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ABSTRACT

RAMACHANDRA VIKAS CHAMARTHI. Algorithmic Optimization of First
Convolution Layer in CNNs for Hardware Accelerator Design. (Under the direction

of DR. HAMED TABKHI)

This thesis proposes "1D Convolution replacement layer ", a novel optimization for

first convolution layer in CNN. This optimization enables edge friendly streaming

accelerator design with a minimum drop in accuracy. This optimization reduces the

number of convolution parameters in the first convolution layers of CNN, reducing

the number of multiplications performed in convolution operation. In CNNs first

convolution is the most memory and compute intensive as the first layer operates on

input. In a streaming accelerator design, the first layer operates on streaming data,

the complexity of operations and memory demand of the first layer will proportionally

affect the latency of complete accelerator design. Using 1D Convolution replacement

in a CNN on a N x N convolution layer after 1D replacement number of operations in

each convolution window gets reduced by N times. To show the effect of 1D convo-

lution in accelerators, streaming accelerator design for SqueezeNet is compared with

1D-SqueezeNet, SqueezeNet with 1D convolution replacement in the first layer in [1] is

discussed. 1D replacement enabled edge friendly design reducing the dynamic power

consumption by 7.3X, with 0.6% drop in accuracy in SqueezeNet real-time edge ac-

celerator. 1D Convolution replacement is trained on a variety of CNN networks using

various datasets, and are compared against original CNN networks to understand the

scope and applicability of 1D Convolution replacement layer.
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CHAPTER 1: INTRODUCTION

Convolution Neural Networks (CNNs) are widely used in many fields to solve many

machine learning problems [2] utilizing big data and GPUs [3]. Even though the

concept of neural networks is old, GPUs provided computation power to train the

CNN with millions of neurons connecting the input to output. Majority of complex

applications using CNNs are image-based [2] and all the CNN’s utilize convolution

layer, Convolution layer use filters to detect [4] the presence of filter or a feature

in the given input. The complexity of features to be extracted vary in multiple

hierarchies of Convolution Neural Networks are widely used in many fields to solve

many machine learning problems [2] utilizing big data and GPUs [3]. Even though

the concept of neural networks is old, GPUs provided computation power to train the

CNN with millions of neurons connecting the input to output. Majority of complex

applications using CNNs are image-based [2] and all the CNNs utilize convolution

layer, Convolution layer use filters to detect [4] the presence of filter or a feature in the

given input. The complexity of features to be extracted vary in multiple hierarchies

of features ranging from lower level features like simple strides and shapes to complex

features like ears, eyes, and wheels. To the further layers activation outputs from the

previous layer are given as inputs, and pooled activations are used to detect complex

features, and further convolution layers are used to detect the patterns of activation’s

which represent higher-level features. For example, feature presence of eyes, ear, and

mouth would represent higher feature face in the image.

In recent years GPUs have become more efficient [5],[6], Since Nvidia STG-2000 in

1995, with 4MB Memory to Nvidia V100 with 32GB Memory [5].

As shown in Fig.1.1 GPU’s performance also increased from 500 GFLOPS to 7000
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GFLOPS in recent Volta architecture [5]. This advancement provided researchers

ability to train algorithms with larger depth with minimum time.In [7] Resnet50 was

trained on Imagenet data in 224 seconds. This advanced CNN’s from Lenet [8] in

1998, 5 layer CNN with 60k parameters to latest ResNet-152 [9], 152 layer CNN with

60 Million parameters, reducing the Imagenet top-5 error from 30% to 4%. Even

though gaming sector was the major driving force for GPU research, since last two

years architecture optimizations in Volta and Turing Architecture were deep learn-

ing oriented, in Volta Tensor cores were introduced [5] and in Turing architecture

mixed precision computing was introduced [6]. Previous to Volta architecture basic

computation blocks were MACs and after Volta architecture Tensor Cores (Matrix

multiplication engines) were introduced. Matrix multiplication is the basic computa-

tion block for convolution because of GEMM acceleration library [3].
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Figure 1.1: Advancements in GPU’s and CNN’s from 2012 to 2016

In general, CNNs are multiple convolution blocks, each convolution block generally

contain a Convolution layer , activation layer, and pooling layer [4],[10],[11]. Multi-
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ple convolution blocks are placed one after the other reducing the input in to 1000

values. As layers progress towards the network end, the number of convolution filters

increase from 64 to 1000 filters, producing final output of 1 x 1 x 1000 represent-

ing 1000 labels. In convolution layer convolution filter is applied with stride on to

input, similar to moving window fashion. GPUs are throughput oriented machines,

and only with embarrassingly parallel data utilization is maximized [3]. Convolution

operation includes stride, strided convolution create data dependency between con-

secutive moving convolution windows restricting the number of threads launchable in

parallel. In most of GPU based deep learning environments GEMM library is used

convert image into the column, with im2col transformation and leverage large GPU

memory available to create multiple copies of data common between strides and solve

the stride dependant data dependency [3].

In real time accelerator designs for edge inference [1], [12], Input tiles are streamed,

and accelerator needs to process at 60fps or 30fps based on requirement, and minimum

latency model can be designed only by allocation layer resources such that each stage

can be pipe-lined to process streaming inputs. As first convolution layer operates on

streaming input, the latency of first convolution layer effects the operation of following

layers [1] as processing rate of first layer effects the rate at which the next layers are

processes as for further layers data input is not streamed but is the output of the

first layer. While designing datapaths in custom hardware accelerators to match per

layer computation, design resources and power requirements scale proportionally to

computational complexity.

1.1 Motivation

Even though GPUs are ideal for training CNNs, for deployment of CNNs dur-

ing application in the real world custom hardware designing is required to match

the application latency and power requirements. Optimizing algorithms to enable

edge friendly models with minimum latency and lower power consumption will be
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important. Proposed 1D Convolution replacement approach enables a lower power

consumption hardware design.

This thesis proposes an edge friendly 1D convolution replacement optimization to

enable an edge friendly accelerator design with dynamic power consumption 7.3 times

less than 2D convolution accelerator design of real-time streaming SqueezeNet accel-

erator. In this thesis, various networks were trained with 1D convolution replacement

algorithm on various types of CNN architectures and different image classification

datasets like MNIST, CIFAR10, CIFAR100, and Imagenet.

The organization of the remaining section is as follows: Background section 2

contains information CNN’s and accelerators basics, and Analysis section 3 follows

the background section with CNN analysis, and Approach section 4 explaining the 1D

Convolution replacement approach, and Results section 5 reporting 1D replacement

results on various CNNs and architectural results showing the advantage of approach.



CHAPTER 2: BACKGROUND

As stated in Introduction, CNNs are stacked blocks of feature extractors [4],[10]

extracting various hierarchies of patterns with multiple filters with convolution op-

eration and pooled activations of feature presence obtained from the convolution

operation. Each convolution block usually consists of a Convolution layer, an Acti-

vation layer, and a Pooling layer. The number of blocks represents the depth of the

network representing the complexity of the network concerning the number of neural

connections connecting the inputs to the outputs.

Even though convolutional neural networks are old, application of them on to

image domain started only after the advent of GPUs, throughput oriented machines

providing necessary computational resources for computing the enormous number

of multiplications and accumulations. General network training involves a forward

pass and a backward pass. Forward pass involves computation of all the convolution

blocks and production of required output. Backward pass involves computation of loss

and gradients for each weight, which are filters of convolution layers used to extract

features and update the weights such that weights tend to become the required feature

extractors.

Forward pass involves computation of convolution blocks. These computations

translate as multiplications and accumulations [1]. But in the advent of GPUs with

large memory, the large number of cores [5],[6], and large register banks enabled the

ability to launch thousands of threads without any data dependency making GPUs

perfect use case for Convolutional Networks exploiting the data parallelism in com-

putation. As in CNNs, all the operations are performed on parallel as blocks of data.

