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ABSTRACT

GUANGYI CAO. Cross-stack predictive control framework for multicore real-time

applications. (Under the direction of DR. ARINDAM MUKHERJEE)

Many of the next generation applications in entertainment, human computer interac-

tion, infrastructure, security and medical systems are computationally intensive, always-on,

and have soft real time (SRT) requirements. While failure to meet deadlines is not catas-

trophic in SRT systems, missing deadlines can result in an unacceptable degradation in the

quality of service (QoS). To ensure acceptable QoS under dynamically changing operating

conditions such as changes in the workload, energy availability, and thermal constraints,

systems are typically designed for worst case conditions. Unfortunately, such overdesign-

ing of systems increases costs and overall power consumption.

In this dissertation we formulate the real-time task execution as a Multiple-Input, Single-

Output (MISO) optimal control problem involving tracking a desired system utilization set

point with control inputs derived from across the computing stack. We assume that an arbi-

trary number of SRT tasks may join and leave the system at arbitrary times. The tasks are

scheduled on multiple cores by a dynamic priority multiprocessor scheduling algorithm.

We use a model predictive controller (MPC) to realize optimal control. MPCs are easy

to tune, can handle multiple control variables, and constraints on both the dependent and

independent variables. We experimentally demonstrate the operation of our controller on

a video encoder application and a computer vision application executing on a dual socket

quadcore Xeon processor with a total of 8 processing cores. We establish that the use of

DVFS and application quality as control variables enables operation at a lower power op-

erating point while meeting real-time constraints as compared to non cross-stack control

approaches. We also evaluate the role of scheduling algorithms in the control of homo-

geneous and heterogeneous workloads. Additionally, we propose a novel adaptive control

technique for time-varying workloads.



ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor Dr. Mukherjee for opening up the door of

research for me. I greatly appreciate his inspiring guidance, great patience and invaluable

encouragement through the entire process of my doctoral study. I am deeply indebted to

my committee member Dr. Ravindran who provided me timely and generous help when I

was most uncertain about direction of my research. The impression on his enthusiasm and

insight about research will continuously inspire me in my future professional endeavor. I

would like to thank my committee member Dr. Joshi and Dr. Wilkinson for reviewing my

work and providing helpful suggestions. I also would like to thank Dr. Ferguson for his

encouragement and kindly support.

I would like to thank my parents Mr. Xinzhi Cao and Ms. Yinhua Pang for their

unconditional love. They have cherished with me every great moment and supported me

whenever I needed it. Without them, this dissertation would never have been written.

I would like to thank my dear friends Changshu Zhang, Libin Bai, Kushal Datta and

Zhe Dang for all the great precious times that we have shared.

iv



v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

1.1 Motivation and Objective 1

1.2 Contributions 3

1.3 Organization 5

CHAPTER 2: BACKGROUND 7

2.1 Introduction 7

2.2 Real-time Systems 9

2.2.1 Hard Real-time Task Model 10

2.2.2 Resource Model 12

2.2.3 Real-time Scheduling Algorithms 13

2.2.3.1 Scheduling on Uniprocessors 14

2.2.3.2 Scheduling on Multiprocessors 18

2.2.4 Soft Real-time Systems 21

2.2.4.1 Soft Real-time Task Model 22

2.2.4.2 Tardiness Bound Assurance 23

2.2.5 Real-time Synchronization Protocols 23

2.3 Model Predictive Control(MPC) 28

2.3.1 Background of MPC 28

2.3.2 System Model 30

2.3.3 MPC Algorithm 30

2.4 Adaptive Computing Techniques 32

2.4.1 Adaptive Software Techniques 32

2.4.2 Adaptive Hardware Techniques 33

CHAPTER 3: HOMOGENEOUS CONTROL FRAMEWORK 36

3.1 Introduction 36



vi

3.2 Evaluation Methodology 38

3.2.1 Benchmarks 38

3.2.1.1 x264 Encoder 39

3.2.1.2 bodytrack 40

3.2.2 Implementation of G-EDF Scheduling Algorithm 43

3.2.3 Actuator 44

3.2.3.1 Overview 44

3.2.3.2 Modulator 45

3.2.3.3 Frequency Actuator 47

3.2.3.4 Application Tuning Knob Actuator 48

3.2.3.5 Flow Chart 48

3.2.4 Sensor 49

3.2.4.1 Implementation of Linux System Call 49

3.2.4.2 Time Management in Linux 50

3.2.4.3 Flow Chart 51

3.2.5 Performance Metrics of the Controller 51

3.2.6 Power Model 52

3.3 Experimental Results 54

3.3.1 Experimental Setup 54

3.3.2 System Identification 54

3.3.3 Stability Analysis 55

3.3.4 Controller Design 55

3.3.5 Need for Control 66

3.3.6 Step Response 66

3.3.7 Power Saving 72

3.3.8 Controller Overhead 72

3.4 Related Work 73



vii

3.5 Conclusions 74

CHAPTER 4: HETEROGENEOUS CONTROL FRAMEWORK 75

4.1 Introduction 75

4.2 Framework 76

4.3 Experimental Results 77

4.3.1 Experimental Setup 77

4.3.2 Step Response 77

4.3.3 Comparison of C-EDF and G-EDF Scheduling Algorithm 80

4.3.4 Control Overhead 80

4.4 Related Work 81

4.5 Conclusions 82

CHAPTER 5: ADAPTIVE CONTROL FRAMEWORK 83

5.1 Introduction 83

5.2 Framework 84

5.3 Video Genre Classification 85

5.3.1 Video Genres 86

5.3.2 Classification Metric 86

5.3.3 Kolmogorov-Smirnov (K-S) Test Algorithm 87

5.4 Experimental Results 90

5.4.1 Selection of Classification Period 90

5.4.2 Experimental Setup 91

5.4.3 Validation of Video Genre Classifier 91

5.4.4 Performance Evaluation 91

5.4.5 Control Overhead 92

5.5 Related Work 93

5.6 Conclusions 94

CHAPTER 6: CONCLUSIONS 96



viii

6.1 Summary of Results 96

6.2 Future Work 97

BIBLIOGRAPHY 99



CHAPTER 1: INTRODUCTION

1.1 Motivation and Objective

The next decade of computing is expected to be driven by the increasing pervasive-

ness of personal mobile computing devices and cyber physical systems. Many of the next

generation applications in entertainment, human computer interaction, infrastructure, secu-

rity and medical systems are computationally intensive, always-on, and are characterized

by periodic tasks with Soft Real-Time (SRT) requirements. While failure to meet dead-

lines is not catastrophic in SRT systems, missing deadlines can result in an unacceptable

degradation in the Quality of Service (QoS). To ensure acceptable QoS under dynamically

changing operating conditions such as changes in the workload, energy availability, and

thermal constraints, systems are typically designed for worst case conditions. Unfortu-

nately, such overdesigning of systems increases costs and overall power consumption. A

possible solution to this problem is run-time adaptation of the system to handle dynami-

cally changing operating conditions. Previous research on cross-stack run-time adaptation

has focused on open-loop control where the output has no effect on the system input and

hence can only counteract against disturbances for which it has been designed. In contrast

in closed loop control, feedback is used to determine if real-time requirements are in met in

the presence of unmodeled disturbances. However, existing research on closed loop control

for real-time workloads have been limited to the use of control inputs derived from a single

layer of the computing stack such as processor DVFS or scheduling policies.

In this dissertation we show that a higher overload capacity and better energy efficient

operation of the system is possible if a closed loop control uses control inputs derived from

all parts of the computing stack. We note that in many of the applications described above,
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Figure 1.1: Schematic representation of our closed loop cross-stack predictive control

framework

although deadlines need to be met to provide QoS guarantees, other quality parameters of

the application (for example, visual quality in video processing) can be tuned in conjunc-

tion with hardware parameters (for example, DVFS) to give acceptable performance under

overload conditions. We formulate the real-time task execution as a Multiple-Input, Single-

Output (MISO) optimal control problem involving tracking a desired system utilization set

point with control inputs derived from across the computing stack. We assume that an arbi-

trary number of SRT tasks may join and leave the system at arbitrary times. The tasks are

scheduled on multiple cores by a dynamic priority multiprocessor scheduling algorithm.

Note that utilization above the set-point results tasks missing deadlines while utilization

under the set-point results in energy inefficient operation.

Our cross-stack control framework is shown in Fig 1.1. We use a model predictive

controller (MPC) to realize optimal control. MPCs use an internal system model to predict

the future trajectory of the output variables. Based on a history of past control moves, a
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constrained optimization is solved on-line to determine the future input trajectory such that

the output variables track a reference trajectory over a receding horizon. MPCs are easy

to tune, can handle multiple control variables, and constraints on both the dependent and

independent variables.

1.2 Contributions

Homogeneous task control framework: Existing research on closed loop control for

real-time workloads have been limited to the use of control inputs derived from a single

layer of the computing stack such as processor DVFS or scheduling policies. In order to

improve overload capacity and power efficiency of real-time multicore computing system,

we propose a cross-stack control framework for homogeneous real-time workloads. We

formulate this real-time multicore computing system as an Multiple Input Single Output

(MISO) state space model. We use a Model Predictive Controller (MPC) to handle this

MISO model since MPC can handle multiple control variables and set constraints on both

the dependent and independent variables . MPC uses an internal system model to predict

the future trajectory of the output variable. This model is derived by carrying out System

Identification (SI) based on data collected on our experimental platform. For every control

period, the controller reads system utilization from a sensor, calculates control variables

based on control law of MPC, oversamples values of control variables with appropriate

modulators and finally writes the oversampled values to application and hardware stack

through actuators. We use DVFS technology to adapt operational frequency dynamically

in hardware stack. Application quality are updated by writing through global variables

protected by a real-time read-write lock.

We apply this homogeneous control framework to on a video encoder application (x264)

and a computer vision application (bodytrack). The experimental platform is a dual socket

quadcore Xeon processor with a total of 8 processing cores. We create the state space

model using Matlab system identification toolbox and design the MPC controller with help

of Matlab model predictive control toolbox. We manually tune controller parameters one
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at a time to obtain a good step response for the controller. All tasks including the appli-

cation and the controller are scheduled by real-time dynamic task schedulers implemented

in Linux using the Litmus-RT patch. Our results shows better system controllability can

be achieved if the control inputs are derived from all parts of the computing stack: the

cross-stack controller is able to maintain constant frame rate while DVFS-only or appli-

cation quality-only control fails to do so at heavy workload (task number over 8)for both

bodytrack and x264. The controller is able to track utilization set-point with a settling time

less than 5 seconds in response to a 50 % step change in number of tasks for both body-

track and x264. For a pseudo-random number of input tasks, our model predictive control

approach shows an energy saving of 31 % compared to the non-control implementation at

the highest frequency and application precision for x264 and an energy saving of 26 % for

bodytrack. The overall control overhead is less than 0.4 percent of one control period for

both bodytrack and x264.

Heterogeneous control framework: In order to accommodate the more commonly sce-

nario of a server running multiple distinct real-time workloads simultaneously, we propose

a cross-stack predictive control framework for heterogeneous workloads. We adopt a clus-

ter control approaches to deal with the problem where different types of workloads are

partitioned into different clusters and each cluster is handled by its own controller. In this

control approach we use the Cluster-Earliest Deadline First (C-EDF) scheduling algorithm

as the task scheduling algorithm.

We applied the two different approaches mentioned above to a workload with a com-

bination of x264 and bodytrack tasks. Experimental results show that cluster control ap-

proaches can guarantee real-time constraints on heterogeneous workloads and show accept-

able performance in terms of peak overshoot, settling time and jitter value. Due to superior

load balancing capability, control with G-EDF performs better with an unbalanced work-

load. However, for a balanced but heavy workload with large number of tasks for both

applications, load balancing is less of any issue. For this case, C-EDF with its better data
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locality performs better.

Adaptive control framework: We propose an adaptive cross-stack predictive control

framework to maintain desired level of performance for dynamic workloads.

We employ a gain scheduling approach for our adaptive cross-stack predictive control

framework that uses multiple fixed models identified based on a priori workload char-

acterization. During run-time, a supervisor periodically determine the model that is most

suitable for actual and switches to the controller associated with the selected model. We se-

lect x264 encoder as the workload to demonstrate the operation of our adaptive cross-stack

predictive control framework since x264 exhibits distinct visual and temporal features if

videos from different video genres are used as its encoding input. We select 4 video gen-

res: cartoon, entertainment, news report and sports. We initially subdivide 20 video files

used for our experiments into the four genres, according to the subject of the video. We

create model predictive controllers as well as their state space models derived by system

identification for each genre. To determine which video genre should be chosen in real-

time, we choose average frame execution time as video temporal feature and implement a

video genre classifier using Kolmogorov-Smirnov test algorithm.

The video genre classifier achieves satisfactory validation results with no less than 90%

success rate for each genre. Adaptive controller outperforms non-adaptive controller in

terms of smaller steady state error. We also show that the adaptive control incurs a minimal

overhead, which accounts for 0.086 % of each control period.

1.3 Organization

The remainder of the dissertation is organized as follows. Chapter 2 provides back-

ground on real-time system, control theory, adaptive computing technique and power model

that form the foundation of our cross-stack control framework. Chapter 3 describes the

cross-stack predictive control framework that improves overload capacity and energy ef-

ficiency for homogeneous real-time workloads. Chapter 4 discusses the extension to het-

erogeneous cross-stack control framework by exploring the impact of different scheduling
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policies: G-EDF and C-EDF on the performance of the controller. Chapter 5 describes the

implementation of the the adaptive cross-stack predictive control framework for dynamic

workloads. Chapter 6 concludes with a summary of the work presented in this dissertation

and with the discussion of how future work could extend the research work presented in

this dissertation. All chapters are relatively self-contained with the necessary background

and related work.



CHAPTER 2: BACKGROUND

2.1 Introduction

In this chapter we briefly review basic concepts and terminology of real-time systems

and model predictive control that form the foundation of our cross-stack control framework.

We also provide a brief overview of the power-performance tuning capabilities of modern

software and hardware. Before considering these aspects in detail, we first provide an

overview of our cross-stack control framework.

As shown in Fig 2.1, our cross-stack control framework can be considered as a closed

loop interconnected system consisting of the following components- hardware stack, real-

time Operating System (OS) stack, real-time application stack, controller, sensor, and actu-

ator. Multicore real-time computing system provides users their needed services through a

collaboration of its three computing stacks: real-time application stack, real-time operating

system stack, and hardware stack. The real-time application stack handles execution of the

real-time workload. Real-time operating system stack is a collection of system software

that provides common service to users’ applications and serves as a middleman between

application stack and hardware stack. These services usually include task management,

time management, memory management and inter-process synchronization and communi-

cation [96]. Besides these basic services, real-time operating system stack employs real-

time scheduling and synchronization algorithms to determine how the hardware resources

are shared among the systems processes such that the real-time requirements can be guar-

anteed. Hardware stack is the physical entity realizing the functionality of data processing,

storage and transfer in a computing system. Major elements of the hardware stack include

one or more multicore processors, memory, I/O devices, and hard disk. Architecture details
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Figure 2.1: Cross-stack control framework

of of multicore processors will be covered in section 2.2.2.

According to Fig 2.1, the control goal is to strive for a desired system performance by

dynamically tracking a desired operating set-point through the control of one or more sys-

tem parameters (control variables). The system performance and set-point are defined by

the user. In our work, we choose system utilization as a metric of system performance based

on recent development of real-time system theory. To achieve the control goal, the con-

troller follows a three-step procedure. For each control period, the controller first updates

the measured system performance by reading the sensed system output. The controller then

derives the error by subtracting measured system performance from the set-point. The error

is used to update the control variables following the control law. In our work, the control

variables are derived from both hardware stack and real-time application stack while the

output sensor is realized in real-time OS stack.

The rest of this chapter is organized as follows. Section 2.2 briefly reviews basic con-
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cepts and terminology of real-time systems. Section 2.3 introduces background of model

predictive control and how to formulate and solve our model predictive control problem,

and Section 2.4 reviews adaptive computing techniques.

