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ABSTRACT

SOROUSH RAZMYAR. Analysis of Optical Fiber Speckle Patterns for Detection of
IVUS Catheter Tip in 3D Space: An Intelligent Sensor Research. (Under the

direction of DR. M. TAGHI MOSTAFAVI)

This research study presents the architectural design and computational framework

for an intelligent tracking sensor constructed from a multimode fiber optic. As laser

light travels through an inhomogeneous medium, such as multimode fiber, the random

interactions between light rays generate a circular output pattern commonly referred

to as speckle patterns. Speckle patterns are highly responsive to the variation in

the physical status of a multimode fiber. As a multimode fiber deforms, analysis

of speckle pattern variations provides information about the external perturbations

causing the deformation. This study presents a novel algorithm for calculating 3D

transformations from a series of speckle patterns, which is modeled in three tiers.

In the first tier, we have performed a series of experiments to demonstrate, in a

deforming multimode fiber, the structural variation of speckle patterns contains de-

terministic information. That also provides a systematic approach for measuring the

deformation parameters of a multimode fiber using a convolutional neural network.

Second, we have studied the oscillating behavior of multimode fiber as a function

of its length to find the relationship between the sensor’s heading direction and the

deformation of its sensing fiber tip. By utilizing a Long Short-Term Memory model,

we have demonstrated that long-term dependencies between the deformation param-

eters provide a stable and reliable indication of the intelligent sensor’s direction. At

the end, we have utilized these findings to develop a novel computational framework

for the intelligent sensor. This computational framework includes a pipeline of deep

learning models to extract features from a sequence of speckle patterns, and a motion

model to estimate the trajectory of the sensor from the extracted features.
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CHAPTER 1: INTRODUCTION

Major cardiovascular diseases have been the leading cause of death in the United 

States, accounting for over 614,000 deaths in 2015 and 761,000 in 2016 [1]. Coronary 

artery disease as the most common type of cardiovascular disorders accounts for one of 

six deaths in the United State [2]. Improvement in diagnostics of vascular plaques is 

one important factor that reduces these numbers. If these plaques could be detected at 

their early stages, proper treatment could be applied more effectively, which as a result 

may significantly increase positive clinical outcomes. This may be achieved by research 

and development of sensing technologies aimed to enhance the capabilities of currently 

available diagnostic systems.

Intravascular Ultrasound (IVUS) is a designated in vivo sensor to examine the inter-

nal structure of blood vessels. Since 1989, this catheter-based diagnostic tool has been 

used as the chief technology for visualization of the vascular lumen and arteriosclerotic 

plaque detection [3]. IVUS generates a series of two-dimensional cross-sectional (2D) 

images of the soft tissues within the artery, and thus, it provides physicians with a 

better opportunity to evaluate the type of plaque, the size of vessels, and the severity 

of the problem. Since the last decade, researchers have been investigating the possi-

bility of transforming IVUS cross-sectional images into a 3D geometric reconstruction 

of blood vessels. Such transformation can be achieved through a three-step process. 

1. extraction of the catheter 3D trajectory as well as the IVUS probe pose as it trav-

els in vivo. 2. localization of the IVUS images along the extracted 3D trajectory. 3. 

updating the orientation of IVUS images according to the IVUS probe pose. While 

the later two steps are by no means simple, finding a proper method for extracting 

the 3D trajectory of IVUS probe in vivo has proven to be quite challenging. This is
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mainly due to the limitation of the IVUS system in providing the essential trajectory

information.

During the past decade, researchers have investigated the fusion of IVUS and other

imaging technologies, such as angiogram, to extract the trajectory of the catheter. De-

spite significant advances, the proposed approaches are known to have shortcomings

that prevent them from being used safely, easily and effectively in everyday clinical

practices [4]. The current systems are generally stationary, complex and require ex-

tended supervision in their operation. Moreover, many of them require a prolonged

radiation exposure, which could be harmful to the patients [5, 6]. Also, they are

costly, which limits their application on a broader scale. Medical instruments are not

only preferred to be simple in operation but also expected to provide reliable data for

physicians to facilitate the interpretation process.

One component that could advance the current state of this field is a dedicated

position sensor for tracking the IVUS probe in vivo. This position sensor is desired

to emit no harmful radiation and be compact enough for fusion to the IVUS systems.

According to a recent review of cardiovascular 3D reconstruction techniques, such

a sensor does not exist yet [7]. One possible approach, which has been considered

in a few studies [8, 9], is utilizing optical fibers for extracting spatial information.

Optical fibers have certain characteristics that make them an attractive technology

for various in vivo or ex vivo procedures. They are disposable, relatively safe, and

immune to electromagnetic fields. Additionally, multimode fibers are available with

a wide variety of diameters and bending stiffness promoting adaptability. Moreover,

it has already been demonstrated [8, 9, 10] that fusion of fiber optics with current

biomedical instruments is a feasible approach.

This research focuses on devising a computational framework for a novel fiber

specklegram tracking sensor so that it could estimate the motion trajectory of an

object in 3D space. In particular, this work exploits the interferometry principles
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of a multimode fiber to estimate spatial transformation. The interference pattern of

multimode fiber is referred as speckle pattern or specklegram, see Fig. 1.1. Speckle

patterns are highly sensitive to deformation of a multimode fiber. Our approach is

utilizing a pipeline of machine learning models to learn the relationship between a

fiber optic deformation parameters and the structural variations of speckle patterns.

We also provide a systematic approach for calculating 3D transformation of an object

from speckle patterns variations.

Figure 1.1: A speckle pattern is a projection of thousands of small clusters of lights
emitted from a multimode fiber. An analysis of speckle patterns variations provides
quantitative measurements of the physical status of the fiber.

The remainder of this document is organized as follows. In chapter 2 we review the

proposed 3D vascular reconstruction techniques during the last 30 years. This chapter

also covers fiber optic interferometry principle as related to this study. Chapter

3 explains the design and prototyping principles of the intelligent sensor in detail.

This chapter also outlines the experimental setup, data collection process, as well as

the validation procedure of the intelligent sensor. Chapter 4 and Chapter 5 provide

a series of studies to illustrate the feasibility of utilizing speckle pattern analysis

for position estimation. Chapter 6 provides a discussion on the performance of the

intelligent sensor, and outlines the future steps of this research.



CHAPTER 2: BACKGROUND

The first section of this chapter provides a brief overview of the 3D vascular re-

construction techniques which have been proposed during the last 30 years. The

literature suggests that 3D vascular reconstruction, even in an ideal laboratory set-

ting, is challenging. The underlying difficulty is extracting the longitudinal shape

of the vascular structure. Not only the proposed techniques are complex and time-

consuming, but they also require prolonged exposure to harmful X-ray radiation. The

fiber optic intelligent sensor explained in this work provides an alternative safer solu-

tion for tracking applications. To this end, the second part of this chapter provides a

review of optical interferometry principles related to this study.

2.1 Vascular Reconstruction

Vascular reconstruction involves the process of collecting and analyzing medical

imagery, typically in the form of series of gray scale images. The data collection

hardware includes Intravascular Ultrasound (IVUS), Coronary Angiogram, Magnetic

resonance imaging (MRI), Computerized axial tomography (CAT), Computed To-

mography (CT), and Positron Emission Tomography (PET). The general approach

for analyzing medical imagery is to extract interesting features by utilizing image

processing pipelines for noise reduction, edge extraction, and segmentation. This

pre-processing step is required because the data collection process is not done under

ideal condition. The quality of the acquainted data is affected by a patient move-

ments, the inherent sensing noise or imprecision of transducers, and visualization

artifacts. Therefore, the current sensing hardware are required to be calibrated ex-

tensively to ensure optimum functionality. Among the mentioned imaging hardware,
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IVUS and X-ray coronary angiography are the most widely used technologies in clin-

ical decision-making process [6, 11].

2.1.1 Intravascular Ultrasound Systems

When a patient need surgery to clean up blocked arteries, there is a lot of infor-

mation doctors need before they can operate. One way to obtain such information is

with the Intravascular Ultrasound (IVUS) technology that generates internal views

of the blocked blood vessels. IVUS is a designated in vivo sensor for examine the in-

ternal structure of blood vessels. IVUS provides physicians with a better opportunity

to evaluate the type of plaque that a patient has, the size of vessels, and the severity

of the problem by showing a 360○ view of internal structure of the veins, as shown in

Fig. 2.1 [12].

Figure 2.1: Examples of IVUS echo-graphic 2D images showing a 360○ view of a
blood vessel.

IVUS imaging operation involves the following steps [13, 14]:

1. Converting the electrical pulse into high-frequency sound waves (ultrasounds).

2. Emitting and capturing the sound waves as reflected by tissues.

3. Converting back the reflected ultrasounds into electrical signals.

4. Visualizing the electrical signals.

In clinical application a guide wire is inserted into the vessel. Then, doctors inserts

and advances the catheter over the guiding wire inside the patient’s body and into
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the artery. The imaging process starts during the pullback phase of operation. The

speed of an IVUS pullback is about 0.5−1.0 mm per second. By constantly receiving

the reflection of the sound waves, IVUS systems are capable of generating images at

the rate of 25-30 frames per seconds [15]. The spatial resolution of IVUS systems

is about 80-100 µm. The most important limitation of IVUS for 3D reconstruction

of blood vessels is inability to provide the longitudinal shape of the blood vessels.

Fig. 2.2 illustrates a simplified diagram of IVUS pullback acquisition.

Figure 2.2: IVUS captures a series of cross-sectional images during the pullback
phase. The longitudinal shape of the blood vessels can not be extracted directly from
the IVUS images. Another technology, such as angiography, will be required to track
and extract the trajectory of IVUS catheter.

2.1.2 IVUS 3D Volume Reconstruction Techniques

Since the early days of the IVUS technology, researchers have investigated the pos-

sibilities of reconstructing a vessel 3D geometry through the utilization of a series

of 2D images. Due to the limitation of IVUS in providing the shape of vessels, an-

other imaging modality, such as angiography, is required to provide such information.

Coronary angiography provide an X-ray visualization of the heart’s chambers and

the surrounding blood vessels. This procedure is often performed to identify any

narrowed or clogged areas of coronary arteries that prevents blood from reaching to

heart muscles. Similar to the IVUS, angiography is an invasive procedure, which

requires a catheter to be inserted and tracked into the blood vessels. Angiography
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catheters are flexible plastic tubes, which are used to inject X-ray dye inside the ves-

sels. Due to the provided contrast by the injected dye, the fluoroscope captures X-ray

images, or angiograms. The fluoroscope equipment includes an X-ray source and an

intensifier which, are installed on two opposite sides of a C-shaped arm. This C-arm

rotates in two directions around an imaginary central point called the iso-center, see

Fig. 2.3 [16]. It also moves in three directions. Thus, the angiography equipment has

five degrees of freedom.

Figure 2.3: (Left) Example of angiography C-arm. A patient is positioned at the ‘iso-
center’ location. Through X-ray imaging this system provides 2D visualization of the
blood vessels, as shown in the right panel. Angiography process requires prolonged
exposure to harmful X-ray radiation.

During the late 80s and early 90s, a trend of studies focused on reconstruction of

blood vessels by using images taken during angiography. In 1986, Wollschlager et

al. [17] introduced a mathematical model that described the characteristics of a stan-

dard two X-ray biplane angiography system. Throughout the literature, their model

is referenced as the “classic iso-centeric geometry model”, because it assumed only one

fixed iso-center for both X-ray systems. In 1991, a paper by Wahle et al. [18] pre-

sented the first 3D visualization method, which was implemented based on the classic

iso-centeric geometry mode. In that work, the authors used the fixed iso-center point

of the two X-rays as a reference point. However, it became clear that the assumption

of a fixed iso-centeric point was not realistic. In practical applications, the movement
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or rotation of the instruments alters the iso-centeric point. Due to this shift, the

iso-center reference point became blurry or undetectable. In a sequential paper [19],

the authors improved the classic iso-centeric geometry model to account for a variable

iso-center reference point. Moreover, they presented several algorithms to correct the

model based on the effect of the missing points [20]. Despite promising a positive

outlook and providing an overall visual reconstruction of coronary vessels, these ap-

proaches were not capable of providing any information on the internal structure of

veins or plaques. Considering the available technology of the time, it was the fusion of

biplane angiography and IVUS that made the realistic reconstruction of blood vessels

possible. Fig. 2.4 illustrates an example of vascular reconstruction process according

to the IVUS X-ray coronary angiography approach, in a laboratory setting. X-ray

images are stereoscopically analyzed to extract the location of the catheter tips.

Figure 2.4: IVUS X-ray based vascular reconstruction pipeline.

Some of the early studies on 3D reconstruction treated the vessels as straight

lines [21, 22, 23, 24]. Here, the idea was to construct a 3D cylinder resembling

the vessel volume. Series of IVUS 2D images were taken at predefined intervals; and

placed along a straight line resembling the catheter path. This approach was a break-

through technology, still it suffered from one major limitation: its inability to provide

the actual shape of the vessels. To address this obstacle, various technologies were

proposed to obtain spatial information from the biplane angiography. Laban et al. [25]

developed the ANGUS method, which combined biplane angiography with images ob-

tained from IVUS. Their model was a break breakthrough approach since it provided

a realistic catheter path. The major limitation of ANGUS was the assumption that
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the catheter’s longitudinal centerline represents the curvature of vessels [26]. Also,

their work did not consider the catheter’s change of orientation during the pullback

process. In another study, Evans et al. [27] attempted to acquire the IVUS images

and their coordinates simultaneously. Also, a transformation matrix was used to find

the 3D positions of the IVUS coordinates from two biplane views. Their design de-

creased the overall reconstruction process. Similar to the previous studies, it did not

address the orientation of the catheter tip.