As GPU’s are throughput oriented, for maximum utilization of cores, algorithms, and
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architectures are even optimized to optimize the convolution operation[3].

Input Convolution Block N X
Fully Connected 

or 
1 x 1 Conv 

labels

Ni X Conv
(FWixFHi)/FSi 

ReLU 
Activation Function Pooling Layer

N Number of Convolution Blocks 
Ni Number of Convolution Filters in ith Block 
FWi  Filter Width in ith convolution block 
FHi   Filter Height in ith convolution block 
FSi    Filter stride in ith convolution block 

Figure 2.1: General CNN process image

2.1 Convolution Neural Networks (CNN)

CNNs are being widely used to solve a variety of problems in many domains like

speech, Image, Discrete data. Many current advances are focused on Image domain

[13],[2],[14],[15].

2.1.1 Regular CNN

Since LeNet [4], to recent Resnet Architecture, CNN’s have advanced from 5 layers

to 152 layers [9]. The increasing number of the trainable parameter from hundreds of

thousands to billions. Even GPU architectures evolved since G80 architecture to the

recent Turing [6] architecture to fit a large amount of data.

Various networks are trained using 1D replacement from scratch on various datasets.

Fig-2.3 and Fig-2.2 are the network architectures of SqueezeNet and Alexnet. Alexnet

[10] is the 2012 Imagenet [16] challenge winner and SqueezeNet is network introduced

after Alexnet. In Alexnet multiple convolution blocks followed by a Fully connected

layer were used reduce the input to 1 x 1 x 1000 dimensions associating to 1000 la-

bels. SqueezeNet [17] achieved Alexnet level accuracy with 50x fewer parameters by

utilizing complex features obtained by fire modules as shown in Fig-2.2, layers con-

catenating multiple features from multi-sized convolution layers and squeezing them
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with 1x1 convolutions and expanding concatenating the outputs of 1 x 1 and 3 x 3

convolutions. Using fire modules [17] effective depth of network is increased with less

number of parameters and also by replacing the final FC layer with 1 x 1 Convolu-

tion and average pooling. In further models, ILSVRC 2014 winner Googlenet [18],

Inception module was introduced going much deeper in the layer number and also

concatenating 1 x 1, 3 x 3 and 5 x 5 convolution outputs. Since Resnet [9] Residual

links introduced to bypass the information passing from all layers avoid vanishing of

feature solving the problem of vanishing gradients, Allowing them to create a net-

work with 152 layers, Resnet-152. Along with above stated networks ZFNET [19],

2013 ILSVRC winner with minor change of changing first convolution layer from 7

X 7 to 5 x 5 to train better on small inputs, and Capsnet [20] were trained with 1D

replacement to evaluate the 1D convolution replacement approach.

Input Conv 7 x7 /2 x 96

Maxpooling

Fire Module 2, 3, 4

Maxpooling

Fire Module 5,6,7,8

Maxpooling

Fire Module 9 Conv 1x1 /1 X1000

Labels

Fire Module

Maxpooling 3 x 3 /2

Convolution Layer

Convolution output

Squeeze Layer 1 x1 Conv

Expand Layer 1 x 1 Conv

Expand Layer 3 x3 Conv

Fire Module

Figure 2.2: SqueezeNet architecture

Convolution  Block Convolution  Block

Labels

Convolution Block

Conv 11 x11 / 4 x96 
Conv 5 x 5 / 2 x 256 Batch Norm Maxpooling Layer  

     3 x 3 / 2 

Input
Conv 3 x 3 / 1 x384 Conv 3 x 3 / 1 x384

Conv 3 x 3 / 1 x256

Avg Pooling

Figure 2.3: Alexnet architecture
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2.1.2 Capsnet

In 2018, Capsule Network [20] introduced the dynamic routing, overcoming the

major drawback in existing CNN’s inability to learn rational invariance because of

scalar accumulation of activation outputs with pooling dismissing the positional im-

portance of activations. Fig-2.4 shows the architecture of Capsnet consisting three

layers Convolution layer, Primary capsule layer and digits capsule layer. To the first

convolution layer inputs are fed, generating lower level features, These feature maps

are fed to primary capsule layer, this layer generated multiple combinations of fea-

ture maps and generated feature combinations are reshaped to capsules to generate

combinations as capsules containing presence and pose information. Thus capsule

outputs are reshaped into N X k dimensional vectors, with k being the dimension

of the vector in the capsule and N being the number of capsules after reshaping of

features into k dimensional capsules.

In Fig-2.4, architecture given in [20] and also used in my experiments on MNIST

[8] and CIFAR10 [21] dataset. In case of Capsnet on MNIST dataset has input size

of 28 × 28 × 1 fed to first convolution layer with 256 filters of filter size 9 x 9 and

stride 1, generating an output of size 20× 20× 256. Output of first convolution layer

is fed input primary capsule layer with 256 filters of filter size 9 × 9 and stride 1 to

generate capsule outputs of 6× 6× 256 (6× 6× 8× 32), i.e 6× 6× 32, 8 dimensional

capsules, they are reshaped in to 1152(6× 6× 32)× 8 representing 1152 capsules of

eight dimensions. These 1152 features are dynamically routed to 10 digit capsules of

dimension 16 representing 16 features of each label. In process of dynamic routing

a weight matrix of size 1152 × 8 × 16 matrix multiplied on to 1152 × 1 × 8 feature

maps and weights are iteratively optimized to route similar low-level features to digit

capsules of the higher level process [20].

In Capsnet regular scalar activations are replaced with vector activation encoded

with both poses along with its presence. The iterative dynamic routing algorithm
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[20] is used to route the lower level feature to higher level features. Dynamic routing

uses similarity score, i.e., dot product to find the similar features and iteratively route

the closest feature. The Table 3.1 shows the dynamic routing algorithm given in [20]

translated to matrix operations.

Input

Conv 1  
9 x 9 /1 (x256) 

Primary Caps Layer 
Conv 9 x 9 / 2 (x 8 x 32) 

Convolution Filter Convolution Filter

Digits Capsules Labels

Dynamic Routing 

Reshape Blocks 

28 x 28 x 1
20 x 20 x 256 6 x 6 x 8 x  32

16 x 10 

6 x 6 x 8 x  32 1152x ( 1  x 8 ) 
(6 x 6 x 32) 

1152 x ( 8 x 16 ) 1152 x (1 x 16)

10 x 
For 10 Labels 

Matrix Multiplication 

16 x 1

Squash Function

10
6 x 6 x 256

Dynamic Routing

Figure 2.4: Capsnet Architecture
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Table 2.1: Dynamic routing algorithms in Capsnet architecture

S No Routing Algorithm pseudo code

step 0 Routing procedure between lower level capsules u in layer l and

higher level capsules v in layer l + 1

ui is the output of ith capsule in layer l;vj is the output of jth capsule of layer l+1

step 1 for all capsules i in layer l for all capsule j in layer l + 1 and

bij is the coupling coefficient or routing coefficient between ith capsule in layer l and

jth capsule in layer l + 1 initialized to zero.

step 2 for number of routings

step 3 normalize b to find the nearest coefficients

step 4 for all capsule layer l + 1 : output for each capsule sj = sigma bij .uj|i

step 5 for all capsule layer l + 1 : output vj = Squash (sj)

step 6 for all capsule layer i in layer l and for all capsules j in layer l + 1 : bij = bij + uji.vj

2.2 CNN Accelerators

Increasing applications for CNN’s and the increase of real-time CNN inference re-

quirements and GPU’s inefficiency [1] to handle streaming data as cores would stay

underutilized because of the insufficient amount of parallelism exploitable with a sin-

gle image compared to the batch of images [22]. In case of streaming accelerator that

processes at a rate of fps or ips, input data continuously stream in and by design-

ing a complete data pipeline from input to maximum output utilization is achieved.

