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ABSTRACT

XIAOWEI YING.Privacy and spectral analysis of social network randomization.
(Under the direction of DR. XINTAO WU)

Social networks are of significant importance in various application domains. Un-

derstanding the general properties of real social networks has gained much attention

due to the proliferation of networked data. Many applications of networks such as

anonymous web browsing and data publishing require relationship anonymity due to

the sensitive, stigmatizing, or confidential nature of the relationship. One general ap-

proach for this problem is to randomize the edges in true networks, and only release

the randomized networks for data analysis. Our research focuses on the development

of randomization techniques such that the released networks can preserve data utility

while preserving data privacy.

Data privacy refers to the sensitive information in the network data. The released

network data after a simple randomization could incur various disclosures including

identity disclosure, link disclosure and attribute disclosure. Data utility refers to the

information, features, and patterns contained in the network data. Many important

features may not be preserved in the released network data after a simple randomiza-

tion. In this dissertation, we develop advanced randomization techniques to better

preserve data utility of the network data while still preserving data privacy. Specifi-

cally we develop two advanced randomization strategies that can preserve the spectral

properties of the network or can preserve the real features (e.g., modularity) of the

network. We quantify to what extent various randomization techniques can protect

data privacy when attackers use different attacks or have different background knowl-

edge. To measure the data utility, we also develop a consistent spectral framework to

measure the non-randomness (importance) of the edges, nodes, and the overall graph.

Exploiting the spectral space of network topology, we further develop fraud detection
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techniques for various collaborative attacks in social networks. Extensive theoretical

analysis and empirical evaluations are conducted to demonstrate the efficacy of our

developed techniques.
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from George Mason University, Dr. Lei Chen from Hong Kong University of Science

and Technology, Dr. Kun Liu from Yahoo! Lab. and Dr. Zhi-Hua Zhou from Nanjing

University. I am fortunate to have the opportunity to work with my colleagues at Data

Privacy Lab., especially Dr. Yong Ye, Dr. Songtao Guo, and Jun Zhu. I appreciate

all their friendships and encouragement to finish this dissertation.

I would like to greatly thank my advisor, Dr. Xintao Wu, who always guides me,

supports me, encourages me, and even spoils me along my way to the Ph.D. degree.

He has made the years of Ph.D. study one of the most cherishable periods in my life.

This dissertation was part of the research carried out through his vision throughout

last five years, and was supported by U.S. National Science Foundation IIS-0546027

and CNS-0831204.

Finally, it is impossible for me to finish this dissertation without the love and

support from my parents, Yongmao Ying, and Wuping Dong. This dissertation is

dedicated to them.



vi

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

1.1 Privacy in Publishing Social Networks 2

1.2 Randomization as a Privacy Preservation Approach 4

1.3 Data Utility and Feature Preserving Randomization 7

1.4 Spectral Analysis on Social Network Randomization 10

1.5 Graph Features and Data Sets 13

CHAPTER 2: RELATED WORKS 17

2.1 Privacy Attacks on Naive Anonymized Networks 17

2.2 K-anonymity Privacy Preservation via Edge Modification 21

2.3 Privacy Preservation via Generalization 26

2.4 Feature Reconstruction from the Randomized Graph 28

2.5 Anonymizing Rich Graphs 30

2.6 Differential Privacy for Querying Social Network Data 34

CHAPTER 3: LINK DISCLOSURE ANALYSIS 36

3.1 Randomization and Link Privacy 37

3.1.1 Link Privacy Protection vs. Perturbation k 39

3.2 Enhanced Posterior Link Beliefs with Proximity Measures 43

3.2.1 Existence of Links vs. Similarity Measure 43

3.2.2 Link Prediction by Exploiting Similarity Measure 46

3.2.3 Privacy Protection vs Perturbation k 52

3.2.4 Empirical Evaluation 53

3.3 Summary 55

CHAPTER 4: IDENTITY DISCLOSURE ANALYSIS 58

4.1 Disclosure Analysis in Rand Add/Del 61

4.1.1 Identity Disclosure 61



vii

4.1.2 Link Disclosure 66

4.1.3 Privacy Protection vs. Perturbation k 68

4.2 Comparison with K-degree Generalization Scheme 71

4.2.1 Identity Privacy Protection vs. Utility Loss 71

4.2.2 Further Improvement 72

4.3 Summary 74

CHAPTER 5: FEATURE PRESERVING RANDOMIZATION 76

5.1 Spectrum Preserving Randomization 78

5.1.1 Theoretical Analysis on Spectral Perturbation 78

5.1.2 Spectrum Preserving Randomization 81

5.1.3 Empirical Evaluation 86

5.2 Markov Chain Based Feature Preserving Randomization 88

5.2.1 Graph Generation without Feature Constraints 89

5.2.2 Graph Generation with Feature Range Constraints 94

5.2.3 Link Privacy Analysis 96

5.2.4 Relaxed Graph Generation with Feature Range Constraints 102

5.2.5 Graph Generation with Feature Distribution Constraints 106

5.2.6 Empirical Evaluation 109

5.3 Summary 110

CHAPTER 6: SPECTRAL ANALYSIS OF SOCIAL NETWORKS 112

6.1 Graph Spectral Geometry 113

6.2 A Framework of Measuring Graph Non-randomness 116

6.2.1 Edge Non-randomness: R(u, v) 118

6.2.2 Node Non-randomness: R(u) 119

6.2.3 Graph Non-randomness RG and Relative Non-randomness R∗
G 122

6.2.4 Subgraph Non-randomness R(G1) 127



viii

6.3 Comparison with Other Graph Spectra 130

6.3.1 Laplacian Spectrum 130

6.3.2 Normal Spectrum 133

6.3.3 Modularity 135

6.4 Empirical Evaluations 136

6.5 Adjacency Cut via Line Fitting 144

6.5.1 Problem Formalization 144

6.5.2 Fitting k Orthogonal Lines 146

6.5.3 Evaluation of Adjacency Cut Algorithm 148

6.6 Summary 152

CHAPTER 7: SPECTRUM BASED NETWORK FRAUD DETECTION 154

7.1 Graph Spectral Analysis 156

7.2 A Spectrum Based Framework for Detecting Attacks 159

7.3 Detecting Random Link Attack 163

7.3.1 Identifying Suspects in Spectral Space 164

7.3.2 Spectrum Based RLA Detection Algorithm 175

7.4 Experimental Results 178

7.5 Summary and Future Work 180

CHAPTER 8: CONCLUSIONS AND FUTURE WORK 184

8.1 Privacy Analysis of Social Network Randomization 184

8.2 Spectral Analysis of Social Network Randomization 187

8.3 Future Work 189

REFERENCES 191



CHAPTER 1: INTRODUCTION

Social networks are of significant importance in various application domains such

as marketing, psychology, epidemiology and homeland security. The management

and analysis of these networks have attracted increasing interests in the sociology,

database, data mining and theory communities. Most previous studies are focused

on revealing interesting properties of networks and discovering efficient and effective

analysis methods [7, 9, 10, 33, 36, 54, 56, 58, 60, 84, 87, 89, 91, 98].

Social networks often contain some private attribute information about individuals

as well as their sensitive relationships. Many applications of social networks such as

anonymous Web browsing require identity and/or relationship anonymity due to the

sensitive, stigmatizing, or confidential nature of user identities and their behaviors.

The privacy concerns associated with data analysis over social networks have incurred

the recent research. In particular, privacy disclosure risks arise when the data owner

wants to publish or share the social network data with the third party for research

or business-related applications. Privacy-preserving techniques [3] for social network

publishing aim to protect privacy through masking, modifying and/or generalizing

the original data while without sacrificing much data utility.

A network G(V, E) is a set of n nodes connected by a set of m links, where V

denotes the set of nodes and E ⊆ V × V is the set of links. In our work, we mainly

focus on undirected, and un-weighted graphs without self-loops. Let A = (aij)n×n

denote the adjacency matrix of G: aij = 1 if node i and j are connected and aij = 0

otherwise. The degree of node i, di, is the number of the nodes connected to node

i, i.e., di =
∑

j aij, and d = {d1, . . . , dn} denotes the degree sequence. The released
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graph after perturbation is denoted by G̃(Ṽ , Ẽ). Ã = (ãij)n×n is the adjacency matrix

of G̃, and d̃i and d̃ are the degree and degree sequence of G̃ respectively. Note that,

for ease of presentation, we use the following pairs of terms interchangeably: “graph”

and “network”, “node” and “vertex”, “edge” and “link”, “entity” and “individual”,

“attacker” and “adversary”.

1.1 Privacy in Publishing Social Networks

In a social network, nodes usually correspond to individuals or other social entities,

and an edge corresponds to the relationship between two entities. Each entity can

have a number of attributes, such as age, gender, income, and a unique identifier.

One common practice to protect privacy is to publish a naive node-anonymized ver-

sion of the network, e.g., by replacing the identifying information of the nodes with

random IDs. While the naive node-anonymized network permits useful analysis, as

first pointed out in [8, 46], this simple technique does not guarantee privacy since ad-

versaries may re-identify a target individual from the anonymized graph by exploiting

some known structural information of his neighborhood.

The privacy breaches in social networks can be grouped into three categories: iden-

tity disclosure, link disclosure, and attribute disclosure. The identity disclosure cor-

responds to the scenario where the identity of an individual who is associated with a

node is revealed. The link disclosure corresponds to the scenario where the sensitive

relationship between two individuals is disclosed. The attribute disclosure denotes

the sensitive data associated with each node is compromised. Compared with existing

anonymization and perturbation techniques of tabular data [40, 41, 51], it is more

challenging to design effective anonymization techniques for social network data be-

cause of difficulties in modeling background knowledge and quantifying information

loss.

