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ABSTRACT 
 
 

YIJING AN. Exploring an Intelligent Responsive Architecture Through Gesture-based 
Interaction. (Under the direction of DR. DIMITRIOS PAPANIKOLAOU) 

 
 

Architects are increasingly adopting gesture-based interaction to create responsive, 

engaging and inspiring spaces. However, there is no established theories providing 

guidelines to link gestures and spatial movement. This thesis critiques the prevailing 

approach in HBI in which users learn “cookie-cutter” gestures from gesture elicitation 

studies for interacting with the built environment. Instead, I argue that these gestures 

should emerge naturally as mutual convergence between users and intelligent architecture 

in order to be customized to different user group.  

In this thesis, I demonstrate how gestures can emerge through the interaction between 

user and architecture by developing an interactive art installation with machine learning 

algorithm and confirm its potential of increasing curiosity and engagement by conducting 

a user study. 

This thesis also compares these emerged gestures with the “cookie-cutter” gestures and 

raise the discussion on the implications for the future of intelligent responsive 

architecture.  
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CHAPTER 1: INTRODUCTION 
 
 

“Advances in artificial intelligence would soon give rise to buildings capable of intelligently 

recognizing the activities of their users and responding to their needs.” 

---- Nicholas Negroponte, 1970 

The term "responsive architecture" was introduced by Nicholas Negroponte during the 

late 1960s. This terminology was proposed when cybernetics was being applied in 

architecture design. Following Nicholas’s contribution, each year, many new 

technologies appear to help architects gain access to human movement data and design 

responsive architecture to fulfill human needs. With the ability to record and observe this 

nonverbal, complex, rich body language, more and more architects are trying to study the 

relationship between human movements and space movement patterns. Interactive 

installations which can be operated through human inputs such as touch, gesture, voice, 

are developed for this purpose (Di Cristina, G., 2002).   

Followed by these projects, one question that people barely ask but very important is: 

How should architecture respond to user’s needs. It’s easier to say: “I will make the wall 

move in response to human” than actually program it to move because it is hard to 

capture user’s intention. How do you decide if the wall should move towards people or 

away from people? A simple example that fails to address this issue will be the automatic 

door. The door will always open when it senses the motion no matter the user wants to 

enter the door or just passes by. This interaction may embarrass the user and waste 

millions of dollars on air conditioning energy every year just because the question is not 

well addressed in the design phase.  

Architects tried to address this question in two different approach.  
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First, architects try to pre-define the relationship. And whether easy or not, the user is 

asked to adapt. (Thiruvengada, H. et al, 2013).  

For tangible interaction, the relationship between user’s reaction and form of architecture 

has already been fully explored by Don Norman. His work provides the guidelines of 

how the form of architecture can be designed to fulfill human needs. (Norman, D., 2013) 

However, for intangible interaction, such as gesture-based interaction and voice-based 

interaction, there is no such established theories to link gesture or voice with the 

movement of architecture. Some architects choose to follow the existing rules in tangible 

interactions. In the CityHome project developed by MIT Media lab, user is taught to 

make “push” or “pull” gesture to open a drawer which is just like how we physically 

open it. What’s interesting is that this interaction doesn’t seems take much advantage of 

gesture-based interaction. Is it really easier to make a gesture than to physically pull out 

the drawer? The shape of the drawer provides a clue that it can be pull out. According to 

Don Norman, it gives a strong affordance to indicate how the drawer should be operated. 

However, with gesture-based interaction, the design principle proposed by Don Norman 

                 
Figure 1: Cityhome - a Gesture-based home automation system (MIT’s Media Lab)                                                                                           
Figure 2: Interactive wooden mirror (Daniel Rozin,1999)                                                                                           
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doesn’t fit well. By given a drawer, it is hard for a user to guess which gesture exactly 

he/she should make to open it. They will either need to be trained or try several times to 

find the right gesture. 

Other designers decide to create their own rules. For example, in the Wooden Mirror 

project created by Daniel Rozin, the wooden chips flip when sense the presence of 

human. Alloplastic Architecture project (Farahi Bouzanjani, et al, 2013) is another 

example where a tensegrity structure always follows the dancer’s movement.  

Whether following the existing rules or make new rules, the general approach is that we 

as designers pre-define the rules and users are asked to adapt into these “cookie-cutter” 

gestures. To make the adaptation process easier for user, architects use method like 

gesture elicitation study to increase the discoverability. (Wobbrock, Jacob O., et al, 2005) 

The goal of this widely used method is to extract appropriate gestures, which are easy to 

performance, memorable, and reliable.  (Morris et al, 2014) Although architects try hard 

to make the adaptation process as easier as possible, it’s still the user who is expected to 

learn. But if we look back to the very first quote from Nicholas, a responsive architecture 

is capable of recognizing the activities of users as well as responding to their needs.  