Streaming input avoid the requirement of hardware reuse between layers, as next

stream of data streams in to occupy and utilize. Thus designing layer specific datap-

aths for each layer would be Ideal. Fig-2.5 shows the translation of each convolution

block into each hardware unit. Thus for multiple convolution blocks, each of hard-

ware block is replaced with block specific design. The data paths for each block is

varied according to the number of convolution filters and size of convolution filters.

As shown in Fig-2.5 Convolution operation using an array of multipliers and adders
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and Activation layer being conditional operation array of comparators [1] are used,

pooling is performed using an array of adders and a buffer. As streaming data comes

in pixel by pixel, data has to be temporarily stored to compute convolution in 2D

line buffers to store data row by roe and process them as the data streams. Size of

the 2D line buffer is dependant on the number of values to be processed per convolu-

tion window. By reducing the complexity of computation in first convolution layer,

i.e reducing the memory accesses and computation cycles of first convolution layer

efficient hardware designs would be possible.

Figure 2.5: Algorithm to Hardware translation



CHAPTER 3: ANALYSIS

This section discusses the analysis of CNNs. Capsnet computational analysis is

given a special section as it exhibits a high level of computational complexity than

regular CNN and deserves a special section because of its importance and ability to

the feature variance.

3.1 GEMM Memory Requirement and Computation

In many Deep learning libraries [23],[24],[25],[25] GEMM convolution is used and

input and weights are transformed in to a column of convolution patches using the

im2col function, In im2col function, each convolution filter application window is

transformed into a single column and respective filter weights are transformed into a

row. By this transformation operation of convolution is transformed into matrix mul-

tiplication. In the convolution layer with stride, data overlap between the consecutive

convolution filter applications when converted into im2col create data redundancy be-

tween each column. As shown in Fig-3.1 each convolution patch translates to a single

column and as multiple convolution patches overlap common data between them is

duplicated to avoid data dependency between two patches [3].
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IM2COL

Input Image Input Matrix

Filters Kernel Matrix

X 

Convolution  x Matrix Multiplication

Figure 3.1: GEMM conversion in convolution operation

Using equations 3.1 and 3.2 for a Input of size W ×H×C being width, height and

number of channels of input. For convolution Filter of size Fh x Fw, with strides Sh,Sw

and with padding Ph, Pw. Image to column transformed input matrix size i computed

as Ir and Ic, Ir being the number of rows and Ic being the number of columns. Size of

memory after im2col transformation would be Ir × Ic. In case of convolution number

of multiplication would be equal to Ir × Ic and number of additions or accumulations

would be equal to Fh × Fw × C and for pooling, the number of additions would be

equal to Ic [26].

Ir = (
(W − Fh + 2Ph)

Sh

+ 1)× (
(H − Fw + 2× Pw)

Sw

+ 1) (3.1)

Ic = Fh × Fw × C (3.2)

3.2 CNN computational analysis

As stated before regular CNN’s are stacked convolution blocks and exhibit same

memory and computational requirements for hierarchical blocks, computational com-

plexity reduces from input to output as after each convolution block input gets reduced
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to lower dimension and so on until it matches up to labels.

SqueezeNet [27] architecture was shown in Fig-2.2 and Table-5.8. Most compute

and memory intensive is first convolution layer because it operates on the input of

size 224x224x3 and as after each layer number of filters increase progressively from

96 filters to 1000 filters but memory required reduces as multiple filters apply on the

same input.

Fig-3.3 shows the relative execution time comparison of layers in SqueezeNet and

Fig-3.2 shows the comparison of input memory for each layer between GEMM and

DC. As shown in Fig-3.2 and Fig-3.3 first convolution layer, conv0 is most compute

intensive and has most memory requirement and usually is same for any CNN and

optimizing this layer would be advantageous.
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Figure 3.3: Relative Execution time of SqueezeNet layers

As shown in Fig-3.2 and Fig-3.3 first convolution layer, conv0 is most compute

intensive and has most memory requirement compared to other layers as first con-

volution layer operates on the input image and has biggest convolution filter size as

shown in eq 3.2 filter size is proportional to the im2col data duplication. [3].

Because of im2col data duplication, input image size multiplies times based on

the size of convolution filter and size, For example, in the case of SqueezeNet with

7× 7 filters with stride 2, im2col duplicates approximate seven times. As GPU’s are

coming with large memory, most deep learning libraries accept the trade-off for the

speed up and use the GEMM Acceleration. Fig-3.3 shows the memory requirement

comparison between GEMM and Direct convolution for SqueezeNet [1].

GEMM proves favorable for GPUs because of the availability of large memory and

GEMM solves data dependency between convolution windows and create data inde-

pendent threads by data duplication maximizing utilization. But in the case of custom

hardware with custom datapaths, using direct convolution is much favorable as it re-

quires low memory buffer and data paths can be designed to match the convolution

computation. [12].
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3.2.1 Capsnet computation analysis

As discussed above, in Capsnet with capsule activations or vector activations with

pose and presence information, primary capsule layer generates multiple patterns of

lower level features with convolution layer, and dynamic routing algorithm is used

to route the lower level features to higher level features. As shown in Table-3.1,

dynamic routing algorithm’s computational reflection as weight matrix translated

into multiple matrix multiplications in step 4 and step 6 in the table. Thus for each

routing iteration, two matrix multiplications on the input of size 1152×1×8multiplied

weights to produce 16 × 10, in the case of MNIST Capsnet. MNIST capsnet has an

input size of 28× 28× 1, In case of input with larger size the computation gets much

complex.

Table 3.1: Computation translation of dynamic routing algorithm in to matrix oper-
ations

S No Computational Translation of algorithm

step 0 u is output of previous layer; v is output of current layer

step 1 b is tensor or coefficients of routing between u and v Initialized to zero

step 2 r being number of routings; for r iterations:

step 3 b = softmax(b)

step 4 v’ = u.b (dot product or Matrix Multiplication)

step 5 v = Squash(v’)

step 6 b = b + u.v (dot product or Matrix Multiplication)

Fig-3.4 shows the computational and memory breakdown of Capsnet architecture,

Capsulenet computational Analysis, In Capsnet architecture, only first convolution

layer and primary capsule layer has a convolution layer involved in this. Fig-3.4 re-

ports the input size difference in GEMM [3] and direct convolution in first convolution

and primary capsule layer. Due to large convolution filter size and number in capsnet
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GEMM causes 50 times data redundancy in the first convolution layer because of its

inputs size and nearly seven times in convolution layer in primary capslayer.

Fig-3.5 shows relative execution time of Capsnet execution time layer-wise. As

shown, even though Capsnet architecture has two 256, 9× 9 convolution layers [20],

the majority of computation time is in dynamic routing layer as it contains iterative

large matrix multiplications two times per iteration is same as primary capsule layer.

Primary capsule layer and dynamic routing take similar time for 3 number of routings

and increase in the number of routing would linearly scale the execution time.
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Figure 3.6: GEMM vs Direct Convolution Input Memory Size in Capsnet for a Input
of 128 x 128
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Figure 3.7: Number of times the input size increase due to GEMM Call for multiple
inputs sizes in Capsnet

Fig-3.6, shows the input memory size comparision between GEMM vs Direct con-

volution for Capsnet architecture on a input of size 128 ×128× 3. As it can be seen

in first convolution layer input size increased from 49152 values to 3499200 values in-

creasing input size by 71 times and in primary capsule layer input size from 3686400

values to 65028096 values increasing nearly 17 times. Fig-3.7 shows the increase in

size due to GEMM im2col transformation in capsnet for 28 × 28 × 1 input size and

128 × 128 × 3 size. As shown as input size increases data dupication due im2col

increases memory requirement.