Another study by Prause et al. [28] introduced a robust algorithm for tracking the

orientation of the catheter based on the previously traversed 3D trajectory. Dur-

ing the pullback process, the catheter changes its trajectory plane in respect to the

world reference system. As the catheter’s orientation changes in the world frame,

its new local orientation were updated based on the previous local ordination. Their

solution successfully measured the orientation of the catheter by about 1% per cm

overestimation.

The approach of Subramanian et al. [29] to the 3D vascular reconstruction was to

manually selecting a few key point from X-ray images for an accurate visualization

of the arterial vessels. A few X-ray images were utilized for ext rating the catheter

tip’s location at key points along the vessel length. Then, the catheter’s trajectory

was estimated by interpolation of a spline according to the Kochanek-Bartels math-

ematical model [30]. They also used a motorized pullback IVUS system to reduce

the catheter’s twists. All IVUS images were oriented based on a known reference

direction. Once the locations of all images were cleared, the 3D volume was created

by combining the intensity of IVUS images at all lattice points. Through this novel

approach, a more realistic 3D volume was constructed. Another key advantage of

this work was the reduction in the number of required angiograms, which promoted

safety. In comparison, this approach was time-consuming, which affects its usability

for real-time applications. Bourantas et al. [31] introduced a new algorithm to extract
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the catheter path from angiograms with higher accuracy. Their approach was capable

of providing a complete path from images with missing or unclear segments. Next,

Zheng [32] improved the accuracy of volume construction by addressing issues such as

axial position, spatial orientation and surface fitting. Finally, Carlier et al. [33] pro-

posed a real-time fusion of IVUS or OCT with angiograms through which automated

or semi-automated image processing techniques are used to extract the 3D path.

A review of recent progress on 3D reconstruction of coronary arteries [6] suggests

that tracking the catheter’s trajectory, even in a contorted laboratory setting, is chal-

lenging. Analyzing X-ray images is a workable solution for extraction of the catheter

path, but far from an ideal solution. First and foremost it requires a prolonged expo-

sure to X-rays radiation, which is harmful to humans. Image noise, low contrast and

even overlapping blood vessels affects the accuracy of the path extraction techniques.

Also, due to their dependency on some degree of human intervention, none of the

proposed techniques could be performed in real-time. Moreover, the reconstructed

curvature according to this approach suffers from accumulated error. Finally, the as-

sumption that catheter will follow the vessels’ centerline was not quite realistic. While

utilizing a motorized IVUS transducer reduces the undesired catheter change of loca-

tion or orientation, it does not eliminating it. Several factors can cause the catheter

to shift significantly from the vessels’ centerline. These factors include the vessels’

curvature shape or diameter, and movement resulted from heartbeat or breathing.

While the current modalities are promising, they still need further refinements.

A position sensor constructed from a fiber optic cable has the potential to provide an

alternative solution for those challenges. This leads to the reduction of the diagnosis-

treatment procedure. Fiber optics are flexible, lightweight and small in diameter.

Therefore, they are a natural fit for invasive medical applications.
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Figure 2.5: The structure of a typical fiber optic cable. Light propagates in an optical
fiber because the index of reflections of the core and the cladding layer are different.

2.2 Fiber Optics

Optical fibers are thin (8µm to 1000µm) and flexible optical waveguides, which

are commonly used for long distance light transmission in telecommunication appli-

cations. A typical fiber optic cable has three layers: core, cladding, and a protective

jacket, shown in Fig. 2.5. The core, or the central part of the fiber, is the area through

which the light signals travel. The cladding surrounds the inner core layer. While

both core and cladding layers are composed primarily of silica glass, the core is denser

and has a higher index of reflection than the cladding. The difference between the

index of reflection of the core and the cladding layer allows the light waves to travel

in a series of zig-zag bounces inside the fiber.

There are two classes of fiber optics: single-mode and multimode. Whether a fiber

is multimode or single-mode depends on its core diameter, core/cladding reflective in-

dices and the wavelength of the light. Single mode fibers have smaller cores (8−10µm),

which allows only one mode of light to pass through. Also, they have low attenua-

tion, which makes them suitable for long distance communications. For a particular

wavelength λ, the maximum core diameter D in which light can be transmitted in a

single-mode is:
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D <
2.405λ

π
√
n2
co − n

2
cl

(2.1)

Where nco and ncl are refractive indexes of the core and cladding [34, 35]. If the core

diameter is any larger than D, the fiber operates in multimode regime. multimode

fibers have larger core diameters (20 − 1000µm), which allow multiple pathways of

light to propagate simultaneously. In comparison to single-mode fibers, multimode

fibers have higher attenuation rate. Therefore, are mostly used for short distance

data communication (i.e. LAN).

Although optical fibers are mainly used for data transmission, they have charac-

teristics that make them a suitable technology for sensing applications. They are

flexibility and light weight, inexpensive and available, so they can be easily replaced.

Moreover, their exceptional thinness along with their ability to operate independently

from any source of electrical power makes them a suitable candidate for various in-

dustrial or medical applications. In this respect, during the past decades, numerous

studies have been devoted to producing a range of fiber-based sensing principles which

can be applied to variety of sensing applications. Comprehensive reviews of key de-

velopment in fiber sensing technology are presented in these articles [36, 37]. The

sections that follow reviews the characteristics of two types of fiber sensors that is

more relevant to this research. Please note in this dissertation, optical fiber, fiber

optic cable, and fiber will be used interchangeably.

2.2.1 Fiber Bragg Gratings (FBG)

Gratings are invisible and permanent periodic reflectors, created in segments of

a single-mode fiber. When an incidence spectrum of light propagates through the

gratings, a specific wavelength, i.e. Bragg wavelength, is reflected back while the rest

of the spectrum is transmitted unaffected. The Bragg wavelength λB depends on the

refractive index of the grating in the fiber core n and the grating period Λ [38]:
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λB = 2nΛ (2.2)

During the past decade, this relationship has been utilized for development of

FBG-based sensors. From a physical point of view, strain is a macroscopic measure

of structural deformation [39]. As a fiber optic deforms, strain ε is applied the fiber

gratings, which consequently, shifts the reflected wavelengths ∆ΛB from its initial

value ΛB. The relative shift in the Bragg wavelength ∆λB/λB can be estimated by:

[
∆λB
λB

] = CS∆ε +CT∆T (2.3)

where CS and CT are constant values representing the coefficient of stain and coef-

ficient of the temperature, respectively. By monitoring the temperature fluctuation,

or with the assumption of ∆T = 0, the change in strain value ∆ε can be measured

dynamically [40, 41]. Researchers have used this principle to propose various strain

and temperature measuring systems. In addition, application of FBG sensors has

been extended to measure other physical quantities such as acceleration, pressure,

displacement. While these FBG-based modalities are similar the other types of fiber

sensors in terms of compactness and flexibility, they are more sensitive and accurate.

Additionally, a unique advantage of the FBG technology is that it allows mea-

surement points to be fabricated as an array of independent sensors along the same

fiber, enabling distributed sensing. This is an interesting feature in the context of

the vascular reconstruction since a trend of studies have focused on FBG-based shape

sensors [42, 40, 43]. In theory, fusion of a fiber shape sensing sensor and IVUS seems

like a workable solution for extracting the catheter path [8, 9, 10]. Yet, there are

several issues that are left to be solved. FBG sensor measurements are highly sensi-

tive to variation in temperature. It has been shown that when used in vivo, a shape

sensor may go through a change of temperature up to 10○ C [44]. Failing to consider
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this change of temperature during the modeling process may significantly reduce the

accuracy of the reconstructed curves.

Additionally, the current generation of shape sensors operate by measuring the

reflected light from multiple FBG structures. The loss of reflected light in the fiber and

resolution of the interrogator are another sources of error that decreases the accuracy

of FBG sensors. Fabrication challenges are another source of error that influence the

accuracy of such sensors [43, 45]. These challenges include: proper arrangement of

the FGB sensors, accurate cross-sectional angular alignment of FBGs, and precise

installment of multiple fibers in equal distances from the center of the structure. Due

to the small size of fibers, high-tech manufacturing techniques are needed to overcome

the fabrication issues. Therefore, the FBG sensors and the interrogator apparatus

are complex and more expensive in comparison to the other fiber-based sensors [38].

Though this research study focuses on specklegram-based sensing instead of FBG-

based approach, we provided this brief overview to emphasize the importance and

potential of FBG sensors for medical applications. This area of research is relatively

new and further improvement will be required before FBG sensors could effectively be

used in the clinical settings. A more comprehensive literature review of FBG sensors

can be found in [46].

2.2.2 Specklegram Sensors

As laser light travels through an inhomogeneous medium such as a multimode

fiber the random interference between light modes generates a circular output pattern

commonly referred to as speckle patterns (or specklegram) [34], see Fig. 2.6. Although

a comprehensive mathematical model for decoding the specklegram interference has

not being developed yet [47], some characteristics of speckle structure are as follows.

In a multimode step-index fiber the number of speckles and the number of modes are
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Figure 2.6: (left) Gaussian beam profile of a single-mode fiber is produced by only
one light mode. (Right) Beam profile of a multimode fiber, i.e speckle pattern, is
generated due to the interaction of several light modes.

approximately equal [34]. The number of individual speckles is expressed by:

V ≈
2πdco
λ○

(NA) (2.4)

NA =

√

n2
co − n

2
cl (2.5)

where V is the number of modes, λ○ is the wavelength of light in the air, NA is the

numerical aperture of the fiber, dco is the fiber diameter, and ncl and nco are refractive

indexes of the cladding and the core [34, 47]. When V < 2.405 fiber exhibits single-

mode behavior. [35]. According to the equation 2.4, the number of individual speckles

increases for multimode fibers with a larger core diameter and higher NA. Similarly,

increasing the wavelength of the laser light reduced the number of speckles.

Fiber specklegram sensors (FSS) are type of measuring devices that utilize inter-

ferometry principles to retrieve information about the physical status of a fiber. As

illustrated in Fig. 1.1, a typical FSS configuration includes a multimode fiber that is

powered by a coherent light source (laser), a diffuse surface to visualize the speckle

patterns, and an image acquisition device to record the pattern. The FSS operation

principle is as follows: assuming Ii denotes the intensity of each individual speckle,

then the overall intensity of specklegrams Itotal is approximately constant:
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Itotal =
V

∑
i=1

Ii = constant, (2.6)

where V is the total number of speckles [48]. As light enters from one side and

propagates through the fiber cable, fiber deformation due to the presence of external

forces, alters the the intensity distribution of speckle pattern at the other side: some

become brighter and some dimmer. A CCD camera records speckle variation over

time. An analysis of the variation in intensity of speckle pattern provides information

about those external perturbation. This phenomenon has been widely used to measure

physical phenomena such as temperature [49], displacement [50], vibration [48, 51, 52],

and force measurement [53]. More recently, speckle pattern sensing is utilized for

tactile arrays for human-robot interaction [54].

The main advantages of using the fiber optic specklegram sensors – in comparison

to conventional sensors – include compactness, low cost, and adaptability. However,

there are complications that limit their application. Generally speaking, specklegram

sensing is achieved by analyzing, or utilizing intensity variation of speckle patterns

in time. Theoretically [55], despite the fact that the intensity of individual speckle

dots varies in response to external stimuli, the overall intensity of specklegrams is

assumed to be constant. In practice, that is not the case. The measurement error

due to the light source fluctuation is common to speckle-based sensors [56]. Thus, a

continuous referencing mechanism is needed to monitor the light source and calibrate

the sensor to reduce the effect of the light source power fluctuation. In other words,

without a referencing mechanism, which often tends to be complex, the measurement

will suffer from additional random noise. Contrarily, using a reference mechanism is

far from an ideal solution as it decreases the dynamic range of such sensors while

making implementation more complex.

To address some of these concerns, some studies have devised computer vision

techniques to analyse speckle patterns. One attractive approach is to compare a
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sequence of speckle images captured during a time interval using various template

matching algorithms. Template matching methods relies on segmentation of an image

in to region of interest, and quantifying the degree of similarity of each region to

a reference template applying a correlation function. Since the reference image is

usually the first captured image during each interval, template matching is an attempt

to eliminate the need for a continuous referencing mechanism. In this sense, the

challenge shifts to defining a correlation function robust to intensity fluctuation. The

common correlation functions, which have been studied extensively are Zero Mean

Normalized Cross-Correlation (ZNCC) [57], Phase-Only Correlation (POC) [58], Sum

of Squared Differences (SSD) [59], and Ratio Image Uniformity (RIU) [59].

While image matching techniques have provided a significant improvement in the

specklegram-based sensing, they are not without limitations. A recent study by Fuji-

wara et al. [60] evaluated several image matching algorithms for specklegram sensing.

According to their results, all common image matching methods provided equivalent

stable performance. However, the dynamic range of the ZNCC method shown to be

limited since it saturates to a minimum value when an speckle image becomes sub-

stantially different from the reference frame [60, 61]. Also, POC, SSD and RIU were

highly sensitive to intensity variations which, limits their applications in detection of

subtle deformations. These results suggests while image matching techniques provide

a relatively simple sensing alternative, their practical applications are not trivial and

might be challenging.

Another drawback common to many of the speckle-based sensors is is the limita-

tion of their functionality to one axis of freedom [49, 62, 63, 53]. This limitation

may be of considerable importance since many physical phenomena, such as force

or displacement have a vector nature: they have a magnitude as well as a direction.

