [33]. The various factors leading to

this change are increasing usage of technologies by new generations, social inequality,

decreasing income, realization of concepts of demand management, increasing rates

from utility companies, need for control over purchases, climate change awareness,

growth in small scale business environment, increasing cost of operations for grid

maintenance and decreasing government subsidies or Feed In Tari� rates [34].

3.2 Location for Local Market Assumption

Considering the market boosting initiatives from both Consumer and Regulatory

end, the market based in New South Wales has been found suitable for study in this

thesis and models were simulated using this base for understanding techno-commercial

aspects of local trading market in this region as it su�ces maximum favorable factors

for trading market that can be assumed to be available and hence, market model can

be expected to be simple and robust, for example, consumer willingness for participa-

tion can be considered constant and positive as all users encourage community based

sharing model. Grid Prices and Feed In Tari� can be adopted from the market to

devise pricing strategies which can help in creating upper bound and lower bound in
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local price range. The market in New South Wales has one fully private electricity

network, two privately ownership networks with 50.4% shares and one fully public

owned network. The selected community for model simulation has distribution man-

aged by Ausgrid [35] which was turned into in public-private owned network having

50.4% shares to private investors in the year 2016 and captures one of the major

portion of the market with Sydney, Central Coast and Hunter regions of New South

Wales under it.

3.3 Demand and PV Generation Data Selection

Historical Demand data and PV generation data was obtained from Ausgrid Database

for the month of July 2011 and 2012 [36]. The solar home electricity data contains

the 365 days log of consumption (based on domestic tari�) and PV generated from

the gross energy meters installed in the premises of the 300 households, in a time gap

of 30 minutes with total PV generation.

3.4 Grid Price and Feed-In-Tari�

The Grid Price is the price at which users buy electricity from the utility com-

pany. And Feed-in Tari� is the price at which utility company buys electricity from

prosumers. The grid price considered is total 46.04 cents (inclusive GST(Goods and

Services Tax 10%, payment deduction fee of 0.45%) and Feed in Tari� as 10.4 cents

[37][38]. The currency considered is Australian Dollars. These two prices have been

considered for purchase and sales transactions with the grid and in setting trading

price for the local market.



CHAPTER 4: SCENARIO CASES

The Load scenario cases have been used to simulate the pricing strategy and dis-

patch mechanisms for the market under consideration. The real time data from the

Australian market(Ausgrid) has been adopted and historical demand and solar PV

generation data has been taken for few set of houses. These set of houses are catego-

rized into three groups.

Group A : having No DERs

Group B : with only PV

Group C : with both PV and Battery Storage.

The number of houses considered for trading comprise of 8 sets of houses in �rst

scenario case and 10 set of houses in second scenario case. The zip codes have been

selected randomly from the dataset of 300 households. The scenario test is being

done with 8 to 10 houses considering hardware limitations and processor speed. Also,

number of houses were found have very small PV sizes within the dataset, thus,

only those houses were selected which have higher PV sizes and were expected to

provide better chances of producing surplus energy for day time trading and charging

of batteries. Demand and pv pattern has been analyzed for each scenario to have

better understanding of how much variations is persisting between the pv generation

and demand. This has been done by taking the cumulative historical demand and pv

generation and plotting them together for the total 48 hour duration. Battery sizes

have been calculated using certain assumptions on demand of the group C households.

Battery sizes need to be designed appropriately to make sure that su�cient surplus

is created every hour for sales.
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4.1 Case-I: Consumer-Prosumer Mix

Eight houses were considered for this scenario and categorized into 3 groups with

Group A having 2 houses not owning any DERs, Group B with 2 houses having PV,

and Group C having both PV and Battery Storage. The respective historical PV

generation log were considered for the Group B and Group C households. The PV

generation of some houses were scaled up to increase PV capacity as some households

(C4,C5) had very small PV size un�t for local trading. Maximum PV size in the

entire pool is limited to 10 kW considering that its a residential set up and installa-

tion area and budget constraints prevail for such investment (Table 4.1, Household

Classi�cation).

Table 4.1: Household Classi�cation.

Group House ID # DERs PV (kW)

A C7 NA NA

A C8 NA NA

B C1 PV 4.8

B C2 PV 6.2

C C3 PV+Battery 9.99

C C4 PV+Battery 10.2

C C5 PV+Battery 10.5

C C6 PV+Battery 4.55

4.1.1 Demand Data and PV Generation Analysis

The historical demand data from the Ausgrid for all the eight houses has been

added for each hour and has been plotted showing how much total demand is prevail-

ing in the 48 hours starting from 0th Hour corresponding to 12 AM midnight, and

consists of cumulative demand and PV generation of all users for each hour. This
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period has been considered in the model testing because it adequately covers day

and night transactions and explains the role of PV and battery in the trading sys-

tem su�ciently. From both the curves (Fig.4.1, Cumulative Demand and Generation

Pro�le), considerable variation was noted between the demand and PV generation

pro�les and thus, battery storage requirement for meeting the user demand and local

trading was found to be apparent as it can help improve the performance of trading

in terms of savings with more DERs penetration [25][26][39].

Figure 4.1: Cumulative Demand and PV Generation pro�le.

The highly intermittent nature of demand and narrow peak of PV generation means

that a storage system needs to charge within the narrow PV window and discharge

during evening and night hours. PV generation is weak compared to the demand on

�rst day, however, it showed moderate generation for the second day. Thus, the peak

demand can be seen in the night time and making need of storage evident to meet

community total demand. The total community load demand and PV generation

used for this case is stated below (Table 4.2, Community Totals).
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Table 4.2: Community Totals

Hours Total demand (kWh) Total PV (kWh)

48.00 486.29 187.63

4.1.2 Battery Selection

Lithium-ion batteries are a promising candidates for residential energy storage due

to continuously declining costs [40] and thus, have been considered in the trading

models (Table 4.3, Battery sizing). But most of the battery characteristics are not

required to be used in the simulation as energy from the battery is the only parameter

which is of use in the trading. A general Battery Sizing has been assumed based on

average load demand in kWh. Hence, the Battery functionality has been made linear

through basic charge and discharge limits for the battery dispatch formulation [41].

As the trading mechanism takes place in kWh, energy from the battery has been taken

to consideration in this unit. The discharge (or charge) limit was calculated based

on number of discharge hours required and considers required back up in emergencies

for prosumer use by keeping it limited to a constant value. It is to be noted that the

discharge hours are assumed for calculations only, actual discharge and charge time

taken by battery may vary based on the minimum in the objective function being

achieved, constraints set for the charging and discharging of the batteries and solver

con�guration. The minimum battery limit for simulation is assumed to be 0 kWh

and maximum battery limit is the battery size, thus, battery can be dispatched in

the local market only when it is within this range.

'
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Table 4.3: Battery Sizing

Average Hourly Energy De-

mand per Day kWh

26.23 23.84 17.93 27.2

@ 75% of demand kWh 19.6 17.88 13.44 20.44

Battery Units in kWh 25 25 17.6 25

Battery @ 90% e�ciency

kWh

22.5 22.5 15.8 22.5

Discharge/Charge limit kW

per hour

1.8kW ∼

2kW

1.6kW ∼

2kW

1.3kW ∼

1kW

1.6kW ∼

2kW

Approx. Discharge hours 12 12 12 12

25 KWh and 17.6 kWh Battery Banks have been considered with e�ciency of 90%

(assumed as the worst case). The 25 kWh and 17.6 kWh is taken from the standard

battery product range available in the market just to standardize or round-o� the

capacity derived from the calculation above in the table. The maximum charge and

discharge limit every one hour has been set as 2 kW for 25kWh units and 1 kW for

17.6 kWh unit (Table 4.3, Battery Sizing). This means battery owners are allowed

to charge/discharge their batteries in this speci�ed limit in a single transaction hour.

The charge and discharge hours has calculated considering minimum 12 hours for

the battery to discharge completely. That is, at the rate of 2 kW each hour, the

battery gets discharged in 12 hours. However, this calculation has been inserted to

derive suitable discharge and charge limits for the battery bank and based on the

assumption that typical consumption of a household ranges between 1 kWh to 2 kWh

in a given hour. And there will be fewer instances when it goes above this capacity

(for example, cooking or washer/dryer) and can be met from the grid supply or local

market purchases. Load demand below this can help create surplus battery energy

during a hour and help in revenue generation.
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4.2 Case-II: Consumer-Prosumer Mix

The Community in this Scenario Case consists of 10 households in a di�erent zip

code of New South Wales with 2 set of Houses in Group A (without DERs), 4 set

of Houses in Group B (with PV) and 4 set of houses in group C (with both PV and

Batteries). Both demand data and PV generation log has been adopted from Ausgrid

database [36]. This scenario case was created in order to verify the functionality

of the dispatch and pricing strategy devised for the trading (Table 4.1, Household

Classi�cation).

Table 4.4: Household Classi�cation

Group House ID # DERs PV (kW)

A H9 NA NA

A H10 NA NA

B H1 PV 5.4

B H2 PV 4.0

B H3 PV 4.2

B H4 PV 4.0

C H5 PV+Battery 5.9

C H6 PV+Battery 8.0

C H7 PV+Battery 6.2

C H8 PV+Battery 5.6

4.2.1 Demand Data and PV Generation Analysis

The demand data of all the household is added and mapped for 1 hour intervals

and total time period under consideration is 48 hours. The plot has been created to

check the total demand of all the households and PV generation to observe the extent

of gap between the solar availability and usage patterns.
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Figure 4.2: Cumulative Demand and PV Generation pro�le.

The demand was higher during the evening and night hours, and PV generation

was surplus in day hours as compared to demand patterns for both the days (Fig.4.2,

Cumulative Demand and PV Generation Pro�le). Thus, the battery size becomes

necessary for setting up local market trading during the night time. The demand

and generation peaks were not synchronized, which was similar to scenario-I data set.

The total demand was 411.48 kWh for the 48 hour duration and PV generation was

recorded as 202 kWh (Table 4.5, Community Totals).

Table 4.5: Community Totals

Hours Total demand (kWh) Total PV (kWh)

48 411.48 202.00

4.2.2 Battery Selection

Battery in this case has been sized based on the peak maximum demand for the

respective households in the pool for 6 hours. The battery size is considered higher for

some households, thus, a worst case scenario of peak demand running continuously for

6 hours of non-sunshine period is assumed. The intention is to use a higher battery

capacity to meet the peak demand in the non-sunshine hours and create su�cient
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surplus in the pool for trading (Table 4.6, Battery Sizing). The charge/discharge

limit has been derived from hours of backup for all battery capacities as in case-I.

The battery backup hours are used merely for calculation to set charge and discharge

limit for the batteries and actual discharge or charge time may vary depending on

prosumers' decisions on battery dispatch. The battery cannot be over sized consid-

ering the budget and overall PV in the pool for battery charging. It is to be noted

that reasonable size of battery has been taken for the households to make sure energy

trading takes place. Schedule of equipments is not available for households to per-

form a detailed calculation considering back up hours, system voltage and autonomy.

Also, this calculation is not needed right now in energy trading set up. The battery

size has been planned suitability based on the fact that it is a residential set up and

cost constraints will prevail, thus, very large battery sizes are not advisable. The

battery size has been rounded o� using multiples of a standard 13.5 kWh battery

storage just to ease calculation. Hence, Battery sizes obtained were 24.3 kWh and

36.45 kWh with discharge/charge limit at each hour to be 3.3 kW (Table 4.6, Bat-

tery). Hourly demand was noted to be slightly higher for households in this case,

hence, a higher discharge/charge limit was considered to create su�cient surplus for

trading and meeting prosumer demand. The minimum battery limit for simulation is

assumed to be 0 kWh and maximum battery limit is the battery size. Thus, trading

with battery will be operational, when battery is between this range.
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Table 4.6: Battery Sizing

Parameter/User H5 H6 H7 H8

Max Demand in a hour kWh 5.44 7.89 6.02 7.55

Max Demand in 6 hours kWh 32.63 47.34 36.11 45.28

@75% of 6 hour demand

kWh

24.47 35.51 27.09 33.96

Battery size rounded-o� kWh 27.00 40.50 27.00 40.5

Battery @ 90% e�ciency kWh 24.30 36.45 24.30 36.45

Charge/Discharge limit kW per hour 3.30 3.30 3.30 3.30

Back up in hrs 7 11 7 7



CHAPTER 5: SIMULATION PACKAGE

5.1 Python

Python is the object oriented scripting language released in 1991 and developed by

Guido Van Rossum of National Research Institute for Mathematics and Computer

Science in Amsterdam [42]. It has become a widely used programming language and

is recognized for educational and scienti�c computing.

Python programming has been selected for as platform for simulation of the energy

trading models as it incorporates rich library packages facilitating speedy computa-

tion, and reduce coding complexity of the algorithms. Many Literature works have

worked on GAMS, Matlab etc., for running optimization algorithms. Python is con-

tinuously developing its libraries for optimization algorithms and hence, it can be

considered as another choice due to the simplicity in its coding, availability as a free

of cost and an open source platform.

5.2 Python Libraries

Various python libraries utilized for the simulation include [42]:

NumPy (Numerical Python): As Python does not have a built-in array data struc-

ture. NumPy provides N-dimensional array object, linear algebra, Fourier transform,

and random number capabilities.

SciPy (Scienti�c Python): SciPy facilitates scienti�c calculations like integrals,

di�erential equations, additional matrix processing and optimization algorithms.

Pandas: is used for data manipulations and uses NumPy's ndarray. DataFrames,

a two dimensional data structure feature is used here to export the demand data �le

into the python environment for simulation.
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Matplotlib and Seaborn: have been utilized for data visualization of results as bar

graph or line graphs etc.

5.3 Gurobi Solver

The Gurobi Solver is a commercial optimization solver for linear programming (LP),

quadratic programming (QP), mixed integer linear programming (MILP), mixed-

integer quadratic programming (MIQP) etc. Gurobi solver can run on number of

platforms like GAMS, C++, Java, .NET, MATLAB, R and Python [43][44]. Gurobi

academic license has been utilized for the simulation of the models and this available

with full features for one year.

Gurobi solver has been selected for implementing MILP models for the trading

because the hardware constraints require computer to have a solver that can do fast

computation and adapt to the slow processor. As number of iterations will be many

for the trading dispatch models, and Gurobi solver can run multiple iterations within

seconds. It is equipped with inbuilt packages that can ease the long and complex

loops, and can be processed using simple one line codes.

5.4 Data Preparation

The demand and generation dataset for New South Wales was available in the form

of csv �le. The values contained data in 30 minute intervals for all the households. The

selected household data was taken and a separate csv �le was created. Using Numpy,

and Pandas library from Python the 30 minutes data was totaled and converted to

one hour interval for trading with total time horizon of 48 hours for simulation. The

houses were renamed with appropriate House IDs like (C1,C2,H1,H2 etc.) to make

them easy to recognize and prepared for simulation. The system used is Lenovo MT

2325 with hardware of 8 GB RAM and Intel core i5-3320M CPU @2.60 Ghz.



CHAPTER 6: PRICING STRATEGIES AND DISPATCH MECHANISMS

6.1 Introduction to Dispatch Mechanisms

A number dispatch techniques have been used before to implement local trading

mechanisms. These techniques included Constrained Optimization techniques like

Linear Programming (LP), Mixed Integer Linear Programming (MILP), Alternating

Direction Method of Multipliers (ADMM) etc., and other di�erent techniques like

Nonlinear Programming, Models(NLP), Gametheory based Models, Auction based

Models etc [45].

Linear programming (LP) is used to achieve the best maximum or minimum output

in a mathematical model whose required variables are set by linear relationships.

Linear programming methods are powerful and robust algorithms able to solve large-

scale optimization problems. In Manufacturing or Supply Chain, Linear programming

calculates the optimal planning or use of a resource to maximize or minimize a cost and

can be solved graphically, algebraically, through Simplex Algorithm, barrier method

and primal-dual IP method etc [45].

Alternating Direction Method of Multipliers (ADMM) solves the problems by seg-

regating them into pieces making it easier to �nd the solution [46].

Non-Linear Programming Models are used for solving those problems that are non-

linear in nature or the constraints are non-linear in nature [47].

Game Theory based models are of two types: cooperative and non-cooperative

game theory. The outcome of a game theory model is based on strategic decisions of

the players and the decision of one player a�ects the decision of other players [48].

The MILP and Auction mechanism are discussed separately in the subsections.



26

The dispatch mechanism used in thesis includes four cases of Mixed Integer Linear

Programming (MILP)and a case of Vickrey Clarke Groves Auction(VCGMechanism).

1) MILP using Fixed Demand-Variable Pricing

2) MILP using Fixed Demand-Variable Pricing (with only PV Charging)

3) MILP using Adjusted Demand-Minimum Local Price

4) MILP using Adjusted Demand-Minimum Local Price (with only PV Charging)

5) Vickrey Clarke Groves Auction Model

All dispatch mechanisms above utilize the local pricing obtained from a pricing

strategy. Mechanisms in point 1 to 4 utilize same pricing equations, with points 3

and 4 using an additional optimization algorithm on this pricing formula to obtain

a lower local price by adjusting the demand of each household. Auction mechanism

uses a di�erent price structure based on bids.

6.1.1 Mixed Integer Linear Programming(MILP)

The MILP model is preferred over other models for setting up dispatch in the thesis

because, MILP algorithm allows to use binary variables (0,1) for setting up Consumer

and Prosumer decisions easily and controlling them e�ectively during trading set up

by a simple linear formulation of the minimization problem. If variables are integers,

it is called a (pure) integer linear program (ILP, IP) and if all variables are allocated

as 0 or 1 (Binary, Boolean), it becomes a 0-1 Linear program. For example, the

decision to set up plant in yes or no can be converted into 0-1 Linear Program and

used to minimize costs[49]. The MILP model used in the trading dispatch consists of

two categories of decision variables for setting up trading dispatch and allocation.

a) Continuous Decision Variables

b) Binary Decision Variables.

The continuous decision variables comprise of real numbers (or an interval) and

can take any value between a lower and upper bound. By Default, the numbers are

positive and lower bound is set as 0 and the upper bound is set to in�nite unless
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speci�ed explicitly [50].

The binary variables can take only one option 0 or 1, indicating selection or re-

jection, a yes or no in a choice. For example, suppose a drug manufacturer wants

to decide whether or not to use a fermentation tank. This decision is de�ned by a

variable x. The choice can be modeled easily by setting this variable x to 0 or 1.

In energy trading the binary variables have been used to set up selling and buying

decisions for households and charging and discharging decisions for battery owners.

Constraints help in structuring the market model correctly to ensure that alloca-

tions are done properly and within the resources available and households do not

transact energy outside their given speci�ed limits. For example, Battery should be

discharged only when its available energy is within minimum and maximum range

or a household should not be buying energy beyond its given demand as this proves

computation error. A simple MILP formulation is given below where a cost function

is to be minimized by taking suitable value of x. The x takes value only when binary

variable D takes value 1. And the D is set to 1 at only that value of x where cost

function is found to be minimum and the constraint relation with A and B is satis�ed

[49][51].

Minimize Ci,jx

Subject to constraints :

Ax ≤ B ∗D,Dε(0, 1)

x ≥ 0

(6.1.1)

where,

Ci,j = Cost Function

x = Continuous decision variable to be allocated to minimize cost

D = Binary variable that can take 0 or 1

A,B = Real numbers
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Most constrained optimization models have been used before with simulated de-

mand data sets like CREST, Homer etc. Also many simulated models used older

meteo information to estimate solar PV generation. It was noted that very few mod-

els used actual real time data for setting up trading environments. The advantage

of testing MILP based model helps in establishing the user and supplier decision

environment virtually and also optimize the cost simultaneously.

The Mixed Integer Programming Model has been used before in many works be-

fore like a MILP model was proposed by Nguyen [41], for Australian Market which

considered Battery Storage and PV and their respective investments for optimizing

the savings. This model categorized the households into four groups with one group

having no DERs, second group with only PV, third group with only Batteries and

fourth group with both PV and batteries. However, Household with only batteries

does not suit the trading market as owners with only Battery will be dependent on

Grid and Local Market purchases only for charging their batteries. And the only

way to use batteries pro�tably is to charge them when prices are low and sell the

energy when the prices are high in the market, which may not be possible due to

random changes in demand and generation. The MILP model tested in the thesis

here does not considerv the group of only battery owners or any investments by the

user as allocations may get biased towards prosumers while trying to achieve lower

Levelized Cost of Energy (LCOE) and Levelized Cost of Storage (LCOS) in objective

function. The focus of the MILP program is to attain best savings from the local

pricing devised.

One of the approximate ways to solve 0-1 MILP is to use 2n possible assignments of

all variables (where n is number of variables used), and use the solution with minimum

value out of those solution sets that are able satisfy constraints. But in many solvers,

MILP models are solved by series of continuous (linear programming) relaxations one

of them being branch-and-bound algorithm [52]. Gurobi Solver provides the Method
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parameter, which allows us choose the algorithm used to solve continuous models

and o�ers various settings like cutting planes, heuristics, and search techniques for

MIP models speci�cally. A major challenge in initiating local market trading using

binary decision variables is that network constraints are not violated during the energy

transactions [53]. Thus, MILP solver needs to deal with �oating point inaccuracies

encountered along the way in case on binary variables. For example, buy and sell

are two binary decision variables for sales and purchases respectively, and we do not

want them to happen simultaneously. We want that the sell should be set to 1,

when buy is set to zero or vice versa. Thus, if �oating point error is signi�cant, the

constraint may get ignored and both sell and buy could get allocated to 1, which

is undesirable. Hence, Heuristics settings was not considered for the simulations as

the results indeed provided a aggressive minimum solution but nature of heuristics

tend to make it unreliable as a feasible solution, if constraints are relaxed heavily or

precision is sacri�ced, and this is not intended when working with binary decision

variables [54]. The model implemented in the thesis utilizes dual method for solving

MILP, which is default setting in the solver. It uses the LP relaxation technique and

these underlying LP relaxations are solved by the dual method. Cuts have also been

set to default, that is solver can automatically decide to use cutting planes method

and apply cuts based on the problem [50]. The solver was also tested with Parameters

set to Branch and Cut method as well but, it produced similar results for the load

scenarios considered (as with default settings), hence, default setting was considered

appropriate enough to set up trading dispatch.

6.1.2 Auction Models

An auction is a sales transaction in which the formation of prices commodities is

through bidding process. Most common type of auction is the English Auction in

which commodity is priced to zero �rst, then, bids are solicited from bidders with

highest bid price set as item price. The Dutch Auction starts at a high price, which
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exceeds the item price, and subsequently decreases till a price is accepted by a bidder.

The sealed bid option is a First price auction and is commonly used where each bidder

submits a single bid in a sealed envelope and all envelopes are opened together to

announce the highest bidder, and the item is sold at the highest bid price [55]. In

the second-price sealed-bid auctions, bidders submit sealed envelopes in one round

of bid submission and highest bid wins the item, but item is sold at second highest

price bid as highest bid price often over-estimates the actual price value of item and

thus, second price o�ers more truthfulness in price estimation. The sealed auctions

are categorized into one sided auctions as the buyers participate in bidding process

[55].

In a double-sided auction, all the buyers will submit their bid and the sellers also

set speci�c prices for the commodities. Therefore, additional variables are formulated

in auction model. Many energy trading models have proposed double auction theory

[56] [57] and in auction models, it is often assumed that the participants are truthful

in their actions. However, it is necessary the model should have an e�ective structure

that can make user actions and bids transparent in nature [58][59].

This thesis looks forward to use some excerpt from Vickrey Clarke Groves Auction

theory (a second price auction in which highest bidder buys commodity on second

highest bid price) and use it in a simple �rst auction method to model a dispatch in

which buyer bids are transparent and do not over estimate the local electricity using

a suitable pricing strategy to devise buyer's bid price [60][61][62]. A VCG Auction

has not been practiced much in the energy trading models before except a very few

which have used technical aspects of network in their works [63]. The ideas from

VCG model have been used to shape a new local trading dispatch model to see if it

can help achieve fair allocation to all the users from the trading or not. The VCG

auction has been simulated with standard python libraries as model does not have

complex calculations as in MILP.
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6.2 Pricing Strategy for MILP Models

This section explains the local pricing formula that will be implemented in dispatch

mechanism stated in points 1 to 4 above (MILP schema). The auction model (VCG)

in point 5 discussed later, uses pricing schema which is slightly modi�ed version of

this pricing strategy and has been covered in its respective section. The local pricing

is set for MILP models is based on changing demand pro�les of the consumer for the

given hour, thus, a new rate at every hour for transaction is calculated that is used

as the local price. The local prices has been proposed simply as a Average Function

of Relative Normalized Demand Pro�le of the all users in a particular hour. Making

Prices function of the demand can enhance response from the consumers to balance

out usage and the prices consecutively, thereby, generating possibility of a cooperative

or competitive decision making by the consumers. This is will increase community

welfare and individual utility function of all users. The Local Pricing at each hour is

calculated as [64][65]:

ploc =
1

n

n∑
i=1

{
ed,i,t − ed,i,t,min

ed,i,t,max − ed,i,t,min

∗ (pg − pft) + (pft)

}
(6.2.1)

where,

ploc = Local price for t hour

n = Number of households

ed,i,t = Demand (kWh) of ith household at t hour

ed,i,t,min = Minimum Demand (kWh) within the Pool

ed,i,t,max = Maximum Demand (kWh) within the Pool

pg = Grid Price

pft = Feed in Tarrif

The grid price pg is the price at which consumer can buy energy from the utility

company for the surplus demand not met by DERs and pft is the tari� price at
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which prosumers can sell their surplus energy to the utility company. The local

price ploc always remains within the grid price pg and feed-in tari� price pft so that

households will feel motivated to adopt local trading. The prices below grid price

is attractive choice for households selling their surplus energy get higher price than

feed-in tari� price, if they sell energy at local price. The working of the pricing

strategy can be assumed to help user control their demand share in next hour in

order to impact the prices in the local market. For example, prosumers can increase

or decrease prices in the market by analyzing the maximum pro�t they can derive

from the market by sales by lowering their demand and increasing surplus energy in

pool. Similarly, the consumer can control its demand and decide buy or not buy based

on the price prevailing in market. Similarly, the households can also work together

to optimize their demands to reduce the local pricing to achieve maximum bene�t in

terms of consumption and savings. It is assumed that, electricity need is inelastic,

and users will consume their minimum requirements every day. The prices do not

bend drastically based on demand, and it is ensured that the local prices always stay

between grid price and tari� price so that prosumers are able to generate revenue

and consumers are able to earn savings from their purchases. If a household does not

have any demand in the pool, it need not to participate in the local market and the

pricing is derived from the number of users participating in the market. The impact

of pricing strategy on user demand can be visualized through following example:

Table 6.1 (Response Con�guration-Initial State) below consists of demand at 0th

hour for households C1 to C8, where households from C1 to C4 are prosumers and C7,

C8 are consumers without any DERs. Suppose, Prosumer C4 is having total energy

as 2 kWh for usage and trading. The surplus C4 can o�er in the local market is 2

kWh-1.762 kWh = 0.238 kWh, making revenue from the sales to be 0.238 x 25.1 cents

= 5.9 cents. However, C4 can change its revenue, if it changes its demand numbers

and a�ect local price in the pool.



33

Table 6.1: Response Con�guration-Initial state

Hour C1 C2 C3 C4 C5 C6 C7 C8 Price ($)

0 0.281 1.693 0.829 1.762 0.308 1.019 0.293 0.963 25.1 cents

In Table 6.2 (Response Con�guration-Prosumer C4), Suppose C4 changes its de-

mand to 0.700 kWh. The local price at 0th hour reduces to 22.5 cents and C4 can

generate revenue of (2 kWh-.700 kWh) x 22.5 cents = 29.25 cents, if it sells this sur-

plus energy to local market. It is expected that consumer will take advantage of the

reduction is prices and prefer buying at a lower cost.

Table 6.2: Response con�guration -Prosumer C4

Hour C1 C2 C3 C4 C5 C6 C7 C8 Price ($)

0 0.281 1.693 0.829 0.7 0.308 1.019 0.293 0.963 22.5 cents

Table 6.3 (Response con�guration-Consumer C8) denotes consumer response to

local price. C8 (a consumer without any storage or PV) reduces consumption in

the 0th hour. This reduces the local price in the pool at 0th hour to 21 cents.

Prosumers C1 to C6 can still sell energy at a considerable pro�t, if they have any

surplus generation.

Table 6.3: Response Con�guration-Consumer C8

Hour C1 C2 C3 C4 C5 C6 C7 C8 Price ($)

0 0.281 1.693 0.829 0.7 0.308 1.019 0.293 0.5 21.0 cents

The impact of the pricing schema can be e�ective when combined with suitable

demand response con�gurations in a game environment and it can help both consumer

and prosumer some control over market prices. The game theory practice for price

optimization is not in the scope of the thesis right now and an optimization algorithm
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is implemented to model a dispatch scheme that mimics households' purchase and

sales decision. The results are used to measure the amount of savings, self-su�ciency

and self-consumption of the community based on this variable pricing schema.

6.3 Fixed Demand-Variable Pricing

The �xed Demand and Variable pricing scheme is implemented for each hour in

following steps for the load scenarios:

1. Local Price Calculation

2. Problem Formulation and Objective Function

3. Setting up Constraints

4. Trading Allocation

The price calculation has been done using Equation 6.3.1. The local pricing is calcu-

lated for each hour and used for community trading between set of households.

The Problem formulation involves setting the goal of the energy trading model

which is to minimize the consumption from the grid, reduce the household bill and

increase community savings. Hence, the problem is derived as a Minimization Prob-

lem that aims to minimize purchase costs from the grid. The minimization problem

is solved at each hour and total 48 iterations take place.

Thus, the Objective Function is to minimize grid consumption subject to certain

constraints. This is stated by:

minimize :
n∑

i=1

ebuy,grid,i,t ∗ pg +
m∑
k=1

ech,k,t ∗ pg (6.3.1)

where,

ebuy,grid,i,t = Energy bought from grid (kWh) by all user Groups (A,B,C) at t hour

ech,grid,k,t = Charging bought from grid (kWh) by Group C users at t hour
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Subject to Constraints [41][66] :

1) Group A (without PV/Battery Storage):

ed,i,t = ebuy,loc,i,t + ebuy,grid,i,t (6.3.2)

buyi,t = 1 (6.3.3)

where,

ed,i,t = Demand (kWh) of ith household at t hour

ebuy,grid,i,t = Energy purchased from grid (kWh) for meeting demand

ebuy,loc,i,t = Energy purchased from local market (kWh) for meeting demand

buyi,t = Buy Decision

The Continuous Decision variables set for the users are ebuy,grid,i,t and ebuy,loc,i,t and

buyi,t is the Binary Decision Variable. It is set to 1, if the consumer decides to buy

energy from local market or grid else stays 0. Equation 6.3.2 satis�es the condition

that demand for this Group of users is met by purchases from grid and local market.