CHAPTER 4: APPROACH

This section discusses the algorithmic implementation of 1D Convolution replace-

ment layer and then about 1D Accelerator design.

4.1 Proposed 1D Convolutional Replacement Training

In accelerator design, a considerable amount of effort being done to reduce memory

access. This approach utilizes streaming near sensor design to ensure the FM data

does not touch main memory and therefore the only memory accesses needed are for

kernel data. Avoiding streaming data on on-chip memory also eliminates the memory

access of this data, however as new CNN topologies emerge, this option will not be

scalable. The solution for this is the reduction in the total amount of parameters.

To achieve this by altering the first layer of convolution (which is the most compute-

intensive layer) to utilize 1D convolution kernels at the training stage. With this,

backward propagation will minimize the gradients of 1D convolutions both at Y and

X dimensions and use the train 1D Convolution replacement CNN for inference.
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Figure 4.1: Implementation of 1D CNN replacement layer

Fig-4.1 presents proposed 1D convolution optimization. In 1D Convolution replace-

ment layer separate filters for X and Y dimensions and then combining the results

by concatenating the feature maps produced by vertical and horizontal convolutions.

As a result, there are M/2 parallel N × 1 and 1 × N filters each pair corresponding

to a single 2D Convolution layer N × N filter. As filters operate in parallel on the

input image, produce different output for N × 1 and 1×N and are not concatenable.

To make them to same size Input images are padded on both height (H Ph, H Pw),

and width (W Ph, W Pw) to produce the same size of output for each dimensional

filter. For an Input Image of Size W, H, D is the width, Height, and Depth of image

as filters are transposes of each other width-wise stride of a filter would be equal to

the height-wise stride of another dimensional filter.

H × Pw = W × Ph = P (4.1)

H × Ph = W × Pw =
N − 1

2
, where N is filter size (4.2)
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4.1.1 1D convolution output Size increase

Padding Input to match output size

Input

Padded Inputs

Input

Input

1D convoution Producing varied outputs

Pooling Varied outputs to same size for Concatenation

Convolution output

Size matched convolution outputs

Size matched convolution outputs

Figure 4.2: 1D Convolution output size matching

As shown in Fig-4.2, because of 1-Dimensional convolution application, the Convo-

lution output size is not same in both width and height dimensions, and also output

size of convolution with respect to primary dimension filter will be smaller than that

dimension output of the non-primary-dimension filter. This difference is equal to the

difference of both dimensions of filter divided by the stride of the convolution layer.

Input Image of Size W×H×C convolution filters of size F×F , input zero padding of

Ph and Pw Stride of S as shown in eq 4.3, increase in output size after 1D-convolution

O1D. Hence in case of convolution with stride 1, 1D convolution produces an output

of size same as inputs.

In any CNN number of convolution weights don’t change with a change in output

size of the first convolution, But in case of a network with fully connected layer

number of inputs change increasing the number of connections and increasing the

number of weights. Increase in output size due to 1D convolution replacement can
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be avoided in the following ways:

O1D =
F − 1

S
(4.3)

• Replacing fully connected with 1 × 1 convolution and average pooling layer as

in SqueezeNet.

• In most of the CNNs, pooling layer is followed by convolution layer, by apply-

ing the different pooling filters on N × 1 and 1 × N filters in 1D convolution

replacement layer.

• Increasing the pooling filter of the size of pooling layer before fully connected

layer.

Overall, one dimensional-training and inference can lead to a significant (exponen-

tial) theoretical reduction in memory and computation demand of CNN layer. In

the case of SqueezeNet, 48 sets of 7 × 1 and 48 sets of 1 × 7 filters replace the 96

convolution 7 × 7 filters, which finally output 96 concatenated feature maps. Thus,

the replacement layer for the first Convolution in SqueezeNet reduces the number of

parameters in the first layer by seven times [1].

4.1.2 Capsnet 1D replacement

In the case of Capsnet [20], regular 1D replacement would increase the output size

increasing the number of parameters in further layers. This is avoided using a new

approach ,Fig-4.3 shows explains the approach. In this input trimming approach,

we stripped the edge pixels which do not carry important feature information, i.e,

in case of N x 1 filter, horizontal features are captured, and vertical boundary pixels

will be insignificant, and output size increase is due to convolution filter dimension

one operation on vertical dimension. Hence ignoring vertical boundary pixels in con-

volution computation with horizontal filter and ignoring horizontal boundary pixels

with convolution computation with vertical filters will not affect the feature space at
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large. Using this approach Capsnet 1D was trained on both MNIST and CIFAR10,

and there was no drop in accuracy in case of MNIST, but in case of CIFAR10 ac-

curacy dropped by 4% compared regular 1D trained Capsnet and 0% compared to

original 1D Capsnet. This drop in accuracy was minimum in case of MNIST because

MNSIT dataset has black background with no noise, and boundary pixels ignored

are mostly black and in case of cifar10 drop in accuracy compared to original case is

zero, because most images are image centered in both training and validation dataset

[8],[21] and boundary pixels are usually noise or background mostly. Larger the input

size is less significant the boundary pixels become.

Input

Padded Input

Trimmed
Input

Convolution  
output 

28 x 28 x 1

28 x 36 x 1

36 x 28 x 1

28 x 28 x 1

1 x 9 Conv

9 x 1 Conv

Input

28 x 28 x 1

20 x 28 x 1

Trimmed Input

28 x 20 x 1

1 x 9 Conv

9 x 1 Conv

Convolution  
output 

20 x 20 x 1

Capsnet producing increase convolution outputs due to 1D convolution

Padded Input

Capsnet producing Same convolution outputs after trimming Inputs 

Figure 4.3: 1D Capsnet input trimming

For ease of implementation, instead of stripping the input differently for each di-

mensional convolution in 1D replacement training boundary pixels belonging to the

convolution output due to boundary pixels were stripped or trimmed. By stripping

the convolution output to the same size as 2D convolution output, number of param-

eters did not increase.
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4.1.3 1D Convolution in GPUs

Even though with 1D Convolution replacement number of parameters in the first

layer reduces by N times for a N x N Convolution filter. On GPUs, all Deep Learning

libraries call each kernel sequentially one after the other on same input differently

padded for N x 1 Convolution and 1 X N Convolution. Increasing the overall execution

time. But in case of custom hardware accelerator designs, 1D convolution replacement

would be advantageous. In the case of the custom accelerator, custom datapaths are

synthesized to meet the computation requirements and designing custom accelerator

paths for 1D design. The number of values required to compute a convolution output

reduced N times. This 1D design would require less buffer size to hold computation,

and N multiplications to compute one convolution output.

4.2 1D Architecture

This section discusses the architecture design that was used to exploit the advan-

tages of the 1D replacement approach [1]. On Algorithm aware architecture design

1D convolution replacement approach is implemented in [1] was configured to utilize

the natural parallelism of CNNs. The architecture can be reconfigured to map to any

network topology allowing architecture to handle the first layer high streaming data

size and intensive computation, efficiently.

The proposed 1D hardware accelerator in [1] is designed to do inference analytics

at the edge has three main parts: (1) Convolutional Processing Element (CPE) to

perform convolution on weights and image pixels. (2) Aggregation Processing Element

(APE) to sum outputs of the convolution of Red/Green/Blue channels and convert

negative values to zeros. (3) Pooling Processing Element (PPE) that performs max-

pooling on the output of APE. In this subsection, we will discuss these parts in a 1D

convolution hardware accelerator.
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4.2.1 CPE

From the architecture design perspective, 1D convolution affects the design of

buffers and compute engine or design which is called the CPE.

