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ABSTRACT

ADARSH NAVATH SAWANT. Development NURO-RAM: Memory management
architecture for streaming CNN accelerators on edge. (Under the direction of

DR. HAMED TABKHI)

Development of accelerators for deep learning accelerators have been gaining a lot of

popularity due to sheer amount computation performed by deep learning algorithms.

From the onset of Moore’s law failure it has become difficult to improve the perfor-

mance of the general purpose processors and hence computer architects are inclining

towards more heterogeneous solutions for accelerating deep learning applications ef-

ficiently. Secondly the computation performed in the deep applications are repetitive

and predictable which naturally leads to three choices ASICSs, GPUs and FPGAs.

FPGAs due to its configurability, deep pipeling abilities and high performance per

watt has been one of favorite devices for accelerator architecture research. As FP-

GAs are really difficult to program and thus there has been thus rise in development

reusable accelerator templates which can be instantiated even by software developers.

Memory always has been the main bottle-neck even for the architecture with most

efficient compute data-path. This problem is further compounded as FPGAs have

low on-chip memory footprint (in form of BRAMs). Most of the deep learning appli-

cations have a very high model size (ex: AlexNet has model size of >100Mb). Thus

to accelerate deep learning applications there is a need to develop memory systems to

support these application. Conventional accelerators try to mitigate with these issue

by accelerating single layer sequentially which has its own implication like bandwidth

wastage, power consumption, etc. Since the presented work serves streaming accel-

erators, separate strategy has to developed. This work presents development of such

memory management system called NURO-RAM. NURO-RAM uses minimum sized

pre-fetch buffers and static weight scheduler in order to support the deep learning

accelerator AWARE-DNN. This work implements three different network AlexNet,
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Shallow mobile net and Tiny Darknet to show the diversity of the NURO-RAM to

serve streaming accelerators like AWARE. We then compared NURO-AWARE solu-

tion (implementing AWARE-DNN with support of NURO-RAM memory system) to

Chai DNN an HLS based deep learning accelerator library and NVDIA Xavier mobile

GPUs. The purposed network consumes lower power 4.5 watts (NURO-AWARE) vs

10 watts (Chai DNN). The power consumption against GPUs is comparable with 5.7

watts consumed by NVDIA Xavier. This work also consumes lesser BRAM for both

AlexNet 75% in NURO-AWARE vs 88% in Chai DNN and for Tiny Darknet 48%

in NURO-AWARE vs 88% in Chai DNN. With lesser BRAM utilization than state

of the art architecture and separate utilization for three different networks shows

that the NURO-AWARE architecture is resource aware as well as application aware.

The lesser power consumption and resource utilization of the presented work can be

attributed to the custom data path used by the AWARE DNN accelerator and the

custom memory access path developed by the presented solution for each layer which

reduces the off-chip memory access. The presented work beats Chai DNN which can

support 10.21 FPS with fully connected layers whereas NURO-AWARE can support

30 FPS, and even Xavier GPUs with support of 2 FPS for performance metric. This

is because the presented solution uses its architectural knobs to satisfy the real-time

frame rate requirement. Overall the presented solution beats GPUs as well as FPGA

FPGA based state of the art solution in performance per watt.
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CHAPTER 1: INTRODUCTION

Deep learning can be used to solve wide range of problems efficiently. Convolution

Neural Networks (CNN) a special branch of deep learning, can be used to tackle vision

based of problems such a image segmentation, object detection, identification and

tracking with higher success rate than conventional computer vision algorithms. Even

though CNNs are very compute intensive, due to the advancement in the compute

architectures and the large availability of image data sets which is used to train these

algorithms has made it quite popular within computer vision community.

With the advancement of the networking domain another wave of computing is

becoming popular known as edge computing. With 3G networks tiny sensor network

were used to log temperature, humidity for data analysis. But with advent of 4G/5G,

edge computing the industry is looking towards deploying data bandwidth intensive

applications like deep learning based inference and computer vision on edge. But the

design of edge computing systems poses several restrictions such as

• Size: Since these devices are going to be connected to the edge, the size of

devices has to be small.
• Power: Edge devices must be less power hungry as the most of the edge devices

might be battery powered or have limited power source.
• Security: Since these devices are going to be connected to the network and they

perform data gathering and computing, these devices need to have full proof

protection against the network attacks.
• Real time constrains: As these devices work on the edge the system should work

in real time latency constrains due to their use in safety critical applications

such as the self driving cars.

1.1 Why FPGAs for AI on Edge?

Currently most of state of the art edge applications use a cloud computing paradigm

where the sensor collects the data on edge and it is then sent for further processing



2

on the cloud and the results of the computation is sent back to the edge node. Even

though this model serves most of the edge computing constraints it inherently has

following drawbacks:

• Security: Since the devices has to constantly send data to the cloud, it is vul-

nerable to security attacks

• Wastage of bandwidth: If we use this model for vision application we need to

constantly stream video data to the cloud, due to which there will be a lot of

bandwidth wastage.

• Power: Since the data has to be constantly streamed to the cloud server a lot

of power is wasted.

• Real time constrains: As the model constantly receives the computed results

from the cloud server, the system can fail due to network faults.

Due to these limitations the edge computing paradigm has been making a shift from

hard cloud computing based models to soft cloud computing based models where

most of the computing is done on the edge node near the sensor and only critical

data is sent to the cloud server for processing. But applications like deep learning are

inherently compute intensive. Thus soft cloud computing models need highly efficient

edge computing nodes which can have a balance between the real time computing

requirement and power, because of which this has been an active research area. Also

new CNNs models are being researched actively thus there is a need for computing

architectures to be configurable as to cater the needs of the new algorithms.

The current state of the art architectures used for the CNN are based off either

ASICs or GPUs. ASIC can be well suited for power/watt but they lack in the

flexibility which might be needed for adopting for a new algorithms. Also the time

to market and the cost of developing a custom ASIC is high because of which this

might not be the most cost effective solution. On the other hand GPUs can be

generically used to run any CNN algorithm, but their data-path cannot be adopted
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in order efficiently run new algorithms. Secondly the performance/watt for the GPUs

is really low and hence it is difficult to deploy the GPUs near the sensor on the edge.

Due to the reasons stated above there has been a increase in the research for

deploying the deep learning application on Field programmable gate array (FPGA)

based architectures. The FPGA based architectures have following advantages:

• Flexibility: FPGAs can be used to create a custom data paths like ASICSs, but

these data paths can be changed numerous times depending on the algorithm’s

requirement.

• Performance/watt: Though FPGAs cannot beat the power/performance ratio

of ASICSs but they can easily beat GPUs.

• Real-time deterministic performance: FPGAs have been traditionally used for

the real time applications such as signal processing, the architectures developed

on these devices can be used to efficiently tune the system for required real time

performance as demanded by edge.

1.2 Difficulty in FPGA deployment

Even with these advantages the FPGAs deployment for deep learning application

on edge has been hindered due to the complexity involved in developing FPGA based

system. This is related to the fact that FPGA development requires hardware exper-

tise and the deep learning community has been purely software based. Also the deep

learning algorithms use weights and intermediate feature maps intrinsically for infer-

ence which requires a high memory real estate. But the memory real estate available

on the FPGA is very low which may not been able to fit big deep learning models.

To tackle these problem there has been active research conducted to developed archi-

tectural templates which are developed by using handcrafted RTL (register transfer

logic) by hardware experts. These architectural templates are then integrated into

deep learning software frameworks by using the architectural compilers so that the

it can be used to run the deep learning algorithms by the software developer. One
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Figure 1.1: CNN Model Size

such architectural compiler under development is AWARE-DNN. AWARE-DNN uses

a library of customizable hardware templates in order to generate a pipelined architec-

ture for accelerating CNN thus easing the developer from the work of handcrafting the

hardware from the scratch. More discussion about AWARE is given in section 2. But

as discussed above the problem of the low memory real-estate on FPGA still prevails.

Figure 1.2 shows the amount of on-chip memory available in form of block memory

(BRAM) for the FPGA devices. It should be noted that even though FPGAs like

kintex ultra-scale and virtex ultra-scale are server class FPGAs, the amount BRAM

(block random memory access memory) available on-chip is mere 90 MB.

Figure 1.2: BRAM Memory available on FPGA

With large networks, such as VGG-Net or AlexNet[1], the memory footprint (amount

of memory required to store the weights) of the network’s weights can reach up-to 100
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MB. Figure 1.1 gives overview of the model sizes of some popular CNN network. From

this Figure we can deduce that the these networks will not fit easily on FPGA due to

memory requirement. This memory footprint becomes problematic when compared

to the memory real estate commonly available on FPGAs, around average of 30 MB.

This limitation is compounded further by the need of streaming accelerators, such as

AWARE-DNN, to store intermediate feature map data in on-chip memory, further

reducing available resources. It should be also noted that the memory footprint on

the CNN networks are heterogeneous across the layers. Table 1.1 shows the memory

foot print for each layer to store weight during the inference phase for AlexNet.

Table 1.1: AlexNet-Weight Requirement

Filter Size Input Channel Kernel Total Memory
CNV 1 11X11 3 96 34KB
CNV 3 5X5 96 256 614KB
CNV 5 3X3 256 384 884KB
CNV 6 3X3 384 384 1327KB
CNV 7 3X3 384 384 884KB
FC9 6X6 384 256 37MB
FC 10 FC 256 2048 16MB
FC 11 7 FC 2048 2048 4MB

As it is apparent, storing all the weights on chip is not a viable solution. Secondly,

off-chip memory access is notoriously slow. This necessitates the creation of a sup-

porting system to interface on-chip and off-chip memory while mitigating the latency

of off-chip memory access. But since the on-chip memory is less, this system has to

make the efficient use of the on-chip memory by loading only the minimum required

weights at particular instance of time during acceleration.