Adversaries usually rely on background knowledge to de-anonymize nodes and learn

the link relations between de-anonymized individuals from the released anonymized
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graph. The assumptions of the adversary’s background knowledge play a critical role

in modeling privacy attacks and developing methods to protect privacy in social net-

work data. In the following, we briefly introduce some background knowledge and

how the adversary can utilize them to breach the privacy of the network. However, we

should point out that it is very challenging to model all types of background knowl-

edge of adversaries and quantify their impacts on privacy breaches in the scenario of

publishing social networks with privacy preservation [64, 114].

One type of background knowledge is fraudulent members. The adversary can him-

self join the network or bribe some individual in the network. The created fraudulent

nodes in the network can be utilized to compromise the privacy information. For

example, in the active attack [8], an adversary creates a small number of new user ac-

counts with links to the targeted individuals and establishes a highly distinguishable

pattern of links among the new accounts. Once the anonymized graph is released,

the adversary can then efficiently find these new accounts together with the target

individuals in the released anonymized network.

Another type of background knowledge is the neighborhood of the targeted indi-

vidual. The adversaries are assumed to possess some knowledge on the neighborhood

of the target, such as degree, the topological structure of the neighbor, and some

statistics about the neighborhood (e.g., the number of triangles, centrality value etc.)

[46, 47, 63, 113]. Different from active attack that can target arbitrary individuals in

the network, the background knowledge of neighborhood is more detrimental to those

nodes playing central role in the social network. This is because the central nodes

usually have higher degrees than most of the other nodes, and hence their neigh-

borhood structures are very likely to be unique in the network. Once the adversary

knows such knowledge, he has a high probability to identify the neighborhood in the

anonymized graph and identify the targeted individual.
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1.2 Randomization as a Privacy Preservation Approach

One of the reasons that naive anonymization can not prevent privacy breaches is

that adversary may have various background knowledge about the targets and the

network. With the background knowledge, the adversaries may be able to uniquely

link a node, an edge, or a subgraph to the targeted individuals, and the privacy is

then jeopardized. Even when the background knowledge does not lead to the unique

identification of the targeted individual, it can still significantly reduce the number of

candidates and hence increase the adversary’s confidence. Therefore, many privacy

preservation approaches aim to modify the released graph so that there should be

multiple nodes, link, or subgraphs that match the background knowledge of the tar-

geted individual. Currently there are mainly three categories of privacy preservation

approaches:

• K-anonymity: this approach modifies graph structure via a sequence of edge

deletions and additions such that each node in the modified graph is indistin-

guishable with at least K − 1 other nodes in terms of some types of structural

patterns such as degree and neighborhood subgraph.

• Edge randomization: This approach modifies graph structure by randomly

adding and(or) deleting edges or switching edges. It protects against re-identification

in a probabilistic manner.

• Clustering-based generalization: This approach clusters nodes and edges into

groups and anonymizes a subgraph into a super-node. The details about indi-

viduals are hidden.

Our work mainly focus on the randomization approach. Randomization approaches

have been well investigated in privacy-preserving data mining for numerical data (e.g.,

[3, 4, 41, 51]) and categorical data (e.g., [39, 40, 93]). For social networks, two edge-

based randomization strategies have been commonly adopted:



5

• Rand Add/Del: randomly add k false edges followed by deleting k true edges.

This strategy preserves the total number of edges in the original graph.

• Rand Switch: randomly switch a pair of existing edges (t, w) and (u, v) (satisfy-

ing edge (t, v) and edge (u,w) do not exist in G) to (t, v) and (u,w), and repeat

this process for k times. This strategy preserves the degree of each vertex.

After randomization, the randomized graph is expected to be different from the

original one. The adversary is generally not able to re-identify the correct individual if

he simply finds the nodes, links, or subgraphs that match the background knowledge.

As a result, the node identities as well as the true sensitive relationship between two

nodes are protected. We will discuss why randomized graphs are resilient to structural

attacks in Chapter 3.

Link Privacy Disclosure Risks. The randomization approaches protect against re-

identification in a probabilistic manner. Therefore, we quantify the privacy disclosure

risk by the probability that the adversary estimates the true data correctly. The

process of randomization and the randomization parameter k are assumed to be

published along with the released graph.

We first quantify to what extent the randomization approaches can protect sensi-

tive links in Chapter 3. There exist some scenarios that node identities (and even

entity attributes) are not confidential but sensitive links between target individuals

are confidential and should be protected. For example, in a transaction network, an

edge denoting a financial transaction between two individuals is considered confiden-

tial while nodes corresponding to individual accounts is non-confidential. In such

cases, data owners can release the edge randomized graph without removing node

annotations. To extent to which releasing a randomized graph G̃ jeopardizes the link

privacy is measured by the adversary’s posterior belief about the existence of edge

(i, j) given randomized graph G̃. We will investigate two types of posterior belief in

Chapter 3: the posterior probability in which the adversary only utilizes the existence
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(or non-existence) of a link in G̃, and the enhanced posterior probability derived by

exploiting the proximity between two nodes.

With the released graph G̃, the adversary can first rely on the observation of

existing (or non-existing) link (i, j) in G̃ to breach the true sensitive link between

node i and j. Take Rand Add/Del as an example. The adversary’s prior belief about

the existence of edge (i, j) (without exploiting the released graph) can be calculated

as Pr(aij = 1) = 2m
n(n−1)

. With the released graph and perturbation parameter k, the

posterior belief when observing ãij = 1 is Pr(aij = 1|ãij = 1) = m−k
m

. If Pr(aij =

1|ãij = 1) is significantly higher than Pr(aij = 1), releasing the randomized graph

can lead to high privacy disclosure risk.

However, the above effort to measure link disclosure risks of randomization mainly

relies on the randomization magnitude. We further propose an attacking model that

exploits the relationship between the existence of a link and the similarity of the

node pairs in the released randomized graph. Proximity measures have been shown

to be effective in the classic link prediction problem [62] (i.e., predicting the future

existence of links among nodes given a snapshot of a current graph). We investigate

four proximity measures (common neighbors, Katz measure, Adamic/Adar measure,

and commute time) and quantify how much the posterior belief on the existence of a

link can be enhanced by exploiting those similarity values derived from the released

graph which is randomized by the Rand Add/Del strategy. One difference between

the proximity based link prediction and the proximity based privacy breach is that,

the data miner derives the similarity of nodes based the true (probably incomplete)

graph, whereas the adversary derives the measure from the randomized graph.

Identity Privacy Disclosure Risks. In Chapter 4, we study the risk of identity

disclosure associated with randomization procedures. Since the goal of an adversary

is to map the nodes/edges in the released graph to real world entities/relationships,

we investigate the relationship between the amount of randomization and the ad-
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versarys ability to correctly infer the node identity, and quantify both identity and

link disclosure risks when adversaries know the degrees of target individuals. When

the graph is published using naive anonymization, once the identities of the targeted

nodes are compromised, the link privacy is also breached. This is because all the

links in the released graph are true links. However, this is not true if we release

the randomized graph, as the observed link can actually be a fake link. When both

the nodes’ identities and link existence are uncertain to the adversaries, releasing the

randomized graph can greatly reduce the privacy disclosure risks.

1.3 Data Utility and Feature Preserving Randomization

Data Utility. An important goal of publishing social network data is to permit useful

analysis tasks. In general, it is very challenging to quantify the information loss of

anonymizing social networks, because different analysis tasks may expect different

utility properties to be preserved. In our work, we consider two types of measures to

evaluate the data utility of social network data.

• Graph topological properties: one of the most important applications of social

network data is for analyzing graph properties. To understand and utilize the

information in a network, researches have developed various measures to indi-

cate the structure and characteristics of the network from different perspectives.

[23]. Properties including degree sequences, shortest connecting paths, and clus-

tering coefficients are addressed in many works [46, 47, 63, 104, 106, 113].

• Graph spectral properties: the spectrum of a graph is defined as the set of

eigenvalues of the graph’s adjacency matrix or other derived matrices. The

eigenvalues and eigenvectors decode various properties of the graph as well as

the edges and nodes in the graph. The graph spectrum has close relations with

many graph characteristics and can provide global measures for some network

properties [84].
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• Aggregate network queries: an aggregate network query calculates the aggregate

on some paths or subgraphs satisfying some query conditions. One example is

that the average distance from a medical doctor vertex to a teacher vertex in

a network. Some researchers considered the accuracy of answering aggregate

network queries as the measure of utility preservation [11, 22, 113, 115].

Edge randomization may significantly affect the utility of the released randomized

graph. To preserve utility, certain aggregate characteristics (a.k.a., feature) of the

original graph should remain basically unchanged or at least some properties can

be reconstructed from the randomized graph. However, as what we will show later,

many topological features are lost due to randomization. In Chapter 5, we propose

two randomization procedures that can preserve structural properties.