2.2 Real-time Systems

The distinguishing characteristic of a real-time system in comparison to a non-real-

time system is the inclusion of timing requirements in its specification [21]. To guarantee

correctness of a real-time system, not only does the system need to produce a logically

correct result, but also timing constraints have to be met. Process control systems, air

traffic control systems, and multimedia systems are some examples of real-time systems.

Timing requirements and constraints in real-time systems are commonly conveyed as

deadlines within which activities should finish execution. Consider an example such as

video conferencing, which allows two or more locations to communicate by simultaneous

two-way video and audio transmissions. Holding video conferencing requires the system

to perform following high-level activities of tasks: sample and capture raw image using

a camera, compress it with an encoder, send it to destination through the internet, decode

and display video frames received from the internet. Each of these tasks should be invoked

repeatedly at a certain frequency, and each invocation should complete execution within a

specified time or deadline. Failure to fulfill this timing requirement will result in degra-

dation of service quality. Another characteristic of a real-time system is its predictability.

It should always be able to check, prove or verify that the timing requirements are met

under assumptions made on certain features of workloads [98]. Note that temporal correct-

ness of real-time system may be impaired by phenomena such as priority inversions and

deadlocks (details of priority inversions and deadlocks will be covered in subsection 2.2.5)

which result in unpredictable task blocking time. A real-time system must thus incorporate

a real-time synchronization protocol that avoids deadlock and allows the maximum length

of priority inversion to be bounded.

Based on the consequences resulting from failure of not meeting deadlines, real-time
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systems are usually divided into two classes - hard and soft. A real-time system is said to be

hard if missing its deadline may cause catastrophic consequences on the environment under

control. Industrial process-control systems, robots, controllers for automotive systems, and

air-traffic controllers are some examples of hard real-time systems. A real-time system is

said to be soft if meeting its deadline is desirable for performance reasons, but missing its

deadline does not cause serious damage to the environment and does not jeopardize correct

system behavior. Multimedia systems and virtual-reality systems are some examples of

soft real-time system.

Real-time system design includes four important components: real-time system models

including task models and resource models; scheduling algorithms, which determine how

the hardware resources are shared among the system’s threads and/or processes; validation

tests that determine whether a real-time system’s timing requirement will be met by a spec-

ified scheduling algorithm; and real-time synchronization protocol assuring that deadlock

and priority inversion will not harm temporal correctness of real-time system.

2.2.1 Hard Real-time Task Model

A real-time task model is used to describe the workload and the timing requirements

associated with it. In real-time terminology, a piece of sequential work that has to be

finished before its deadline is referred to as a job. So a simple task model of a real-time

system can be a set of jobs, each of which is associated with an arrival or release time, a

deadline, and a Worst-Case Execution Time (WCET). The release time of a job denotes the

time after which the job is ready to execute. WCET is the maximum length of time a job

could take to execute on a specific hardware platform. A review of WCET calculation and

analysis is give in [106].

Many real-time systems are made up of one or more sequential chunks of code, each

of which is executed repeatedly and each of whose execution should reach its completion

within a specified amount of time. Each repeatedly invoked code segment is commonly

encapsulated into a different process and is referred to as a task. Here job is an invocation
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of a task. Tasks can be initiated in response to (a) external activities which interacts with

the system, (b) activities taking place in other tasks or (c) a timer. A task is long-lived and

can be invoked an indefinite number of times unless its termination is explicitly specified.

Hence, many real-time systems can be modeled as a set of N recurrent tasks denoted τ =

{τ1, τ2, . . . , τN}. Each task τi is a sequential program described by three parameters: a

WCET (ei > 0), a minimum inter-arrival time (pi ≥ ei) and a relative deadline (Di ≥ ei).

pi denotes the minimum time that should elapse between two consecutive job invocations

or arrivals of τi. Di denotes the amount of time within which each job of τi should complete

execution after its release. A recurrent task with the characteristics as described is referred

to as a sporadic task and a task system consisting of sporadic tasks is referred to as a

sporadic task system. A periodic task is a special case of a sporadic task in which any two

consecutive job arrivals are separated by exactly pi time units, and a task system whose

tasks are all periodic is referred to as a periodic task system.

For a periodic or a sporadic task system, the kth job, where k ≥ 1, of τ is denoted τi,k.

The release time of τi,k and its absolute deadline are denoted ri,k and di,k respectively. Here

di,k = ri,k +Di. A job′s absolute deadline is the absolute or actual time by which the job

should complete execution. If Di = pi holds, then τi and its jobs are said to have implicit

deadlines. A task system in which Di = pi holds for every task is said to be an implicit-

deadline system. Similarly a task system in which Di < pi holds for every task is said to be

an constrained-deadline system. Unless otherwise specified, all tasks are assumed to have

implicit deadlines in this dissertation, and the notation τi(ei, pi) will be used to denote the

parameters of τi concisely.

The ratio of the WCET to the period of a task is referred to as its utilization. The

utilization of task τi is denoted ui = ei/pi. Utilization of a task represents the fraction of a

processor’s computation power that is devoted to execution of this task in the long run. A

task is said to be heavy if its utilization is at least 1/2, and light otherwise. The sum of the

utilization of all tasks in τ is referred to as the total system utilization of τ and is denoted
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Usum(τ). Usum(τ) denotes the total processing needs of τ . A sporadic task system τ is said

to be concrete, if the release time and actual execution time (which is at most the WCET)

of every job of each of its tasks is specified, and non-concrete, otherwise. Unless specified,

actual job execution times are taken to be equal to their worst-case execution times.

2.2.2 Resource Model

Multicore processors are a special class of multiprocessors where multiple indentical

processing cores are manufactured on a single integrated circuit chip to exploit increases

in transistor density. By identical we mean that (a) all processing cores possess exact same

computation capacity, which means, a task’s execution is not affected by the processing

core’s identity, (b) main memory is shared among all the cores and a processing core can

access each memory location with the same maximum latency. Such systems are called

uniform memory access (UMA) architectures, and (c) each processing core is provided

with one or more levels of identical caches to expedite access to frequently accessed ad-

dresses or addresses that are spatially close. Fig 2.2 illustrates the structure of a multicore
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processor with a two level cache hierarchy. Ideally, tasks should execute on every pro-

cessing core identically with no restriction on the processing cores that a task may execute

upon. However, due to the impact of cache, execution time of a job is likely to be more if a

job migrates among multiple processing cores. To lower migration overheads, a scheduling

algorithm may choose to restrict executing a task or a job to one or a subset of processing

cores, even though the system model imposes no restriction.

Tasks can be interdependent on each other due to three factors: synchronization con-

straints imposed by producer/consumer relationships [47], a need to access shared data

resources in a mutually-exclusive manner, and precedence constraints, which restrict the

order in which tasks may execute. Under any one of the three scenarios, tasks will be

blocked, adding extra overhead to the system. In this dissertation, we assume that tasks

from the same application are independent. However, a producer/consumer relationship is

imposed between the controller and the applications since in each control period, the con-

troller updates the application parameters. Real-time synchronization used in our work to

enforce this producer/consumer relationship is discussed in Section 2.2.5.

2.2.3 Real-time Scheduling Algorithms

A scheduling algorithm allocates processor computation power to tasks by assigning

certain slots of a processor’s execution time to certain tasks. Scheduling algorithms for

general purpose operating systems are commonly employed in order to maximize overall

throughput while ensuring fairness among all tasks. A typical example is complete fair-

ness scheduler(CFS) [78] which is adopted by Linux since its 2.6.23 release. In contrast,

scheduling strategies used in real-time systems is driven by the need to meet timing con-

straints. Real-time scheduling algorithms commonly assign priority to each job and select

the M highest priority jobs to execute on a M processor system as long as constraints on

migrations, preemptions, concurrency, and mutually-exclusive executions are not violated.

Before getting into the details of real-time scheduling algorithms, we define terms and met-

rics commonly used in characterizing real-time scheduling algorithms and in comparing
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different algorithms.

Feasibility, schedulability, and optimality: A task system τ is said to be feasible on a

hardware platform if there is some way of scheduling and meeting all the deadlines of τ

on that platform. τ is said to be schedulable on a hardware platform by algorithm A, if

A is capable of correctly scheduling τ on that platform, i.e., can meet all the deadlines

of τ . A is said to be an optimal scheduling algorithm if A can correctly schedule every

feasible task system on every hardware platform. In pratice, optimality is often restricted

to a subset of task systems (such as periodic or sporadic task systems) or to a class of

scheduling algorithms or a hardware platform class (uniprocessors and multiprocessors).

Schedulable utilization bound: A commonly used metric for comparing effectiveness

of different scheduling algorithms in meeting deadlines of a task system is schedulable uti-

lization bound. Formally, if UA(M) is a schedulable utilization bound [76] for scheduling

algorithm A, then on M processors, A can correctly schedule every recurrent task system

τ with Usum(τ) ≤ UA(M) . In addition, if there exists at least one task system with total

utilization slightly over UA(M) by an infinitesimal amount and has a deadline miss under

A on M processors, UA(M) is called worst-case schedulable utilization . Furthermore, if

no task system with total utilization exceeding UA(M) can be scheduled correctly by A,

then UA(M) is said to be the optimal utilization bound of A for M .

Schedulability tests: Simple and fast validation tests and online admission-control tests

for the algorithms are designed based on schedulable utilization bound for schedulability

checking. With known schedulable utilization bound UA(M) of algorithm A and a task sys-

tem τ , an O(N)-time schedulability test for τ under A can be performed to verify whether

Usum(τ) is no greater than UA(M). However, sometimes optimal schedulable utilization

bound is not known for certain scheduling algorithms, making the tests only sufficient but

not necessary. This can lead to pessimistic conclusion that deadlines will be missed.

2.2.3.1 Scheduling on Uniprocessors

To ensure that timing requirements are met, priority in a real-time system can be given
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to: jobs with earlier deadlines; those with smaller slack times (at any time t, the slack

time of a job τi,k with deadline di,k is equal to di,k − t − el. el is the time required to

complete the remaining portion of the job); or jobs of tasks with shorter periods. We will

consider real-time scheduling on uniprocessor in this section followed by scheduling on

multiprocessors.

The algorithm using the first strategy is called Earliest-Deadline-First (EDF) [75], which

is optimal for scheduling sporadic tasks on a uniprocessor [60]. The second strategy is

adopted in a algorithm called Least-Laxity-First (LLF) [77], which is also an optimal

scheduling algorithm for scheduling sporadic tasks on a uniprocessor. The well-known

Rate-Monotonic (RM) scheduling algorithm [54] adopts the third strategy to advocate those

tasks with short periods over those with longer periods. The three algorithms differ in their

computation complexities and their abilities to meet job deadlines. Fig 2.3 shows an exam-

ple where two tasks are scheduled under the three strategies separately on a uniprocessor

system. Based on how job priorities are assigned and updated under each algorithm, a

priority-based classification for real-time scheduling algorithm is proposed in [25]. Before

describing that classification, we briefly describe two other ways of classifying scheduling

algorithms.

Preemptive and non-preemptive algorithms: Under preemptive algorithms, a job can be

blocked during its execution before completion. A job may get preempted only if another

job with a higher priority arrives and the scheduler decides to run the job on the same

processor. Under non-preemptive algorithms, a job may not be interrupted once it starts

execution. All jobs from other tasks cannot occupy this processor until the job reaches its

completion.

Work-conserving and non-work-conserving algorithms: An algorithm is considered as

work conserving if no processor stays in the idle state when one or more jobs are ready

to execute, and non-work-conserving, otherwise. The reason of idling the processor in-

tentionally is to improve schedulability. For instance, under non-preemptive algorithms,
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Figure 2.3: Uniprocessor schedules under (a) EDF, (b) RM, and (c) LLF for a task system

with two tasks.
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idling may prevent binding a job prematurely to a processor, and hence, has the potential to

correctly schedule task systems that are otherwise not schedulable. However, due to high

time complexity, non-work-conserving algorithms mainly find their application in off-line

scheduling. Scheduling algorithm used in this dissertation are work-conserving.

Based on how job priorities are assigned and updated, scheduling algorithms can be

classified into the following three categories.

Static-priority algorithms (Ps): Under static-priority algorithms, the priority of a task

is kept unchanged across job executions. For example, task priorities in the RM algorithm

mentioned above is determined by the task period. RM is also an optimal static priority

scheduling algorithm for sporadic task systems on uniprocessors if relative deadlines are

equal to periods as assumed in this dissertation.

Restricted-dynamic-priority algorithms (P r
d ): The algorithms in this class are also re-

ferred to as task-level dynamic-priority and job-level fixed-priority algorithms in the liter-

ature [25]. Generally, under this class of algorithms, the priority of a job is determined

dynamically, so different jobs of a task can be assigned different priorities. However, the

priority of a job cannot be changed during its execution. EDF is an algorithm in this class.

Unrestricted-dynamic-priority algorithms (P u
d ): Under algorithms in this class, a job is

allowed to change its priority during its execution. LLF is one example of an algorithm in

this class.

Although the worst-case time complexity in selecting the highest priority job isO(logN)

(where N is the number of tasks) for each of RM, EDF, and LLF [61], extra overhead re-

sulting from updating priorities is incurred in EDF as absolute deadlines change from a

job to the other and need to be computed at each job activation. Such a runtime overhead

is not present under RM, since periods are typically constant. This overhead in LLF is

even worse since priority of job may change multiple times before its completion. The

maximum possible number of job preemptions, as a function of the total number of jobs,

is asymptotically comparable for the static and restricted dynamic-priority classes. How-
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ever, in practice, the actual number can be higher for RM than for EDF [20]. Number of

preemptions in the unrestricted-dynamic priority class is much higher than number in other

two classes depending on the rate at which job priorities change. Preemptions not only

generate context switches but also have cache-related overheads. Thus it is desirable that

their number be minimized.

On a single processor, the worst-case schedulable utilization of RM for a sporadic task

systems is URM = N.(21/N − 1) [60], which converges to ln2 ≈ 0.69 as N −→ ∞. It

should be mentioned that the utilization-bound-based schedulability test for RM is only a

sufficient test and can be pessimistic. Previous research [54] showed that the schedulable

utilization bound of RM can be up to 88% with a more accurate and complex test.

On the other hand, the schedulable utilization bound of EDF is 1.0 for all N [60]. This

test is both necessary and sufficient for any task system on a single processor. So, without

considering scheduling overheads, using EDF algorithm instead of RM can significantly

improve schedulability. Besides, no task system with utilization over 1.0 is feasible on

a uniprocessor, EDF is optimal not only for its class, but also across all the classes of

scheduling algorithms applied to uniprocessors.

Since EDF is universally optimal, the extra flexibility in job priorities changing pro-

vided in algorithms belonging to unrestricted-dynamic-priority class (such as LLF) does

not bring additional benefits for task systems on uniprocessors. Moreover due to the high

overhead, unrestricted-dynamic-priority algorithms are not popular on uniprocessors.

2.2.3.2 Scheduling on Multiprocessors

Three approaches used in scheduling on multiprocessors are partitioning, clustering and

global scheduling.

Under partitioning, a set of tasks are partitioned statically among processors. Tasks

under each processor are scheduled by an individual scheduler dedicated to the processor.

Each processor also possesses its own ready queue which holds all the active jobs eligible

for execution. Schedulers on different processors may or may not be based on the same
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Table 2.1: Carpenter et al.’s classification of multiprocessor scheduling algorithms pre-

sented in [25]. Entries in the table represent known lower and upper bounds on the

worst-case schedulable utilization, U , for the different classes of scheduling algorithms.

α = umax, the maximum utilization of any task in the task system under consideration.

Ps: static prd: restricted dynamic pud : unrestricted dynamic

Mf : full

migration
M2

3M−2
≤ U ≤ M+1

2

U = M − α(M − 1) if α ≤ 1

2

U = M+1

2
, otherwise

U = M

Mr:

restricted

migration

U ≤ M+1

2

U = M − α(M − 1) if α ≤ 1

2

U = M+1

2
, otherwise

U = M − α(M − 1) if α ≤ 1

2

U = M+1

2
, otherwise

Mp:

partitioning
U = M+1

2
U = βM+1

β+1
, where β = ⌊ 1

α
⌋ U = βM+1

β+1
, where β = ⌊ 1

α
⌋

scheduling algorithm. The algorithm used for task partitioning must ensure that the sum of

task utilization in each processor does not exceed the utilization bound.