1.3 Contribution

To mitigate the memory real estate problem posed by streaming deep learning

accelerators we present NURO-RAM. Statement: This work provides an approach for
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streaming the weights for the real-time CNN accelerator like NURO-RAM which can

be effectively applied for other streaming CNN accelerators. “NURO-RAM segregates

memory requirements for each of the layers in CNN by using minimum sized on-chip

weight buffers , provides an interface with hardware accelerator architecture, handles

arbitration for off-chip memory access, and acts as a supporting system for streaming

accelerators.” In a nutshell this work presents:
• Systematic approach to decouple the on-chip memory bottle neck for streaming

CNN accelerators like AWARE-DNN.
• Development of memory system and its interface for supporting for streaming

CNN accelerators.
• An approach towards managing the off-chip transfers.
The contribution of this work are
• Design formalization for hardware blocks for breaking the on-chip memory bot-

tleneck.
• Architecture of the NURO-RAM system hardware and its subsystems.
• Software system for controlling the arbitration of the OFF-chip memory access

from different layers.

1.4 Thesis outline

The outline of this thesis is as follows. Chapter 2 reviews the background needed

for this study. It reviews deep learning and Convolutional Neural Network software

execution model.It also gives a brief overview about AWARE-DNN and Chai DNN

which are two seperate FPGA based CNN accelerators. It also briefly overviews re-

lated work in the field of FPGA based CNN accelerators and system development.

Chapter 3 presents, the motive to use off-chip memory for NURO-RAM, design for-

malization, the architectural and micro-architectural details about NURO-RAM. It

also describes about the system design, approach towards scheduling strategy used to

schedule multiple requests for off-chip transfers. Chapter 4 represents experimental

methodology, and the evaluation of presented work. Chapter 5 concludes thesis and

briefs details about future work.
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CHAPTER 2: Background and Related Work

2.1 Deep Learning and Convolutional Neural Network

Deep learning is a special class of machine learning algorithm which used to solved

problems by mimicking how the human brain works, where each neuron is connected

to other neuron and when each of these neurons are activated they also activate

the neurons connected to it. Basically deep learning algorithms take inputs from real

world and predicts an output particular to that problem. For example a deep learning

algorithm might take input as zip code, number of rooms, and amenities available and

would predict the price of the room. To learn to predict the price of the room the deep

learning algorithm has to be fed with large amount of data where the output of the

predication is already known, which is known as training data set. By minimizing the

error in prediction from the algorithm and the prediction already present in the data

set the deep learning network tries to learn the association-pattern between given

inputs and outputs this in turn allows a deep learning model to generalize to real

world inputs that it hasnât seen before.

2.1.1 How does learning happen?

Deep learning algorithm models use layers of nodes which are analogous to the

neurons in the brain. Each model can consist of three or more layers of node. The

first and second layers are knows as the input and output layers. The rest of the

layers are the hidden layers. Each node is connected to one or more node from the

previous layer. Following Figure 2.2 shows a view of a full deep neural network.

Figure 2.2 shows a view of a full deep learning node. Following are the key elements

in the neural node

• Weights:The weights decides how much effect the output from previous con-

nected node has on the current node. Basically the output from the previous

nodes are multiplied by the weight and the output is fed to the activation func-
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Figure 2.1: Deep network

Figure 2.2: Neural node

tion. In Figure 2.2 these are indicated by x0, x1, x2, etc.

• Activation function: Decides whether the node output will be activated or not.

In Figure 2.2 these are indicated by function f .

• Biases:These are another learnable parameter like weights in deep learning. The

biases are related to particular node only rather than connection to other node

like weights. In Figure 2.2 these are indicated by b.

During the learning phase all the input weights to the neural network are initialized

to the random values. When the training set inputs are passed, the output predicted

by the neural network is compared to the actual value from the training data set. The
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algorithm then uses algorithms like back propagation in order to adjust the weights

so that the difference between the prediction and actual value is reduced.

2.1.1.1 Deep learning for images

It is possible to flatten out the entire image and pass it through the deep neural

network for predictions but it is not a good idea because

• Scaling of Weights: Regular neural network do not scale well for images. For

example In CIFAR-10 [2], images are only of size 32X2X3 (32 wide, 32 high,

3 color channels), so a single fully-connected neuron in a first hidden layer of

a regular neural network would have 32X32X3 = 3072weights considering the

size of the network it can see that it is impractical to use the regular neural

network.

• locality: an image consist of lot of information in temporal and spatial locality

in it, flattening the image would remove all of these localities and reduce the

predication accuracy.

2.1.2 Convolutional Neural Network

Due to the problem discussed above a New class of deep learning algorithm are

developed for detection and identification of objects in images called Convolutional

Neural Networks (CNN). The role of CNN is to reduce the demensionality of the image

so that processing of the image becomes easy while still maintaining the temporal and

spatial locality in the image. In traditional image processing hand-designed filters are

used to detect the objects. But this method is not robust when the scene is diverse as

it is not practical to design filters for all different kind of objects. A CNN algorithm

learns all these filters (also called weights) by them self during the training phase. It

is similar to how the human visual system works, where each of the portion in the

visual cortex respond to set of stimulus in receptive field. Similarly the filters learned

by CNN algorithm respond to the set patterns in the image.



10

2.1.2.1 Basic architecture of CNN

The basic architecture of the CNN is shown below in Figure 2.3 The three important

Figure 2.3: Lenet Example

building blocks of the CNN are explained as follows:

• Convolution layers: The convolutional layers receive input from the previous

layers and compute the dot product between the weights to generate the 3D

output feature map.

• RELU layer: These layers apply activation functions to the output from the

convolutional layers.

• MAX POOL: Layer will perform a down sampling operation along the spa-

tial dimensions (width, height) using convolution, so that only dominant part

of the output volume from the previous layer would be sent forward to next

convolutional layers.

• Fully connected layers: This layers perform the final identification. Fully con-

nected layer will compute the class scores, each neuron in this layer will be

connected to all the numbers in the previous volume.
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Using the architecture components described above a CNN network transforms an

image layer by layer from pixel values to the detection class scores. Each of the

filters in the CNN are learned during the training phase by uses algorithms like back

propagation.

2.2 AWARE-DNN

AWARE-DNN architecture compiler framework is used to develop efficient hard-

ware accelerators for application by using the hand optimized architectural tem-

plates.Figure 2.4 shows an abstract view of a full architecture instance. Each layer

is mapped to an individual pipeline. Each stage contains a buffer sized for a small

section of the FM tile. When enough FM data has accumulated, the stage will begin

computation feeding to the next stage in a producer consumer fashion. This cycle

continues for each layer until the last, which will output the classification vector when

complete. This is called temporal layer parallelism, or more specifically, layer pipelin-

ing. This minimizes inter-layer data movement but puts pressure on the memory

hierarchy used for weight storage. Due to which special memory hierarchy might

required in order to generate exploit more parallelism. The pipeline stages utilize the

targeted layer’s unique parallelism and data flow, and from multiple granularities of

complexity, in order to guarantee efficient mapping for the domain. The available

parallelism knobs which can be exploited to cater the design needs are given below:

• Convolution parallelism The convolution operation can be done with a single

Multiply Accumulate Unit (MAC). But if the FM data source is extended, con-

volution becomes a sliding window operation. This creates data dependencies

that must be maintained. AWARE-DNN design, however, can benefit from this

data extension through buffering pipe-lining Strictly defined, convolution paral-

lelism is temporal parallelism realized with a single MAC and spatial parallelism

realized by accumulating the results of numerous multiplications.

• Kernel parallelism: AWARE-DNNN uses arrays of convolutional processing
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elements in repeated fashion to compute all the kernels of the a particular layer

simultaneously. This operation needs the weights and feature map data to be

fed to the architecture simultaneously.

• Channel parallelism:Due to the nature of DNNs, the channel parallelism

of a layer is determined by the kernel parallelism of the previous layer. The

convolution operation at this granularity needs every channel to complete a full

convolution. AWARE-DNN architecture takes advantage of this in the form of

channel buffering.

APE

APE

APU

APU

APU

APU

APE

APE

APU

APU

APU

APU

APU

APU

Figure 2.4: An abstraction of a full architecture Instance

2.2.1 Functional Composition of AWARE

The Functional composition of each architecture instance also consists of the fol-

lowing handcrafted hardware units. An overview of each of these units are explained

below:

• Convolution Processing Engine: The essential function unit of AWARE-

DNN is the Convolution Processing Engine (CPE). CPEs consist of two sub-

components. The first is the Mac-Engine, which handles the computation. It is

driven by the 2D line buffer which is extension to 1D line buffer[3] and accesses

weights according to the line buffer’s control signals. All the control overhead of

the multidimensional direct convolution operation is exposed to the 2D buffer.
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Convolution parallelism requires parallel read operations, putting pressure on

the weight banks and 2D line buffers. Kernel parallelism results in replication

of the data path’s backend. This avoids the mixing of multiple kernel contexts.

• Aggregation units: Handles the aggregation of multiple CPE. Since every

CPE is constructed at the granularity of a single channel, the results have to

be accumulated then passed to the next processing element.

• RELUs: Handles the non-linear activation found in DNNs. Compares its input

to zero and outputs the max. This is required for the summation of every

channel for an individual convolution window.

• Pooling Processing Units: Pooling Processing Units are the final atomic

function unit. It accelerates the max pool operation on streaming feature maps.