As a result, I envision the future of human building interaction lies into the second 

approach where the relationship emerges from the interaction so that it is the user and 

building both learn from each other. In other words, there are two steps in the human 

building interaction. Human as user, expresses his needs, and architecture as provider, 

recognizes the intention and responds accordingly. In this case, both user and architecture 

need to learn. The user learns how to better express himself, while architecture learns 

how to better understand the user’s needs. 



 4 

Furthermore, I propose a 3-dimensional theoretical framework which includes 

predictability, discoverability and dimensionality, that can help designers to classify as 

well as design better gesture-based interactions 

Predictability refers to the ability of the system to 

behave in the way expected. It is certainly crucial as it 

is unpleasant to find that the gestures keep blending 

into each other. Discoverability refers to user’s ability 

to find the target gesture. Increasing discoverability is 

a popular topic that many designers in HCI focus on 

because high discoverability can bring lots of benefits 

to a gesture-based application, such as ease of use and efficiency. (Morris, M. R. et al, 

2014,) Dimensionality, on the other hand, is a new axis I propose which refers to the 

complexity of relationship between gesture and desired effect. It can be influenced by the 

number of gestures that are involved in the interaction as well as the complexity of these 

gestures. For example, an automatic door is considered as a low dimensional interaction 

because there is only one relationship which is moving the body towards the door. In the 

case of using multiple simple gesture like move hand from left to right, it is considered as 

medium dimensional interaction because the the increasing of gestures raises the 

complexity of the relationship. Using multiple complex gestures, such as walking, 

jumping, is considered as high dimensional interaction. 

These three constrains are interdependent. If the predictability is maintained, high 

dimensional interaction usually means low discoverability and vice versa. 

 

Figure 3: Three design constraints 
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1.1 Related Work 

Existing works shown that in this 3-dimensional relationship, most designers chose to 

keep the predictability at a relatively high level while trading dimensionality off with 

discoverability. 

 
 
In extreme cases, an application with the goal of security and safety concern can require 

high dimensionality with low discoverable interaction. (Figure 4) A gesture-based screen 

lock (Jeongyun, 2014) is an example which uses a 

specific gesture created by user to unlock the screen. In 

order to ensure only the creator of the gesture can 

unlock the screen, the gesture is better to be complex 

enough for it not to be discovered by other people. 

Project Soli is another example developed by Google 

ATAP. It is a new sensing technology that uses radar to 

detect subtle finger gestures and translate it to control a virtual interface. Because the 

                       
Figure 4: Design approach in HCI: High predictability and complexity(left) 
Figure 5: Design approach in HCI: High predictability and discoverability(right) 

                    
Figure 6: Trading discoverability 
with dimensionality 
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goal is to make this touchless interface mimicking the similar physical interface, the 

design group wants to make sure the predictability is maximized in this application. 

To accomplish more tasks, discoverability is traded off with dimensionality. 

 
 
In other cases, discoverability is typically more important. (Figure 5) For example, the 

alloplastic architecture (Farahi Bouzanjani, B. et al, 2013) is an adaptive tensegrity 

structure which intends to establish a scenario where a dancer can dance with the 

structure such that it reacts to her presence without any physical contact. Since the 

designer chose to maintain predictability as well, dimensionality was traded off with 

discoverability. The interaction itself is highly discoverable. But it is also very simple and 

the direct connection between the presence of human 

body and movement of the structure leaves user with 

nothing to discover after a few minutes. There are 

many installation projects designed by architects such 

as Spawn (Ramsgard-Thomsen, 2005), Spider 

(McKinney et al) that do the same thing as the 

Alloplastic Architecture does. The designers simplify 

    
Figure 7: Project Soli, Interactive Sensor         Figure 8: Alloplastic Architecture 
(Google ATAP, 2019)                                          (Farahi Bouzanjani, 2013) 

                    
Figure 9: Trading dimensionality 
with discoverability 
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the interaction by minimizing the data that they collect, e.g. only collect occupancy or 

visual data, and limiting interaction type, e.g. the system only mimic user’s gesture, in 

order to increase the discoverability. Although all of the projects claim that they create an 

interesting and attractive interaction between user and space, one can argue that when 

users said they were interested in the project, what they actually meant is that they were 

interested in the technology itself instead of the interaction. It is true that the interaction is 

predictable, and the gestures are discoverable. However, the connection between gesture 

and the movement generated by the system is too simple. Most users can figure it out 

within several seconds. Furthermore, the installation seems to be controlled by the user. 

In fact, the user has no control on the space movement at all. They can’t control when to 

actuate and stop the movement. They can’t choose what movement to have performed in 

response. Imagine if it is not a gesture-based interaction, but a conversation that happens 

between two people, with one person always repeating the other person’s word, this 

conversation might end in a few seconds. In terms of the goal, it could be argued that 

these installations were designed with more concern 

regarding system recognition issues, than the end-

usability of such gestures (Wobbrock, Morris, & 

Wilson, 2009). By over-simplifying gesture data and 

reduce the dimensionality of an interaction, we lose the 

information that conveys with the human gesture. A 

non-human object can trigger those interactions as 

well.  