In contrast to partitioning, global scheduling employs a unified scheduler and ready

queue to handle all the tasks. At any instant, at most M jobs with the highest priorities ex-

ecutes on M processors. There is no restriction imposed on where a task can execute. Not

only can a task execute on different processors, but also it can execute on different proces-

sors at different times. Fig 2.4 shows an example where the same task system is scheduled

under both Partitioned EDF (P-EDF)and Global EDF (G-EDF) scheduling algorithm.

Clustering can be consider as a hybrid approach of global and partition scheduling.

Under clustering, M processors are split into several ⌈M
c
⌉ disjoint sets (or clusters) of c

processors each. Each cluster is associated with a separate scheduler for scheduling tasks

assigned to the cluster and a ready queue which holds its active jobs. Schedulers of different

clusters may or may not be based on the same scheduling algorithm. Jobs can migrate freely

among all the processors belonging to the same cluster similar to the global approach,

but inter-cluster migration is prohibited. Cluster scheduling is a generalization of both

global and partitioned scheduling: if c = 1, then cluster scheduling yields pure partitioned

scheduling; if c = M , then cluster scheduling is equivalent to global scheduling.

Carpenter et al. [25] provides a comparison of the schedulability of different classes

based on the the best known schedulable utilization bounds for any algorithm in each class.
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Figure 2.4: Schedules under (a) partitioned-EDF and (b) g-EDF for four tasks on two

processors. White or dark color rectangle indicates execution on processor 1 or processor

2.
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The results are summarized in Table 2.1.

The best known lower and upper bounds on the worst-case schedulable utilization of

any algorithm in each of the nine classes are provided in Table 2.1. The top, left entry in

the table means that there exists some scheduling algorithm in this class that can correctly

schedule every task system with utilization at most M2

3M−2
; and there exists some other

algorithm in the same class that cannot correctly schedule a task system with utilization

higher than M+1
2

. Other entries can be interpreted in the same way. An ”equals” operator

means that the upper bound and lower bound are the same, thus indicating standing the

worst-case schedulable utilization.

As shown on the table, within P r
d class, both the Mf and Mr classes shows better

schedulability than Mp class when α is small(around 0.2) This indicates a trend of allowing

task migration tends to improve schedulability. This trend more obviously affects P u
d class,

under which easing the restrictions on migrations can increase schedulability to 100%.

Experimental data shows that execution overheads incurring from preemption and mi-

gration generally increases when migration restriction are relaxed. Some significant com-

ponents of the overhead contributing are discussed below. As discussed in Subsection

2.2.2, a major overhead incurring from migration is due to the loss of cache affinity. With

write-back cache, this overhead includes the time to invalidate the related cache-lines on

the processor from which the task migrates and the time to load data into the current pro-

cessor. Another overhead due to migration comes from the updating of a task′s Process

Control Block (PCB). As most modern processor support virtual memory, recently-used

page table entries of a process may also have to be invalidated and refetched. Note that the

overhead mentioned above may be incurred even if a preempted job resumes its execution

at a later time on the same processor. This is because its related cache-lines may be evicted

by the jobs that execute in the intervening time.

2.2.4 Soft Real-time Systems

A task system with soft real-time constraints is referred to as a soft real-time system.
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In this section, we describe the evolution of the task model for soft real-time systems from

hard real-time task model introduced in Subsection 2.2.1 ensuring that tardiness of soft

real-time system is within its acceptable range.

2.2.4.1 Soft Real-time Task Model

The soft real-time task model modifies the hard real-time task model by adding a tardi-

ness bound with every task in the task system. If δ stands for tardiness bound of a soft real-

time task, then any job of this task can miss its deadline by at most δ time unit. Although

a job can miss its deadline in soft real-time systems, we assume that missed deadlines do

not delay future job releases. For example, in the schedules in Fig 2.5 although jobs of τ3

miss their deadlines, releases of future jobs are not affected. It should be noted that, based

on this assumption, although a job will be released on time no matter the prior job miss

its deadline or not, it cannot commence execution until the prior job completes execution

due to an implicit precedence relationship. For example, in a video decoding task, while

it is desirable that each video frame is decoded within 33 milliseconds, a tardiness of few

milliseconds will not degrade video quality as long as the average rate of decoded frames

per second stays at 30. Tardiness may introduce jitter to the job execution time, but it is

unlikely that a small amount of jitter will be discerned by human eyes.

0 2 4 6 8 10 12 14 16 18 20 22 24

1 2 3 4

1 2 3 4

1 2 3

τ1(4, 6)

τ2(4, 6)

τ3(4, 6)

Figure 2.5: Schedules three tasks under two processors under the scheduling algorithm of

(P r
d , Mf ) class (i.e. global EDF). White or dark color rectangle indicates execution on

processor 1 or processor 2. Jobs of τ3 miss their deadlines, but releases of future jobs are

not affected.
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2.2.4.2 Tardiness Bound Assurance

The ultimate objective of our cross-stack control framework is to assure that tardiness

is bounded or some performance metric equals to a desirable value(for example, decoded

frames per second stays at 30) by dynamically adjusting application and hardware param-

eters in cross-stack of a dynamic task system, where tasks may join or leave at run-time.

To achieve this objective, we have to identify which system parameter should be chosen as

controlled variable and how to assign set-point to this controlled variable so that tardiness

will be bounded. Devi et al.’s work [32] provided a solution to this question. They prove

that under preemptive and non-preemptive global EDF, for sporadic real-time task systems

on multiprocessors, when the total utilization of a task system is not greater than maximum

processing capacity, M , tardiness is bounded. We therefore use system overall utilization

as the controlled variable for our control framework.

2.2.5 Real-time Synchronization Protocols

Phenomena including deadlock and priority inversion adversely affects temporal cor-

rectness of real-time systems. So synchronization in real-time systems has to prevent race

conditions while bounding the maximum duration of priority inversion and avoiding dead-

locks. In this subsection, we first introduce the concepts of deadlock and priority inversion.

We then introduce major real-time synchronization protocols used in uniprocessors and

multiprocessors.

Deadlock and priority inversion: Deadlock [108] is a phenomenon where multiple tasks

wait to acquire locks held by other tasks. In deadlock, no task is able to release the lock and

no progress can be made on job executions. Fig 2.6 shows an example of deadlock which

involves two tasks τ1,τ2 and two mutex locks S and R in a uniprocessor system. Note

that here we assume task index stands for its priority and smaller value indicates a higher

priority, so τ1 will preempt τ2 when they are both ready to execute (i.e. t = 3). By t = 8,

τ1 and τ2 enter states of deadlock as they all wait each other to release mutex locks. This

example shows that lock nesting is a possible cause of deadlocks. Another phenomenon
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Figure 2.6: Deadlock example that two tasks τ1,τ2 and two mutex locks S and R present

in a uniprocessor system. ”L(S)” stands for mutex lock attempt on S. Hatched rectangle

stands for task being blocked.

which endangers temporal correctness of real-time system is priority inversion [51]. In

priority inversion, a medium priority task indirectly preempts a high priority task as if their

relative priorities are inverted. Fig 2.7 shows such an example illustrating Priority Inversion

blocking (PI blocking). This example involves three tasks, two of which share a resource

protected by a mutex lock S. The first task τ3 acquires the mutex lock which causes a

later-arriving and higher priority task τ1 to be suspended at t = 3. Afterwards, at t = 4, a

medium priority task τ2 joins in and preempts τ3. As result, τ2 indirectly delays τ1 for its

entire execution so that τ1 missed its deadline by 3 time units.

Uniprocessor real-time synchronization protocols: Priority Inheritance Protocol (PIP)

[94] is the most widely-used real-time synchronization protocol for uniprocessors. PIP

takes effect when preempting a lower priority task would delay a higher priority task. PIP

rejects such preemption by temporarily increasing priority of a task holding the resource

to the highest priority of any tasks waiting on the resource. Fig 2.8 shows that how PIP

handles the same situation in Fig 2.7. Here priority of τ3 is praised to 1 at t = 3 due to τ1’s

attempt to acquire the lock at that time so that medium priority task τ2 cannot preempt τ3 at

t = 4. In this case PIP successfully prevents the highest task τ1 from suffering PI blocking



25

0 2 4 6 8 10 12 14 16

τ1

τ2

τ3

L(S)

S

U(S)

L(S)

S S S

U(S)

Figure 2.7: Priority inversion example involving three tasks, two of which share a resource

protected by a mutex lock S. ”L(S)” stands for mutex lock attempt on S. ”U(S)” stands for

mutex unlock on S. Hatched rectangle stands for task being blocked.

due to the medium priority task τ2.

However, PIP has the downside of susceptiblity to deadlock. Hence Priority Ceiling

protocol (PCP) [95], another procotol which is based on PIP, has been proposed to over-

come this problem. PCP can be viewed as PIP with an access test determining whether it is

safe to allocate a semaphore S to a job J. In PCP, each resource is assigned a priority ceiling,

which is a priority equal to the highest base priority of any task which attempts to acquire

the resource. A job J is allowed to lock a semaphore only if J’s priority is strictly greater

than the priority ceilings of all semaphores locked by other jobs in the system. By doing so,

PCP prevents potentially problematic resource requests until deadlock is impossible. [16]

provides more detailed analysis about PCP.

Multiprocessor real-time synchronization protocols: A resource is local to a processor if

all jobs requesting this resource execute on this processor, and global otherwise. Since local

resource can be handled with uniprocessor protocol such as PCP, the major responsibility

of multiprocessor real-time synchronization is to tackle global resource. Multiprocessor

priority ceiling protocol (M-PCP) [84] was proposed in mid-1990s and is probably the most
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Figure 2.8: PIP schedule of the scenario shown in Fig 2.7. ”L(S)” stands for mutex lock

attempt on S. ”U(S)” stands for mutex unlock on S. Hatched rectangle stands for task being

blocked.

widely known locking protocol for multiprocessor real-time system. For global resource,

M-PCP let jobs holding global resources execute with an effective priority higher than that

of any normal task. Competing requests for global resources are served in order of job

priority. A requesting job will be suspended if the request cannot be served immediately.

Fig 2.9 demonstrates a M-PCP schedule for two-processor system.

However, recent research [14] [17] show that a newly-proposed protocol, flexible mul-

tiprocessor locking protocol (FMLP), is superior to them in terms of both performance and

flexibility. FMLP is considered as flexible in the sense that it can be used either partitioned

or global scheduling, with either static or dynamic task priorities, and it is consistent with

both spin lock and semaphore.

FMLP classifies global resources as either ”short” or ”long” type. Short resources are

accessed using spin lock and long resources are accessed via a semaphore protocol. To

avoid dead lock, FMLP divides resources into groups and only allows one job to access

resources in any given group at any time. Two resources are in the same group if they are

from the same type (short or long) and requests for those resources may nest with each
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Figure 2.9: M-PCP schedule of four tasks sharing two global resources S and R in a two-

processor system. τ1, τ2 shares processor 1; τ3, τ4 shares processor 2.

other. A group lock is used to realize this mechanism in the way that jobs must first acquire

its corresponding group lock before access it.

If request is short and outermost, the corresponding job become non-preemptable and

try to hold the group lock (a spin lock). Other blocked jobs busy-wait in FIFO order. The

request is satisfied once holding the lock. When the request completes, the job will release

the group lock and again become preemptive.

If request is long and outermost, the corresponding job will try to hold the group lock (a

semaphore). With a semaphore lock, blocked jobs are added to a FIFO queue and suspend.

When the request is satisfied, the job will be executed non-preemptively. This is achieved

by boosting its priority to 0. When the request finishes, the job will release the group lock

and become preemptive.

Compared with M-PCP, the most significant difference of FMLP is that it serves re-

source requests in FIFO order instead of job priority and consider distinctions between

long and short resource. Brandenburg et al. reported FMLP shows better performance than



28

M-PCP in their work [17] Fig 2.10 depicts FMLP schedule for the same scenario in Fig

2.9 for M-PCP. Note that different from M-PCP, contending requests are satisfied in FIFO

order: τ4’s request is satisfied before that of τ3 at time 5.
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Figure 2.10: FMLP schedule of same scenario in Fig 2.9: four tasks sharing two long

global resources S and R in a two-processor system. τ1, τ2 shares processor 1; τ3, τ4 shares

processor 2.

2.3 Model Predictive Control(MPC)

In this section, we first introduce background and general principle of MPC. Then we

describe how to formulate our system as a standard linearized, discrete-time, state space

model for model predictive control. Finally we explain how to solve this MPC problem.

2.3.1 Background of MPC

Model predictive control is an advanced control methodology which has made a signif-

icant impact on industrial control engineering [103]. Compared with other control method-

ologies, it has four unique features [65]:

• It can conveniently handle multivariable control problems.

• It considers constraints on the manipulated variable.
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• It allows for an operating point operations close to the constraints.

• It requires lower control rates, which results in lower control overhead.

past future
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k k+1 k+Nm k+Np
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Set-point 

trajectory
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Figure 2.11: A schematic representation of model predictive control strategy. The dotted

line crossing with white spots is reference trajectory.

Fig 2.11 shows the basic strategy of model predictive control. In this schematic repre-

sentation, we assume a discrete-time setting and the current time is labeled as time step k.

We also assume that the system operates within its input constraints (umin, umax) and out-

put constraints (ymin, ymax) . From the current time instant k, based on the dynamic system

model, model predictive controller predicts that system output will track to set-point tra-

jectory in NP time steps [24]. This predicted ideal trajectory along which the plant should

return to the set-point trajectory is called reference trajectory. NP is called prediction hori-
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zon. This predicted behavior of system output depends on the input trajectory which are

to be applied over NC time steps. NC is called control horizon. Usually, NC is smaller

than NP . Based on a history of past control moves, model predictive control minimizes a

cost function J with constraints to determine this future input trajectory. Once the input

trajectory is computed, only the first element is applied as control input to the system. At

the next control period, the window of prediction horizon and control horizon will move

one step forward and the whole process will be repeated. Such a control strategy is also

called receding horizon control.

2.3.2 System Model

We model our system as a standard linearized, discrete-time, state space model in the

form below [10]:

x(k + 1) = Ax(k) +Buu(k) +Bvv(k) +Bdd(k)

ym(k) = Cmx(k) +Dvmv(k) +Ddmd(k)

(2.1)

In Equation 2.1, x(k) is the Nx-dimensional state vector of the plant, u(k) is the Nu di-

mensional vector of manipulated variables, v(k) is the Nv dimensional vector of measured

disturbances, d(k) is the Nd dimensional vector of unmeasured disturbances entering the

system, and ym(k) is the No dimensional vector of measured outputs. The unmeasured

disturbance d(k) is modeled as the output of an LTI system

xd(k + 1) = Āxd(k) + B̄nd(k)

d(k) = C̄xd(k) + D̄nd(k)

(2.2)

Where nd(k) is the random Gaussian noise with zero mean and unit covariance matrix.