As the Users in this group do not have any PV or Battery Storage, so the buying

decision will always be set to 1 (given by Equation 6.3.3).

2) Group B (with PV Only) [41][66] :

ed,i,t = epvuse,i,t + ebuy,loc,i,t + ebuy,grid,i,t (6.3.4)

epvuse,i,t + esell,loc,i,t + esell,grid,i,t = epv,i,t (6.3.5)

selli,t + buyi,t ≤ 1 (6.3.6)

epvsell,loc,i,t + epvsell,grid,i,t ≤ epv,i,t ∗ selli,t (6.3.7)

ebuy,loc,i,t + ebuy,grid,i,t ≤ ed,i,t ∗ buyi,t (6.3.8)

where,

ed,i,t = Demand (kWh) of ith household at t hour

ebuy,grid,i,t = Energy purchased from grid (kWh) for meeting demand

ebuy,loc,i,t = Energy purchased from local market (kWh) for meeting demand

epvuse,i,t = PV energy used to meet demand (kWh)
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epvsell,loc,i,t = PV energy sold to local market (kWh)

epvsell,grid,i,t = PV energy sold to Grid (kWh)

epv,i,t = Total PV Generation (kWh)

buyi,t = Buy Decision

selli,t = Sell Decision

Continuous Decision Variables for this user group includes ebuy,grid,i,t, ebuy,loc,i,t ,

epvuse,i,t, esell,loc,i,t, and esell,grid,i,t allocated by solver. Group B users are Prosumer

in the day time and Consumers in the night time as they have only PV generator

installed. Equation 6.3.4 ensures that household demand is ful�lled from PV usage,

local and grid purchases. The sum of PV used and that sold to local market or Grid

will equal the total PV generated by prosumer in given hour (Equation 6.3.5). Binary

Variables buyi,t and are selli,t given by Equation 6.3.6 which ensures that user can

either buy or sell or not trade at all in a particular hour. Equations 6.3.7 and 6.3.8 use

the Binary Variables for sales and buying transactions by allotting 1, if transaction

is taking place, else sets them to 0.

2) Group C (with PV and Battery) [41][66]: The constraints for this user group is

speci�ed as:

ed,i,t = epvuse,i,t + ebtuse,i,t + ebuy,loc,i,t + ebuy,grid,i,t (6.3.9)

epvuse,i,t + epvcharge,i,t + esell,loc,i,t + esell,grid,i,t = epv,i,t (6.3.10)

selli,t + buyi,t ≤ 1 (6.3.11)

epvsell,loc,i,t + epvsell,grid,i,t + ebtsell,loc,i,t + ebtsell,grid,i,t ≤ (epv,i,t + ci.t) ∗ selli,t (6.3.12)

ebuy,loc,i,t + ebuy,grid,i,t ≤ ed,i,t ∗ buyi,t (6.3.13)

ebuych,loc,i,t + ebuych,grid,i,t ≤ ci,t ∗ buyi,t (6.3.14)

where,

ed,i,t = Demand (kWh) of ith household at t hour

ebuy,grid,i,t = Energy purchased from grid (kWh) for meeting demand

ebuy,loc,i,t = Energy purchased from local market (kWh) for meeting demand
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epvuse,i,t = PV energy used to meet demand (kWh)

epvsell,loc,i,t = PV energy sold to local market (kWh)

epvsell,grid,i,t = PV energy sold to Grid (kWh)

epv,i,t = Total PV Generation (kWh)

ebtuse,i,t = Battery energy used (kWh)

epvcharge,i,t = PV energy used for battery charging (kWh)

ebtsell,grid,i,t = Battery energy sold to grid (kWh)

ebtsell,loc,i,t = Battery energy sold locally (kWh)

ci,t = Maximum transaction(charge/discharge) limit for battery at hour t

(kWh)

buyi,t = Buy Decision

selli,t = Sell Decision

Group C households have additional continuous variables to set up transactions

with battery storage. The Demand of the households in this group is met by PV

generation, battery storage, purchases from grid and local market (Equation 6.3.9).

The sum of energy used from PV for meeting demand, for charging batteries, PV sold

locally and to grid at each hour is equal to total PV generated at that time (Equation

6.3.10). The buying and selling cannot be done together by group C households in

a particular hour, same as group B households. Also, group C households can sell

battery energy at night, if it is available (Equation 6.3.11). Buying decisions are set

to continuous buying variables and selling decisions are set to all continuous sales

variables (Equation 6.3.12 and 6.3.13). This means that, prosumer household can

sell energy by setting selli,t to 1 and buyi,t to 0. And buy from local market or

grid by setting selli,t to 0 and buyi,t to 1 to get the allocation. Additional buying

transactions involve buying battery charge from local market and grid (Equation

6.3.14). The maximum discharge or charge limit for battery storage is speci�ed by

limit ci,t. Transaction with battery (charge or discharge) is done within a speci�ed
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limit as battery is required to serve purpose of back up and also for energy trading.

For example, a household with a battery size of 25 kWh cannot discharge the battery

more than ci,t of 2 kWh at each hour, so that su�cient back up is maintained for

emergencies.

The Transactions for the battery are controlled using binary decision variables for

charging (chi,t) and discharging (dischi,t). Charging decisions are used for buying

charge from the local market (ebuych,loc,i,t) or grid (ebuych,grid,i,t) and charging the bat-

tery bank through PV (epvcharge,i,t) (Equation 6.3.15). Similarly, discharge decisions

include using the battery for meeting demand (ebtuse,i,t), selling battery energy to grid

(ebtsell,grid,i,t) or to local market (ebtsell,loc,i,t) (Equation 6.3.16). These battery trans-

action variables are allocated by solver based on the constraint and minimization

objective. Additional constraints for the battery transactions are formulated below.

epvcharge,i,t + ebuych,loc,i,t + ebuych,grid,i,t ≤ ci,t ∗ chi,t (6.3.15)

ebtuse,i,t + ebtsell,loc,i,t + ebtsell,grid,i,t ≤ ci,t ∗ dischi,t (6.3.16)

where,

ebtuse,i,t = Battery used

epvcharge,i,t = PV energy used for battery charging (kWh)

ebuych,grid,i,t = Buy charge from grid (kWh)

ebuych,loc,i,t = Buy charge locally (kWh)

ebtsell,grid,i,t = Battery energy sold to grid (kWh)

ebtsell,loc,i,t = Battery energy sold locally (kWh)

ci,t = Maximum transaction(charge/discharge) limit for battery at hour t

(kWh)

buyi,t = Buy Decision

selli,t = Sell Decision

chi,t = Charge Decision

dischi,t = Discharge Decision
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The Battery status is supposed to always stay within its designated battery limits

and should not go below the minimum battery energy or exceed its maximum energy

rating (Equation 6.3.17 and Equation 6.3.18). The maximum energy is the battery

rating in kWh and minimum energy is set to zero units or some percentage of total

battery size in each load case scenarios (for example, a 22.5 kWh Battery can operate

between 0 kWh and 22.5 kWh, that is it will go to charging mode, when it reaches

close to 0 kWh and will participate in trading, only when it goes above 0 kWh and is

able to charge at-least up to its ci,t value). After every charge or discharge transaction

in a given hour, the battery status is updated i.e., the battery status calculated at t

hour is fed as input to the t+1 hour for next transaction and the decision to charge or

discharge is taken based on this battery status (Equation 6.3.19 and Equation 6.3.20)

[41].

ebt,i,t ≥ eMinbt,i,t (6.3.17)

ebt,i,t ≤ eMaxbt,i,t (6.3.18)

ebt,i,t+1 = ebt,i,t + ebuych,loc,i,t + ebuych,grid,i,t + epvcharge,i,t (6.3.19)

ebt,i,t+1 = ebt,i,t − (esellch,loc,i,t + esellch,grid,i,t + ebtuse,i,t) (6.3.20)

where,

ebt,i,t+1 = Battery Status at t+1 hour (kWh)

ebt,i,t = Battery status at t hour (kWh)

ebtuse,i,t = Battery energy used (kWh)

epvcharge,i,t = PV energy used for battery charging (kWh)

ebuych,grid,i,t = Buy charge from grid (kWh)

ebuych,loc,i,t = Buy charge locally (kWh)

ebtsell,grid,i,t = Battery energy sold to grid (kWh)

ebtsell,loc,i,t = Battery energy sold locally (kWh)

ci,t = Maximum transaction(charge/discharge) limit for battery at hour t

(kWh)
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buyi,t = Buy Decision

selli,t = Sell Decision

chi,t = Charge Decision

dischi,t = Discharge Decision

6.4 Fixed Demand-Variable Pricing (Only PV charging)

Simulation of above section 6.3 was further extended with another situation, in

which battery charging was restricted by usage of PV surplus only, and charging

purchases from grid and local market for the battery prosumers was removed for

Group C households. It was expected that with local pricing strategy, this change

can reduce additional purchases from grid or local market and reduce the expenses,

however, the dependency on PV charging may a�ect overall supply of battery in the

pool for some given time periods and battery storage may not be able to discharge

or participate in the local market with given limitation. But it was necessary to test

this criteria to see the impact on the individual and community savings and how

measurement indices perform with this.

The objective function and constraints for Group A and B Households remain same

as in section 6.3 (Equation 6.3.2 to Equation 6.3.8) and pricing strategy also works

on same calculation as in section 6.2 (Equation 6.2.1).

Group C users own both PV and Battery System, but they are now restricted

to use PV surplus to charge the battery. The usage from PV is gets prioritized in

following manner.

a) The PV is used to meet self demand �rst.

b) The battery status is continuously monitored and it is checked whether battery

goes below speci�ed limit or needs charging. If self demand is met from the PV and

surplus PV is available, it is utilized for charging the battery.

c) After both self demand and Battery needs is ful�lled, the remaining surplus PV
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is sold to local market or grid based on overall demand in the pool and minimum

obtained for the objective function (which is to minimize grid purchases).

d) If demand is met and Battery does not need charging. Prosumers can decide to

sell surplus PV directly to local market or grid.

e) Thus, variables ebuych,loc,i,t and ebuych,grid,i,t are not used in this transaction anymore.

The changes in charging constraints can be seen through Equation 6.4.6. The Group

C Constraints are formulated as :

ed,i,t = epvuse,i,t + ebtuse,i,t + ebuy,loc,i,t + ebuy,grid,i,t (6.4.1)

epvuse,i,t + epvcharge,i,t + esell,loc,i,t + esell,grid,i,t = epv,i,t (6.4.2)

selli,t + buyi,t ≤ 1 (6.4.3)

epvsell,loc,i,t + epvsell,grid,i,t + ebtsell,loc,i,t + ebtsell,grid,i,t ≤ (epv,i,t + ci.t) ∗ selli,t (6.4.4)

ebuy,loc,i,t + ebuy,grid,i,t ≤ ed,i,t ∗ buyi,t (6.4.5)

epvcharge,i,t ≤ ci,t ∗ chi,t (6.4.6)

ebtuse,i,t + ebtsell,loc,i,t + ebtsell,grid,i,t ≤ ci,t ∗ dischi,t (6.4.7)

ebt,i,t ≥ eMinbt,i,t (6.4.8)

ebt,i,t ≤ eMaxbt,i,t (6.4.9)

ebt,i,t+1 = ebt,i,t + epvcharge,i,t (6.4.10)

ebt,i,t+1 = ebt,i,t − esellch,loc,i,t + esellch,grid,i,t + ebtuse,i,t (6.4.11)

where,

ed,i,t = Demand (kWh) of ith household at t hour

epvuse,i,t = PV energy used to meet demand (kWh)

ebtuse,i,t = Battery energy used (kWh)

ebuy,grid,i,t = Energy purchased from grid (kWh) for meeting demand

ebuy,loc,i,t = Energy purchased from local market (kWh) for meeting demand

epvsell,loc,i,t = PV energy sold to local market (kWh)

epvsell,grid,i,t = PV energy sold to Grid (kWh)

epv,i,t = Total PV Generation
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epvcharge,i,t = PV energy used for battery charging (kWh)

ebtsell,grid,i,t = Battery energy sold to grid (kWh)

ebtsell,loc,i,t = Battery energy sold locally (kWh)

ci,t = Maximum transaction(charge/discharge) limit for battery at hour t

(kWh)

buyi,t = Buy Decision

selli,t = Sell Decision

chi,t = Charge Decision

dischi,t = Discharge Decision

ebt,i,t+1 = Battery Status at t+1 hour (kWh)

ebt,i,t = Battery status at t hour(kWh)

6.5 Adjusted Demand-Minimum Local Price

A Simple adjustment in demand without assuming any case of user willingness

or pro�t considerations of the prosumers is fed to the MILP computation to see the

impact of trading, the model excludes time of use and complex equipment adjustments

as in [67] and looks forward to analyze economic aspects of demand adjustment and its

e�ect on savings and local pricing strategy that was devised in section 6.2 (Equation

6.2.1). It was assumed that consumers and prosumers are cooperating with each other

to reduce local price, by adjusting their respective demand. It has been considered

that households have a minimum consumption and this has been incorporated in the

load scenario cases to ensure that the mandatory equipments consume some power

and household demand never goes to zero. The prosumers are not risk averse and

hence, are not greedy for revenue. Most of the optimization models and game theory

have tested greedy algorithms or non-cooperative game theory for resource allocation

[68][69][70]. This model was tested to check whether community based savings can

be improved by reducing the local price to a good value or not.
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6.5.1 Adjusted Demand and Local Price Calculation

The idea of co-operative game in which the agents work together to bring down the

local market pricing by adjusting their demand [71][72] is formulated below in steps:

a) First, the prices are displayed for the local market based on the current demand.

b) The demand is then optimized for each agent targeting to get a new minimum

local price in the pool based on the PV and Battery Supply available at a given hour.

c) Dispatch is then optimized to obtain Minimum grid utilization and e�ective local

trading of resources with MILP program.

The equation for demand adjustment is simply though a Linear Programming equa-

tion using scipy optimization toolbox in Python.

Minimize : ploc (6.5.1)

subject to constraints:

n∑
i=1

ednew,i,t ≤
n∑

i=1

epv,i,t +
n∑

i=1

ci,t (6.5.2)

1

n

n∑
i=1

ednew,i,t ≤
1

n

n∑
i=1

ed,i,t (6.5.3)

ednew,i,t > 0 (6.5.4)

where,

n = Number of households

ednew,i,t = Adjusted Demand (kWh) of ith household adjusted at t hour

ed,i,t = Demand (kWh) of ith household seen initially at t hour

epv,i,t = Total PV Generation (kWh)

ci,t = Maximum transaction(charge/discharge) limit for battery at hour t

(kWh)

The above equation uses the local pricing formula in Equation 6.2.1 for calculating
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ploc and adjusts the demand of each household till a minimum local price is reached

in the pool. The local price stays between feed in tari� (pft) and grid price(pg).

The objective function and constraints are all set up for this model based on ad-

justed demand (ednew,i,t) instead of the actual demand data (ed,i,t). The trading

allocation is generated through MILP based algorithm and follows same rules as in

section 6.3 with demand ed,i,t replaced with adjusted demand ednew,i,t in objective

function and uses all constraints same as section 6.3.

6.6 Adjusted Demand-Minimum Local Price (Only PV Charging)

The Adjusted demand scenario was also tested with restriction of charging with PV

only to see if model performance can be improved further. The Group C constraints

were changed to remove charging purchases from grid and local market, and batteries

were made to charge with surplus PV only. The Equations were set similarly as in

section 6.4 to see whether the adjusted demand can work out with the given PV

and battery supply as it was expected that adjusted demand may work within the

given supply pool and may boost local market usage, increase savings and improve

measurement indices. New adjusted demand was computed (ednew,i,t) for a minimum

local price ploc (through Equations 6.5.1 to 6.5.4 and Equation 6.2.1 respectively),

and this updated demand and local price was fed to the MILP program for creating

trading instance with similar constraints as in section 6.4 for Group C (Equation 6.4.1

to 6.4.11).

6.7 Vickrey Clarke Groves Auction Model (VCG Auction)

Vickrey Clarke Groves Auction Model or VCG Auction is a sealed price bid auction

technique and uses bidding system for transaction of commodities. The commodity

to be sold is broadcasted to the buyer in real time and bids are collected based on

the utility function of the buyer[61]. VCG Auction model is used in both �rst price

and second price bidding, however, second price auction has been more popular as
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�rst price auction often over estimates the actual price of the commodity [73][74][75].

Hence, it motivates truthfulness of the bidder and maximizes social welfare. In local

market trading case, the excerpts from the VCG auction model have been applied

to remove problem associated with �rst price auction by calculating bids through a

systematic pricing strategy and aligning the buying bids from highest to lowest. The

transaction begins from highest to lowest bids till energy from DERs is fully consumed

or all demand is met in the pool [61]. For prosumers, the net demand is the surplus

demand after all the DERs is utilized and they become buyer to procure energy from

the local market, if all their generated energy is self-utilized. For consumers without

any DERs the net surplus demand and demand are same. The household becomes a

prosumer only when he has surplus energy in the pool and cannot buy or sell at same

instant.

6.7.1 Pricing Strategy

The bid price has been derived as function of net demand similar the previous MILP

case, but the average one-time local price has been discarded and the individual prices

have been considered and stated as bid price. Thus, price is directly proportional to

the demand that is, higher demand makes the price bid higher in the market pool

and customer with lower demand gets a lower buying bid. This makes the bid fair

for each buyer as the bids cannot over-estimate or under-estimate the value of the

electricity. The price bids always range between Feed in Tari� and Grid Price, and it

is assumed that demand of every consumer will always be di�erent. Thus, bid price

of each consumer in pool is given by:

pbid,i,t = pg −
{∑

ednet,i,t − ednet,i,t∑
ednet,i,t

∗ (pg − pft)

}
(6.7.1)

where,

pbid,i,t = Bid price for ith consumer for t hour
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ednet,i,t = Surplus net Demand (kWh) of ith household for purchase after self DER

usage at t hour

pg = Grid Price

pft = Feed in Tarrif

6.7.2 Trading Mechanism

A cycle in hour 0 has be used to exemplify the procedure. The auction is modeled

in following steps: Suppose Households C1 to C6 are prosumers with DERs and, C7

and C8 are consumers without any DERs. Transaction is initiated based on energy

available with the prosumers.

1) At a given hour the total demand and supply is assessed (PV+Battery) and

the usable demand of the prosumer is �rst ful�lled by their own generator. Any

surplus in its generation after self-usage quali�es the prosumer to become a supplier.

If prosumer has more demand than the generation, then it consumes all its generation

and meets the surplus demand by becoming a consumer in the pool. If all demand is

met by prosumer and there is no surplus demand and supply, the prosumer does not

participate in trading (Table 6.4, VCG: Step 1).

Table 6.4: VCG: Step 1

Demand kWh Supply kWh

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6

0.281 1.693 0.829 1.762 0.308 1.019 0.293 0.963 0 0 2 2 1 2

2) The surplus supply in the market is obtained once demand of the prosumers is

met and it is ordered from lowest to highest (Table 6.5, VCG: Step 2).



47

Table 6.5: VCG: Step 2

Net Demand/Consumer kWh Surplus Supply kWh

C1 C2 C7 C8 C4 C5 C6 C3

0.281 1.693 0.293 0.963 0.238 0.692 0.981 1.171

3) Net-Demand in the pool is obtained and bids are calculated and posted in the

trading screen along with the surplus supply in local market. Bids are lined up the

pool in descending order, and supply in ascending order. The transactions starts with

C4 as the supplier and C2 as the priority buyer. The supplier pool has been sorted

in ascending order to let all the prosumers earn revenues in unbiased manner (Table

6.6, VCG: Step 3). At the end of the local trading, either all the supply gets �nished

or all demand is met. If surplus supply is left in the pool after all the demand met

by the supply, the surplus energy is sold to grid. Similarly, with supply consumed

by all households and surplus demand remaining, grid is used for meeting any extra

demand. Thus, grid interaction is minimized and used only after local trading is

completed.

Table 6.6: VCG: Step 3

Net Demand & Bids/Consumers Surplus Supply /Sellers

Consumer C2 C8 C7 C1 C4 C5 C6 C3

Demand kWh 1.693 0.963 0.293 0.238

0.238 0.692 0.981 1.171
Consumer Bids cents 29.08 21.02 13.63 13.5

The Table 6.7 (Trading sequence for 0th Hour) below summarizes the trading

sequence for the 0th hour between suppliers and buyers. C2 is the highest bidder in

the pool and C4 is the supplier having lowest share of DERs. To get fair revenue

between suppliers, C4 gets priority to sell �rst. C4 sells energy to C2 at highest bid
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price of 29 cents. After C4's energy is used up, C5 and C6 are the next suppliers

in the queue and sell their energy at 29 cents (bid price of C2) to C2. After C2's

demand is met, C8 being the next highest bidder buys remaining energy from C6

at 21 cents (C8's bidding price). Thus, C6 gets to sell its energy to two buyers at

their respective bid prices. The sequence continues till all local energy is used up in

the pool. C1 being the lowest bidder in the pool buys some portion of energy from

local market and remaining from the grid. It is expected that this pricing scheme

and dispatch will be fair to both prosumers and consumers in terms of savings and

revenue respectively.

Table 6.7: Trading sequence for 0th Hour

0th Hour/Itera-

tion

0 1 2 3 4 5 6 7

Supplier C4 C5 C6 C6 C3 C4 C5 Grid

Supply 0.24 0.69 0.98 0.22 1.17 0.43 0.13 0.00

Buyer kWh C2 C2 C2 C8 C8 C7 C1 C1

Demand kWh 1.69 1.46 0.76 0.96 0.75 0.29 0.28 0.15

Residual Supply

kWh

0.00 0.00 0.22 0 0.43 0.13 0.00 0.00

Residual Demand

kWh

1.46 0.76 0.00 0.75 0.00 0.00 0.15 0.00

Energy sold kWh 0.24 0.69 0.76 0.22 0.75 0.29 0.13 0.15

Bid Price ($) 0.29 0.29 0.29 0.21 0.21 0.14 0.14 0.46

Revenue/Cost ($) 0.07 0.20 0.22 0.05 0.16 0.04 0.02 0.07



CHAPTER 7: MEASUREMENT INDICES

The trading results have been compared and analyzed based on individual alloca-

tions to households and community totals for 48 hours. Model performance is mea-

sured in terms of savings, Self Su�ciency (SS), Self Consumption (SC), and Fairness

Index (F (X)). For each model, the user allocations for the 48 hours are summa-

rized with their net savings compared to the conventional bill. Similarly, community

trading results for 48 hours are also calculated to observe savings at the macro level.

7.1 Savings

The savings are calculated using conventional bill with grid price and is calculated

as di�erence between Conventional bill and Net Purchase cost, which is the di�erence

between local trading expenditure and Revenue. The Percentage Savings shall be with

respect to the Conventional bill and will be 100% if the prosumers earn pro�t from

the local trading or expenditure in electricity purchase is nulli�ed by sales revenue.

The individual and community savings are calculated based on following formula.

Savings =
∑

ed,i,t ∗ pg −
∑

ebuy,grid,i,t ∗ pg +
(∑

ebuych,loc,i,t +
∑

ebuy,loc,i,t

)
∗ ploc−∑

epvsell,lgrid,i,t ∗ pft +
(∑

epvsell,grid,i,t +
∑

ebtsell,loc,i,t +
∑

epvsell,loc,i,t

)
∗ ploc

(7.1.1)

where,

ed,i,t = Demand

pg = Grid Price

ebuych,grid,i,t = Buy charging from grid

ebuych,loc,i,t = Buy charge locally

ebtsell,grid,i,t = Battery sold to grid
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ebtsell,loc,i,t = Battery sold locally

epvsell,loc,i,t = PV sold locally

epvsell,grid,i,t = PV Sold to grid

pft = Local Price

The individual savings are based on transaction totals of 48 hours for each house-

hold, whereas community totals add up all households as well for the 48 hours.

7.2 Self-Su�ciency (SS)

Self-Su�ciency (SS) is de�ned as amount of demand that can be met by local

market or self generation. It indicates reliability that can be extracted from the local

generation measures, when grid supply is not available [76]. It is formulated as:

SS% =

∑48
t=1 epvuse,i,t +

∑48
t=1 ebtuse,i,t +

∑48
t=1 ebuy,loc,i,t∑48

t=1 ed,i,t
(7.2.1)

where,

ed,i,t = Demand

ebtuse,i,t = Battery used

epvuse,i,t = PV used to meet demand

ebuy,loc,i,t = Energy purchased from local market(kWh) for meeting demand

7.3 Self-Consumption (SC)

Self Consumption (SC) is de�ned by Long [25] as the ratio between PV energy

used to the Total generation. This used energy is not exported to grid, but used

locally [77]. For the given dispatch models, the self consumption can be calculated as

ratio of sum of total PV used (for load and PV charging), Battery used, PV/battery

purchased locally to the Total Supply (sum of Total PV generated and Total Battery

limit available for that time). The transaction of the battery depends on the battery

status which in turn a�ects the total supply in a given hour. Battery dispatch depends
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on whether it is within its maximum and minimum range or not, and the battery

discharge limit will be added to the total supply only when it is within this range

and is used in the dispatch mechanism. For example, if the battery of 25.2 kWh has

discharge limit of 2kWh and is available for 3 hours, the net availability is taken as 3*2

kWh = 6 kWh. If the battery is discharged to its minimum value (say 0 kWh) after

using or selling 6 kWh and does not get charged for the remaining 48-3 = 45 hours, the

total battery which was available for trading becomes 6 kWh after the total trading

period (48 hours). Thus, the notation
∑48

t=1 cnet,t can vary for the prosumers in the

time period based on their discharge decisions and hence, total supply (PV+Battery)

for use and in local market/grid also varies for the trading hour.

SC% =

∑48
t=1 epvuse,i,t +

∑48
i=1 epvcharge,i,t +

∑48
i=1 ebuych,loc,i,t +

∑48
t=1 ebtuse,i,t +

∑48
t=1 ebuy,loc,i,t∑48

t=1 epv,i,t +
∑48

t=1 cnet,t
(7.3.1)

where,

ebtuse,i,t = Battery used

epvuse,i,t = PV used to meet demand

epvcharge,i,t = PV used for battery charging

ebuych,loc,i,t = Buy charge locally

cnet,t = transaction (discharge) limit available for battery for hour t for local use

ebuy,loc,i,t = Energy purchased from local market(kWh) for meeting demand

7.4 Fairness Index F(X)

Social Welfare can be measured in terms of Fairness Index as we need to assess individual

amount bene�t received from trading to each community member. The welfare is achieved

when every member gets a fair share of the allocation from the pool through self usage and

local trading, and receives optimum allocation with respect to their demand. Fairness index

was proposed by Jain [32] and was used to measure TCP fairness in network engineering

and in congestion control mechanisms for determining whether users were receiving a fair
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share of system resources. Fairness index is formulated as follows [78].

F (X) =
(
∑n

i=1 xi)
2

(n ∗
∑n

i=1 x
2
i )

(7.4.1)

where,

xi = normalized throughput (in Kbps) of the ith TCP �ow

n = Number of connections

xi is the ratio between Actual throughput and Optimal throughput and is calculated as .

xi =
ti
oi

(7.4.2)

where,

xi = Normalized throughput (in Kbps) of the ith TCP �ow

ti = Actual throughput

oi = Optimal throughput

we can present Fairness index equivalent to [79] :

F (X) =
1

1 + cv2
(7.4.3)

where,

x̄2 = Square of the mean

x̄2 = Variance

cv = Coe�cient of variation

Coe�cient of variation (CV) is de�ned as the ratio of standard deviation to the mean and

measures variability with respect to the mean of the population [80]. The range of fairness

index varies between 0 and 1 that is 0 ≤ F (X) ≤ 1. Jain's Fairness index is one of the widely

studied fairness measures and can be used generally for fairness study in various �elds. The

ideal value of Fairness Index F (X) is 1, if resources are fairly allocated among all the users.
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The Fairness Index uses the assumption that each user deserves its share with respect

to its demand criteria. For example, a sports person requires 2500 calories a day and a

normal person requires calories of 1500. Suppose, one day meal having 2000 calories is to

be distributed between these two people based on their body requirement. The fairness

index of 1 will be achieved from Equation 7.4.1 (and Equation 7.4.3), if 1250 and 750 is

the allocated calories to each person respectively from 2000 calories, and their respective

normalized throughput comes out be (1250/2500 = 0.5) and (750/1500 = 0.5), i.e., the

distribution is fair based on benchmark criteria of their required calories. Fairness index has

many properties: Fairness index is scale independent i.e., it does not matter which unit of

measurement is used, it is continuous in nature, it has direct relationship (higher the index

value, fairer is the distribution) [81].

How used in Local Market trading:

The social welfare has been understood here as the overall user utility (measure of satisfaction

like revenue earned by prosumers or savings achieved by all households etc.) received from

consuming the service provided by the system after deducting expenditures [82]. As the

requirement from models is to extract maximum DERs usage and local exchange for meeting

the user demand, the Fairness Index can be measured here in terms of usage and local

allocation for each user. The actual throughput/allocation for Consumer will be the amount

of energy purchased from local market or used from DERs. The Optimal Throughput or

allocation will be the ful�llment of entire demand of the users by local trading or DERs

usage. This means that a household having demand of 33 kWh will have his optimum

throughput as 33 kWh (oi), but if its allocated only 11 kWh from the local market or DERs

usage, the Actual Throughput will be 11 kWh (ti) and normalized throughput (xi) will be

11/33 = 0.33. Additional advantage expected from Fairness index is that, it can be used in

checking which household is misusing the trading schema and it can be penalized for having

a higher demand in trading pool. Further, with community households cooperating with

each other, demand can be managed and balanced by each households to bring the fairness

index to 1, in such a way that every household is able to obtain local electricity without

sacri�cing their minimum needs. The Fairness Index can be understood more clearly from
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the results stated for this metric in Calculations and Results in Chapter 8.