Since horizontal and vertical convolutions are performed on the same input image

but totally independent from each other, the proposed architecture has two compo-

nents that run in parallel. (1) A horizontal component that is in charge of re-arranging

image pixels for horizontal convolution and passing them through MAC units. (2) A

vertical component that is in charge of re-arranging image pixels for vertical convolu-

tion (which is a different order than that of horizontal convolution) and passing them

through MAC units. These components are discussed as follow:

• Horizontal Convolution: Convolution windows are horizontal which means there

are no two pixels from different rows in the same window. This results in storing

only one single row at a time with a 1D-line buffer. This sub-module consists of

one single row of Random Access Memory, as large as the image row. Due to the

stride in convolution, Convolution is performed on every other row. The pixels

are stored in 1D line buffer as they come from the camera. As the first row

read finishes, further reads from the 1D-line buffer continue. MACs are often

re-reading the same pixel data as multiple convolution windows share pixel data

between two windows because of convolution stride. By the time MACs finish

reading the row 0 from RAM, row 2 of the streaming image starts to arrive, and

since MACs have completed operations on row 0, RAM is used to store the row

2 since this row is part of the horizontal convolution. Lower block in Fig-4.4

depicts the way that the 1D-line buffer reads in every clock cycle and illustrates

the sub-component in charge of doing horizontal convolution.

• Vertical Convolution: Convolution windows are vertical, which means pixels

from the same column but seven different rows. In this case, the buffer needs to

store the first seven rows of the image before we start the convolution. However,

because of stride Convolution is done only on even columns and therefore, the
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only store even columns need to be stored. Thus, the smallest amount of data

needed to store for doing the vertical convolution is 7× 114 (ceil(227/2)=114)

pixels. The 2D-line buffer consists of 9 rows of FIFOs with 114 elements each

(i.e., pixels, i.e., bytes). These FIFOs are independent of each other and re-

readable. Re-readable FIFOs are rows of memory elements that still keep the

data after it is read but have writing and reading data that is done sequentially.

The first seven rows store the data that is being worked on, and when they are

full, we start reading from the 2D-line buffer and performing the convolution.

It takes 7*114 clock cycles to read all the data in 2D-line buffer once. As we are

convolving the data from the first seven rows, streaming input data is stored in

2 remaining rows. Writing data into 2D-line buffer happens much slower than

reading data from it due to the desired frame rate. This means those two extra

lines of FIFO will not be full until after convolution window is slid all the way

through the first seven rows and all the convolutions are performed. Once done

with one convolution window, we shift the row indexes and reuse the rows with

old pixels to store the input of the new ones. Upper block in Fig-4.4 depicts

the way that the 2D-line buffer is read in every clock cycle and illustrates the

component in charge of vertical convolution.
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Figure 4.4: complete 1D replacement layer hardware architecture

4.2.2 Full layer architecture

Implemented the first layer of a neural network for image processing applications

with 1D architecture [1], there should be one CPE per each input channel, i.e. 3 CPEs
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in total. According to Squeeznet topology, there are 96 kernels in the first layer, which

means each CPE should have 96 MACs meaning 96 outputs (48 for horizontal 48 for

vertical convolution) to implement kernel parallelism (where all the kernels are used

at the same time). These each CPEs outputs are added together in APEs. There

should be one APE per kernel which makes it 96 APEs total. Outputs of these 96

APEs go to 96 independent PPEs, which are located right after APEs. Fig-4.4 shows

a detailed illustration of the proposed architecture for the first layer of SqueezeNet

topology.

To conclude, [1] 1D architecture overview with the understanding that our algo-

rithm optimization translates to the benefits of 7 times less kernel memory (2016

B). The total memory required to store pixels before convolution is 1253 Bytes, re-

ducing the buffer size by almost half, and the operation frequency that drives the

computation of our architecture is seven times smaller due to the reduced number of

operations per convolution.



CHAPTER 5: RESULTS

In this section, we compare the architectural results of 1D convolution replacement

with their original non-replacement counterparts and architectural evaluation of 1D

convolution effect on accelerator design.

5.1 Experimental Setup

1D replacement explained in approach is tested on various datasets MNIST [8],

CIFAR10 [21], CIFAR100 [21] and Imagenet [16] on various networks like Resnet 18,

Resnet 34, Resnet 50 [9], Capsnet [20], ZFNET [19], Squeeznet [27], and Alexnet

[10]. Comparison of training and validation accuracies and training and valida-

tion losses are reported, for experimentation official datasets were used without any

change.Tables 5.2, 5.8, 5.9, 5.10, 5.7, 5.6, 5.5, 5.4 are the network architectures used in

experimentation and Table 5.1 reports the training hyper-parameters used in training

the networks. Experiments on MNIST, CIFAR10, and CIFAR100 were trained using

Keras [28] library and experiments on Imagenet are trained using Caffe library. All

the input data for all the datasets are min-max normalized. MNIST experiments are

performed with input size of 28 × 28 × 1, CIFAR10 and CIFAR100 experiments are

performed with input size of 32 × 32 × 3, and Imagenet inputs were centre cropped

to 224× 224× 3. [24].



29

Table 5.1: Training Hyper parameter used for training networks

Experiment Training Hyper-Parameters

MNIST CNN Adadelta Optimizer, Categorical cross entropy loss,

Learning rate: 1.0

MNIST and CIFAR10 Capsnet Adam Optimizer, Learning rate: 1.0

CIFAR10 and CIFAR100 Adam Optimizer,

Resnet-18 and Resnet-50 Categorical cross entropy loss, Learning rate: 0.001

CIFAR10 and CIFAR100 ZFNETAdam Optimizer, Categorical cross entropy loss,

Learning rate: 0.001

Imagenet Squeezenet Base Learning rate: 0.04,

Polynomial learning policy, power 1.0,

170000 Iterations

Imagenet Alexnet Base Learning rate: 0.01, step learning policy,

gamma 0.1,step 1e5, momentum 0.9, weight decay 5e-4,

450000 iterations

Imagenet Googlenet Base learning rate: 0.01, step learning policy,

step 3.2e5,gamma 0.96, weight decay 2e-4,

1000000 iterations

5.2 Algorithmic Evaluation

This result shows that the replacement would just cost minor loss in accuracy but

will provide a low power accelerator favorable design.
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Table 5.2: Capsnet and 1D Capsnet Architecture used to train on MNIST and CI-
FAR10 Datasets

Capsnet Capsnet 1D V1

conv 9 x 9 / 1 (x256)
Conv 9 x 1 / 1 (x 128) conv 1 x 9 / 1 (x128)

Concatenate

dropout

conv 9 x 9 / 2 (x256)

reshape

Lambda Activation

Matrix Multiplication (x Number of Routings)

Reshape (x Number of Classes)

Table 5.3: Capsnet and 1D Capsnet V2 Architecture with Input trimming used to
train on MNIST and CIFAR10 Datasets

Capsnet Capsnet 1D V1

conv 9 x 9 / 1 (x256)
Conv 9 x 1 / 1 (x 128) conv 1 x 9 / 1 (x128)

Concatenate

trim input

dropout

conv 9 x 9 / 2 (x256)

reshape

Lambda Activation

Matrix Multiplication (x Number of Routings)