Recently published reviews of specklegram-based sensing literature suggest that most

techniques gravitate toward magnitude estimation of acting stimuli [64, 60]. Indeed,
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only a few studies have been focused on the estimation of the direction of deformation

or retrieving spatial information using speckle patterns [65, 66]. Although promising

results of these studies are limited due to the overall size of such systems, accuracy

or stability.

With advancement in computing technology, neural network models have been

utilized in the speckle sensing applications for a variety of purposes including stress

measurement [67], pH. Measurement [68], and structural health monitoring [69]. The

possibility of using neural network was further explored to construct an intelligent

shape sensor [65]. Other application of neural network in specklegram based sensing

included modalities for force measurement [63], distributed acoustic sensing [70],

and a spatially-resolved sensing system [71]. These reports suggest that a neural

network based fiber optic sensors may provide a more reliable analytical alternative

compared to the conventional sensors, which applications are limited due to their

physical characteristic, accuracy or performance.



CHAPTER 3: METHODOLOGY

This research is toward the “intelligent” aspect of the sensor: a computational

framework to estimate spatial transformation by analyzing raw inputs. In this chap-

ter we explain the architecture design, motion model and validation process of an

intelligent sensor to track motion. The presented sensor incorporates a multimode

fiber optic as a transducer. We also utilize a pendulum system to construct a compre-

hensive dataset for speckle pattern analysis. Please note in this study, ’the intelligent

sensor’ and ’the sensor’ will be used interchangeably.

3.1 Fiber Optic Intelligent Sensor

Fig. 3.1 presents the architecture design of the intelligent sensor. The sensing

transducer consists of an elastic multimode fiber mounted on a rigid base. One end

of the multimode fiber is coupled to a laser module and the other open end is free

to move toward a diffuse surface. In such configuration, the “sensing” mechanism of

the sensor is as follows. Ideally, this sensor will be co-located with the IVUS catheter

over a guide wire , and follows its motion. During the pullback phase, an axial force is

applied to the transducer and pulls it back. In reaction to this force, the elastic fiber

deforms and its tip deviates from the resting position. This deformation changes the

speckle patterns. Analyzing these variations provides “directional hints” to describe

motion of the system. In the laboratory setup, speckle patterns are projected onto

a diffused surface and captured with a high frame rate camera, which is mounted in

parallel to the diffuse surface. Although this configuration it does not suit the “in

vivo” applications, it provides a mean of testing our approach. Fig. 3.2 illustrates

an alternative architecture for in vivo applications. While work is toward a clinical
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(a) Schematic design of the intelligent sensor.

(b) Laboratory configuration of the sensing transducer.

Figure 3.1: (a) The architecture design of the intelligent sensor includes a rigid base
and an elastic multimode fiber (MMF). The speckle patterns are projected on a diffuse
surface, and captured by an image acquisition device. As the sensor travels in space,
the tip of the MMF deviates from its resting position. Consequently, the speckle pat-
terns change. Displacement in two axes of movement are estimated through analysis
of speckle patterns. (b) The laboratory implementation of the sensing transducer,
in which a high frame-rate camera captures 115 speckle patterns per second from a
diffuse surface.
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application, the hardware manufacturing details of the in vivo setup are beyond the

focus of this research.

Figure 3.2: An example of an in vivo setup. This setup is consisted of a multimode
fiber (MMF) and a mirror (M) attached to the end of the fiber. Lights enters into
the MMF and is reflected by the mirror. The resulting specklegrams are recorded by
a detector at the other side of the fiber.

3.1.1 Motion Model of The Intelligent Sensor

Generally speaking, there are two classes of motion models: kinematic models

which, describe the motion of an object without considering the acting forces, and

dynamic models that attempt to embody the relationship between forces and motion.

In other words, kinematic models are simplified dynamic models where mass and

external forces such as gravity are ignored. Due to this simplification, while kinematic

models are more tractable, they are less accurate than dynamic models. Despite this,

the kinematic models are capable of approximating a system’s the actual dynamics

when the acceleration is not significant, i.e. constant speed. As we will demonstrate

in the work, kinematic models are sufficient enough to describe the motion of our

position sensor.

The in vivo nature of this research allows the following relaxation to be made

regarding the motion of the intelligent sensor. 1) The system is fully calibrated,

meaning the location and orientation of the camera in respect to the fiber optic does

not change. 2) The motion of the fiber’s tip is restricted to a plane perpendicular to

its central axis. 3) Most IVUS equipment provide means of controlling the motion
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Figure 3.3: Using a high sampling rate, the traversed path of the intelligent sensor
can be represented by a sequence of trajectories with constant curvature. The overall
trajectory is shown in 2D but generalizes to 3D.

of the catheter during the procedure. Thus, we assume the displacement of the

sensor along its central axis is a known parameter. 4) Since the sampling rate of the

intelligent sensor is in the order of milliseconds ≥ 115fps, the traversed path of the

sensor between each sampling moment is assumed to be a continues curve of constant

curvature, see Fig. 3.3. 5) Finally, the coordinate system of the camera is assumed

to be the same as the coordinate frame of the intelligent sensor.

These assumptions provide a foundation on which to develop the motion model

of the intelligent sensor. As the sensor travels through space, the camera captures

images at discrete time instances. Let I0∶k = {I0, ..., Ik−1, Ik} represents the collection

of all captured speckle images, and Ik be speckle images captured during the time

frame k. The sensor’s transformations between tk and tk−1 are related by a 4 × 4

matrix Pk,k−1 with the following structure:

Pk,k−1 =

⎛
⎜
⎜
⎝

Rk,k−1 Tk,k−1

0 1

⎞
⎟
⎟
⎠

(3.1)

where Rk,k−1 is a 3 × 3 direction cosine matrix (DCM), Tk,k−1 is a 3 × 1 translation

vector, and 0 < n < k . Next, let P0∶k = {P1,0, ..., Pk,k−1} represent the overall motion

of the sensor during interval 0 to k. Also, assume W0∶k = {W1,0, ...,Wk,k−1} denote

the motion of the sensor in the world coordinate system (WCS), where W0 being the

sensor’s initial position at time t = 0, equal to I or any arbitrarily value. Then, the



23

Figure 3.4: The motion of tip of catheter has three degrees of freedom: translation
along the length of the catheter, and a deformation in a plane perpendicular to the
axis of translation. Using a polar coordinate, the deformation magnitude and the
direction of bending of the tip of the catheter are represented by its distance from
the origin θ ≥ 0, and its angle with the polar axis α ∈ [0,2π], respectively.

current Wk can be calculated by combining all transformation P0∶k using:

Wk =Wk−1.Pk (3.2)

Here, our goal is to measure the relative transformation Pk using a sequence of

speckle images Ik, and to combine them according to the equation 3.2 to recover the

overall trajectory W0∶k of the intelligent sensor. Consider a hypothetical scenario in

which a fusion of IVUS and the intelligent sensor has been inserted over a guide-wire

into a constrained environment, i.e: blood vessel, see Fig. 3.4. This system has three

degrees of freedom (DOF): two bending directions in the tip location (2DOF) as well

as a translation(1 DOF). Since the motion of the sensors is controlled by the IVUS

cable, the overall system can be modeled as a cable-driven continuum structure. This

approach has been explored in numerous studies such as [72, 73, 74, 75]. Therefore,

we employ the same geometry-based approach to model the motion of the sensor.
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Figure 3.5: Geometrical illustration of the translation of the intelligent sensor during
the time interval tk−1 → tk. The current state of the sensor at time tK can be cal-
culated by updating its previous state at the time tk−1 according to the α, θ and ∆l
parameters.

Consider Fig. 3.5, which represents the displacement of the intelligent sensor during

the time frames tk−1 → tk using the following parameters:

• {Xwk−1
, Ywk−1

, Zwk−1
} sensor’s state at time tk−1 in WCS.

• {Xlk , Ylk , Zlk}: sensor’s local (LCS) state at time k in .

• ∆l sensor’s displacement along its central axis during tk−1 → tk

• θ ≥ 0t is the heading direction of the sensor during tk−1 → tk

• α ∈ [0,2π] represents the direction of bending during tk−1 → tk

• R radius of the path curvature.

With the assumption of constant curvature (R = ∆l
θ ), the process of updating the

sensor’s transformation during the time interval tk−1 → tk are:

1. Tk,k−1: Translation the of the WCSk−1 to LCSn.

2. RZ,α: Rotation of LCSk around Z-axis for α.
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3. RY,θ: Rotation of LCSk around y-axis for θ.

4. RZ,−α: Rotation of LCSL around Z-axis for −α.

These transformation are formulate as:

Wk−1.Pk =

⎛
⎜
⎜
⎝

RZ,α 0

0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

RY,θ Tk,k−1

0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

RZ,−α 0

0 1

⎞
⎟
⎟
⎠

(3.3)

According to the geometry principles, the transformation Tk,k−1 can be measured

from:

Tk,k−1 =
∆l

θ
( Cα(1 −Cθ) Sα(1 −Cθ) Sθ ) (3.4)

and the rotation matrix Rk,k−1 is [72, 73, 74, 75]:

Rk,k−1 =

⎛
⎜
⎜
⎝

RZ,α 0

0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

RY,θ 0

0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

RZ,−α 0

0 1

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C2αCθ + S2α CαSαCθ −CαSα CαSθ

CαSαCθ −CαSα S2αCθ +C2α SαSθ

−CαSθ −SαSθ Cθ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.5)

where, Cα = cosα, Cθ = cos θ, Sα = sinα, and Sθ = sin θ. Through an iterative

calculation, the current position of the sensor is calculated by applying the equations

3.5 and 3.4 into 3.2. Note that ∆l is a known parameter, and therefore, the problem

of motion estimation comes down to measuring the θ and α angles using a sequence

of speckle images Ik.

3.1.2 Methods of Sensor Evaluation

The intelligent sensor must be validated to ensure that it performs as expected. In

order to validate the sensor, a separate tracking sensor will be required to provide the
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reference measurements, i.e. ground truth values. When traveling a control path, the

reference sensor and the intelligent sensor produce two sets of estimations at some

sampling rate. These estimations represents two trajectories, or two distributions.

Ideally, the measurements of the intelligent sensor will have a similar distribution

to the reference sensor’s measurements. The statistical procedure to evaluate the

measurements of the intelligent sensor is as follows:

1. Constructing the reference distribution: the central limit theorem states the

mean of a sufficiently large sample set is proximately equal to the population

mean. To apply this theorem, several observations of the reference sensor trav-

eling a control path will be collected. Each observation will be defined by a pair

of two sets of consecutive measurements such as Mref and M ′

ref taken from the

reference sensor:

Mref = {(x, y, z)i} ∶ i ∈ {1..p} (3.6)

M
′

ref = {(x
′

, y
′

, z
′

)i} ∶ i ∈ {1..p} (3.7)

where i is the sampling order and p denotes the number of samples within each

set. For each observation, the absolute difference of sampled points in 3D space

will be calculated by examining the planar projections. Let dc be the absolute

difference of the sampling points for every observation. Then, the difference

between pairs of sampling point produces a set P such as:

P ∶ {dc =
√

(xi − x
′

i)
2 + (yi − y

′

i)
2 + (zi − z

′

i)
2 ∶ i ∈ {1..p} (3.8)

dobs =
1

p

p

∑
c=1

dc (3.9)

where dobs is the mean distance of reference sensor’s measurements as it travels

the control path in one observation. The central limit theorem states when ob-

servations are repeated many times, the computed values of the average follows
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a normal distribution. Therefore, after collecting k observations, the reference

distribution have the mean dref and variance σref :

dref =
1

k

k

∑
n=1

dobsn (3.10)

σref =

¿
Á
ÁÀ1

k

k

∑
n=1

(dobsn − dref)
2 (3.11)

2. Constructing the intelligent sensor’s distribution: the intelligent sensor’s distri-

bution will be obtained through the same process as the previous experiment.

Here, each observation is defined by a pairs of two sets of consecutive measure-

ments such asMref andMnew taken from the reference sensor and the intelligent

sensor:

Mref = {(x, y, z)i} ∶ i ∈ {1..p} (3.12)

Mnew = {(x
′

, y
′

, z
′

)i} ∶ i ∈ {1..p} (3.13)

and

P ∶ {d
′

c =

√

(xi − x
′

i)
2 + (yi − y

′

i)
2 + (zi − z

′

i)
2 ∶ i ∈ {1..p} (3.14)

then, following similar steps as the experiment 1, the sample distribution of

the mean differences between the intelligent sensor and the reference sensor

is constructed. This sample distribution will be called the intelligent sensor

distance distribution, or in short, the intelligent sensor distribution.

3. Let k and l represents the number of observation that were used to construct

the reference and the intelligent sensor distributions, respectively. Assuming

k⋙ l⋙ 1, t-test can be used to test whether the intelligent distribution is sig-

nificantly different from the reference distribution. Let µref represent the mean

for the reference distribution and µint. sen and σint. sen be from the intelligent
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sensor distribution. Then, the hypotheses test for statistically comparing these

distributions are:

H0 ∶ ∣µref − µint. sen∣ = 0

H1 ∶ ∣µref − µint. sen∣ ≠ 0

and

tl−1 =
∣µint. sen − µref ∣

σint. sen√
l

(3.15)

If tcalculated < tcritical, then we accept the null hypothesis, meaning the two

distributions are statistically identical. Otherwise, the null hypothesis will be

rejected.

4. In addition, we will compare the intelligent sensor estimations to the estimations

obtained from the motion model using the ground truth values. The compar-

ison process will be identical to the step 2 and 3, meaning we will construct

the motion model distribution, and compare it to both the reference, and the

intelligent sensor. The goal of this step is to better understand the contribution

of the motion model error in the overall error of the intelligent sensor.