                  
Figure 10: Mindful Photons (Zhao, 
N. et al, 2015) 
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Therefore, we might ask the question, is it always worth it to maximize the predictability? 

Why can’t we maximize both discoverability and dimensionality and make it a richer 

communication between human and building? 

Mindful Photons is a context-aware lighting system which aims to use google glass and 

infrastructure sensors to detect human activities and use them to control lighting. (Zhao, 

N. et al, 2015) The idea is that when the user is working, the eye focus various with the 

activity. When the user is relaxing, the eye focus does not change significantly. 

In this project, the environment is “trained” to be aware of different using patterns. When 

the system recognizes certain activity, the lighting condition will be changed to fulfill the 

user’s needs. 

Manus is another example which is an 

interactive robotic installation developed by 

Madeline Gannon who is a passionate 

researcher aiming to invent better ways to 

communicate with machines. (Madeline 

Gannon. et al, 2018) After being trained, her 

robot is able to guess the intention behind a 

human gesture and adjust itself to respond to it. For example, when the robots notice the 

presence of human, they look towards it before moving. 

Overall, when focus on functionality, we want to make sure to maximize predictability. 

In the case of user learn, discoverability is traded off with dimensionality to fulfill more 

difficult tasks. Designers usually use gesture elicitation study to mitigate the risk of low 

                  
Figure 11: Manus (Madeline Gannon. et al, 
2018) 
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discoverability. In the case of machine learn, both discoverability and dimensionality can 

be high and with the learning process, the predictability will be increased gradually. 

 When focus on Expression, the willingness to engage in a spatial interaction exists when 

people feel that they are “connecting” with the system (predictable) and are always able 

to discover the gesture command intuitively (discoverable). But more importantly, the 

interaction is better be diverse and rich enough for them to explore with. In the case of 

user learn, if we still keep the predictability and expect a relatively high discoverability 

like the example of Alloplastic, the dimensionality will be very hard to raise. However, 

Table 1: An overview of related work under proposed framework 

 

 Functionality Expression 

User Learn 

 
Project Soli 

 
Alloplastic Architecture 

Both Learn 

 
Mindful Photons 

 
Manus 
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by having the architecture and user both learn from each other, we will be manage to  

keep the dimensionality and discoverability high and gradually increase the predictability 

by learning process. (Table 1) 

1.2 Thesis Contribution 

Japanese architect Sou Fujimoto once described architecture as a cave which refers to a 

naturally occurring and pre-existing condition. It exists independently. “If a human 

decides to occupy a cave, he or she must assimilate the lives to that which is already 

there.” (Brandon Donnelly, 2016) With all the physical interactions in architecture which 

limits our ability, people are always adapting themselves. If a door knob is designed in a 

round shape, people will adapt to turn the knob even when they think the door should be 

pushed to open. 

However, a responsive architecture which will learn from the user and respond 

accordingly is more like the future that I envision gesture-based interaction could bring. 

Ideally, all the heavy training and adapting process are put on the back end of the system. 

The user will be able to use any gesture that makes more sense to them at the moment to 

interact with the architecture. Multiple gestures can be used to trigger the same 

interaction. 

The thesis makes two contributions: 

First, I propose a 3-dimensional theoretical framework that can help designers to classify 

and design better gesture-based interactions. 

Second, I demonstrate a proof-of-concept by developing an interactive prototype and 

raising a discussion on both scenarios of user learn versus user and architecture both 

learn. By observing two groups of users interact with a customized art installation, I 



 11 

found that the willingness to engage in a spatial interaction exists not only when people 

feel that they are “connecting” with the system (the system is predictable) and are always 

able to discover the gesture command intuitively (the system is discoverable). But more 

importantly, the interaction is better be diverse and rich enough for them to explore with. 

The results of my user study confirmed the potential of such an interactive system to 

inspire its user and increase the willingness and curiosity among random users.  

At the end of this paper I demonstrated an implementation for a choreography tool. By 

having this interactive art installation learn human gesture ahead of time, a dancer was 

able to “communicate” with it and created a live performance.  

1.3 Research Focus 

This research chooses to focus on human-center view which represents people’s 

experience, feelings and perceptions on a gesture-based interaction. One important reason 

is that we could not make hasty conclusion that the most advanced technology was equal 

to the trend of future, but we can argue that a discoverable, entertaining, pleasant 

interaction can certainly find its way in the future implementation. For example, the 

speech dialing application, which based on the advance speech recognition technology 

(Dobler, S., 2000) has not been in widespread use. The reason is mostly usability 

concerns such as the user does not want people around know to whom he is dialing, or 

the phone won’t recognize the voice dialing command because of the noisy environment. 