Reshape (x Number of Classes)
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Table 5.4: MNIST CNN and 1D CNN Architecture

mnist CNN Mnist CNN 1D

conv 3 x 3 (x 32)
conv 3 x 1 (x16) conv 1 x 3 (x 16)

concatenate

conv 3 x 3 (x 64) conv 3 x 3 (x 64)

maxpool 2 x 2 maxpool 4 x 4

dropout 0.25 dropout 0.25

Fully connected Fully connected

dropout 0.5 dropout 0.5

Table 5.5: Resnet-18 and 1D Resnet-18 Architecture

Resnet 18

18 Layer 18 Layer 1D

conv 7 x 7 / 2 (x64)
conv 7 x 1 / 2 (x32) Conv 1 x 7 /2 (x32)

concatenate

maxpool 3 x 3 / 2

conv 3 x 3 / 2 (x 64) x 2

conv 3 x 3 / 2 (x 128) x 2

conv 3 x 3 / 2 (x 256) x 2

conv 3 x 3 / 2(X 512) x 2

avg pool

fully connected
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Table 5.6: Resnet-50 and 1D Resnet-50 Architecture

Resnet 50

50 Layer 50 Layer 1D

conv 7 x 7 / 2 (x64)
conv 7 x 1 / 2 (x32) conv 1 x 7 / 2 (x32)

Concatenate

maxpool 3 x 3 / 2

conv 1 x 1 (x 64) conv 3 x 3 (x 64) conv 1 x 1 (x 256)

conv 1 x 1 (x 128) conv 3 x 3 (x 128) conv 1 x 1 (x 512)

conv 1 x 1 (x 256) conv 3 x 3 (x 256) conv 1 x 1 (x 1024)

conv 1 x 1 (x 512) conv 3 x 3 (x 512) conv 1 x 1 (x 2048)

avg pool

fully connected
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Table 5.7: ZFNET and 1D ZFNET Architecture

ZFNET 1D ZFNET

conv 5 x 5 / 2 (x96)
conv 5 x 1 / 2 (x48) conv 5 x 1 / 2 (x48)

concatenate

maxpool 3 x 3 / 2 maxpool 3 x 3 / 2

batch norm batch norm

conv 3 x 3 / 2 (x 256) conv 3 x 3 / 2 (x 256)

maxpool 3 x 3 / 2 maxpool 3 x 3 / 2

batch norm batch norm

conv 3 x 3 / 2 (x 384) conv 3 x 3 / 2 (x 384)

conv 3 x 3 / 2 (x 384) conv 3 x 3 / 2 (x 384)

conv 3 x 3 / 2 (x 256) conv 3 x 3 / 2 (x 256)

fully connected 4096 fully connected 4096

dropout 0.5 dropout 0.5

fully connected 4096 fully connected 4096

dropout 0.5 dropout 0.5
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Table 5.8: Squeezenet and 1D Squeezenet Architecture

1D Squeezenet SqueezeNet

conv 7 x 1/ 2 (x96) conv 1 x 7/ 2 (x96) conv 7 x 7/ 2 (x96)

maxpool 3 x 3 / 2 maxpool 3 x 3 / 2

fire 2 x16 Sqz, x64 exp1, x64 exp3 fire 2 x16 Sqz, x64 exp1, x64 exp3

fire 3 x16 Sqz, x64 exp1, x64 exp3 fire 3 x16 Sqz, x64 exp1, x64 exp3

fire 4 x32 Sqz, x128 exp1, x128 exp3 fire 4 x32 Sqz, x128 exp1, x128 exp3

maxpool 3 x 3 / 2 maxpool 3 x 3 / 2

fire 5 x32 Sqz, x128 exp1, x128 exp3 fire 5 x32 Sqz, x128 exp1, x128 exp3

fire 6 x48 Sqz, x192 exp1, x192 exp3 fire 6 x48 Sqz, x192 exp1, x192 exp3

fire 7 x48 Sqz, x192 exp1, x192 exp3 fire 7 x48 Sqz, x192 exp1, x192 exp3

fire 8 x64Sqz, x256exp1, x256 exp3 fire 8 x64Sqz, x256exp1, x256 exp3

maxpool 3 x 3 / 2 maxpool 3 x 3 / 2

fire 9 x64Sqz, x256 exp1, x256 exp3 fire 9 x64Sqz, x256 exp1, x256 exp3

conv 1 x 1 / 1 (x1000) conv 1 x 1 / 1 (x1000)

avg Pool 13 x 13 /1 avg Pool 13 x 13 /1

Sqz Squeeze 1 x 1: exp1 Expand 1 x 1:: exp3 Expand 3 x 3
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Table 5.9: Alexnet and 1D Alexnet V1 Architecture

Alexnet 1D Alexnet V1

conv 9 x 9 /4 (x96) conv 9 x 1 / 4 (x96) conv 9 x 9 /4 (x96)

max pool 3 x 3 /2
Maxpool 3 x 3 /2

Concatenate

Batch Norm Batch Norm

conv 5 x 5 /1 (x256) conv 5 x 5 /1 (x256)

max pool 3 x 3 /2 max pool 3 x 3 /2

Batch Norm Batch Norm

conv 3 x 3 / 1 (x384 ) conv 3 x 3 / 1 (x384 )

conv 3 x 3 / 1 (x384 ) conv 3 x 3 / 1 (x384 )

conv 3 x 3 / 1 (x256 ) conv 3 x 3 / 1 (x256 )

max pool 3 x 3 /2 max pool 3 x 3 /2

fully connected 4096 Fully Connected 4096

fully connected 4096 Fully Connected 4096

fully connected 1000 Fully Connected 1000
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Table 5.10: Alexnet and 1D Alexnet V2 Architecture

Alexnet 1D Alexnet V2

conv 9 x 9 /4 (x96) conv 9 x 1 / 4 (x96) conv 9 x 9 /4 (x96)

max pool 3 x 3 /2
maxpool 3 x 5 /2 maxpool 5 x 3 /2

Concatenate

Batch Norm Batch Norm

conv 5 x 5 /1 (x256) conv 5 x 5 /1 (x256)

max pool 3 x 3 /2 max pool 3 x 3 /2

Batch Norm Batch Norm

conv 3 x 3 / 1 (x384 ) conv 3 x 3 / 1 (x384 )

conv 3 x 3 / 1 (x384 ) conv 3 x 3 / 1 (x384 )

conv 3 x 3 / 1 (x256 ) conv 3 x 3 / 1 (x256 )

max pool 3 x 3 /2 max pool 3 x 3 /2

fully connected 4096 Fully Connected 4096

fully connected 4096 Fully Connected 4096

fully connected 1000 Fully Connected 1000
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Table 5.11: Googlenet and 1D Googlenet architecture

1D Googlenet Googlenet

Layer Type Filter Filter

convolution 1 7 x 1 / 2 (x48) 1 x 7 / 2 (x 48) 7x7/2 (x64)

Concatenate concat

max pool 3x3/2

convolution 2 3x3/ 1 (x192)

maxpool 3x3/2

inception (3a) (x256)

inception (3b) (x480)

maxpool 3x 3/2

inception (4a) (x512)

inception (4b) (x512)

inception (4c) (x512)

inception (4d) (x528)

inception (4e) (x832)

maxpool 3 x 3/ 2

inception (Sn) (x832)

inception (Sb) (x1024)

avgpool 7x7/ 1

dropout 0.4

linear (x1000)

Softmax

5.2.1 MNIST Results

In this section, as shown in Fig-5.1 and Fig-5.2 training and validation accuracy and

training and validation loss of simple 5 layer CNN, mnistCNN with architecture as

shown in Table-5.4 and its 1D replacement counterpart and Capsnet with architecture
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as shown in Table-5.2 and its 1D replacement counterparts 1D Capsnet V1 as shown in

Table-5.2 and also as 1D Capsnet V2 with input trimming to avoid increase in output

size as shown in Table-5.3 were compared. In the case of MNIST CNN, there was a

drop of 0.3% validation accuracy. In case of Capsnet, with network architecture Table-

5.2 original Capsnet has a validation accuracy of 98.87% and 1D replacement Capsnet

with network architecture Table-5.2, 1D Capsnet V1 has a validation accuracy of

99.4%, increase in accuracy is because of increase in network parameters in routing

layer due increase in size of convolution output. In the case of 1D Capsnet V2 with

network architecture Table-5.3 validation accuracy is 99.34% with no drop in accuracy.