CHAPTER 8: CALCULATIONS AND RESULTS

8.1 Scenario Case-I

8.1.1 Fixed Demand-Variable Pricing

8.1.1.1 Local Pricing Calculation

The pricing formula stated in section 6.2 (Equation 6.2.1) was utilized to �nd the local

pricing. The local price ploc obtained for 48 hours scenario ranged between 19 cents to 30.5

cents. It can be observed from Figure 8.1 (Pricing and Normalized Demand for 48 hours),

that pricing is the function of normalized demand and never exceeds the grid price and

never goes below the feed in tari�. The pricing strategy can be well suited for households to

satisfy their utility functions, which is to increase their respective savings through revenues

from local sales and local purchases [83].

Figure 8.1: Pricing and Normalized Demand for 48 hours
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The community totals and savings are calculated from Table 8.1 (Community Trading

Totals) and Table 8.2 (Community Closing Accounts):

Table 8.1: Community Trading Totals

Grid buy to-

tal (kWh)

Local Buy

total (kWh)

Grid sell total

(kWh)

Local sell

total (kWh)

Use PV Total

(kWh)

Use Battery

Total (kWh)

368.70 23.75 122.04 23.75 93.02 62.82

Table 8.2: Community Closing Accounts

Total Purchase

costs ($)

Total Sales

revenue ($)

Net Local($) Conventional

Bill ($)

Savings ($) %Savings

175.35 18.29 157.06 223.89 66.83 30%

The individual allocation stated in Table 8.3 (Individual Allocation) below is used further

to calculate the fairness in distribution of DERs to the households and their respective

savings. It is important to assess how well the dispatch is allocating resources and what

amount of savings is achieved at user level. The decision variables include the amount of

electricity and battery charge bought locally and from the grid, battery and PV sales to

the grid and local market, and share of PV and battery used by respective prosumers. The

expenses and revenue generated from the trading and savings obtained is calculated with

respect to the conventional bill using grid price.
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Table 8.3: Individual Allocation

Allocation Variables/User C1 C2 C3 C4 C5 C6 C7 C8

Total Demand (kWh) 48 hrs 33.45 70.63 89.40 115.57 34.17 36.22 29.50 77.36

Total PV Generation (kWh) 22.76 19.31 45.62 31.52 42.65 25.76 0.00 0.00

Buy from grid (kWh) 20.91 51.40 49.06 58.11 22.43 21.97 26.05 68.37

Buy locally (kWh) 0.69 2.19 1.67 2.78 0.00 1.02 3.45 8.99

Buy Charging Locally(kWh) 0.00 0.00 0.57 2.40 0.00 0.00 0.00 0.00

Buy charging from Grid

(kWh)

0.00 0.00 15.86 13.99 5.74 14.81 0.00 0.00

PV sold Locally(kWh) 0.00 0.00 1.22 0.19 2.07 0.82 0.00 0.00

PV sold to Grid (kWh) 10.92 2.26 20.95 5.92 34.08 16.18 0.00 0.00

Use PV (kWh) 11.84 17.05 21.88 21.80 6.26 5.56 0.00 0.00

Use Battery (kWh) 0.00 0.00 16.79 32.88 5.49 7.66 0.00 0.00

Use PV Charging(kWh) 0.00 0.00 1.57 3.61 0.26 3.20 0.00 0.00

Sell Battery Locally (kWh) 0.00 0.00 1.80 0.39 3.53 13.73 0.00 0.00

Sell Battery to Grid (kWh) 0.00 0.00 9.42 0.73 8.98 12.61 0.00 0.00

Grid Buy cost $ 9.63 23.66 29.89 33.20 12.97 16.93 11.99 31.48

Local buy cost $ 0.15 0.52 0.47 1.07 0.00 0.26 0.85 2.28

Grid sales revenue $ 1.14 0.24 3.16 0.69 4.48 2.99 0.00 0.00

Local salesl revenue $ 0.00 0.00 3.16 0.69 1.22 3.55 0.00 0.00

Net Purchase cost $ 8.64 23.95 24.04 32.88 7.27 10.65 12.85 33.76

Conventional Bill $ 15.40 32.52 41.16 53.21 15.73 16.67 13.58 35.62

Net savings $ 6.76 8.57 17.12 20.33 8.46 6.03 0.73 1.85

%Savings 44% 26% 42% 38% 54% 36% 5% 5%
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8.1.1.2 Measurement Indices

The model in this case provides Self Su�ciency (SS) = 34.55%., which means, local

transactions and DERs usage meets this percentage of the total demand. This indicates

that, a major portion of the dependency still prevails on the grid. For calculation of self

su�ciency index, PV charging has not been taken into consideration in this case as it has

no role in meeting the demand of the user.

The self consumption (SC) = 59.54% for the community which means only 59.54% of the

total DERs was used for the local trading.

Normalized throughput was calculated in Table 8.4 (Fairness Index Throughput) by Equa-

tion 7.4.2 of section 7.4 :

Table 8.4: Fairness Index Throughput

User Self Use/Local Buy or ti Demand or oi xi x2i

C1 12.53 33.45 0.37 0.14

C2 19.23 70.63 0.27 0.07

C3 40.34 89.40 0.45 0.20

C4 57.46 115.57 0.50 0.25

C5 11.75 34.17 0.34 0.12

C6 14.24 36.22 0.39 0.15

C7 3.45 29.50 0.12 0.01

C8 8.99 77.36 0.12 0.01

Sum 2.57 0.97

Using the last two columns and Equation 7.4.1 we get , F (X) = 0.852. This can be

veri�ed with mean and standard deviation for the xi and substituting it in Equation 7.4.3

to get same results.
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8.1.2 Fixed Demand-Variable Pricing (Only PV charging)

Local Price range remains same as in section 8.1.1.1 that is, between 19 cents to 30.5

cents. Battery charging from grid and local purchases is removed. Battery is charge from

surplus PV only. This led to reduction in purchases from grid and local market, and im-

proved purchase costs of the users, but the overall supply of DERs reduced considerably due

to absence of alternate battery charging means. Also, the measurement index was reduced

due to overall reduction in DERs availability as battery was not able to get charged and par-

ticipate in local market. Community Results is summarized through Table 8.5 (Community

Trading Results) and Table 8.6 (Community Closing Accounts). Individual Allocation is

summarized as consumption, expenditures, revenue and savings of each household by Table

8.7 (Individual Allocation).

Table 8.5: Community Trading Results

Grid Buy total

(kWh)

Local Buy

total (kWh)

Grid sales

total(kWh)

Local sales

total (kWh)

Use PV Total

(kWh)

Use Battery

Total (kWh)

351.23 12.63 112.10 12.63 96.40 32.50

Table 8.6: Community Closing Accounts

Total Purchase

costs ($)

Total sales

revenue ($)

Net Local($) Conventional

Bill ($)

Savings($) %Savings

164.45 14.40 150.05 223.89 73.84 33%
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Table 8.7: Individual Allocation

Allocation Variables/User C1 C2 C3 C4 C5 C6 C7 C8

Demand 33.45 70.63 89.40 115.57 34.17 36.22 29.50 77.36

PV 22.76 19.31 45.62 31.52 42.65 25.76 0.00 0.00

Buy from Grid (kWh) 21.61 53.54 59.51 71.71 23.84 21.67 28.18 71.19

Buy Locally (kWh) 0.00 0.05 1.92 2.84 0.00 0.33 1.32 6.17

PV Sold Locally (kWh) 1.16 0.60 2.38 0.00 3.34 3.34 0.00 0.00

PV sold to Grid (kWh) 9.77 1.66 20.28 7.72 32.32 8.68 0.00 0.00

Use PV (kWh) 11.84 17.05 21.96 23.31 6.88 8.89 0.00 0.00

Use Battery (kWh) 0.00 0.00 6.01 17.71 3.45 5.33 0.00 0.00

Use PV Charging (kWh) 0.00 0.00 1.00 0.50 0.12 4.85 0.00 0.00

Sell Battery Locally

(kWh)

0.00 0.00 0.00 0.00 0.69 1.12 0.00 0.00

Sell Battery to Grid

(kWh)

0.00 0.00 9.99 0.29 7.86 13.55 0.00 0.00

Grid Buy cost($) 9.95 24.65 27.40 33.02 10.98 9.97 12.97 32.78

Local Buy Cost ($) 0.00 0.01 0.43 0.63 0.00 0.08 0.31 1.28

Grid Sales Revenue ($) 1.02 0.17 3.15 0.83 4.18 2.31 0.00 0.00

Local Sales Revenue($) 0.27 0.14 0.53 0.00 0.86 0.94 0.00 0.00

Net Purchase cost ($) 8.66 24.34 24.15 32.81 5.94 6.80 13.29 34.06

Conventional Bill ($) 15.40 32.52 41.16 53.21 15.73 16.67 13.58 35.62

Net savings ($) 6.74 8.18 17.01 20.40 9.79 9.87 0.29 1.56

%Savings 44% 25% 41% 38% 62% 59% 2% 4%

8.1.2.1 Measurement Indices

The Self Su�ciency (SS) was noted to be 27.77% and Self Consumption Index (SC) was

55.80%. The Fairness index (F (X)) was calculated to be 0.815 which was slightly lower
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than the previous transactions with grid and local trading purchases (Table 8.8, Fairness

Index Throughput). As observed the cumulative DERs penetration was reduced due to new

trading rules.

Table 8.8: Fairness Index Throughput

User Self Use/Local Buy or ti Demand or oi xi x2i

C1 11.84 33.45 0.35 0.13

C2 17.10 70.63 0.24 0.06

C3 29.89 89.40 0.33 0.11

C4 43.86 115.57 0.38 0.14

C5 10.33 34.17 0.30 0.09

C6 14.55 36.22 0.40 0.16

C7 1.32 29.50 0.04 0.00

C8 6.17 77.36 0.08 0.01

Sum 2.14 0.70



62

8.1.3 Adjusted Demand-Minimum Local Price

8.1.3.1 Adjusted Demand and Local Price Calculation

The adjusted demand is obtained from Equation 6.5.1 in section 6.5.1 and total adjusted

demand ednew,i,t was calculated as 488.01 kWh (Table 8.9, Community Totals) with local

price ploc ranging from 14.8 cents to 21 cents for the 48 hour span (Fig.8.2, Pricing and

Normalized Demand for 48 hours). The total adjusted demand increased as the optimization

of local pricing and hence, demand as per available supply pool increased the demand of

some users for few time periods. High spikes in demand still persisted for some time periods.

However, minimum local price achieved was lower than the price results obtained in section

8.1.1.1.

Table 8.9: Community Totals

Hours Total demand (kWh) Total PV (kWh)

48 488.01 187.63

Figure 8.2: Pricing and Normalized Demand for 48 hours
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The individual Household allocations and percentage savings are deduced in Table 8.10

(Individual Allocation) and Community results are summarized in Table 8.11 (Community

Trading Totals) and Table 8.12 (Community Closing Accounts) .

Table 8.10: Individual Allocation

Allocation Variables/User C1 C2 C3 C4 C5 C6 C7 C8

Demand 38.14 44.55 82.09 117.75 39.62 45.27 37.86 82.75

PV 22.76 19.31 45.62 31.52 42.65 25.76 0.00 0.00

Buy from Grid (kWh) 26.99 31.94 56.60 71.98 23.81 27.80 33.52 76.36

Buy Locally (kWh) 0.00 0.22 1.06 5.50 0.00 0.18 4.34 6.39

Buy Charging Locally (kWh) 0.00 0.00 0.00 1.54 0.00 0.00 0.00 0.00

Buy Chargingfrom Grid (kWh) 0.00 0.00 15.54 19.15 3.00 3.45 0.00 0.00

PV Sold Locally (kWh) 0.00 0.00 2.70 0.00 5.62 0.18 0.00 0.00

PV sold to Grid (kWh) 11.61 6.92 27.06 6.80 29.49 12.88 0.00 0.00

Use PV (kWh) 11.15 12.39 13.40 23.41 7.54 10.15 0.00 0.00

Use Battery (kWh) 0.00 0.00 11.03 16.86 8.28 7.14 0.00 0.00

Use PV Charging (kWh) 0.00 0.00 2.46 1.31 0.00 2.55 0.00 0.00

Sell Battery Locally (kWh) 0.00 0.00 5.68 2.53 0.76 1.74 0.00 0.00

Sell Battery to Grid (kWh) 0.00 0.00 15.29 10.61 5.96 13.12 0.00 0.00

Grid Buy cost($) 12.43 14.70 33.21 41.95 12.34 14.39 15.43 35.15

Local Buy Cost ($) 0.00 0.03 0.16 1.05 0.00 0.03 0.67 0.98

Grid Sales Revenue ($) 1.21 0.72 4.40 1.81 3.69 2.70 0.00 0.00

Local Sales Revenue($) 0.00 0.00 1.26 0.38 0.99 0.29 0.00 0.00

Net Purchase cost ($) 11.22 14.02 27.70 40.82 7.66 11.43 16.10 36.13

Conventional Bill ($) 17.56 20.51 37.79 54.21 18.24 20.84 17.43 38.10

Net savings ($) 6.34 6.49 10.09 13.39 10.58 9.42 1.33 1.97

%Savings 36% 32% 27% 25% 58% 45% 8% 5%
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Table 8.11: Community Trading Totals

Grid buy total

(kWh)

Local Buy to-

tal (kWh)

Grid sell total

(kWh)

Local sell to-

tal (kWh)

Use PV Total

(kWh)

Use Battery

Total (kWh)

390.12 19.22 139.74 19.22 84.36 43.31

Table 8.12: Community Closing Accounts

Total Purchase

costs ($)

Total sales

revenue ($)

Net Local

($)

Conventional

Bill ($)

Savings

($)

%Savings

182.52 17.45 165.08 224.68 59.60 27%

8.1.3.2 Measurement Indices

The measurement indices are stated to be: Self Su�ciency(SS) as 28.5%, Self Consump-

tion (SC) as 51.2% and Fairness Index (F (X)) to be 0.856 (Table 8.13, Fairness Index

Throughput)

Table 8.13: Fairness Index Throughput

User Self Use/Local Buy or ti Demand or oi xi x2i

C1 11.15 38.14 0.29 0.09

C2 12.61 44.55 0.28 0.08

C3 25.49 82.09 0.31 0.10

C4 45.77 117.75 0.39 0.15

C5 15.81 39.62 0.40 0.16

C6 17.47 45.27 0.39 0.15

C7 4.34 37.86 0.11 0.01

C8 6.39 82.75 0.08 0.01

Sum 2.25 0.74
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8.1.4 Adjusted Demand-Minimum Local Price (Only PV Charging)

The pricing and adjusted demand formulation remained same from the section 8.1.3. That

is, the total adjusted demand ednew,i,t is 488.01 kWh (Table 8.9, Community Totals) with

local price ploc between 14.8 cents to 21 cents (Fig.8.2, Pricing and Normalized Demand for 48

hours). The household results are summarized below in Table 8.14 (Individual Allocation).

Table 8.14: Individual Allocation

Allocation Variables/User C1 C2 C3 C4 C5 C6 C7 C8

Demand 38.14 44.55 82.09 117.75 39.62 45.27 37.86 82.75

Buy from Grid (kWh) 26.19 32.16 58.91 75.81 24.84 29.60 35.26 79.57

Buy Locally (kWh) 0.80 0.00 2.54 5.45 0.03 0.00 2.59 3.17

PV Sold Locally (kWh) 0.96 0.88 2.45 0.00 3.57 0.00 0.00 0.00

PV sold to Grid (kWh) 10.65 6.04 24.30 6.89 30.92 8.60 0.00 0.00

Use PV (kWh) 11.15 12.39 14.15 22.07 8.16 11.03 0.00 0.00

Use Battery (kWh) 0.00 0.00 6.49 14.42 6.59 4.64 0.00 0.00

Use PV Charging (kWh) 0.00 0.00 4.73 2.56 0.00 6.13 0.00 0.00

Sell Battery Locally (kWh) 0.00 0.00 0.00 1.47 3.84 1.40 0.00 0.00

Sell Battery to Grid (kWh) 0.00 0.00 13.51 4.11 1.57 15.96 0.00 0.00

Grid Buy cost($) 12.06 14.81 27.12 34.90 11.44 13.63 16.24 36.64

Local Buy Cost ($) 0.12 0.00 0.38 0.81 0.00 0.00 0.40 0.49

Grid Sales Revenue ($) 1.11 0.63 3.93 1.14 3.38 2.55 0.00 0.00

Local Sales Revenue($) 0.14 0.13 0.38 0.22 1.12 0.22 0.00 0.00

Net Purchase cost ($) 10.93 14.05 23.19 34.35 6.94 10.86 16.64 37.13

Conventional Bill ($) 17.56 20.51 37.79 54.21 18.24 20.84 17.43 38.10

Net savings ($) 6.63 6.46 14.60 19.86 11.30 9.98 0.79 0.97

%Savings 38% 32% 39% 37% 62% 48% 5% 3%

Table 8.15 (Community Trading Totals) and Table 8.16 (Community Closing Accounts)
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summarize the community performance.

Table 8.15: Community Trading Totals

Grid buy

total (kWh)

Local Buy

total (kWh)

Grid sell total

(kWh)

Local sell total

(kWh)

Use PV Total

(kWh)

Use Battery

Total (kWh)

362.35 14.58 122.55 14.58 92.36 32.14

Table 8.16: Community Closing Accounts

Total Purchase

costs ($)

Total sales

revenue ($)

Net Local($) Conventional

Bill ($)

Savings

($)

%Savings

169.04 14.96 154.08 224.68 70.60 31%

8.1.4.1 Measurement Indices

Overall Community Self Su�ciency (SS) was noted to be 25.8% and Self consumption(SC)

increased to 53.2% indicating increase in utilization higher portion of DERs through demand

adjustment. Fairness Index (F (X)) did not show considerable improvement and was noted

to be 0.816 (Table 8.17, Fairness Index Throughput).

Table 8.17: Fairness Index Throughput

User Self Use/Local Buy or ti Demand or oi xi x2i

C1 11.95 38.14 0.31 0.10

C2 12.39 44.55 0.28 0.08

C3 23.18 82.09 0.28 0.08

C4 41.94 117.75 0.36 0.13

C5 14.78 39.62 0.37 0.14

C6 15.67 45.27 0.35 0.12

C7 2.59 37.86 0.07 0.00

C8 3.17 82.75 0.04 0.00

Sum 2.06 0.65
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8.1.5 Vickrey Clarke Groves Auction Model

The Prosumer with surplus Storage or PV become suppliers after meeting their own

demand with their respective generators if available. Thus, in the �rst step Prosumers meet

their energy demand and check for surplus from their production. The Net self-usage and

surplus of Prosumers that was calculated for 48 hours trading is summarized in Table 8.18

(Total Prosumer Self Usage and Net Demand).

Table 8.18: Total Prosumer Self Usage and Net Demand

Prosumer C1 C2 C3 C4 C5 C6 C7 C8

Prosumer demand (kWh) 33.4 70.6 89.4 115.6 34.2 36.2 29.5 77.4

PV (kWh) 22.8 19.3 45.6 31.5 42.7 25.8 0.0 0.0

Net Demand (kWh) 21.6 53.6 54.5 67.2 17.3 19.0 29.5 77.4

Surplus PV (JkWh) 10.9 2.3 19.7 0.0 33.6 13.0 0.0 0.0

Use PV (kWh) 11.8 17.0 23.3 28.8 8.1 8.9 0.0 0.0

Use PV Charging (kWh) 0.0 0.0 2.6 2.8 1.0 3.8 0.0 0.0

Use Battery (kWh) 0.0 0.0 11.6 19.6 8.8 8.4 0.0 0.0

Battery Surplus (kWh) 0.0 0.0 12.4 4.4 6.2 17.6 0.0 0.0

Community trading results are something we are looking to improve as well. The total

demand and PV generation with trading totals and expenses is stated below. Trading

totals in Table 8.19 (Community Usage and Trading Totals) and 8.20 (Community Closing

Accounts) add up all the trading results for community.

Table 8.19: Community Usage and Trading Totals

Demand

kWh

PV kWh Net Demand

kWh

Use PV

kWh

Use PV Charging

kWh

Use Battery

kWh

Local Sales

kWh

Grid Sales

kWh

Grid Buy

kWh

486.29 187.63 340.07 97.93 10.24 48.29 56.11 64.07 283.70
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Table 8.20: Community Closing Accounts

Conventional

Cost ($)

Local Buy

Cost ($)

Grid Buy

Cost ($)

Grid Sales

Revenue ($)

Local Sales

Revenue ($)

Savings

223.89 15.35 130.70 6.62 15.35 44%

The Seller's Transaction includes all the sales to local market and Grid. The Buyer's

Transaction involves total purchases made from the local market and the grid . Cumulative

individual share of agents for 48 hours in the model is summarized in tables below. Table

8.21 (Prosumers Sales) gives total energy sold buy each prosumers to local market and grid.

And Table 8.22 (Buyer Purchases) shows total buying transactions of all the users from

the local market and grid. Individual Savings for each household is stated in Table 8.23

(Household Closing Accounts).

Table 8.21: Prosumer Sales

Prosumer C1 C2 C3 C4 C5 C6 Total kWh

Energy Sold kWh

(Local +Grid)

10.92 2.26 32.09 4.44 39.79 30.67 120.18

Table 8.22: Buyer Purchases

Buyer C1 C2 C3 C4 C5 C6 C7 C8 Total kWh

Energy Purchased

kWh

21.61 53.59 54.50 67.25 17.31 18.87 29.50 77.36 339.97
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Table 8.23: Household Closing Accounts

Total Grid

Buy cost ($)

Total Local

Buy cost ($)

Grid Sales

Revenue($)

Local Sales

Revenue($)

Net Local

Cost ($)

Conventional

Bill ($)

Savings

($)

%Savings

C1 9.03 0.31 0.27 2.67 6.47 15.40 8.93 58%

C2 19.29 3.19 0.02 0.68 21.94 32.52 10.58 33%

C3 23.50 0.78 2.08 2.66 19.73 41.16 21.43 53%

C4 27.20 2.30 0.27 0.46 29.06 53.21 24.15 46%

C5 7.18 0.35 2.41 4.99 0.19 15.73 15.54 99%

C6 7.55 0.69 1.61 3.89 2.81 16.67 13.87 84%

C7 10.23 1.53 0.00 0 11.85 13.58 1.73 13%

C8 26.65 6.186 0.00 0 33.05 35.62 2.57 8%

8.1.5.1 Measurement Indices

Notably higher self su�ciency and self consumption was achieved with VCG trading

as compared to previous MILP models. This makes sequential VCG model more simple

and robust. Self Su�ciency (SS) was calculated to be 41.6% and Self-Consumption (SC)

reached was 76.80%. The transaction works until entire demand in the pool is met or

supply is �nished, and any interaction with grid is initiated only after this local transaction

is complete. The model ensured full utilization of PV/Battery in local market with grid

purchases reducing considerably.

Fairness Index (F (X)) was calculated to be 0.936 which is close to the ideal value of 1.

This means that the actual allocation to all the users was fair with respect to their optimal

allocations (Table 8.24, Fairness Index Throughput).
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Table 8.24: Fairness Index Throughput

Fairness Index Throughput

User Self Use/Local Buy or ti Demand or oi xi x2i

C1 13.82 33.45 0.41 0.17

C2 28.72 70.63 0.41 0.17

C3 38.35 89.40 0.43 0.18

C4 56.34 115.57 0.49 0.24

C5 18.56 34.17 0.54 0.29

C6 19.81 36.22 0.55 0.30

C7 7.26 29.50 0.25 0.06

C8 19.46 77.36 0.25 0.06

Sum 3.32 1.48

8.1.6 Discussions

PV generation with respect to the demand pro�le and battery in the pool was noted to

be less as seen in demand versus PV generation curve in Figure 4.1 (Cumulative Demand

and PV Generation) of section 4.1, thereby indicating the need of bigger PV sizes for better

share of PV charging and Local transactions. Table 8.25 (Dispatch Performance Summary)

summarizes the outcomes of the dispatch mechanisms. It can be noted from the table

that results stated for section 8.1.1 (Fixed Demand Variable Pricing) showed community

percentage savings of 30% with maximum individual savings of 54% by Prosumer C5 and

minimum savings of 5% (by consumers C7 and C8). Community percentage savings was

less than half meant participants were still paying more for purchases. Signi�cant amount of

demand was being met by grid reducing self su�ciency to 34.55% which meant less amount

of local energy was being traded, and surplus DER was signi�cantly less than the demand in

the local market. Self consumption share was lower (59.54%) because ratio of local market

usage and total supply was higher and signi�cant amount was sold to grid. This is because

the demand was ful�lled by the local trading transactions for some instances and in many

instances prosumers decided to sell generation to grid. Fairness Index achieved was moderate
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indicating inequality in the resource allocation between the households which means some

members were well o� from trading and some did not get su�cient dispatch. This Fixed

Demand Variable Pricing model did not show optimum numbers as the battery charging

with grid and local market came out to be more expensive for some time periods and when

same charged battery was sold at lower rate in local market, the revenue earned by battery

owners could not nullify the expenditure. Hence, cumulative performance numbers in this

simulation stayed to lower values.

From �rst model it was noted that, transaction with grid and local market for charging

batteries increased expenditure. The devised pricing strategy with same local prices was

again tested with condition allowing use of only PV for charging batteries. The results

from section 8.1.2 for Fixed Demand Variable Pricing (Only PV Charging) saw that the

battery capacity reduced in the local energy pool as the surplus PV generation was not

su�cient to charge batteries, reducing the participation of batteries in the local market and

increasing dependency on grid purchases again (SS = 27.77% and SC = 55.8%). Thus, the

lower performance numbers can be attributed to lesser supply in the pool during some time

periods. Increase in savings by some prosumers (for C5, it rose from 54% to 62%) can be

attributed to the decision of prosumer to use DERs themselves, rather than selling them

and thus, some consumer lose out the savings (like C7's savings reduced to 2% from 5%).

The increased self usage by prosumers rather than selling to grid also lead to increase in

community savings (33%).

The model with Adjusted Demand-Minimum Local Price attempted to achieve a lowest

local price for community welfare through demand adjustment to obtain lowest local price

hoping to increase savings in the pool, but this lead to an increase in the cumulative com-

munity demand as adjusted demand for some users increased in particular hour and demand

curve continued to show peaks. From results in section 8.1.3 for Adjusted Demand-Minimum

Local Price model, lower local price was expected to bring down the expenditures as well,

but the model simulation resulted in lowering of local market usage with respect to demand

(SS = 28.5%) and supply (SC= 51.2%). The model indeed improved individual savings

for some households (consumer C7 savings rose to 8%), however, overall performance was



72

inferior MILP simulations for Fixed Demand Variable Pricing Models of sections 8.1.1 and

8.1.2.

Table 8.25: Dispatch Performance Summary

Model Local

Pricing

Range(cents)

Community

Savings%

Maximum In-

dividual Sav-

ings%

Minimum

Individual

Savings%

SS% SC% F(X)

Fixed Demand

Variable Price

19 to 30.5 30% 54% 5% 34.55% 59.54% 0.852

Fixed Demand

Variable Price

(Only PV Charg-

ing)

19 to 30.5 33% 62% 2% 27.77% 55.80% 0.816

Adjusted De-

mand Minimum

Local Price

14.8 to 20 27% 58% 5% 28.50% 51.20% 0.856

Adjusted De-

mand Mini-

mum Local

Price (Only PV

Charging)

14.8 to 20 31% 62% 3% 25.80% 53.20% 0.816

VCG Bid based 44% 99% 8% 41.6% 76.80% 0.936

The criteria of grid and local market purchases for battery charging was removed for the

Adjusted Demand-Minimum Local Price model in section 8.1.4 to reduce additional expen-

diture. The model was implemented with same set of conditions with adjusted demand and

local pricing as calculated in sub-section 8.1.3.1 to see, if the model can show improvements

with combination of adjusted demand, a minimum local price, and reduced expenditure for

battery charging. The consumers could not make much savings due adjusted demand for

households(C7 saved 5% and C7 saved 3% only). The Self su�ciency index showed lower

numbers due to reduction in overall supply (SS = 25.8%). Self consumption (SC = 53.2%)

improved as more PV was used for charging the batteries due to adjusted demand than

selling it to the local market or grid.
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The auction model was adopted to tackle the discrepancies of MILP based models that

used binary decision variables to set dispatch. Auction model was used as it is a cheaper

option and the dispatch can be planned with simple algorithm. VCG model changed the

pricing criteria slightly and rather than averaging all user prices, it applied individual prices

from the consumers to set up a bidding market. The community savings showed improve-

ment by resulting to 44% as compared to MILP Models. Highest Savings achieved by some

prosumers was about 99% when compared with conventional bill, as pro�t was generated

from local sales proving that pricing strategy and dispatch mechanism complemented each

other. The model also performed better in terms of Self su�ciency numbers (41.6%) and

self consumption numbers (76.80%) indicating DERs were well utilized in the local market

with minimal waste. This model ensured that there is minimal interaction with grid and by

very few prosumer households, after local transaction is fully �nished in a hourly cycle. The

savings of Prosumer and consumer improved with highest individual savings, for prosumers

close to 99% (C5) and for consumers about 13% (C7). It shows that the dispatch mechanism

attempted well to distribute savings and revenue between the households.

Fairness index was best achieved with VCG model close to about 0.936 indicating the

distribution of resources was almost fair to all user with respect to their demand. The

MILP based models performed moderately terms of fairness index by ranging between 0.816

to 0.856 only. The total supply was observed to be varying in each model, due to the battery

charge and discharge process within the iterations. The models with only PV charging

created lesser battery charging instances in the iterations, compared to the models where

grid and local energy was used for charging.
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8.2 Scenario Case-II

8.2.1 Fixed Demand-Variable Pricing

8.2.1.1 Local Pricing Calculation

The pricing strategy was adopted from section 6.2 (Equation 6.2.1). The local price ploc

was obtained to range between 17.6 cents to 28.1 cents (Fig.8.3, Pricing and Normalized

Demand for 48 hours), which indicated lower demand patterns than the demand data set in

scenario case-I. The community totals are summarized in Table 8.26 (Community Trading

Totals) and Table 8.27 (Community Closing Accounts). Household savings are summarized

in Table 8.28 (Individual Allocation).