Spectrum Preserving Randomization. Since the spectra of graph matrices have

close relations with many important topological properties such as diameter, pres-

ence of cohesive clusters, long paths and bottlenecks, and randomness of the graph

[84], we aim to preserve the data utility by preserving two important eigenvalues

during the randomization: the largest eigenvalue of the adjacency matrix and the

second smallest eigenvalue of the Laplacian matrix. Pure randomization tends to

move the eigenvalues toward one direction, and the eigenvalues of the randomized

graph can be significantly different from the original values. The two proposed al-

gorithms, Spctr Add/Del and Spctr Switch, selectively pick up those edges that can

increase (or decrease) the target eigenvalue by examining the eigenvector values of

the nodes involved in the randomization. By doing so, they guarantee that the eigen-

values after randomization do not move far from the original value. Our empirical

evaluations showed that the proposed algorithms can keep the spectral features as

well as many topological features close to the original ones even when the magnitude

of randomization is large.
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Markov Chain Based Feature Preserving Randomization. The degree se-

quence and topological features are of great importance to the graph structure. One

natural idea is that it can better preserve the data utility if the released graph G̃

preserves the original degree sequence and a certain topological feature, such as tran-

sitivity or average shortest distance [44, 104]. To preserve data utility, data owners

may want to preserve some particular feature S within a precise range in the released

graph. All the graphs that satisfy the degree sequence d and the feature constraint

S form a graph space Gd,S (or Gd if no feature constraint). Starting with the original

graph, series of switches form a Markov chain that can explore the graph space Gd,S.

We propose an algorithm that can generate any graph in Gd,S with equal probabil-

ity. The constraint S guarantees the utility of the randomized graph, and the equal

probability for all the graphs in Gd,S aims to reduce the privacy disclosure risk.

Privacy Analysis for Feature Preserving Randomization. We also study the

link disclosure risks for feature preserving randomization procedures in Chapter 5.

Note that the adversaries can exploit the released graph as well as feature constraints

to breach link privacy. The feature constraint may reduce the graph space and increase

the risk of privacy disclosure. We study the attacking model in which the adversary is

able to calculate the posterior probability of existence of a certain link by exploiting

the graph space Gd,S. If many graphs in the graph space have link (i, j), the original

graph is also very likely to have link (i, j), and hence the adversary’s posterior belief

about link (i, j) is given by

Pr[G(i, j) = 1|Gd,S] =
1

|Gd,S|
∑

Gt∈Gd,S

Gt(i, j).

Knowing the degree sequence d and the feature constraint S, the adversary can

generate and exploit the graph space via the Markov chain that starts with the

released graph G̃. The adversary can take the node pairs with highest posterior

beliefs as candidate links. This attacking model works because the convergence of
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the Markov chain does not depend on the initial point. Our evaluations showed that

some feature constraints can significantly enhance the adversary’s attacking accuracy

and the extent to which a feature constraint jeopardizes link privacy varies for different

graphs.

1.4 Spectral Analysis on Social Network Randomization

Social networks tend to contain some amount of randomness and some amount

of non-randomness. Consider an online social network where each node denotes an

individual and an edge between two nodes denotes a social interaction between the

two individuals. An individual’s social network tends to consist of members of the

same ethnic group, race, or social class. Intuitively, two friends of a given individual

are more likely to be friends with each other than they are with other randomly chosen

members. The edge connecting one individual’s two friends contains less randomness.

However, an individual also tends to have some number of random friends from other

groups and those edges between this individual and his random friends contain more

randomness. The amount of randomness versus non-randomness at node/edge levels

can clearly affect various properties of a social network.

As we discussed earlier, there are numerous features, measure and statistics that

characterize the graph from various perspectives. It is tedious, if not impossible,

to consider all the features in analyzing the social network. Among the three types

data utility measures mentioned in Section 1.3, we mainly focus on the graph spectral

properties in our work. It has been show that many topological features have an close

relationship with the graph spectrum [84]. This is also corroborated by our spectrum

preserving randomization procedures. The spectrum preserving randomization proce-

dures aim to preserve data utility via preserving some certain graph eigenvalues. Our

empirical studies show that when the spectral features are preserved during the edge

randomization, many topological features are preserved as well. In spectral analysis of

social network randomization, we mainly focus on two closely related questions: how
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the graph spectra reflect the difference between a real-world graph (or a randomized

one) and the random one, and how to quantify the difference.

A Framework of Non-randomness Measures. In Chapter 6, we present a frame-

work which provides a series of non-randomness measures at all granularity levels,

from edge, node, subgraph to the whole graph. Non-randomness specified at the edge

level can help users quantify how different a given interaction is from random ones.

Similarly, non-randomness at the node level can help users quantify how different a

given individual is from random nodes (those individuals actually not belonging to

this social network). In our framework, we first examine how much non-randomness

a given edge (social interaction) has, then measure a node’s non-randomness by ex-

amining the non-randomness values of edges connecting to this node. Finally, we

derive the non-randomness measure of the entire graph (subgraph) by incorporating

the non-randomness values of all edges within the graph (subgraph).

Our framework of non-randomness measure is based on our finding that the real-

world graphs exhibit the clear line orthogonality patterns in the adjacency spectral

space, and the patterns are closely related to their topological structure. We show

that graph with k clear communities displays k quasi-orthogonal lines in the space

spanned by the leading k eigenvectors of the adjacency matrix, and nodes from the

same community all lie on or around one line starting from the the origin with central

nodes far away from the origin and noisy nodes close to the origin. We further explain

why community structure results to such pattern in the adjacency spectral space, and

why it is different from the pattern in the normal or Laplacian spectral space. We show

that graph non-randomness can be obtained mathematically from the spectra of the

adjacency matrix of the network. Both theoretical and empirical studies in spectral

geometries of social networks show that our proposed non-randomness measures well

characterize and capture graph randomness.

Applications. One application of the graph non-randomness framework is the com-
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munity partition. Utilizing the spectral patterns corresponding to the community

structure in the adjacency spectral space, we develop a graph partition algorithm Ad-

jCut in Chapter 6. Our AdjCut algorithm is different from the normal or Laplacian

spectrum based community partition algorithms in two aspects. First, our AdjCut al-

gorithm partitions the graph by fitting the k-orthogonal lines in the adjacency spectral

space, while the normal or Laplacian based algorithms find the cluster in their spec-

tral spaces. Second, our AdjCut algorithm tends to reduce the edges non-randomness

among the graph communities, whereas the normal or Laplacian based algorithms

simply minimize the number of cuts among the communities.

In Chapter 7, we investigate another application of the graph non-randomness

measures: the fraud detection in social network settings. One merit of the graph

non-randomness framework is that it not only captures the randomness added by

the randomization process, but also more general randomness due to various types

of noise. For example, in the active attack, the adversaries join the network and

introduce fraudulent nodes and links to the original graph. The subgraph created by

the adversaries is expected to have patterns different from the original graph, thus

introducing randomness to the original graph to some extent. Therefore, the non-

randomness framework can be used to detect frauds in the social network. Based on

the non-randomness framework, we propose a general framework for detecting attacks

in social networks. Particularly, we focus on the random link attack (RLA) in which

the adversaries join the network, form some subgraph among themselves, and send

links to a randomly selected legitimate users. Many attacks in social networks can be

modeled (or partly modeled) as RLA, such as the bipartite core attack [19, 77] and

the distributed denial of service attack. We show that node non-randomness values

of the fraudulent nodes are significantly lower than normal nodes regardless how

the adversaries create links among themselves. Therefore, by identifying the nodes

with significantly low non-randomness measure, we can capture a large proportion of
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fraudulent nodes with few false positives.

1.5 Graph Features and Data Sets

In this section, we summarize some graph features and data sets that are commonly

used all over the work.

Features. The harmonic mean of the shortest distance h is defined in [61] as:

h =

{
1

n(n− 1)

∑

i6=j

1

dij

}−1

(1.1)

The inverse of the harmonic mean of the shortest distance, also known as the global

efficiency, varies between 0 and 1, with h−1 = 0 when all vertices are isolated and

h−1 = 1 when the graph is complete.

The modularity Q indicates the goodness of the community structure [23]. It is

defined as the fraction of all edges that lie within communities minus the expected

value of the same quantity in a graph in which the vertices have the same degrees

but edges are placed at random without regard for the communities. A value Q = 0

indicates that the community structure is no stronger than would be expected by

random chance and values other than zero represent deviations from randomness.

Formally, for a graph with g groups, the modularity is defined to be Q =
∑

i eij −
∑

ijk eijeki = Tr(e) − ‖e2‖ where ‖e‖ indicates the sum of all elements of e and

Tr(e) denotes the trace of a matrix (i.e., the sum of the entries on the diagonal).

The element eij is the fraction of edges in the original graph that connect vertices in

group i to those in group j. The modularity measure Q indicates the goodness of the

community structure, and the real-world unweighted networks with high community

structure generally have Q values within a range from 0.3 to 0.7 [73].

Q =
∑

i

[eii − (
∑

j

eij)
2], (1.2)

where eij is the proportion of edges between community i and j. Since the modularity
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measure is defined on a given partition, its change indicates how the quality of the

original partition changes along the perturbation.

The transitivity C is one type of clustering coefficient measure and characterizes

the presence of local loops near a vertex. It is formally defined as

C =
3N∆

N3

(1.3)

where N∆ is the number of triangles and N3 is the number of connected triples.

The subgraph centrality SC is used to quantify the centrality of vertex i based the

subgraphs [31].

SC =
1

n

n∑
i=1

SCi =
1

n

n∑
i=1

∞∑

k=0

P k
i

k!
(1.4)

where P k
i is the number of paths that start with i and end in i with length of k.

Data Sets. We give some basic information of the data sets that are commonly used

in our work, and some basic statistics are summarized in Table 1.1.

Table 1.1: Statistics summary of datasets
Network n m Partition Labels
karate 34 78 None

dolphins 62 159 None
polbooks 105 441 2 partitions
Enron 151 869 None
E-mail 1133 5451 None
polblogs 1222 16714 2 partitions
netsci 1589 2742 None

Facebook 63731 817090 None

polbooks : US politics book data [59] contains 105 vertices and 441 edges. In this

graph, nodes represent books about US politics sold by the online bookseller Ama-

zon.com while edges represent frequent co-purchasing of books by the same buyers

on Amazon. Nodes are separated into groups according to their political views:

“liberal”, “neutral”, or “conservative”. These alignments were assigned separately

by Mark Newman based on a reading of the descriptions and reviews of the books

posted on Amazon.