While this validation procedure assesses whether the distribution of the reference

sensor and intelligent sensor measurements are statistically different from each other,

it does not provide much insight regarding the shape similarity of the measurement

curves. Fig. 3.6 illustrates this with an example in which, two observations have ap-

proximately similar shapes but they are not aligned in the global coordinated due to

a translation offset. The validation procedure will clearly reject the null hypothesis;

yet, the overall curves have similar shapes. For this reason, it is critical to analyze

the shape similarity between the shapes of the measurement curves to have a better

understanding of the intelligent sensor’s behavior. We investigate the shape similar-

ity of the two observations by using the derivative dynamic time warping (DDTW)
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Figure 3.6: A graphical depiction of a 2D scenario in which three trajectories A,
B and C have approximately similar shapes, but different locations. Assuming the
curve A denotes the reference, comparison of the mean distance between A and B
or A and C will yield a pessimistic measure of similarity between these three curves,
illustrating the necessity of shape similarity comparison.

algorithm [76]. DDTW algorithm calculates a shape similarity score for two time

series (or trajectories) which are similar, but not exactly the same. The basis of the

DDTW algorithm is founded on the computation of a distance matrix between two

time series. Assume P = {p1, p2, ..., pn} and O = {o1, o2, ..., om} represent two sets of

time series measurements. Then, the distance matrix for these sets is a n×m matrix

in which the element Ei,j is defined [76] as:

Ei,j = (DPi
−DOi

)
2 (3.16)

where

DPi
=

(pi − pi−1) + ((pi+1 − pi−1)/2)

2
(3.17)

DOi
=

(oi − oi−1) + ((oi+1 − oi−1)/2)

2
(3.18)

Using the distance matrix, the DDTW score is calculated [76] recursively by:

DDTWi,j = Ei,j +min{DDTWi−1,j−1, DDTWi−1,j, DDTWi,j−1} (3.19)
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sensor are as follows:

1. Constructing the reference DDTW distribution: Using Mref and M
′

ref obser-

vations of the reference sensor, the overall DDTW score DDTWref for each

observation is calculated by averaging the DDTW score of the planar projec-

tions of the points, denoted by dx, dy, dZ :

dobsn =

√
d2
x + d

2
y + d

2
z

3
(3.20)

Then, the reference DDTW distribution of K observation have the mean dref

and variance σref :

dref =
1

k

k

∑
n=1

dref (3.21)

σref =

¿
Á
ÁÀ1

k

k

∑
n=1

(dobsn − dref)
2 (3.22)

2. Constructing the motion model and the intelligent sensor DDTW distribution:

the motion model and the intelligent sensor DDTW distribution will be obtained

through the same process as the previous step.

3. Using the t-test analysis we will compare the reference, motion model and the

intelligent sensor DDTW distributions.

It is important to note that the explained validation process assumes normality of

the reference and test distributions. However, the results distributions may not be

normal. Therefore, in addition to the t-test, we will compare the results using the

following non-parametric tests:

• Kolmogorov-Smirnov (K-S) test: This test compares the shape of two sample

distributions by calculating the largest absolute differences of their cumulative

Using the DDTW score, the steps to compare the performance of the proposed
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distribution functions (CDF) [77]. This test compares the shape of two sam-

ple distributions by calculating the maximum absolute differences between the

cumulative distribution functions (CDF). Using this test, the null hypothesis

states that the two distributions are sampled from the same population dis-

tribution. A small P-value will reject the null hypothesis, indicating that two

sampled distributions were sampled from different distributions.

• Mann-Whitney U-test: This test compares the differences between two non-

normal independent distributions, which are either continuous or ordinal [77].

Using this test, the null hypothesis is the difference between the median of two

sample distributions is equal to zero. Rejecting the null hypothesis will indicate

that one population tends to have either smaller or larger values than the other

one.

3.2 Experimental Outline

So far in this chapter we have presented the motion model and evaluation procedure

of the intelligent fiber optic senor. In continuation, we provide experimental proof that

when a multimode fiber deforms, generated speckle patterns contains deterministic

information to estimate the the magnitude and direction of deformation. In this

approach each speckle pattern is treated as a unique combination of structure and

texture. We utilize deep learning models to analyzing the structure of the speckle field

as fingerprints and to extract directional information. The following experimental

steps provide a systematic approach for position estimation:

1. Specklegram analysis to investigate the unique correspondence of speckle pat-

terns to a multimode fiber optic deformation in multiple planes of motion. In

addition, we provide computational models to extract the fiber optic deforma-

tion parameters from speckle patterns.

2. Estimation of sensor’s heading direction from the deformation of its tip. The
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results of the previous experiments provides a set of ”directional hints” for the tip

of the intelligent sensor. In these experiments we present a data-driven approach

to learn the the relationship between the deformation of the fiber’s tip and the

rotation of the sensor body, using large amount of data. These experiments will

provide insights into the physical behavior of the sensor, which is a required

step to develop the intelligent sensor’s computational pipeline.

3. Developing the intelligent sensor’s computation pipeline: We provide a compu-

tational pipeline to measure of the displacement of the fiber optic intelligent

sensor in according to the a motion model described in section 3.1.1. The

model will calculate the transfer parameters and update the position of the sen-

sor accordingly. Also, we validate both the sensor’s motion model as well as its

performance in comparison to a reference electromagnetic tracking sensor.

3.2.1 Experimental Setup

The data acquisition setup is shown in Fig. 3.7. To collect repeatable data a

pendulum-based apparatus was utilized to construct a comprehensive dataset for

studying the association between speckle patterns and deflection of the tip of a mul-

timode fiber in multi-direction. The sensing transducer consists of a multimode fiber

(5.5cm length, 50µm core, and 0.22NA) where one end was coupled to a laser module

(ThorLabs HeNe 633nm) and the other open end was free to move toward a dif-

fused surface. A high frame rate video industrial camera (Basler ace acA800-510um)

equipped with a magnifying lens (4mm, f1.8) was placed at a distance of 1 cm and

an angle of 0○ in respect to the diffuse surface. These specs was selected to cover

the entire speckle field. The camera was capable of capturing up to 511fps, however,

we noticed in preliminary tests that frame rates higher that 115fps adds statistically

similar speckle patterns images to our dataset. Thus, the capturing frame rate was set

to 115fps. To collect repeatable data, the transducer was mounted on a pendulum.
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Figure 3.7: The pendulum data acquisition setup. This system includes a MMF, a
diffuse surface and a high frame-rate camera (D), an accelerometer (C), and a tracker
sensor (B). Estimations of the tracker sensor are in respect to its transmitter base (A).
Using this setup, synchronized pairs of speckle pattern images and motion parameters
were collected during the pendulum’s oscillation.
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To control the direction of deflection, this pendulum was mechanically restricted to

move only in the xy plane. Also, we attached the pendulum to a vibration isolated

table to minimize the effect of external vibration. This setup provides a framework

for defining fiber’s deformation in terms of a measurable quantity. As the pendulum

oscillates, a restoring gravitational force F =mgsin(θ) accelerates it back toward the

resting position. Here, θ denotes the rotation angle of the pendulum in respect to its

equilibrium position. According to the first law of Newton, or the law of inertia:

F =mgsin(θ) =ma (3.23)

meaning under the influence of an external net force, the fiber goes under acceleration.

According to the small deflection theory, for relatively small deflection of an elastic

object, the amount of the deformation ∆l is directly proportional to the deforming

force [78]:

F =Keff∆l (3.24)

where Keff is a positive constant unique to the material of the elastic object. Con-

sidering both (3.23) and (3.24):

ma =Keff∆l (3.25)

Since m and Keff are constant values:

∆l ∝ a (3.26)

According to (3.26) under the influence of an external net force, the fiber’s defor-

mation is proportional to the acceleration. In other words, as a fiber optic cable

experiences acceleration, variation in a fiber deformation can be expressed by accel-

eration vectors. To record acceleration, we used a three-axis Microelectromechanical
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(MEMS) accelerometer (±8g range, 12bits resolution, 800S/s max sample rate, 3.9

mgrms noise at 25Â° ) next to the sensing fiber. To track the position of the trans-

ducer, we used a position tracking sensor (FASTRAK®). This position tracker will

be referred as ’the reference sensor’ throughout this study. Also, our experiments

required a precise synchronization between the captured speckle frames and the read-

outs of the tracking sensor. In other words, we needed to ensure that each speckle

frame and its associated deformation data were captured exactly at the same time.

Therefore, we used a function generator instrument (NI-myRIO) to provide a custom

triggering signal (115 pps). The camera, the accelerometer sensor and the reference

tracker were set to operate in the triggering mode and connected to the function gen-

erator. With this configuration, the rising edge of each pulse triggers the acquisition

of one synchronized pair of speckle pattern and the other sensors in real time.

Finally, the sensing transducer was mounted inside a rotator unit to rotate the

transducer along its central axis allowing us to control the deflection direction without

having to move the pendulum. As the pendulum oscillates, the deformation direction

of the fiber tip aligns within the in-plane displacement of the pendulum. Therefore,

by rotating the transducer around its central axis, the direction of deformation will

change to a new axis accordingly.

3.2.2 Data Collection Process

The steps to construct the speckle pattern dataset were as follows:

1. Initialization of the camera and the other sensors, adjusting the rotation gauge

to 0 degree, and capturing a collection of speckle images while the system is

stationary.

2. Setting the pendulum into motion, and activating the triggering signal to record

synchronized pairs of data. Periodically a small force was applied to the pen-

dulum so it could maintain its swing amplitude. Once sufficient data were col-
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lected, the triggering signal was deactivated, and the pendulum was returned

to its initial non-oscillating status.

3. To simulate the movement in other directions, the transducer was rotated clock-

wise by α ∈ (15, 30, 45, ..., 165) degrees. One speckle image was captured while

the system was stationary. This image was rotated the by −α, and compared to

a few random samples obtained in step 1 to ensure structural similarity ≥ 99%.

4. Starting from the step 2, the data collection process was repeated to cover all

axis.

To account for the speckle pattern fluctuation, the data collection step was spread

out over a five day period. This approach increased the variance in the data allowing

the deep learning models to learn robust features during the training. Also, the refer-

ence tracker sensor was re-calibrated prior to each round of data collection to reduce

bias. At the end of the data collection step, our set had 98,300 samples of paired

samples separated into 13 groups according to the axis of movement (corresponding to

the twelve α values plus one group of data collected while the system was stationary).

3.2.3 Pre-processing Data

To reduce the dark region surrounding speckle filed, all images were cropped from

450 x 450 pixels to 420 x 420 pixels. Then, images were converted to gray-scale images

and down-sampled to 300 x 300 pixels. Finally, we applied a Gaussian blur filter and

normalized the images. Our previous experiments [79] suggests while these processing

steps reduces the model (number of trainable parameters), they have negligible effects

on the performance. Next, speckle patterns in each group of data were assigned a

label corresponding to the fiber direction of deflection in respect to its central resting

position (i.e. 0 or 180 for the 0○ axis, 15 or 195 for the 15○ axis, etc). The total number

of generated labels was 25 (24 + center), shown in Fig. 3.8. Finally, from each group

an equal number of 3,918 samples were randomly selected (without replacement) and
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Figure 3.8: Each speckle pattern was assigned a label corresponding to the fiber’s
direction (axis) of deformation.

merged together. Our final dataset had total of 97,950 samples.



CHAPTER 4: SPECKLEGRAM ANALYSIS

In chapter 3 we provided an overview of the intelligent sensor’s schematic, motion

model as well as a validation procedure to evaluate its performance. We also explained

a pendulum-based apparatus to construct a comprehensive dataset for studying the

association between speckle patterns and deformation parameters of a multimode fiber

(MMF). This chapter provides a series of experiments to illustrate the feasibility of

utilizing speckle pattern analysis for position estimation. To avoid redundancy, the

terms ’deformation’ or ’bending’ will indicate ’deformation of a multimode fiber optic

cable’.

4.1 Estimation of the Direction of Deformation

In this work, by using a supervised learning approach, we show that in a deform-

ing multimode fiber, structural variation of speckle patterns contains deterministic

information for measuring the direction of deformation. As an elastic medium, an

optical deforms under the influence of external forces and returns to its initial status

when forces are removed. Given a series of speckle images I1→n corresponding to K

distinct axis (direction) of deflection (2 ⩽ K ≪ n), our objective is to estimate a

mapping function such as f where k ≈ f(Ii), k ∈ K and i corresponds to the Iith

frame. The mapping function is represented by a CNN model. Through training,

the model learns the unique structural and textural information that corresponds to

each of the k classes, and encodes them into a feature spaces. Given such a mapping

function, one can iterate over series of speckle patterns images and extract directional

information. We conducted two experiments to analyse the influence of the direction

of deformation on the speckle pattern structure:
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Figure 4.1: In the second experiment, the directions were mapped to equal values
∈ [0,1). A deep learning was trained using the samples from the 0, 30, 60,..., 330
directions, and then, evaluated using the unseen samples from the 15, 45, 75,..., 345
directions.

1. In the first experiment, we examined the deterministic nature of speckle patterns

for extracting directional information. The dataset was shuffled, and training

and test sets were generated by splitting the dataset into 85/15 train/test ratio.

Also, 20% percent of the training set was used as the validation set. A CNN

model was trained to learns the mapping between the speckle pattern images

and their corresponding labels using the train set. Then, the performance of

the model was evaluated using the test set. We hypothesised that if speckle

patterns exhibit a deterministic nature, the network will identify the correct

direction classes for the test set unseen images.

2. In the second experiment, we approach the problem from a regression per-

spective to investigated whether a trained model can estimate the direction of

deformation using unseen speckle images (novel data), as shown in Fig. 4.1.