Figure 8.3: Pricing and Normalized Demand for 48 hours

Table 8.26: Community Trading Totals

Grid Buy total

(kWh)

Local Buy to-

tal (kWh)

Grid Sales

total (kWh)

Local Sales

total (kWh)

Use PV Total

(kWh)

Use Battery

Total (kWh)

354.93 33.00 251.05 33.00 69.54 29.92

Table 8.27: Community Closing Accounts

Total Purchase

costs ($)

Total sales

revenue ($)

Net Local ($) Conventional

Bill ($)

Savings ($) %Savings

170.02 32.72 137.30 189.45 52.14 28%
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Table 8.28: Individual Allocation

Allocation Variables/User H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Demand 38.53 26.71 75.17 30.93 33.23 25.12 44.38 20.69 38.59 78.13

Buy from Grid (kWh) 25.79 18.46 49.52 21.42 14.04 11.99 28.49 12.07 35.84 67.03

Buy Locally (kWh) 7.62 3.17 7.25 0.62 0.00 0.00 0.00 0.00 2.75 11.11

Buy Charging Locally (kWh) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00

Buy Chargingfrom Grid

(kWh)

0.00 0.00 0.00 0.00 28.21 22.86 9.58 9.64 0.00 0.00

PV Sold Locally (kWh) 0.00 0.00 0.00 0.00 0.00 7.71 0.00 0.03 0.00 0.00

PV sold to Grid (kWh) 7.46 12.42 29.85 10.03 17.18 21.68 6.99 19.12 0.00 0.00

Use PV (kWh) 5.12 5.08 18.40 8.89 7.82 4.04 10.04 5.02 0.00 0.00

Use Battery (kWh) 0.00 0.00 0.00 0.00 11.37 9.09 5.85 3.61 0.00 0.00

Use PV Charging (kWh) 0.00 0.00 0.00 0.00 1.49 0.24 0.33 3.08 0.00 0.00

Sell Battery Locally (kWh) 0.00 0.00 0.00 0.00 13.96 5.84 2.54 2.92 0.00 0.00

Sell Battery to Grid (kWh) 0.00 0.00 0.00 0.00 27.47 44.47 24.61 29.77 0.00 0.00

Grid Buy cost($) 11.88 8.50 22.80 9.86 6.46 5.52 13.12 5.78 16.50 30.86

Local Buy Cost ($) 1.50 0.65 1.54 0.12 0.00 0.00 0.00 0.09 0.53 2.18

Grid Sales Revenue ($) 0.78 1.29 3.10 1.04 4.64 6.88 3.29 5.08 0.00 0.00

Local Sales Revenue($) 0.00 0.00 0.00 0.00 2.87 2.56 0.49 0.69 0.00 0.00

Net Purchase cost ($) 12.60 7.86 21.23 8.94 0.00 0.00 9.34 0.09 17.03 33.04

Net Pro�t ($) 0.00 0.00 0.00 0.00 1.05 3.92 0.00 0.00 0.00 0.00

Conventional Bill ($) 17.74 12.30 34.61 14.24 15.30 11.56 20.43 9.53 17.77 35.97

Net savings ($) 5.14 4.44 13.38 5.31 15.30 11.56 11.09 9.43 0.73 2.94

%Savings 29% 36% 39% 37% 100% 100% 54% 99% 4% 8%

8.2.1.2 Measurement Indices

Self Su�ciency was calculated as SS = 30.82% ans self consumption as SC = 34.54%.

Fairness Index was calculated as F (X) = 0.844 (Table 8.29, Fairness Index Throughput).
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Table 8.29: Fairness Index Throughput

User Self Use/Local Buy or ti Demand or oi xi x2i

H1 12.74 38.53 0.33 0.11

H2 8.25 26.71 0.31 0.10

H3 25.65 75.17 0.34 0.12

H4 9.51 30.93 0.31 0.09

H5 19.19 33.23 0.58 0.33

H6 13.13 25.12 0.52 0.27

H7 15.89 44.38 0.36 0.13

H8 8.62 20.69 0.42 0.17

H9 2.75 38.59 0.07 0.01

H10 11.11 78.13 0.14 0.02

Sum 3.38 1.35

8.2.2 Fixed Demand-Variable Pricing (Only PV Charging)

The local pricing ploc was same ranging between 17.6 cents to 28.1 (Refer section 6.2 and

Equation 6.2.1 for formula). The charging with only PV was considered to charge batteries,

eliminating dependency on grid and local purchases to charge battery storage. Community

totals is stated in Table 8.20 (Community Trading Totals) and Table (8.31, Community

Closing Accounts). Household Summary is in Table 8.32 (Individual Allocation).

Table 8.30: Community Trading Totals

Grid Buy

total (kWh)

Local Buy

total (kWh)

Grid Sales

total (kWh)

Local Sales

total (kWh)

Use PV Total

(kWh)

Use Battery

Total (kWh)

309.72 17.97 207.35 17.97 89.71 15.67
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Table 8.31: Community Closing Accounts

Total Purchase

costs ($)

Total sales

revenue ($)

Net Local ($) Conventional

Bill ($)

Savings

($)

%Savings

146.45 25.42 121.03 189.45 68.42 36%

Table 8.32: Individual Allocation

Allocation Variables/User H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Demand 38.53 26.71 75.17 30.93 33.23 25.12 44.38 20.69 38.59 78.13

Buy from Grid (kWh) 33.34 21.63 56.77 21.67 20.22 15.51 28.62 12.71 32.41 66.84

Buy Locally (kWh) 0.07 0.00 0.00 0.37 0.00 0.05 0.00 0.00 6.18 11.29

PV Sold Locally (kWh) 0.00 0.00 8.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PV sold to Grid (kWh) 7.46 12.42 20.92 10.03 10.81 25.60 4.09 12.03 0.00 0.00

Use PV (kWh) 5.12 5.08 18.40 8.89 9.81 4.64 11.15 5.04 0.00 0.00

Use Battery (kWh) 0.00 0.00 0.00 0.00 3.20 4.92 4.60 2.95 0.00 0.00

Use PV Charging (kWh) 0.00 0.00 0.00 0.00 5.88 3.42 2.11 10.17 0.00 0.00

Sell Battery Locally

(kWh)

0.00 0.00 0.00 0.00 0.00 9.04 0.00 0.00 0.00 0.00

Sell Battery to Grid

(kWh)

0.00 0.00 0.00 0.00 26.50 25.64 21.80 30.05 0.00 0.00

Grid Buy cost($) 15.35 9.96 26.14 9.98 9.31 7.14 13.18 5.85 14.92 30.77

Local Buy Cost ($) 0.01 0.00 0.00 0.07 0.00 0.01 0.00 0.00 1.31 2.44

Grid Sales Revenue ($) 0.78 1.29 2.18 1.04 3.88 5.33 2.69 4.38 0.00 0.00

Local Sales Revenue($) 0.00 0.00 1.98 0.00 0.00 1.87 0.00 0.00 0.00 0.00

Net Purchase cost ($) 14.59 8.67 21.98 9.01 5.43 -0.04 10.48 1.47 16.24 33.21

Net Pro�t ($) 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

Conventional Bill ($) 17.74 12.30 34.61 14.24 15.30 11.56 20.43 9.53 17.77 35.97

Net savings ($) 3.15 3.63 12.63 5.24 9.87 11.56 9.95 8.05 1.53 2.76

%Savings 18% 30% 36% 37% 65% 100% 49% 85% 9% 8%



78

8.2.2.1 Measurement Indices

Self Su�ciency(SS) = 24.73%

Self Consumption(SC) = 37.30%

Fairness Index(F (X)) = 0.876 (Table 8.33, Fairness Index Throughput)

Table 8.33: Fairness Index Throughput

User Self Use/Local Buy or ti Demand or oi xi x2i

C1 5.19 38.53 0.13 0.02

C2 5.08 26.71 0.19 0.04

C3 18.40 75.17 0.24 0.06

C4 9.26 30.93 0.30 0.09

C5 13.01 33.23 0.39 0.15

C6 9.61 25.12 0.38 0.15

C7 15.76 44.38 0.36 0.13

C8 7.99 20.69 0.39 0.15

C9 6.18 38.59 0.16 0.03

C10 11.29 78.13 0.14 0.02

Sum 2.69 0.83

8.2.3 Adjusted Demand-Minimum Local Price

The demand was adjusted for the households to derive a minimum local price . One of

the assumptions in coding was made here was, that allocated demand was set to a lower

bound of 0.2 kWh for a particular hour for each household and upper bound within the

total generation in the pool. That is, a minimum 0.2 kWh will always be set for each

household for necessary equipments and the demand will never go zero. The lower bound

helped generating a lower adjusted demand and hence, a lower local price range.
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8.2.3.1 Adjusted Demand and Local Price Calculation

The local price and adjusted demand was derived from section 6.5.1 (Equation 6.5.1).

The local price ploc was obtained between 13.0 to 14.5 cents (Fig.8.4, Pricing and Normal-

ized Demand for 48 hours). The total adjusted demand (ednew,i,t) was 406.16 kWh, which

was slightly less than the actual demand of 411.48 kWh (Table 8.34, Community Totals).

However, the adjusted demand curve still constituted some peaks. The community trading

totals can referred from Table 8.35 (Community Trading Totals) and Table 8.36 (Com-

munity Closing Accounts). Household trading results are stated in Table 8.37 (Individual

Allocation).

Table 8.34: Community Totals

Hours Total demand (kWh) Total PV (kWh)

48 406.16 202.00

Figure 8.4: Pricing and Normalized Demand for 48 hours
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Table 8.35: Community Trading Totals

Grid Buy

total (kWh)

Local Buy total

(kWh)

Grid Sales

total (kWh)

Local Sales total

(kWh)

Use PV Total

(kWh)

Use Battery

Total (kWh)

345.33 13.24 246.76 13.24 71.61 25.48

Table 8.36: Community Closing Accounts

Total Purchase

costs ($)

Total sales

revenue ($)

Net Local ($) Conventional

Bill ($)

Savings

($)

%Savings

160.84 27.51 133.32 187.00 53.67 29%
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Table 8.37: Individual Allocation

Allocation Variables/User H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Demand 52.38 24.83 86.57 24.79 31.54 30.44 24.80 30.02 28.00 72.79

Buy from Grid (kWh) 43.66 17.53 68.12 17.75 16.55 18.44 13.55 18.39 27.14 68.81

Buy Locally (kWh) 2.43 0.04 2.80 0.00 0.00 0.00 0.43 0.00 0.87 3.97

Buy Charging Locally

(kWh)

0.00 0.00 0.00 0.00 0.00 0.40 1.82 0.50 0.00 0.00

Buy Chargingfrom Grid

(kWh)

0.00 0.00 0.00 0.00 9.51 5.08 9.11 11.69 0.00 0.00

PV Sold Locally (kWh) 0.40 0.00 0.00 0.00 0.00 7.58 0.04 0.00 0.00 0.00

PV sold to Grid (kWh) 5.89 10.24 32.58 11.88 18.92 16.07 9.62 17.15 0.00 0.00

Use PV (kWh) 6.29 7.27 15.66 7.04 7.18 5.57 5.43 5.77 0.00 0.00

Use Battery (kWh) 0.00 0.00 0.00 0.00 7.80 6.42 5.39 5.87 0.00 0.00

Use PV Charging (kWh) 0.00 0.00 0.00 0.00 0.39 4.43 2.27 4.31 0.00 0.00

Sell Battery Locally

(kWh)

0.00 0.00 0.00 0.00 0.00 2.43 2.80 0.00 0.00 0.00

Sell Battery to Grid

(kWh)

0.00 0.00 0.00 0.00 25.20 37.35 28.11 33.73 0.00 0.00

Grid Buy cost($) 20.10 8.07 31.36 8.17 7.62 8.67 7.08 8.69 12.49 31.68

Local Buy Cost ($) 0.34 0.01 0.39 0.00 0.00 0.06 0.31 0.07 0.12 0.55

Grid Sales Revenue ($) 0.61 1.06 3.39 1.24 4.59 5.56 3.92 5.29 0.00 0.00

Local Sales Revenue($) 0.06 0.00 0.00 0.00 0.00 1.40 0.40 0.00 0.00 0.00

Net Purchase cost ($) 19.77 7.01 28.36 6.94 3.03 1.77 3.07 3.47 12.61 32.24

Net Pro�t ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Conventional Bill ($) 24.12 11.43 39.86 11.42 14.52 14.01 11.42 13.82 12.89 33.51

Net savings ($) 4.34 4.42 11.49 4.48 11.49 12.24 8.35 10.35 0.28 1.27

%Savings 18% 39% 29% 39% 79% 87% 73% 75% 2% 4%
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8.2.3.2 Measurement Indices

Self Su�ciency(SS) = 23.69%, Self Consumption(SC) = 30.9%, Fairness Index (F (X)) =

0.773 (Table 8.38, Fairness Index Throughput).

Table 8.38: Fairness Index Throughput

User Self Use/Local Buy or ti Demand or oi xi x2i

H1 8.72 52.38 0.17 0.03

H2 7.30 24.83 0.29 0.09

H3 18.45 86.57 0.21 0.05

H4 7.04 24.79 0.28 0.08

H5 14.98 31.54 0.48 0.23

H6 12.00 30.44 0.39 0.16

H7 11.25 24.80 0.45 0.21

H8 11.64 30.02 0.39 0.15

H9 0.87 28.00 0.03 0.00

H10 3.97 72.79 0.05 0.00

Sum 2.75 0.98

8.2.4 Adjusted Demand-Minimum Local Price (Only PV Charging)

The adjusted demand scenario was rechecked with only PV charging criteria for battery

storage. Community Trading results (Table 8.39, Community Trading Results and Table

8.40, Community Closing Accounts) and Household results (Table 8.41, Individual Alloca-

tion) are stated for observations. The local price ploc remained same between 13.0 to 14.5

cents with total adjusted demand as 406.16 kWh.

Table 8.39: Community Trading Totals

Grid Buy to-

tal (kWh)

Local Buy

total (kWh)

Grid Sales

total (kWh)

Local Sales

total (kWh)

Use PV Total

(kWh)

Use Battery

Total (kWh)

302.62 21.52 206.95 21.52 93.13 19.00
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Table 8.40: Community Closing Accounts

Total Purchase

costs ($)

Total sales

revenue ($)

Net Local

($)

Conventional

Bill ($)

Savings

($)

%Savings

142.33 24.53 117.80 187.00 69.19 37%

Table 8.41: Individual Allocation

Allocation Variables/User H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Demand 52.38 24.83 86.57 24.79 31.54 30.44 24.80 30.02 28.00 72.79

Buy from Grid (kWh) 45.87 17.56 67.30 16.68 13.83 18.16 13.71 19.62 25.38 64.51

Buy Locally (kWh) 0.22 0.00 3.62 1.07 5.21 0.50 0.00 0.00 2.62 8.28

PV Sold Locally (kWh) 0.11 0.58 13.45 0.18 0.00 0.00 0.00 0.00 0.00 0.00

PV sold to Grid (kWh) 6.18 9.66 19.14 11.70 9.43 21.11 5.43 11.90 0.00 0.00

Use PV (kWh) 6.29 7.27 15.66 7.04 7.99 6.10 6.55 6.13 0.00 0.00

Use Battery (kWh) 0.00 0.00 0.00 0.00 4.50 5.68 4.55 4.27 0.00 0.00

Use PV Charging (kWh) 0.00 0.00 0.00 0.00 9.07 6.45 5.38 9.21 0.00 0.00

Sell Battery Locally (kWh) 0.00 0.00 0.00 0.00 0.00 5.43 1.77 0.00 0.00 0.00

Sell Battery to Grid (kWh) 0.00 0.00 0.00 0.00 28.50 31.80 23.38 28.73 0.00 0.00

Grid Buy cost($) 21.12 8.09 30.99 7.68 6.37 8.36 6.31 9.03 11.68 29.70

Local Buy Cost ($) 0.03 0.00 0.51 0.15 0.73 0.07 0.00 0.00 0.37 1.16

Grid Sales Revenue ($) 0.64 1.00 1.99 1.22 3.94 5.50 3.00 4.23 0.00 0.00

Local Sales Revenue($) 0.01 0.08 1.88 0.03 0.00 0.76 0.25 0.00 0.00 0.00

Net Purchase cost ($) 20.49 7.00 27.62 6.59 3.15 2.17 3.07 4.81 12.05 30.86

Net Pro�t ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Conventional Bill ($) 24.12 11.43 39.86 11.42 14.52 14.01 11.42 13.82 12.89 33.51

Net savings ($) 3.62 4.43 12.23 4.83 11.37 11.84 8.35 9.01 0.84 2.66

%Savings 15% 39% 31% 42% 78% 85% 73% 65% 7% 8%
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8.2.4.1 Measurement Indices

Measurement Indices were calculated as: Self Su�ciency = 25.49%, Self Consumption =

39.24%, Fairness Index = 0.798 (Table 8.42, Fairness Index Throughput).

Table 8.42: Fairness Index Throughput

User Self Use/Local Buy or ti Demand or oi xi x2i

C1 6.51 52.38 0.12 0.02

C2 7.27 24.83 0.29 0.09

C3 19.27 86.57 0.22 0.05

C4 8.11 24.79 0.33 0.11

C5 17.71 31.54 0.56 0.32

C6 12.28 30.44 0.40 0.16

C7 11.09 24.80 0.45 0.20

C8 10.40 30.02 0.35 0.12

C9 2.62 28.00 0.09 0.01

C10 8.28 72.79 0.11 0.01

Sum 2.93 1.08

8.2.5 Vickrey Clarke Groves Auction Model

Community and Households results for 48 hours duration through Table 8.43 (Community

Usage and Trading Totals) and Table 8.44 (Community Closing Accounts). Prosumer usage

and net demand is summarized in Table 8.45 (Total Prosumer Usage and Net Demand).

Total Prosumer sales is stated in Table 8.26 (Prosumer Sales) and Buyers Transactions are

collected in Table 8.47 (Buyers Purchases). Household savings is calculated in Table 8.48

(Household Closing Accounts)
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Table 8.43: Community Usage and Trading Totals

Demand

kWh

PV kWh Net De-

mand

kWh

Use PV

kWh

Use PV

Charging

kWh

Use Bat-

tery kWh

Local

Sales

kWh

Grid Sales

kWh

Grid Buy kWh

411.48 201.998 327.395 69.092 17.552 14.993 89.978 132.483 237.417

Table 8.44: Community Closing Accounts

Conventional

Cost ($)

Local Buy Cost

($)

Grid Buy Cost

($)

Grid Sales Rev-

enue ($)

Local Sales Revenue

($)

Savings

189.45 20.88 109.20 13.78 20.88 49.6%

Table 8.45: Total Prosumer Usage and Net Demand

Prosumer H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Prosumer demand

(kWh)

38.53 26.71 75.17 30.93 33.23 25.12 44.38 20.69 38.59 78.13

PV (kWh) 12.58 17.50 48.24 18.93 26.50 33.66 17.36 27.24 0.00 0.00

Net Demand (kWh) 33.41 21.63 56.77 22.04 20.00 15.35 28.91 12.55 38.59 78.13

Surplus PV (JkWh) 7.46 12.42 29.85 10.03 10.23 28.25 3.19 13.92 0.00 0.00

Use PV (kWh) 5.12 5.08 18.40 8.89 9.96 4.90 11.39 5.37 0.00 0.00

Use PV Charging

(kWh)

0.00 0.00 0.00 0.00 6.31 0.51 2.78 7.95 0.00 0.00

Use Battery (kWh) 0.00 0.00 0.00 0.00 3.27 4.87 4.08 2.77 0.00 0.00

Battery Surplus

(kWh)

0.00 0.00 0.00 0.00 26.43 31.43 22.32 26.93 0.00 0.00

Table 8.46: Prosumer Sales

Prosumer H1 H2 H3 H4 H5 H6 H7 H8 Total kWh

Energy Sold kWh

(Local +Grid)

7.46 12.42 29.85 10.03 36.65 59.68 25.52 40.85 222.46
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Table 8.47: Buyers Purchases

Buyer H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Total kWh

Energy Pur-

chased kWh

33.41 21.63 56.77 22.04 20.00 15.35 28.91 12.55 38.59 78.13 327.40

Table 8.48: Household Closing Accounts

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Total Grid Buy cost ($) 12.34 8.06 20.19 9.02 8.89 7.07 12.39 5.66 8.83 16.83

Total Local Buy cost ($) 1.13 0.63 2.60 0.32 0.13 0.00 0.31 0.03 3.91 11.82

Grid Sales Revenue($) 0.31 0.26 2.52 0.45 2.12 4.06 0.61 3.43 0.00 0.00

Local Sales Revenue($) 1.28 2.89 1.24 1.77 3.15 4.67 4.43 1.45 0.00 0.00

Net Local Cost ($) 11.98 5.60 19.20 7.19 3.82 0.00 7.75 0.85 12.81 28.78

Net Local Pro�t 0.00 0.00 0.00 0.00 0.00 1.62 0.00 0.00 0.00 0.00

Conventional Bill ($) 17.74 12.30 34.61 14.24 15.30 11.56 20.43 9.53 17.77 35.97

Savings ($) 5.76 6.70 15.41 7.05 11.49 11.56 12.68 8.68 4.96 7.19

%Savings 33% 55% 45% 50% 76% 100% 62% 92% 28% 20%

8.2.5.1 Measurement Indices

Measurement Indices are summarized as:

Self Su�ciency = 42.3%, Self Consumption = 59.12%, Fairness Index F (X) = 0.975 (Table

8.49, Fairness Index Throughput).
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Table 8.49: Fairness Index Throughput

User Self-Use/Local Buy or ti Demand or oi xi x2i

H1 11.72 38.53 0.30 0.09

H2 9.20 26.71 0.34 0.12

H3 31.30 75.17 0.42 0.17

H4 11.34 30.93 0.37 0.13

H5 13.41 33.23 0.40 0.16

H6 9.77 25.12 0.39 0.15

H7 17.46 44.38 0.39 0.15

H8 8.39 20.69 0.41 0.16

H9 19.41 38.59 0.50 0.25

H10 41.47 78.13 0.53 0.28

Sum 4.06 1.69

8.2.6 Discussions

The overall performance for the models was predictable for this Scenario load set due

to similarity in demand and generation patterns as in scenario case-I and can be referred

in Table 8.50 (Dispatch Performance Summary). The Fixed Demand-Variable Price model

results obtained in section 8.2.1 performed fairly for the second dataset, with moderate

savings and performance index. The community savings was about 28% and Prosumer H5

and H6 generated pro�t from the transaction hence, their savings for recorded as 100%.

Performance indices were average for the model.

The Fixed Demand-Variable Price model tested with only PV charging in section 8.2.2

and improved the savings of the consumer H9 from 4 % to 9% as the dispatch decisions of

Prosumers changed and slight increase in local sales was observed. The overall supply in

the pool was reduced as battery charging was dependent on the surplus PV only. Prosumer

H5 got reduced savings of 65%. Community savings increased to 36%. The self su�ciency

reduced to 24.73% and Self Consumption was better than previous �xed demand model with
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value increased to 37.30%.

Table 8.50: Dispatch Performance Summary

Model Local Pricing

Range(cents)

Community

Savings%

Maximum In-

dividual Sav-

ings%

Minimum In-

dividual Sav-

ings%

SS% SC% F(X)

Fixed Variable Lo-

cal Price

17.6 to 20 28% 100% 4% 30.82% 34.54% 0.844

Fixed Variable Lo-

cal Price (Only PV

Charging)

17.6 to 20 36% 100% 8% 24.73% 37.30% 0.876

Adjusted Demand

Minimum Local

Pricing

13.9 to 14 29% 87% 2% 23.69% 30.90% 0.773

Adjusted Demand

Minimum Local

Pricing (Only PV

Charging)

13.9 to 14 37% 85% 7% 25.49% 39.24% 0.798

VCG Bid based 49.60% 100% 20% 42.30% 59.12% 0.975

The Adjusted Demand-Minimum Local Price model showed reduced performance with

the new adjusted demand of 406.16 kWh. The local pricing achieved was low between 13

cents to 14.5 cents. The model did not perform well in terms of savings (community savings

was to 29% and individual household savings was as low as 2%). Performance metrics were

also less than satisfactory values (SS = 23.60%, SC = 30.9%, F (X) = 0.773).

The Adjusted Demand-Minimum Local Price model tested with only PV Charging im-

proved the community savings moderately with same set of adjusted demand (406.16 kWh)

and pricing (between 13 cents to 14.5 cents). Performance metrics improved mildly with

this model and community savings increasing to 37% compared to previous model having

option of battery charging with grid and local market purchases.

VCG model for second load set showed promising results again with savings ranging

between 62% to 100% for prosumers with PV and Battery (H5, H6, H7, H8) due to revenue

obtained from the sales to grid and local market. The self su�ciency numbers showed



89

improvement as the DERs met major share of the community demand as compared to MILP

models. The slightly less self consumption value indicated less local usage as compared to

total PV and Battery supply in pool.

The Fairness index in MILP models behaved similarly as in scenario case-I ranging in

moderate numbers between 0.773 to 0.876. The Fairness index was 0.975 with VCG model

indicating all users were receiving allocation close to their optimum and fairly equal with

respect to it terms of their demand. The results were expected to be similar in pattern as

in scenario case-I, because they showed similar demand and generation trends.



CHAPTER 9: CONCLUSION

9.1 Observations and Conclusion

In this thesis, an important segment of the Local energy trading was studied which em-

phasized on the consumer welfare inference through pricing and dispatch schema devised

for two sets of load scenarios for a local residential set up in New South Wales Market,

Australia. All the Households in the optimization models considered utility function of in-

creasing savings from the local market usage and reducing grid purchase costs. The bene�ts

of local energy sharing models were evaluated and measured from the community's as well as

individual household's perspective through performance indices. Fewer models have looked

into this aspect in the literature review so far and did not focus much on the fair distribu-

tion of resources with respect to individual demand. It is to be noted that some factors like

environmental bene�ts, battery and PV installation costs, and investment recovery etc, are

not considered in the work, however, they can be included in the later works. Households

having only battery storage were not considered to be feasible option in the trading models

in thesis, as battery charging becomes dependent on purchases from the markets and may

a�ect the savings or revenues. The simulation was performed for small time horizon of 48

hour due to hardware limitations.

Five dispatch mechanisms (four MILP and one Auction based) were implemented with a

pricing strategy. Model performances and social welfare measures were computed to analyze

weight of consumer and prosumers trading results. The simplistic approach for dispatch

used initially was Mixed Integer Linear programming with local price varying between grid

price and tari� price. The model results showed moderate amount of savings by individual

households and community as whole. The dispatch was further modi�ed by introducing an

adjusted demand topology in which local pricing can be minimized each hour by allowing

households to adjust demand within supply pool. However, the performance of this topology
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was not impressive, as it did use the DERs resources e�ciently at the consumer level.

The modi�ed VCG mechanism performed well for both load case scenarios and provided

promising dispatch structure for improving the self su�ciency and fairness in distribution

of the DERs as compared to MILP based dispatch. Numerical results corroborate that the

proposed mechanism was able to meet the requirement of optimal use of DERs in the local

market pool and reduce grid dependency. The model results showed pricing strategy worked

well for the local trading platform for both the MILP and Auction based model. The VCG

model provided suitable savings to consumer and prosumers by setting priority to bidders

and sellers, which distributed savings and incomes proportionally to satisfy their respective

utility functions. Thus, with the given load sets, the market performed better with the

auction model in terms of savings and performance indices. The goal of the local market is

also to cut the peak demand patterns from the curve, a scenario where a consumer having

the major share of the community can capture the entire generation from the Prosumers, but

the higher pricing for such a consumer in the pool will not encourage the sentiment to have

a higher demand and it is assumed that with auction system based on proposed pricing

the consumers will be motivated to their manage demand within the surplus generation

persisting in the pool.

The 100% self su�ciency is obtained if all the local generation is consumed in the local

market, but 100% number is di�cult to achieve especially in a model where trading is

motioned for periodic cycles like 15 minute or 1 hour and this periodic synchronization of

supply and demand is never available. To get surplus battery storage energy to �ll in the

demand supply mismatch can be di�cult sometimes, due to discharging and charging cycles

[19]. Similarly, the self consumption can be achieved as 100%, if all the generation is used

up in the local market, but the continuous �uctuation in the demand and generation does

not make it possible to meet this percentage. Because for particular time periods surplus

demand is not ful�lled by local supply or surplus generation is not used up in local market

and is sold to grid, hence, this periodic mismatch again reduces the cumulative results of self

consumption. From demand versus generation curves in Figure 4.1 and 4.2 we can observe

that, the demand is at peak in the night time and lower during day time. This can be stated
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as one of the reasons of lower Self su�ciency numbers in all the models because of the high

stress on battery charge/discharge cycles and struggle to keep low expenditure for battery

charging, making battery dispatch di�cult in many hourly instances. Thus, this possibly

calls for a higher battery size and higher PV size or changing the demand pattern, because

surplus PV generated was unable to meet both local demand and battery charging in both

the scenario cases. However, budget and space constraints require careful consideration for

planning higher sizes. Changing demand patterns need detailed equipment schedules. As

these details are unavailable for calculating intricate sizes for given datasets, this part not

been considered in suggestion right now.

From above discussions it can be seen that, measurement indexes provide an idea of model

performance in terms of demand and supply available in the pool, and are independent num-

bers. The numbers will vary for di�erent load and generation patterns, thus comparison with

previous proven test results may not feasible as the locations and conditions vary. Perfor-

mance indices are good indicators to quantify improvement in consumption of households

and generation capacities of the DERs and synchronize them suitably by changing consump-

tion timings, manually planning battery dispatch or increasing or decreasing PV capacity

etc. With additional details like equipment schedule, area of household etc., a trade-o�

between measurement indices like Self Su�ciency and Self Consumption can be e�ectively

planned to implement equipment schedule, PV/battery sizes, and a suitable dispatch model

can be �nalized for a given community that can synchronize demand and DERs available at

best capacity.

Social welfare or fairness in distribution is di�cult to measure in a network distribution

especially when the nodes are not homogeneous and have di�erent optimals [84][85]. Similar

structure stands for the energy trading mechanisms where each household has di�erent

optimal demand with limited generation in the local pool, it is not fair to divide the supply

equally among households. One of the interpretation fairness index looks to solve is to

divide the supply based on the required proportion of demand for each household. Fairness

index can be used as a metric to ensure all users are well-o� in the model and pricing and

dispatch can be combined appropriately in the allocation model to develop a fair distribution
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of revenues and savings. It is understood from the given dataset and simulations that

prosumers are likely to have more returns from the trading as they are sellers in the market,

and consumers will have advantage to save expenditure. Thus, Fairness index can be looked

upon as a common metric to ensure that, fair allocation is obtained between consumer and

prosumers from the local market transactions.