15

polblogs : political blogosphere data set [1] compiles the data on the links among

US political blogs, containing over 1,000 vertices and 15,000 edges. The blogs were

labeled as either liberal or conservative, based on incoming and outgoing links and

posts around the time of the 2004 presidential election. The original data is a directed

graph. Here we simply consider aij = 1 if the two blogs have a link between them.

Enron: the Enron email network was built from email corpus of a real organiza-

tion over the course covering a 3 years period. We used a pre-processed version of

the dataset provided by [85]. This dataset contains 252,759 emails from 151 Enron

employees, mainly senior managers. We regard there is an edge between node i and

j if there is at least 5 emails between them if not otherwise noted.

dolphins : the dolphins data set contains an undirected social network of 159 fre-

quent associations between 62 dolphins in a community living off Doubtful Sound,

New Zealand [67].

karate: the karate date set contains the network of 78 pairs of friendships between

the 34 members of a karate club at a US university, as described by Wayne Zachary

in 1977 [111].

E-mail : The E-mail graph is the network of e-mail interchanges between members

of the Univeristy Rovira i Virgili (Tarragona) (http://deim.urv.cat/~aarenas/

data/welcome.htm).

netsci : the net science data set contains a coauthorship network of scientists work-

ing on network theory and experiment, as compiled by M. Newman in May 2006

[74].

Facebook : the date set contains a subset of all of the user-to-user links from the

Facebook New Orleans networks [95]. The crawler started from a single user and

visited all friends of the user and their friends in a breadth-first-search fashion. The

crawler could only view users who made their profiles visible to the network. This is

an undirected graph though the crawler treated it like a directed graph. Since friend
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link on facebook is created with the confirmation on both side, we convert the result

of crawler to an undirected graph. It contains 63731 users and 817090 links. A link

between two users means they appear on each other’s friend list.



CHAPTER 2: RELATED WORKS

In this chapter, we briefly review some recently proposed privacy-preserving tech-

niques for publishing social network data. It is difficult to compare and/or categorize

current techniques systematically. However, we would like to point out that privacy-

preserving techniques are different from each other mainly in the following aspects:

(1) assumptions of attacking models and background knowledge of the adversaries; (2)

network data settings (simple or rich); (3) disclosure risks (identity disclosure, link

disclosure, attribute disclosure.); (4) privacy-preserving approaches (K-anonymity,

generalization, or randomization); and (5) utility preservation targets (graph features,

accuracy of structural queries, etc.). Before presenting privacy-preserving approaches,

we first review some attacks that can incur privacy breaches in social networks.

2.1 Privacy Attacks on Naive Anonymized Networks

The practice of naive anonymization replaces the personally identifying information

associated with each node with a random ID. However, an adversary can potentially

combine external knowledge with the observed graph structure to compromise pri-

vacy, de-anonymize nodes, and learn the existence of sensitive relationships between

explicitly de-anonymized individuals.

Active Attacks and Passive Attacks. Backstrom et al. presented two different

types of attacks on anonymized social networks [8].

• Active attacks: an adversary chooses an arbitrary set of target individuals,

creates a small number of new user accounts with edges to these target individ-

uals, and establishes a highly distinguishable pattern of links among the new

accounts. The adversary can then efficiently find these new accounts together
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with the target individuals in the released anonymized network.

• Passive attacks: an adversary does not create any new nodes or edges. Instead,

he simply constructs a coalition, tries to identify the subgraph of this coalition

in the released network, and compromises the privacy of neighboring nodes as

well as edges among them.

The active attack is based on the uniqueness of small subgraphs embedded in the

network. The constructed subgraph H by the adversary needs to satisfy the following

three properties in order to make the active attack succeed:

• There is no other subgraph S in G such that S and H are isomorphic.

• H is uniquely and efficiently identifiable regardless of G.

• The subgraph H has no non-trivial automorphisms.

Backstrom et al. showed that a randomly generated subgraph H formed by O(
√

log n)

nodes can compromise the privacy of arbitrarily target nodes with high probability

for any network. The passive attack is based on the observation that most nodes in

real social network data already belong to a small uniquely identifiable subgraph. A

coalition X of size k is initiated by one adversary who recruits k − 1 of his neigh-

bors to join the coalition. It assumes that the users in the coalition know both the

edges amongst themselves (i.e., the internal structure of H) and the names of their

neighbors outside X. Since the structure of H is not randomly generated, there is

no guarantee that it can be uniquely identified. The primary disadvantage of the

passive attack in practice, compared to the active attack, is that it does not allow one

to compromise the privacy of arbitrary users. The adversaries can adopt a hybrid

semi-passive attack: they create no new accounts, but simply create a few additional

out-links to target users before the anonymized network is released. We refer readers
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to [56] for more details on theoretical results and empirical evaluations on a real social

network with 4.4 million nodes and 77 million edges extracted from LiveJoural.com.

Structural Queries. Hay et al. studied three types of background knowledge to

be used by adversaries to attack naively-anonymized networks [47]. They modeled

adversaries’ external information as the access to a source that provides answers

to a restricted knowledge query Q about a single target node in the original graph.

Specifically, background knowledge of adversaries is modeled using the following three

types of queries.

• Vertex refinement queries: these queries describe the local structure of the graph

around a node in an iterative refinement way. The weakest knowledge query,

H0(x), simply returns the label of the node x; H1(x) returns the degree of

x; H2(x) returns the multiset of each neighbors’ degree, and Hi(x) can be

recursively defined as:

Hi(x) = {Hi−1(z1),Hi−1(z2), · · · ,Hi−1(zdx)}

where z1, · · · , zdx are the nodes adjacent to x.

• Subgraph queries: these queries can assert the existence of a subgraph around

the target node. The descriptive power of a query is measured by counting

the number of edges in the described subgraph. The adversary is capable of

gathering some fixed number of edges focused around the target x. By exploring

the neighborhood of x, the adversary learns the existence of a subgraph around

x representing partial information about the structure around x.

• Hub fingerprint queries: a hub is a node in a network with high degree and

high betweenness centrality. A hub fingerprint for a target node x, Fi(x), is a

description of the node’s connections to a set of designated hubs in the network

where the subscript i places a limit on the maximum distance of observable hub
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connections.

The above queries represent a range of structural information that may be available

to adversaries, including complete and partial descriptions of node’s local neighbor-

hoods, and node’s connections to hubs in the network.

Vertex refinement queries provide complete information about node degree while a

subgraph query can never express Hi knowledge because subgraph queries are exis-

tential and cannot assert exact degree constraints or the absence of edges in a graph.

The semantics of subgraph queries seem to model realistic adversary capabilities more

accurately. It is usually difficult for an adversary to acquire the complete detailed

structural description of higher-order vertex refinement queries.

Other Attacks. Narayanan and Shmatikov assumed that the adversary has two

types of background knowledge: aggregate auxiliary information and individual aux-

iliary information [71]. The aggregate auxiliary information includes an auxiliary

graph Gaux(Vaux, Eaux) whose members overlap with the anonymized target graph and

a set of probability distributions defined on attributes of nodes and edges. These

distributions represent the adversary’s (imperfect) knowledge of the corresponding

attribute values. The individual auxiliary information is the detailed information

about a very small number of individuals (called seeds) in both the auxiliary graph

and the target graph.

After re-identifying the seeds in target graph, the adversaries immediately get

a set of de-anonymized nodes. Then, by comparing the neighborhoods of the de-

anonymized nodes in the target graph with the auxiliary graph, the adversary can

gradually enlarge the set of de-anonymized nodes. During this propagation process,

known information such as probability distributions and mappings are updated re-

peatedly to reduce the error. The authors showed that even some edge addition and

deletion are applied independently to the released graph and the auxiliary graph,

their de-anonymizing algorithm can correctly re-identify a large number of nodes in
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the released graph.

2.2 K-anonymity Privacy Preservation via Edge Modification

The adversary aims to locate the vertex in the network that corresponds to the tar-

get individual by analyzing topological features of the vertex based on his background

knowledge about the individual. Whether individuals can be re-identified depends on

the descriptive power of the adversary’s background knowledge and the structural

similarity of nodes. To quantify the privacy breach, Hey et al. [47] proposed a general

model for social networks as follows:

Definition 2.1: K-candidate anonymity. A node i is K-candidate anonymous

with respect to a structure query Q if |candQ(i)| ≥ K where candQ(i) = {j ∈
V |Q(j) = Q(i)}. A graph satisfies K-candidate anonymity with respect to Q if all

the nodes are K-candidate anonymous with respect to Q.

In other words, there exist at least K − 1 other nodes in the graph that match

query Q(i), and the nodes in candQ(i) are indistinguishable with respect to query Q.

Then, releasing a K-candidate anonymous graph has less risk to breach the privacy.

Three types of queries (vertex refinement queries, subgraph queries, and hub fin-

gerprint queries) were presented and evaluated on the naive anonymized graphs. Hay

et al. presented a generalization technique that groups nodes into super-nodes and

edges into super-edges to satisfy the K-anonymity [47].

Several methods have been investigated to prevent node re-identification based

on the K-anonymity concept. These methods differ in the types of the structural

background knowledge that an adversary may use.