The trouble caused by such unstable and error-prone condition will certainly make the 

user feel frustrated. And one can argue that pressing keys is easy enough for people to 

make phone calls. As a result, to make this brilliant technology widespread, a study on 
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how to make speech dialing more acceptable and intuitive is more critical than the 

technology itself. (Everhart, et al, 2005) 

Therefore, this study focuses on the usability part of a gesture-based spatial interaction. 

1.4 Research Questions 

In order to investigate the previously mentioned issues regarding gesture-based spatial 

interaction, I answer the following research questions (RQ): 

RQ1: How to make the user and architecture learn from each other in gesture-based 

interaction? 

Objective: I demonstrate how the mutual learning process can be technically achieved by 

developing a machine-learning application and by designing and conducting a user study. 

RQ2: What benefit could this mutual learning gesture-based interaction bring us? Where 

can we implement it? 

Objective: I demonstrated an implementation for choreography and assess how the 

dancer feel during choreography. 
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CHAPTER 2: METHODOLOGY 
 

 
In order to further discuss the difference between 

interactions that only ask user to learn versus 

architecture and user learn from each other, this 

study proposed an approach follows the procedure 

listed below.  

I first design and create an interactive prototype 

named NEST. It is a 4’ by 4’ interactive art 

installation which is consist of nine stepper motors 

and programmed with Arduino Mega. Paired with a wrist attached sensor, this installation 

can be programmed to recognize human gesture and move accordingly. 

In the next step, I programmed the prototype to create two different modes. With the first 

mode, four pre-selected gestures derived from a traditional gesture elicitation study are 

manually paired with four move patterns. With the second mode, the installation is 

“trained” with 30 sample gestures for each movement and able to categorize more 

                 
Figure 12: The NEST interactive art 
installation 

            
Figure 13: The NEST interactive art installation diagram 
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gestures based on a SVM algorithm. In order to collect gestures and program mode, I 

conducted a gesture elicitation study on 30 participants. 

To make sure the result of user study won’t be influence by gulf of execution, I choose to 

use a “data-glove based” method because most of “view-based” method is suitable in a 

controlled lab setting but does not generalize to arbitrary settings. If there are no high 

contrast stationary backgrounds and ambient lighting conditions, the recognition is very 

likely to make mistakes. Also, the machine cannot recognize the start and end points of 

meaningful gestures from continuous motion of the hands (Garg, P. et al., 2009). A “data-

glove” with a switch button can ensure that every time the user makes the gesture, the 

computer can receive that data correctly. 

I invited 30 people to propose gesture commands representing four different space 

movement patterns. This resulted in a list of 30 gestures for each one of the space 

movement patterns. A gesture classification system will then be developed. At the end of 

the process, a model is trained after data analysis with the ability to classify natural 

gesture and actuate space transformation. Once the model is trained, it will be used to 

control the mechanical ball system by recognizing natural human movement. 

Furthermore, I conducted a user study in which I recruited 10 participants. 5 of them 

were asked to interact with the installation under 1st mode and 5 were asked to interact 

under the 2nd mode. This study compares the scenarios that user adapts versus user and 

architecture learn from each other. Later, I raised the discussion on how the development 

of an intelligent responsive system could eventually shape the future gesture-based 

interaction in architecture design. 
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CHAPTER 3: THE GESTURE ELICITATION STUDY 

 
 
3.1 Apparatus and Referents 
  
“NEST” is a 4’ by 4’ interactive art installation which aims to effectively show 

movement patterns with different complexity and examining the discoverability of 

gestures used to trigger these movement patterns.  

 
 
Nine stepper motors are attached to a 3 by 3 wood grid from which hangs nine red balls. 

These balls can be programmed to move up and down smoothly. Four referents (space 

movement patterns created by NEST) were chosen from the pilot study to be presented to 

the participants including a Lean-slope shape, a Spiral shape, an X-shape and an L-shape. 

An Arduino controlled remote is designed to control this art installation.  

I went through two prototype iterations prior to the official testing sessions. These 

iterations were informed by pilot testing with 5 participants. I identified the ideal space 

movement patterns by examining whether or not the type of shape can be clearly 

identified and described by participants. The goal is to have two patterns which are easy 

                 
Figure 14: Nest Art Installation                                       Figure 15: Wrist attached sensor 
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Figure 16: Lean-Slope shape 
 

       
Figure 17: Spiral shape 
 

      
Figure 18: X-shape 
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to have consensus among participants versus two other patterns are difficult to be 

recognized. 

In the pilot study, participants are presented with 8 space movement patterns created by 

NEST and asked to describe verbally with what they see. The two patterns (Lean-Slope 

shape, Spiral shape) with the highest agreement rate and two patterns (X-shape, L-shape) 

with the lowest agreement rate are chosen as the final patterns shown in the gesture 

elicitation study. 