Power generation with DERs like solar are highly unpredictable in nature due to inter-

mittency in weather patterns [86]. Many models have come up previously, that look into

demand response and load scheduling by smart appliances. But achieving adjusted demand

could be di�cult in local market conditions, as it is di�cult to predict which household will

produce what amount of energy each hour (from PV) or use what amount of Battery storage

energy, and what percentage energy will be consumed or sold to other household. Hence,

this raises new challenge in handling function and management of equipments, that is to

make them adaptable to volatility, and ensure safety and stability through �exible measures.

This includes integration of fast reacting demand response and storage systems [87], which

need to be physically and computationally robust. But they can be subject to �nancial

constraints for some residential set ups that have limited household budget, limited income,

lesser credit etc. As a result, new and economic methods of energy dispatch and pricing

mechanisms based on auctions, game theory, incentives and centrally controlled models can

be explored for local markets which meet such constraints and can be improved further to

provide �exible solutions suiting di�erent local communities based on their characteristic

usage patterns, physical layout, income, existing utility prices etc.

9.2 Future Work

The thesis used simple dispatch and pricing model in the system which are naive at

this stage and intend to explore economic models of dispatch based on available data and

resources. It does not consider complexity of physical constraints in the system like the

transmission looses, grid congestion's, non-linear characteristics in battery charging/dis-

charging process. Additional �nancial considerations like demand response charges, time of

use tari�, rental cost of transmission services to utility company, policy, regulations, aspects
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have been skipped for now in order to see how the model performance achieved with simple

numerical formulations. The future work can consider including the above constraints for

re�ning the model, however, detailed information is required to realistically merge these

constraints within trading model and needs real time data to simulate, as many such fac-

tors are highly volatile like transmission losses, demand response, etc., and will di�er for

each trading participant and for every dispatch node. The models can also be tested with

di�erent set of prices for peak and o�-peak periods, and use them in pricing strategy to

asses household and community gains. The time horizon can be increased to get monthly

or yearly estimates of savings and verify model performance for more locations, if hardware

requirements are met.
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APPENDIX : PROGRAM CODES

MILP : Fixed Demand-Variable Pricing

1 #Importing libraries

2 import gurobipy as grb

3 from gurobipy import*

4 import pandas as pd

5 import numpy as np

6 import scipy

7 import matplotlib.pyplot as plt

8 import statsmodels.api as sm

9 import seaborn as sns

10 import sklearn

11 import random

12 import statsmodels.api as sm

13 from collections import OrderedDict

14 import collections, functools, operator

15 scipy.set_printoptions(precision = 4, suppress = True)

16 import matplotlib.pyplot as plt

17

18 price=[]

19 #seting up variable price model for each hour

20 #this calculates local market price for each hour

21 def price_model(load):

22 peak_demand=[]

23 from sklearn.preprocessing import MinMaxScaler

24 # load data

25 load=np.array(load)

26 # creating scaler

27 load=load.reshape(8,-1)

28 scaler2 = MinMaxScaler(feature_range=(.104,.4604))

29 scaler2.fit(load)

30 \# applying transform

31 normalized = scaler2.transform(load)

32 normalized

33 normalized_avg=sum(normalized)/8

34 normalized_avg

35 return(normalized_avg)

36

37 #Reading load data file
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38 df=pd.read_csv('C:/Users/smipa/OneDrive/Documents/Scenario_Run/[3]_scenario_2_variable _rates/

demand_data_input.csv')

39

40 #Setting up dataframe parameters for exporting output into a common csv /excel file after all

iterations.

41 dx2=pd.DataFrame()

42 Hourly_total_transaction=pd.DataFrame()

43 col=['demand','buy from  grid','buy locally','buy_charging_locally','buy_charging_from_grid','

pv_sold_locally','pv_sold_to_grid',

44 'use_own_pv','use_own_battery','use_own_pv_charging','sell_battery_locally','sell_battery_to_grid',

45 'CHARGE_DECISION','DISCHARGE_DECISION','DECISION_TO_SELL','DECISION_TO_BUY','Battery Status after 

trading']

46 cx1=pd.DataFrame()

47 cx2=pd.DataFrame()

48 cx3=pd.DataFrame()

49 cx4=pd.DataFrame()

50 cx5=pd.DataFrame()

51 cx6=pd.DataFrame()

52 cx7=pd.DataFrame()

53 cx8=pd.DataFrame()

54

55 #Setting up group varaibles for optmization

56 Population=['C1','C2','C3','C4','C5','C6','C7','C8'] # all population

57 grpA=['C7','C8'] #Consumer (no PV or Battery)

58 grpB=['C1','C2'] #Only PV

59 grpC=['C3','C4','C5','C6'] #Battery+PV

60 grpAnB=['C7','C8','C1','C2']

61 grpBnC=['C1','C2','C3','C4','C5','C6']

62

63 #Prices

64 Pg=.4604 #grid price

65 Pt=.104 #price for selling to grid

66

67 #Setting constraint list ,Optmization model

68 #Also battery dictionary is set up to store battery status after optmization in each hour .

69 #the battery status is used as input in next iteration.

70 constraint=[]

71 opt_model= grb.Model(name="MIP Model")

72 Battery_status={(i):opt_model.addVars(("{0}".format(i) for i in grpC),vtype=grb.GRB.CONTINUOUS,lb

=0,name="Bt_{0}".format(i)) for i in range(0,49) }

73 Battery_initial_status={'C3':20.5,'C4':22.5,'C5':15.8,'C6':21.5}
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74

75 #Setting Battery initial status only for first iteration

76 for i in grpC:

77 Battery_status[0][i]=Battery_initial_status[i]

78

79 capacity={'C3':2,'C4':2,'C5':1,'C6':2} #maximum charge and discharge rate possible from battery.

kept it fixed for this program

80 Battery_Max={'C3':22.5,'C4':22.5,'C5':15.8,'C6':22.5} # Maximum Battery limit

81 Battery_Min={'C3':5,'C4':5,'C5':3,'C6':5} # Minimum Battery limit

82

83 #INITIATING PROGRAM LOOP TO OPTMIZE EACH HOUR

84 for q in range(0,48):

85 Data=df.iloc[q] #READING ELEMENTS OF ROW NUMBER

86 load =[Data[2],Data[3],Data[4],Data[5],Data[6],Data[7],Data[8],Data[9]]

87 #Total Demand and PV specified

88 total_demand=Data[2]+Data[3]+Data[4]+Data[5]+Data[6]+Data[7]+Data[8]+Data[9]

89 total_pv=Data[10]+Data[11]+Data[12]+Data[13]+Data[14]+Data[15]

90 #Calling fubction for price model for this iteration.

91 Pl=price_model(load)

92 #Setting demand and supply variables for use in optmization model

93 P_demand ={'C1':Data[2],'C2':Data[3],'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data[7],'C7

':Data[8],'C8':Data[9]}

94 grpA_demand={'C7':Data[8],'C8':Data[9]}

95 grpB_demand={'C1':Data[2],'C2':Data[3]}

96 grpC_demand={'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data[7]}

97 demand_grpAnB={'C7':Data[8],'C8':Data[9],'C2':Data[2],'C3':Data[3]}

98 demand_grpBnC={'C1':Data[2],'C2':Data[3],'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data

[7]}

99 grpB_supply={'C1':Data[10],'C2':Data[11]}

100 grpC_supply={'C3':Data[12],'C4':Data[13],'C5':Data[14],'C6':Data[15]}

101 supply_grpBnC={'C1':Data[10],'C2':Data[11],'C3':Data[12],'C4':Data[13],'C5':Data[14],'C6':

Data[15]}

102

103 #SETTING DECSION VARIABLES FOR ALLOCATION INTO EACH GROUP

104 #BINARY VARIABLES ARE ALLOTTED 0 or 1 by SOLVER BASED ON DECISION

105 buy_from_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="buy_from_grid_{0}".

format(i)) for i in Population}

106 buy_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="buy_locally_{0}".

format(i)) for i in Population}

107 pv_sold_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="pv_sold_locally_

{0}".format(i)) for i in grpBnC}
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108 pv_sold_to_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="pv_sold_to_grid_

{0}".format(i)) for i in grpBnC}

109 use_own_pv={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="use_own_pv_{0}".format(

i)) for i in grpBnC }

110 use_own_battery={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="use_own_battery_

{0}".format(i)) for i in grpC }

111 buy_charging_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

buy_charging_locally_{0}".format(i)) for i in grpC }

112 buy_charging_from_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

buy_charging_from_grid_{0}".format(i)) for i in grpC }

113 sell_battery_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

sell_local_locally_{0}".format(i)) for i in grpC }

114 sell_battery_to_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

sell_battery_to_grid_{0}".format(i)) for i in grpC }

115 use_own_pv_charging={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

use_own_pv_charging_{0}".format(i)) for i in grpC }

116 CHARGE_DECISION={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="CHARGE_DECISION_{0}".format

(i)) for i in grpC }

117 DISCHARGE_DECISION={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DISCHARGE_DECISION_{0}".

format(i)) for i in grpC }

118 DECISION_TO_SELL={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DECISION_TO_SELL_{0}".

format(i)) for i in grpBnC }

119 DECISION_TO_BUY={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DECISION_TO_BUY_{0}".format

(i)) for i in Population }

120

121 #CONSTRAINTS FOR GROUP _A (ONLY CONSUMER)

122 for i in grpA:

123 constraint={(i):opt_model.addConstr(lhs=(grpA_demand[i]),

124 sense=grb.GRB.EQUAL, rhs=(buy_locally[i]+buy_from_grid[i] ) , name="constraint_{0}".

format(i))}

125

126 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_BUY[i]),

127 sense=grb.GRB.EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

128

129 #CONSTRAINTS FOR GROUP_B (PV ONLY)

130 for i in grpB:

131 constraint={(i):opt_model.addConstr(lhs=(grpB_demand[i]),

132 sense=grb.GRB.EQUAL, rhs=(use_own_pv[i]+buy_from_grid[i]+ buy_locally[i] ) , name="

constraint_{0}".format(i))}

133

134 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_SELL[i] +DECISION_TO_BUY[i]),
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135 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

136

137 constraint={(i):opt_model.addConstr(lhs=(use_own_pv[i]+pv_sold_locally[i]+

pv_sold_to_grid[i]),

138 sense=grb.GRB.EQUAL, rhs=(grpB_supply[i]) , name="constraint_{0}".format(i))}

139

140 constraint={(i):opt_model.addConstr(lhs=(pv_sold_locally[i]+pv_sold_to_grid[i]),

141 sense=grb.GRB.LESS_EQUAL, rhs=(grpB_supply[i]*(DECISION_TO_SELL[i])) , name="

constraint_{0}".format(i))}

142

143 constraint={(i):opt_model.addConstr(lhs=(buy_from_grid[i]+ buy_locally[i]),

144 sense=grb.GRB.LESS_EQUAL, rhs=(grpB_demand[i]*(DECISION_TO_BUY[i])) , name="

constraint_{0}".format(i))}

145

146 #CONSTRAINTS FOR GROUP C (PV+BATTERY)

147 for i in grpC:

148 constraint={(i):opt_model.addConstr(lhs=(grpC_demand[i]),

149 sense=grb.GRB.EQUAL, rhs=(use_own_pv[i]+use_own_battery[i]+buy_locally[i]+

buy_from_grid[i]) , name="constraint_{0}".format(i))}

150

151 constraint={(i):opt_model.addConstr(lhs=(CHARGE_DECISION[i]+DISCHARGE_DECISION[i]),

152 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

153

154 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_SELL[i] +DECISION_TO_BUY[i]),

155 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

156

157 \#SETTING DECISIONS FOR SELL AND BUY TO VARIABLES:

158 constraint={(i):opt_model.addConstr(lhs=(use_own_pv[i]+pv_sold_locally[i]+

pv_sold_to_grid[i]+use_own_pv_charging[i]),

159 sense=grb.GRB.EQUAL, rhs=(grpC_supply[i]) , name="constraint_{0}".format(i))}

160

161 constraint={(i):opt_model.addConstr(lhs=(pv_sold_to_grid[i]+pv_sold_locally[i]+

sell_battery_locally[i]+sell_battery_to_grid[i]),

162 sense=grb.GRB.LESS_EQUAL, rhs=((capacity[i]+grpC_supply[i])*DECISION_TO_SELL[i]) ,

name="constraint_{0}".format(i))}

163

164 constraint={(i):opt_model.addConstr(lhs=(buy_locally[i]+buy_from_grid[i]),

165 sense=grb.GRB.LESS_EQUAL, rhs=((grpC_demand[i])*(DECISION_TO_BUY[i]) ), name="

constraint_{0}".format(i))}

166
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167 constraint={(i):opt_model.addConstr(lhs=(buy_charging_from_grid[i]+

buy_charging_locally[i]),

168 sense=grb.GRB.LESS_EQUAL, rhs=(capacity[i]*DECISION_TO_BUY[i]) , name="constraint_{0}

".format(i))}

169

170 #SETTING CHARGE AND DISCHARGE DECSIONS TO VARIABLES

171 constraint={(i):opt_model.addConstr(lhs=(sell_battery_to_grid[i]+sell_battery_locally

[i]+use_own_battery[i]),

172 sense=grb.GRB.EQUAL, rhs=(capacity[i]*(DISCHARGE_DECISION[i]) ), name="constraint_{0}

".format(i))}

173

174 constraint={(i):opt_model.addConstr(lhs=(buy_charging_from_grid[i]+

buy_charging_locally[i]+use_own_pv_charging[i]),

175 sense=grb.GRB.EQUAL, rhs=(capacity[i]*(CHARGE_DECISION[i])) , name="constraint_{0}".

format(i))}

176

177 \#SETTING BATTERY MAXIMUM AND MINIMUM LIMITS

178 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

179 sense=grb.GRB.LESS_EQUAL, rhs=(Battery_Max[i]) , name="constraint_{0}".format(i))}

180

181 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

182 sense=grb.GRB.GREATER_EQUAL, rhs=(Battery_Min[i]) , name="constraint_{0}".format(i))}

183

184 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

185 sense=grb.GRB.EQUAL, rhs=((Battery_status[q][i] )+(buy_charging_locally[i]+

buy_charging_from_grid[i]+use_own_pv_charging[i])-(sell_battery_locally[i]+

sell_battery_to_grid[i]+use_own_battery[i])) , name="constraint_{0}".format(i))}

186

187 #COMMON CONSTRAINTS FOR ALL GROUPS

188 constraint={opt_model.addConstr(lhs=(grb.quicksum(buy_locally[i] for i in Population)+grb.

quicksum(buy_charging_locally[i] for i in grpC)),

189 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(pv_sold_locally[i] for i in grpBnC)+grb.quicksum(

sell_battery_locally[i] for i in grpC)) , name="constraint_{0}".format(i))}

190

191 constraint={opt_model.addConstr(lhs=(total_demand),

192 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(buy_locally[i] for i in Population)+grb.quicksum(

buy_from_grid[i] for i in Population)+grb.quicksum(use_own_pv[i] for i in grpBnC)+grb.

quicksum(use_own_battery[i] for i in grpC) ), name="constraint_{0}".format(i))}

193

194 constraint={opt_model.addConstr(lhs=(total_pv),
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195 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(pv_sold_locally[i] for i in grpBnC)+grb.quicksum(

pv_sold_to_grid[i] for i in grpBnC)+grb.quicksum(use_own_pv[i] for i in grpBnC)+grb.

quicksum(use_own_pv_charging[i] for i in grpC)) , name="constraint_{0}".format(i))}

196

197 #SETTING OBJECTIVE FUNCTION

198 objective = grb.quicksum(Pg*buy_from_grid[i] for i in Population)+grb.quicksum(Pg*

buy_charging_from_grid[i] for i in grpC)

199

200 #SETTING OBJECTIVE

201 opt_model.ModelSense = grb.GRB.MINIMIZE

202 opt_model.optimize()

203 status = opt_model.status

204

205 # STANDARD OUTPUT DISPLAY

206 print('Date and time' ,Data[0],':',Data[1],'\n\n')

207 print('BUY FROM GRID TO USE:','\n\n',buy_from_grid,'\n\nBUY LOCAL FOR USE:','\n\n',

buy_locally,'\n\n')

208 print('BUY LOCAL CHARGE:','\n\n',buy_charging_locally,'\n\nBUY GRID CHARGE:','\n\n',

buy_charging_from_grid,'\n\n')

209 print('SELL PV TO GRID ','\n\n',pv_sold_to_grid,'\n\nSELL PV LOCALLY :','\n\n',

pv_sold_locally,'\n\n')

210 print('USE OWN PV  ','\n\n',use_own_pv,'\n\n')

211 print('USE BATTERY:','\n\n', use_own_battery,'\n\n USE PV CHARGE BATTERY:','\n\n',

use_own_pv_charging,'\n\n')

212 print('SELL BATTERY LOCALLY:','\n\n', sell_battery_locally,'\n\n SELL BATTERY TO GRID:','\n\

n',sell_battery_to_grid,'\n\n')

213 print('CHARGE DECSION:','\n\n', CHARGE_DECISION,'\n \nDISCHARGE DECSION','\n\n',

DISCHARGE_DECISION,'\n\n')

214 print('SELL DECISION:','\n\n', DECISION_TO_SELL,'\n \nBUY DECISION','\n\n',DECISION_TO_BUY,'

\n\n')

215 for i in grpC:

216 print('BATTERY STATUS:',Battery_status[q+1][i])

217 print('LOCAL PRICE:', Pl)

218 # Setting variables for creating dataframe for output

219 load=[Data[2],Data[3],Data[4],Data[5],Data[6],Data[7],Data[8],Data[9]]

220 local_P=Pl

221 space=[]*8

222

223 # all decision variables converted to list

224 m1=[buy_from_grid[a].x for a in Population]

225 m2=[buy_locally[a].x for a in Population]
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226 m3=[buy_charging_locally[a].x for a in grpC]

227 m4=[buy_charging_from_grid[a].x for a in grpC]

228 m5=[pv_sold_locally[a].x for a in grpBnC]

229 m6=[pv_sold_to_grid[a].x for a in grpBnC]

230 m7=[use_own_pv[a].x for a in grpBnC]

231 m8=[use_own_battery[a].x for a in grpC]

232 m9=[use_own_pv_charging[a].x for a in grpC]

233 m10=[sell_battery_locally[a].x for a in grpC]

234 m11=[sell_battery_to_grid[a].x for a in grpC]

235 m12=[CHARGE_DECISION[a].x for a in grpC]

236 m13=[DISCHARGE_DECISION[a].x for a in grpC]

237 m14=[DECISION_TO_SELL[a].x for a in grpBnC]

238 m15=[DECISION_TO_BUY[a].x for a in Population]

239 m16=[Battery_status[q+1][i].x for i in grpC]

240 z=[0.0]

241

242 # converting unequal rows to equal rows of grp C and grpBnC by putting zero in the missing

location (size 8 for 8 households)

243 for a in range(0,2):

244 m3.extend(z)

245 m3.insert(0,0.0)

246 m4.extend(z)

247 m4.insert(0,0.0)

248 m8.extend(z)

249 m8.insert(0,0.0)

250 m9.extend(z)

251 m9.insert(0,0.0)

252 m10.extend(z)

253 m10.insert(0,0.0)

254 m11.extend(z)

255 m11.insert(0,0.0)

256 m12.extend(z)

257 m12.insert(0,0.0)

258 m13.extend(z)

259 m13.insert(0,0.0)

260 m16.extend(z)

261 m16.insert(0,0.0)

262 m5.extend(z)

263 m6.extend(z)

264 m7.extend(z)

265 m14.extend(z)
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266 #creating columns and index

267 columns =['c1','c2','c3','c4','c5','c6','c7','c8']

268 index = ['demand','buy from grid','buy locally','buy_charging_locally','

buy_charging_from_grid','pv_sold_locally','pv_sold_to_grid',

269 'use_own_pv','use_own_battery','use_own_pv_charging','sell_battery_locally','

sell_battery_to_grid',

270 'CHARGE_DECISION','DISCHARGE_DECISION','DECISION_TO_SELL','DECISION_TO_BUY','Battery Status 

after trading','Local Price','']

271 #Combining lists in to a bigger list

272 L=[load,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15,m16,local_P,space]

273 #creating dataframe for printing transactions in each hour.

274 dx1=pd.DataFrame(L, columns = ['c1','c2','c3','c4','c5','c6','c7','c8'],index=index)

275

276 #Creating another dataframe for calculating all totals for each iteration

277 hourly_cumulative=pd.DataFrame()

278 row_grid_buy=dx1.loc[["buy from grid","buy_charging_from_grid",]]

279 row_grid_sell=dx1.loc[["pv_sold_to_grid","sell_battery_to_grid",]]

280 row_buy_local= dx1.loc[["buy locally","buy_charging_locally"]]

281 row_sell_local= dx1.loc[["pv_sold_locally","sell_battery_locally"]]

282 row_use_pv=dx1.loc[["use_own_pv","use_own_pv_charging"]]

283 row_use_battery=dx1.loc[["use_own_battery"]]

284 dx2=dx2.append(dx1)

285 self_gridbuy_total= row_grid_buy.sum(axis=1)

286 self_localbuy_total= row_buy_local.sum(axis=1)

287 self_gridsell_total=row_grid_sell.sum(axis=1)

288 self_localsell_total= row_sell_local.sum(axis=1)

289 use_pvtotal= row_use_pv.sum(axis=1)

290 use_battery_total=row_use_battery.sum(axis=1)

291 hourly_cumulative['Total demand']=[total_demand]

292 hourly_cumulative['Total PV']=[total_pv]

293 hourly_cumulative['Grid buy total']=[self_gridbuy_total.sum(axis=0)]

294 hourly_cumulative['Local Buy total']=[self_localbuy_total.sum(axis=0)]

295 hourly_cumulative['Grid sell total']=[self_gridsell_total.sum(axis=0)]

296 hourly_cumulative['Local sell total']=[self_localsell_total.sum(axis=0)]

297 hourly_cumulative['Use PV Total ']=[use_pvtotal.sum(axis=0)]

298 hourly_cumulative['Use Battery Total']=[ use_battery_total.sum(axis=0)]

299 hourly_cumulative['Total Purchase costs ']=(self_gridbuy_total.sum(axis=0)*.4604)+(

self_localbuy_total.sum(axis=0)*local_P)

300 hourly_cumulative['Total sales revenue']=(self_gridsell_total.sum(axis=0)*.104)+(

self_localsell_total.sum(axis=0)*local_P)
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301 hourly_cumulative['Net Purchase costs after sales ']=hourly_cumulative['Total Purchase costs

 '].values-hourly_cumulative['Total sales revenue'].values

302 hourly_cumulative['Local Price ']=Pl

303 Hourly_total_transaction=Hourly_total_transaction.append(hourly_cumulative)

304

305 \#Creating dataframe for summing the all iterations of each Household and a separate sum of

all household transactions.

306 for i in range(0,8):

307 H=[load[i],m1[i],m2[i],m3[i],m4[i],m5[i],m6[i],m7[i],m8[i],m9[i],m10[i],m11[i],m12[i

],m13[i],m14[i],m15[i],m16[i]]

308 H=np.transpose(H)

309 H=[H]

310 if i==0:

311 cx1 = cx1.append(H)

312 elif i==1:

313 cx2=cx2.append(H)

314 elif i==2:

315 cx3=cx3.append(H)

316 elif i==3:

317 cx4=cx4.append(H)

318 elif i==4:

319 cx5=cx5.append(H)

320 elif i==5:

321 cx6=cx6.append(H)

322 elif i==6:

323 cx7=cx7.append(H)

324 elif i==7:

325 cx8=cx8.append(H)

326 Cumulative=pd.DataFrame()

327 Cumulative=Cumulative.append(cx1.sum(axis=0),ignore_index=True)

328 Cumulative=Cumulative.append(cx2.sum(axis=0),ignore_index=True)

329 Cumulative=Cumulative.append(cx3.sum(axis=0),ignore_index=True)

330 Cumulative=Cumulative.append(cx4.sum(axis=0),ignore_index=True)

331 Cumulative=Cumulative.append(cx5.sum(axis=0),ignore_index=True)

332 Cumulative=Cumulative.append(cx6.sum(axis=0),ignore_index=True)

333 Cumulative=Cumulative.append(cx7.sum(axis=0),ignore_index=True)

334 Cumulative=Cumulative.append(cx8.sum(axis=0),ignore_index=True)

335 Cumulative.columns=col

336 hours=pd.Series(range(0,48))

337 cx1.columns=col

338 cx1.index=hours
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339 cx1.index.name='Hours'

340 cx2.columns=col

341 cx2.index=hours

342 cx2.index.name='Hours'

343 cx3.columns=col

344 cx3.index=hours

345 cx3.index.name='Hours'

346 cx4.columns=col

347 cx4.index=hours

348 cx4.index.name='Hours'

349 cx5.columns=col

350 cx5.index=hours

351 cx5.index.name='Hours'

352 cx6.columns=col

353 cx6.index=hours

354 cx6.index.name='Hours'

355 cx7.columns=col

356 cx7.index=hours

357 cx7.index.name='Hours'

358 cx8.columns=col

359 cx8.index=hours

360 cx8.index.name='Hours'

361 Cumulative.index=[Population]

362 Cumulative.index.name='Household'

363 \#converting to csv /excel

364 excelpath = 'C:/Users/smipa/OneDrive/Desktop/net_household.xlsx'

365 \# Write dataframes to different sheets

366 \# cx output is for transaction for each household ion the given hours row wise from sheet 1 to 8

367 \#sheet 9 sums the transaction of each house in all hours and presents them together in sheet 9 .

368

369 with pd.ExcelWriter(excelpath) as transaction:

370 cx1.to_excel(transaction,sheet_name='Sheet1')

371 cx2.to_excel(transaction,sheet_name='Sheet2')

372 cx3.to_excel(transaction,sheet_name='Sheet3')

373 cx4.to_excel(transaction,sheet_name='Sheet4')

374 cx5.to_excel(transaction,sheet_name='Sheet5')

375 cx6.to_excel(transaction,sheet_name='Sheet6')

376 cx7.to_excel(transaction,sheet_name='Sheet7')

377 cx8.to_excel(transaction,sheet_name='Sheet8')

378 Cumulative.to_excel(transaction,sheet_name='Sheet9')

379 dx2.to_csv('C:/Users/smipa/OneDrive/Desktop/dx2.csv')



112

380 Hourly_total_transaction.index=hours

381 Hourly_total_transaction.index.name='Hours'

382 Net_Trading=Hourly_total_transaction.sum(axis=0)

383 Net_Trading.name='Total'

384 Hourly_total_transaction=Hourly_total_transaction.append(Net_Trading)

385 Hourly_total_transaction.to_csv('C:/Users/smipa/OneDrive/Desktop/Hourly_total_transaction.csv')

386

387 #dx2=csv file constains output allocation of hourly transactions

388 #net househod has 9 sheets that constains transactions of each household separately in each sheet

their totals in sheet 9.#total transactons has all houshold (buy , sell , use records telling
total local and grid trading penetation for all houses combined)
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MILP : Fixed Demand-Variable Pricing (Only PV)

1 #Importing libraries

2 import gurobipy as grb

3 from gurobipy import*

4 import pandas as pd

5 import numpy as np

6 import scipy

7 import matplotlib.pyplot as plt

8 import statsmodels.api as sm

9 import seaborn as sns

10 import sklearn

11 import random

12 import statsmodels.api as sm

13 from collections import OrderedDict

14 import collections, functools, operator

15 scipy.set_printoptions(precision = 4, suppress = True)

16 import matplotlib.pyplot as plt

17

18 price=[]

19 #seting up variable price model for each hour

20 #this calculates local market price for each hour

21 def price_model(load):

22 peak_demand=[]

23 from sklearn.preprocessing import MinMaxScaler

24 load=np.array(load)

25 # creating scaler

26 load=load.reshape(8,-1)

27 scaler2 = MinMaxScaler(feature_range=(.104,.4604))

28 scaler2.fit(load)

29 # applying transform

30 normalized = scaler2.transform(load)

31 normalized

32 normalized_avg=sum(normalized)/8

33 normalized_avg

34 return(normalized_avg)

35

36 #Reading load data file

37 df=pd.read_csv('C:/Users/smipa/OneDrive/Documents/Scenario_Run/[3]_scenario_2_variable _rates/

demand_data_input.csv')
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38 #Setting up dataframe parameters for exporting output into a common csv /excel file after all

iterations.

39 dx2=pd.DataFrame()

40 Hourly_total_transaction=pd.DataFrame()

41 col=['demand','buy from  grid','buy locally','pv_sold_locally','pv_sold_to_grid',

42 'use_own_pv','use_own_battery','use_own_pv_charging','sell_battery_locally','sell_battery_to_grid',

43 'CHARGE_DECISION','DISCHARGE_DECISION','DECISION_TO_SELL','DECISION_TO_BUY','Battery Status after 

trading']

44 cx1=pd.DataFrame()

45 cx2=pd.DataFrame()

46 cx3=pd.DataFrame()

47 cx4=pd.DataFrame()

48 cx5=pd.DataFrame()

49 cx6=pd.DataFrame()

50 cx7=pd.DataFrame()

51 cx8=pd.DataFrame()

52

53 #Setting up varaible for optmization

54 Population=['C1','C2','C3','C4','C5','C6','C7','C8'] # all population

55 grpA=['C7','C8'] #Consumer (no PV or Battery)

56 grpB=['C1','C2'] #Only PV

57 grpC=['C3','C4','C5','C6'] #Battery+PV

58 grpAnB=['C7','C8','C1','C2']

59 grpBnC=['C1','C2','C3','C4','C5','C6']

60

61 #Prices

62 Pg=.4604 #grid price

63 Pt=.104 #price for selling to grid

64

65 #Setting constraint list ,Optmization model

66 #Also battery dictionary is set up to store battery status after optmization in each hour .

67 #the battery status is used as input in next iteration.