K-degree Generalization . Liu and Terzi pointed out that the degree sequences of

real-world graphs are highly skewed, and it is usually easy for adversaries to collect

the degree information of a target individual [63]. They investigated how to modify

a graph via a set of edge addition (and/or deletion) operations in order to construct
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a new K-degree anonymous graph, in which every node has the same degree with

at least K − 1 other nodes. The K-degree anonymity property prevents the re-

identification of individuals by the adversaries with prior knowledge on the number

of social relationships of certain people (i.e., vertex background knowledge). The

authors imposed a requirement that the minimum number of edge-modifications is

made in order to preserve the utility.

Problem 2.1: Given a graph G(V, E), construct a new graph G̃(Ṽ , Ẽ) via a set of

edge-addition operations such that 1) G̃ is K-degree anonymous; 2)V = Ṽ ; and 3)

Ẽ ∩ E = E.

The proposed algorithm is outlined below.

1. Starting from the degree sequence d of the original graph G(V, E), construct a

new degree sequence d̃ that is K-anonymous and the L1 distance, ‖d̃ − d‖1 is

minimized.

2. Construct a new graph G̃(Ṽ , Ẽ) such that dG̃ = d̃, Ṽ = V , and Ẽ = E (or

Ẽ ∩ E ≈ E in the relaxed version).

The first step is solved by a linear-time dynamic programming algorithm while the

second step is based on a set of graph-construction algorithms given a degree sequence.

The authors also extended their algorithms to allow for simultaneous edge additions

and deletions. Their empirical evaluations showed that the proposed algorithms can

effectively preserve the graph utility (in terms of topological features) while satisfying

the K-degree anonymity.

K-neighborhood Anonymity. Zhou and Pei assumed that the adversary knows

subgraph constructed by the immediate neighbors of a target node [113]. A node u is

K-neighborhood anonymous if there exist at least K−1 other nodes v1, . . . , vK−1 ∈
V such that the subgraph constructed by the immediate neighbors of each node

v1, · · · , vK−1 is isomorphic to the subgraph constructed by the immediate neighbors of
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u. A graph satisfies K-neighborhood anonymity if all the nodes are K-neighborhood

anonymous. The definition can be extended from the immediate neighbor to the

d-neighbors (d > 1) of the target vertex, i.e., the vertices within distance d to the

target vertex in the network.

Problem 2.2: Given a graph G(V, E), construct a new graph G̃(Ṽ , Ẽ) satisfying the

following conditions: 1) G̃ is K-neighborhood anonymous; 2)V = Ṽ ; 3) Ẽ ∩ E = E;

and 4) G̃ can be used to answer aggregate network queries as accurately as possible.

The simple case of constructing a K-neighborhood anonymous graph satisfying

condition 1-3) was shown as NP -hard. The proposed algorithm is outlined below.

1. Extract the neighborhoods of all vertices in the network. A neighborhood compo-

nent coding technique, which can represent the neighborhoods in a concise way,

is used to facilitate the comparisons among neighborhoods of different vertices

including the isomorphism tests.

2. Organize vertices into groups and anonymize the neighborhoods of vertices in

the same group until the graph satisfies K-anonymity. A heuristic of starting

with vertices with high degrees is adopted since these vertices are more likely

to be vulnerable to structural attacks.

Zhou and Pei studied social networks with vertex attributes information in addition

to the unlabeled network topology [113]. The vertex attributes form a hierarchy.

Hence, there are two ways to anonymize the neighborhoods of vertices: generalizing

vertex labels and adding edges. In terms of utility, it focuses on using anonymized

social networks to answer aggregate network queries.

K-automorphism Anonymity. Zou et al. adopted a more general assumption:

the adversary can know any subgraph around a certain individual [115]. If such a

subgraph can be identified in the anonymized graph with high probability, user α has
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a high identity disclosure risk. The authors aimed to construct a graph G̃ so that for

any subgraph X ⊂ G, G̃ contains at least K subgraphs isomorphic to X.

Definition 2.2: Graph isomorphism and automorphism. Given two graphs

G1(V1, E1) and G2(V2, E2), G1 is isomorphic to G2 if there exists a bijective function

f : V1 → V2 such that for any two nodes u, v ∈ V1, (u, v) ∈ E1 if and only if

(f(u), f(v)) ∈ E2. If G1 is isomorphic to itself under function f , G1 is an automorphic

graph, and f is called an automorphic function of G1.

Definition 2.3: K-automorphic graph. Graph G is a K-automorphic graph if 1)

there exist K−1 non-trivial automorphic functions of G, f1, . . . , fK−1; and 2) for any

node u, fi(u) 6= fj(u) (i 6= j).

If the released graph G̃ is a K-automorphic graph, when the adversary tries to re-

identify node u through a subgraph, he will always get at least K different subgraphs

in G̃ that match his subgraph query. The authors then considered the following

problem:

Problem 2.3: Given the original graph G, construct graph G̃ such that E ⊆ Ẽ and

G̃ is a K-automorphic graph.

The following steps briefly show the framework of their algorithm:

1. Partition graph G into several groups of subgraphs {Ui}, and each group Ui

contains Ki ≥ K subgraphs {Pi1, Pi2, . . . , PiKi
} where any two subgraphs do

not share a node or edge.

2. For each Ui, make Pij ∈ Ui isomorphic to each other by adding edges. Then,

there exists function f
(i)
s,t (·) under which Pis is isomorphic to Pit.

3. For each edge (u, v) across two subgraphs, i.e. u ∈ Pij and v ∈ Pst (Pij 6=
Pst), add edge

(
f

(i)
j,πj(r)

(u), f
(s)
t,πt(r)

(v)
)
, where πj(r) = (j + r) mod K, r =

1, 2, . . . , K − 1.
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After the modification, for any node u, suppose u ∈ Pij, define fr(·) as fr(u) =

f
(i)
j,πj(r)

(u), r = 1, . . . , K − 1. Then, fr(u), r = 1, . . . , K − 1, are K − 1 non-trivial

automorphic functions of G̃, and for any s 6= t, fs(u) 6= ft(u), which guarantees the

K-automorphism.

To better preserve the utility, the authors expected that the above algorithm in-

troduces the minimal number of fake edges, which implies that subgraphs within one

group Ui should be very similar to each other (so that Step 2 only introduces a small

number of edges), and there are few edges across different subgraphs (so that Step

3 will not add many edges). This depends on how the graph is partitioned. If G is

partitioned into fewer subgraphs, there are fewer crossing edges to be added. How-

ever, fewer subgraphs imply that the size of each subgraph is large, and more edges

within each subgraph need to be added in Step 2. The authors proved that to find the

optimal solution is NP -complete, and they proposed a greedy algorithm to achieve

the goal.

Recently, W. Wu et al. [101] proposed a concept called K-symmetry model similar

to K-automorphism. Both of the methods aim to modify the graph so that for any

node in graph G, there are at least K-1 other nodes automorphic to the node. The

difference is that the method in [101] achieve this goal by the orbit copying operation,

which adds both edges and nodes. In term of the data utility, different from some

K-anonymity approaches such as [63, 113, 115] and feature preserving randomization

approaches such as [104, 106], the graph modification procedure in [101] does not

aim to preserve one or some particular features. To retrieve meaningful information

about the original graph, the authors develop a sampling method that reconstructs an

approximate version of the original graph, and the analyst calculates graph features

from the approximate version instead of from the anonymized one directly.

Comparison of K-anonymity and randomization approaches. Bonchi et

al. [12] compared the K-anonymity, especially the K-degree anonymity approach,



26

with the randomization procedures on both the privacy and utility aspects. The

authors proposed a new information-theoretic perspective on quantifying the level

of anonymity that is obtained by random perturbation. Their work quantifies the

anonymity level provided by the randomization by means of entropy. Based on thor-

ough experimentation on large datasets and various features, the authors showed that

randomization techniques achieve meaningful levels of obfuscation while preserving

most of the features of the original graph. They also claimed that sparsification,

which removes true edges randomly, outperforms perturbation, as it maintains better

the characteristics of the graph at the same anonymity levels.

In [107], the authors also compare randomization approaches with the K-anonymity.

Their work adopts a different metric to measure the level of anonymity. Their metric

aims to guarantee that the probability for the adversary to successfully re-identity an

arbitrary individual in the randomized graph is less than a given threshold. When the

entropy based measure satisfies the threshold, it is still possible for a small number

of individuals not to meet the privacy anonymity level.

2.3 Privacy Preservation via Generalization

To preserve privacy, both K-anonymity and randomization approaches modify the

graph structure by adding and (or) deleting edges and then release the detailed graph.

Different from the above two approaches, generalization approaches can be essentially

regarded as grouping nodes and edges into partitions called super-nodes and super-

edges. The idea of generalization has been well adopted in anonymizing tabular data.

For social network data, the generalized graph, which contains the link structures

among partitions as well as the aggregate description of each partition, can still be

used to study macro-properties of the original graph.

Hay et al. applied structural generalization approaches that groups nodes into clus-

ters, by which privacy details about individuals can be hidden properly [47]. To en-

sure node anonymity, they proposed to use the size of a partition as a basic guarantee
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against re-identification attacks. Their method obtains a vertex K-anonymous super-

graph by aggregating nodes into super-nodes and edges into super-edges, such that,

each super-node represents at least K nodes and each super-edge represents all the

edges between nodes in two super-nodes. Because only the edge density is published

for each partition, it is impossible for the adversary to distinguish between individuals

in partition. Note that more than one partition may be consistent with a knowledge

query about target individual x. Hence, the size of a partition is used to provide a

conservative guarantee against re-identification and there exists an improved bound

on the size of candidate sets.