Similar to the first experiment, we generated a labelled set to create a nonlinear

mapping from speckle images to the direction of deformation. The train set
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was consisted of sample pairs corresponding to the 0, 30, 60,..., 330 directions

and the test set had all samples from 15, 45, 75,..., 345 directions. The portion

of data taken when pendulum was stationary was not used in this experiment.

Then, labels were mapped from 0 to 360 degrees to equal values between 0 and

1. We trained the model to learn the deformation axis for the speckle images

in the training set. Then, the ability of the model in estimating the deflection

direction was evaluated by using unseen images from the test set.

4.1.1 Architecture of the Deep Learning Model

CNN is a deep learning architecture which is inspired by the biological model of the

visual cortex. They have achieved excellent performance on recognition of complex

visual patterns. What makes a CNN unique is their ability to identify non-linear

relationships in the data. Here, we use a CNN model to learn the one-to-one mapping

of speckle patterns to the direction of deflection. As represented in Fig. 4.2, our

model has a classic convolutional architecture of five convolutional layers to extract

features, three fully-connected layers to learn the patterns, and one output layer to

provide prediction or estimation. Our motivations for this CNN model was to utilize

a relatively small number of layers (and thus, parameters) to reduce the training

time as well as overfitting. Convolutional layers extract features into a feature map.

Each convolutional layer has multiple filters which their values are learned during the

training. The output of each convolutional layer is a set of two dimensional feature

maps such as IK where

Ik = RELU(Wk ∗X +B) (4.1)

where Wk and B are weights and bias associated with filter K, and * is convolu-

tional operation, and RELU is the rectified linear unit RELU(X) = MAX(0,X).

By applying activation function, CNN model can exploit both linear and non-linear

patterns. We used relatively small kernel for our filters (5 and 3) since speckle pat-
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Figure 4.2: Architecture of the CNN model according to this work. The input is
a batch of 300 x 300 grayscale images, which is passed through five convolutional
layers. The input size, and the kernel size for each convolution layer are denoted by
(in) and (f), respectively. All convolution units have the stride length of two. The
output layer provides 25 prediction scores in the first experiment, and one estimated
value ŷ ∈ [0,1) in the second experiment.

terns were condense. As we will demonstrate in result sections, these small size filter

sizes are sufficient for this learning task. After the last convolutional layer, feature

maps are flattened to a one dimensional vector and passed to the dense layers for

further processing. Dense are similar to traditional neural network where neurons of

consecutive layers are fully-connected. Each dense layer included a dropout regular-

ization to further reduce overfitting. The output layer in the first experiment was a

25-neurons dense layer providing 25 classification scores.

In the second experiment, the output layer contained one neuron for regression

estimation. The number of trainable parameters were 787,955 and 787,451 for the

first and second experiments, respectively. The initial learning rate was set to 0.0001.

The model was implemented using TensorFlow 1.14, and it was trained using an

Nvidia graphic card (GeForce 1070-Ti, 2432 cuda core, 8GB GDDR5).
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Table 4.1: Assessment of classification performance using the test dataset.

Labels(Axis) Precision Recall F1-score Support

center 0.95 0.96 0.95 753
0 0.96 0.96 0.96 749
15 0.98 0.95 0.97 809
30 0.94 0.99 0.96 739
45 0.93 0.97 0.95 726
60 0.97 0.93 0.95 787
75 0.97 0.96 0.96 799
90 0.99 0.94 0.96 807
105 0.95 0.97 0.96 803
120 0.98 0.93 0.95 825
135 0.96 0.96 0.96 762
150 0.97 0.95 0.96 763
165 0.97 0.95 0.96 850
180 0.96 0.96 0.96 795
195 0.95 0.98 0.96 757
210 0.99 0.94 0.96 823
225 0.97 0.94 0.96 819
240 0.93 0.97 0.95 770
255 0.96 0.97 0.96 756
285 0.97 0.94 0.96 799
300 0.92 0.98 0.95 773
315 0.96 0.96 0.96 770
330 0.95 0.97 0.96 791
345 1.00 1.00 1.00 756

Average 0.96 0.96 0.96
Total Samples 19,575

4.1.2 Evaluation of the Deep Learning Model

The goal of the first experiment was to examine the deterministic nature of speckle

patterns shape and structure in respect to deformation direction of a fiber tip. The

CNN model was trained on 62,675 samples for 30 epochs with using a batch size of

30 samples. The training process was completed in less than an hour. The trained

model was tested on sets of 19,575 speckle images. For each label, True Positive (TP),

False Positive (FP), True Negative (TN), and False Negative (FN) were identifed. We

used the the following metrics to evaluate the performance of out model: precision
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Figure 4.3: Each row of the matrix corresponds to an actual class (a True label),
and each column corresponds to a predicted label. Numerical values represent per-
centage values between 1 and 100, and empty cells indicate 0%. The diagonal blocks
represents the percentage of correctly classified labels. Cells are color codded: higher
the accuracy, darker the color.

(TP/TP+FP), recall (TP/TP+FN), accuracy, F1-score (2 ∗ precision∗recall
precision+recall).

Table 4.1 provides a comprehensive overview of the model performance for each

axis label. The model achieved overall 96% accuracy. The minimum precision, recall,

and F1-score were 92%, 93%, and 95% respectively. Fig. 4.3 shows the visualization

of the confusion matrix to to have a better picture of the performance of the model.

In confusion matrix, the diagonal represents the elements where the predicted values

were equal to the expected values. Similarly, the off-diagonal cells are the sample
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Figure 4.4: (Top Figure) Projected deflection of the fiber’s tip for the correct (dark)
and incorrect (bright) classified samples. (Bottom Figure) Distributions of tip of
the fiber deformation for both groups. The zero vertical lines indicates the resting
position. Miss-classified samples tend to be clustered around the center, i.e. the
fiber’s resting position.

instances which are miss-classified by the model. The strong diagonal shape of the

matrix confirms the high accuracy of the classification model.

More careful observation of the confusion matrix (Fig. 4.3) shows that the larger

confusion is presented among samples which are located on the same axis, but opposite

directions (i.e.: 0 vs 180). The reason for this confusion becomes more clear by

comparing the fiber deformation distribution of the correctly classified speckle images

with mis-classified samples (Fig. 4.4). The deformation distribution of incorrectly

classified speckle images have a µ = 0.0 and σ = 0.06 meaning that these samples were

taken when the tip of the fiber was close to the resting position, and the direction

of deformation was about to be switched to the opposite direction. The possible

explanation for this errors is de-synchronization of speckle pattern and the mapped
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Figure 4.5: Visualization of the activation maps extracted from the convolutional
layers. The images within each row are extracted from the same layer, which are
indicated by the numbers 1 through 5. We can see that the feature maps closer to
the input of the model, i.e. layer one and two, capture the overall structure of the
input speckle pattern. As we progress deeper into the model, the feature maps show
less and less recognizable information. However, the extracted details of the last two
layers are more relevant to the predictions of the model.

axis of deformation dusting the data collection process. Applying a more precise

calibration process may reduce this type of error.

Visualizing the activation maps provides insights about the behavior of our model

by identifying the most relevant sections of input images to the final prediction of

the network. One common practice for visualization of activation map is to feed a

test image into the trained model and plot the context of convolutional filters as 2D

images [80, 81]. Fig. 4.5 represents visualization of some of the convolution filters for
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each of our CNN model. During training, the filters in the first convolutional layer

seems to respond to the cluster of dark and bright regions of the input speckle images

representing highly recognizable visual contents such as dark background, central

region with where the intensity if maximum, and overall structure of the speckle

pattern. One can also see that the activation maps of the first two layers are more

visually interpretable. As we go deeper into the model, the resolution decreases,

activation maps becomes more abstract, and they tend to discover the hidden more

complex patterns which are more relevant to the prediction of the model. In the other

words, the outer layers of our model capture the general structure of the specklegram,

and the deeper(inner) layers learn specific patterns so the model could generalize

about the class and not any particular images. Overall, these results confirm that

there is a deterministic relationship between the structure of speckle patterns and the

direction of deflection.

In the second experiment we tested the capability of a CNN model to estimate

the direction of deformation using unseen speckle patterns. First, the model was

trained using the sample data corresponding to the 0, 30, 60, ... , 360 directions.

Then, the model was tested using speckle images taken from the 15, 45, 75, ... ,

345 directions. Note that each testing directions fall between two training directions.

Since the train and test sets correspond to different deformation directions, they both

had an equal size of 12*3918=47,016 samples. The model was trained for 55 epochs

using a batch size of 30 samples. We used the standard mean squared error loss

function, and the Adam optimizer [82] to fit and minimize the loss function. Then,

the performance of the model was evaluated by comparing the model′s estimation of

direction of deformation with the ground truth value.

The box-plot charts shown in Fig. 4.6 provides a comprehensive summary of the

model estimation for each tested axis. The results indicated that in most cases the

model estimation falls within ±5 degrees from the ground truth. This is particularly
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Figure 4.6: Summary of the estimated directions of deformation. In each box-plot,
the dash line indicates the ground truth values.

an interesting results considering the fact that the distance between direction of de-

formations for training samples was 30○. This implies that for each unseen speckle

image, the model determined which two directions it is between, and estimated the

direction of deformation accordingly. The best results were obtained for the 45○, 105○,

and 135○ where the mean of the estimated value was equal to the ground truth. Yet,

in most cases, at least one estimated value falls beyond the 25%-75% range. Fig. 4.7

presents the normalized probability density function (PDF) of the estimation error

for each deformation direction. In this chart, each column represents two opposite

directions which are located on the same axis (i.e. 15○ vs 155○). These results in-

dicates that the estimations errors are random, not following a normal distribution.

Also, these errors are independent from the axis of deformation. This is inline with

the previous works on speckle patterns that demonstrate speckle patterns introduce

random error to the measurements. It may be possible to reduce this error by using

a larger training set. These results confirm that speckle patterns shape and structure

indeed contains significant information for estimation of the direction of deflection.



48

Figure 4.7: Distribution of errors of the estimated directions of deformation.
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4.2 Estimation of the Deformation Magnitude

In this study, we investigated whether speckle analysis could be utilized for mea-

suring the deformation magnitude of a fiber cable. In particular, we show that a

properly trained CNN model is able to extract the best matching features of speckle

patterns to estimate the deformation magnitude of a multimode fiber. Let I1→n and

θ1→n denote a series of speckle patterns and their associated deformation magnitudes,

respectively. Our goal here is to estimate an optimal function such as f(.), which

maps It → θt at time instancet:

θt = f(It) (4.2)

Given such a mapping function, one can iterate over series of speckle patterns

images as tip of a fiber deforms, and estimate the deformation magnitude in respect

to its resting position. Note that as explained in 3.2.1, deformation was expressed

by acceleration vectors. During data collection, synchronized pairs of speckle pattern

images and acceleration data from the reference MEMS accelerometer were recorded.

To prepare data for this study, the outliers (values beyond the 5% and 95% quantiles)

and their corresponding images were removed from the dataset. Then, The reference

accelerometer data was normalized and shuffled. Using this dataset, we conducted

two experiments to explore the use of a CNN model for estimation of a multimode

fiber’s deformation magnitude:

1. In the first experiment, we hypothesised that as a multimode fiber deforms,

there is a one-to-one correspondence of deformation parameters to the speckle

patterns variation. That means in a deforming multimode fiber, every state of

the physical shape of the fiber corresponds to a unique speckle pattern. To test

this hypothesis, the accelerometer data was grouped into 19 deformation classes

(states), and each speckle image was assigned to one of these categorical groups,

see Fig. 4.8. Then a train set, and a test set was created by splitting the dataset
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Figure 4.8: To evaluate the deterministic nature of speckle pattern, the entire ac-
celeration range was divided into 19 distinct classes. A CNN model was trained to
learns the mapping between the speckle patterns and their corresponding acceleration
groups.

into 80/20 train/test ratio. Also, 20% percent of the training test was used as

the validation set. The total number of samples in the train set, validation set,

and test set were 61,044, 15,262 and 19,077 respectively. A CNN model was

trained to learns the mapping between the speckle pattern images and their

corresponding labels using the training set. The architecture of the CNN model

was identical to the previous study (see Fig. 4.2) with the exception of the

last layer. The output layer in the this experiment was a 19-neurons dense

layer providing 19 classification scores. Then, the performance of the model

was evaluated using the test set. If speckle patterns exhibit a deterministic

nature, the network will correctly identify the deformation classes for unseen

specklegrams.

2. In comparison to the previous experiment, in the this experiment our goal was

to estimate the deformation magnitude on a continuous scale rather than cate-

gorical labels. In particular, a CNN was used as a regression models to discover

feature correlation between speckle pattern images and the deformation mag-
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nitude on a continuous scale. We used the same train, validation and test sets

as the previous experiment. However, instead of the acceleration labels, the

normalized acceleration values values were used as the target variables. The

architecture of the CNN model was similar to the model used in the previous

study. The only modification was using an one-neuron dense layer for regres-

sion estimation. Once the model was trained, its performance was evaluated by

using unseen images from the test set.

4.2.1 Experimental Results

In the first study, we investigated the deterministic nature of speckle patterns for

estimating deformation magnitude. The CNN model was implemented using Tensor-

Flow 1.14, and the initial learning was set to 0.001. Also, categorical cross-entropy

loss was used to train the model. After the training, precision, recall, F1-score, and

overall accuracy was used to evaluate the model.