3.2 Participants and Tasks 

30 participants were asked to propose gestures to trigger all four of spatial movement 

patterns.  Participants must be able to physically make movements using full range of 

motion, have normal hearing and be able to understand the given tasks. All participants 

were right-handed and between 20-50 years old. 

The participants were introduced with the purpose of this study first and sign the consent 

form. Before running the study, participants were given some time to familiarize with the 

wrist attached equipment and its triggering method – the participant had to hold their 

         
Figure 19: L-shape 
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thumb and forefinger together to start the recording process and release to end the 

recording process. Then, they were presented with all four of referents and were asked to 

propose a gesture to trigger each of the movement patterns. During the process, the 

participants were not allowed to ask questions regarding to the movement patterns. 

Participants were given as much time as they needed to propose gestures. Feedback from 

NEST were given to the participants by playing Wizard-of-oz. Once they were confident 

about their gesture proposals, the experimenter asked participants to reproduce the 

gesture 15 times for each in a random sequence so that it could be recorded by the 

Arduino controller in the format of 6-digit number and annotated by the machine learning 

algorithm (SVM). The experiment took around 15 minutes for each participant. 

3.3 Results 

The results were analyzed by traditional gesture elicitation study with the methodology of 

Wobbrock et al.  and fed into a machine learning algorithm. 

3.3.1 Traditional Gesture Elicitation Study  

I measured consensus by calculating individual agreement rates for each referent with the 

methodology of Wobbrock et al. In my case, agreement rates vary between 0.07 

(corresponding to the case with each participant proposing a distinct gesture for a given 

referent) and a maximum of 0.43 (perfect consensus between participants, all suggesting 

the same gesture for a given referent).  

The highest agreement rate was obtained 

for the “Lean-Slope shape” (0. 43), for 

which 13 participants out of 30 proposed 

         

 
Figure 20: Agreement Rate (Wobbrock et al.) 
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right-hand movements to from the highest point to the lowest point. 

The lowest agreement rates (0.2) were obtained for abstract space movement patterns, 

“X-shape”. 8 different gestures were proposed in total. 6 participants out of 30 agree on 

the gesture using right hand to draw a 2D “X” vertically. 

Four gestures were picked from this study for triggering the four-space movement 

pattern. 

Thinking time 

Thinking time is defined as the time each participant spend on proposing a gesture. 

Although the thinking time spent here doesn’t relate directly to the discoverability of 

final product, it seems related to the agreement rate.  And the agreement rate is a critical 

matrix that influence the discoverability. The higher the agreement rate is, the higher the 

discoverability will be. 

By comparing the thinking time with agreement rate, it shows that the more time 

participants took to think about gestures, the less agreement resulted. 

Participants took around 20 seconds to propose a proper gesture for “Lean-Slope shape” 

and “Spiral shape”. They spent a lot more in the “X-shape” (34 seconds) and “L-shape” 

(31 seconds) pattern. This is because the more time participants allocated to the task, the 

more different ways it can be translated into. “X-shape” and “L-shape” are just the label 

given to the two patterns by investigator for the ease of this paper. The participants in this 

study were not given any name or explanation of what the pattern is. Some of them think 

the “X-shape” is a big 2-D “X” which moves up. Some of them think the “X-shape” is a 

Jagger board. Because “X-shape” and “L-shape” were the two patterns with the lowest 

agreement rate in the pilot study, participants tended to spend more time on interpret 
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what the pattern is. And it the more they think, the more different gestures were 

proposed. 

Recall rate and Mistakes 

Not like the traditional gesture elicitation study, this study was not only collecting data 

for human observer but also for a machine learning algorithm to learn from. As a result, 

each participant was asked to propose all four gestures first, recall and repeat them 15 

times in a random sequence later. The recall rate is calculated as number of participants 

who successfully recall the gesture they proposed every time divided by the number of 

total participants. The recall rate for “Lean-Slope shape”, “Spiral shape”, “X-shape” and 

“L-shape” are 0.90, 0.86, 0.60, 0.66 respectively. Based on the statistic, best recalled 

gestures were found for simple movement patterns like “Lean-Slope shape” while 

lowest recall rates occurred for complex movement patterns “X-shape”. Another finding 

is that the gesture with higher agreement rate is more likely to be recalled correctly. 

Mistakes can take place under three circumstances: 

First, 12.5% of participants who made mistakes forgot the gesture right after he/she 

propose all four gestures. In this case, the participant usually asked more time or help 

from the investigator to recall the gesture. After being reminded, he/she can successfully 

recall all four of gestures throughout the study. 