• Tensor buffer: The tensor buffer is a Fused-Function Unit. The tensor buffer is

an extension to the 2d line buffer [3]. It can be thought of as fused convolutional

processing unit. The number of tensor buffers is dictated by the layer’s degree

of channel parallelism. The MAC engines of each tensor buffer require same

degree of kernel parallelism, meaning the total number of MACs for every layer

is dictated by kernel parallelism times channel parallelism.

• Multi-Dimensional Aggregation Processing Engine (MDAPE): The fu-

sion of tensor buffers results in channel aggregation units to work at the gran-

ularity of a single row, instead of a single pixel. This ensures that the channel

parallelism of the fused CPE results in the aggregation of those channels while

kernel context is kept separate. The Multi-Dimensional Aggregation Processing

Engine (MDAPE) performs this aggregation function. Each MDAPE consists

of sub blocks called Aggregation Processing Engines (APE). The number of

APEs is equal to the channel parallelism in the layer. Each APE consists of

Aggregation Processing Units (APU). The number of APUs is equal to the ker-
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nel parallelism of the particular layer. Each APU operates on single kernel and

aggregates the convolution for each channel sequentially.

2.2.2 AWARE framework

The functional units are designed around highly parameterized chisel modules or-

ganized in a hierarchy of functional composition, as shown in Figure 2.5. The network

requirement form the high level tool (Caffe) are converted into architectural template

after design space exploration has been performed . Once the layers are finalized the

framework generates architecture instances of each layers by using chisel templates,

these templates are then converted in to verilog files for synthesis. The individual

modules are then converted into vivado IPs and the architecture is realized on FPGA

using Vivado synthesis tool.

Top-level wiring 
Generation

Resource
Mapping

Full-RTL-Gen

Network 
topology

Parallelism 
Allocation

Design Space ExplorationDesign Space Exploration

Frequency 
Balancing

Resource 
Estimation

Configuration
Parsing

Configuration
Parsing Architecture generationArchitecture generation

Parameterization

Layer 
Generation

Layer 
preparation

scriptsscriptsFinalizeFinalize

Figure 2.5: Aware toolflow

2.3 Xilinx Chai DNN

Xilinx Chai DNN is HLS based deep neural network library for acceleration of

deep neural networks[4]. The architecture used in Chai DNN is systolic array based

architecture where individual processing elements work independently to complete

same task. Chai DNN has received a lot of appreciation from industry due to its ease

of use and support for the network. It also supports two type of quantization dynamic

fixed point and Xilinx quantization. Both of which help two reduce model size. The

flow includes creating hardware using their pre-built overlay file, and then developing
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application using the Xilinx provided API calls to run the inference on the software

stack for pre-built networks. Currently it supports all major CNN networks. If the

user want to build the new networks which is already not supported by framework,

user will have to parse the prototxt file in order to create the data flow graph. Then

generate optimised weigths if required using the quantizer tool and then run the

software stack. Even though the architecture is implemented on FPGA, Xilinx allows

only certain hardware configuration which can be used to run Chai DNN, due which

this work feels that its configurability is limited to several configurations.

2.4 Related work

A traditional CNN can be viewed simply as a sequence of convolutional layers and

max pooling layers. In algorithmic terms, a convolution layer is simply a sliding dot

product of a series of multi-channeled filters (kernels) against equally multi-channeled

feature maps (FM). The generalized solutions of convolution layers typically take the

form of massive systolic arrays, such as the Google TPU [5], or flexible spatial archi-

tectures [6]. These architectures define compute parallelism by the data movement of

the targeted layer, which can be enormous for DNNs. This leads to large compute and

memory requirements, but results in increased power efficiency by way of throughput.

The power efficiency will scale with the throughput of the design, but will be limited

by the extreme bandwidth requirements and resource consumption that comes with

mapping the multidimensional operations of DNNs into a single large matrix multi-

plication [7]. This large resource requirement leads to sequential execution of the

DNN layers, forcing all the layers to map onto the same architecture. This results in

under-utilized resources, under-served layers, or both.

The work proposed by Shen et al. [8] takes into account the unique computational

dataflow and resource requirements of differing layers. However, due to the excep-

tional resource expense of building specialized architectures for each individual layer,

some architecture designs are reused across layers with similar requirements. Putic et
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al. [9] proposed re-configuring the accelerator at run time and analyzed the overhead

of reconfigurability against the benefit of hyper specialization.

Systolic arrays, such as Eyeriss [6], are a specific form of spatial dataflow architec-

ture. Spatial dataflow architectures map weight and FM reuse to a compute engine

of inter-connected processing elements (PEs). Typically a complex memory hierarchy

is emulated through an underlying Network-On-Chip to enable higher bandwidth for

the processing elements. Efficient computation of DNNs is inherently coupled with

an understanding of the algorithm’s intrinsic dataflow and exploitable parallelism

[10]. Reordering, pipelining, and tiling of nested loops is used to alter the dataflow of

DNNs. The granularity of pipelining, spatial parallelism, and buffering with respect

to the FM and weight stream are of grave importance [11].

Spatial dataflow architecture by itself is not always enough to satisfy application

constraints. Since accuracy tends not to scale beyond 8-bit resolution [12, 13, 14, 15],

quantization is a useful optimization, reducing resource requirements while increasing

power efficiency. [16, 17] explore binary quantization for DNNs. However, our work

focuses on 8-bit resolution for its minimal loss of accuracy. In addition to reducing the

numerical precision, transforming the computation into the log-domain, thus reducing

computation and memory requirements, has also been explored [18, 19].

The work of [20] exploits the close proximity of the edge device to the sensor for

mitigating data movement costs. This approach eliminates the transfer of interme-

diate FMs into main memory. In addition to FM streaming, all weights are stored

on-chip as well. These two joint approaches amortize the dominating energy cost of

data movement [21, 22] at the cost of data storage.

Instead of just reducing the memory accesses cost, memory access can be completely

eliminated through exploitation of sparsity or compression. Han et al. [23] utilized a

sparse matrix multiplication accelerator in combination with pruned and compressed

network topologies, bringing the power consumption down significantly. The work
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of [24] presents an ASIC architecture that compresses both input images and kernel

data to minimize DRAM accesses. This work also intelligently partitions memory and

computational resources so they can map easily to the targeted algorithm, allowing

the design to maintain a level of flexibility.

Overall, the works above were centered around either eliminating data movement

or mitigating computational requirements. Systolic arrays and other pure spatial

dataflow architectures are generally unable to satisfy the domain of edge DNN ap-

plications. These architectures scale their power efficiency with bandwidth and data

storage in order to satisfy a throughput constraint. This methodology ignores latency

and is only energy efficient when scaled properly.

Network pipelined architectures are an alternative to these pure spatial dataflow

architectures. These architectures utilize the idea of fused layers [25] to the extreme

in order to keep all FM data on-chip. By tiling the feature map, the resources required

for specializing each layer are reduced, but at the cost of streaming the weights for

multiple tiles. This energy cost is amortized by chaining the specialized layers to-

gether in a producer consumer fashion. The result of this is a macro-pipeline defined

for the targeted network at hand. Many works, such as [26], exploit the reconfig-

urability of FPGAs to make their architecture work with different kernel sizes and

other such parameters. However, by utilizing a pipeline methodology, the works of

[27, 28, 29, 30] take algorithm specialization to an extreme. Rather than supporting

one flexible dataflow through a generalized architecture [6], pipelined architectures

define the architecture at the granularity of the entire network to directly support the

most efficient dataflow for each layer. Yang et al. [31] purported that power efficiency

improvements are primarily caused by the underlying memory hierarchy rather than

the data-flow. [4] uses systolic array based design in order to perform acceleration

in a sequential manner where different layers are accelerated on the same engine at

different time frame. As we will see in the section3.3.2.1 that this has implication of
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wastage of power and inefficiency in the area. DNN accelerators that utilize algorith-

mic optimization, such as [32, 3], are able to reduce computation and data movement

for DNNs. Specifically, MobileNet [33] utilizes depth-wise separable convolution, an

extreme form of group convolution, to reduce the memory requirements and compute

intensity of DNNs. Tiny Darknet is the baseline for tinyYolo [34] and utilizes chan-

nel squeezing to reduce the memory requirements as well as the compute intensity.

The work in [35] does scheduling by controlling the rate at which the algorithm run.

It might be not possible in our case as real time edge requirement might not allow

us to change rate at which the algorithm is run dynamically. The work presented

in [36] describes how the presented work can generate portable memory architecture

for in fabric memory access for parallel application.[37] Presents an analytic memory

performance model suitable for memory hierarchies that use application managed

buffers. The presented work does borrows the ideas on both from and develops an

interface as required by the NURO-RAM accelerator. Even though this work is tested

for supporting NURO-RAM, it can be extended to to other accelerator with minor

or not modification.
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CHAPTER 3: Approach

3.1 Motivation for use of off-chip memory

Most of the neural network are big in size, with the model size averaging to 50 MB.

With exceptionally large networks, such as VGG-Net [38] or AlexNet, the memory

footprint of the network’s weights can reach upto 100 MB. This memory footprint

becomes problematic when compared to the memory real estate commonly available

on FPGAs, which is around 30 MB. This limitation is compounded further by the

need of streaming accelerators, such as AWARE-DNN, which uses on-chip memory

to store intermediate feature data in on-chip memory, further reducing available re-

sources. As is apparent, storing all the weights on chip is not a viable solution for

bigger network. However, off-chip memory access is notoriously slow and ill-suited for

streaming accelerator use. This necessitates the creation of a supporting system to

interface on-chip and off-chip memory while mitigating the latency of off-chip mem-

ory access. In addition, AWARE requires parallel access to weights so it can perform

pipelined acceleration across multiple layers simultaneously. This complexity of the

system is further compounded due to AWARE-DNN needing the weights to be fed

to it in a specific format to exploit parallelism in the network. This may or may not

be equal to granularity of the off-chip to on-chip data transfer. This calls for the

development of the interface circuit which would transfer the weights required by the

accelerator in the accelerator format.