Overall, the experiment results confirmed the initial hypothesis, that, there is a

one-to-one correspondence of deformation parameters to speckle patterns. The per-

formance of the model during the training phase is presented in Fig. 4.9. The model

achieved above 97% accuracy after 150 epoch without overfitting problem. Table 4.2

presents a detailed precision and recall summary of the classification performance for

each label; The minimum precision, recall, and F1-score were 90%, 90%, and 91%

respectively. Fig. 4.10 presents the visualization of the confusion matrix that was

made based on this table. The strong diagonal shape of the matrix confirms the

high accuracy of the classification model. These results indicates that the model is

effective for all deformation classes, or the entire range of the fiber deformation.

The possible explanation for the errors with relatively small magnitude is de-

synchronization of speckle pattern and the mapped value dusting the data collection.

This type of error can be reduced by improving the instrumentation and data collec-

tion procedure. Another factor that may contribute to errors with a large magnitude
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(a) Trend of training and validation accuracy rates

(b) Trend of the loss function value.

Figure 4.9: (a) Training the model for 80 epochs is sufficient to achieve 90% accuracy.
Accuracy of 97% was achieved by training the model for 150 epochs. (b) The loss
function for training and validation decreases quickly during the first 70 epochs and
converges to minimum by the 150th epoch.

is the similarity between the speckle patterns in those states. That means although

speckle patterns are not quite identical, they share more than average similarity that

is not detectable by our model. These results confirms that the speckle patterns pro-

vide information that could be used to estimate the deformation of a multimode fiber

cable.

The goal of the second experiment was to estimate the deformation magnitude of

a multimode fiber through speckle analysis. We trained a CNN model as a regressor

to find the best fit between the fiber’s deformation magnitudes and the non-linear
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Table 4.2: Classification results for each label

Labels Precision Recall F1-score Support
-1.9 1.00 1.00 1.00 1056
-1.7 1.00 1.00 1.00 1038
-1.5 0.99 0.96 0.97 1129
-1.3 0.98 0.99 0.99 953
-1.1 0.94 0.99 0.97 984
-0.9 1.00 0.94 0.97 1200
-0.7 0.96 1.00 0.98 916
-0.5 0.96 0.98 0.97 1010
-0.3 0.99 0.98 0.98 979
-0.1 0.98 0.95 0.96 901
0.0 1.00 0.96 0.98 1022
0.2 0.99 0.99 0.99 892
0.4 1.00 0.95 0.97 971
0.6 0.90 0.96 0.93 1125
0.8 0.92 0.98 0.95 971
1.0 0.96 0.90 0.93 872
1.2 0.92 0.90 0.91 1052
1.4 0.94 0.99 0.97 1078
1.6 1.00 1.00 1.00 928
Average 0.97 0.97 0.97
Total Samples 19077

features of speckle patterns. The model’s input and the target variable were speckle

images and the normalized deformation magnitudes, respectively. The mean square

error loss function and the Adam optimizer [82] with an initial learning rate of 0.0001

were utilized to train the model. We also applied transfer learning to set the ini-

tial weights of convolution layers. Transfer learning is a machine learning technique

allowing deep learning models to share knowledge in similar applications, reducing

the training time. The model was trained for 50 epochs using the batch size of 30

samples. After the training, the performance of the model was evaluated by com-

paring the model’s estimation of deformation with the actual values using R-squared

metrics. R-squared metrics, or the coefficient of determination is the percentage of



54

Figure 4.10: Visualization of the confusion matrix for Classification of a multimode
Fiber Deformation States. Numerical values represent percentage values between 1
and 100, and empty cells indicate 0%. High classification accuracy of the CNN model
is represented by the strong diagonal shape of the matrix.

the response variable that is detected by the model:

R2 = 1 −
MSE

V ar(y)
(4.3)

where MSE(mean square error) represents the model’s variance. For a perfect model,

MSE = 0, and thus, R2 = 1.

Fig. 4.11 provides a visualization of how well our model fitted the test data. The

plot on the left panel indicates a strong correlation between the model’s prediction and
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Figure 4.11: (Left Panel) Scatter plots of the actual vs predicted values showing the
deviation of the predictions from the ground truth. We can see that all the points
are be close to the diagonal line, indicating an effective model. (Middle Panel) The
residuals vs. prediction plot demonstrating errors have equal valiance, and clustered
around zero. Also, the distribution of the errors is normal, as shown in the right
panel.

the actual values (R2 = 0.985). The residual plot, Fig. 4.11(middle panel), provides a

better insight into the model’s performance. We can see that with the exception of

a few outliers, errors are symmetrically distributed and clustered around the center

line, indicating the equal variance of the errors. This is also confirmed by the distribu-

tion plot of the errors, presented in the Fig. 4.11(right panel). Fig. 4.12 presents the

probability density function of the deformation estimation error according grouped

by the deformation labels. We can see that for all groups, the errors are normally

distributed, suggesting errors have a random nature. Random errors are primar-

ily caused by unpredictable changes during the experiments, i.e.: laser fluctuations,

noise in the measuring sensors, environmental conditions, etc. Thus, it is impossible

to eliminate them. However, random errors mostly affect the precision of the mea-

surement. This suggests at any stage of deformation, analyzing a larger number of

speckle patterns will produce a more precise measure of deformation. Overall, these

results provides the proof-of-concept that the specklegram structure contains deter-

ministic information, which can be exploited to measure deformation parameters. In

the next study, we use the results of these studies to measure the intelligent sensor’s

orientation.
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Figure 4.12: Distribution of error for the entire range of fiber deformation separated
by labels.

4.3 Estimation of the Intelligent Sensor’s Orientation

In the last two sections, we outlined a computational framework for deriving a

multimode fiber’s deformation parameters through speckle analysis. This section

provides insights into the dynamic behavior of sensing transducer as a coupling of

a rigid body and a flexible fiber optic. In particular, we intend to understand the

relationship between the sensor’s heading and the corresponding deformation mag-

nitudes. The motivation for this study results from the fact due to the elasticity of

fiber optics, factors such as vibrational noises or changes in the temperature influence

their deforming behavior. This is an important issue since the accurate estimation of

the intelligent sensor’s heading from the fiber deformation is crucial for tracking its

trajectory.
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Figure 4.13: Under rotation, the length of a fiber optic segments (MMF) influences
the alignment between the heading of the sensor and the position of the fiber’s tip.
The longer the fiber segment, the more its tip deviates from the heading of the sensor.

Fig. 4.13 presents two hypothetical design modalities for the sensing transducer.

The first model employs a short segment of fiber optic, which behaves as a rigid

uniform segment. As the sensor undergoes a rotation, the heading of the sensor

perfectly aligns with the position of the fiber’s tip. However, this is not a practical

model since the magnitude of the fiber deformation is close to zero, implying a low

sensitivity transducer. In comparison, the second model employs a longer segment of

fiber optic. Under rotation, the fiber’s tip deviates from its resting position, and thus,

the senor’s heading and the fiber’s tip position no longer align. The degree of this

misalignment is primarily affected by the fiber’s oscillating behavior due to its length

and elasticity. To this extend, we performed a simulation study to both observe

the fiber’s oscillating behavior, and to check the relationship between the sensor’s

rotation and the deformation of its sensing fiber tip. Using Matlab, we modeled the

data collection pendulum system eliminating the laser and the camera. The equation

of motion was set according to an ideal pendulum system [83]. Also, gravity was set

as the main force of acting on the pendulum. To model the fiber optic, we follwed

the literature suggests that the mechanical behavior of a fiber optic can be modeled

as a cantilever beam [84]. In such an approach, the deformation ∆L of a clamped
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Figure 4.14: Effect of a multimode fiber length on its oscillating behavior. We can
see a longer segment of fiber exhibits more drastic periodic oscillation.

optical fiber with a under acceleration a can be estimated by:

∆L =
Aρl4a

8EIcylinder
(4.4)

and

Icylinder =
πd4

64
(4.5)

where Icylinder is the second moment of area, A the fiber’s cross-sectional area, d

and l fiber’s diameter and length, ρ the mass density, and E represents the Young’s

modulus[84]. For implementation, we used the provided flexible beam model in Mat-

lab [85] for modeling the fiber optic segment because of this model’s ability in cal-

culating the motion dynamics of a rigid body and a flexible link. The fiber optic we

used has d = 50µm diameter. The other model parameters were set as ρ = 220 kg/m3,

E = 7.3 × 1010 pa as suggested by [86]. Three rounds of simulation was performed to

capture the motion parameters of the pendulum system under gravity for a 3 cm, a

5 cm, and a 10 cm fiber. The results are provided in Fig. 4.14.
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These results indicate that the length of the sensing fiber optic significantly affects

its vibrational behavior. While the deformation of 3 cm fiber was close to zero, the

10 cm fiber exhibited drastic periodic oscillation with varying amplitude and phase.

In comparison, the 5 cm fiber showed the most stable deforming behavior. As ex-

pected, both 5 cm and 10 cm behaviors confirmed that the fiber’s in place rotation

and its deformation have opposite phase (180°). Between these results, the 5 cm

fiber deforming behavior suggests that with proper adjustment of a fiber’s length,

the oscillating behavior of its tip can be used to describe the rotational characteris-

tics of the sensor. However, this relationship is not instantaneous. In other words,

the instantaneous deformation parameter does not successfully provide meaningful

insights into the sensor’s rotation. This confirms a well-known phenomenon, that the

time-average oscillation power of a vibrating structure is more descriptive variable

than its instantaneous value [87]. These results suggest learning long-term depen-

dencies between the deformation parameters and the sensor’s rotation may provide a

stable and reliable solution for estimation of the sensor’s rotation. One way to extract

the long-term deformation features is through the application of a Long Short-Term

Memory (LSTM) deep learning model.

LSTM is a special type of recurrent neural network, capable of learning temporal

hidden features in data. LSTM algorithm was initially introduced in 1997 [88], and

currently, due to the increase in computational power, it is the state-of-art algorithm

for solving problems in which processing non-linear sequential data is required. The

unique advantages of LSTM networks are three-folds. 1 - They can learn and track

long-term temporal dependencies in data. 2 - The maintain information about the

samples’ order. 3 - They can share the learned parameters across the data samples.

In this experiment, we utilize a LSTM model to estimate the sensor’s rotation

through analysing sequences of deformation values. Our goal is to verify that a com-

putational LSTM model can be trained to estimate the intelligent sensor’s orientation
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Figure 4.15: Architecture of the LSTM model according to this work. The input is
batches of 1 x 15 deformation values, which is passed through three LSTM layers.
The input and output shape of each LSTM layer is denoted by (input) and (output),
respectively. In training or evaluation, None parameter to the batch size. The output
pf this model is the estimation of the intelligent sensor’s heading.

by using a sequence of deformation magnitudes as input data. The overall change

in the orientation of the intelligent sensor could be measured from a sequence of de-

tectable steps. Each step is represented as a temporal spatial state of the sensor.

Using the state representation, the research question is to uncover the current state

of the system, in terms of sensor rotation Rp
t , given a sequence of partially observed

states of the environment computed from speckle patterns O1∶t. The main motivation

for using LSTM is to track the previous states of the system and use it for estimation

of the current rotation angle. Here, the LSTM model act as a function K that maps

deformation to the sensor’s rotation::

Rp
t =K(O1∶t, R

p
0) (4.6)

where Rp
0 is the previous or initial state of the system. Given such a mapping function,

one can iterate over series of deformation parameters as tip of a fiber deflects, and

estimate the sensor’s heading angles.

The architecture of the LSTMmodel is represented in Fig. 4.15. This model has one

input layer, three LSTM layers to extract temporal information, and one dense layer
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to generate regressional output. In out experience, this architecture is the simplest

architecture capable of providing reliable and stable results. The input to the network

is a sequence of deformation magnitudes. Each input sequence has 15 data points.

The first, the second and the third LSTM layers have 8, 5 and 3 neurons, respectively,

and are followed by RELU activation function. Also, a dropout layer was utilized to

prevent overfitting. Similar to the previous studies, the Mean Square Error (MSE)

loss function was used to train the model. To construct the train and test datasets, we

used the collected pendulum local heading angle to represent the intelligent sensor’s

heading angle , as well as the acceleration data to represents the deformation of the

fiber. After normalizing the data, the acceleration data was grouped into sequences

of 15 samples, and was associated with one rotation sample. Then a train set, and

a test set was created by splitting the dataset into 80/20 train/test ratio. Also, 20%

percent of the training test was used as the validation set. The total number of

samples in the train set, validation set, and test set were 66,628 × 15, 15,262 × 15

and 19,077 × 15 respectively. The LSTM model was trained to learns the mapping

between the sequences of deformation magnitudes and the corresponding rotation of

the fiber’s base using the training set. Once the model was trained, its performance

was evaluated by using unseen deformation sequences from the test set.

4.3.1 Experimental Results

The goal of this experiment was to estimate the orientation angle of the intelligent

sensor from its fiber optic tip deformation. We trained a LSTM model as a regressor

to find the best fit between the fiber’s deformation magnitudes and the sensor’s ori-

entation. The model’s input and the target variable were acceleration and pendulum

deviation angle from its resting position, respectively. The mean square error loss

function and the Adam optimizer [82] with an initial learning rate of 0.0001 were

utilized to train the model. The model was trained for 80 epochs using the batch size

of 50 samples. After the training, the performance of the model was evaluated by



62

Figure 4.16: (Left Panel) Scatter plots of the actual vs predicted values showing the
deviation of the predictions from the ground truth. We can see that all the points
are be close to the diagonal line, indicating an effective model. (Middle Panel) The
residuals vs. prediction plot demonstrating errors have equal valiance, and clustered
around zero. Also, the distribution of the errors is normal, as shown in the right
panel.

comparing the model’s estimation of the pendulum deviation angle with the actual

values using R-squared metrics as presented in equation 4.3.