Second, 29.1% of participants who made mistakes forgot the gesture right after he/she 

propose all four gestures and after being reminded, he/she still can’t recall the gesture or 

recall the wrong gesture (a gesture that we referred to as a false positive) when asked 

repeating it 15 times. 
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Third, 58.3% of participants who made mistakes successfully recalled the gesture but 

mixed them when asked repeating. 

Under second and third circumstance, the investigator needs to start the study from 

beginning and participants typically simplify their gestures. 

3.3.2 Analyze Gesture Data with SVM 

A Support Vector Machine (SVM) is a classifier algorithm which formally cluster data 

by hyperplane. In other words, given labeled training data (supervised learning), the 

algorithm outputs several hyperplanes which categorize new examples. The objective of 

using the support vector machine algorithm here is to search for the minimal enclosing 

spheres in a N-dimensional space (N = 6 - the number of features) that distinctly classify 

the gestures. These spheres each encloses a separate cluster of data points. In this case, all 

gesture data were labeled with space movement pattern number (“Lean-slope” – 1, 

“Spiral” – 2, “X-shape” -3, “L-shape” - 4) and participant number. For example, gestures 

proposed by participant “a” for space movement pattern “Lean-slope” will be labelled as 

1a. Participant was asked to repeat each gesture 20 times as the algorithm requires plenty 

of samples in both groups. The data set was then divided into two group: ten of the 

examples were randomly chosen as the training set to train the model and the other ten 

examples were used for testing. 

By selecting the proper kernel, q (the scale parameter) and C value (the soft margin 

constant), I was able to achieve 89.67% accuracy with the twenty gestures. All the 

gestures proposed in the elicitation study were then mapped back to space movement 

patterns. 

There are several things to be notice here: 
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First, the accuracy on the test data set doesn’t equal to the accuracy on the random data 

set. In other words, only when user propose a gesture that is similar to what’s in the data 

set, the possibility of it to be successfully recognized is 89.67%. If a user proposes a new 

gesture which looks nothing like the gestures in the dataset, it will be tried to fit into one 

of the categories.  

Second, I use OAA (One-against-all) in SVM (Vladimir Vapnik, 1995) which was first 

introduced as a method required unanimity among all SVMs: a data point would be 

classified under a certain class if and only if that class's SVM accepted it and all other 

classes' SVMs rejected it. While accurate for tightly clustered classes, this method leaves 

regions of the feature space undecided where more than one class accepts, or all classes 

reject. In the case of this data set, about 25% were unaccounted for. One method was 

proposed for improving the performance of OAA (Vapnik, 1998) involving the use of 

continuous values of SVM decision functions rather than simply their signs. The class of  

 
 
a data point is whichever class has a decision function with highest value, regardless of 

sign. This appears to have a performance of approximately 96% correctly classified. 

About half of the data points unclassified by binary OAA were correctly classified by 

continuous OAA. 

                 
Figure 21: Diagram of binary OAA region boundaries on a basic problem (left)  
Figure 22: Diagram of continuous OAA region boundaries on a basic problem (right) 
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3.3.3 Advantages and Disadvantages 

Low agreement rate 

From what we see in the gesture elicitation study, agreement rates vary between a 

minimum of 0.2 and a maximum of 0.43, which is much lower than the average 

agreement rate in HCI. This result answers our second research question that it is harder 

to find a consensus on mapping a gesture with a space movement pattern. The more 

complex the space movement pattern get, the lower the agreement rate is. For “X-shape”, 

the gesture with most agreement rate only gets 0.2 which basically means that there is no 

agreement among users. When everyone proposed a different gesture and it is extremely 

hard for a human observer to categorize. By using SVM, I have an algorithm looking at 

all of the gestures. We are not eliminating any gestures. They are all used to categorize a 

new gesture proposed in the user study. The database can grow with the use of the space. 

The more data we collected, the more accuracy we will get. 

Refinement of gesture 

Different from traditional gesture elicitation study, I ask participant to repeat each gesture 

15 times in a random sequence, which result in the voluntary refinement of gesture by the 

participant themselves. Especially when presented with high complex space movement 

pattern (“X-shape” and “L-shape”), some participants proposed very creative gestures 

which them can’t recall during the process. These gestures will confuse the human 

observer in traditional gesture elicitation as well as decrease the accuracy when use a 

mathematical algorithm. In order to recall the gesture successfully, most of them choose 
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to adjust their gestures to a simpler version and have more connection with the space 

movement pattern which is helpful for finding discoverable gestures. 

Continuous feedback 

Unlike a traditional gesture recognition algorithm which only looks for the target gesture, 

the SVM algorithm will try to label every gesture into the category that fits them the best. 

So, it can provide feedback every time when user proposes a gesture which feels like the 

space is guess what you mean by making the gesture. The more gesture we collect, the 

better the algorithm can capture the intention behind a new gesture. 