2.3.3 MPC Algorithm

The values of the set-points, measured disturbances, and constraints are specified over

a finite prediction horizon P ; the controller computes future inputs for a control horizon
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M (1 ≤ M ≤ P ). Assuming that the estimates x(k) and xd(k) are available at time k

from state estimation, the future inputs at time k are obtained by solving the optimization

problem [10]

min
∆u(k|k),...,∆u(m−1+k|k),ε

{

p−1
∑

i=0

[

ny
∑

j=1

|wy
i+1,j(yj(k + i+ 1|k)

− rj(k + i+ 1))|2 +
nu
∑

j=1

|w∆u
i,j ∆uj(k + i|k)|2] + ρεε

2} (2.3)

subject to the constraints,

ujmin(i)− εV u
jmin(i) ≤ uj(k + i|k) ≤ ujmax(i) + εV u

jmax(i)

∆ujmin(i)− εV ∆u
jmin(i) ≤ ∆uj(k + i|k) ≤ ∆ujmax(i) + εV ∆u

jmax(i)

yjmin(i)− εV y
jmin(i) ≤ yj(k + i|k) ≤ yjmax(i) + εV y

jmax(i)

, i = 0, ..., p− 1

∆u(k + h|k) = 0, h = M, ..., P − 1 ε ≥ 0

(2.4)

Here, r(k) is the value of the reference variable at time k, w∆u
i,j , wy

i,j are non-negative

weights for the corresponding variables. A smaller w indicates a lower importance of the

corresponding variable in the overall cost function. uj,min, uj,max, ∆uj,min, ∆uj,max, yj,min,

and yj,max are the lower/upper bounds of the corresponding variables. The weight ρǫ of the

variable ǫ penalizes the violation of constraints. The relaxation vectors V u
min, V u

max, V ∆u
min,

V ∆u
max, V y

in, and V y
max represent the penalty for relaxing the corresponding constraints; the

larger the V, the softer the constraint. If all bounds are infinite and the slack variables are re-

moved, the problem can be solved analytically; else a Quadratic Programming (QP) solver

is used. Since the output constraints are always soft, the QP problem is never infeasible

[10]. Note that only ∆u(k|k) is actually used to compute u(k). The remaining samples

∆u(k + i|k) are discarded and a new optimization problem based on ym(k + 1) is solved

the the next sampling step k + 1.
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Since the states x(k) and xd(k) are not directly measurable, predictions are obtained

from a state estimator. The estimates are computed from the measured output ym(k) by the

linear state observer







x̂(k|k)

x̂d(k|k)






=







x̂(k|k − 1)

x̂d(k|k − 1)






+G(ym(k)− ŷm(k)) (2.5)

ŷm(k) = Cmx̂(k|k − 1) +Dvmv(k) +DdmC̄x̂d(k|k − 1) (2.6)

The gain G is designed using Kalman filtering techniques [10]

2.4 Adaptive Computing Techniques

By making trade-off among performance, accuracy and power consumption, adaptive

computing systems have flexibility to meet multiple goals in changing computing environ-

ments. A number of technique have been developed for both software [90] [55] [71] and

hardware [4] [8] [33]. In this dissertation, control law of controller will determine how to

adjust parameters in hardware stack and application stack in achieving of desired trade-off

and adaptive computing techniques are employed as components of actuator which in every

control period assign new value to those parameters based on the decision of controller.

2.4.1 Adaptive Software Techniques

Adaptive software techniques refer to either static or dynamic alteration of software

parameters in response to change in the computing environment. We provide a brief review

of adaptive software techniques reported in the literature.

Autotuning technique is used to explore a range of equally accurate implementation

alternatives to find the alternative or combination of alternatives that deliver the best per-

formance on the current computational platform. [38] For example, multicore stencil com-

putations are optimized based on system parameters of computation platform such as cache

size, number of socket, DRAM bandwidth, thread number, and compiler type [30]

Different from autotuning technique which searches among equally accurate alterna-
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tives, dynamic knobs technique [45], along with loop perforation [69] and task skipping

[86] trades accuracy of computation for other benefits. In dynamic knobs, static applica-

tion parameters assigned during program initialization are turned into tunable parameters

which can be updated by controller through certain tuning interfaces. Loop perforation

transforms loops to perform fewer iterations than the original loop in order to obtain im-

plementations that occupy different points in the performance/accuracy trade-off space.

Task skipping works similarly with loop perforation, except that it skips tasks instead of

iterations in loops. The three techniques mentioned above sometimes equivalently affects

performance and accuracy in the sense that some tunable parameters may affect the number

of loop iterations.

2.4.2 Adaptive Hardware Techniques

Adaptive hardware techniques improve power efficiency of hardware by dynamically

tuning its parameters during run-time execution to better match varying workload needs.

Dynamic Voltage and Frequency Scaling (DVFS) [52] and Dynamic Power Management

(DPM) [64] are among those most popular adaptive hardware technique. Advanced Con-

figuration and Power Interface (ACPI) is a standard interface specification closely related

to DVFS and DPM.

ACPI [44] is specified by several manufacturers including Hewlett-Packard, Intel, Mi-

crosoft, Phoenix, and Toshiba to establish common interfaces for platform-independent

configuration and power management. ACPI specifies solely the interface between hard-

ware and software and the implied requirements of the two. The specification defines

what have to be supported and initialised by the hardware and what assumptions can be

made on the software side. In the ACPI specification, software is defined as Operating

System-directed Power Management (OSPM) [35], an operating system component which

is responsible for all power management decisions and actions using the interface defined

by the specification. Based on extent of power consumption, ACPI defines four classes of

power states as G-states (global states), C-states(processor states), P-states (performance



34

mechanical off

G0

G3

G2

G1

C0

Soft off

sleepworking

C1-C3 S1-S4

P0 Pn

Figure 2.12: ACPI power states

states) and S-states (sleep states). G0 to G3 states can be designated in sequence as work-

ing state, sleep state, soft off state and mechanical off state. In G0 state, processor can

reside in a state between C0 to C3 state where C0 is operating state and C1 to C3 are idle

states in which some components of the processor stop working. P-states are a predefined

set of frequency and voltage combinations at which the processor can operate when the

CPU is under C0 state. In P-states, P0 is the highest performance state with highest clock

frequency and Pn defines the lowest performance state with lowest clock frequency. DVFS

technique dynamically adjusts clock frequency specified in P-states. Relations between

different power states in shown in Fig 2.12. DVFS allows processor to switch from dif-

ferent P-states to trade performance for power conservation. Different from DVFS, DPM

switches processor to idle or sleep states when they are not used, resulting in a power sav-

ing. The deeper the idle or sleep state a processor resides in, the longer the latency will

be when switching it back to working state. Compared with state switching time in DPM,
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which is up to 100 milliseconds to transit from sleep to run [26], the latency in frequency

transition in DVFS is significantly smaller [41]. For example, Enhanced Intel SpeedStep

technology (EIST) [46] has a maximum transition latency as only 10 us. Since jobs are

often released in a small period (e.g. below 40 milliseconds) in soft real-time system ,

switching processor frequently to idle or sleep states may incur great overhead which may

easily cancel the benefit from doing so. Hence in this dissertation we choose DVFS over

DPM as the method of adapting hardware for power saving.

Dynamic Cache Repartition (DCR) is another adaptive hardware technique for improv-

ing power efficiency. By partitioning the shared cache among tasks at run-time based on

the characteristics of tasks (e.g. real-time constraint, private data size), DCR can be used

to assure real-time performance while saving power consumption. Although DCR has at-

tracted considerable interest in the research community [4] [99] [104] with a few reported

prototypes up till now[4], it is not yet integrated on commerically available processors.



CHAPTER 3: HOMOGENEOUS CONTROL FRAMEWORK

3.1 Introduction

In this chapter, we propose a cross-stack control framework for homogeneous real-time

workloads. We note that in many real-time applications, although deadlines need to be

met to provide QoS guarantees, application quality (for example visual quality in video

processing) can be tuned in conjunction with hardware and system software parameters

to improve the controllability of the system. We formulate the real-time task execution

as a Multiple-Inputs, Single-Output (MISO) optimal control problem involving tracking

a desired task utilization set-point with control inputs derived from across the computing

stack as shown in Fig 3.1. We assume that an arbitrary number of soft real-time tasks

running in the application stack may join and leave the system at arbitrary times. The

tasks are scheduled on multiple cores by global EDF scheduling algorithm in the real-time

OS stack since all tasks are identical and belong to same type of workloads. Note that

utilization above the set-point results in the task missing deadlines while utilization under

the set-point results in sub-optimal power consumption.

As shown in figure 3.1. We use a model predictive controller (MPC) to realize optimal

control. MPC uses an internal system model to predict the future trajectory of the con-

trolled variable. This model is derived by carrying out System Identification (SI) based

on data collected on our experimental platform. Based on a history of past control moves,

a constrained optimization is solved on-line to determine the future input trajectory such

that the controlled variable tracks a reference trajectory over a receding horizon. For every

control period, the MPC reads system utilization from the sensor, calculates the control

variables based on its control law, oversamples values of the control variables with proper
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Figure 3.1: Schematic representation of our cross-stack control framework for homoge-

neous real-time workloads



38

modulators, and finally writes the oversampled values to application and hardware stack

through actuators. As mentioned in subsection 2.4.2 we use DVFS technology to adapt

operational frequency dynamically in the hardware stack. Application quality tuning knob

is updated by writing through global variables protected by a FMLP read-write lock. Our

results shows better system controllability can be achieved if the control inputs are derived

from all parts of the computing stack. The controller is able to track utilization set-point

in less than 5 seconds in response to a 50 % step change in the number of tasks. For a

pseudo-random number of input tasks, our model predictive control approach shows an

average power saving up to 31 % compared to a baseline implementation running at the

highest frequency and application precision.

The rest of the chapter is organized as follows. In Section 3.2, we introduce vari-

ous evaluation methodologies used to construct our control framework. In Section 3.3 we

present the experimental results which show that better system controllability can be de-

rived if all parts of the computing stack are collaboratively adapted. We review related

work in Section 3.4 and conclude the chapter in Section 3.5.

3.2 Evaluation Methodology

In this section we will introduce our experimental platform , the benchmarks we use as

soft real-time workloads, each component of our control framework including Global EDF

scheduler, sensor and actuator, the metrics we use to evaluate performance of controller

and the power model used to account for power consumption.

3.2.1 Benchmarks

We report our experiment results for two benchmarks, x264 video encoder and body-

track. Both the benchmarks are taken from PARSEC benchmark suite. The Princeton

Application Repository for Shared-Memory Computers (PARSEC) [12] [11] is a bench-

mark suite created to encompass representative modern workloads for the emerging class

of multicore computing systems. It is composed of 10 application and 3 kernel programs

selected from different domains including multimedia, data mining, and computer games.
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We provide a brief description of the x264 video encoder and bodytrack, identify their ap-

plication parameters for dynamical tuning, and quantify how application parameters affect

application accuracy.

3.2.1.1 x264 Encoder

The x264 application is an H.264/AVC (Advanced Video Coding) video encoder [1].

It follows the ITU-T H.264 standard, which is now part of ISO/IEC MPEG-4. H.264

improve encoding quality with several new features such as increased sample bit depth

precision, higher-resolution color information, variable block-size motion compensation

(VBSMC) or context-adaptive binary arithmetic coding (CABAC). The flexibility of H.264

make it suitable for a wide range of contexts with different requirements. For example,

next-generation HD DVD or Blu-ray video players already adopt H.264/AVC encoding as

part of their standard.

Before introducing the H.264 video encoder, we describe key terminology important in

video encoding:

• Block: A block holds the data of one color channel and is of size 8 by 8 pixel.

• Macroblock: A macroblock contains 16 by 16 pixels and consists of four blocks.

• Slice: A slice holds a number of macroblocks.

• Frame: A frame consists of slices.

The general process of encoding a video frame is shown in figure 3.2. To encode a

video frame, each frame is divided into small blocks of pixel size 8 by 8. Each block is

then transformed using the Discrete Cosine Transform (DCT). Finally the DCT coefficients

are quantized, and encoded with a variable run length coding.

There is considerable redundancy in a typical video which is usually recorded at 25

frames per second. To exploit this redundancy for better encoding efficiency, motion esti-

mation [36] is adopted. For each macroblock of a frame to be encoded, motion estimation

searches similar macroblocks in one or two temporally neighbored reference frames. If

such a macroblock is found, only the difference between the macroblocks needs to be en-
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Figure 3.2: General flow of encoding a video frame

coded. Based on the frame dependency during encoding, video frames can be divided into

three class:

• I-frames (Intra Coding): These frames are independent of other frames. They contain

the entire image information and do not use any reference frames.

• P-frames (Predictive Coding): These frames contain only the changed part of an

image from previous I- or P-frame. The macroblocks of this type of frame can be

encoded using a previous I-frame or P-frame as a reference frame for motion estima-

tion.

• B-frames (Bidirectional Coding): The macroblocks of these frame type can use a

previous and a following I-frame or P-frame as reference frames for motion estima-

tion. B-frames cannot be used as a reference frame and can be compressed much

more than other frame types.

In this dissertation, each video encoding task is mapped to a single thread and is inde-

pendent of other encoding tasks. The encoder grabs video frames periodically at 25 fps and

encodes based on the MP4 video format specification. The video frame resolution level

ranges from 1
4

HD (230,400 Pixels per image) to full HD (921,600 Pixels per image) and

and is chosen as the application quality tuning knob determining the visual quality. Fig

3.3 shows a snapshot image of the encoded video in full HD and 1
4

HD. It is assumed that

visual quality is linear with number of pixels per image.

3.2.1.2 bodytrack

The bodytrack computer vision application is an Intel RMS workload which tracks a
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Figure 3.3: Snapshots of encoded video entitled ”Hubble: 20 Years of Discovery” in full

HD and 1
4

HD resolution
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humans movement through an image sequence with multiple cameras [7] [31]. An annealed

particle filter is used to track the movement of a human through the scene. The graphic

output of bodytrack generates conic cylinders to represent 10 body components including

torso, head and limbs as shown in Fig 3.4. bodytrack is widely used in areas such as video

surveillance, and character animation.

Figure 3.4: Output of bodytrack on the third image in PARSEC’s inputs

The number of annealing layers ranging from 1- 5, and the number of particles ranging

from 100 - 4000, are chosen as the application quality tuning knobs. As a measure of visual

quality, the relative mean square error in the magnitude of the position vectors of the body

parts for different values of the tuning knobs is used [45].

In this dissertation, we assume that each bodytrack task executes at 20 fps. Due to non-

linearity between visual quality and values of tuning knob, we have to manually choose

combinations of application quality tuning knobs as discrete steps for run time manipula-

tion. For all the chosen combinations of application quality tuning knobs, the relative mean
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square error is less than 56%. To set visual quality between two steps, actuator use a Pulse

Width Modulator (PWM) which will be described in Section 3.2.3.2.

3.2.2 Implementation of G-EDF Scheduling Algorithm

Since all tasks are identical in the case of homogeneous workloads, we use G-EDF

algorithm for task scheduling. LITMUSRT project [23] [15] implements several different

real-time scheduling plugins including G-EDF on top of original Linux kernel and we use

their implementation as a component of our control framework. In this subsection we

introduce how G-EDF scheduling algorithm is implemented in LITMUSRT

As shown in Fig 3.5, G-EDF usees a single unified task scheduler, ready queue and

release queue to handle all tasks. At any instant, the task scheduler picks at most M jobs

with the earliest deadlines to execute on M processors. There is no restriction imposed on

where a task can execute. Ready queue and release queue are mechanisms which store and

order ready jobs and jobs for future time-based releases. When a job is released, it must

be transferred from release queue to ready queue and the task scheduler will be triggered

to check if a preemption will happen. A ready or release queue is a priority queue which

can be implemented with different data structures such linked list, heap or tree. To reduce

worst case overhead when multiple jobs release at the same time, LITMUSRT uses a

binomial heap [16] to implement the ready and the release queue. Compared with other

data structures, the benefit of binomial heap is that it can add multiple elements efficiently.

So when k jobs are released at the same time, it only takes O(logn) time units (n is number

of tasks in ready queue) for a ready queue implemented in binomial heap to insert them.

Fig 3.6 shows the relationship between core functions of G-EDF scheduling algorithm.

According to Fig 3.6, scheduling process can be triggered in three scenarios. The first

scenario is when one job finishes its execution. Then a kernel function job completion

will be called, which removes the task from the processor core by calling function unlink,

puts it back to the release queue by calling function requeue and checks preemption by

calling function check for preemption. During each preemption, At most M jobs with
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Figure 3.5: Schematic representation of G-EDF algorithm

lower priorities will be put back to the release queue and replaced with M jobs with the

highest priorities in the ready queue. In the second case, local timer interrupt handler will

check if any job needs to be released based on their periods. If so, they will be moved

from release queue to ready queue by calling function EDF task wakeup and followed

with another preemption checking. The third case is when new tasks arrive, which triggers

function EDF task new to take care of requeue and preemption.