Fig. 4.16 provides a visualization of how well the LSTM fits the test data. The

plot on the far left indicates a strong correlation between the model’s prediction of

the pendulum deviation angles and the actual values (R2 = 0.98). The residual plot,

Fig. 4.16 (middle panel), provides a better insight into the model’s performance. We

can see that the magnitude of errors are within the ±1 degrees of the actual values.

Although the majority of the residuals are distrusted randomly, there are a few non-

linear patterns where the deviation angle is toward the extreme −10 degree. The

existence of white noise due to the vibration of the pendulum apparatus combined

with the high sensitivity of the reference accelerometer are possible sources of this non-

linear patterns. The overall distribution of the residuals suggest that the predicted

values are slightly biased. This is confirmed by the distribution plot of the errors,

presented in the Fig. 4.16 (left panel). We can see that the error distribution is normal,

but it is not centered on zero (0.04 ∓ 0.22 deg). Fig. 4.17 presents the probability

density function of the predicted orientation angle of the intelligent sensor. We can see
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Figure 4.17: Probability Density Function of the predicted orientation angle of the
intelligent sensor.
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that for the entire range of the pendulum deviation, the distributions of the predicted

angles are identical with the distributions of the actual deviation values. Overall,

these results provides the proof-of-concept that LSTM models can be exploited to

estimate the rotation of the intelligent sensor from the deformation parameters. In

the next chapter, we use the results of these studies to track the intelligent sensor’s

position.



CHAPTER 5: THE INTELLIGENT SENSOR

In chapter 4.1 and 4.2, we demonstrated that specklegram variations contains in-

formation for measuring the deformation parameters of a multimode fiber. Also, in

chapter 4.3, we provided insights into the physical behavior of the sensor and demon-

strated that an LSTM model is capable of estimating the sensor’s deviation from its

central axis from the deformation parameters of its fiber tip. In this chapter, we

utilize the results of the previous chapters to develop a computational pipeline for

the intelligent sensor so that it could generate a set of coordinates at an appropriate

sampling rate. These coordinates as a set represent the sensor’s trajectory.

It is important to note that we used acceleration as an indirect measure of the mul-

timode fiber’s deformation. That means the sensor’s configuration can be considered

as a fiber accelerometer [79]. Theoretically, it is possible to estimate displacement

parameters from acceleration assuming the initial state of a system is known. Af-

ter all, there is extensive research on the application of accelerometer for trajectory

estimation. However, in practice, this naive approach is prone to inevitable drifting

errors. This is because to obtain position p(t) from acceleration a, the accelerometer

readouts are integrated twice:

p(t) = ∫ vdt =∬ adt (5.1)

Moreover, the acceleration magnitude must be adjusted for the gravity factor by

using the estimation of orientation. Thus, accelerometers are fused with additional

sensors such as a gyroscope or magnetometers. These solutions are far from perfect

because all errors in measurement estimation will propagate in time affecting the
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upcoming calculations. Aside from this, the fusion of accelerometer and other sensors

does not suit the in vivo nature of IVUS applications.

5.1 Computational Pipeline

As the sensor travels in space, it captures a set of speckle patterns such as I0∶n =

{I0, ..., IK−n, IK} where IK denotes the speckle image captured at time instance K.

LetW0∶K = {W1,0, ...,WK,K−n} denote the motion of the sensor in the world coordinate

system (WCS), where W0 being the sensor’s initial position at time t = 0, equal to I

or any arbitrarily known value. Also, assume the sensor’s displacement ∆lK along its

central axis during tk−n is a known value. Our objective is to estimate the sensor’s

local transformation PK , and to recover its overall trajectoryW0∶K . The motion model

of the sensor is explicitly explained in 3.1.1. In summary, they are as follows:

WK =WK−n.PK (5.2)

PK =

⎛
⎜
⎜
⎝

RK,K−n TK,K−n

0 1

⎞
⎟
⎟
⎠

(5.3)

TK,K−n =
∆lK
θ

( Cα(1 −Cθ) Sα(1 −Cθ) Sθ ) (5.4)

RK,K−n =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C2αCθ + S2α CαSαCθ −CαSα CαSθ

CαSαCθ −CαSα S2αCθ +C2α SαSθ

−CαSθ −SαSθ Cθ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.5)

where, Cα = cosα, Cθ = cos θ, Sα = sinα, and Sθ = sin θ. Also, θ ≥ 0 is the bending

angle of the sensor, and α ∈ [0,2π] represents the direction of bending during tk−n → tk.
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Algorithm 1: Computational Pipeline of the Intelligent Sensor
Require: CNNθ, CNNα, LSTMθ

Input: Sets of specklegram Images I0→k, Axial displacements ∆l0→k
Result: Trajectory W0→k

1 Initialization W0 = I, i = 1, winSize = 15
2 if k<winSize then Exit;
3 while i ≤ k −winSize do
4 Generate a batch of images: [Ii→i+winSize]
5 Get CNNα predictions of bending directions [αwinSize] from [Ii→i+winSize]
6 Set αdeg to the most frequent value in [αwinSize]
7 Get CNNθ predictions of bending angles [θwinSize] from [Ii→i+winSize]
8 Get LSTMθ predictions of sensor’s rotation θdeg from [θwinSize]
9 Scale and convert θdeg and αdeg to radians: θrad, αrad

10 θrad = ABS(θrad)
11 if θrad == 0 then
12 Ti = [0,0,∆l]
13 else
14 Estimate Ti from ∆li, θrad, αrad using Eq. 5.4
15 end
16 Estimate Ri from θrad, αrad using Eq. 5.5
17 Pi = (Ri Ti

o 1 )

18 Wi =Wi−1.Pi
19 end

Using these equations, the algorithmic pipeline for trajectory estimation of the sensor

is represented in Alg. 1. Here, CNNθ and CNNα denote two trained deep learning

models for estimation of the bending angle θ, and direction bending α, respectively.

Also, LSTMθ is the trained LSTM model, which maps the sensor’s tip deformation to

its local rotation. The operation of the trajectory estimation pipeline is as follows.

As the sensor travels, speckle images are captured by the camera, and stored on a

storage drive. A batch generator unit reads a pre-defined winSize sequence of speckle

images from the storage, and crops them from 450 × 450 pixels to 420 × 420 pixels in

order to reduce the dark region surrounding the specklegrams. The batch generator

unit also down-samples the images to 300 × 300 pixels, converts them to gray-scale

images, applies a Gaussian blur filter, and normalized the images. At each iteration,

the output of the batch generator unit is a batch of specklegram images [Ii→i+winSize],
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ready to be processed with the CNNθ and CNNα models for the extraction of the

deformation parameters. For each image IK ∈ [Ii→i+winSize], the CNNα estimates the

direction of deformation. After all images were processed, the CNNα unit returns a

prediction array [αwinSize] with the size winSize × 1. Then, αdeg is set to the most

frequent value of this array.

Similarly, CNN reads the [Ii→i+winSize] batch in the ith iteration and returns an

array of bending angles [θwinSize], which is directly fed to the LSTMθ to estimate the

sensor’s rotation based on the deformation parameters. The output of the LSTMθ

is the a scalar θdeg, which represents the sensor’s deviation from its central axis.

Both αdeg and θdeg are scaled back using the scaling parameters of the system, which

were obtained during the data collection process, and the training data. At this

point, the bending direction is within the proper range of αrad ∈ [0,2π]. However,

the deformation magnitute corresponds to the entire raneg of deformation. This

is because the LSTMθ model was trained to calculate the sensor’s rotation for the

overall axis of deformation parameters. Therefore, the final step before calculating

the sensor’s trajectory is to set θrad equal to its absolute value: θrad = ABS(θrad) ≥ 0.

Finally, the sensor’s overall trajectory is calculated from the equations 5.2 to 5.5.

To evaluate the trajectory estimation, the motion equations were used to derive

the trajectory of the pendulum system from the speckle patterns. For this means, we

required an ordered sequence of speckle samples representing the pendulum oscilla-

tion. We also needed to ensure than the deep learning models have not seen any of

the samples before. To satisfy both requirements, first, we used the entire the previ-

ously collected data (82,250 samples) to re-trained the deep learning models. Then,

we collected a new test set with 8,054 samples using the pendulum system. The

performance of the trajectory estimation algorithm was evaluated using the speckle

patterns from the test set. The details of the validation process have been described

in detail in section 3.1.2. In summary, validation steps are as follows. 1. Construct-
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Figure 5.1: 3D Visualization of the Pendulum Trajectory as captured by the Refer-
ence Tracker.

ing a reference distribution as a baseline. 2. Evaluating the motion equations by

applying the reference sensor readouts and comparing the results with the baseline.

3. Evaluating the intelligent sensor estimated trajectory with the baseline.

5.2 The Reference Distribution

The trajectory of the pendulum apparatus was used to construct the baseline refer-

ence distribution. Assuming the pendulum parameters and its starting release point

remain constant, it goes through similar harmonic motion. To construct the evalua-

tion set, two collections of the pendulum motion were recorded. The data collection

process was similar to the steps explained at chapter 3.2.1. Also, a periodic force was

applied to the pendulum to maintain its motion. Fig. 5.1 provides a visualization

of the pendulum trajectory as it was recorded with the reference position tracker.

After pre-processing and removing the outliers, each collection contained 8022 sam-
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Figure 5.2: To extract observations, the starting points of each pendulum cycle were
identified, shown by the red markers. The interval between two consecutive picks
represents two observations.

ples corresponding to 70 seconds. To extract observations, signal processing was used

to identify the picks of the motion signal, see Fig. 5.2. These picks represent the

starting points of one complete cycle. Within each half cycle, the back-and-forth

displacement of the pendulum are approximately equal in length. Therefor, the pen-

dulum’s motion within each interval was counted as two observations. Also, random

samples of 2, 3, and 4 consecutive cycles were selected from each collections, and were

added to the observations to account for the accumulation of errors. We made sure

the corresponding randomly-selected observations between collections have identical

starting time-index and length. Finally, through the steps explained in 3.1.2, the

reference distance distribution and the DDTW distribution were constructed using

2306 observations, shown in Fig. 5.3.

These two distributions provides the baseline parameters to analyse and evalu-

(a) The reference distance distribution (b) The reference DDTW distribution

Figure 5.3: These two distributions provide the baseline parameters to evaluate the
intelligent sensor.
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ate the intelligent sensor. Ideally, the measurements of the reference tracking sensor

should be identical, and thus, align together. However, the average distance be-

tween the observations is 0.64 ± 0.4 cm. Also, the average DDTW distance between

observations is 0.18 ± 0.1. Note that the DDTW distance is a non-metric unit-less

similarity measure [76]. The possible sources of the difference between observations

are the reference tracking sensor estimation error, the pendulum vibrations while col-

lecting data, small differences in the starting release position of the pendulum, and

the inconsistency in timing of the applied force.

5.3 Evaluation of the Motion Model

The next step in the validation process was to evaluate the motion model repre-

sented by equations ( 5.2 to 5.5). Our goal was to understand the influence of under-

lying simplification assumptions of the model on the estimated trajectory. Through

an iterative process, the pendulum’s end-point displacement parameters were applied

to the motion model to obtain the trajectory. The motion model takes three pa-

rameters: ∆l, θ and α. At each time instant i, ∆l was calculated by comparing the

reference sensor’s read-outs between time t and t − 1. Also, θ and α were calculated

from the the pendulum’s end-point position (Px, Py, Pz) using the following inverse

kinematic equations [72, 73, 74, 75]:

θi = Arctan(
Py
Px

) (5.6)

αi = Arccos(
1 −K

1 +K
) (5.7)

K =
P 2
y

P 2
z sin2

θi

(5.8)

The initial results are provided in the middle panel of the Fig. 5.4. The Z and Y

axes are the vertical and horizontal components of the pendulum’s motion. The X-

axis represents the deviation of the pendulum from the YZ plane. The shapes of the
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Figure 5.4: The first column shows the pendulum trajectory as it was recorded by the
reference tracker. In the middle panel we can see the motion model estimations are
subjected to accumulation of errors. (Right Panel) Error propagation is significantly
reduced after applying a periodic corrections.

estimated trajectories follows a similar trend to its true value within one oscillation

(half cycle). However, the estimations were affected by accumulative errors in time.

This was an expected outcome. Error accumulation is an inevitable component of

trajectory estimation for problems, in which, an external point of reference is not

available. This type of error has two sources: the error in the read-outs of the

reference tracker, and the accumulation of the round-off-error when incrementing

the trajectory position in time. The round-off error is a well-known consequence of

motion estimation by multiplication of a sequence of transformation matrices without

applying any method to correct errors [89]. To limit the propagation of errors, and yet

being able to study their influence, the model estimations were corrected periodically

by their true values at the end of every two cycles. The results are shown in Fig. 5.4,

right column. Although there still exists some error in the estimation of the motion

models, the influence of error propagation is limited. The trend and distributions of
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(a) Error propagation rate for each Axis of motion

(b) Distribution of Errors prior to applying the corrections.

(c) Distribution of Errors after applying the corrections

Figure 5.5: The trend and distributions of accumulated errors for each axis of motion
before and after applying the corrections.

accumulated errors for each axis of motion before and after applying the corrections

are presented in Fig. 5.5. These results suggest that errors are accumulated linearly

in time.

Fig. 5.6 provides a comprehensive comparison between the motion model estimated

trajectory of the pendulum with its true values for two consecutive observations, or

one pendulum cycle. The largest deviations between the ground truth and the esti-

mated values for X, Y, and Z directions are 1.1 cm, 2.98 cm and 2.0 cm, respectively,

shown in the third row. The distributions of the errors are provided in the last row.