Overlapping 

The more gestures I collected for each space movement pattern, the more possibilities for 

overlapping to occur between gesture datasets. This will lead to reduction of 

predictability as people may perform the similar gesture and find out that it triggers 

different space movement pattern. Through the traditional gesture elicitation study, I 

found that same gestures were proposed with two different space movement patterns 

under two condition: 

First, participants propose gesture in reflect of different interpretations of the space 

movement pattern which matches with each other. For example, there was two 

participants proposed the same gesture of moving their hand from lower level of their 

body to higher level of their body for both the “Lean-slope” shape and “Spiral” shape. 

The former participant explained that she proposed the gesture for “Lean-slope” shape 

because she wanted to mimic the shape of the lean slope. The latter participant explained 

that she proposed the gesture for “Spiral” shape because she saw the movement as 

something that goes up and she just wanted to propose a gesture that represent that 
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movement. Both of the gesture makes sense, so I decided to keep both of them and see 

what people feel in the usability test. 

Second, participants propose informative gestures which is also called passive gestures. 

These gestures provide information about the speaker as a person such as their preference 

or culture and not about what the speaker is trying to communicate. For example, there 

was two participants proposed the same gesture of swiping their hand from left to right 

for both the “X-shape” and “L-shape” pattern. The former participant said he proposed 

gesture for “X-shape” because he couldn’t think of another gesture. The latter participant 

said she proposed gesture because she wanted to mimic the shape of an “L”. This gesture 

matched with 7 more gestures proposed for “L-shape” with other people and the reason 

given by the first participant is irrelevant. In this case, I choose to discard the gesture 

from the dataset of “X-shape”. 
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CHAPTER 4: USER EVALUATION STUDY 
 

 
After collecting sample gestures, the NEST was then programmed with two modes: 

In first mode, four gestures with the highest agreement rates in gesture elicitation study 

were assigned to the four space movement patterns. The participant can trigger the NEST 

only by making the target gesture. No feedback was provided when they made the wrong 

gesture. 

In second mode, all the gestures proposed in the gesture elicitation study were 

categorized by SVM algorithm and assigned to its designated space movement patterns. 

The participant can trigger the NEST by exploring different gestures.  

                
Figure 23: NEST programmed with one-to-one relationship (left)  
Figure 24: NEST programmed with multiple-to-one relationship (right) 
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A usability study was conducted for assessing both methods when applying on a space 

interaction.  

4.1 Participants and Tasks 

10 participants were recruited to test the NEST. They were divided into 2 groups. Five of 

the participants were assigned to interact with the NEST programmed with the first mode 

and other five were assigned to the rest. 

The participants were first shown the four movement patterns with NEST. The same 

glove-based sensor was then introduced to them. By using their gestures, participants 

were asked to trigger all four movement patterns within 5 minutes. If they successfully 

triggered all of the movement patterns with less than 5 minutes, the investigator stopped 

the timer and ended the study immediately. If they were not able to trigger all the 

movement patterns in 5 minutes, the investigator ended the study when time was up. The 

participants were then asked to fill in a pencil-based survey. All participants were 

welcomed to freely interact with the NEST after the study. 

4.2 Survey Questions 

1) From 1-10, how easy is it to interact with the installation? (1- very difficult, 10- very 

easy) 

2) From 1-10, how well does the gesture recognition algorithm capture your intention 

behind gesture? (1- not very well, 10- very well) 

3) If you were not able to trigger all four movement patterns, which one/ones was/were 

you not able to trigger? 

4) From 1-10, how much did you adjust your gesture? (1- a little, 10 – completely 

changed) 
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5) Among all four types of movement between balls, which one is the hardest one to 

trigger? Which one is the easiest one to trigger? 

6) From 1-10, how interesting it is for you to interact with the installation? (1 – not 

interesting at all, 10 – very interesting) 

7) Do you have any concerns during the interaction? 

4.3 Observations and Discussion 
 
The first observation is that two out of five participants who interacted with first mode 

successfully complete the task while all five participants with the second mode 

successfully complete the task in 5 minutes. 

 

Figure 25: Most difficult pattern to trigger (left)  
Figure 26: Average attempts spent on each movement pattern (right) 
 
 
Among all participants interact with the NEST built with first mode, 3 participants 

thought “X shape” was the hardest pattern to trigger and 2 participants thought “L shape” 

was the hardest one. This result matches with agreement rate in gesture elicitation study. 

Obviously, the lower the agreement rate is, the less discoverable the interaction is. We 

can also find clues by looking at the average time that participants spent on triggering 

each movement pattern. Participants in the first group spent much more time on 

triggering complex space movement patterns (“X-shape”, “L-shape”) than simple space 
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movement patterns (“Lean-slope”, “Spiral”) because of the low agreement rate. With no 

instruction and feedback, some participants even asked if the system was still working. 