3.2.3 Actuator

3.2.3.1 Overview

In our control framework, actuators are used to update the processor operational fre-

quency and the application quality tuning knob values. Prior to applying the manipulated

variables to the hardware and the application stack, the actuators filter these through a

modulator to allow for fine-grained control. We use a first order delta-sigma modulator

for the frequency actuator and a pulse width modulator for the application tuning knob

actuator. Compared to the pulse width modulator, the first order delta-sigma modulator
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Figure 3.6: Relationship between core functions of G-EDF scheduling algorithm

provides higher accuracy but incurs larger overhead due to oversampling. Hence first order

delta-sigma modulators are more suitable for frequency actuators due to the small transi-

tion latency for DVFS (10 µs). However, the latency associated with the application tuning

knobs may be up to 500 µs, precluding the use of oversampled techniques.

Δ Σ quantizer

-

+
Desired 

frequency

Quantized Discrete 

DVFS level
Error

q

Figure 3.7: Block diagram of first order delta-sigma modulator consisting of a difference

stage, an discrete time integrator and a quantizer

3.2.3.2 Modulator

First order delta-sigma modulator: First order delta-sigma modulator approximates a

desired value by oversampling it into a series of predefined discrete values at a certain
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OverSampling Ratio (OSR) [27]. For example, to approximate 2.86 GHz during a control

period, the modulator would output the sequence, 2.67, 3, 3, 2.67, 3, at a OSR = 5. As

shown in Fig 3.7, the first order delta-sigma modulator employs a feedback loop to calculate

the error between the instantaneous input and previous quantized output (hence denoted as

delta) [53]. This error is then accumulated by a discrete-time integrator (denoted as sigma).

The sum of errors is finally quantized to produce an oversampled output. Since delta-sigma

modulators can sharply differentiate input signal and quantized output, it is widely used in

high resolution data conversion system. We follow this strategy to implement our first order

delta-sigma modulator. Note that oversampled output frequency fo is quantized based on

the inequality below:

fo =















fL, if
∑

error > fH−fL
2

fH , if
∑

error ≤ fH−fL
2

(3.1)

Here fL and fH are two neighbor discrete frequency values which the desired frequency

value falls in between.

Pulse Width Modulator (PWM): Pulse width modulator is a simple method to approx-

imates a desired value by modulating duty cycle in each control period [100]. Compared

with first order delta-sigma modulator, it doesn’t require feedback and only switch its out-

put once during a control period. Suppose that q, is the desired application quality level

and qH and qL are two neighbor application quality level near it. The duty cycle D equals

to:

D =
qH − q

qH − qL
(3.2)

If n jobs are executed with in one control period and application quality may be changed at

beginning of each job, after n1 jobs application quality should be switched to qL

n1 = ⌈D ∗ n⌉ (3.3)
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3.2.3.3 Frequency Actuator

Frequency actuator utilizes a Linux kernel subsystem called cpufreq to dynamically

scale value of operational frequency oversampled by the first order delta-sigma modulator.

Cpufreq [79] is a kernel module which has been incorporated to Linux kernel since

the kernel version 2.6.0. Most mainstream CPU manufacturers support dynamic frequency

scaling, such as Intel Enhanced SpeedStep and AMD PowerNow. However, each manufac-

turer has their unique way of implementation dealing with underlying APCI interfaces in

achieving frequency scaling. Cpufreq serves as an uniform software interface which pro-

vides functionality of dynamic frequency scaling to users no matter which manufacturer′s

technique is actually used.

performance powersaving Usersapce ondemand

Cpufreq module 

Speedstep-centrino Powernow-k8

ACPI Driver

In-kernel 

governor

CPU-specific 

driver

Figure 3.8: Software architecture of cpufreq

As shown in Fig 3.8, cpufreq consists of three parts: CPU specific drivers , cpufreq

module and in-kernel governors. CPU specific drivers incorporate CPU driver code subject

to different implementation techniques such as Intel Enhanced SpeedStep and AMD Pow-

erNow. Cpufreq module extracts and encapsulates upper governor policy from underlying

implementation techniques. In-kernel governors are used to implement different frequency

scaling policies. Governors available in the current Linux kernel are listed below:

• cpufreq performance: Runs the CPU at maximum clock speed.
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• cpufreq ondemand: Dynamically switches between the CPU available clock speeds

based on system load.

• cpufreq powersave: Runs the CPU at minimum speed.

• cpufreq userspace: Users can select desired frequency.

We choose cpufreq userspace as the governor so as to set CPU frequencies according to

output of the MPC controller. To set a new frequency value at run time, write it into the

system file /sys/devices/system/cpu[i]/cpufreq/scaling setspeed, where [i] is the core index.

Read control 

ouputs from 

MPC controller

Oversampling 

using proper 

modulators

Update frequency 

using cpufreq

Update application 

parameters with 

FMLP read write lock

EndStart

Figure 3.9: Flow chart of actuator

3.2.3.4 Application Tuning Knob Actuator

Application tuning knob actuator updates application quality calculated by the MPC

controller through global variables protected by a FMLP read-write lock introduced in

2.2.5. The read-write lock is used because it is very likely that there will be more reader

processes (task process) than writer process (controller process) under our control frame-

work. FMLP is used to prevent deadlock and priority inversion in multiprocessor systems.

For each control period, application tuning knob actuator uses a pulse width modulator to

approximate the desired application quality.

3.2.3.5 Flow Chart

Fig 3.9 shows the flow chart of the actuator. For each control period, the actuator

will read the desired frequency and application quality from the MPC controller, generate

frequency and application tuning knob level using the modulator, and writes these to the

hardware and the application stack.
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3.2.4 Sensor

For every control period, the MPC controller reads system utilization from a sensor.

To calculates system utilization, the sensor reads average per-core execution time over one

control period by calling a specially designed system call, and divides it by the control

period. Before explaining how to implement the sensor, we first introduce implementation

of a system call in Linux and Time management in Linux.

3.2.4.1 Implementation of Linux System Call

Due to considerations of security and stability, functions in user space cannot invoke

kernel functions directly because they exist in different memory space. Instead, system

call serves as a communication layer between kernel and user-space application. In order

to access functions in kernel space, invocation of system call will signal the kernel that

the system needs to be switched to kernel mode. The mechanism to signal the kernel is

software interrupt which incurs an exception. Then system executes the exception handler,

which triggers the execution of exception vector and a switch to kernel mode. In X86

architecture, this exception handler is called system call( ) and implemented in assembly

in entry 64.S.

To add a new system call to the Linux kernel, a system call number needs to be allocated

to the newly added system call, followed by the definition of a system call kernel function

with an API function to wrap the kernel function.

A system call number is an unique number that is used to reference a specific system

call. A system call number can be assigned to a system call by adding two lines of code

similar to the one below in file < asm/unistd.h >.

#define NR sensor 200

SYSCALL( NR sensor, sys sensor)

Here we define the system call number of system call sensor (long * utilizaiton) to be 200.
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utilizaiton is a pointer pointing to a long integer with same name to store overall utilization

over one control period. The system call number cannot be changed once it is assigned and

it cannot be recycled even if the system call is removed.

A system call kernel function can be defined with zero or more arguments and return

a long integer signifying success or error. A negative return value denotes an error and a

return value of zero represents success. We define our system call system call sensor (long

*utilization) in the form below:

asmlinkage long sys sensor (long *utilization)

Here the asmlinkage modifier is a directive which tells the compiler to seek function’s argu-

ment only on the stack. Another point to note is that system call sensor (long *utilization)

is defined as sys sensor (long * utilization) in the kernel, which is a naming convention

followed by all the system call in Linux.

Usually, applications access APIs implemented in user-space instead of accessing sys-

tem calls directly. This greatly enhances portability of application since the same API can

exist on multiple systems and provide the same interface to applications while the imple-

mentation of the API itself can differ from system to system. One of most commonly used

API is POSIX standard [73]. To add an API function for our system call sensor (long *

utilization), we use the codes shown below:

long sensor (long *utilization)

{return syscall( NR sensor, utilization);}

3.2.4.2 Time Management in Linux

The Linux kernel has to the system hardware called system timer to keep track of time.

The system timer is actuated periodically by an electronic time source, such as a digital

clock or the frequency of the processor. This time period is called tick and its reciprocal
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is called tick rate which represents how many ticks pass during one second. Whenever the

system timer goes off, it issues an interrupt which signals the kernel to respond via execut-

ing an interrupt handler service. The kernel only needs to know the number of ticks and

the corresponding tick rate to calculate the time interval between any two timer interrupts.

Several different system timers are available in the X86 architecture including Pro-

grammable Interrupt Timer (PIT), local APIC timer, and Time Stamp Counter timer (TSC)

[28]. TSC is the most commonly-used system timer among them, present on all X86 pro-

cessors since the Pentium. The benefit of TSC lies in that it can acquire system time in-

formation in high resolution(nanosecond units) with very low overhead. Thus in our work

TSC is used to keep track of execution time of each job. To do this, a long integer vari-

able exec time is defined in job parameters structure which is updated by referring to TSC

whenever the job is released, preempted, and finished. We then read the aggregation of

all the jobs execution time by calling a specially designed system call at the end of each

control period.
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Figure 3.10: Flow chart of sensor

3.2.4.3 Flow Chart

Fig 3.10 shows the flow chart of the sensor implementation. When the system call

sensor (long *utilization) is triggered, it first derives the execution time of all the jobs over

one control period by accumulating completed job execution times on all the cores. Then

overall utilization is then calculated by dividing the execution time by the control period

in nanoseconds. Finally, the overall utilization is copied back to user space using kernel

function copy to user.

3.2.5 Performance Metrics of the Controller

Several metrics are used throughout this dissertation to quantitatively evaluate our con-
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troller design. These standard performance metrics are usually defined in terms of the step

response of a system as shown in Fig 3.11.

• Rise time Tr: Rise time is used to measure the swiftness of the response and is defined

as the time taken by a signal to change from 10% and 90% of the step height.

• percent overhoot: The percent overshoot is defined as

P.O. =
MPt − fv

fv
× 100% (3.4)

Where MPt is the peak value of the time response, and fv is the final value of the

response.

• settling time Ts: The settling time is defined as the time required for the system to

settle within a certain percentage δ of the set-point amplitude. In our measurement,

δ is set to 5 percent.

• steady state error: The difference between final value and set-point.
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Figure 3.11: Performance metrics of a control system

3.2.6 Power Model

Our experimental machine contains two quadcore Intel Xeon X5365 processor sharing
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a 16 GB main memory. As shown in equation 3.5, the total power consumption of each

processor consists of its dynamic power pdynamic and its static power pstatic.

Ptotal = pdynamic + pstatic (3.5)

Pdynamic can be expressed in terms of the operating voltage Vdd, the operational frequency

f , and the switching capacity cl as follows:

Pdynamic = cl.V
2
dd.f (3.6)

Pstatic is caused by leakage current [88], which flows even while no instructions are being

executed. Expression of Pstatic is shown in equation 3.7, where Ileak is leakage current.

Pstatic = Ileak.Vdd (3.7)

As we are interested in profiling the power consumption during the control phase, an

analytical model is needed to account for power components of both pdynamic and pstatic.

It should be noted that pdynamic can be modeled as proportional to the cube of operational

frequency f since voltage can be approximated as linear of frequency [67]. Based on this

assumption, Fu et al. [40] proposed a power consumption model considering both dynamic

power and static power for Intel Xeon X5365 quad-core processor as shown below:

Ptotal = 95× f 3
r + 25 (3.8)

Notice that here fr is relative frequency which is normalized to the highest processor fre-

quency of 3 GHz. DVFS technology allows users to switch from several discrete power

states of processor during run-time by change the operational frequency f . Intel Xeon

X5365 processor has 4 different power states with frequency at 2 GHz, 2.33 GHz, 2.66
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Table 3.1: Power consumption of Intel Xeon X5365 processor under different operational

frequencies

frequency f (GHz) power consumption (watt)

2 53

2.33 69

2.67 91

3 120

GHz and 3 GHz. The corresponding power dissipation of states are calculated using equa-

tion 3.8 and are in Table 3.1.

3.3 Experimental Results

In this section, we derive system models by carrying out system identification and ana-

lyze their stability. We then use the models to create MPC controller, design the controller

by optimizing its parameters, test the controller’s step response and evaluate controllers’

capability in power saving and measure the associated overhead.

3.3.1 Experimental Setup

We experimentally demonstrate the operation of our cross-stack predictive control frame-

work for homogeneous soft real-time workload on a dual socket quad-core Intel Clovertown

server. This server is equipped with Intel Xeon processor X5365 with 8MB on-die L2 cache

1.333 GHz FSB and a 16GB main memory. The processor supports four DVFS level: 3.0

GHz, 2.67 GHz, 2.33 GHz and 2.0 GHz. The operating system is Linux 2.6.36 kernel

patched with Litmus-RT. The soft real-time workloads considered in this section are soft

real-time applications from video processing and machine vision. Each soft real-time task

is mapped to a single thread and is independent of other tasks. In our work, x264 encoder

grabs video frames periodically at 25 fps and bodytrack processes a new frame at 20 fps

3.3.2 System Identification

We carried out system identification using n4sid algorithm from MATLAB system

identification Toolbox. For each application, we obtain the utilization for randomly gener-

ated combination of inputs for 400 periods. We use the first half of working data for data
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modeling and the other half of data for validation. We apply n4sid system identification

algorithm to generate state space models given in Equation 2.1 with order of one for both

x264 and bodytrack. For our model, Nx = 1, Nu = 2(frequency and application quality),

Nv = 1 (number of tasks), Nd = 1 (job level variations in the execution time), and No = 1

(system utilization). Fig 3.12 shows the plot of model validation where the measured data

superposed over the predicted data. Validation results show the model fit is 84.8% for x264

and 87.4% for bodytrack. Table 3.2 shows the values of the coefficient matrices A, B, and

C.
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Figure 3.12: Model validation for (a) x264 and (b) bodytrack. The model fit is 84.8% for

x264 and 87.4% for bodytrack.

3.3.3 Stability Analysis

System stability is directly related to the location of closed loop poles. In a discrete

system of unconstrained MPC controller, if all poles are located inside the unit circle in

the complex space, the controller system is stable. As shown in Fig 3.13, Both x264 and

bodytrack have three closed loop poles of the unconstrained MPC controller lying within

unit circle, indicating good stability.

3.3.4 Controller Design

In order to achieve good performance, the Model Predictive Controller is designed

using the MATLAB MPC Toolbox to optimize controller parameters. Common tunable

parameters of the MPC controller include control horizon, prediction horizon, input and
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Table 3.2: A,B,C COEFFICIENT MATRICES of x264 and bodytrack

x264 bodytrack

A 0.0441 0.199

B
[

−0.133 0.24 0.074 −0.014
] [

−0.12 0.23 0.041 74e− 5
]

C 0.65 0.84

-1 -0.5 0 0.5 1
-1
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0

0.5

1
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Figure 3.13: A stable unconstrained MPC controller is indicated by poles (blue plus sign)

within the unit circle for (a) x264 and (b) bodytrack.

output weights, blocking mode and disturbance model. We tune these parameters based on

performances of controller’s step response in terms of the metrics introduced in Subsection

3.2.5. Only one parameter is optimized at a time with other parameters at their default

settings shown in Table 3.3. We take x264 as example to show this work flow.

Table 3.3: Default settings for parameters of MPC controller

control horizon 2

prediction horizon 10

input weight 0,0

output weight 1

blocking mode non-blocking

disturbance model 1
s

Control horizon: As shown in Table 3.4 and Table 3.5, by varying control horizon from

2 to 10 with an increment of 2, we check controller’s responses to step change in the number

of tasks and step changes of the set-point. We observe that the control horizon has minimal

effect on the controller performance.
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Table 3.4: Step response to changes on number of task from 8 to 12 for x264 under different

control horizons. Set-point is set as 4.

control

horizon

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

2 0.83 3.54 8.4 0

4 0.83 3.54 8.4 0

6 0.83 3.54 8.4 0

8 0.83 3.54 8.4 0

10 0.83 3.54 8.4 0

Table 3.5: Step response to changes of set-point from 4 to 4.8 with number of task at 10 for

x264 under different control horizons. number of task is set as 10.

control

horizon

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

2 1.48 3.51 0 0

4 1.49 3.6 0 0

6 1.49 3.6 0 0

8 1.49 3.6 0 0

10 1.49 3.6 0 0

Prediction horizon: We then check the impact of prediction horizon on the performance

of the controller as shown in Table 3.6 and Table 3.7. Similar to the control horizon, the

prediction horizon has minimal effect on the controller performance.