On the other hand there are some smaller Convolutional Neural Network that can fit

all its weights in the on-chip memory of FPGA. But to perform efficient acceleration

on these network we need to increase the spatial parallelism of the network. This

leads to rise in the number of intermediate feature map buffering which inturn gives

rise to BRAM memory resource utilization. This would leave very less real-estate for

weight storage on chip. In such cases external memory system would come in handy
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to store the weights of the layers which cannot be stored on chip, to facilitating more

efficient acceleration. To solve these issues discussed above and improve the efficiency

of AWARE-DNN, this work presents NURO-RAM, which provides an interface for

the accelerator architecture, handles arbitration for off-chip memory access, and acts

as a supporting system for AWARE-DNN.

3.1.1 Design formalization for NURO-RAM

As discussed in section2 NURO-RAM exploits three forms of parallelism kernel,

channel, and convolutional, special considerations must be made in regards to the re-

structure the format in which weights are supplied to the architecture. In addition, as

a streaming accelerator, AWARE-DNN requires that a weight element to be available

for every network layer with single cycle latency after the request. Thus the constrains

required to be satisfied by the NURO-RAM in order to support AWARE accelerator

are :

• Each of the pipelined layer using the off-chip memory for weights should have

parallel access to weights.
• The weight elements for each of the layer should be in the format required by

each layer before they are streamed to the pipelined layer.
• There should not be any memory stalls while streaming the weights to the

accelerator, since this would hurt the streaming nature of the accelerator

We define the granularity at which the accelerator requires the weights to be fetched

as weight element. The width of the weight element is defined in equation 3.1, where

ChannelPar is the channel parallelism for the layer and ConvolutionPar is the con-

volution parallelism. This is also the width of the architecture-NURO-RAM weight

block interface. Figure 3.1 gives the idea how the weights are accumulated to form

weight elements. Here the ChannelPar=2 and ConvolutionPar =2, thus the size of

the each weight elements is 4 bytes.

Wghtelem_width =ChannelPar × ConvolutionPar (3.1)
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Figure 3.1: Weight elements

In this regards one cannot directly use the off-chip memory component directly as it

does not support the multi-ported memory for parallel access and as off-chip memory

access is very slow. This calls for a need of usage of multiple memory banks which

would feed each of the pipelined layers independently. The Block Random memory

access memory (BRAMs) present on the FPGA are best suited for this purpose. Since

the BRAM memory is fast , can be tailored to form memory banks of variable size

according to need of each layer and each of these memory banks can provide parallel

access to the weights for the layers. The proposed NURO-RAM architecture uses

BRAMs to pre-fetch the weights required by the accelerator. A custom accumulate

and interface unit is developed to perform the data conversion for the accelerator

from raw weights to the weight elements. These weight elements are then fed to the

AWARE-DNN accelerator whenever there is request for the weight element. It should

be noted that the layout in which the weights are stored on the off-chip memory needs

to be altered so that the layout supports efficient fetching of the weights from the

off-chip memory. This is discussed further in section 3.2.2. To arbitrate the off-chip

requests from mulitple layers Xilinx Micro-Blaze soft core is being used as arbiter.

Since channel and convolution parallelism for each layer is different, the size of the

weight element for each layer is also different. Thus, the rate at which weights must

be fetched from the pre-fetch BRAM buffers is be different for each layer. This is
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called the weight element fetch rate Wght_ftchrate, and the equation is given by

equation 3.2, where kernPar is the kernel parallelism for the layer and Farc is the

clock frequency of the layer.

Wght_ftchrate = Farc × fWghtelem× kernPar. (3.2)

Since each layer replicates the CPEs, exploiting kernel parallelism, the weight element

fetch rate can be reduced by replicating the required hardware for every CPE instance.

Thus the weight element fetch rate is reduced to:

Wgftchrate = Farc × fWghtelem. (3.3)

The weight element fetch rate can become much larger than what can reasonably

be fetched in a single cycle. This may lead to a decoupling of the architecture and

NURO-RAM clocks. With the NURO-RAM running at a higher frequency than the

architecture, weights can be fetched and accumulated for use within a single Farc .

The methodology to calculate NURO-RAM frequency is discussed in section3.2.5.2.

3.2 NURO-RAM Architecture Overview

As shown in Figure 3.2, the NURO-RAM architecture is categorized into three

main subsystems and consists of both hardware and software components. The first

subsystem, shown in yellow, is denoted as the off-chip block. This subsystem uses a

Xilinx DDR4 MIG Core[39] in conjunction with Xilinx AXI DMAs[40] to handle off-

chip memory requests and transfers for weights into on-chip BRAM. This system will

discussed in detail in section 3.2.3. The second subsystem, shown in green, is known

as the architecture interface and storage block. This block consists of hierarchical

memory and control blocks that store weights transferred from off-chip memory into

on-chip BRAM based pre-fetch buffers and then accumulate these weights from pre-

fetch buffers in form of weight elements into aync-fifo element. This would be further

discussed in section 3.2.5and 3.2.4. The third subsystem, shown in orange, is known

as the arbiter block. This block consists of a Xilinx MicroBlaze soft core and a Xilinx
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Figure 3.2: Overview of NURO-RAM System

AXI interrupt controller. This subsystem is the arbiter for managing off-chip memory

requests from the different layers of the DNN which would be discussed in section3.10.

3.2.1 System architecture goals

As previously discussed, the architecture requires weights in the granularity of the

weight element. Since the length of this weight element depends on the channel,

convolution parallelism, and network configuration, it is possible that the length of

the weight element may exceed the access width of an on-chip BRAM. In such a case,

the different sections of the weight element will need to be accumulated before being
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exposed to the architecture data-path. The necessary ratio between the architecture

clock frequency and NURO-RAM weight bank clock frequency needed to accumulate

these weights within one architecture clock cycle is derived in equation 3.4.

aggr_cycles = Wghtelem/BRAM_awdt (3.4)

Here aggr_cycles is the number of cycles required to aggregate the weight element,

and BRAM_awdt is the maximum read width on the BRAM read port. In equation

3.5 FNR_min is the minimum NURO-RAM bank frequency needed to provide a full

weight element for every architecture clock cycle.

(FNR_min/aggr_cycles) >= F (3.5)

This equation can be reduced to equation 3.6 for clarity.

FNR_min >= F_arc ∗ aggr_cycles (3.6)

Thus equation 3.6 is the minimum frequency at which the NURO-RAM bank should

be clocked so that it supports acceleration in AWARE-DNN. There are optimization

that can be further applied to reduce this frequency which would be discussed in

3.2.5.2.

3.2.2 Off-chip memory layout

For traditional architectures, weights for an entire layer are stored in a single block

of memory. This enables the weights to be fetched in one memory block so they can

be convolved with input of a single layer. However, since AWARE exploits kernel,

channel, and convolution parallelism, this paradigm fails to provide the architecture

the weights it requires in a single fetch. As such, the weights in off-chip memory

need to be stored in a way that accounts for the kernel, channel, and convolutional

parallelism of AWARE. Figure 3.3 show the tiling method adopted to store weights

in memory while keeping parallelism constraints in mind.
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Figure 3.3: Example of off-chip memory tiling.

3.2.3 NURO-RAM Micro architecture

Now let us dive into the micro-architectural details of NURO-RAM with respect to

design formulation. This sections describes how the NURO-RAM system architecture

is build by using configurable custom designed blocks. This section will be divided

into for subsections, Weight Bank, Weight Blocks, asynchronous state machine, and

asynchronous FIFO which are the basic building blocks of NURO-RAM architecture.

3.2.4 Weight Bank

As seen in Figure 3.4, a weight bank is made up of smaller elements called weight

blocks, which will be discussed in section 3.2.5. The weight bank is responsible for

transferring an interrupt request to the Micro-Blaze when new weights are needed to

be loaded onto on-chip pre-fetch buffers. This interrupt request is a reduction of all

the interrupt requests from each weight block in the weight bank. Each of the BRAMs

in the weight block in the weight bank are connected in a cascade mode. Thus the

DMA master who writes to the on-chip memory would see the entire address range

of weight bank as a whole rather than individual weight blocks. Memory. This is

done to reduce the number of write ports required, lowering the hardware overhead
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Figure 3.4: Weight Bank

for each DMA. This block is also responsible to transfer the weight Bank ready signal

generated by weight blocks to Micro-Blaze arbiter. This signal is raised when the

initial weight transfer is completed by the firmware thus indicate that the NURO-

RAM is ready to source the weights to the accelerator.

3.2.5 Weight Blocks

The weight block is the micro-architectural interface between NURO-RAM and the

architecture. A weight block is responsible for

• generation of interrupt for off-chip transfer request.

• aggregation of partial weights to create an entire weight element.
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As shown in Figure 3.5, weight blocks consist of two identical blocks of BRAM

used as as pre-fetch buffers, a weight block asynchronous state machine, and an

asynchronous FIFO buffer. The two blocks of pre-fetch buffers alternate between

active and transfer roles in ping pong manner. In the active role, the buffer supplies

weights to the asynchronous state machine for accumulation of weight element and

then transfer into the asynchronous-FIFO. In the transfer role, the buffer is written

with the next batch of the weights required by the accelerator by the DMA controller

via BRAM controller. As the design is already aware of the memory layout the weights

elements requested by the AWARE-DNN accelerator layer is always in the sync with

the off-chip memory layers. The asynchronous machine requests the off-chip memory

transfer when the active BRAM has emptied itself to half of its maximum depth,

giving it sufficient of time to accumulate weights before the active becomes empty.