68 constraint=[]

69 opt_model= grb.Model(name="MIP Model")

70 Battery_status={(i):opt_model.addVars(("{0}".format(i) for i in grpC),vtype=grb.GRB.CONTINUOUS,lb

=0,name="Bt_{0}".format(i)) for i in range(0,49) }

71 Battery_initial_status={'C3':20.5,'C4':22.5,'C5':15.8,'C6':21.5}

72

73 #Setting Battery initial status only for first iteration

74 for i in grpC:

75 Battery_status[0][i]=Battery_initial_status[i]
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76

77 Battery_Max={'C3':22.5,'C4':22.5,'C5':15.8,'C6':22.5} # Maximum Battery limit

78 Battery_Min={'C3':5,'C4':5,'C5':3,'C6':5} # Minimum Battery limit

79 char_c={'C3':2,'C4':2,'C5':1,'C6':2}

80 def cap(cd3,cd4,cd5,cd6,cs3,cs4,cs5,cs6):

81 if cs3-cd3>0 and cs3-cd3<2:

82 cap3=cs3-cd3

83 elif cs3-cd3>0 and cs3-cd3>=2:

84 cap3=2

85 else:

86 cap3=0

87 if cs4-cd4 and cs4-cd4<2:

88 cap4=cs4-cd4

89 elif cs4-cd4>0 and cs4-cd4>=2:

90 cap4=2

91 else:

92 cap4=0

93 if cs5-cd5>0 and cs5-cd5<1:

94 cap5=cs5-cd5

95 elif cs5-cd5>0 and cs5-cd5>=1:

96 cap5=1

97 else:

98 cap5=0

99 if cs6-cd6>0 and cs6-cd6<2:

100 cap6=cs6-cd6

101 elif cs6-cd6>0 and cs6-cd6>=2:

102 cap6=2

103 else:

104 cap6=0

105 return cap3,cap4,cap5,cap6

106

107 #INITIATING FOR LOOP TO OPTMIZE EACH HOUR

108 for q in range(0,48):

109 Data=df.iloc[q] #READING ELEMENTS OF ROW NUMBER

110 load =[Data[2],Data[3],Data[4],Data[5],Data[6],Data[7],Data[8],Data[9]]

111 #Total Demand and PV specified

112 total_demand=Data[2]+Data[3]+Data[4]+Data[5]+Data[6]+Data[7]+Data[8]+Data[9]

113 total_pv=Data[10]+Data[11]+Data[12]+Data[13]+Data[14]+Data[15]

114 cap3,cap4,cap5,cap6=cap(Data[4],Data[5],Data[6],Data[7],Data[12],Data[13],Data[14],Data[15])

115 capacity={'C3':cap3,'C4':cap4,'C5':cap5,'C6':cap6}

116 #Calling function for price calculation
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117 Pl=price_model(load)

118

119 #Setting demand and supply variables for use in optmization model

120 P_demand ={'C1':Data[2],'C2':Data[3],'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data[7],'C7

':Data[8],'C8':Data[9]}

121 grpA_demand={'C7':Data[8],'C8':Data[9]}

122 grpB_demand={'C1':Data[2],'C2':Data[3]}

123 grpC_demand={'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data[7]}

124 demand_grpAnB={'C7':Data[8],'C8':Data[9],'C2':Data[2],'C3':Data[3]}

125 demand_grpBnC={'C1':Data[2],'C2':Data[3],'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data

[7]}

126 grpB_supply={'C1':Data[10],'C2':Data[11]}

127 grpC_supply={'C3':Data[12],'C4':Data[13],'C5':Data[14],'C6':Data[15]}

128 supply_grpBnC={'C1':Data[10],'C2':Data[11],'C3':Data[12],'C4':Data[13],'C5':Data[14],'C6':

Data[15]}

129

130 #SETTING DECSION VARIABLES FOR ALLOCATION INTO EACH GROUP

131 #BINARY VARIABLES ARE ALLOTTED 0 or 1 by SOLVER BASED ON DECISION

132 buy_from_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="buy_from_grid_{0}".

format(i)) for i in Population}

133 buy_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="buy_locally_{0}".

format(i)) for i in Population}

134 pv_sold_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="pv_sold_locally_

{0}".format(i)) for i in grpBnC}

135 pv_sold_to_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="pv_sold_to_grid_

{0}".format(i)) for i in grpBnC}

136 use_own_pv={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="use_own_pv_{0}".format(

i)) for i in grpBnC }

137 use_own_battery={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="use_own_battery_

{0}".format(i)) for i in grpC }

138 #buy_charging_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

buy_charging_locally_{0}".format(i)) for i in grpC }

139 #buy_charging_from_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

buy_charging_from_grid_{0}".format(i)) for i in grpC }

140 sell_battery_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

sell_local_locally_{0}".format(i)) for i in grpC }

141 sell_battery_to_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

sell_battery_to_grid_{0}".format(i)) for i in grpC }

142 use_own_pv_charging={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

use_own_pv_charging_{0}".format(i)) for i in grpC }
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143 CHARGE_DECISION={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="CHARGE_DECISION_{0}".format

(i)) for i in grpC }

144 DISCHARGE_DECISION={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DISCHARGE_DECISION_{0}".

format(i)) for i in grpC }

145 DECISION_TO_SELL={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DECISION_TO_SELL_{0}".

format(i)) for i in grpBnC }

146 DECISION_TO_BUY={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DECISION_TO_BUY_{0}".format

(i)) for i in Population }

147

148 #CONSTRAINTS FOR GROUP _A (ONLY CONSUMER)

149 for i in grpA:

150 constraint={(i):opt_model.addConstr(lhs=(grpA_demand[i]),

151 sense=grb.GRB.EQUAL, rhs=(buy_locally[i]+buy_from_grid[i] ) , name="constraint_{0}".

format(i))}

152

153 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_BUY[i]),

154 sense=grb.GRB.EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

155

156 #CONSTRAINTS FOR GROUP_B (PV ONLY)

157 for i in grpB:

158 constraint={(i):opt_model.addConstr(lhs=(grpB_demand[i]),

159 sense=grb.GRB.EQUAL, rhs=(use_own_pv[i]+buy_from_grid[i]+ buy_locally[i] ) , name="

constraint_{0}".format(i))}

160

161 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_SELL[i] +DECISION_TO_BUY[i]),

162 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

163

164 constraint={(i):opt_model.addConstr(lhs=(use_own_pv[i]+pv_sold_locally[i]+

pv_sold_to_grid[i]),

165 sense=grb.GRB.EQUAL, rhs=(grpB_supply[i]) , name="constraint_{0}".format(i))}

166

167 constraint={(i):opt_model.addConstr(lhs=(pv_sold_locally[i]+pv_sold_to_grid[i]),

168 sense=grb.GRB.LESS_EQUAL, rhs=(grpB_supply[i]*(DECISION_TO_SELL[i])) , name="

constraint_{0}".format(i))}

169

170 constraint={(i):opt_model.addConstr(lhs=(buy_from_grid[i]+ buy_locally[i]),

171 sense=grb.GRB.LESS_EQUAL, rhs=(grpB_demand[i]*(DECISION_TO_BUY[i])) , name="

constraint_{0}".format(i))}

172

173 #CONSTRAINTS FOR GROUP C (PV+BATTERY)

174 for i in grpC:
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175 constraint={(i):opt_model.addConstr(lhs=(grpC_demand[i]),

176 sense=grb.GRB.EQUAL, rhs=(use_own_pv[i]+use_own_battery[i]+buy_locally[i]+

buy_from_grid[i]) , name="constraint_{0}".format(i))}

177

178 constraint={(i):opt_model.addConstr(lhs=(CHARGE_DECISION[i]+DISCHARGE_DECISION[i]),

179 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

180

181 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_SELL[i] +DECISION_TO_BUY[i]),

182 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

183

184 #SETTING DECISIONS FOR SELL AND BUY TO VARIABLES:

185 constraint={(i):opt_model.addConstr(lhs=(use_own_pv[i]+pv_sold_locally[i]+

pv_sold_to_grid[i]+use_own_pv_charging[i]),

186 sense=grb.GRB.EQUAL, rhs=(grpC_supply[i]) , name="constraint_{0}".format(i))}

187

188 constraint={(i):opt_model.addConstr(lhs=(pv_sold_to_grid[i]+pv_sold_locally[i]+

sell_battery_locally[i]+sell_battery_to_grid[i]),

189 sense=grb.GRB.LESS_EQUAL, rhs=((char_c[i]+grpC_supply[i])*DECISION_TO_SELL[i]) , name

="constraint_{0}".format(i))}

190

191 constraint={(i):opt_model.addConstr(lhs=(buy_locally[i]+buy_from_grid[i]),

192 sense=grb.GRB.LESS_EQUAL, rhs=((grpC_demand[i])*(DECISION_TO_BUY[i]) ), name="

constraint_{0}".format(i))}

193

194 #SETTING CHARGE AND DISCHARGE DECSIONS TO VARIABLES

195 constraint={(i):opt_model.addConstr(lhs=(sell_battery_to_grid[i]+sell_battery_locally

[i]+use_own_battery[i]),

196 sense=grb.GRB.EQUAL, rhs=(char_c[i]*(DISCHARGE_DECISION[i]) ), name="constraint_{0}".

format(i))}

197

198 constraint={(i):opt_model.addConstr(lhs=(use_own_pv_charging[i]),

199 sense=grb.GRB.EQUAL, rhs=(capacity[i]*(CHARGE_DECISION[i])) , name="constraint_{0}".

format(i))}

200

201 #SETTING BATTERY MAXIMUM AND MINIMUM LIMITS

202

203 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

204 sense=grb.GRB.LESS_EQUAL, rhs=(Battery_Max[i]) , name="constraint_{0}".format(i))}

205

206 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

207 sense=grb.GRB.GREATER_EQUAL, rhs=(Battery_Min[i]) , name="constraint_{0}".format(i))}
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208

209 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

210 sense=grb.GRB.EQUAL, rhs=((Battery_status[q][i] )+use_own_pv_charging[i]-(

sell_battery_locally[i]+sell_battery_to_grid[i]+use_own_battery[i])) , name="

constraint_{0}".format(i))}

211

212 #COMMON CONSTRAINTS FOR ALL GROUPS

213 constraint={opt_model.addConstr(lhs=grb.quicksum(buy_locally[i] for i in Population),

214 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(pv_sold_locally[i] for i in grpBnC)+grb.quicksum(

sell_battery_locally[i] for i in grpC)) , name="constraint_{0}".format(i))}

215

216 constraint={opt_model.addConstr(lhs=(total_demand),

217 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(buy_locally[i] for i in Population)+grb.quicksum(

buy_from_grid[i] for i in Population)+grb.quicksum(use_own_pv[i] for i in grpBnC)+grb.

quicksum(use_own_battery[i] for i in grpC) ), name="constraint_{0}".format(i))}

218

219 constraint={opt_model.addConstr(lhs=(total_pv),

220 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(pv_sold_locally[i] for i in grpBnC)+grb.quicksum(

pv_sold_to_grid[i] for i in grpBnC)+grb.quicksum(use_own_pv[i] for i in grpBnC)+grb.

quicksum(use_own_pv_charging[i] for i in grpC)) , name="constraint_{0}".format(i))}

221

222 #SETTING OBJECTIVE FUNCTION

223 objective = grb.quicksum(Pg*buy_from_grid[i] for i in Population)

224 #SETTING OBJECTIVE

225 opt_model.optimize()

226 status = opt_model.status

227

228 # STANDARD OUTPUT DISPLAY

229 print('Date and time' ,Data[0],':',Data[1],'\n\n')

230 print('BUY FROM GRID TO USE:','\n\n',buy_from_grid,'\n\nBUY LOCAL FOR USE:','\n\n',

buy_locally,'\n\n')

231 # print('BUY LOCAL CHARGE:','\n\n',buy_charging_locally,'\n\nBUY GRID CHARGE:','\n\n',

buy_charging_from_grid,'\n\n')

232 print('SELL PV TO GRID ','\n\n',pv_sold_to_grid,'\n\nSELL PV LOCALLY :','\n\n',

pv_sold_locally,'\n\n')

233 print('USE OWN PV  ','\n\n',use_own_pv,'\n\n')

234 print('USE BATTERY:','\n\n', use_own_battery,'\n\n USE PV CHARGE BATTERY:','\n\n',

use_own_pv_charging,'\n\n')

235 print('SELL BATTERY LOCALLY:','\n\n', sell_battery_locally,'\n\n SELL BATTERY TO GRID:','\n\

n',sell_battery_to_grid,'\n\n')
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236 print('CHARGE DECSION:','\n\n', CHARGE_DECISION,'\n \nDISCHARGE DECSION','\n\n',

DISCHARGE_DECISION,'\n\n')

237 print('SELL DECISION:','\n\n', DECISION_TO_SELL,'\n \nBUY DECISION','\n\n',DECISION_TO_BUY,'

\n\n')

238 for i in grpC:

239 print('BATTERY STATUS:',Battery_status[q+1][i])

240 print('LOCAL PRICE:', Pl)

241

242 # Setting variables for creating dataframe for output

243 load=[Data[2],Data[3],Data[4],Data[5],Data[6],Data[7],Data[8],Data[9]]

244 local_P=Pl

245 space=[]*8

246

247 # all decision variables converted to list

248 m1=[buy_from_grid[a].x for a in Population]

249 m2=[buy_locally[a].x for a in Population]

250 m5=[pv_sold_locally[a].x for a in grpBnC]

251 m6=[pv_sold_to_grid[a].x for a in grpBnC]

252 m7=[use_own_pv[a].x for a in grpBnC]

253 m8=[use_own_battery[a].x for a in grpC]

254 m9=[use_own_pv_charging[a].x for a in grpC]

255 m10=[sell_battery_locally[a].x for a in grpC]

256 m11=[sell_battery_to_grid[a].x for a in grpC]

257 m12=[CHARGE_DECISION[a].x for a in grpC]

258 m13=[DISCHARGE_DECISION[a].x for a in grpC]

259 m14=[DECISION_TO_SELL[a].x for a in grpBnC]

260 m15=[DECISION_TO_BUY[a].x for a in Population]

261 m16=[Battery_status[q+1][i].x for i in grpC]

262 z=[0.0]

263

264 # converting unequal rows to equal rows of grp C and grpBnC by putting zero in the missing

location (size 8 for 8 households)

265 for a in range(0,2):

266 m8.extend(z)

267 m8.insert(0,0.0)

268 m9.extend(z)

269 m9.insert(0,0.0)

270 m10.extend(z)

271 m10.insert(0,0.0)

272 m11.extend(z)

273 m11.insert(0,0.0)
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274 m12.extend(z)

275 m12.insert(0,0.0)

276 m13.extend(z)

277 m13.insert(0,0.0)

278 m16.extend(z)

279 m16.insert(0,0.0)

280 m5.extend(z)

281 m6.extend(z)

282 m7.extend(z)

283 m14.extend(z)

284 #creating columns and index

285 columns =['c1','c2','c3','c4','c5','c6','c7','c8']

286 index = ['demand','buy from grid','buy locally','pv_sold_locally','pv_sold_to_grid',

287 'use_own_pv','use_own_battery','use_own_pv_charging','sell_battery_locally','

sell_battery_to_grid',

288 'CHARGE_DECISION','DISCHARGE_DECISION','DECISION_TO_SELL','DECISION_TO_BUY','Battery Status 

after trading','Local Price','']

289 #Combining lists in to a bigger list

290 L=[load,m1,m2,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15,m16,local_P,space]

291 #creating dataframe for printing transactions in each hour.

292 dx1=pd.DataFrame(L, columns = ['c1','c2','c3','c4','c5','c6','c7','c8'],index=index)

293

294 #Creating another dataframe for calculating all totals for each iteration

295 hourly_cumulative=pd.DataFrame()

296 row_grid_buy=dx1.loc[["buy from grid"]]

297 row_grid_sell=dx1.loc[["pv_sold_to_grid","sell_battery_to_grid",]]

298 row_buy_local= dx1.loc[["buy locally"]]

299 row_sell_local= dx1.loc[["pv_sold_locally","sell_battery_locally"]]

300 row_use_pv=dx1.loc[["use_own_pv","use_own_pv_charging"]]

301 row_use_battery=dx1.loc[["use_own_battery"]]

302 dx2=dx2.append(dx1)

303 self_gridbuy_total= row_grid_buy.sum(axis=1)

304 self_localbuy_total= row_buy_local.sum(axis=1)

305 self_gridsell_total=row_grid_sell.sum(axis=1)

306 self_localsell_total= row_sell_local.sum(axis=1)

307 use_pvtotal= row_use_pv.sum(axis=1)

308 use_battery_total=row_use_battery.sum(axis=1)

309 hourly_cumulative['Total demand']=[total_demand]

310 hourly_cumulative['Total PV']=[total_pv]

311 hourly_cumulative['Grid buy total']=[self_gridbuy_total.sum(axis=0)]

312 hourly_cumulative['Local Buy total']=[self_localbuy_total.sum(axis=0)]
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313 hourly_cumulative['Grid sell total']=[self_gridsell_total.sum(axis=0)]

314 hourly_cumulative['Local sell total']=[self_localsell_total.sum(axis=0)]

315 hourly_cumulative['Use PV Total ']=[use_pvtotal.sum(axis=0)]

316 hourly_cumulative['Use Battery Total']=[ use_battery_total.sum(axis=0)]

317 hourly_cumulative['Total Purchase costs ']=(self_gridbuy_total.sum(axis=0)*.4604)+(

self_localbuy_total.sum(axis=0)*local_P)

318 hourly_cumulative['Total sales revenue']=(self_gridsell_total.sum(axis=0)*.104)+(

self_localsell_total.sum(axis=0)*local_P)

319 hourly_cumulative['Net Purchase costs after sales ']=hourly_cumulative['Total Purchase costs

 '].values-hourly_cumulative['Total sales revenue'].values

320 hourly_cumulative['Local Price ']=Pl

321 Hourly_total_transaction=Hourly_total_transaction.append(hourly_cumulative)

322

323 #Creatng dataframe for summing the all iterations of each Household and a separate sum of

all household transactions.

324 for i in range(0,8):

325 H=[load[i],m1[i],m2[i],m5[i],m6[i],m7[i],m8[i],m9[i],m10[i],m11[i],m12[i],m13[i],m14[i],m15[

i],m16[i]]

326 H=np.transpose(H)

327 H=[H]

328 if i==0:

329 cx1 = cx1.append(H)

330 elif i==1:

331 cx2=cx2.append(H)

332 elif i==2:

333 cx3=cx3.append(H)

334 elif i==3:

335 cx4=cx4.append(H)

336 elif i==4:

337 cx5=cx5.append(H)

338 elif i==5:

339 cx6=cx6.append(H)

340 elif i==6:

341 cx7=cx7.append(H)

342 elif i==7:

343 cx8=cx8.append(H)

344 Cumulative=pd.DataFrame()

345 Cumulative=Cumulative.append(cx1.sum(axis=0),ignore_index=True)

346 Cumulative=Cumulative.append(cx2.sum(axis=0),ignore_index=True)

347 Cumulative=Cumulative.append(cx3.sum(axis=0),ignore_index=True)

348 Cumulative=Cumulative.append(cx4.sum(axis=0),ignore_index=True)
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349 Cumulative=Cumulative.append(cx5.sum(axis=0),ignore_index=True)

350 Cumulative=Cumulative.append(cx6.sum(axis=0),ignore_index=True)

351 Cumulative=Cumulative.append(cx7.sum(axis=0),ignore_index=True)

352 Cumulative=Cumulative.append(cx8.sum(axis=0),ignore_index=True)

353 Cumulative.columns=col

354 hours=pd.Series(range(0,48))

355 cx1.columns=col

356 cx1.index=hours

357 cx1.index.name='Hours'

358 cx2.columns=col

359 cx2.index=hours

360 cx2.index.name='Hours'

361 cx3.columns=col

362 cx3.index=hours

363 cx3.index.name='Hours'

364 cx4.columns=col

365 cx4.index=hours

366 cx4.index.name='Hours'

367 cx5.columns=col

368 cx5.index=hours

369 cx5.index.name='Hours'

370 cx6.columns=col

371 cx6.index=hours

372 cx6.index.name='Hours'

373 cx7.columns=col

374 cx7.index=hours

375 cx7.index.name='Hours'

376 cx8.columns=col

377 cx8.index=hours

378 cx8.index.name='Hours'

379 Cumulative.index=[Population]

380 Cumulative.index.name='Household'

381

382 #converting to csv /excel

383 excelpath = 'C:/Users/smipa/OneDrive/Desktop/net_household.xlsx'

384

385 # Write your dataframes to different sheets

386 # cx output is for transaction for each household ion the given hours row wise from sheet 1 to 8

387 #sheet 9 sums the transaction of each house in all hours and presents them together in sheet 9 .

388

389 with pd.ExcelWriter(excelpath) as transaction:



124

390 cx1.to_excel(transaction,sheet_name='Sheet1')

391 cx2.to_excel(transaction,sheet_name='Sheet2')

392 cx3.to_excel(transaction,sheet_name='Sheet3')

393 cx4.to_excel(transaction,sheet_name='Sheet4')

394 cx5.to_excel(transaction,sheet_name='Sheet5')

395 cx6.to_excel(transaction,sheet_name='Sheet6')

396 cx7.to_excel(transaction,sheet_name='Sheet7')

397 cx8.to_excel(transaction,sheet_name='Sheet8')

398 Cumulative.to_excel(transaction,sheet_name='Sheet9')

399 dx2.to_csv('C:/Users/smipa/OneDrive/Desktop/dx2.csv')

400 Hourly_total_transaction.index=hours

401 Hourly_total_transaction.index.name='Hours'

402 Net_Trading=Hourly_total_transaction.sum(axis=0)

403 Net_Trading.name='Total'

404 Hourly_total_transaction=Hourly_total_transaction.append(Net_Trading)

405 Hourly_total_transaction.to_csv('C:/Users/smipa/OneDrive/Desktop/Hourly_total_transaction.csv')

406

407 #dx2=csv file constains output allocation of hourly transactions

408 #net househod has 9 sheets that constains transactions of each household separately in each sheet

their totals in sheet 9.#total transactons has all houshold (buy , sell , use records telling
total local and grid trading penetation for all houses combined)
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MILP : Adjusted Demand-Minimum Local Price

1 #Importing libraries

2 import gurobipy as grb

3 from gurobipy import*

4 import pandas as pd

5 import numpy as np

6 import scipy

7 import matplotlib.pyplot as plt

8 import statsmodels.api as sm

9 import seaborn as sns

10 import sklearn

11 import random

12 import statsmodels.api as sm

13 from collections import OrderedDict

14 import collections, functools, operator

15 scipy.set_printoptions(precision = 4, suppress = True)

16 import matplotlib.pyplot as plt

17 from scipy.optimize import minimize

18 from sklearn.preprocessing import MinMaxScaler

19 from scipy import*

20

21 price=[]

22 response_load=[]

23 #Simple Demand Adjustment

24 def demand_response(x,Supply):

25 load_i=x

26 constraints = ({'type':'ineq','fun': lambda load:Supply-load[0]+load[1]+load[2]+load[3]+load

[4]+load[5]+load[6]+load[7]},

27 {'type':'ineq','fun': lambda load: load[0]},

28 {'type':'ineq','fun': lambda load: load[1]},

29 {'type':'ineq','fun': lambda load: load[2]},

30 {'type':'ineq','fun': lambda load: load[3]},

31 {'type':'ineq','fun': lambda load: load[4]},

32 {'type':'ineq','fun': lambda load: load[5]},

33 {'type':'ineq','fun': lambda load: load[6]},

34 {'type':'ineq','fun': lambda load: load[7]}

35 )

36 res = minimize(eqn, load_i,constraints=constraints)

37 return res.fun,res.x

38
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39 def eqn(load):

40 price=[]

41 load=np.array(load)

42 # create scaler

43 load=load.reshape(8,-1)

44 from sklearn.preprocessing import StandardScaler

45 scaler2 = MinMaxScaler(feature_range=(.104,.4604))

46 scaler2.fit(load)

47 normalized = scaler2.transform(load)

48 normalized_avg=sum(normalized)/8

49 price.append(normalized_avg)

50 return normalized_avg

51 #Reading load data file

52 df=pd.read_csv('C:/Users/smipa/OneDrive/Documents/Scenario_Run/[4]

_scenario_2_variable_rates_demand_change/demand_data_input.csv')

53

54 #Setting up dataframe parameters for exporting output into a common csv /excel file after all

iterations.

55 dx2=pd.DataFrame()

56 Hourly_total_transaction=pd.DataFrame()

57 col=['demand','buy from  grid','buy locally','buy_charging_locally','buy_charging_from_grid','

pv_sold_locally','pv_sold_to_grid',

58 'use_own_pv','use_own_battery','use_own_pv_charging','sell_battery_locally','sell_battery_to_grid',

59 'CHARGE_DECISION','DISCHARGE_DECISION','DECISION_TO_SELL','DECISION_TO_BUY','Battery Status after 

trading']

60 cx1=pd.DataFrame()

61 cx2=pd.DataFrame()

62 cx3=pd.DataFrame()

63 cx4=pd.DataFrame()

64 cx5=pd.DataFrame()

65 cx6=pd.DataFrame()

66 cx7=pd.DataFrame()

67 cx8=pd.DataFrame()

68

69 #Setting up varaible for optmization

70 Population=['C1','C2','C3','C4','C5','C6','C7','C8'] # all population

71 grpA=['C7','C8'] #Consumer (no PV or Battery)

72 grpB=['C1','C2'] #Only PV

73 grpC=['C3','C4','C5','C6'] #Battery+PV

74 grpAnB=['C7','C8','C1','C2']

75 grpBnC=['C1','C2','C3','C4','C5','C6']
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76

77 #Prices

78 Pg=.4604 #grid price

79 Pt=.104 #price for selling to grid

80

81 #Setting constraint list ,Optmization model

82 #Also battery dictionary is set up to store battery status after optmization in each hour .

83 #the battery status is used as input in next iteration.

84 constraint=[]

85 opt_model= grb.Model(name="MIP Model")

86 Battery_status={(i):opt_model.addVars(("{0}".format(i) for i in grpC),vtype=grb.GRB.CONTINUOUS,lb

=0,name="Bt_{0}".format(i)) for i in range(0,49) }

87 Battery_initial_status={'C3':20.5,'C4':22.5,'C5':15.8,'C6':21.5}

88

89 #Setting Battery initial status only for first iteration

90 for i in grpC:

91 Battery_status[0][i]=Battery_initial_status[i]

92

93 capacity={'C3':2,'C4':2,'C5':1,'C6':2} #maximum charge and discharge rate possible from battery.

kept it fixed for this program

94 Battery_Max={'C3':22.5,'C4':22.5,'C5':15.8,'C6':22.5} # Maximum Battery limit

95 Battery_Min={'C3':5,'C4':5,'C5':3,'C6':5} # Minimum Battery limit

96 Data=pd.DataFrame()

97

98 #INITIATING FOR LOOP TO OPTMIZE EACH HOUR

99 for q in range(0,48):

100 Data2=df.iloc[q] #READING ELEMENTS OF ROW NUMBER

101

102 total_pv=Data2[10]+Data2[11]+Data2[12]+Data2[13]+Data2[14]+Data2[15]

103 x=[Data2[2],Data2[3],Data2[4],Data2[5],Data2[6],Data2[7],Data2[8],Data2[9]]

104 Supply=total_pv+7

105 norm,arr=demand_response(x,Supply)#Calling function to adjust demand

106 new_load=arr

107 price.append(norm)

108 response_load.append(arr)

109 df2=pd.DataFrame()

110 df2=Data2

111 df2

112 df2.iloc[2:10, ] = new_load

113 Data=df2

114 total_demand=Data[2]+Data[3]+Data[4]+Data[5]+Data[6]+Data[7]+Data[8]+Data[9]
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115 Pl=norm

116 #Setting demand and supply variables for use in optmization model

117 P_demand ={'C1':Data[2],'C2':Data[3],'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data[7],'C7

':Data[8],'C8':Data[9]}

118 grpA_demand={'C7':Data[8],'C8':Data[9]}

119 grpB_demand={'C1':Data[2],'C2':Data[3]}

120 grpC_demand={'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data[7]}

121 demand_grpAnB={'C7':Data[8],'C8':Data[9],'C2':Data[2],'C3':Data[3]}

122 demand_grpBnC={'C1':Data[2],'C2':Data[3],'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data

[7]}

123 grpB_supply={'C1':Data[10],'C2':Data[11]}

124 grpC_supply={'C3':Data[12],'C4':Data[13],'C5':Data[14],'C6':Data[15]}

125 supply_grpBnC={'C1':Data[10],'C2':Data[11],'C3':Data[12],'C4':Data[13],'C5':Data[14],'C6':

Data[15]}

126

127 #SETTING DECSION VARIABLES FOR ALLOCATION INTO EACH GROUP

128 #BINARY VARIABLES ARE ALLOTTED 0 or 1 by SOLVER BASED ON DECISION

129

130 buy_from_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="buy_from_grid_{0}".

format(i)) for i in Population}

131 buy_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="buy_locally_{0}".

format(i)) for i in Population}

132 pv_sold_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="pv_sold_locally_

{0}".format(i)) for i in grpBnC}

133 pv_sold_to_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="pv_sold_to_grid_

{0}".format(i)) for i in grpBnC}

134 use_own_pv={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="use_own_pv_{0}".format(

i)) for i in grpBnC }

135 use_own_battery={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="use_own_battery_

{0}".format(i)) for i in grpC }

136 buy_charging_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

buy_charging_locally_{0}".format(i)) for i in grpC }

137 buy_charging_from_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

buy_charging_from_grid_{0}".format(i)) for i in grpC }

138 sell_battery_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

sell_local_locally_{0}".format(i)) for i in grpC }

139 sell_battery_to_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

sell_battery_to_grid_{0}".format(i)) for i in grpC }

140 use_own_pv_charging={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

use_own_pv_charging_{0}".format(i)) for i in grpC }



129

141 CHARGE_DECISION={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="CHARGE_DECISION_{0}".format

(i)) for i in grpC }

142 DISCHARGE_DECISION={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DISCHARGE_DECISION_{0}".

format(i)) for i in grpC }

143 DECISION_TO_SELL={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DECISION_TO_SELL_{0}".

format(i)) for i in grpBnC }

144 DECISION_TO_BUY={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DECISION_TO_BUY_{0}".format

(i)) for i in Population }

145

146 #CONSTRAINTS FOR GROUP _A (ONLY CONSUMER)

147 for i in grpA:

148 constraint={(i):opt_model.addConstr(lhs=(grpA_demand[i]),

149 sense=grb.GRB.EQUAL, rhs=(buy_locally[i]+buy_from_grid[i] ) , name="

constraint_{0}".format(i))}

150

151 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_BUY[i]),

152 sense=grb.GRB.EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

153

154 #CONSTRAINTS FOR GROUP_B (PV ONLY)

155 for i in grpB:

156 constraint={(i):opt_model.addConstr(lhs=(grpB_demand[i]),

157 sense=grb.GRB.EQUAL, rhs=(use_own_pv[i]+buy_from_grid[i]+ buy_locally[i] ) , name="

constraint_{0}".format(i))}

158

159 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_SELL[i] +DECISION_TO_BUY[i]),