Table 3.6: Step response to changes in the number of tasks from 8 to 12 for x264 under

different prediction horizons. Set-point is set as 4.

prediction

horizon

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

5 0.83 3.52 8.4 0

10 0.84 3.52 8.4 0

15 0.84 3.51 8.4 0

20 0.84 3.51 8.4 0

25 0.84 3.51 8.4 0

Blocking: By default the controller optimizes the first Nc moves of the prediction hori-

zon, after which the manipulated variable remains constant for rest of the prediction horizon

as shown in Fig 2.11. Alternatively, Nc planned moves can be distributed evenly along the

prediction horizon. The time slice during which the manipulated variables are kept constant
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Table 3.7: Step response to change of set-point from 4 to 4.8 for x264 under different

prediction horizons. Number of tasks is set as 10.

prediction

horizon

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

5 1.48 3.54 0 0

10 1.48 3.51 0 0

15 1.47 3.50 0 0

20 1.47 3.50 0 0

25 1.47 3.50 0 0

is called a block. As shown in Table 3.8 and Table 3.9, by varying block length, we check

the impact of blocking on the controller’s step responses. It can be observed that increas-

ing the block length significantly improves the performance of controller. The overshoot

reduces up to 71 percent compared with non-blocking mode. We set blocking length as 5.

Table 3.8: Step response to changes on number of task from 8 to 12 for x264 under different

blocking length. Set-point is set as 4.

blocking

length

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

1 0.88 3.54 8.4 0

2 0.83 2.96 5.4 0

3 0.61 2.89 3.8 0

4 0.60 2.85 2.9 0

5 0.60 2.82 2.4 0

Table 3.9: Step response to changes of set-point from 4 to 4.8 for x264 under different

blocking lengths. Number of tasks is set as 10.

blocking

length

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

1 1.49 3.58 0 0

2 1.19 2.97 0 0

3 0.99 2.91 0 0

4 0.91 2.90 0 0

5 0.85 2.87 0 0

Input and output weights: The output weights let you dictate the accuracy with which

each output must track its set-point. Specifically, the controller predicts deviations for each
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output over the prediction horizon. It multiplies each deviation by the output’s weight

value, and then computes the weighted sum of squared deviations, Sy(k), as follows,

Sy(k) =

P
∑

i=1

ny
∑

j=1

{wy
j [rj(k + i)− yj(k + i)]}2 (3.9)

Where k is the current sampling interval, k + i is a future sampling interval (within the

prediction horizon), P is the number of control intervals in the prediction horizon, wy
j is

the output weight, and the term rj(k + i) − yj(k + i) is a predicted deviation for output j

at interval k + 1.

If a particular weight is large, deviations for that output dominate Sy(k). One of the

controller’s objectives is to minimize Sy(k). Thus, a large weight on a particular out-

put causes the controller to minimize deviations in that output (relative to outputs having

smaller weights).

The controller also minimizes the weighted sum of manipulated variable deviations

from their nominal values, computed according to,

Su(k) =

M
∑

i=1

nmv
∑

j=1

{wu
j [uj(k + i)− ūj(k + i)]}2 (3.10)

Where wu
j is the input weight and ūj(k+ i) is the nominal value for input j. Since tracking

manipulated variable to their nominal values is not require for our control problem, input

weights use their default value 0.

We compare the performance of controller under different settings of output weights.

Table 3.10 and Table 3.11 show that controller with default setting of input and output

weight yields the best performance, which means the input weight and output weight should

stick to 0 and 1 respectively.

Disturbance model: The disturbance model is obtained by low-pass filtering a Gaus-

sian white noise. An aspect of controller design to determine the filter’s cut-off angular
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Table 3.10: Step response to changes in number of task from 8 to 12 for x264 for different

input and output weights. Set-point is set as 4.

input

weights

output

weight

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

0,0 1 0.83 3.54 8.4 0

0,0 0.8 0.82 2.58 14.7 0.4

0,0 0.6 0.81 2.48 20.0 0.6

0,0 0.4 0.81 2.45 22.8 0.7

0,0 0.2 0.79 2.40 25.4 0.9

Table 3.11: Step response to changes of set-point from 4 to 4.8 for x264 for different input

and output weights. Number of tasks is set as 10.

input

weights

output

weight

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

0,0 1 1.48 3.51 0 0

0,0 0.8 1.23 2.98 0 0.6

0,0 0.6 0.88 2.96 0 0.7

0,0 0.4 0.87 2.93 0 0.9

0,0 0.2 0.85 2.87 0 1.0

frequency. We select an appropriate cut-off angular frequency based on simulation. Re-

sults in Table 3.12 and Table 3.13 shows that cut-off angular frequency minimally effects

the rise time, settling time and overshoot. However a cut-off angular frequency less than

1 rad/s will generate steady state error. Therefore, the cut-off angular frequency is set to 1

rad/s to avoid steady state error. The disturbance model thus is 1
1+s

.

Table 3.12: Step response to changes in the number of task from 8 to 12 for x264 for

different bandwidths of the disturbance model. Set-point is set as 4.

cut-off

angular

frequency

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

0 0.87 3.59 8.2 -0.2

1 0.85 3.63 8.21 0

10 0.85 3.58 8.15 0

100 0.86 3.59 8.23 0

1000 0.86 3.60 8.19 0

We follow a similar procedure to identify controller parameters for bodytrack. The
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Table 3.13: Step response to changes in set-point from 4 to 4.8 for x264 for different

bandwidths of the disturbance model. Number of tasks is set as 10.

cut-off

angular

frequency

rise time

(sec)

settling

time (sec)

overshoot

(percent)

steady state

error

0 1.46 2.58 0 -0.2

1 1.51 2.62 0 0

10 1.50 2.63 0 0

100 1.47 2.57 0 0

1000 1.49 2.60 0 0

Table 3.14: Optimized parameter settings of the MPC controller

x264 bodytrack

control horizon 2 4

prediction horizon 10 12

input weight 0, 0 0, 0

output weight 1 1

blocking 5 3

disturbance model 1
s+1

1
s+10

optimized controller parameters for both x264 and bodytrack are shown in Table 3.14.

To evaluate the effect of the above controller optimization we compare the performance

of the controller under default parameters setting to the optimized parameters. In Fig 3.14,

we compare the controller’s step response to changes in the number of tasks for x264 un-

der default and optimized parameter settings. Fig 3.14a shows the system response to a

50% step change that number of task changes from 8 to 12. The system utilization under

optimized setting is able to track the set-point whereas under the default setting, a steady

state error of 5.5 percent to the set-point is present. Compared with the default setting, the

optimized setting shows quicker response with 30% less rise time, 22% less settling time

and 68% less overshoot. Fig 3.14b and 3.14c show that in order to track set-point, the con-

troller adapts the manipulated variable by increasing the frequency and decreasing video

frame resolution.

Fig 3.15 compares the controller’s step response to changes in the set-point for x264

under default and optimized parameter settings. Fig 3.15a shows that although there are
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Figure 3.14: Comparison of simulated model predictive control system step response for

x264 under default and optimized setting. At t = 15s, the number of tasks changes from 8

to 12
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Figure 3.15: Comparison of simulated model predictive control system step response for

x264 under default and optimized setting. At t = 15s, the set-point changes from 4 to 4.8
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Figure 3.16: Comparison of simulated model predictive control system step response for

bodytrack under default and optimized settings. At t = 15s, the number of tasks changes

from 5 to 9.
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Figure 3.17: Comparison of simulated model predictive control system step response for

bodytrack under default and optimized setting. At t = 15s, the set-point changes from 4 to

4.8.
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no overshoots in both cases, the controller under the optimized setting is able to track the

set-point while the one under default setting, settles with a steady state error of 5.7 percent

to the set-point. Fig 3.15b and 3.15c show that in order to track the set-point, the controller

adapts the manipulated variable by decreasing the frequency and increasing video frame

resolution. Comparisons of bodytrack under default and optimized parameter settings are

shown in Fig 3.16 and Fig 3.17, where the controller under optimized parameter setting

also outperforms the default parameter setting for rise time, settling time, overshoot, and

steady state error.

3.3.5 Need for Control

We demonstrate the need for the controller by measuring the average frame rate both

with and without feedback control, as the workload is varied from light to heavy. A G-

EDF scheduler is used to schedule all the tasks. As seen from Fig 3.18, in the absence of

the controller, the frame rate drops beyond 8 tasks for both x264 and bodytrack. For our

8 core system, the lowered frame rate indicates that the system is in overload. However,

unlike the non-control case, the feedback controller is able to maintain a constant frame rate

by automatically adjusting the processor frequency and the application quality. Fig 3.18

also shows the advantage of a cross-stack approach to feedback control as compared to

deriving the control variables from a single layer of the computing stack. For both x264

and bodytrack using DVFS-only or application quality-only as the control variable, results

in a sharper drop in the frame rate with a heavier task load as compared to the cross-layer

control.

3.3.6 Step Response

In this subsection, with the optimized controller parameters shown in Table 3.14, we

experimentally evaluate performance of the controller’s response to an input step change in

the number of tasks and an output step change of the set-point.

We define the power-efficient operating point as where all the cores run at the minimum

frequency and all the tasks run at the maximum visual quality. Similarly, we define the



67

2 4 6 8 10 12 14
15

20

25

30

number of tasks

fr
am

e 
ra

te
 (

F
P

S
)

 

 
 no control
 DVFS only
app quality only
cross stack

(a) x264

2 4 6 8 10
10

15

20

25

number of tasks

fr
am

e 
ra

te
 (

F
P

S
)

 

 
 no control
 DVFS only
app quality only
cross stack

(b) bodytrack

Figure 3.18: Average FPS versus number of tasks - under no control, MPC control with

DVFS-only, MPC control with application quality-only, and cross-layer MPC control

power-maximum operating points as where all the cores run at the maximum frequency and

all the tasks run at the minimum application quality. As discussed in Subsection 2.2.4.2, for

m cores, soft-real time tasks deadlines can be met with bounded tardiness at a utilization

of m. Four our m = 8 system, we set the task utilization set-point to 4. The choice

of this utilization set-point of 4 ensures that enough processor capacity is available for

non-real time background tasks. At this utilization point, we experimentally determine

power-efficient and power-maximum operating points for x264 for 8 and 12 tasks. Due

to the heavier workload per task, power-efficient and power-maximum operating points for

bodytrack in terms of task numbers is 5 and 9 respectively. When evaluating the controller’s

response to a step change of set-point, we fix the task number as the average of power-

efficient and power-maximum operating points, which are 10 for x264 and 7 for bodytrack.

Fig 3.19 shows the controller’s step response to a change in the number of tasks from

8 to 12 for x264. From Fig 3.19a we note that the controller settles to within 10% of

the utilization set-point in 4.3 seconds and the input step change cause a peak overshoot

of 11.2%. In Fig 3.19b and 3.19c, as expected, the controller responds to a higher load

by increasing the frequency while decreasing the video frame resolution. The jitter seen

in Fig 3.19band 3.19c represents unmodeled disturbances (noise) resulting from motion

estimation in x264. Despite the noise, the controller is able to maintain the set-point within
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Figure 3.19: Experimental evaluation of model predictive control system step response for

x264. At t = 50s, the number of tasks changes from 8 to 12.

10%.

Fig 3.20 shows the controller’s step response to changes in set-point from 4 to 4.8 for

x264. From Fig 3.20a, we see that the controller is able to follow this set-point change

with a peak overshoot of 7.2 % and settling time of 2.1 seconds. Fig 3.20b and 3.20c

shows that in order to maintain the new set-point the controller decreases the frequency

while increasing the video frame resolution. The controller is able to maintain the set-point

within 10%.

Fig 3.21 shows the controller’s step response to changes in the number of tasks from 5

to 9 for bodytrack. By adapting operational frequency and visual quality, the controller for

bodytrack is able to maintain this set-point within 5% with a peak overshoot of 29.7% and
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Figure 3.20: Experimental evaluation of model predictive control system step response for

x264. At t = 50s, the set-point changes from 4 to 4.8.
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Figure 3.21: Experimental evaluation of model predictive control system step response for

bodytrack. At t = 50s, the number of tasks changes from 5 to 9.
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Figure 3.22: Experimental evaluation of model predictive control system step response for

bodytrack. At t = 50s, the set-point changes from 4 to 4.8.
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a settling time of 4.7 seconds. Fig 3.22 shows the controller’s step responses to changes

in set-point from 4 to 4.8 for bodytrack. The controller for bodytrack is able to follow the

set-point change within 6.4% with a peak overshoot of 14.5% and a settling time of 1.8

seconds.

Compared with x264, bodytrack shows a much smaller jitter in the system output. This

smaller jitter value indicates that the workload per frame for bodytrack has less variation

compared to x264.

3.3.7 Power Saving

To evaluate the power savings obtained by our cross-stack control approach, we com-

pare the average power consumption of the controller to a baseline implementation with

the cores running at maximum frequency and the tasks operating at maximum visual qual-

ity. The power savings are evaluated based on the power model described in Subsection

3.2.6. For a pseudo-random number of homogeneous input tasks, our model predictive

control approach shows an energy saving of 31% compared to the baseline implementation

for x264 and an energy saving of 26% for bodytrack . The energy saving is obtained at an

average video frame resolution of 70% for x264 and at an average visual quality of 65%

for bodytrack.

3.3.8 Controller Overhead

Three factors contribute to overhead of the controller, 1) computation cost of the MPC

controller, 2) overheads due to DVFS and 3) real-time synchronization cost in modify-

ing shared global variables in the application. Core computation of MPC controller is a

quadratic programming (QP) solver whose computation complexity is polynomial time in

the product of control outputs and prediction horizons. In one control period (1 second in

our experiments), the core frequency is changed 20 times by the sigma-delta modulator.

The overall DVFS overhead is accumulated through all the subintervals within a control

period. The synchronization occurs when the application quality tuning knobs are updated.

Fig 3.3.8 shows the different overhead components in milliseconds in one control period.
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As we can see, increasing the number of tasks has minimal effect of the computation cost

of the controller and the DVFS overhead. However, synchronization cost increases linearly

with number of tasks. The overall overhead is less than 0.4 percent of one control period

for both x264and bodytrack .
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3.4 Related Work

A large amount of prior work exists for run-time power management for unicore and

multicore processors. Most of these works utilize either DVFS [87, 82, 97, 81] and/or ap-

plication QoS [83, 3, 49, 2, 80, 89, 92, 56, 68, 74] to achieve energy efficiency. Since our

work targets a cross stack energy optimization at run-time for real time applications, here

we review pervious work on energy optimization for real time workloads. Aydin et. al.

[6] have used DVFS and formulated the power optimization as a non-linear optimization

problem with processor utilization and frequency as constraints for synthetic soft real time

workloads. Seo proposed an energy-efficient scheduling algorithm called dynamic repar-

tition for real-time tasks on a multi-core processor which dynamically balances dynamic

utilization of cores by migrating tasks among them [93]. The Illinois Grace project [107]

uses a hierarchical adaptation at all system layers including application (frame rate and

dithering for video decoding), soft real time scheduling (CPU time allocation) and CPU

(DVFS) for power optimization. The optimization problem involves maximizing quality

and minimizing power with energy, processor utilization, frequency and quality of service
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as constraints. Unlike these works in which the optimization step operates in open loop,

we use a close loop feedback controller. Cucinotta, et al [29] have proposed an adaptive

resource allocation mechanism organized in two feedback loops. The internal loop is re-

sponsible for updating execution budget for soft real-time multimedia task so that timing

constraints of the application are satisfied. The external loop operates on the QoS level

of the applications and on the power level of the resources in open loop to strike a good

trade-off between the global QoS and the energy consumption. Our work is fundamentally

different in that we use one closed loop model predictive controller to meet timing con-

straints while adapting power and QoS. Block et al. [13] proposed a PI controller to change

the processors share of tasks to meet real time constraints without any consideration of

power optimization. Fu et. al. [39] used a model predictive controller similar to what we

propose to optimize energy using process frequency and L2 cache size partitions as control

variables for a synthesized real time work load consisting of media processing benchmarks

running on a simulated quadcore processor. However, unlike our cross-stack approach their

controller has control variables exclusively from the hardware stack.