To retain utility, the partitions should fit the original network as closely as possible

given the anonymity condition. The proposed method estimates fitness via a maxi-

mum likelihood approach. The likelihood is defined as one over the size of possible

worlds implied by the partition. For any generalization G, the number of edges in

the super-node X is denoted as c(X,X), the number of edges between X and Y is

denoted as c(X,Y ), the set of possible worlds that are consistent with G is denoted

by W(G) whose size is given by:

|W(G)| =
∏
X∈V

(
1
2
|X|(|X| − 1)

c(X,X)

) ∏
X,Y ∈V

( |X||Y |
c(X,Y )

)

The likelihood for a graph g ∈ W(G) is then 1/|W(G)|. The partitioning of nodes is

chosen so that the generalized graph satisfies privacy constraints and maximizes the

utility (1/|W(G)|).
Their algorithm searches the approximate optimal partitioning, using simulated

annealing [82]. Starting with a single partition containing all nodes, the algorithm

proposes a change of state by splitting a partition, merging two partitions, or moving a

node to a different partition. The movement from one partition to next valid partition

is always accepted if it increases the likelihood and accepted with some probability if

it decreases the likelihood. Search terminates when it reaches a local maximum.
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One problem of this generalization approach is that since the released network only

contains a summary of structural information about the original network (e.g., degree

distribution, path lengths, and transitivity), users have to generate some random

sample instances of the released network. As a result, uncertainty may arise in the

later analysis since the samples come from a large number of possible worlds.

2.4 Feature Reconstruction from the Randomized Graph

Wu et al. focused on whether we can reconstruct a graph Ĝ from the randomized

one G̃ such that Ĝ is closer to the original graph G than G̃ in terms of some feature f ,

i.e., |f(Ĝ)− f(G)| ≤ |f(G̃)− f(G)| [99]. If a good reconstructed graph can be found,

the data analyst or the attacker can calculate graph features or breach privacy based

on the reconstructed graph Ĝ instead of the randomized one G̃. In particular, Wu

et al. studied the use of low rank approximation approach to reconstruct structural

features from the graph randomized via Rand Add/Del.

Recall that the edge randomization process can be written in the matrix form

Ã = A + E, where A (Ã) is the adjacency matrix of the original (randomized) graph

and E is the perturbation matrix. In the setting of randomizing numerical data, a

data set U with m records of n attributes is perturbed to Ũ by an additive noise data

set V with the same dimensions as U . In other words, Ũ = U + V . Distributions

of U can be approximately reconstructed from the perturbed data Ũ using distri-

bution reconstruction approaches (e.g., [3, 4]) when some a-priori knowledge (e.g.,

distribution, statistics etc.) about the noise V is available. Specifically, Agrawal and

Aggawal [3] provided an expectation-maximization (EM) algorithm for reconstructing

the distribution of the original data from perturbed observations. However, it is un-

clear whether similar distribution reconstruction methods can be derived for network

data. This is because 1) it is hard to define distribution for network data; and 2)

the randomization mechanism for network data is based on the positions of randomly

chosen edges rather than the independent random additive values for all entries for
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numerical data.

The low rank approximation has been well investigated as a point-wise reconstruc-

tion method in the numerical setting. A spectral filtering based reconstruction method

was first proposed in [52] to reconstruct original data values from the perturbed data.

Similar methods (e.g., PCA based reconstruction method [51], SVD based reconstruc-

tion method [41]) were also investigated. All methods exploited spectral properties

of the correlated data to remove the noise from the perturbed one.

Let λi (λ̃i) be A’s (Ã’s) i-th largest eigenvalue in magnitude whose eigenvector is

xi (x̃i). Then, the rank l approximations of A and Ã are respectively given by:

Al =
l∑

i=1

λixix
T
i and Ãl =

l∑
i=1

λ̃ix̃ix̃
T
i .

By choosing a proper l, Wu et al. showed that Ãl can preserve the major information

of the original graph and filter out noises added in the rest dimensions. This is because

real-world data is usually highly correlated in a low dimensional space while the

randomly added noise is distributed (approximately) equally over all dimensions. In

Ãl, those entries close to 1 are more likely to have true edges while those entries close

to 0 are less likely to have edges. Therefore the reconstructed graph Â can be simply

derived by setting the 2m largest off-diagonal entries in Ãl as 1, and 0 otherwise.

Empirical evaluations showed that many accurate features can be reconstructed via

the low rank approximation even when the magnitude of additive noise k equals to

0.8m.

Wu et al. also empirically studied the link disclosure risk by comparing the number

of different edges between the reconstructed graph and the original one, i.e. ‖Â−A‖2
F .

The preliminary results [99] showed that the reconstructed graph has more false links

compared with the randomized graph Ã, indicating that the link disclosure risk of

the reconstructed graph may not be higher than the randomized graph.
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2.5 Anonymizing Rich Graphs

Real social network sources usually contain much richer information in addition to

the simple graph structure. For example, in an online social network, the main entities

in the data are individuals whose profiles can list lots of demographic information,

such as age, gender and location, as well as other sensitive personal data, such as

political and religious preferences, relationship status, etc. Between users, there are

many different kinds of interactions such as friendship and email communication.

Interactions can also involve more than two participants, e.g., many users can play

a game together. Bhagat et al. [11] referred to the connections formed in the social

networks as rich interaction graphs. Various queries on the network data are not

simply about properties of the entities in the data, or simply about the pattern of the

link structure in the graph, but rather on their combination. Thus it is important for

the anonymization to mask the associations between entities and their interactions.

Notice that for rich social networks, a K-anonymous social network may still leak

privacy. For example, if all nodes in a K-anonymous group are associated with

some sensitive information, the adversary can derive that sensitive attribute of target

individuals. Mechanism analogous to l-diversity [68] can be applied here. Several

rich graph data models, which may contain labeled vertices/edges in addition to the

structural information associated with the network, have been investigated in the

privacy-preserving network analysis.

Link Protection in Rich Graphs. Zheleva et al. considered a graph model, in

which there are multiple types of edges but only one type of nodes [112]. Edges are

classified as either sensitive or non-sensitive. The problem of link re-identification

is defined as inferring sensitive relationships from non-sensitive ones. The goal is to

attain privacy preservation of the sensitive relationships, while still producing useful

anonymized graph data. They proposed to use the number of removed non-sensitive

edges to measure the utility loss. Several graph anonymization strategies were pro-
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posed, including the removal of all sensitive edges and/or some non-sensitive edges,

and the cluster-edge anonymization. In the cluster-edge anonymization approach, all

the anonymized nodes in an equivalence class are collapsed into a single super-node

and a decision is made on which edges to be included the collapsed graph. One

feasible way is to separately publish the number of edges of each type between two

equivalence classes. The difference between the cluster-edge anonymization approach

and the generalization approach in [47] is that the former aggregates edges by type

to protect link privacy while the latter clusters vertices to protect node identities.

Campan and Truta considered an undirected graph model, in which edges are not

labeled but vertices are associated with some attributes including identifier, quasi-

identifier, and sensitive attributes [15]. Those identifier attributes such as name and

SSN are removed while the quasi-identifier and the sensitive attributes as well as the

graph structure are released. To protect privacy in network data, they adopted the

K-anonymity model for both the quasi-identifier attributes and the quasi-identifier

relationship homogeneity. The goal is that any two nodes from any cluster are indis-

tinguishable based on either their relationships or their attributes. They also proposed

an edge generalization based method for structural anonymization. They perform so-

cial network data clustering followed by anonymization through cluster collapsing.

Specifically, the method first partitions vertices into clusters and attaches the struc-

tural description (i.e., the number of nodes and the number of edges) to each cluster.

From the privacy standpoint, an original node within such a cluster is indistinguish-

able from other nodes. Then all vertices in the same cluster are made uniform with

respect to the quasi-identifier attributes and the quasi-identifier relationship. This

homogenization is achieved by using generalization, for both the quasi-identifier at-

tributes and the quasi-identifier relationship. All vertices in the same cluster are

collapsed into one single vertex (labeled by the number of vertices and edges in the

cluster) and edges between two clusters are collapsed into a single edge (labeled with
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the number of edges between them). The method takes into account the information

loss due to both the attribute generalization and the changes of structural properties.

Users can tune the process to balance the tradeoff between preserving more structural

information and preserving more vertex attribute information.

Anonymization Techniques on Rich Graphs. Cormode et al. [22] studied a

particular type of network data that can be modeled as bipartite graphs – there are

two types of entities, and an association only exists between two entities of different

types. One example is the pharmacy (customers buy products). The association

between two nodes (e.g., who bought what products) is considered to be private and

needs to be protected while properties of some entities (e.g., product information

or customer information) are public. Their anonymization method can preserve the

graph structure exactly by masking the mapping from entities to nodes rather than

masking or altering the graph structure. As a result, analysis principally based on the

graph structure is correct. Privacy is ensured in this approach because given a group

of nodes, there is a secret mapping from these nodes to the corresponding group of

entities. There is no information published that would allow an adversary to learn,

within a group, which node corresponds to which entity.

Bhagat et al. adopted a flexible representation of rich interaction graphs which is

capable of encoding multiple types of interactions between entities [11]. Interactions

involving large number of participants are represented by a hypergraph, denoted by

G(V, I, E). V is the node set. Each entity v ∈ V has a hidden identifier u and a set of

properties. Each entity in I is an interaction between/among a subset of entities in V .