160 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

161

162 constraint={(i):opt_model.addConstr(lhs=(use_own_pv[i]+pv_sold_locally[i]+

pv_sold_to_grid[i]),

163 sense=grb.GRB.EQUAL, rhs=(grpB_supply[i]) , name="constraint_{0}".format(i))}

164

165 constraint={(i):opt_model.addConstr(lhs=(pv_sold_locally[i]+pv_sold_to_grid[i]),

166 sense=grb.GRB.LESS_EQUAL, rhs=(grpB_supply[i]*(DECISION_TO_SELL[i])) , name="

constraint_{0}".format(i))}

167

168 constraint={(i):opt_model.addConstr(lhs=(buy_from_grid[i]+ buy_locally[i]),

169 sense=grb.GRB.LESS_EQUAL, rhs=(grpB_demand[i]*(DECISION_TO_BUY[i])) , name="

constraint_{0}".format(i))}

170

171 #CONSTRAINTS FOR GROUP C (PV+BATTERY)

172 for i in grpC:
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173 constraint={(i):opt_model.addConstr(lhs=(grpC_demand[i]),

174 sense=grb.GRB.EQUAL, rhs=(use_own_pv[i]+use_own_battery[i]+buy_locally[i]+

buy_from_grid[i]) , name="constraint_{0}".format(i))}

175

176 constraint={(i):opt_model.addConstr(lhs=(CHARGE_DECISION[i]+DISCHARGE_DECISION[i]),

177 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

178

179 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_SELL[i] +DECISION_TO_BUY[i]),

180 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

181

182 #SETTING DECISIONS FOR SELL AND BUY TO VARIABLES:

183 constraint={(i):opt_model.addConstr(lhs=(use_own_pv[i]+pv_sold_locally[i]+

pv_sold_to_grid[i]+use_own_pv_charging[i]),

184 sense=grb.GRB.EQUAL, rhs=(grpC_supply[i]) , name="constraint_{0}".format(i))}

185

186 constraint={(i):opt_model.addConstr(lhs=(pv_sold_to_grid[i]+pv_sold_locally[i]+

sell_battery_locally[i]+sell_battery_to_grid[i]),

187 sense=grb.GRB.LESS_EQUAL, rhs=((capacity[i]+grpC_supply[i])*DECISION_TO_SELL[i]) ,

name="constraint_{0}".format(i))}

188

189 constraint={(i):opt_model.addConstr(lhs=(buy_locally[i]+buy_from_grid[i]),

190 sense=grb.GRB.LESS_EQUAL, rhs=((grpC_demand[i])*(DECISION_TO_BUY[i]) ), name="

constraint_{0}".format(i))}

191

192 constraint={(i):opt_model.addConstr(lhs=(buy_charging_from_grid[i]+

buy_charging_locally[i]),

193 sense=grb.GRB.LESS_EQUAL, rhs=(capacity[i]*DECISION_TO_BUY[i]) , name="constraint_{0}

".format(i))}

194

195

196 #SETTING CHARGE AND DISCHARGE DECSIONS TO VARIABLES

197 constraint={(i):opt_model.addConstr(lhs=(sell_battery_to_grid[i]+sell_battery_locally

[i]+use_own_battery[i]),

198 sense=grb.GRB.EQUAL, rhs=(capacity[i]*(DISCHARGE_DECISION[i]) ), name="constraint_{0}

".format(i))}

199

200 constraint={(i):opt_model.addConstr(lhs=(buy_charging_from_grid[i]+

buy_charging_locally[i]+use_own_pv_charging[i]),

201 sense=grb.GRB.EQUAL, rhs=(capacity[i]*(CHARGE_DECISION[i])) , name="constraint_{0}".

format(i))}

202
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203 #SETTING BATTERY MAXIMUM AND MINIMUM LIMITS

204 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

205 sense=grb.GRB.LESS_EQUAL, rhs=(Battery_Max[i]) , name="constraint_{0}".format(i))}

206

207 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

208 sense=grb.GRB.GREATER_EQUAL, rhs=(Battery_Min[i]) , name="constraint_{0}".format(i))}

209

210 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

211 sense=grb.GRB.EQUAL, rhs=((Battery_status[q][i] )+(buy_charging_locally[i]+

buy_charging_from_grid[i]+use_own_pv_charging[i])-(sell_battery_locally[i]+

sell_battery_to_grid[i]+use_own_battery[i])) , name="constraint_{0}".format(i))}

212

213 #COMMON CONSTRAINTS FOR ALL GROUPS

214 constraint={opt_model.addConstr(lhs=(grb.quicksum(buy_locally[i] for i in Population)+grb.

quicksum(buy_charging_locally[i] for i in grpC)),

215 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(pv_sold_locally[i] for i in grpBnC)+grb.quicksum(

sell_battery_locally[i] for i in grpC)) , name="constraint_{0}".format(i))}

216

217 constraint={opt_model.addConstr(lhs=(total_demand),

218 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(buy_locally[i] for i in Population)+grb.quicksum(

buy_from_grid[i] for i in Population)+grb.quicksum(use_own_pv[i] for i in grpBnC)+grb.

quicksum(use_own_battery[i] for i in grpC) ), name="constraint_{0}".format(i))}

219

220 constraint={opt_model.addConstr(lhs=(total_pv),

221 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(pv_sold_locally[i] for i in grpBnC)+grb.quicksum(

pv_sold_to_grid[i] for i in grpBnC)+grb.quicksum(use_own_pv[i] for i in grpBnC)+grb.

quicksum(use_own_pv_charging[i] for i in grpC)) , name="constraint_{0}".format(i))}

222

223 #SETTING OBJECTIVE FUNCTION

224 objective = grb.quicksum(Pg*buy_from_grid[i] for i in Population)

225 #SETTING OBJECTIVE

226 opt_model.ModelSense = grb.GRB.MINIMIZE

227 opt_model.optimize()

228 #opt_model.printQuality()

229 status = opt_model.status

230

231 # STANDARD OUTPUT DISPLAY

232 print('Date and time' ,Data[0],':',Data[1],'\n\n')

233 print('BUY FROM GRID TO USE:','\n\n',buy_from_grid,'\n\nBUY LOCAL FOR USE:','\n\n',

buy_locally,'\n\n')
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234 print('BUY LOCAL CHARGE:','\n\n',buy_charging_locally,'\n\nBUY GRID CHARGE:','\n\n',

buy_charging_from_grid,'\n\n')

235 print('SELL PV TO GRID ','\n\n',pv_sold_to_grid,'\n\nSELL PV LOCALLY :','\n\n',

pv_sold_locally,'\n\n')

236 print('USE OWN PV  ','\n\n',use_own_pv,'\n\n')

237 print('USE BATTERY:','\n\n', use_own_battery,'\n\n USE PV CHARGE BATTERY:','\n\n',

use_own_pv_charging,'\n\n')

238 print('SELL BATTERY LOCALLY:','\n\n', sell_battery_locally,'\n\n SELL BATTERY TO GRID:','\n\

n',sell_battery_to_grid,'\n\n')

239 print('CHARGE DECSION:','\n\n', CHARGE_DECISION,'\n \nDISCHARGE DECSION','\n\n',

DISCHARGE_DECISION,'\n\n')

240 print('SELL DECISION:','\n\n', DECISION_TO_SELL,'\n \nBUY DECISION','\n\n',DECISION_TO_BUY,'

\n\n')

241 for i in grpC:

242 print('BATTERY STATUS:',Battery_status[q+1][i])

243 print('LOCAL PRICE:', Pl)

244

245 # Setting variables for creating dataframe for output

246 load=[Data[2],Data[3],Data[4],Data[5],Data[6],Data[7],Data[8],Data[9]]

247 local_P=[Pl]

248 space=[]*8

249

250 # all decision variables converted to list

251 m1=[buy_from_grid[a].x for a in Population]

252 m2=[buy_locally[a].x for a in Population]

253 m3=[buy_charging_locally[a].x for a in grpC]

254 m4=[buy_charging_from_grid[a].x for a in grpC]

255 m5=[pv_sold_locally[a].x for a in grpBnC]

256 m6=[pv_sold_to_grid[a].x for a in grpBnC]

257 m7=[use_own_pv[a].x for a in grpBnC]

258 m8=[use_own_battery[a].x for a in grpC]

259 m9=[use_own_pv_charging[a].x for a in grpC]

260 m10=[sell_battery_locally[a].x for a in grpC]

261 m11=[sell_battery_to_grid[a].x for a in grpC]

262 m12=[CHARGE_DECISION[a].x for a in grpC]

263 m13=[DISCHARGE_DECISION[a].x for a in grpC]

264 m14=[DECISION_TO_SELL[a].x for a in grpBnC]

265 m15=[DECISION_TO_BUY[a].x for a in Population]

266 m16=[Battery_status[q+1][i].x for i in grpC]

267 z=[0.0]

268
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269 # converting unequal rows to equal rows of grp C and grpBnC by putting zero in the missing

location (size 8 for 8 households)

270 for a in range(0,2):

271 m3.extend(z)

272 m3.insert(0,0.0)

273 m4.extend(z)

274 m4.insert(0,0.0)

275 m8.extend(z)

276 m8.insert(0,0.0)

277 m9.extend(z)

278 m9.insert(0,0.0)

279 m10.extend(z)

280 m10.insert(0,0.0)

281 m11.extend(z)

282 m11.insert(0,0.0)

283 m12.extend(z)

284 m12.insert(0,0.0)

285 m13.extend(z)

286 m13.insert(0,0.0)

287 m16.extend(z)

288 m16.insert(0,0.0)

289 m5.extend(z)

290 m6.extend(z)

291 m7.extend(z)

292 m14.extend(z)

293 #creating columns and index

294 columns =['c1','c2','c3','c4','c5','c6','c7','c8']

295 index = ['demand','buy from grid','buy locally','buy_charging_locally','

buy_charging_from_grid','pv_sold_locally','pv_sold_to_grid',

296 'use_own_pv','use_own_battery','use_own_pv_charging','sell_battery_locally','

sell_battery_to_grid',

297 'CHARGE_DECISION','DISCHARGE_DECISION','DECISION_TO_SELL','DECISION_TO_BUY','Battery Status 

after trading','Local Price','']

298 #Combining lists in to a bigger list

299 L=[load,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15,m16,local_P,space]

300 #creating dataframe for printing transactions in each hour.

301 dx1=pd.DataFrame(L, columns = ['c1','c2','c3','c4','c5','c6','c7','c8'],index=index)

302

303 #Creating another dataframe for calculating all totals for each iteration

304 hourly_cumulative=pd.DataFrame()

305 row_grid_buy=dx1.loc[["buy from grid","buy_charging_from_grid",]]
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306 row_grid_sell=dx1.loc[["pv_sold_to_grid","sell_battery_to_grid",]]

307 row_buy_local= dx1.loc[["buy locally","buy_charging_locally"]]

308 row_sell_local= dx1.loc[["pv_sold_locally","sell_battery_locally"]]

309 row_use_pv=dx1.loc[["use_own_pv","use_own_pv_charging"]]

310 row_use_battery=dx1.loc[["use_own_battery"]]

311 self_gridbuy_total= row_grid_buy.sum(axis=1)

312 self_localbuy_total= row_buy_local.sum(axis=1)

313 self_gridsell_total=row_grid_sell.sum(axis=1)

314 self_localsell_total= row_sell_local.sum(axis=1)

315 use_pvtotal= row_use_pv.sum(axis=1)

316 use_battery_total=row_use_battery.sum(axis=1)

317 hourly_cumulative['Total demand']=[total_demand]

318 hourly_cumulative['Total PV']=[total_pv]

319 hourly_cumulative['Grid buy total']=[self_gridbuy_total.sum(axis=0)]

320 hourly_cumulative['Local Buy total']=[self_localbuy_total.sum(axis=0)]

321 hourly_cumulative['Grid sell total']=[self_gridsell_total.sum(axis=0)]

322 hourly_cumulative['Locall sell total']=[self_localsell_total.sum(axis=0)]

323 hourly_cumulative['Use PV Total ']=[use_pvtotal.sum(axis=0)]

324 hourly_cumulative['Use Battery Total']=[ use_battery_total.sum(axis=0)]

325 hourly_cumulative['Total Purchase costs ']=(self_gridbuy_total.sum(axis=0)*.4604)+(

self_localbuy_total.sum(axis=0)*Pl)

326 hourly_cumulative['Total sales revenue']=(self_gridsell_total.sum(axis=0)*.104)+(

self_localsell_total.sum(axis=0)*Pl)

327 hourly_cumulative['Net Purchase costs after sales ']=hourly_cumulative['Total Purchase costs

 '].values-hourly_cumulative['Total sales revenue'].values

328 hourly_cumulative['Local Price ']=Pl

329 Hourly_total_transaction=Hourly_total_transaction.append(hourly_cumulative)

330 dx2=dx2.append(dx1)

331

332 #Creatng dataframe for summing the all iterations of each Household and a separate sum of

all household transactions.

333 for i in range(0,8):

334 H=[load[i],m1[i],m2[i],m3[i],m4[i],m5[i],m6[i],m7[i],m8[i],m9[i],m10[i],m11[i],m12[i

],m13[i],m14[i],m15[i],m16[i]]

335 H=np.transpose(H)

336 H=[H]

337 if i==0:

338 cx1 = cx1.append(H)

339 elif i==1:

340 cx2=cx2.append(H)

341 elif i==2:
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342 cx3=cx3.append(H)

343 elif i==3:

344 cx4=cx4.append(H)

345 elif i==4:

346 cx5=cx5.append(H)

347 elif i==5:

348 cx6=cx6.append(H)

349 elif i==6:

350 cx7=cx7.append(H)

351 elif i==7:

352 cx8=cx8.append(H)

353

354 Cumulative=pd.DataFrame()

355 Cumulative=Cumulative.append(cx1.sum(axis=0),ignore_index=True)

356 Cumulative=Cumulative.append(cx2.sum(axis=0),ignore_index=True)

357 Cumulative=Cumulative.append(cx3.sum(axis=0),ignore_index=True)

358 Cumulative=Cumulative.append(cx4.sum(axis=0),ignore_index=True)

359 Cumulative=Cumulative.append(cx5.sum(axis=0),ignore_index=True)

360 Cumulative=Cumulative.append(cx6.sum(axis=0),ignore_index=True)

361 Cumulative=Cumulative.append(cx7.sum(axis=0),ignore_index=True)

362 Cumulative=Cumulative.append(cx8.sum(axis=0),ignore_index=True)

363 Cumulative.columns=col

364 hours=pd.Series(range(0,48))

365 cx1.columns=col

366 cx1.index=hours

367 cx1.index.name='Hours'

368 cx2.columns=col

369 cx2.index=hours

370 cx2.index.name='Hours'

371 cx3.columns=col

372 cx3.index=hours

373 cx3.index.name='Hours'

374 cx4.columns=col

375 cx4.index=hours

376 cx4.index.name='Hours'

377 cx5.columns=col

378 cx5.index=hours

379 cx5.index.name='Hours'

380 cx6.columns=col

381 cx6.index=hours

382 cx6.index.name='Hours'
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383 cx7.columns=col

384 cx7.index=hours

385 cx7.index.name='Hours'

386 cx8.columns=col

387 cx8.index=hours

388 cx8.index.name='Hours'

389 Cumulative.index=[Population]

390 Cumulative.index.name='Household'

391

392 #converting to csv /excel

393 excelpath = 'C:/Users/smipa/OneDrive/Desktop/net_household.xlsx'

394 # Write your dataframes to different sheets

395 # cx output is for transaction for each household ion the given hours row wise from sheet 1 to 8

396 #sheet 9 sums the transaction of each house in all hours and presents them together in sheet 9 .

397 with pd.ExcelWriter(excelpath) as transaction:

398 cx1.to_excel(transaction,sheet_name='Sheet1')

399 cx2.to_excel(transaction,sheet_name='Sheet2')

400 cx3.to_excel(transaction,sheet_name='Sheet3')

401 cx4.to_excel(transaction,sheet_name='Sheet4')

402 cx5.to_excel(transaction,sheet_name='Sheet5')

403 cx6.to_excel(transaction,sheet_name='Sheet6')

404 cx7.to_excel(transaction,sheet_name='Sheet7')

405 cx8.to_excel(transaction,sheet_name='Sheet8')

406 Cumulative.to_excel(transaction,sheet_name='Sheet9')

407

408 dx2.to_csv('C:/Users/smipa/OneDrive/Desktop/dx2.csv')

409 Hourly_total_transaction.index=hours

410 Hourly_total_transaction.index.name='Hours'

411 Net_Trading=Hourly_total_transaction.sum(axis=0)

412 Net_Trading.name='Total'

413 Hourly_total_transaction=Hourly_total_transaction.append(Net_Trading)

414 Hourly_total_transaction.to_csv('C:/Users/smipa/OneDrive/Desktop/Hourly_total_transaction.csv')

415 updated_demand=pd.DataFrame(np.vstack(response_load))

416 updated_demand.to_csv('C:/Users/smipa/OneDrive/Desktop/update_demand.csv')

417 #dx2=csv file constains output allocation of hourly transactions

418 #net househod has 9 sheets that constains transactions of each household separately in each sheet

their totals in sheet 9.#total transactons has all houshold (buy , sell , use records telling
total local and grid trading penetation for all houses combined)
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MILP : Adjusted Demand-Minimum Local Price (Only PV Charging)

1 ##Importing libraries

2 import gurobipy as grb

3 from gurobipy import*

4 import pandas as pd

5 import numpy as np

6 import scipy

7 import matplotlib.pyplot as plt

8 import statsmodels.api as sm

9 import seaborn as sns

10 import sklearn

11 import random

12 import statsmodels.api as sm

13 from collections import OrderedDict

14 import collections, functools, operator

15 scipy.set_printoptions(precision = 4, suppress = True)

16 import matplotlib.pyplot as plt

17 from scipy.optimize import minimize

18 from sklearn.preprocessing import MinMaxScaler

19 from scipy import*

20 #setting up variable price model for each hour

21 #this calculates local market price for each hour

22 price=[]

23 response_load=[]

24

25 def demand_response(x,Supply):

26 load_i=x

27 constraints = ({'type':'ineq','fun': lambda load:Supply-load[0]+load[1]+load[2]+load[3]+load

[4]+load[5]+load[6]+load[7]},

28 {'type':'ineq','fun': lambda load: load[0]},

29 {'type':'ineq','fun': lambda load: load[1]},

30 {'type':'ineq','fun': lambda load: load[2]},

31 {'type':'ineq','fun': lambda load: load[3]},

32 {'type':'ineq','fun': lambda load: load[4]},

33 {'type':'ineq','fun': lambda load: load[5]},

34 {'type':'ineq','fun': lambda load: load[6]},

35 {'type':'ineq','fun': lambda load: load[7]})

36 res = minimize(eqn, load_i,constraints=constraints)

37 return res.fun,res.x

38
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39 def eqn(load):

40 price=[]

41 load=np.array(load)

42 # create scaler

43 load=load.reshape(8,-1)

44 from sklearn.preprocessing import StandardScaler

45 scaler2 = MinMaxScaler(feature_range=(.104,.4604))

46 scaler2.fit(load)

47 normalized = scaler2.transform(load)

48 normalized_avg=sum(normalized)/8

49 price.append(normalized_avg)

50 return normalized_avg

51

52 #Reading load data file

53 df=pd.read_csv('C:/Users/smipa/OneDrive/Documents/Scenario_Run/[4]

_scenario_2_variable_rates_demand_change/demand_data_input.csv')

54 l_ref=pd.read_csv('C:/Users/smipa/OneDrive/Documents/Scenario_Run/[4]

_scenario_2_variable_rates_demand_change/demand_reference.csv')

55

56 #Setting up dataframe parameters for exporting output into a common csv /excel file after all

iterations.

57 dx2=pd.DataFrame()

58 Hourly_total_transaction=pd.DataFrame()

59 col=['demand','buy from  grid','buy locally','pv_sold_locally','pv_sold_to_grid',

60 'use_own_pv','use_own_battery','use_own_pv_charging','sell_battery_locally','sell_battery_to_grid',

61 'CHARGE_DECISION','DISCHARGE_DECISION','DECISION_TO_SELL','DECISION_TO_BUY','Battery Status after 

trading']

62 cx1=pd.DataFrame()

63 cx2=pd.DataFrame()

64 cx3=pd.DataFrame()

65 cx4=pd.DataFrame()

66 cx5=pd.DataFrame()

67 cx6=pd.DataFrame()

68 cx7=pd.DataFrame()

69 cx8=pd.DataFrame()

70

71 #Setting up varaible for optmization

72 Population=['C1','C2','C3','C4','C5','C6','C7','C8'] # all population

73 grpA=['C7','C8'] #Consumer (no PV or Battery)

74 grpB=['C1','C2'] #Only PV

75 grpC=['C3','C4','C5','C6'] #Battery+PV
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76 grpAnB=['C7','C8','C1','C2']

77 grpBnC=['C1','C2','C3','C4','C5','C6']

78

79

80 #Prices

81 Pg=.4604 #grid price

82 Pt=.104 #price for selling to grid

83

84 #Setting constraint list ,Optmization model

85 #Also battery dictionary is set up to store battery status after optmization in each hour .

86 #the battery status is used as input in next iteration.

87

88 constraint=[]

89 opt_model= grb.Model(name="MIP Model")

90 Battery_status={(i):opt_model.addVars(("{0}".format(i) for i in grpC),vtype=grb.GRB.CONTINUOUS,lb

=0,name="Bt_{0}".format(i)) for i in range(0,49) }

91 Battery_initial_status={'C3':20.5,'C4':22.5,'C5':15.8,'C6':21.5}

92

93 #Setting Battery initial status only for first iteration

94 for i in grpC:

95 Battery_status[0][i]=Battery_initial_status[i]

96

97 char_c={'C3':2,'C4':2,'C5':1,'C6':2} #maximum charge and discharge rate possible from battery.kept

it fixed for this program

98 Battery_Max={'C3':22.5,'C4':22.5,'C5':15.8,'C6':22.5} # Maximum Battery limit

99 Battery_Min={'C3':5,'C4':5,'C5':3,'C6':5} # Minimum Battery limit

100 Data=pd.DataFrame()

101

102 char_c={'C3':2,'C4':2,'C5':1,'C6':2}

103 def cap(cd3,cd4,cd5,cd6,cs3,cs4,cs5,cs6):

104 if cs3-cd3>0 and cs3-cd3<2:

105 cap3=cs3-cd3

106 elif cs3-cd3>0 and cs3-cd3>=2:

107 cap3=2

108 else:

109 cap3=0

110 if cs4-cd4 and cs4-cd4<2:

111 cap4=cs4-cd4

112 elif cs4-cd4>0 and cs4-cd4>=2:

113 cap4=2

114 else:
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115 cap4=0

116 if cs5-cd5>0 and cs5-cd5<1:

117 cap5=cs5-cd5

118 elif cs5-cd5>0 and cs5-cd5>=1:

119 cap5=1

120 else:

121 cap5=0

122 if cs6-cd6>0 and cs6-cd6<2:

123 cap6=cs6-cd6

124 elif cs6-cd6>0 and cs6-cd6>=2:

125 cap6=2

126 else:

127 cap6=0

128 return cap3,cap4,cap5,cap6

129

130 #INITIATING FOR LOOP FOR OPTIMIZING AT EACH HOUR

131 for q in range(0,48):

132 Data2=df.iloc[q] #READING ELEMENTS OF ROW NUMBER

133 ref=l_ref.iloc[q]

134 total_pv=Data2[10]+Data2[11]+Data2[12]+Data2[13]+Data2[14]+Data2[15]

135 x=[Data2[2],Data2[3],Data2[4],Data2[5],Data2[6],Data2[7],Data2[8],Data2[9]]

136 y=ref[0]

137 Supply=total_pv+7

138 norm,arr=demand_response(x,Supply)

139 new_load=arr

140 new_load

141 price.append(norm)

142 response_load.append(arr)

143 df2=pd.DataFrame()

144 df2=Data2

145 df2

146 df2.iloc[2:10, ] = new_load

147 Data=df2

148 total_demand=Data[2]+Data[3]+Data[4]+Data[5]+Data[6]+Data[7]+Data[8]+Data[9]

149 #Calling fubction for price model for this iteration.

150 Pl=norm

151 cap3,cap4,cap5,cap6=cap(Data[4],Data[5],Data[6],Data[7],Data[12],Data[13],Data[14],Data[15])

152 capacity={'C3':cap3,'C4':cap4,'C5':cap5,'C6':cap6}

153 #Setting demand and supply variables for use in optmization model

154 P_demand ={'C1':Data[2],'C2':Data[3],'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data[7],'C7

':Data[8],'C8':Data[9]}
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155 grpA_demand={'C7':Data[8],'C8':Data[9]}

156 grpB_demand={'C1':Data[2],'C2':Data[3]}

157 grpC_demand={'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data[7]}

158 demand_grpAnB={'C7':Data[8],'C8':Data[9],'C2':Data[2],'C3':Data[3]}

159 demand_grpBnC={'C1':Data[2],'C2':Data[3],'C3':Data[4],'C4':Data[5],'C5':Data[6],'C6':Data

[7]}

160 grpB_supply={'C1':Data[10],'C2':Data[11]}

161 grpC_supply={'C3':Data[12],'C4':Data[13],'C5':Data[14],'C6':Data[15]}

162 supply_grpBnC={'C1':Data[10],'C2':Data[11],'C3':Data[12],'C4':Data[13],'C5':Data[14],'C6':

Data[15]}

163

164 #SETTING DECSION VARIABLES FOR ALLOCATION INTO EACH GROUP

165 #BINARY VARIABLES ARE ALLOTTED 0 or 1 by SOLVER BASED ON DECISION

166 buy_from_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="buy_from_grid_{0}".

format(i)) for i in Population}

167 buy_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="buy_locally_{0}".

format(i)) for i in Population}

168 pv_sold_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="pv_sold_locally_

{0}".format(i)) for i in grpBnC}

169 pv_sold_to_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="pv_sold_to_grid_

{0}".format(i)) for i in grpBnC}

170 use_own_pv={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="use_own_pv_{0}".format(

i)) for i in grpBnC }

171 use_own_battery={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="use_own_battery_

{0}".format(i)) for i in grpC }

172 sell_battery_locally={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

sell_local_locally_{0}".format(i)) for i in grpC }

173 sell_battery_to_grid={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

sell_battery_to_grid_{0}".format(i)) for i in grpC }

174 use_own_pv_charging={(i):opt_model.addVar(vtype=grb.GRB.CONTINUOUS,lb=0,name="

use_own_pv_charging_{0}".format(i)) for i in grpC }

175 CHARGE_DECISION={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="CHARGE_DECISION_{0}".format

(i)) for i in grpC }

176 DISCHARGE_DECISION={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DISCHARGE_DECISION_{0}".

format(i)) for i in grpC }

177 DECISION_TO_SELL={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DECISION_TO_SELL_{0}".

format(i)) for i in grpBnC }

178 DECISION_TO_BUY={(i):opt_model.addVar(vtype=grb.GRB.BINARY,name="DECISION_TO_BUY_{0}".format

(i)) for i in Population }

179

180 #CONSTRAINTS FOR GROUP _A (ONLY CONSUMER)
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181 for i in grpA:

182 constraint={(i):opt_model.addConstr(lhs=(grpA_demand[i]),

183 sense=grb.GRB.EQUAL, rhs=(buy_locally[i]+buy_from_grid[i] ) , name="constraint_{0}".

format(i))}

184

185 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_BUY[i]),

186 sense=grb.GRB.EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

187

188 #CONSTRAINTS FOR GROUP_B (PV ONLY)

189 for i in grpB:

190 constraint={(i):opt_model.addConstr(lhs=(grpB_demand[i]),

191 sense=grb.GRB.EQUAL, rhs=(use_own_pv[i]+buy_from_grid[i]+ buy_locally[i] ) , name="

constraint_{0}".format(i))}

192

193 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_SELL[i] +DECISION_TO_BUY[i]),

194 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

195

196 constraint={(i):opt_model.addConstr(lhs=(use_own_pv[i]+pv_sold_locally[i]+

pv_sold_to_grid[i]),

197 sense=grb.GRB.EQUAL, rhs=(grpB_supply[i]) , name="constraint_{0}".format(i))}

198

199 constraint={(i):opt_model.addConstr(lhs=(pv_sold_locally[i]+pv_sold_to_grid[i]),

200 sense=grb.GRB.LESS_EQUAL, rhs=(grpB_supply[i]*(DECISION_TO_SELL[i])) , name="

constraint_{0}".format(i))}

201

202 constraint={(i):opt_model.addConstr(lhs=(buy_from_grid[i]+ buy_locally[i]),

203 sense=grb.GRB.LESS_EQUAL, rhs=(grpB_demand[i]*(DECISION_TO_BUY[i])) , name="

constraint_{0}".format(i))}

204

205 #CONSTRAINTS FOR GROUP C (PV+BATTERY)

206

207 for i in grpC:

208 constraint={(i):opt_model.addConstr(lhs=(grpC_demand[i]),

209 sense=grb.GRB.EQUAL, rhs=(use_own_pv[i]+use_own_battery[i]+buy_locally[i]+

buy_from_grid[i]) , name="constraint_{0}".format(i))}

210

211 constraint={(i):opt_model.addConstr(lhs=(CHARGE_DECISION[i]+DISCHARGE_DECISION[i]),

212 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}

213

214 constraint={(i):opt_model.addConstr(lhs=(DECISION_TO_SELL[i] +DECISION_TO_BUY[i]),

215 sense=grb.GRB.LESS_EQUAL, rhs=(1) , name="constraint_{0}".format(i))}
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216

217 #SETTING DECISIONS FOR SELL AND BUY TO VARIABLES:

218 constraint={(i):opt_model.addConstr(lhs=(use_own_pv[i]+pv_sold_locally[i]+

pv_sold_to_grid[i]+use_own_pv_charging[i]),

219 sense=grb.GRB.EQUAL, rhs=(grpC_supply[i]) , name="constraint_{0}".format(i))}

220

221 constraint={(i):opt_model.addConstr(lhs=(pv_sold_to_grid[i]+pv_sold_locally[i]+

sell_battery_locally[i]+sell_battery_to_grid[i]),

222 sense=grb.GRB.LESS_EQUAL, rhs=((char_c[i]+grpC_supply[i])*DECISION_TO_SELL[i]) , name