Once the active BRAM becomes empty, the two buffers switch roles. This is done to

eliminate the impact of off-chip memory access latency on the architecture. This is

further discussed in section 3.10
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3.2.5.1 Asynchronous state machine

The asynchronous state machine acts as the control unit of the weight block. It is

responsible for fetching weights from the active BRAM and accumulating them in the

asynchronous FIFO buffer. That is when accumulation is equal to Chpar × Convpar.

A flow diagram demonstrating how this control logic is handled can be seen in Figure

3.6. This state machine control actually generates the interrupt for the weight block.

The interrupt request is raised when the active address from which the state machine

is reading becomes equal to half of the size of the depth of the pre-fetch buffers. This

block also generates the layer Bank ready signal once the firmware transfers initial

weights to the weights banks and the asynchronous fifoS are filled. As the system

design is tightly coupled with fifo depth and read write frequency of asynchronous
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FIFO this signal remains high for entire period of acceleration. The state machine is

also responsible for switching the roles of the BRAM, as discussed in section 3.2.5.

3.2.5.2 Asynchronous FIFO

The asynchronous FIFO buffer handles the exchange between the decoupled clock

frequencies of the NURO-RAM and the architecture. It also buffers the weight el-

ements, enabling the NURO-RAM to provide the architecture with entire weights

elements at every clock cycle. The size of the FIFO buffer for each layer can be

calculated using equation 3.7 and equation 3.9, where f_ratio is the ratio between

accelerator architecture and NURO-RAM frequencies, and FIFOdepth is the size of

the FIFO buffer.

f_ratio = f_arc/FNR_min; (3.7)

FIFO_depth = (f_ratio ∗ aggregation_cycles) + 1 (3.8)

FIFO_depth = (f_ratio ∗ (Wghtelem/BRAM_awdt)) + 1 (3.9)

As we can see, there is a system architectural knob in FIFO_depth. Lowering

FIFO_depth reduces memory utilization and increases frequency. Conversely, in-

creasing FIFO_depth will increase memory utilization while lowering frequency,

which can be used to lower power consumption. It should be noted that we can

change the size for the fifo buffers in-order to restrict the frequency at which all the

weight banks in NURO-RAM work. This can be used to avoid creation of multiple

clock island and thus avoiding the violation of clock domain. We can increase the

size of BRAM access width and lower the aggregation cycle, if the FPGA has suffi-

cient resources, by lowering the aggregation cycles we can run the accelerator and the

NURO-RAM interface at the same clock speed, thereby saving the power. Another

point to note here is that the parameters for aggregationcycles are actually dictated by

the parallelism defined by AWARE architecture compiler knobs like channel and con-
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volution parallelism. These are inturn dependent on the application requirement and

frames per second used. Thus we can see from here that the NURO-RAM architecture

is loosely coupled with the application requirements.

3.3 System Design Components

To built the system for the accelerator we have used pre-built IP provided by Xilinx.

The important IPS are discussed in the sections ahead.

3.3.1 Xilinix IPs used in the design

3.3.1.1 MIG core

Xilinx MIG (Memory interface generator) core [39] is to interface the Xilinx based

FPGAs/SOCs to the external DDR4 component. These core can support full mem-

ory controller or PHY (physical layer only) support for the system. With the ’physical

only support’, consuming lower amount of resources. The proposed design uses entire

memory controller support. The block diagram of the Xilinx DDR 4 MIG core is

shown below: The entire controller can be divided into three blocks

Figure 3.7: Memory interface generator



31

• User/Application interface: The block provides a fifo interface to the application

for reading and writing to the DDR4. Data is buffered to present the read data

in requested order.

• Controller block : This block will handle the burst transactions to and from the

user interface block to the SDARAM. It will also perform read write transaction

coalescing , handle the refresh and reorder the command to the physical layer

to improve the utilization of the data bus to the SDRAM.

• physical interface:This block would provide high speed interface to the SDRAM

component. These block include the SERDES block, High speed clock genera-

tion block memory initialization block, calibration block etc. The system design

uses an AXI based version of the MIG core. In this version the user interface

block described above is connected to AXI4 bus. Thus each of the transaction

sent to the DDR4 are AXI packets. Due to this multiple masters connecting to

the DDR4 can be easily handled by the AXI based smart interconnect systems.

Presented work use component present on the ultrascale board has interface

speed of 1200MHz. The PHY to clock frequency ratio supported is 4:1, the

MIG core runs on 300MHZ in current configuration.

3.3.1.2 CDMA Engine

This work have used AXI CDMA (central direct memory access) IPs [40] to trans-

fer data to and from memory mapped slaves. Hardware built for this IP supports

variable data width from 32 upto 1024. Burst size for transfers are supported from

2 to 256. AXI CDMA IP supports an additional AXI lite interface to dynamically

configure setting of the DMA by master processor. The IP supports hardware built of

single cycle transfer, burst transfer modes and scatter gather mode, out of which the

rpoposed design have used to burst transfer mode. On the software side it supports

the polling mode and interrupt mode, where the interrupt mode in order to free-up

the processor.
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Figure 3.8: AXI Central Direct Memory Access

3.3.1.3 Interrupt controller

Xilinx LogiCORE IP INTC core INTCreceives interrupt from the multiple sources

and generates one interrupt to the system processor. In case of NURO-RAM this is

the microblaze processor. The registers used on the software stack to enable makes

and acknowledge an interrupt are accessed via an axi lite interface. The block diagram

of this IP is shown in the Figure below: The major blocks of the IP are:

• Register:This blocks consist the control and status registers all of these are

accessed via and AXI lite the slave interface.
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Figure 3.9: AXI interrupt controller

• Interrupt detection:This block will detect the interrupt on the interrupt line

depending upon the configuration, falling edge or rising edge.

• Interrupt generation:This block generates the final output interrupt depend-

ing upon the configuration parameters like enable conditions. This block also

handles resetting the interrupt after acknowledgement.

3.3.1.4 Micro blaze core

The microblaze processors is 32 bit a highly configurable embedded soft processor

core from Xilinx [41]. The detailed explanation of all the configuration of the core is

out of the scope of theses thesis. The main point to know abou the core are:

• 32 Bit RISC Harvard architecture.

• supports the AXI interface, current configuration uses the AXI interface.

• Big/Little endian support, design configuration uses the little endian mode.

• Instruction side cache and data side cache support.
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3.3.2 Arbitration and Scheduling

The Micro-Blaze soft core is used as the arbiter module, handling off-chip memory

transfer requests for all layers. The requests are received in the form of the inter-

rupts mentioned in section 3.2.3. The Micro-Blaze stores all information about the

individual layers in a data structure called Network Topology. This data structure

holds array of another data structure called layer info. The MicroBlaze uses a set of

centralized DMA engines and and interrupt engine to handle the transfers. These are

configured by the Mirco-Blaze during initialization. The following section gives more

detailed view of how presented work performs scheduling of weights. In subsequent

section we will dive deeper into the firmware design.

3.3.2.1 Scheduling the off chip weights

CNN algorithms are highly predictable with respect to the weight access as each

process in the layer is repetitive for each frame passed to the layer. This is highly

exploited in the AWARE architecture. By modifying the weight layout in external

memory as discussed in section 3.3, we can pre-fetch the weights in on-chip BRAMs.

As previously discussed the weight blocks are the basic building block of the NURO-

RAM. Each layer needing the support of off-chip memory is provided with single

weight bank. The system uses a single off chip memory element and a single memory

controller to feed the on-chip BRAMs present on FPGA. This causes contention for

the memory controller and the off-chip memory which calls for a need of efficient

scheduling algorithm which will schedule the off-chip -on-chip memory transfers. In

terms of scheduling nomenclature it can consider that the weight transfer process is

an IO bound process as it uses off-chip DDR4 memory. Scheduling algorithms are

based on theirs metrics such as fairness, turnaround time and response. We can relate

these metrics to the NURO-RAM metrics as follows:
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• Fairness: Since we are accelerating multiple layers, we need the algorithm to

serve all the layers when it asks for the service. There should no starvation in

any case.
• Response time: As AWARE is streaming accelerator the turn around time for

each service should be minimum, else the layer would miss the frame and might

produce faulty results due to wrong weights. Here service is an off-chip on chip

weight transfer initialization.
• Turn around time: The time taken to weight transfer should be minimum, as

other layers would also request for weight transfer due to the streaming nature

of the accelerator.

As it is a known fact that its very difficult to perform best in all of the metrics

as stated above by a single scheduling algorithm. Thus we use a static scheduling

system which uses the knowledge of the network architecture and takes help from

the hardware design so that system arbiter is not overwhelmed with off-chip transfer

requests. Since turn around time for the system would be time taken to do a off-chip

memory transfer which depends upon the size of the transfer performed by the DMA,

as other factors such as the DRAM latency would be constant in this case. This is

related to DMA transfer latency which is a function of system frequency. Since we

are working towards reducing the power of taken entire system, there is a very little

margin to reduce this latency. NURO-RAM system uses the interrupts for requesting

the off-chip transfer service via DMA controllers, thus we can consider the interrupt

status register as the request que for the static scheduler. Figure 3.3.2.1 gives an idea

how the scheduling happens over time. Consider three weight banks for three layers.

As the time passes each of the weights from the on-chip BRAM (which was previously

filled by a external memory transfer) are read by the asynchronous state machine for

further accumulation and transfer into the asynchronous fifo. When this process

reaches half of the depth of the depth of the weight block’s pre-fetch buffer size, the

weight bank would generate interrupt request for the off-chip memory transfer and
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Figure 3.10: Static Scheduling using variable size pre-fetch buffers

then proceeds with further accumulation. This time from the start of weight block

pre-fetch buffer address till the time it reaches half-way of BRAM depth is the time

where requests for other layers can occur is called schedule slot. After the weight bank

generates the interrupt request it moves on to reading the next available address till

the time it reaches the depth of the pre-fetch buffers and performs the buffer switch.