E is the set of hyperedges: for v ∈ V and i ∈ I, an edge (v, i) ∈ E represents node v

participates in interaction i. The authors assumed that adversaries know part of the

links and nodes in the graph. They presented two types of anonymization techniques

based on the idea of grouping nodes in V into several classes. The authors pointed

out that merely grouping nodes into several classes can not guarantee the privacy.
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For example, consider the case where the nodes within one class form a complete

graph via a certain interaction. Then, once the adversary knows the target is in the

class, he can be sure that the target must participate in the interaction. The authors

provided a safety condition, called class safety to ensure that the pattern of links

between classes does not leak information: each node cannot have interactions with

two (or more) nodes from the same group. Note that the released graph contains the

full topological structure of the original graph, some structural attacks such as the

active attack and passive attack [8] can be applied here to de-anonymize the nodes in

V . However, the adversary cannot further obtain the attributes of the target, for the

attributes of those nodes within the same class are mixed together, which is similar

to the anatomy approach [102] for the tabular database.

Beyond the ongoing privacy-preserving social network analysis which mainly fo-

cuses on un-weighted social networks, in [26, 65], the authors studied the situations

in which the network edges as well as the corresponding weights are considered to be

private.

Das et al. considered the problem of anonymizing the weights of edges in the social

network [26]. The authors proposed a framework to re-assign weights to edges so that

a certain linear property of the original graph can be preserved in the anonymized

graph. A linear property is the property that can be expressed by a specific set of linear

inequalities of edge weights. If the newly assigned edge weights also satisfy the set of

linear inequalities, the corresponding linear property is also preserved. Then, finding

new weight for each edge is a linear programming problem. The authors discussed two

linear properties in details, single source shortest paths and all pairs shortest paths,

and proposed the algorithms that can efficiently construct the corresponding linear

inequality sets. Their empirical evaluations showed that the proposed algorithms can

considerably improve the edge k-anonymity of the modified graph, which prevents

the adversary to identify an edge by its weight.
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Liu et al. also proposed two randomization strategies aiming to preserve the shortest

paths in the weighted social network [65]. The first one, which is easier to implement,

is the Gaussian randomization multiplication strategy. The algorithm multiplies the

original weight of each edge by an i.i.d. Gaussian random variable with mean 1 and

variance σ2. In the original graph, if the total weight of the shortest path between two

nodes is much smaller than that of the second shortest path, the strategy can preserve

the original shortest path with high probability. The authors further proposed the

second strategy which can preserve a set of the target shortest paths or even all the

shortest paths in the graph. The authors pointed out that all edges can be divided

into three categories: the all-visited edge which belongs to all shortest paths, the non-

visited edge which belongs to no shortest path, and the partially-visited edge which

belongs to some but not all shortest paths. In order to preserve the target shortest

paths, one can then reduce the weight of all-visited edges, increase the weight of non-

visited edges, and perturb the weight of partially-visited edges within a certain range.

The weight sum of a target shortest path is changed and is probably not the same as

the original one, but the difference is minimized by the proposed greedy perturbation

algorithm.

2.6 Differential Privacy for Querying Social Network Data

Differential privacy [28, 29] is a paradigm of post-processing the output of queries

such that the inclusion or exclusion of a single individual from the data set makes no

statistical difference to the results found. Differential privacy is agnostic to auxiliary

information an adversary may possess, and provides guarantees against arbitrary at-

tacks. Differential privacy is achieved by introducing randomness into query answers.

Definition 2.4: (ε-differential privacy) A mechanism K is ε-differentially private if

for all databases x and x′ differing on at most one element, and any subsets of outputs

S ⊆ Range(K),

Pr[K(x) ∈ S] ≤ exp(ε)× Pr[K(x′) ∈ S].
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Differential privacy provides formal privacy guarantees that do not depend on an

adversary’s background knowledge (including access to other databases) or compu-

tational power. It focuses on comparing the risk to an individual when included in,

versus when not included in the database, which is different from prior work on com-

paring an adversary’s prior and posterior views of an individual. In other words, it

achieves the ad omina privacy goal: anything that can be learned about a participant

from the database should be learnable without access to the database.

Theorem 2.1: [29] For f : D → Rd, the mechanism Kf that adds independently

generated noise with distribution Lap(∆f/ε) to each of the d output terms satisfies

ε-differential privacy, where the sensitivity, ∆f , is ∆f = max
x,x′

‖f(x) − f(x′)‖1 for all

x, x′ differing in at most one element.

The mechanism for achieving differential privacy computes the sum of the true

answer and random noise generated from a Laplace distribution. The magnitude of

the noise distribution is determined by the sensitivity of the computation and the

privacy parameter specified by the data owner. The sensitivity of a computation

bounds the possible change in the computation output over any two neighboring

databases (differing at most one record). The privacy parameter controls the amount

by which the distributions induced by two neighboring databases may differ (smaller

values enforce a stronger privacy guarantee).

Enabling accurate analysis of social network data while preserving differential pri-

vacy has been little studied except a few recent results: techniques for computing

properties such as degree distributions [48] and clustering coefficient [80]. In social

network analysis, the robustness of various graph features such as modularity often

has a high sensitivity, which is different from traditional aggregate functions (often

with low sensitivity values) on tabular data.



CHAPTER 3: LINK DISCLOSURE ANALYSIS

In this chapter, we investigate the link privacy disclosure risk of a randomized

graph. We focus on the situation when the existence of a certain link is considered

confidential. When releasing or outsourcing network data, there exist some scenarios

that node identities (and even entity attributes) are not confidential but sensitive links

between target individuals are confidential and should be protected. For example, in a

transaction network, an edge denoting a financial transaction between two individuals

is considered confidential while nodes corresponding to individual accounts is non-

confidential. To make the discussion concise, we simply assume that the identity of

each node is released with the data. In Chapter 4, we will investigate the node privacy

disclosure risk and the combination of both the link and node privacy disclosure.

To prevent the entry-wise privacy disclosure in publishing data, randomization is

a widely adopted strategy for privacy-preserving data analysis. For numerical data,

additive noise based randomization approaches have been well investigated in privacy-

preserving data mining (e.g., [3, 4]). For categorical data, randomized response model

has also been applied to prevent the privacy disclosure [39, 40, 93]. Randomization

can also be used to prevent the disclosure of link privacy.

The process of randomization and the randomization parameter k are assumed to

be published along with the released graph. By using adjacency matrix, the edge

randomization process can be expressed in the matrix form Ã = A + E, where E =

(eij)n×n is the perturbation matrix: eij = eji = 1 if edge (i, j) is added, est =

ets = −1 if edge (s, t) is deleted, and 0 otherwise. Naturally, edge randomization

can be considered as an additive-noise perturbation. After the randomization, the
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randomized graph is expected to be different from the original one. As a result, the

node identities as well as the true sensitive or confidential relationship between two

nodes are protected. However, we should note that the randomization approaches

protect against re-identification in a probabilistic manner.

In Section 3.1, we derive the attacker’s prior belief on the existence of a link as

well as his posterior belief on the link when observing an existing (or non-existing)

link in the released graph. Based on the prior and posterior beliefs, we also derive

the minimal randomization magnitude needed to preserve privacy to a given level. In

Section 3.2, we derive the enhanced the posterior belief on a link that exploits the

similarity between the two nodes. Some results in this chapter are also reported in

[103, 106].

3.1 Randomization and Link Privacy

The link disclosure problem of edge-randomized graphs focuses on networks where

node identities (and even entity attributes) are not confidential but sensitive links be-

tween target individuals are confidential. The problem can be regarded as, compared

to not releasing the graph, to what extent releasing a randomized graph G̃ jeopardizes

the link privacy.

When it comes to link privacy, it is usually aij = 1 that people want to hide, not

aij = 0 and attackers are capable of calculating posterior probabilities. Formally, we

use Pr(aij = 1) to denote the users’ prior belief about the event of aij = 1 and use

Pr(aij = 1|G̃) to denote its posterior belief about aij = 1. The released graph G̃ is

regarded as jeopardizing the privacy if Pr(aij = 1|G̃) > Pr(aij = 1). If only the basic

statistics of a graph such as m and n are given, the adversary’s prior belief about the

existence of edge (i, j) (without exploiting the released graph) can be calculated as

Pr(aij = 1) =
2m

n(n− 1)
. (3.1)

For Rand Add/Del, with the released graph and perturbation parameter k, the pos-
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terior belief when observing ãij is

Pr(aij = 1|ãij = 1) =
m− k

m
, and Pr(aij = 1|ãij = 0) =

k

N −m
, (3.2)

where N =
(

n
2

)
. Next, we give the posterior probability of Pr(aij = 1|ãij) under Rand

Switch randomization strategy.

We here assume that the attacker has no other information except each vertex’s

degree which is kept unchanged in the perturbed data for the Rand Switch strategy.

Intuitively, Si = di

n−1
is the probability that a randomly selected vertex turns out an

neighbor of vertex i’s. Therefore, the prior probability can be shown as

Pr(aij = 1) = Si + Sj − SiSj. (3.3)

The posterior probability Pr(aij = 1|ãij = 1) is the probability that an edge (i, j) in

G̃ is a true edge in G. let ci denote the number of false edges associated to vertex i in

graph G̃, i.e. ci = 1
2

∑n
j=1 |ãij−aij|, and E(ci) is its expectation. Then, Pi = 1− E(ci)

di

is vertex i’s proportion of true edges. Hence,

Pr(aij = 1|ãij = 1) = Pi + Pj − PiPj (3.4)

Similarly, Qi = E(ci)
n−1−di

is vertex i’s proportion of false edges,

Pr(aij = 1|ãij = 0) = Qi + Qj −QiQj (3.5)

The key of calculating (3.4) and (3.5) is to calculate E(ci). Here, we give the result

on its calculation.