The average estimation errors in the X, Y, and Z axes are 0.400±0.4 cm,1.54±0.8 cm,

and −0.51± 0.7 cm, respectively. In X-axis and Y-axis, the largest deviation between
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Figure 5.6: The first and the second rows provide the 3D and 2D views of the results.
The degree to which these two curves are aligned can be seen in the third row. Errors
and their distributions are provided in the last two rows.
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(a) Motion model distance distribution (b) Motion model DDTW distribution

Figure 5.7: These two distributions represent a summary of the motion model per-
formance for 2,036 observations.

the two trajectories corresponds to the ending point of the first oscillation, i.e., half

cycle, where the pendulum stops momentarily and restarts its motion in the opposite

direction. The most possible source of this deviation is the weight of the pendulum

apparatus, which produces a periodic torque vibration.

Fig. 5.7 shows the distributions of DDTW score and the average distance between

the motion model estimations and the true values for all observations. The average

distance between the estimations and the ground truth is a 1.03 ± 0.5 cm. Also, the

average DDTW score is 0.25± 0.2 . In the next section, the reference distributions as

well as these two distributions will be used to evaluate the intelligent sensor.

5.4 Evaluation of the Intelligent Sensor

To evaluate the intelligent sensor, the sequences of speckle patterns from the test

collection were used to derive the pendulum’s motion. The Speckle patterns were

pre-processed as was explained in the chapter 3.2.3. Then, the trajectory of the pen-

dulum was detected from the Alg. 1. Similar to the previous section, estimations were

periodically updated (every two cycles) to limit the propagation of errors. Fig. 5.8

shows the intelligent sensor’s estimation before and after applying the periodic cor-

rection. These estimations correspond to the entire test collection, i.e. 7941 samples,

2036 observations. The Y and Z axes are the vertical and horizontal components of

the pendulum’s motion. The X-axis represents the deviation of the pendulum from
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Figure 5.8: The first column shows the pendulum trajectory as it was recorded by
the reference tracker. In the middle panel we can see that the estimations intelligent
sensor are subjected to accumulation of errors. (Right Panel) Error propagation is
significantly reduced after applying a periodic corrections.

the YZ plane. Comparing the XZ and YZ planes of the estimates trajectories with

the ground truth values reveals that the highest error propagation rate is in the Z

direction, i.e. vertical component of the motion. After applying the corrections, the

estimates trajectory in the XZ view has the lowest similarity to the reference tra-

jectory. These initial observations suggest that the intelligent sensor underestimates

the pendulum’s deviation from the YZ plane. Thus, the Z component of motion is

overestimated.

Table 5.1: Comparison of Estimation Errors

Axis Motion Model Intelligent Sensor

Without Correction
X 3.92 ± 2.0 cm 13.74 ± 6.9 cm
Y 1.32 ± 0.4 cm 4.04 ± 2.6 cm
Z 7.6 ± 4.5 cm 16.39 ± 8.2 cm

Periodically Corrected
X 0.44 ± 0.2 cm 0.33 ± 0.6 cm
Y 0.73 ± 0.5 cm 0.08 ± 0.5 cm
Z 0.19 ± 0.5 cm 0.18 ± 0.8 cm
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(a) Error propagation rate for each Axis of motion

(b) Distribution of Errors prior to applying the corrections.

(c) Distribution of Errors after applying the corrections

Figure 5.9: The trend and distributions of accumulated errors for each axis of motion
before and after applying the corrections.

The trends and distribution of the errors before and after applying the correction

are provided in Fig. 5.9. In comparison to the motion model, i.e. Fig. 5.5, the error

propagation rate of the intelligent sensor has increased from 0.1 cm/s to 0.371 cm/s in

the X direction, from 0.003 cm/s to 0.138 cm/sin the Y direction, and from 0.231 cm/s

to 0.442 cm/s in the Z direction. Table. 5.1 provides a comprehensive comparison

between the motion model and the intelligent sensor estimations before and after

applying the periodic correction. Prior to applying the corrections, the average error

in the X, Y, and Z-axis of displacement are 13.74 ± 6.9 cm,4.04 ± 2.6 cm, and 16.39 ±

8.2 cm, respectively. After applying the correction, the errors were reduced to 0.33 ±

0.6 cm,0.83 ± 0.5 cm, and 0.18 ± 0.8 cm. These results suggest that the intelligent
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sensor provides an approximate estimation of the pendulum trajectory. However,

without having an error correction method, the errors accumulate rather quickly.

Figure 5.10: The first and the second rows provide the 3D and 2D views of the
results. The degree to which these two curves are aligned can be seen in the third
row. Errors and their distributions are provided in the last two rows.

Fig. 5.10 presents the intelligent sensor estimated motion trajectory of the pendu-

lum in one cycle, i.e. two observations. The average error in the X, Y, and Z-axis of

displacement are 0.64 ± 0.8 cm,0.71 ± 0.8 cm, and 0.64 ± 1.00 cm, respectively. The

divergences between the shape of the estimated trajectories and the references are
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Figure 5.11: Comparison between the estimated orientations of the sensing trans-
ducer and their true values.

shown by XY, XZ, and YZ planes. A comparison between the Fig. 5.10 and Fig 5.6

revels that the divergence between the estimations and the true values follow a similar

pattern, i.e. errors are larger when the pendulum stops and changes its displacement

direction. To provide more insights, a comparison between the estimated orientations

of the sensing transducer, i.e. α and θ, and their reference values are provided in

Fig. 5.11. The average error in the estimated sensor deviation from its central axis,

i.e. θ was 0.07 ± 0.1 rad. Also, the average estimation error of the direction of devi-

ation was −0.03 ± 0.001 rad. The small magnitude of these errors indicates speckle

analysis and the deep learning pipeline provides an accurate estimation of orientation

of the intelligent sensor.

(a) Distance distribution (b) DDTW distribution

Figure 5.12: These two distributions represent a summary of the Intelligent Sensor
performance for 2,036 observations.
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(a) Probability density functions of the distributions

(b) Box-plot visualization of the distributions

Figure 5.13: Overview of the distance and DDTW distributions of the ground truth,
motion model, and the intelligent sensor.

Fig. 5.12 shows the distributions of DDTW score and the average distance between

the intelligent sensor estimations and the true values for all observations. The average

DDTW score between the intelligent sensor results and the reference trajectory is

1.06 ± 0.6. The average distance between the intelligent sensor’s estimations and the

ground truth is a 0.27 ± 0.3 .

Fig. 5.13 provides a comprehensive visual overview of the distance and DDTW

distributions of the ground truth, motion model, and the intelligent sensor. These

distributions were compared using t-test, Kolmogorov-Smirnov (K-S) test, and Mann-

Whitney U-test. The t-test analysis between the distance distribution of the reference

and motion model shows these distributions are significantly different (t = −32.473, p <

2.2E −16). This is also confirmed with the Mann-Whitney U-test(p < 2.2e − 16),

and the K-S test (D = 0.414, p < 2.2E−16). The t-test analysis between distance

distribution of the the reference and the intelligent sensor shows they are significantly

different (t = −31.423, p < 2.2E−16), which was confirmed by the Mann-Whitney U-

test(p < 2.2E−16), and the K-S test (D = 0.401, p < 2.2E−16).
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The comparison between the distance distribution of the intelligent sensor and mo-

tion model did not yield a consistent results. According to the t-test (t = −2.0163, p =

0.043) and K-S test (D = 0.062, p = 0.000) these distributions are significantly differ-

ent at 95% confidence interval. However, the Mann-Whitney U-test failed to reject

the null hypothesis (p = 0.5495).

The results of comparing the DDTW distributions are as follows. The t-test anal-

ysis between the DDTW distribution of the motion model and the reference shows

these distributions were not significantly different (t = −11.349, p < 2.2E−16). This

was also confirmed using the Mann-Whitney U-test (p < 2.2E −16) and the K-S

test (D = 0.191, p < 2.2E −16). The DDTW distribution of the intelligent sen-

sor were statistically different from the reference DDTW distribution using t-test

(t = −11.035, p < 2.2E−16), and the Mann-Whitney U-test (p < 1.9E−8), and the K-S

test (D = 0.218, p < 2.2E−16). Finally, The DDTW distribution of the intelligent

sensor were statistically different from the motion model DDTW distribution using

t-test (t = −2.385, p = 0.02), and the K-S test (D = 0.128, p < 2.2E−16). However,

the Mann-Whitney U-test failed to reject the null hypothesis (p = 0.275).

To provide more insights, the empirical cumulative distribution function (ECDF)

of the all distributions are provided in Fig. 5.14. While the distribution of the mo-

tion model and the intelligent sensor estimations are similar to each other, they are

significantly different from the reference distribution. Similarly, we can see that the

DDTW distribution of the intelligent senor and the motion model are more similar to

each other and significantly different from the reference distribution. The difference

between the reference and motion model estimations – which were made from the

reference values– suggests this motion model is the source of the intelligent sensor’s

estimation errors. Additionally, error accumulation is the another source of the error

in the estimations. It is important to note that the intelligent sensor, and the motion

model were not calibrated. Therefore, we conclude these results provide a proof-of-
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Figure 5.14: Empirical cumulative distribution function (ECDF) of the ground truth,
motion model estimations, and the intelligent sensor estimations.

concept that utilizing speckle patterns for motion estimation is a feasible approach,

and the estimations of the intelligent sensor are similar to those of which were made

by the motion model from the ground truth values.



CHAPTER 6: DISCUSSION

In this study, we explored the possibility of speckle patterns analysis for tracking

motion in the context of cardiovascular research. We utilized a computation pipeline

to extract featured from sequences of speckle patterns and to derive motion param-

eters from those features. In chapter 3 we presented the design, motion model and

validation process of an intelligent sensor to track motion. The presented sensor

incorporated a multimode fiber optic as a transducer. We also constructed a compre-

hensive dataset for speckle pattern analysis. Using this dataset, we carried out a set

of experiments to investigate the feasibility of our approach.

First, we demonstrated that each state of a deforming fiber optic corresponds to a

unique speckle pattern. The state of fiber was defined using two parameters: deforma-

tion magnitude, and direction (axis) of deformation. The results of our experiments

in chapter 4.1 and 4.2 confirmed that variation in the shape of speckle patterns pro-

vides deterministic information for measuring the direction (axis) and the angle of a

fiber optic deformation.

Second, through a machine learning approach, we calculated the heading direc-

tion of the intelligent sensor from the deformation of its fiber optic transducer. As

explained in chapter 4.3, three rounds of simulation studies were performed to ob-

serve the fiber’s oscillating behavior and also, to check the relationship between the

sensor heading direction and the deformation of its sensing fiber tip. The results

of these simulations suggested that long-term dependencies between the deformation

parameters provide a stable and reliable indication of the intelligent sensor’s head-

ing direction. Once this relationship was established, we trained an LSTM model to

estimate the intelligent sensor’s heading angle from a sequence of deformation pa-
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rameters. The results of this experiment provided the proof-of-concept that LSTM

models can be exploited to estimate the heading direction of the intelligent sensor

from the deformation parameters.

At the ends, we utilized the findings of the previous studies to develop a computa-

tional pipeline for the intelligent sensor so that it could generate a set of coordinates at

an appropriate sampling rate, representing its trajectory, as explained in the chapter

5.1. We tested the intelligent sensor and its computational pipeline on the estimation

of a contorlled trajectory. The evaluation process included comparing the intelligent

sensor’s read-outs to ground truth values, which was obtained from a reference tracker

sensor, as well as the estimation of its motion model using the ground truth values.

The results indicated that estimations provided by the intelligent sensor and those of

which obtained from the motion model have similar distributions.

While the estimation errors do not fit the in vivo application yet, the results provide

a proof-of-concept this research is on the right path. There are several factors and

limitations to consider:

1. The sensor prototype and data collection setup were bulky instruments sub-

jected to vibrations. Although this system was designed to oscillate in the XY

plane, it deviated from its motion plane. This deviation was captured by the

intelligent sensor (although underestimated).

2. Another source of error was the miss-alignment between the orientation of the

sensor, the reference tracker, and the accelerometer. These factors resulted in

the underestimation (or overestimation) of the deformation parameters.

3. Speckle patterns are highly sensitive to the physical status of the multimode

fiber. Therefore, this approach may be combined with a signal processing unit

to increase the signal to noise ratio.

4. Because the position and orientation of the camera and the multimode fiber
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were fixed, the intelligent sensor was not capable of estimating the rotation

around its central axis.

5. Speckle patterns are unique for every multimode fiber. Therefore, the training

process must be repeated for every fiber. Although applying transfer learning

reduces the training time significantly, it does not eliminate it.

The intelligent sensor and the methodology presented here provides an alternative

solution for tracking objects. In this regard, this research establishes a foundation for

future studies to build upon. Moving forward, future works may include extensions

to our approach for further improvements, and utilizing them for other applications.

For example:

• In this research, we evaluated the intelligent sensor estimation of the motion

of a pendulum. However, this motion does not represent the movement of the

IVUS catheter while in vivo. Therefore, the next step of this research will

include the assessment of the intelligent sensor in a similar environment, i.e. a

tube. Such evaluation will not be possible without the prototyping refinement

of the intelligent sensor to fit in such environment. Also, we did not perform

sensitivity and range analysis in this study. These aspects have to be further

examined to better understand the sensing capabilities and limitations of the

intelligent sensor. Finally, future works also include refinements and expanding

the intelligent sensor motion model as it directly influences the accuracy of the

measurements.

• Many of the problems addressed in this research are also relevant to the other

engineering fields. Thus, the results of this study could be applied to broadens

the knowledge in other fields. Findings may also shorten the gap between the

academic and industry by providing valuable information for researchers who

are interested in applying machine learning methods to real-world problems.
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