Table 2: Group 1 – Time spent on each movement patterns        
Table 3: Group 2 – Time spent on each movement patterns 

 Lean 
Slope 

Spiral X-
shape 

L-
shape 

Total 
Time 

Participant 1 18” 24” 3’24” 12” 4’18” 
Participant 2 5” 17” 2’28” 1’40” 4’30” 
Participant 3 25” 34” 4’1” - 5’ 
Participant 4 17” 12” 3’2” 1’29” 5’ 
Participant 5 21” 26” 2’36” 1’37” 5’ 
Average Time 17.2” 22.6” 3’6” -  

 
 
Here we can make the first conclusion that the traditional gesture elicitation study is good 

for low dimensional interactions which are easier to find consensus on the proposed 

gestures. A simple gesture controlled app will benefit from it. The pre-defined one-to-one 

relationship between target gesture and movement pattern makes the interaction very 

predictable. However, it is also this narrow gesture vocabulary that limits the 

discoverability. In HCI, when designing a gesture-based application with complex 

interaction types, this risk can be mitigated by having an instruction book and training the 

user with the target gesture. However, people experience architecture rather than use it. 

Architects can’t give everyone who is going to use the building an instruction book and 

we can’t expect that all users will use the space as we designed it. As a result, user will 

benefit more from a relationship that emerge from the interaction.  

The second observation is that none of participant who were assigned to interact with the 

NEST programmed with second mode, triggered NEST movement one by one. They all 

start with the “Lean slope” shape and 4 out of 5 participants successfully triggered the 

movement with only one attempt. When they moved to the “Spiral” shape, 4 out of 5 of 

participants accidentally triggered the “X shape”. This is caused by two reasons: either 

this gesture has been proposed by participants in the gesture elicitation study for both 

 Lean 
Slope 

Spiral X-
shape 

L-
shape 

Total 
Time 

Participant 1 5” 4” 5” 12” 26” 
Participant 2 12” 2’24” 5” 33” 3’14” 
Participant 3 7” 34” 7” 1’1” 1’49” 
Participant 4 38” 27” 5” 13” 1’23” 
Participant 5 11” 5” 12” 11” 39’ 
Average Time 14.6” 42.8” 6.8” 26”  
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space movement pattern “Spiral” and “X shape” or this gesture has never been proposed 

by any participant in the gesture elicitation study. In the first case, typically the 

participant would think for several seconds and said, “That makes sense”. Then they will 

try to find another gesture that can describe the “Spiral” better and be more differentiated 

from “X shape”. In the second case, because the gesture was never proposed before, the 

algorithm will try to fit it in one of the categories and the accuracy is not ensured. This is 

the part that the participants were confused because the connection between gestures and 

space movement pattern didn’t make any sense. Instead of proposing a new gesture, most 

of them tried to adjust their gestures slightly to see if they can trigger the “Spiral”. 

In terms of discoverability, feedback in the first case is helpful because it not only helps 

the user understand which gesture triggers another movement pattern but also guide user 

to find a good gesture for the current movement pattern that they want to trigger. 

Feedback in the second case did no good to usability but confuse the user. However, I 

think this is something we can overcome by increasing the size of database and 

optimizing the machine learning algorithm. 

The third observation is that participants in group 1 refused or minimized their free time 

to play with the NEST while participants in group 2 took 2-3 more minutes to interact 

with the system. In the survey, most participants in group 2 mentioned that they were 

curious about what other gestures can be used to trigger the movement and willingness to 

engage in the interaction is high in group 2 than group 1. 
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CHAPTER 5: DISCUSSION 
 

By having the user adapting into the pre-defined “cookie-cutter” gestures, we can make a 

fully functional interaction. However, functionality is not the only thing user looking for 

in a gesture-based interaction with an architecture. Because there is no clear relationship 

between a gesture and a movement pattern, an interaction which will allow user to use 

any preferred gesture to operate the system can be powerful. We should not give an 

instruction book to every user. Instead, we provide the user with a tool where they can 

create their own interaction to communicate with the architecture. One scenario could 

happen in a museum setting where a functional gesture-based interaction might be 

interesting but if the visitor is unable to discover the right gesture to trigger it, without 

proper instruction, the interaction can be simply missed.  However, if we can program the 

building to gradually learn the intention behind the gesture, user might accidentally 

trigger some irrelevant movement but feel curious about it. They then propose more 

gestures to explore the possibilities of the system.  

Creating an intelligence environment which can adjust itself and guess the intention 

behind a gesture is definitely one route for gesture-based interaction to go in architecture 

design. Using Amazon Echo as an example, there’s voice command that you know will 

always work such as “Alexa, turn on the light!” But there’s also other sentences that you 

can try to trigger the same function. More important, what makes Alexa different from 

other home devices is that there are sentences with no fixed answer but will keep learning 

and updating to fit the user’s expectation such as “Alexa, how are you?” An application 

that can do the former is considered as a successful product but the application that can 

do the latter is the future. 
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