This time is called turn around time for the layer. Before the end of this time the

DMA engine should have filled at least the initial addresses of the pre-fetch buffer. It

is clear from the above discussion that if we size the pre-fetch buffers we can increase

the response time window and can mitigate already constrained turn around time.
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timing diagram.png

Figure 3.11: Timing diagram for Scheduling

Sizing BRAMs for pre-fetch buffers

We will now move our attention as to how we can size the pre-fetch buffers. Here

we consider the unit block RAM size as 4KB because the targeted Ultrascale FPGAs

consist of RAMB36 and RAMB18 as the unit block RAM element and the size of

this element is 4KB and 2KB respectively. Now since each layer has its own channel

and kernel parallelism, denoted by Chpar and Convolutionpar the number of weight

element present in unit block of memory is given by

Num_Wghtelem =
4096

Channelpar × Convolutionpar

(3.10)

If the transfer latency for the DMA engine is given by DMA_latency. The rate

at which the weights are fetched are given by Layer_reqfr. For successful DMA

transfer for the same layer the requests should comes after the DMA engine has
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finished previous transfer, essentially DMA_latency. Thus the minimum number

of the weight elements that should be present in the pre-fetch buffer is given by

Weight_min given by equation3.11

Weight_min =
DMA_latency

Layer_reqfr
(3.11)

Thus by increasing the weight more than Weight_min we can vary the time the

weight block takes to generate an interrupt. Equation3.10 allows us to find the

number of weights present in the unit memory element. Thus if we characterize the

DMA_latency for the unit memory transfer (4KB) we can accurately find what is

the size of the pre-fetch buffer to store Weight_min. Using this we can size the

pre-fetch buffer more accurately. If two buffer sizes turn out two be same then we use

a simple multiplication factor for the layer that has lower kernel parallelism in-order

not to stagger the request in time between two buffers. If we relate the increasing of

number of weights in weight block to scheduling terminology we could imply that it

would increase time in the schedule slot thus easing the task of scheduling. Secondly

it also provides high turn around time. The timing diagram 3.11 shows the off-chip

request with fixed sized pref-etch buffers vs the variable size buffers. Let us now

move our focus to the fairness. We can see from above discussion that if we size our

BRAM such that each weight bank has differently sized pre-fetch buffers the interrupt

request for each layer would occur separately for most of the time. There might be

cases where two layers can have weight block sizes are multiples of each other and the

request are generated at the same time. But this will be taken care by the interrupt

controller module as the un-serviced interrupt would be still be served as the interrupt

handler registers its status even when the processor is in process of initiating other

transfers, and we are assured to have fairness to each of the layers. The following

Figure explains the differences between using a constant size BRAMs in weight blocks

vs variable size BRAMs.
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Coupling optimization

Note that there can be configuration in smaller CNN algorithms where the Chpar

and Convolutionpar are very low due the size of the filters they use or due to the

inherent nature of algorithm. Since the lowest size of the pre-fetch buffer used in the

design is 4KB, this causes be wastage of the on-chip memory. Consider the example

of layer that has Kernelpar of 64 Channelparof 1 and Convolutionpar of 1. One such

design point can be found in Shallow mobile net. If we size the pre-fetch buffer of this

layer to be 1KB then rest of 3KB is a wastage of memory real estate. This problem

is aggrandized by Kernelpar of 64. Thus total 192KB of memory can get wasted.

For this kind of layers we used an optimization called coupling where the Kernelpar

is broken into smaller value and these values are coupled into channel parallelism

or convolution parallelism. Due to this the size of the Weight_element increases

and will increase the aggregation cycles. But the rise in the aggregation cycles can

be neutralized by increasing the BRAM access width. Since we have reduced the

kernelpar the memory wastage is reduce. This change is easily supported by the

accelerator interface as due to the flexibility of wiring in the interface

3.4 Software Design

The firmware for scheduling the off-chip , on chip transfers is completely handled by

the Micro-Blaze processor [41]. The firmware performs system initialization (discussed

more section 3.13) after which it spends most of its time in servicing the interrupt and

housekeeping activities. The housekeeping activities involve updating the addresses

for next transfer and updating the transfer statuses for each layer. There are two

different interrupt sources for this system. First the off-chip transfer request from

the layers them-self. Second the DMA transfer completion interrupt from the DMA

engines. We have used interrupt based DMA transfers as using easier methods like

polling will hurt the system’s strict latency requirement.
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3.4.1 Firmware

Figure 3.12: Scheduler Firmware

Figure 3.12 shows high level view of software events used for arbitration of off-chip

memory requests. Each layer is assigned a data structure as Layer info. Each of the

Layer info instance consist of information about the layer as given in table 3.1. During

the system initialization the weights initial batch of weights are first transferred to

the off-chip memory. Once this initial transfer is completed the system performs

initialization of the other peripheral engines.

Once the entire initialization is complete the system would wait for the layer Bank

ready signal to high.After the Bank ready signal goes high, at this point the system

would start the AWARE-DNN accelerator. From here the architecture would receive
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Table 3.1: Layer info

Name Usage
CDMA The instance of the DMA Enigne the layer connected to

interrupt Handler The interrupt handler for the layer
Status Status of the DMA transfer

Base off-chip Base address in DRAM from which layer weights start
High off-chip High address in DRAM from which layer weights start
Active off-chip Active address which will be used for next transfer
Base on-chip Base address of BRAM controller for on-chip
High on-chip High address of BRAM controller for on chip
Active on-chip Active address for the next transfer

a weight element for every layer on every architecture cycle, and the firmware loop is

repeated until acceleration is completed.

3.4.2 System Initialization

Figure 3.13 gives us a brief idea of the initialization performed by the system at

the start. The numbers given at the connection in Figure indicate the step at which

the particular initialization is performed. Initial steps include the GPIO initialization

and the interrupt controller initialization. Since the system consist of single interrupt

controller in the design all the layers share the same interrupt controller driver, this

controller driver is initialized by Init_int_cont() function. The interrupt controller

has first level of interrupt handler which will be called when any of the interrupt is

generated to this controller. This handler would inturn call the second level handler.

This is determined by which second level interrupt handler is connected to the source

peripheral by using INTC_Connect function. Interrupt controller initialization is

followed by the layer initialization function. Each layer would have two interrupt

sources one from the layer itself (for the off-chip memory transfer) and second from

the DMA engine, to indicate the status of the transfer. The Layer_Init() function

initializes both of these sources. The first interrupt source (off-chip transfer) is initial-

ized and connected to the interrupt controller by the function Layer_INTR_Init()
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where it calls the function INTC_Connect() to connect the appropriate second level

interrupt handler when off-chip request is generated. The second level interrupt

handler, which in this case is Init_DMA_Transfer which would perform initial-

ization of DMA transfer and also connect a callback function that would be called

once the transfer is completed. Each of the layers have their own DMA engine and

Figure 3.13: System initialization

thus the structure layer info as in table 3.1 would consist of separate driver for the

DMA engine it is connected to. The driver for the DMA handler is initialized by

CDMA_ENGINE_INIT () function. The this function is is provided with the

other arguments so that the driver instance can be connected with the interrupt con-

troller using INTCconnect() function. This same functionINTC_connect() is also

used to connect the driver instance with the appropriate second level interrupt han-

dlers. Function CDMA_ENGINE_INIT () is will also enable the interrupts for

the given CDMA engine by calling the function Intc_start(). The function calls to

INTC_connect() and Intc_start() are common between Layer_INTR_Init() and
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CDMA_ENGINE_INIT () initialization flow. After the layer initialization com-

pletes the function Intc_enable function is used to enable the peripheral interrupt

source so that it can generate interrupt on the interrupt controller. In the end we

perform initial weight transfers to on-chip memory and then wait for the layer Bank

ready signal.

3.4.3 Handling the Interrupts

As previously discussed the firmware spends its majority of time in servicing the

interrupt requests. Let us now dive deeper as in how these request are handled by the

firmware. The interrupt controller has numerous layers of interrupt handlers which

are called on by one when the interrupts are fired. The process is shown in Figure

3.14. Let us first discuss about the off chip transfer interrupt. As previously discussed
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Figure 3.14: Interrupt handler flow

in section 3.4.2 the first level interrupt handler (Main handler) is called every time an



44

interrupt is fired at the interrupt controller. This handler would check the peripheral

source of the interrupt generated in the interrupt controller and would call appropri-

ate second level interrupt handler. If the source is the the layer off-chip request then

the handler would call Init_DMA_Transfer() function to initiate a DMA transfer.

This function would then call the previous XDMA_simple_transfer() function to

perform the actual transfer. This function would also connect the call back func-

tion to the transfer. If the transfer initialization fails the Init_DMA_Transfer()

would try to perform the transfer again. Since the off-chip transfers are scheduled us-

ing the scheduling policy discussed in section 3.10 XDMASimpletransfer() barely

fails. If the source of the interrupt is DMA complete interrupt from one of the

DMA engine then the handler would call the DMA handler function to perform

the house keeping activities related to the DMA engine. For the house keeping it

would then call the Call back function which was connect with the transfer when the

XDMA_simple_transfer() function was called. The call back function would then

update the the addresses for the on-chip memory as well as the off-chip memory.
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CHAPTER 4: Experimental methodology and Evaluation

4.1 Experimental methodology

For evaluation AWARE-DNN / NURO -RAM system we have used Xilinx ultrascale

FPGA (ZCU 102 board ). The resources availability for this chip is given in the table

4.1.