3.5 Conclusions

In this chapter, we designed a model predictive controller that tracks the overall task

utilization set-point with processor frequency and application quality as the control vari-

ables for soft real-time workloads such as x264 and bodytrack. we have experimentally

demonstrated that a cross-stack predictive control approach for homogeneous workloads is

able to handle of dynamically changing operating conditions such that real-time constraints

are satisfied. We demonstrated that the use of DVFS and application quality as control vari-

ables allows operation at a lower power operating point while meeting real-time constraints

as compared to non cross stack control approaches.



CHAPTER 4: HETEROGENEOUS CONTROL FRAMEWORK

4.1 Introduction

In this chapter, we extend our cross-stack predictive control framework for homoge-

neous real-time workloads presented in Chapter 3 to the scenario where multiple hetero-

geneous real-time tasks execute on the same server simultaneously. The ability to run

multiple dissimilar workloads on the same server enables workload consolidation. This

allows aggressive power saving by powering down idle servers and consolidating the load

on a smaller subset of servers.

To achieve our goal of building a cross-stack predictive control framework for het-

erogeneous real-time workloads, we proposed a cluster approach where different types of

workloads are partitioned into different clusters and each cluster has its own controller.

In this approach we utilize the cluster-EDF real-time scheduling algorithm to handle task

scheduling.

We applied the proposed heterogeneous control frameworks to a workload of mixed

x264 and bodytrack tasks. We first demonstrate the controllability of the control approaches

by evaluating its step responses. We present a comparison of performance and power con-

sumption under G-EDF and C-EDF scheduling algorithm by evaluating their the average

frame rate as the workload is varied from light to heavy. Finally, we evaluate the control

overheads for this approach.

The rest of the chapter is organized as follows in Section 4.2 we describe our cross-

stack predictive control framework for heterogeneous real-time workloads in detail. We

present the the evaluation results in Section 4.3. We review related work on heterogeneous

control framework in Section 4.4 and we conclude the chapter in Section 4.5.
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Figure 4.1: Schematic representation of cross-stack control framework for heterogeneous

real-time workloads in cluster control approach

4.2 Framework

In this chapter, as mentioned in the introduction, we propose the cluster control ap-

proaches to handle heterogeneous soft real-time workloads.

Fig 4.1 schematically shows our cross-stack control framework for heterogeneous real-

time workloads in the cluster control. This control approach is based on the cluster-EDF

scheduling algorithm.In Cluster-EDF, all cores that share a specific cache level (L2 or L3)

are defined to be a cluster (size of cluster in the same level are identical for symmetric

multiprocessor); tasks are allowed to migrate within a cluster, but not across clusters; tasks

assigned to a cluster are scheduled globally within the cluster under EDF algorithm. Ob-

viously, one important benefit of clustering comes from lower overhead costs due to pro-

hibition of task migration among same level of caches. Based on feature of cluster-EDF

scheduling algorithm, we make the following assumptions for our controlled system in

cluster control approach: only one type of application is assigned to one cluster; each clus-

ter is equipped with its own cluster-EDF scheduler; cores in the same cluster share same

operational frequency, frequency of cores from different clusters can be different. Separate
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cross-stack controllers need to be designed for each task which are capable of tracking the

individual task utilization by independently controlling the cluster frequency and the per-

task quality. Note that since tasks from the same type of application may occupy several

clusters, it is possible that one controller is shared by different clusters. In each control

period, the controller for each cluster reads per cluster utilization with sensor associated

with that cluster, calculates cluster frequencies and the per-task quality, and inputs these

back to the actuators associated with that cluster.

4.3 Experimental Results

In this section, we demonstrate controllability of the cluster control approach by evalu-

ating its step responses. We compare performance and power consumption between G-EDF

and C-EDF by evaluating their the average frame rate as the workload is varied from light

to heavy. Finally we evaluate the control overheads for this approach.

4.3.1 Experimental Setup

We experimentally demonstrate the operation of our cross-stack predictive control frame-

work for heterogeneous soft real-time workload on the dual socket quad-core Intel Clover-

town server described in subsection 3.3.1. The heterogeneous workload under evaluation is

a mix of bodytrack and x264. For the cluster control approach, since two cores share a L2

cache in the Intel Xeon processor X5365, we group the dual-socket quad-core server into

4 clusters. We assign two clusters each to bodytrack and and x264 with an MPC controller

per application.

4.3.2 Step Response

In this subsection, we experimentally evaluate the step responses of the heterogeneous

control system for the global and cluster control approaches. As each application take half

of server’s computing capacity, we experimentally determine power-efficient and power-

maximum operating points as 4 and 6 tasks for both x264 and bodytrack. When evaluating

the controller’s response to a step change of set-point, we fix the task number as the average

of power-efficient and power-maximum operating points, which are 5 for both applications.
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Figure 4.2: Experimental evaluation of cluster control approaches’ responses to step

changes on task number. At t = 50s, task number for both applications changes from

4 to 6.

Fig 4.2 shows the controller’s response to step changes in the number of tasks from 4

to 6 for both x264 and bodytrack at the 50th seconds under the cluster control approach.

Since bodytrack and x264 each are assigned four cores, the utilization set-point for each

application is set to half that of the global control approach. Fig 4.2a shows that, the x264

cluster controller settles to within 14.2% of the utilization set-point with a peak overshoot

of 14.0% and a settling time of 2.9 seconds; the bodytrack cluster controller settles to

within 4.5% of the utilization set-point with a peak overshoot of 56.0% and a settling time

of 4.2 seconds. The smaller jitter observed for bodytrack compared to x264 is consistent

with the observation in Chapter 3. Fig 4.2b and 4.2c show how the controllers adapt CPU
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frequency and application quality in order to track set-point: CPU frequency for 264 and

bodytrack increases to around 2.55 GHz and 2.80 GHz respectively; visual quality for x264

and bodytrack decrease to around 2.8× 105 pixels per frame and 49 percent respectively.
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Figure 4.3: Experimental evaluation of cluster control approaches’ responses to step

changes on set-points. At t = 50s, set-point of each application changes from 2 to 2.4.

Fig 4.3 shows the controller’s response to step changes in the set-point from 2 to 2.4

for both applications under cluster control approach. From Fig 4.3a, we note that the con-

troller for x264 is able to follow this set-point change with a peak overshoot of 9.2 % in 2.4

seconds; the controller of bodytrack is able to follow this set-point change in 6.5 seconds

with no overshoot. Fig 4.3b and 4.3c shows that in order to follow the new set-point, the

controller for x264 decreases the CPU frequency from 2.62 GHz to 2.48 GHz. Simultane-

ously the video frame resolution increases from 3.2 × 105 to 8.0 × 105 pixels per frame.
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Meanwhile, the controller for bodytrack decreases the CPU frequency from 2.8 GHz to

around 2.4 GHz and increases the visual quality from around 56 percent to 88 percent.

Table 4.1: Average FPS under C-EDF and G-EDF scheduler for a heterogeneous workload.

number of tasks FPS of x264 FPS of bodytrack

x264 body-track C-EDF G-EDF C-EDF G-EDF

2 2 25 25 20 20

2 8 25 25 15.8 20

10 2 20.1 25 20 20

8 6 25 23.1 20 18.3

4.3.3 Comparison of C-EDF and G-EDF Scheduling Algorithm

We also investigate the choice of the real-time scheduling algorithms on the perfor-

mance of the the cross-layer feedback controller when the system hosts heterogeneous

tasks from multiple applications (x264 and bodytrack). In global-EDF scheduling, tasks

from both the applications are scheduled globally across all 8 cores. In clustered-EDF

scheduling, the applications run on separate clusters with tasks from a single application

assigned to a cluster of 4 cores sharing the L2 cache. In both cases, separate controllers

are designed for the two applications. Unfortunately, our hardware platform does not allow

independent control of the core frequencies, limiting us to use only the application quality

as the control variable for this experiment. Table 4.1 compares the average frame rate for

G-EDF and C-EDF for different combination of number of tasks. For a balanced but light

workload, both C-EDF and G-EDF achieve the targeted average FPS of 25 and 20 for x264

and bodytrack respectively. For an unbalanced workload, where the applications have dis-

similar number of tasks, we note that G-EDF with its superior load balancing capability

performs better. However, for a balanced but heavy workload with large number of tasks

for both applications, load balancing is less of any issue. For this case, C-EDF with its

better data locality performs better.

4.3.4 Control Overhead

For control overhead we consider the same three components introduced in Subsection

3.3.8. Fig 4.4 shows the different average overhead components in milliseconds in one con-
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trol period. As we can see, both DVFS cost (1.60 milliseconds for C-EDF, 1.65 millisec-

onds for G-EDF ), synchronization cost (0.84 milliseconds for C-EDF, 0.81 milliseconds

for G-EDF ) and computation cost of MPC controller (0.73 milliseconds for C-EDF, 0.7

milliseconds for G-EDF) are very close for both task scheduling algorithms. The overall

overheads are less than 0.4 percent of one control period.
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Figure 4.4: Control overhead under global and cluster control approach

4.4 Related Work

To the best of our knowledge, we present the first control framework which can power

efficiently operate a heterogeneous soft real-time computing workloads while meeting real-

time constraints. We review previous works related to the development of real time global

and cluster scheduling algorithms.

Brandenburg et al. [18] implemented global-EDF scheduling algorithm as part of

LITMUSRT testbed. Their evaluation platform is the Sun’s Niagara multiprocessor. This

empirical study is carried out to evaluate implementation tradeoffs including choice of

ready queue implementation, quantum-driven vs. event driven scheduling, and interrupt

handling strategy. Their results show that implementation tradeoffs can significantly impact

schedulability and the scalability and that global-EDF is suitable for real-time scheduling



82

on large scale multicore platforms.

Calandrino et al. [22] first proposed the cluster approach for scheduling real-time tasks

on large-scale multicore platforms with hierarchical shared caches. This work is evaluated

under the SESC processor microarchitecture simulator which simulates 64 core processor

with 4 levels of shared caches. They showed that the cluster approach performs better

on large-scale platforms than the global approach does in terms of lower task migration

overhead, lower scheduling overhead, and higher schedulability.

Bastoni et al. [9] presented an empirical comparison of global, partitioned, and cluster

EDF scheduling algorithms on a 24 core Intel multicore platform. Scheduling algorithms

were compared in terms of real-time schedulability. They adopted a new aggregate perfor-

mance metric to compare schedulability results for a wide range of cache-related delays

and to clearly identify the range of data locality and migration overhead in which a par-

ticular scheduler shows better performance. Their results showed that, global-EDF is not

a practical choice for hard real-time systems. The cluster EDF approaches were found

to be superior to all other evaluated algorithms in terms of kernel overhead, data locality

overhead, and schedulability.

4.5 Conclusions

In this chapter, we proposed cluster approach to implement cross-stack predictive con-

trol framework for heterogeneous real-time workloads and experimentally evaluate their

performance tradeoffs. Experimental results show that cluster control approaches can guar-

antee real-time constraints on heterogeneous workloads and show acceptable performance

in terms of peak overshoot, settling time and jitter value. Due to superior load balancing

capability, control with G-EDF performs better with an unbalanced workload. However,

for a balanced but heavy workload with large number of tasks for both applications, load

balancing is less of any issue. For this case, C-EDF with its better data locality performs

better.



CHAPTER 5: ADAPTIVE CONTROL FRAMEWORK

5.1 Introduction

In this chapter, we present an adaptive cross-stack predictive control framework which

maintains the desired level of performance for dynamic workloads. One major limitation of

conventional controllers is that their performance might be not always acceptable under an

unknown environment due to a number of possible factors including external disturbances,

changes in subsystem dynamics, and parameter variations [72]. The primary reason for this

limitation is because that they employ a fixed controller structure which is not suitable for

the entire range of the operation. On the contrary, an adaptive controller is able to achieve

a desired level of performance of the control system by dynamically adjusting its structure

in response to a changing environment.

In our work, we employ a gain scheduling methodology for our adaptive cross-stack

predictive control framework using multiple fixed models identified based on a priori

available information. At run-time, a supervisor will periodically check which model is

the most suitable for the actual system with respect to certain desired features and switch

to the controller associated with the selected model.

We select x264 encoder as the workload to demonstrate the operation of our adaptive

cross-stack predictive control framework. x264 exhibits distinct visual and temporal fea-

tures if videos from different video genres are used as its encoding input. A computing

system executing such a workload is prone to exhibit large performance variations, which

may lead to significant degradation on performance of a controller with a fixed structure.

Hence it is essential to apply adaptive control for such a system. We initially subdivide

20 video files used for our experiments into four genres, according to the subject of the
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video. The four categories we use are cartoon, entertainment, news report, and sports. We

create model predictive controllers as well as their state space models derived by system

identification for each genre. To determine which model should be chosen in real-time,

we implement a video genre classifier which employs Kolmogorov-Smirnov (K-S) test to

statistically calculate similarity between current system and established models.

For the experiment part, we first evaluate effectiveness of our video genre classifier us-

ing 100 different video files from the 4 video genres. Then we compare performance of our

adaptive controller with non-adaptive controller in terms of their steady state error. Finally

we present overhead analysis of the adaptive cross-stack predictive control framework.

The rest of the chapter is organized as follows in Section 5.2 we describe adaptive

cross-stack predictive control framework in detail. In Section 5.3, we introduce how to

select an experimental set of video genres for our research and introduce the K-S test al-

gorithm used in our work. We then present the results evaluating the performance of the

adaptive cross-stack predictive control framework in Section 5.4. We review related work

in Section 5.5 and conclude the chapter in Section 5.6.

5.2 Framework

In Chapter 3, we constructed a cross-stack predictive control framework for homoge-

neous real-time workloads. In this chapter we extend our work to adaptive cross-stack pre-

dictive control framework by employing a methodology using multiple fixed models and

switching among these at run-time. The structure of our adaptive cross-stack predictive

control framework is shown in Fig 5.1. The computing system consists of three different

stacks, real-time application stack, real-time OS stack and the hardware stack. In each

control period, the controller reads system the utilization from a sensor implemented in the

kernel space, calculates the desired values of CPU frequency and visual quality according

to the MPC algorithm, and sends these measurements to the hardware and application stack

by means of the corresponding modulator and actuator. Additionally, a supervisor is used

to arbitrate which controller will be selected in real-time. The supervisor reads informa-
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Figure 5.1: Schematic representation of our adaptive cross-stack predictive control frame-

work

tion of average frame execution time from the sensor and saves it to a buffer of video genre

classifiers at every control period. Then for a fixed number of control period, the supervisor

calls the video genre classifier to determine which video category should be selected based

on the buffered data. Stored with data information about average frame execution time of

all video genres, the video genre classifier will calculate each significance level which de-

termine whether the buffered data and preloaded data from each video genre are from the

same data distribution using Kolmogorov-Smirnov test algorithm. The video genre associ-

ated with the largest significance level will be selected. Finally the controller corresponded

to the video genre is selected for better control performance.

5.3 Video Genre Classification

In this section, we present our approach for video genre classification. We first explain
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how to determine an experimental set of video genres based on previous research. Then

we introduce the classification approach used in our research. Finally we describe how to

implement K-S test algorithm for our video genre classifier.

5.3.1 Video Genres

The genre of a video is a general class to which it belongs, such as sports, news, cartoon

etc. The determination of a genre is made by watching the video content. Due to subjective

opinions and semantic subtleties, sometimes determination of a genre can be controversial

and prone to error. To correctly decide genre of a video, two issues are worth noting. First,

a genre may consist of other genres as well but genre at the same level should be mutually

exclusive. For example, a sports live broadcast on a basketball match belongs to genre

basketball which in turn is a member of the genre sports. However a basketball broadcast

cannot belong to genre baseball or belong to genre cartoon as opposed to sports. Secondly,

the genre of video sometimes undergoes phase change where different genres exclusively

appear in series. Consider an example when a news program reports on a recent classical

music concert and plays highlight clip of this concert: although it is broadcast in the context

of a news program, this concert highlight clip should be treated as a distinct video genre.