="constraint_{0}".format(i))}

223

224 constraint={(i):opt_model.addConstr(lhs=(buy_locally[i]+buy_from_grid[i]),

225 sense=grb.GRB.LESS_EQUAL, rhs=((grpC_demand[i])*(DECISION_TO_BUY[i]) ), name="

constraint_{0}".format(i))}

226

227 #SETTING CHARGE AND DISCHARGE DECSIONS TO VARIABLES

228 constraint={(i):opt_model.addConstr(lhs=(sell_battery_to_grid[i]+sell_battery_locally

[i]+use_own_battery[i]),

229 sense=grb.GRB.EQUAL, rhs=(char_c[i]*(DISCHARGE_DECISION[i]) ), name="constraint_{0}".

format(i))}

230

231 constraint={(i):opt_model.addConstr(lhs=(use_own_pv_charging[i]),

232 sense=grb.GRB.EQUAL, rhs=(capacity[i]*(CHARGE_DECISION[i])) , name="constraint_{0}".

format(i))}

233

234 #SETTING BATTERY MAXIMUM AND MINIMUM LIMITS

235 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

236 sense=grb.GRB.LESS_EQUAL, rhs=(Battery_Max[i]) , name="constraint_{0}".format(i))}

237

238 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

239 sense=grb.GRB.GREATER_EQUAL, rhs=(Battery_Min[i]) , name="constraint_{0}".format(i))}

240

241 constraint={(i):opt_model.addConstr(lhs=(Battery_status[q+1][i]),

242 sense=grb.GRB.EQUAL, rhs=((Battery_status[q][i] )+(use_own_pv_charging[i])-(

sell_battery_locally[i]+sell_battery_to_grid[i]+use_own_battery[i])) , name="

constraint_{0}".format(i))}

243

244 #COMMON CONSTRAINTS FOR ALL GROUPS

245 constraint={opt_model.addConstr(lhs=(grb.quicksum(buy_locally[i] for i in Population)),

246 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(pv_sold_locally[i] for i in grpBnC)+grb.quicksum(

sell_battery_locally[i] for i in grpC)) , name="constraint_{0}".format(i))}
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247

248 constraint={opt_model.addConstr(lhs=(total_demand),

249 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(buy_locally[i] for i in Population)+grb.quicksum(

buy_from_grid[i] for i in Population)+grb.quicksum(use_own_pv[i] for i in grpBnC)+grb.

quicksum(use_own_battery[i] for i in grpC) ), name="constraint_{0}".format(i))}

250

251 constraint={opt_model.addConstr(lhs=(total_pv),

252 sense=grb.GRB.EQUAL, rhs=(grb.quicksum(pv_sold_locally[i] for i in grpBnC)+grb.quicksum(

pv_sold_to_grid[i] for i in grpBnC)+grb.quicksum(use_own_pv[i] for i in grpBnC)+grb.

quicksum(use_own_pv_charging[i] for i in grpC)) , name="constraint_{0}".format(i))}

253

254 #SETTING OBJECTIVE FUNCTION

255 objective = grb.quicksum(Pg*buy_from_grid[i] for i in Population)

256 #SETTING OBJECTIVE

257 opt_model.ModelSense = grb.GRB.MINIMIZE

258 opt_model.optimize()

259 status = opt_model.status

260

261 # STANDARD OUTPUT DISPLAY

262 print('Date and time' ,Data[0],':',Data[1],'\n\n')

263 print('BUY FROM GRID TO USE:','\n\n',buy_from_grid,'\n\nBUY LOCAL FOR USE:','\n\n',

buy_locally,'\n\n')

264 print('USE OWN PV  ','\n\n',use_own_pv,'\n\n')

265 print('USE BATTERY:','\n\n', use_own_battery,'\n\n USE PV CHARGE BATTERY:','\n\n',

use_own_pv_charging,'\n\n')

266 print('SELL BATTERY LOCALLY:','\n\n', sell_battery_locally,'\n\n SELL BATTERY TO GRID:','\n\

n',sell_battery_to_grid,'\n\n')

267 print('CHARGE DECSION:','\n\n', CHARGE_DECISION,'\n \nDISCHARGE DECSION','\n\n',

DISCHARGE_DECISION,'\n\n')

268 print('SELL DECISION:','\n\n', DECISION_TO_SELL,'\n \nBUY DECISION','\n\n',DECISION_TO_BUY,'

\n\n')

269 for i in grpC:

270 print('BATTERY STATUS:',Battery_status[q+1][i])

271 print('LOCAL PRICE:', Pl)

272

273 # Setting variables for creating dataframe for output

274 load=[Data[2],Data[3],Data[4],Data[5],Data[6],Data[7],Data[8],Data[9]]

275 local_P=[Pl]

276 space=[]*8

277

278 # all decision variables converted to list
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279 m1=[buy_from_grid[a].x for a in Population]

280 m2=[buy_locally[a].x for a in Population]

281 m5=[pv_sold_locally[a].x for a in grpBnC]

282 m6=[pv_sold_to_grid[a].x for a in grpBnC]

283 m7=[use_own_pv[a].x for a in grpBnC]

284 m8=[use_own_battery[a].x for a in grpC]

285 m9=[use_own_pv_charging[a].x for a in grpC]

286 m10=[sell_battery_locally[a].x for a in grpC]

287 m11=[sell_battery_to_grid[a].x for a in grpC]

288 m12=[CHARGE_DECISION[a].x for a in grpC]

289 m13=[DISCHARGE_DECISION[a].x for a in grpC]

290 m14=[DECISION_TO_SELL[a].x for a in grpBnC]

291 m15=[DECISION_TO_BUY[a].x for a in Population]

292 m16=[Battery_status[q+1][i].x for i in grpC]

293 z=[0.0]

294

295 # converting unequal rows to equal rows of grp C and grpBnC by putting zero in the missing

location (size 8 for 8 households)

296 for a in range(0,2):

297 m8.extend(z)

298 m8.insert(0,0.0)

299 m9.extend(z)

300 m9.insert(0,0.0)

301 m10.extend(z)

302 m10.insert(0,0.0)

303 m11.extend(z)

304 m11.insert(0,0.0)

305 m12.extend(z)

306 m12.insert(0,0.0)

307 m13.extend(z)

308 m13.insert(0,0.0)

309 m16.extend(z)

310 m16.insert(0,0.0)

311 m5.extend(z)

312 m6.extend(z)

313 m7.extend(z)

314 m14.extend(z)

315

316 #creating columns and index

317 columns =['c1','c2','c3','c4','c5','c6','c7','c8']

318 index = ['demand','buy from grid','buy locally','pv_sold_locally','pv_sold_to_grid',
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319 'use_own_pv','use_own_battery','use_own_pv_charging','sell_battery_locally','

sell_battery_to_grid',

320 'CHARGE_DECISION','DISCHARGE_DECISION','DECISION_TO_SELL','DECISION_TO_BUY','Battery Status 

after trading','Local Price',''] #Combining lists in to a bigger list

321

322 L=[load,m1,m2,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15,m16,local_P,space]

323 #creating dataframe for printing transactions in each hour.

324 dx1=pd.DataFrame(L, columns = ['c1','c2','c3','c4','c5','c6','c7','c8'],index=index)

325

326 #Creating another dataframe for calculating all totals for each iteration

327 hourly_cumulative=pd.DataFrame()

328 row_grid_buy=dx1.loc[["buy from grid"]]

329 row_grid_sell=dx1.loc[["pv_sold_to_grid","sell_battery_to_grid",]]

330 row_buy_local= dx1.loc[["buy locally"]]

331 row_sell_local= dx1.loc[["pv_sold_locally","sell_battery_locally"]]

332 row_use_pv=dx1.loc[["use_own_pv","use_own_pv_charging"]]

333 row_use_battery=dx1.loc[["use_own_battery"]]

334 self_gridbuy_total= row_grid_buy.sum(axis=1)

335 self_localbuy_total= row_buy_local.sum(axis=1)

336 self_gridsell_total=row_grid_sell.sum(axis=1)

337 self_localsell_total= row_sell_local.sum(axis=1)

338 use_pvtotal= row_use_pv.sum(axis=1)

339 use_battery_total=row_use_battery.sum(axis=1)

340 hourly_cumulative['Total demand']=[total_demand]

341 hourly_cumulative['Total PV']=[total_pv]

342 hourly_cumulative['Grid buy total']=[self_gridbuy_total.sum(axis=0)]

343 hourly_cumulative['Local Buy total']=[self_localbuy_total.sum(axis=0)]

344 hourly_cumulative['Grid sell total']=[self_gridsell_total.sum(axis=0)]

345 hourly_cumulative['Locall sell total']=[self_localsell_total.sum(axis=0)]

346 hourly_cumulative['Use PV Total ']=[use_pvtotal.sum(axis=0)]

347 hourly_cumulative['Use Battery Total']=[ use_battery_total.sum(axis=0)]

348 hourly_cumulative['Total Purchase costs ']=(self_gridbuy_total.sum(axis=0)*.4604)+(

self_localbuy_total.sum(axis=0)*Pl)

349 hourly_cumulative['Total sales revenue']=(self_gridsell_total.sum(axis=0)*.104)+(

self_localsell_total.sum(axis=0)*Pl)

350 hourly_cumulative['Net Purchase costs after sales ']=hourly_cumulative['Total Purchase costs

 '].values-hourly_cumulative['Total sales revenue'].values

351 hourly_cumulative['Local Price ']=Pl

352 Hourly_total_transaction=Hourly_total_transaction.append(hourly_cumulative)

353 dx2=dx2.append(dx1)

354
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355 #Creatng dataframe for summing the all iterations of each Household and a separate sum of

all household transactions.

356 for i in range(0,8):

357 H=[load[i],m1[i],m2[i],m5[i],m6[i],m7[i],m8[i],m9[i],m10[i],m11[i],m12[i],m13[i],m14[i],m15[

i],m16[i]]

358 H=np.transpose(H)

359 H=[H]

360 if i==0:

361 cx1 = cx1.append(H)

362 elif i==1:

363 cx2=cx2.append(H)

364 elif i==2:

365 cx3=cx3.append(H)

366 elif i==3:

367 cx4=cx4.append(H)

368 elif i==4:

369 cx5=cx5.append(H)

370 elif i==5:

371 cx6=cx6.append(H)

372 elif i==6:

373 cx7=cx7.append(H)

374 elif i==7:

375 cx8=cx8.append(H)

376 Cumulative=pd.DataFrame()

377 Cumulative=Cumulative.append(cx1.sum(axis=0),ignore_index=True)

378 Cumulative=Cumulative.append(cx2.sum(axis=0),ignore_index=True)

379 Cumulative=Cumulative.append(cx3.sum(axis=0),ignore_index=True)

380 Cumulative=Cumulative.append(cx4.sum(axis=0),ignore_index=True)

381 Cumulative=Cumulative.append(cx5.sum(axis=0),ignore_index=True)

382 Cumulative=Cumulative.append(cx6.sum(axis=0),ignore_index=True)

383 Cumulative=Cumulative.append(cx7.sum(axis=0),ignore_index=True)

384 Cumulative=Cumulative.append(cx8.sum(axis=0),ignore_index=True)

385 Cumulative.columns=col

386 hours=pd.Series(range(0,48))

387 cx1.columns=col

388 cx1.index=hours

389 cx1.index.name='Hours'

390 cx2.columns=col

391 cx2.index=hours

392 cx2.index.name='Hours'

393 cx3.columns=col
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394 cx3.index=hours

395 cx3.index.name='Hours'

396 cx4.columns=col

397 cx4.index=hours

398 cx4.index.name='Hours'

399 cx5.columns=col

400 cx5.index=hours

401 cx5.index.name='Hours'

402 cx6.columns=col

403 cx6.index=hours

404 cx6.index.name='Hours'

405 cx7.columns=col

406 cx7.index=hours

407 cx7.index.name='Hours'

408 cx8.columns=col

409 cx8.index=hours

410 cx8.index.name='Hours'

411 Cumulative.index=[Population]

412 Cumulative.index.name='Household'

413

414 #converting to csv /excel

415 excelpath = 'C:/Users/smipa/OneDrive/Desktop/net_household.xlsx'

416 # Write your dataframes to different sheets

417 # cx output is for transaction for each household ion the given hours row wise from sheet 1 to 8

418 #sheet 9 sums the transaction of each house in all hours and presents them together in sheet 9 .

419 with pd.ExcelWriter(excelpath) as transaction:

420 cx1.to_excel(transaction,sheet_name='Sheet1')

421 cx2.to_excel(transaction,sheet_name='Sheet2')

422 cx3.to_excel(transaction,sheet_name='Sheet3')

423 cx4.to_excel(transaction,sheet_name='Sheet4')

424 cx5.to_excel(transaction,sheet_name='Sheet5')

425 cx6.to_excel(transaction,sheet_name='Sheet6')

426 cx7.to_excel(transaction,sheet_name='Sheet7')

427 cx8.to_excel(transaction,sheet_name='Sheet8')

428 Cumulative.to_excel(transaction,sheet_name='Sheet9')

429 dx2.to_csv('C:/Users/smipa/OneDrive/Desktop/dx2.csv')

430 Hourly_total_transaction.index=hours

431 Hourly_total_transaction.index.name='Hours'

432 Net_Trading=Hourly_total_transaction.sum(axis=0)

433 Net_Trading.name='Total'

434 Hourly_total_transaction=Hourly_total_transaction.append(Net_Trading)
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435 Hourly_total_transaction.to_csv('C:/Users/smipa/OneDrive/Desktop/Hourly_total_transaction.csv')

436 updated_demand=pd.DataFrame(np.vstack(response_load))

437 updated_demand.to_csv('C:/Users/smipa/OneDrive/Desktop/update_demand.csv')

438

439 #dx2=csv file constains output allocation of hourly transactions

440 #net househod has 9 sheets that constains transactions of each household separtely in each sheet

their totals in sheet 9.#total transactons has all houshold (buy , sell , use records telling
total local and grid trading penetation for all houses combined)
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VCG Auction

1 import gurobipy as grb

2 import pandas as pd

3 import numpy as np

4 import itertools

5 import scipy

6 import matplotlib.pyplot as plt

7 import statsmodels.api as sm

8 import seaborn as sns

9 import sklearn

10 import random

11 import statsmodels.api as sm

12 from collections import OrderedDict

13 import collections, functools, operator

14 scipy.set_printoptions(precision = 4, suppress = True)

15 from itertools import zip_longest

16 from collections import OrderedDict

17 import collections, functools, operator

18 from itertools import zip_longest

19 from collections import deque

20 #Setting up Group Transactions for supply and demand surplus

21 def GrpA(demand):

22 net_demand=demand

23 return net_demand

24

25 def GrpB(demand,pv):

26 if pv==0:

27 surplus_pv=0

28 net_demand=demand

29 use_own_pv=0

30 return demand,pv,net_demand,surplus_pv,use_own_pv

31

32

33 elif pv>0 and pv>demand:

34 use_own_pv=demand

35 surplus_pv=pv-demand

36 net_demand=0

37 return demand,pv,net_demand,surplus_pv,use_own_pv

38

39
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40 elif pv>0 and pv<=demand:

41 use_own_pv=pv

42 net_demand=demand-pv

43 surplus_pv=0

44 return demand,pv,net_demand,surplus_pv,use_own_pv

45

46 def GrpC(demand,pv,status,minimum):

47 #when no battery no PV

48 if pv==0 and status<=2:

49 surplus_pv=0

50 net_demand=demand

51 use_own_pv=0

52 use_own_pv_charging=0

53 use_own_battery=0

54 battery_surplus=0

55 status=status

56 return demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,

use_own_battery,battery_surplus,status

57

58 #PV>0 , demand is more than PV and battery under minimum limit . No buying or selling as

demand is met

59 elif pv>0 and demand-pv>0 and status<=2:

60 use_own_pv=pv

61 net_demand=demand-pv

62 surplus_pv=0

63 use_own_battery=0

64 status=status

65 battery_surplus=0

66 use_own_pv_charging=0

67 return demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,use_own_battery

,battery_surplus,status

68

69 #surplus pv and demand is less than PV

70 elif pv>0 and pv-demand>0:

71 surplus_pv=pv-demand

72 use_own_pv=demand

73 net_demand=0 # all demand is met by PV

74

75 # Battery needs charging and surplus_Pv> charge limit of 2 kWh

76 if surplus_pv>0 and status<=2 and surplus_pv>=minimum:

77 status=status+minimum
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78 use_own_pv_charging=minimum

79 surplus_pv=surplus_pv-minimum

80 use_own_battery=0

81 battery_surplus=0

82 return demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,

use_own_battery,battery_surplus,status

83 # Battery needs charging and surplus_Pv < charge limit of 2 kWh

84 elif surplus_pv>0 and status<=2 and surplus_pv<minimum: #charging pv <2

85 status=status+surplus_pv

86 use_own_pv_charging=surplus_pv

87 surplus_pv=0 #all PV used up here , demand also fulfilled , no role in market

88 use_own_battery=0

89 battery_surplus=0

90 return demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,

use_own_battery,battery_surplus,status

91

92

93 #surplus pv and battery dos not need charging ,Prosumer is seller here

94 elif surplus_pv>0 and status>2 :

95 surplus_pv=surplus_pv

96 use_own_pv_charging=0

97 use_own_battery=0

98 status=status

99 battery_surplus=0

100 return demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,

use_own_battery,battery_surplus,status

101

102 #demand is more than pv , PV all used up to meet demand.

103 elif pv>0 and demand-pv>0:

104 net_demand= demand-pv # still some demand to be met

105 surplus_pv=0

106 use_own_pv=pv

107

108 #demand to be met by battery if available , no charging

109 if status>2 and net_demand<minimum: #when demand is less than discharge limit

110 use_own_battery=net_demand

111 battery_surplus=minimum-net_demand

112 status=status-(minimum)

113 net_demand=0

114 use_own_pv_charging=0



153

115 return demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,

use_own_battery,battery_surplus,status

116

117 elif status>2 and net_demand>=minimum: #when demand is more than discharge limit

118 net_demand=net_demand-minimum

119 use_own_battery=minimum

120 battery_surplus=0

121 status=status-minimum

122 use_own_pv_charging=0

123 return demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,

use_own_battery,battery_surplus,status

124

125

126 #demand to be met by battery only as No PV is available

127 elif pv==0 and status>2 and demand<minimum: #when demand is less than discharge limit

128 pv=pv

129 use_own_pv=pv

130 surplus_pv=0

131 battery_surplus=minimum-demand

132 net_demand=0

133 use_own_battery=demand

134 status=status-(minimum)

135 net_demand=0

136 use_own_pv_charging=0

137 return demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,use_own_battery

,battery_surplus,status

138

139 elif pv==0 and status>2 and demand>=minimum: #when demand is more than discharge limit

140 pv=pv

141 use_own_pv=pv

142 surplus_pv=0

143 net_demand=demand-minimum

144 battery_surplus=0

145 use_own_battery=minimum

146 status=status-minimum

147 use_own_pv_charging=0

148 return demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,use_own_battery

,battery_surplus,status

149

150 dg = pd.DataFrame(columns=['Supplier','supply','demand','Buyer','net supply','net demand','Energy 

sold','price','revenue/cost'])
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151 acc=pd.DataFrame(columns=['Cost','Revenue','local_sell'])

152 grid=pd.DataFrame(pd.DataFrame(columns=['Cost','Revenue','grid_sell']))

153 #Battery Initial status

154 prev_status=[22.5,22.5,15.8,22.5]

155

156 #Setting up varaibles for grouping assignment

157 Population=['C1','C2','C3','C4','C5','C6','C7','C8'] # all population

158 grpA=['C7','C8'] #Consumer (no PV or Battery)

159 grpB=['C1','C2'] #Only PV

160 grpC=['C3','C4','C5','C6'] #Battery+PV

161 grpAnB=['C7','C8','C1','C2']

162 grpBnC=['C1','C2','C3','C4','C5','C6']

163

164 #Prices

165 Pg=.4604 #grid price

166 Pt=.104 #price for selling to grid

167

168 #All self transactions defined in fucntions

169 df=pd.read_csv('C:/Users/smipa/OneDrive/Documents/Scenario_Run/[3]_scenario_2_variable _rates/

demand_data_input.csv')

170 dc1=pd.DataFrame()

171 dc2=pd.DataFrame()

172 dc3=pd.DataFrame()

173 dc4=pd.DataFrame()

174 dc5=pd.DataFrame()

175 dc6=pd.DataFrame()

176 dc7=pd.DataFrame()

177 dc8=pd.DataFrame()

178

179 for q in range(0,48):

180 #Reading data

181 Data=df.iloc[q]

182 DataGrpA_demand=[Data[8],Data[9]]

183 DataGrpB_demand=[Data[2],Data[3]]

184 DataGrpB_supply=[Data[10],Data[11]]

185 DataGrpC_demand=[Data[4],Data[5],Data[6],Data[7]]

186 DataGrpC_supply=[Data[12],Data[13],Data[14],Data[15]]

187 limit=[2,2,1,2]

188 #Total Demand and PV specified

189 total_demand=Data[2]+Data[3]+Data[4]+Data[5]+Data[6]+Data[7]+Data[8]+Data[9]

190 total_pv=Data[10]+Data[11]+Data[12]+Data[13]+Data[14]+Data[15]
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191 countB=0

192 for (i,j) in itertools.zip_longest(DataGrpB_demand, DataGrpB_supply):

193 demand,pv,net_demand,surplus_pv,use_own_pv=GrpB(i,j)

194 LB=[demand,pv,net_demand,surplus_pv,use_own_pv]

195 if countB==0:

196 dc1 = dc1.append([LB],ignore_index=True)

197 countB=countB+1

198 elif countB==1 :

199 dc2=dc2.append([LB],ignore_index=True)

200

201 countC=0

202 for (i,j,k,l) in zip(DataGrpC_demand, DataGrpC_supply,prev_status,limit):

203 demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,use_own_battery,

battery_surplus,status=GrpC(i,j,k,l)

204 LC=[ demand,pv,net_demand,surplus_pv,use_own_pv,use_own_pv_charging,use_own_battery,

battery_surplus,status]

205

206 if countC==0:

207 dc3 = dc3.append([LC],ignore_index=True)

208 prev_status[0]=status

209 countC=countC+1

210 elif countC==1 :

211 dc4=dc4.append([LC],ignore_index=True)

212 prev_status[1]=status

213 countC=countC+1

214 elif countC==2 :

215 dc5=dc5.append([LC],ignore_index=True)

216 prev_status[2]=status

217 countC=countC+1

218 prev_status[2]=status

219 elif countC==3 :

220 dc6=dc6.append([LC],ignore_index=True)

221 prev_status[3]=status

222

223 countA=0

224 for i in itertools.zip_longest(DataGrpA_demand):

225 net_demand=GrpA(i)

226 LA=[net_demand]

227 if countA==0:

228 dc7 = dc7.append(LA,ignore_index=True)

229 countA=countA+1
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230 elif countA==1 :

231 dc8=dc8.append(LA,ignore_index=True)

232

233 col1=['demand','pv','net_demand','surplus_pv','use_own_pv']

234 col2=['demand','pv','net_demand','surplus_pv','use_own_pv','use_own_pv_charging','

use_own_battery','battery_surplus','status']

235 col3=['net_demand']

236 dc1.columns=col1

237 dc2.columns=col1

238 dc3.columns=col2

239 dc4.columns=col2

240 dc5.columns=col2

241 dc6.columns=col2

242 dc7.columns=col3

243 dc8.columns=col3

244 excelpath = 'C:/Users/smipa/OneDrive/Desktop/self_transaction.xlsx'

245 with pd.ExcelWriter(excelpath) as trans:

246 dc1.to_excel(trans,sheet_name='Sheet1')

247 dc2.to_excel(trans,sheet_name='Sheet2')

248 dc3.to_excel(trans,sheet_name='Sheet3')

249 dc4.to_excel(trans,sheet_name='Sheet4')

250 dc5.to_excel(trans,sheet_name='Sheet5')

251 dc6.to_excel(trans,sheet_name='Sheet6')

252 dc7.to_excel(trans,sheet_name='Sheet7')

253 dc8.to_excel(trans,sheet_name='Sheet8')

254

255 for n in range(0,48):

256 row1=dc1.iloc[n]

257 row2=dc2.iloc[n]

258 row3=dc3.iloc[n]

259 row4=dc4.iloc[n]

260 row5=dc5.iloc[n]

261 row6=dc6.iloc[n]

262 row7=dc7.iloc[n]

263 row8=dc8.iloc[n]

264 total_net_demand=row1[2]+row2[2]+row3[2]+row4[2]+row5[2]+row6[2]+row7[0]+row8[0]

265 total_net_supply=row1[3]+row2[3]+row3[3]+row3[7]+row4[3]+row4[7]+row5[3]+row5[7]+row6[3]+

row6[7]

266 total_net_demand

267 total_net_supply

268 #buyer/seller classification and buyers bid
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269 buyer={}

270 seller={}

271 bid={}

272 #c1

273 if row1[2]>0 and row1[3]==0:

274 buyer.update({'buyer_c1':row1[2]})

275 elif row1[2]==0 and row1[3]>0:

276 seller.update({'seller_c1':row1[3]})

277 #c2

278 if row2[2]>0 and row2[3]==0:

279 buyer.update({'buyer_c2':row2[2]})

280 elif row2[2]==0 and row2[3]>0:

281 seller.update({'seller_c2':row2[3]})

282 #c3

283 if row3[2]>0 and row3[3]==0 and row3[7]==0:

284 buyer.update({'buyer_c3':row3[2]})

285 if row3[2]==0 and row3[3]>0 or row3[7]>0:

286 seller.update({'seller_c3':(row3[3]+row3[7])})

287 #c4

288 if row4[2]>0 and row4[3]==0 and row4[7]==0:

289 buyer.update({'buyer_c4':row4[2]})

290 if row4[2]==0 and row4[3]>0 or row4[7]>0:

291 seller.update({'seller_c4':(row4[3]+row4[7])})

292 #c5

293 if row5[2]>0 and row5[3]==0 and row5[7]==0:

294 buyer.update({'buyer_c5':row5[2]})

295 if row5[2]==0 and row5[3]>0 or row5[7]>0:

296 seller.update({'seller_c5':(row5[3]+row5[7])})

297 #c6

298 if row6[2]>0 and row6[3]==0 and row6[7]==0:

299 buyer.update({'buyer_c6':row6[2]})

300 if row6[2]==0 and row6[3]>0 or row6[7]>0:

301 seller.update({'seller_c6':(row6[3]+row6[7])})

302 #c7

303 buyer.update({'buyer_c7':row7[0]})

304 #c8

305 buyer.update({'buyer_c8':row8[0]})

306

307 #bid price

308 for i,j in buyer.items():

309 price=.4604-(((total_net_demand-j)/(total_net_demand))*(.4604-.104))
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310 bid.update({i:(price)})

311 cost=0

312 #Arranging bid and supplies

313 seller_list = sorted(seller.items(), key=operator.itemgetter(1))

314 s=list(i[1] for i in seller_list)

315 name_s=list(i[0] for i in seller_list)

316 buyer_list =sorted(buyer.items(), key=operator.itemgetter(1),reverse=True)

317 c=list(i[1] for i in buyer_list)

318 name_c=list(i[0] for i in buyer_list)

319 bid_list=sorted(bid.items(), key=operator.itemgetter(1),reverse=True)

320 rate= list(i[1] for i in bid_list)

321 rate_n=list(i[0] for i in bid_list)

322 cost=0

323 revenue=0

324 local_buy=0

325 local_sell=0

326 grid_buy=0

327 grid_sell=0

328 #Local Transactions

329 while s and c:

330 if s[0]>c[0]:

331 dg=dg.append({'Supplier':name_s[0],'supply':s[0],'demand':c[0],'Buyer':name_c

[0],'net supply':s[0]-c[0],'net demand':0,'Energy sold':c[0],'price':rate

[0],'revenue/cost':c[0]*rate[0]},ignore_index=True)

332 s[0]=s[0]-c[0]

333 cost=cost+c[0]*rate[0]

334 revenue=revenue+c[0]*rate[0]

335 local_sell=local_sell+c[0]

336 del c[0]

337 del name_c[0]

338 del rate[0]

339 del rate_n[0]

340

341 elif c[0]>s[0]:

342 dg=dg.append({'Supplier':name_s[0],'supply':s[0],'demand':c[0],'Buyer':name_c

[0],'net supply':0,'net demand':c[0]-s[0],'Energy sold':s[0],'price':rate

[0],'revenue/cost':s[0]*rate[0]},ignore_index=True)

343 c[0]=c[0]-s[0]

344 cost=cost+(s[0])*rate[0]

345 revenue=revenue+(s[0])*rate[0]

346 local_sell=local_sell+s[0]
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347 del s[0]

348 del name_s[0]

349 acc=acc.append({'Cost':cost,'Revenue':revenue,'local_sell':local_sell},ignore_index=

True)

350 cost_g=0

351 revenue_g=0

352 #Grid transactions

353 if s:

354 for i in range(0,len(s)):

355 revenue_g=revenue_g+(s[i])*.104

356 grid_sell=grid_sell+s[i]

357 dg=dg.append({'Supplier':name_s[i],'supply':s[i],'demand':0,'Buyer':'grid','

net supply':s[i],'net demand':0,'Energy sold':s[i],'price':.104,'revenue/

cost':s[i]*.104},ignore_index=True)

358 dg=dg.append({'Supplier':'','supply':'','demand':'','Buyer':'','net supply':'','net 

demand':'','Energy sold':'','price':'','revenue/cost':''},ignore_index=True)

359 grid=grid.append({'Revenue':revenue_g,'grid_sell':grid_sell},ignore_index=True)

360 if c:

361 for i in range(0,len(c)):

362 cost_g=cost_g+(c[i])*.4604

363 dg=dg.append({'Supplier':'grid','supply':0,'demand':c[i],'Buyer':name_c[i],'

net supply':0,'net demand':0,'Energy sold':c[i],'price':.4604,'revenue/

cost':c[i]*.4604},ignore_index=True)

364 dg=dg.append({'Supplier':'','supply':'','demand':'','Buyer':'','net supply':''

,'net demand':'','Energy sold':'','price':'','revenue/cost':''},

ignore_index=True)

365 grid=grid.append({'Cost':cost_g},ignore_index=True)

366 dg.to_csv('C:/Users/smipa/OneDrive/Desktop/dg.csv')

367 acc.to_csv('C:/Users/smipa/OneDrive/Desktop/acc.csv')

368 grid.to_csv('C:/Users/smipa/OneDrive/Desktop/grid.csv')

369

370 #dg.csv is the log of hourly transaction output for each hour

371 #acc.csv is the total of the local transactions like revenue for each hour

372 #grid.csv is total of the trandsaction with grid for each hour
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