Table 4.1: Ultra-scale Device Resources

Resource Availability
CLB LUTS 27408

CLB Registers 548160
BRAM 34 Mb
DSPs 2520

For the development of the NURO-RAM hardware IP we used Vivado 2018.2 suite

and was based off verilog HDL. Model-sim simulator was used for IP verification for

both functional and timing analysis. For hardware verification, post-implementation

net-list was used for functional and timing analysis. For the firmware, development

was carried out using Xilinx SDK 2018.2 [42] and the drivers for the firmware was

developed using the C. For verification of system level implementation we have im-

plemented the system on Xilinx’s Ultra-scale FPGA board and ILA cores were used

in order to verify the communication of Microblaze -NURO-RAM interface. A de-

bug UART port was also implemented in the system for further verification on the

software side. The power and utilization numbers reported in this work are reported

are gathered from post implementation results from Vivado synthesis and implemen-

tation tool. It should be noted that the power analysis report generated by Vivado

considers 50% activity on all the lines. Thus the power results presented are in the

ballpark range. Secondly Vivado tool is unable to capture the off-chip power used

by the MIG core, and thus special considerations have to made to report the SOC
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power as whole. Thus to get the SOC power to greater accuracy this work incorpo-

rates Xilinx power estimator tool to generate off-chip power result. Then the results

from the Xilinx power estimator and Vivado are added together to report the total

power. Table4.2 configurations we used to generate the power report from Vivado

implementation.

Table 4.2: Power report settings

Constraint Value
Junction Temp. 25 degree
Ambient Temp. 25 degree

Airflow 250 LFM
Borad layers 12 to 15

For creating the layers each of the chisel generated layers files we integrated with the

weight block memory module developed in verilog in Vivado and IP were generated

for each of these layers. The DMA transfer width and burst size effects does change

the timing of system and indirectly affects the BRAM utilization. This is because

the Xilinx RAMB 36 is 32 bit wide BRAM element and to support higher sizes the

BRAM elements are cascade together because of which there is some wastage of

memory resources. The current DMA transfer width is 32 bits and burst size is 8.

The accelerator frequency is kept at 50 Mhz for all the design points reported and

thus clock frequency at which NURO-RAM weight banks are run is regularised by

setting the fifo depth to 8. Thus weight banks in entire NURO-RAM uses 250 MHz.

This was done to avoid the timing issues which might rise due to multiple clock island.

All the sizing of the pre-fetch buffers are made according to the configuration chosen

above and calculations from3.3.2.1.

Further more to test the NURO-RAM we evaluate three separate CNN algorithms

AlexNet, Tiny Darknet and Shallow mobile net [33]. We choose to implement this

network showcase the flexibility of the NURO-AWARE system to bigger network.

Second network this work implements is Shallow mobile net. This network is very
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compute efficient because of which there is lot of pressure on memory sub-system. The

third network this work implements is the Tiny Darknet which is memory efficient

network but it is not compute efficient and was chosen to evaluate the flexibility of

the system towards diverse set of networks. Each of these network algorithms are

run at 30 FPS as this suits well for the real time requirement. To compare the our

results this work have implemented the Xilinx Chai DNN for Tiny Darknet using

1024 DSP configuration with Xilinx quantization support for inference. The report

for the AlexNet for FPS were taken from the Xilinx performance reports The reports

for power for Chai DNN for tiny Darknet and AlexNet are obtained by running

hardware from DSA file into Vivado tool synthesis and implementation. For GPU

result we ran AlexNet using the py-torch model on NAVDIA Xavier GPU.

4.2 Evaluation and Results

There are two separate evaluations which are to be considered while evaluating

NURO-RAM. First is to compare the AWARE-DNN and NURO-RAM (NURO-

AWARE)as a system to previous FPGA/, GPU based implementations for accel-

erating CNN on edge. In the second section we discuss about NURO-RAM’s ability

to augment AWARE-DNN’s ability support larger network and to improve its perfor-

mance. The pipeline latency and the number of layers for all the all three network at

30fps is shown in Figure in 4.1. Figure 4.2 shows implementation of three separate

algorithms using NURO-AWARE system.

4.2.1 Implementation of neural networks

In this section we compare implementation of three CNN networks on NURO-

AWARE system. NURO-AWARE system consist of the AWARE-DNN hardware

accelerator in conjunction with NURO-RAM system. This section also compares

the presented work with FPGA based as well as GPU based Edge CNN accelerator

solutions.
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Figure 4.1: Latency of CNN algorithms using NURO-AWARE

4.2.1.1 Evaluation of implemented networks using NURO-AWARE

Figure 4.2 shows implementation of three separate algorithms using NURO-AWARE

system. Note that results depicted in Figure 4.2 for shallow mobile net and Tiny Dark-

net have some of the optimizations implemented to get best system performance. This

optimisations will be discussed in further section 4.2.3. The resource utilization shown

in the Figure 4.2 shows the FPGA resource utilization for implementing each of the

network. AlexNet consumes highest amount of resources in each resource section.

This is because of the bigger size model AlexNet. The LUT utilization shows the

expected graph and is proportional to the size of the network. In the case of BRAM

memory, the results are as expected, where the utilization is proportional to the size of

the network. It should be also noted that the Tiny Darknet utilizes the least amount

of memory as it is has small model size and this network is memory efficient. The
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Figure 4.2: Implementation of CNN algorithms using NURO-AWARE

power utilization of these network are shown in 4.3 also shows the expected results,

which is proportional to the size of the network and thus AlexNet consumes highest

power of 4.5 watts.

4.2.2 Evaluation of networks with other Edge solutions

Next we compare the implementation of AlexNet [1]and Tiny Darknet [34] using

NURO-AWARE to implementation of these network using Xilinx’s Chai DNN. Chai

DNN is available in different overlay versions. We chose version with 1024 DSPs

version as this was closet to the FPS supported by NURO-AWARE for AlexNet.

Lower DSP version of Chai DNN might not be able to hit the same frame rate (with

fully connected layers). The results for this comparison are shown in the Figure 4.4.

It can be noted that Chai DNN resource utilization is same for Tiny Darknet and

AlexNet due to the overlay setting we have to use for Chai DNN. We can see that the

NURO-AWARE system does beat Chai DNN in terms of utilization in both AlexNet

implementation and Tiny Darknet implementation. The reason for this is because

Chai DNN framework uses systolic arrays and performs sequential acceleration for
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Figure 4.3: Power usage of CNN algorithms using NURO-AWARE

each of the layer. This causes regularization of hardware for each of the layer and

thus there is wastage of resources. On contrary NURO-AWARE customizes the data

path as well as the memory access path for each of the layers and hence the wastage of

the resources is reduced. Figure 3.2.3 shows the performance evaluation for NURO-

AWARE system versus Chai DNN AlexNet implementation and NVDIA Xavier which

is AI super compute module. This evaluation is performed only on AlexNet imple-

mentation to perform worst case evaluation. Evaluation shows that NURO-AWARE

system does beat NVDIA Xavier as well as Chai DNN both with respect to power.

The low power utilization of NURO-AWRE can be attributed to the custom data

path and memory access path catered towards each of the layers. Whearase the high

power utilization of Chai DNN, is due to the sequential nature of its acceleration be-

cause of which of has to perform large feature map transfers from off-chip to on chip

after each layer acceleration is completed. NURO-AWARE solution also beats the

performance of NVDIA Xavier as well as Chai DNN. This is because we pipeline the

data path efficiently so that we can perform maximum data reuse across the feature

maps using the optimized compute engine for each of layers. Where as GPUs as well

as systolic arrays use sequential processing. Figure 4.6 shows the power utilized by
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Figure 4.4: Comparision with Chai DNN implementation

Figure 4.5: NURO-AWARE performance comparison

Chai DNN , NVDIA Xavier and nuro-ram running AlexNet. Nuro-AWARE is using

the least power of 4.5 watts then the others solutions which can be attributed to the

custom data path and the memory path used by NURO-RAM.

4.2.3 AWARE-DNN Extension

In this section we compare implementation of CNN algorithms AWARE-DNN ar-

chitecture with off-chip memory support provided using the NURO-RAM system

architecture. We first evaluate the implication the NURO-RAM has on the entire
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Figure 4.6: NURO-AWARE power comparison

system when supporting bigger network which cannot be fitted given the memory

constraints on FPGA. Latter we will evaluate the effect of NURO-RAM architecture

and its effect on the increasing the performance of smaller architecture such as Shal-

low mobile-net. In the end we evaluate increasing the efficiency of memory efficient

network Tiny Darknet.