Hence a successful video genre classifier should be able to capture this phase change.

Although there is no standard video genre set for video classification research, some

genres are common to classfiications proposed by different research groups. As reported in

the literature [37, 63, 59, 62, 43, 101, 102, 34, 50, 91], the most popular genres proposed

include: sports, news, cartoon and entertainment. We therefore choose these four genres as

our experimental set for video genre classification.

5.3.2 Classification Metric

Most work on video genre classification adopts approaches which try to differentiate

video genres based on their different visual and audio features. For example, the scenes

which are extracted from a horror film may contain much more dark-lighted scenes com-

pared with scenes from a comedy movie; scenes from action movies may contain much
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more explosive, noisy sounds than a romantic movie. Commonly used visual features in-

clude color-based features, shot-based features, object-based features and motion-based

features [19]; time-domain features and frequency-domain features are popular in audio

[19].

However, all these approaches require decompressing the video sequence beforehand

and analyzing the video frame by frame. Since most videos in broadcast is compressed

for higher efficiency in storage and network transmission, those approaches could incur

enormous overhead. Hence they are not suited for the real-time operation of our control

system. Conversely, research on real-time video genre classification adopts a different

methodology since video in compression has very little information available for classifi-

cation except for temporal knowledge [58]. In this work, we adopt a temporal approach

which classify video genre based on data sets of their average frame execution time and

uses Kolmogorov-Smirnov test algorithm to determine if these data sets coming from same

the statistical distribution.

5.3.3 Kolmogorov-Smirnov (K-S) Test Algorithm

K-S test is a statistical hypothesis test to determine if two data sets follow the same

statistical distribution. The K-S test is applicable to continuous data as function of a single

independent variable where each data point can be represented by a single value.

As shown in Fig 5.2, a measured distribution of values in x (shown as N dots on the

lower abscissa) is to be compared with a theoretical distribution whose cumulative proba-

bility distribution is plotted as P (x). D is the greatest distance between the two cumulative

distributions. To apply K-S test, the list of data points should be firstly converted to a step-

function cumulative probability distribution SN(x). If N data points are located at values

xi, i = 1, 2, ..., N , SN(x) keeps constant between consecutive xi’s and increases by the

same constant 1/N at each xi. SN(x) is constant between consecutive (i.e., sorted into

ascending order) xi’s, and jumps by the same constant 1/N at each xi as shown in Fig 5.2.

Since sets of data from different distribution function give different cumulative distribution
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Figure 5.2: Illustration of Kolmogorov-Smirnov test algorithm

function estimators, K-S test uses the maximum value of the absolute difference between

two cumulative distribution functions as the K-S statistic D. To compare two different

cumulative distribution functions SN1
(x) and SN2

(x) for two data sets, the K-S statistic is

defined as:

D = max
−∞<x<∞

|SN1
(x)− SN2

(x)| (5.1)

D between SN1
(x) and SN2

(x) can be iteratively derived by stepping through each xi in

the two data sets.

The significance level of an observed value of D is given approximately by the equation

5.2. The larger significance level on K-S statistic is, the more likely that the two data sets

come from the same cumulative probability distribution. According to [66], the threshold

value of significance level on K-S statistic is set to 5%.

Probability(D > observed) = Qks([
√

Ne + 0.12 + 0.11/
√

Ne]D) (5.2)
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Where

QKS(λ) = 2

∞
∑

j=1

(−1)j−1e−2j2λ2

(5.3)

which is a monotonic decreasing function with limiting values

QKS(0) = 1 QKS(0) = ∞ (5.4)

and Ne is the effective number of data points, for equation 5.2

Ne =
N1N2

N1 +N2
(5.5)

where N1 is the number of data points in the first distribution and N2 is the number in the

second. The approximation of equation 5.2 becomes asymptotically accurate when the Ne

becomes large and reasonably accurate when Ne ≥ 4.

Sort data 1 and data 

2 in ascend order

Step through data 

1 and data 2 

Calculate K-S 

statistic D

Calculate Ne

Calculate 

significance level

start

end

No
Yes

Figure 5.3: Flow chart of K-S test
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We implemented the K-S test in C++. Fig 5.3 shows the flow chart. The two data

sets are initially sorted in ascending order to generate their cumulative distribution function

SN(x). Then the K-S statistic D is iteratively derived by stepping through every element

of the two data sets. Finally, significance level between the two data sets can be calculated

as shown in Equation 5.2 with calculated D and Ne.

5.4 Experimental Results

In this section, we first validate the effectiveness of our video genre classifier with

100 HD mp4 video inputs from 4 video genres. Then we experimentally evaluate the

performance of our adaptive cross-stack predictive control system in terms of its steady

state error to specific set-point and compare it with the non-adaptive counterpart. Finally

we quantitatively analyze the execution overheads of the adaptive controller.

5.4.1 Selection of Classification Period

The video genre classifier is invoked every classification period. This duration of this

classification period should not be either too long or too short: too long classification period

will undermine the responsiveness of the adaptive controller; too short classification period

will not be able to buffer enough data points of average frame execution time , leading to

inaccurate result of video genre classification. Taking these two aspects into consideration,

we set this classification period to be 3 seconds and set control the period to be 0.3 second.

The video genre classifier is thus called upon every 10 control periods. On one hand, this

setting gives the latency of capturing a phase change by the adaptive controller around the

same length as the classification period. We note that this is an acceptable latency even for

some fast phase change scenarios such as commercial breaks where each video genre may

last from tens of seconds to several minutes. On the other hand, 10 data points of average

frame execution time during each classification period with a preloaded data size set to

100 will make Ne in Equation 5.5 equals to 9.04. This Ne value is greater than 4, which

guarantees accurate video classification according to Subsection 5.3.3.



91

5.4.2 Experimental Setup

We experimentally demonstrate the operation of our adaptive cross-stack predictive

control framework for soft real-time workload on the dual socket quad-core Intel Clover-

town server described in Subsection 3.3.1. We choose x264 encoder as the soft real-time

workload under evaluation for reasons explained in Section5.1. We classify HD mp4 video

inputs in four video genres: sports, news, cartoon and entertainment. Our adaptive con-

troller incorporates four fixed predictive controllers based on the corresponding four video

genres and uses a supervisor which calls upon a video genre classifier to determine which

controller should be chosen in real-time. 100 data points of average frame execution time

for each video genres are preloaded in the video genre classifier. The video genre classifier

is called upon by the supervisor every 3 seconds.

5.4.3 Validation of Video Genre Classifier

For the purpose of validating the effectiveness of our video genre classifier, we gathered

100 HD mp4 video inputs which include videos from 4 video genres, news, sports, cartoon

and entertainment. The video from genre entertainment is based on different movie trailers

and music live videos. The video of sports consist of video clips mainly from basketball

and soccer matches. We execute x264 encoder with every videos for 30 seconds while

simultaneously running the video genre classifier. Since we set classification period to

be 3 seconds, it generate a total of 10 classification results in 30 seconds. We claim the

classification is valid if at least 8 out of 10 classification results are correct. The video

genre classifier achieves satisfactory validation results with no less than 90% success rate

for each genre.

5.4.4 Performance Evaluation

We experimentally evaluate the performance of our adaptive cross-stack predictive con-

trol system and compare it with the non-adaptive counterpart introduced in chapter 3. The

video inputs for this evaluation are 10 highly viewed test videos drawn from YouTube with

content ranging from music, sports, news and do-it yourself.
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Table 5.1: Performance comparison of adaptive control with non-adaptive control

video name
non-adaptive control adaptive control

steady state er-

ror

significance

level of K-S

statistic

steady state er-

ror

significance

level of K-S

statistic

1 music video 8.6% 31.3% 7.2% 34.8%

2 music video 7.5% 36.7% 6.9 37.9%

3 news report 9.1% 28.9% 8.1% 32.4%

4 photography

hacks

22.5% 0.015% 9.1% 25.3%

5 cooking 8.2% 32.5% 7.5% 30.2%

6 sports 25.7% 0.006% 8.7% 31.3%

7 news report 9.7% 24.3% 7.2% 36.4%

8 hiring pro-

gram

8.9% 29.4% 8.3% 27.3%

9 movie clip 9.9% 19.4% 8.2% 31.9%

10 about

champagne

9.5% 24.1% 8.6% 30.8%

Table 5.1 compares the adaptive controller’s performance with non-adaptive controller

in terms of its steady state error to the set-point for the 10 videos mentioned above at

medium workload(10 x264 encoding tasks) and at set-point of 4. We observe that 8 videos

out of 10 the controller shows acceptable performance in terms of small steady state error

(less than 10%) under the non-adaptive controller. This is because the model used to gen-

erate the non-adaptive controller shows similar feature with the 8 videos as indicated by

their large significance levels of K-S statistic shown on Table 5.1. However, It performs

poorly on video No.4 and No.6 in terms of large steady state error (greater than 20%).

On the contrary, adaptive controller shows acceptable performance on each video input.

This demonstrates that the adaptive controller achieves superior performance compared to

non-adaptive controller by dynamically selecting appropriate video genres.

5.4.5 Control Overhead

In addition to the control overhead contributed by the MPC computation, DVFS, and

real-time synchronization, analyzed in Subsection 3.3.8, the additional overhead of our

adaptive control framework stems from the video classifier, whose core computation is
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dominated by the K-S test. The computational overheads associated with the K-S test

depends on the size of video classifier buffer (n1) and the size of preloaded data set for each

video genre (n2) since the computation complexity of K-S test is O(n1.logn1+(n1+n2))

[42]. We experimentally determine that the average overhead of K-S test in this adaptive

control framework is 2.6 milliseconds. Since the video classifier is called every 10 control

periods and each control periods is 300 milliseconds, the classifier accounts for 0.086 % of

each control period.

5.5 Related Work

Numerous approaches and techniques have been proposed in the area of adaptive con-

trol [5]. Here we limit our review to those applying techniques of adaptive control into

computing system design and optimization.

Wang et al. [105] proposed an algorithm which controls the power consumption of a

multicore processor to the desired set-point while maintaining the temperature of each core

below a specified threshold. Their experimental platform is an Intel Xeon X5365 Quad

Core processor with 8MB on-die L2 cache and 1333 MHz FSB. They model the power

consumption of multicore processor in term of operational frequency of each core. The

controller is implemented with the lsqlin solver in Matlab. To adaptively capture the model

variation, they use a recursive least square estimator with directional forgetting to update

the parameter matrix in the system model.

Reed et al. [85] proposed an adaptive controller for the Apache web server to enforce

metrics that affect the user experience in a client machine such as HTTP reply time. Their

simulation platform is Apache v2.2 running on a Linux kernel 3.0.0-14 x64 workstation

with a dual core Intel T2400 and 2GB of RAM They adopt linear Auto-Regressive mod-

eling with exogenous input to model the throughput of Apache web server. A modified

recursive least squares algorithm is employed to adaptively identify system dynamics. A

minimum degree pole placement controller is used to adjust the maximum number of con-

current connections.
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Kalyvianaki et al. [48] proposed a resource management strategy that combines the

Kalman filter with feedback controllers to dynamically allocate CPU resources to server

applications hosted by virtual machines for better system throughput. They carried out

their experiments in a virtualized cluster consisting of three machines connected by gi-

gabit ethernet and each running the Xen 3.0.2 hypervisor which hosts the Rubis server

application. They model the time-varying CPU usage of application as a linear stochastic

difference equation. They adopt an adaptive MIMO process noise covariance controller to

self-configures its parameters and self-adapts to changing workload conditions.

Li et al. [57] proposed a feedback-based strategy to maximize the platform performance

of vSphere using a gradient based hill climbing algorithm. Their experimental platform

is a cluster consisting of three ESX hosts, each of which has a Dell PowerEdge R610

machine with dual quad-core Intel Xeon 3.0 GHz processor and 1649GB of RAM with

540GB local disk. They implemented a vSphere adaptive task management system which

combines feedback control and adaptive hill-climbing algorithm to determine the maximum

throughput for any given vSphere environment and control the number of tasks assigned to

the system, while adapting to changes in the environment.

Different from above references which assume a linear system, our work demonstrates

use of gain scheduling for non-linear workloads.

5.6 Conclusions

In this chapter, we have presented an adaptive cross-stack predictive control frame-

work which maintains desired level of performance in the presence of non-linearities in

the workload using gain scheduling. We implement our adaptive controller by adopting

a supervisor which dynamically switches among several fixed structure controllers to im-

prove control performance. To illustrate the effectiveness of our adaptive controller, we

choose x264 encoder as workload. We classify this workload based on different genres of

its video inputs and implement a video genre classifier based on Kolmogorov-Smirnov test

algorithm. We then incorporate this video genre classifier into our adaptive control frame-
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work. Experimental results shows adaptive controller outperforms non-adaptive controller

in terms of smaller steady state error. We also show that adaptive control only requires a

small overhead, which accounts for 0.086 % of each control period.



CHAPTER 6: CONCLUSIONS

The goal of the dissertation was to improve the overload capacity and power efficiency

of real-time multicore computing systems by establishing a cross-stack predictive control

framework. We established that the use of DVFS and application quality as control vari-

ables enables operation at a lower power operating point while meeting real-time con-

straints as compared to non cross-stack control approaches. We also evaluated the role of

scheduling algorithms in the control of homogeneous and heterogeneous workloads. Ad-

ditionally, we proposed a novel adaptive control technique for dynamic workloads.

6.1 Summary of Results

We implemented a cross-stack control framework for homogeneous real-time workloads.

The real-time multicore computing system was modeled as a MISO state space model us-

ing system identification. We used a model predictive controller (MPC) to implement the

control framework since MPC can handle multiple control variables and constraints on

both the dependent and independent variables. Our results showed that better control per-

formance can be achieved if the control inputs are derived from all parts of the computing

stack: the cross-stack controller was able to maintain constant frame rate while DVFS-only

or application quality-only control failed to do so at heavy workload (task number over 8

on an 8 core system)for both bodytrack and x264 workloads.

We then extended our cross-stack predictive control framework for heterogeneous work-

loads by adopting a cluster control approach with a C-EDF scheduler. Our experimental

results demonstrated that due to superior load balancing capability, control with G-EDF

performs better with an unbalanced workload. However, for a balanced but heavy work-

load with large number of tasks for both applications, C-EDF with its better data locality
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performs better.

To handle dynamic workloads where the execution characteristics change significantly

with time, we proposed an adaptive cross-stack predictive control approach using gain

scheduling. For the x264 video encoding workload, the adaptive controller was found to

outperform the non-adaptive controller with a smaller steady state error.

6.2 Future Work

Our work can be extended in several directions as described below:

• One direction for improvement is the replacement of the Matlab MPC Toolbox with a

custom MPC controller, allowing more flexibility in incorporating a variety of adap-

tive control algorithms.

• We can also explore the incorporation of additional control variables from the hard-

ware stack and the OS stack into our control framework for better power efficiency

and control performance. For example, dynamic cache repartitioning is another adap-

tive hardware technique for improving power efficiency; in some reservation-based

schedulers, bandwidth (the fraction of per job CPU time over period) can be dynam-

ically allocated to each job.

• In our work, the controller and the real-time scheduling algorithms are implemented

in userland. While this approach allows better real-time performance, the need

to modify the kernel may limit its applicability due to security concerns. An al-

ternate approach that could be explored involves implementing both control and

scheduling algorithms in the userspace. Here we could take advantage of the re-

cent work by Millson and Anderson in implementing real-time scheduling in Linux

using userspace libraries [70].

• Our control framework was demonstrated for the case of a single multicore server.

Power efficient execution of soft real-time workloads is an increasing requirement in

a data center. Future work could involve exploring the scalability of the proposed

control framework using a hierarchical control approach to enable scaling to hun-
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dreds of servers.
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