There was no drop in accuracy because MNIST Dataset had figures centered and

usually noise or background exists in boundaries and MNIST has black backgrounds.
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Figure 5.1: Train and Valid accuracy comparision of various networks against 1D
replaced versions trained on MNIST dataset
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Figure 5.2: Train and Valid Loss comparison of various networks against 1D replaced
versions trained on MNIST dataset

5.2.2 CIFAR-10 Results

In this section, as shown in Fig-5.3 and Fig-5.4 compares the training and validation

accuracy and training and validation loss of Resnet-18 with architecture as shown in

Table-5.5, ZFNET with architecture as shown in Table-5.7 and Capsnet, 1D Capsnet

V1, and 1D Capsnet V2 with architectures as shown in Table-5.2 and Table-5.3.In

the case of Capsnet, there was no drop in accuracy between Capsnet and 1D Capsnet

V1 and 1D Capsnet V2. There was no drop in accuracy in 1D Capsnet V2 with

Input trimmed version as CIFAR10 also had images centers and boundary pixels are

mostly noise. In the case of ZFNET, Original ZFNET has a validation accuracy of

74.95%, and 1D ZFNET had a validation accuracy of 71.48% with a drop in accuracy

of 3.47%. In the case of Resnet-18, original Resnet-18 had a validation accuracy of

85.7%, and 1D Resnet-18 has a validation accuracy of 83.1% with a drop in accuracy

of 2.6%.
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Figure 5.3: Train and Valid accuracy comparision of various networks against 1D
replaced versions trained on CIFAR 10 dataset
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Figure 5.4: Train and Valid Loss comparision of various networks against 1D replaced
versions trained on CIFAR 10 dataset

5.2.3 CIFAR-100 Results

In this section as shown in Fig-5.5 and Fig-5.6 compares the training and validation

accuracy and training and validation loss of Resnet-50 with architecture as shown

in Table-5.6, ZFNET with architecture as shown in Table-5.7. In case of ZFNET,
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Original ZFNET has a validation accuracy of 58.81% and 1D ZFNET had a validation

accuracy of 57.948% with a drop in accuracy of 0.86%. In case of Resnet-50, original

Resnet-50 had a validation accuracy of 57.94% and 1D Resnet-18 has a validation

accuracy of 56.35% with drop in accuracy of 1.59%.
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Figure 5.5: Train and Valid accuracy comparision of various networks against 1D
replaced versions trained on CIFAR 100 dataset
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Figure 5.6: Train and Valid loss comparison of various networks against 1D replaced
versions trained on CIFAR 100 dataset
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5.2.4 Imagenet results

Fig-5.7 shows the train and validation accuracy comparison of various networks

architectures on Imagenet dataset. Networks used are SqueezeNet as shown in Fig-

5.8, Alexnet as shown in Table-5.9,Table-5.10 and Googlenet as shown in Table-5.11

compared against 1D replacement layer applied in respective networks on the first

layer. As shown in Fig-5.7 drop in accuracy is minimum due to 1D replacement. In

the case of Alexnet and SqueezeNet 1D replacement layer accuracies are compared

against BVLC official accuracies [29]. In case of Googlenet accuracies are compared

again bvlc googlenet accuracy [29] and accuracy achieved training Googlenet and 1D

Googlenet with prescribed training hyperparameters [18], trained from scratch.

In Alexnet [10] due to the presence of FC layer after final convolution, increment

in convolution output size effects the number of parameters in FC layer. In Alexnet

after 1D replacement, 1D Alexnet V1 output of last convolution layer Conv5 becomes

256×7×7 while in case of regular Alexnet output size of convolution size is 256×6×6,

Even though change in size just 256, FC layer associates with 1000 labels making the

FC layer weights increase by 256× 1000. To avoid this as explained in CNN analysis

section, Rectangular pooling of filter sizes 5 × 3 and 3 × 5 are applied on 1 × 7 and

7×1 convolution outputs after 1D replacement layer making output of convolution size

equal to regular Alexnet case and avoid parameter redundancy, In fig 5.7 1D Alexnet

V1 represent the 1D replacement network without per dimensional pooling and 1D

Alexnet V2 represents the 1D Alexnet network with per dimensional rectangular

pooling. As is it can be seen in Fig-5.7 that this transformation of convolution

outputs with rectangular pooling did not have any effect on accuracy.

In case of Googlenet [18], while replacing 64, 7 × 7 convolutions in the first layer

with 32, 7× 1 and 32, 1× 7 dimensional filters, Network large accuracy drop in this

case, But after replacing first convolution layer with 48, 7 × 1 and 48, 1 × 7 filters

network converged to accuracy with less drop in accuracy compared BVLC model at
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same iterations. In Fig-5.7 plot represented by googlenet* reports the accuracy after

the number of iterations prescribed by [29], 1D googlenet* is the accuracy of the 1D

replacement Googlenet with the same number of iterations and BVLC-Googlenet [29]

is accuracy reported in bvlc caffe official repository. Even in SqueezeNet and Alexnet

1D Convolution replacement training network didn’t converge to bvlc reported accura-

cies even after the prescribed number of iterations for training. SqueezeNet needed to

be trained three times the specified number of iterations for convergence [27],[10],[18]

to closest to reported SqueezeNet accuracy. Drop in accuracy in the case of Googlenet

with 1D replacement with 32, 7× 1 and 32, 1× 7 was because of inability of 64, 1D

dimensional feature to represent the 64, 2D features. But 96, 1D features were able to

represent the 64, 2D features and drop in accuracy after replacing 64, 7×7 filters with

48, 7×1 and 48, 1×7 filters is just 2.6% compared to original googlenet trained from

scratch by me for prescribed number of iterations by bvlc. Due to the increase in the

number of channels in convolution output after 1D replacement in 1D Googlenet, the

number of parameters in further layers increased by 55286. Thus in case of SqueezeNet

drop in accuracy due to 1D Convolution replacement is 0.5%, in case of Alexnet drop

in accuracy is 2.3%, and in case of Googlnet drop in accuracy is 2.6% compared to

Googlenet trained from scratch with bvlc prescribed hyper-parameters. * represents

the Googlenet networks trained from scratch and BVLC googlenet is bvlc reported

official Googlenet accuracy.



44

0

25

50

75

100

Squeeze
net

1D Squeeze
net

Alexn
et

1D Alexn
et V

1

1D Alexn
et V

2

googlenet*

1D googlenet*

BVLC Googlenet

Top 5 Accuracy Top1 Accuracy
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This section is focused on the evaluation of 1D convolution on SqueezeNet and

trained our 1D-SqueezeNet using Caffe on Nvidia Tesla P100 [30] with CUDNN [31]

acceleration. The Fig-5.8 reports accuracy vs. iteration between original SqueezeNet

and 1D-SqueezeNet until 170000 Iterations. 1D version of SqueezeNet has approx-

imately 2% difference in accuracy compared with Original SqueezeNet at 170000

iterations, and after 510000 iterations final top5 accuracy of 79.89% and top-1 ac-

curacy of 56.45% and original SqueezeNet has final top-5 accuracies of 80.59% and

top-1 accuracy of 56.7% [29],[27]. Although accelerator design was implemented for

SqueezeNet architecture, many networks are tested with 1D replacement to establish

the applicability of 1D replacement layer. As shown in Fig-5.1 in results 1D re-

placement was also tried on Capsnet architecture, even though 1D replacement being

unfavorable in Capsnet due to stride one convolution, input trimming approach used

help in controlling the increase of parameters. To evaluate the generalizable nature of

1D Convolution replacement, 1D Convolution replacement was trained on Capsnet to

prove that combinations of feature maps produced from 1D replacement convolution

layer with primary Capsule layer were able to route to higher dimensional features
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without any loss in accuracy.
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Figure 5.8: SqueezeNet Vs 1D SqueezeNet

Table 5.12 compares specs between SqueezeNet and 1D-SqueezeNet, It can be seen

clearly with less than 1% drop accuracy, We could achieve 85.71% reduction in param-

eters in first convolution layer enabling an edge friendly design for first convolution

layer.