4.2.3.1 Implementing AlexNet on AWARE-DNN

While AlexNet is not a very efficient CNN topology but it serves well as a worst

case test of NURO-RAM’s ability to augment the AWARE-DNN framework’s domain

coverage. The table 1.1 gives a brief idea of the memory requirement for an imple-

mentation of the AlexNet’s convolution layers. From the table 1.1 it is clear that if

we use on-chip memory for this implementation it would fail. As we can see from the

table 4.1 the size of the on-chip memory is 30 Mb. In this case we utilize NURO-

RAM to extend our memory hierarchy and support running AlexNet inference. The

configuration for each weight bank block is given in the table 4.3

We size the BRAM by calculating the buffer size needed to support the necessary

bandwidth in addition to insuring the Microblaze has sufficient time to service the

interrupts. This is done by the approach discussed in section 3.3.2.1. The comparison

between the raw memory usage and the bank memory for each layer is given in table

4.3. Layer 1 and layer 2 are not implemented with the NURO-RAM architecture
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Table 4.3: Alexnet- NURO-RAM Weight configuration

CNV5 CNV6 CNV7 FC9 FC10 FC11
Convolution Parallelism 3 3 1 6 1 1
kernel Parallelism 8 2 16 16 4 8
Channel Parallelism 1 8 2 1 16 4
RAW Memory (in MB) 0.8 1.3 0.8 37 16 4
BankMemory (in Kb) 0.13 0.32 0.54 1.3 0.31 0.73

interface as we can infer form the Figure 1.1 that the size layer is really small vs the

latter layers in the network. The memory reduction obtained by using NURO-RAM

Figure 4.7: Reduction in memory footprint in AlexNet

over the raw memory is shown by the graph4.7. As we can see that the layers with a

very high raw memory requirement have the highest reduction. This is related to the

fact that the NURO-RAM pre-fetch buffers are sized to accumulate the weights to

support minimum weight requirement for the accelerator at any point in time. Where

the minimum weight requirement is related to DMA transfer latency as explained in

section 3.3.2.1.
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4.2.3.2 Implementation of Shallow mobile net

Shallow mobile net is considered compute efficient network due to depth wise con-

volution. The depth wise convolution reduce the compute intensity by limiting the

receptive field to single channel. This compute efficiency is offset by the memory

requirements of point-wise layers, needed to insure accuracy.

Table 4.4: Coupling for shallow mobile net

Kern_par Ch_par Conv_par
CONV25 2 8 4
CONV27 2 8 64
CONV30 2 5 2

If we do-not increase the parallelism in the design, the weights can easily fit on

the FPGA’s on chip memory for this netowork. In general to achieve better latency,

spatial parallelism is need when the frequency is bottleneck. But increase in spatial

parallelism increases the memory resources. This because the spatial parallelism in-

creases the intermediate feature maps buffers which are used to store feature maps

between two layers. But storing the feature maps to external memory has its impli-

cation with respect to latency and power wastage. The second reason in increase in

the BRAM memory is the increase in the DSPs for spatial parallelism. Thus rather

then storing the feature maps off-chip we choose to store the the weights of the lay-

ers off-chip. Thus we use the NURO-RAM in order to free-up memory resources for

partial feature map buffering and for increase in DSPs. We choose layer CON25,

cONV27, cONV30 as off-chip layers due to the size of BRAM memory they (512

KB,1024KB,100KB) require for storing the weights on-chip,rest other layers are not

required to be used off-chip the on-chip weight buffer size is small. Figure 4.8 shows

three design points depicting the amount of BRAMs used in each design point .

The first memory footprint point Ocp_design is the utilization of BRAMs for
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Figure 4.8: BRAMs utilization comparison in off-chip layers in shallow mobile net

off-chip layers if implemented only using on-chip weight bank solution which has

pipeline latency of 24ms at 50Mhz. Second design point is an off-chip solution called

as Dcp_design point (decoupled design point), where the sizing of the of the pre-fetch

buffer is performed in the same way as discussed in section 3.3.2.1. This design point

has increase kernel parallelism applied to it and hence can support has decreased

latency of 16ms at 50Mhz. The Third design point Ccp_design point in which we

applied coupling optimization as discussed in section3.3.2.1 to couple the kernelpar

to Channelpar and Convolutionpar. The parallelism used for coupling design point is

given below in table 4.4

Figure 4.8 shows the overheads which are incurred while using the NURO-RAM

architecture for small design without any optimization. Even though there is reduc-

tion of the number of BRAMs in Layer 26 and Layer 27, the BRAM usage in layer

25 is still the same.

While DCP_Design point has helped the off-chip layers to reduce the number of

BRAMs, this utilization difference is less when we compare to the entire network
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Figure 4.9: Comparison in reduction of memory for Dcp_design vs Ocp_design in
shallow mobile net

BRAM utilization as can be seen it Figure 4.10. This is because to improve the

performance of the smaller networks we need to increase the the kernel parallelism

and since these layers are having smaller weight elements, the kernel parallelism

doesn’t scale up well for these layers. But it is evident that the coupling optimization

design point have been able to effectively reduce the size of the BRAMs used in the

implementation. This is because of the reduction of the kernel parallelism due to

coupling. Figure 4.9 shows the effective the reduction comparison for CCP_ Design

as well as DCP_Design. Here the CCP_Design performs extremely well while serving

a smaller network. Thus by increasing the spatial parallelism we can easily boost up

the performance of the network with the help of NURO-RAM.

4.2.3.3 Implementation of Tiny Darknet

Tiny Darknet is considered as one of the most memory efficient network in CNN.

The total size of the Tiny weight model is mere 1.9 MB. This small size of the network

is caused by its squeeze and expand layers [34]. But this network is not as compute
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Figure 4.10: Total BRAM utilization in Shallow mobile net across entire network

efficient as shallow mobile net. Thus in order to improve on its compute efficiency we

increase the spatial parallelism. This again puts pressure on the resource utilization

due to the need of more Dsps and buffering more number of intermediate feature map

vectors.

Table 4.5: coupling for Tiny Darknet

Kern_par Ch_par Conv_par
CONV15 2 8 1
CONV17 4 8 3
CONV20 2 25 1

Thus we introduce the NURO-RAM system to release the pressure of resource

utilization with respect to memory. Using the similar reasoning as for mobile net we

choose the layer CNV15, cNV17, cNV19 to be off-chip layers due to its large BRAM
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Figure 4.11: Total DSP utilization in Shallow mobile net across entire network

memory size (130 KB,290KB ,290KB) weight size as compared to others. We also

use the coupling optimisation to check the diversity of this optimization to support

smaller network. Here we use CCP_Design as well as DCP_Design in this section.

Figure 4.13 shows the BRAM utilization of Tiny Darknet. It is clear that NURO-

RAM did relax the memory resource constraint for the off-chip layers. The coupling

optimization used for this configuration is given in table 4.5.

We can see from the Figure 4.13 that the inclusion of the NURO-RAM in the

system did help the off-chip layers to effectively reduce the memory resources.

But if compare to the overall BRAM resource utilization from Figure 4.14 we can

see that without the use of coupling the NURO-RAM adds additional memory usage

to the system. This caused because of the kernel parallelism not scaling up well for

smaller network. But with the coupling used with NURO-RAM we can see the sys-

tem design does improve and we see the drop in total memory utilization as shown

in Figure 4.14. But the saving ratio between the Dcp_design point savings and
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Figure 4.12: BRAMs utilization comparison in off-chip layers in Tiny Darknet

Ccp_design point savings are lesser as compared to the shallow mobile net Figure

4.9 because Tiny Darknet is inherently memory optimized network than mobile net.

Thus with reduction of BRAMs in Tiny Darknet can help us to fit Tiny Darknet on

smaller devices like ultra96 which 312 Bram of RAMB36 as shown in Figure 1.2.

Figure 4.13: Comparison in reduction of memory for Dcp_design vs Ocp_design in
Tiny Darknet
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Figure 4.14: Total BRAM utilization in Tiny dark net net across entire network

Figure 4.15: Tiny Darknet Dsp utilization
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CHAPTER 5: Conclusion And Future Work

5.1 Conclusion

An efficient weight streaming system to stream the weights to the real-time CNN

accelerator was developed. This research explores how we can leverage fast and

efficient one chip memory present on FPGA to serve the parallel streaming of weights

across multiple layers. As the accelerator this work was focusing on used parallelism

to accelerate the CNN network and had real time time constraint this work had to

develop an efficient architecture for customizable memory hierarchy and interface unit.

This led to development of NURO-RAM. During the development various aspects of

the architecture were taken into consideration to prevent the wastage of the memory,

power and other FPGA resources. The architecture thus developed used some of the

prebuilt Xilinx IPS as well as custom design IP. Since on-chip memory is constrained

on FPGA we had resort to scheduling mechanism in order to schedule the off-chip

transfer to any layer, so that minimum weight size needed by the accelerator was pre-

fetched and used. This was followed by development of static scheduling algorithm

which was responsible for scheduling the weight. The firmware for this scheduler was

implemented on Xilinx Micro-Blaze soft-core and experimental results were carried

out using Xilinx zcu102 board.

Comparing to the previous edge based solutions such as the Chai DNN and NDV-

DIA Xavier it was found that the NURO-AWARE architecture performed pretty well

in terms of power usage due to its highly crafted architecture for accelerating lay-

ers in pipelined fashion. It was also evaluated that NURO-AWARE architecture did

perform better than Chai DNN and NVDIA Xavier in performance. NURO-AWARE

architecture has also proved to be resource efficient as it beats the Xilinx Chai DNN

for two network implementation Tiny dark net and AlexNet. For evaluation of the

diversity of support of network for NURO-RAM, three separate networks were im-
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plemented on AWARE accelerator using NURO-RAM interface (NURO-AWARE). It

was found that for supporting the large networks like AlexNet, the basic NURO-RAM

architecture proved highly efficient more than 50x saving for one of the fully connected

layer. The Nuro-RAM architecture was also evaluated to support highly paralleled

smaller networks for performance. In this case it was found the basic NURO-RAM

basic architecture interface has proved to be not well efficient due to increase in high

kernel parallelism. In order to tackle this problem a new optimisation to the NURO-

AWARE architecture interface was developed which indeed helped the architecture

to accelerate these network by providing memory savings to the network.

5.2 Future Work

Currently NURO-Aware system has implemented three speerate networks . In

future work we will try to add more network support. Future work also includes

implementing the NURO-AWARE architecrure from ALTERA or even smaller de-

vices from Xilinx. Since the NURO-RAM has so many system tunable knobs which

can be used to suite the needs of application. One such knob is mapping different

design point with respect separate frequency and asynchronous FIFO. We will also

try to characterize the DMA transfer using the scatter gather engine which runs

autonomously thus saving on complexity scheduler.
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