Table 5.12: SqueezeNet vs 1D-SqueezeNet training specs

Training Specs SqueezeNet 1D-SqueezeNet

Iterations/sec 0.8 0.76

Total iterations 510000 510000

No of parameters 96*3*7*7=14112 48*3*7+48*3*7=2016

% reduction in parameters - 85.71%

Accuracy Top1, Top5 80.59%,56.7% 79.89%,56.45%
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Table 5.13: Network wise weight reduction in first layer and increase in total number
of weights

CNN
Parameters in First Layer Parameter Drop

increase in in

Original Network 1D Network 1D replacement Accuracy(%)

1D Capsnet V1 31104 3456 3276800 0

1D Capsnet V2 31104 3456 0 0

1D MNIST CNN 288 96 0 0.3

1D CIFAR10 Resnet-18 9408 1344 0 2.6

1D CIFAR10 ZFNET 7200 1440 0 3.97

1D CIFAR100 Resnet-50 9408 1344 0 1.54

1D SqueezeNet 14112 2016 0 0.5

1D Alexnet V2 23328 2592 0 2.3

1D Googlenet* 9408 1344 55296 2.6

As shown in Table 5.13, except in case of Googlenet and Capsnet V1 there is no

increase in the number of parameters due to 1D replacement. In case of Capsnet,

increase in parameters is due to stride one convolution layer in Capsnet and our

approach to trim the input avoided the increase in output size as you can see in

Capsnet V2 and in the case of Googlenet, in 1D convolution replacement of Googlenet

first convolution layer. i.e 64, 7× 7 Convolution with 32, 7× 1 and 32, 1× 7 caused a

large drop in accuracy, but 48, 7× 1 and 48, 1× 7 convolution replacement had only

minimum drop in accuracy. Due to an Increase in the total number of channels in

the output of the first convolution layer from 64 to 96. Number of weights in weight

matrix of next convolution layer increased from 192×9×64 to 192×9×96. This is due

to the inability of 32, 7×1 and 1×7 convolutions were not complex enough to capture

a similar amount of features represented by original 64, 7 × 7 convolution layer. As

shown in Fig-5.3 and Fig-5.5 Resnet-18 and Resnet-15 networks had minimum drop
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in accuracy due to 1D convolution replacement even though they had same 64, 7× 7

convolution layer. This is because CIFAR10 [21] and CIFAR100 [32] datasets are

not as complex and large as Imagenet dataset [16]. Thus the effectiveness of the

number of 1D convolution filters in 1D convolution replacement layer is dependent

on the complexity of data that is to be represented of the complexity of feature space

to be extracted. Our approach to trim the boundary pixels of input considering

them to be less significant is applicable only if the dataset being used to train or

test is centered, and most of the boundary pixels are noise And also input trimming

approach effectiveness increases as the size of input increases. In case of larger input

size, number pixels to be trimmed would proportionately less compared to a small

input case.

5.3 Architecture Evaluation

In this section 1D Convolution accelerator design from [1] results are reported. The

1D algorithm solution shows its true benefit when implemented on top of algorithm-

aware architecture. In the proposed architecture, spatial parallelism is configurable by

the number of MAC units as shown in equation 5.1. For comparison, it is assumed that

maximum spatial parallelism resulting in the minimum frequency required, although

costing heavy resource utilization.

InputDataRate = FPS × (ImageSize2) (5.1)

Cf =
InputDataRate

ImageSize× stride
(5.2)

OperatingFreq =
Cf ×K × F 2

size ×Wmax

Kmacs × Cmacs

(5.3)
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Figure 5.9: Dynamic Power consumption of 2D and 1D architecture at 30 and 60 fps

Fig-5.9 shows an overall power reduction of around 7.3 for both 30 and 60 FPS.

This is due to the lower frequency required to meet the constraints of both Frame

rates for 1D convolution.
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Figure 5.10: Architecute vs Component Resource Utilization
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The resource utilization for both 2D and 1D designs reported in Fig-5.10. It is ob-

served that while both designs utilize a fair amount of resources. The 1D architecture

utilizes 6.23% fewer LUTs for logic and 27.04% fewer LUTs for memory with an in-

crease of 5.04% in CLB registers and 9.64% increase in BRAMs. Since the 2D design

was more memory intensive, it utilized more LUTs as a memory, but the memory

access and control flow of the 1D designed was more optimized, so more resources

were translated to BRAMS and CLB registers.

The final metric is the imposed latency on the inference. Since less buffering is

required for 1D design it inherently less latency, however, because design runs with a

small frequency, it costs more. There is a decrease in latency due to increase of frame

rate, due to the significant rise in operation frequency. Furthermore, all designs are

magnitudes better than the Jetson TX2 which imposed a latency of 31.4ms, 98.1x

greater than our highest latency. The mobile GPU is unable to run at 60 FPS because

of this limitation.



CHAPTER 6: CONCLUSION

In conclusion from the results, 1D convolution replacement provides an edge friendly

streaming hardware accelerator design with a minimum drop in accuracy. As shown

in Fig-5.13 most network architectures showed a minimum reduction in accuracy, and

drop in accuracy is dependant on Convolution stride, filter size, and data complex-

ity to be trained. Alexnet results show that Combination of 1D convolution layer

followed by rectangular pooling, prevents the increase in the output size, without a

drop in accuracy due to 1D convolution in CNN’s with the Fully connected layer or

replacing FC layer with 1 x 1 convolution and Maxpooling can be used to avoid an

increase in size. 1D replacement would be advantageous if the number of filters in a

1D convolution filters is equal to or less than the number of convolution filters in orig-

inal 2D Convolution layer. In the case of convolution layer with stride 1 produces the

same output as after convolution layer preventing the reduction in output size making

1D replacement infeasible with convolution layer with stride one like in the case of

Capsnet. For centered datasets like MNIST and CIFAR-10, input trimming approach

can be used to avoid the increase in output size and achieve similar accuracy. But

in future with application of capsnet on to problem statement involving large and

high resolution inputs with feasible stride on convolution,1D convolution replacement

would be enormously advantageous as Capsnet model have less hierarchy of features

extracted, and number of features extracted in the first layer would be large, as in

case simple problem like MNIST and CIFAR 10, 256 filters were required, much com-

plex problems would require more number of filters, multiplying the advantage of 1D

replacement.
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6.1 Future Work

Even though Capsnet been published in 2017, many of its applications are based

on small input size [7],[15],[22]. In [7] Capsnet was used in object tracking but on an

image of size 24 × 24. It is still unclear about the effective use of dynamic routing

in case of problems with multiple hierarchies of features with dependencies needing

multi-layered routing. Still, many problem statements would be able to utilize dy-

namic routing in establishing a link between lower level features and higher level

features [15]. In case of image detection, for example, face detection CNN, both

training and validation inputs would, and for proper prediction with CNNs, CNN

need not learn the relation between eyes, nose and ears and face as CNN will never

be asked to predict on a disfigured face. But in the case of histology images were the

hierarchy of features to be extracted are less and pathological decision or prediction

being dependent on feature relation can effectively utilize the dynamic routing. Hence

further research on Capsnet to understand multi-staged dynamic routing effect and to

optimize the dynamic routing algorithm to be less compute-intensive would be next

step.
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