Result 3.1: For Rand Switch, denote ci = 1
2

∑
j 6=i |ãij − aij|, 0 ≤ ci ≤ Ci :=

min{di, n − 1 − di}. Denote qi as the probability that a switching occurs to ver-

tex i. It can be approximated as qi ≈ di

m
+

∑
k 6=i

dk

m
· di−aik

m−dk
. The expectation of ci is

shown as

E(ci) = (0, 1, 2, . . . , Ci) ((1− qi)I + qiPi)
k e1.
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where e1 = (1, 0, 0, . . . , 0)T , Pi = (p
(i)
st )(Ci+1)×(Ci+1) and

p
(i)
st =





t2

di(n−1−di)
, (s = t− 1)

t(n−1−2t)
di(n−1−di)

, (s = t)

(di−t)(n−1−di−t)
di(n−1−di)

, (s = t + 1)

0, (otherwise).

(3.6)

Proof. The probability that a switching occurs to vertex is a constant. By saying a

switch occurs to vertex i, we mean that one of the two switched edges connects to

vertex i. Suppose one switch occurs to vertex i. In the ith row of the adjacency

matrix ai = (ai1, ai2, . . . , ai,n), one component, say aip, changes from 1 to 0 and

another component aiq change from 0 to 1. Equivalently, we replace a 1 in ai. Since

we select the edges uniformly, every 1 (0) has same possibility to become 0 (1). Given

r of the k times of switch to vertex i, we first calculate E(ci|r). The change of ci

follows the Markov chain with the stationary probabilities, and ci has finite states:

0, 1, . . . , Ci. Then, it is easy to establish the transition matrix Pi whose elements

p
(i)
st = Pr(c

(n+1)
i = s|c(n)

i = t) is shown in (3.6). The initial probability distribution

vector is e1. Hence,

E(ci|r) =

Ci∑
x=0

x Pr(ci = x) = (0, 1, 2, . . . , Ci)P
r
i e1.

E(ci) =
k∑

x=0

E(ci|r = x) Pr(r = x) =
k∑

x=0

(
k

x

)
qx
i (1− qi)

k−x E(ci|r = x)

= (0, 1, 2, . . . , Ci) ((1− qi)I + qiPi)
k e1.

3.1.1 Link Privacy Protection vs. Perturbation k

As the magnitude of the perturbation increases, there are more false edges in the

network, and the released graph approaches to a pure random graph. Therefore, large
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magnitude of perturbation can enhance the privacy protection, but, on the other

hand, may decrease the utility, resulting a dataset useless for mining any meaningful

information. In this section, we develop our formal privacy protection measures.

We define the absolute measure of protection as

τa(i, j) = 1−max{Pr(aij = 1 | ãij = 0), Pr(aij = 1 | ãij = 1)} (3.7)

Note that the second term in (3.7) can be considered as the maximal suspicion of

existing aij = 1. The relative measure of protection is defined as

τr(i, j) =
τa(i, j)

1− Pr(aij = 1)
(3.8)

Our following result shows how to calculate the privacy measure.

Result 3.2: For Rand Add/Del, assume k ≤ (1− r)m where r = 2m
n(n−1)

is the sparse

ratio, we have

τa(i, j) =
k

m
, τr(i, j) =

kN

m(N −m)

where N =
(

n
2

)
.

For Rand Switch, after k switches, for vertex i, let ci denote the number of false

edges associated to vertex i in graph G̃, i.e. ci = 1
2

∑n
j=1 |ãij − aij|, and E(ci) is its

expectation. Then,

τa(i, j) = (1− Pi)(1− Pj), (3.9)

τr(i, j) =
1− Pi

1− Si

· 1− Pj

1− Sj

, (3.10)

where Pi = 1− E(ci)
di

, and Si = di

n−1
.

Proof. The result for Rand Add/Del is easy to derive. We only give the proof for

Rand Switch. Notice that Pi is a decreasing function of k and Qi is an increasing with
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k, and

lim
k→∞

Pi = lim
k→∞

Qi =
di

n− 1
.

We thus have, Pi ≥ Qi. As a result

Pi + Pj − PiPj ≥ Qi + Qj −QiQj.

(3.9) and (3.10) is then derived by incorporating (3.4) and (3.3) in (3.8).

The measures of protection (τa and τr) are defined in terms of one individual

edge. In the privacy preserving data mining, one natural question is how many

perturbations we need such that we can guarantee the protection for all individual

edges are above some threshold. Formally, we expect

• For Rand Add/Del strategy,

J1(k) = min
i,j

τr(i, j) =
kN

m(m−N)
> 1− ε.

• For Rand Switch strategy,

J2(k) = min
i,j

τr(i, j) = min
i,j

{
1− Pi

1− Si

· 1− Pj

1− Sj

}
> 1− ε.

It is easy to check that the protection for all individual edges remains the same

with Rand Add/Del strategy. The relative measure in Rand Switch is a function of

k, di, and dj. Our next result shows we only need to consider the protection of the

edges that connect the two vertices with the smallest degrees.

Result 3.3: We re-numerate the vertices by their degree in ascending order: d1 ≤
d2 ≤ · · · ≤ dn,

J2(k) =
1− P1

1− S1

· 1− P2

1− S2

, (3.11)

Proof. We first prove that given a fixed k, if two vertices i and j, di ≤ dj, then

1− Pi

1− Si

≤ 1− Pj

1− Sj

. (3.12)
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Table 3.1: τr vs. k for two strategies on Political Book data

1− ε Rand Add/Del Rand Switch
0.1 48 54
0.2 96 84
0.3 150 114
0.4 210 141
0.5 282 174
0.6 372 210
0.7 492 258
0.8 654 318
0.9 936 420

To a single vertex i, Rand Switch strategy actually rearranges the position of 1 and

0 on the ith row of the adjacency matrix. A false edge of vertex i corresponds to a

1 reallocated elsewhere in the ith row of the adjacency matrix. Hence, to produce

the same proportion of false edges, the number of 0’s in j-th row of adjacency matrix

should at least increase to
dj

di
(n− 1− di):

E(ci)

n− 1− di

≤ E(cj)
dj

di
(n− 1− di)

≤ E(cj)
dj

di
(n− 1− dj)

,

and with some simple deduction (3.12) follows. Since d1 ≤ d2 ≤ · · · ≤ dn, then by

the above property, (3.11) stands.

Table 3.1 shows the number of perturbations we need for Rand Add/Del strategy

and Rand Switch when we aim to achieve different levels of privacy protection (1 −
ε). Similarly Figure 3.1 shows how graph characteristics vary with different privacy

protection thresholds for both Rand Add/Del and Rand Switch strategies. We can

see the higher the privacy protection we aim, the more perturbation we need, and the

less the utility of the graph we can achieve.
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Figure 3.1: Graph characteristic vs. varying privacy protection on Political Book
data

3.2 Enhanced Posterior Link Beliefs with Proximity Measures

In this section, we investigate an attacking model that exploits the relationship

between the probability of existence of a link and the similarity measure values of

node pairs in the released randomized graph.

3.2.1 Existence of Links vs. Similarity Measure

Let mij be a similarity measure on node pair (i, j) in graph G (a larger value of

mij indicates that nodes i and j are more similar). We apply four similarity measures

in our work. The first one is the number of common neighbors: CNij =
∑n

k=1 aikakj.

The second one is the Adamic/Adar measure [2] , which is the weighted number

of common neighbors. The weights are assigned based on the information theory:

Adij =
∑n

k=1
1

log dk
aikakj, where dk is the degree of node k. The third one is the

Katz measure, which is a weighted sum of the number of paths in the graph that

connect two nodes. Shorter paths are given the larger weight with parameter β
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[53]: Kij =
∑∞

k=1 βkP
(k)
ij , where P

(k)
ij denotes the number of paths from i to j with

length equal to k while β is a damping factor. In this work, we take β = 0.1. The

fourth one is the commute time CTij, which is the expected steps of random walks

from i to j and back to i. The commute time is a distance measure: more similar

nodes have smaller CT values. The commute time can be calculated through the

eigenvalues and eigenvectors of the graph’s normal matrix [66]. Let N = D− 1
2 AD− 1

2

where D = diag{d1, d2, . . . , dn}. N has n real eigenvalues: ν1 ≥ ν2 ≥ ν3 · · · νn with

corresponding eigenvectors z1, z2, . . . , zn, and let zki denote the the k’th entry of zi.

Then

CTij = 2m
n∑

k=2

1

1− νk

(
zki√
di

− zkj√
dj

)2

.

Let ρ(Ω) denote the proportion of true edges in the set of node pairs Ω:

ρ(Ω) =
1

|Ω|
∑

(i,j)∈Ω

aij,

where |Ω| denotes the number of elements in set Ω. Let Sx = {(i, j) : mij = x} denote

the set of all node pairs with the similarity measure mij = x. Hence ρ(Sx) denotes

the proportion of true edges in the Sx, which can be considered as the probability

of existence of a link between node pair (i, j) in Sx. Next, we empirically show how

ρ(Sx) varies with x in real social networks.

Figure 3.2 shows how the proportions of true edges in Sx are varied with similarity

measure values x in terms of four measures (Common neighbors, Katz, Adamic/Adar,

and Commute time) in the US political books network (polbooks). We can observe

that ρ(Sx) increases with x. In other words, the probability that aij = 1 is highly

correlated with similarity measure mij: the larger mij is, the more likely aij is equal

to 1.

We then perturb the polbooks network by adding 200 false edges and deleting 200

true edges. From the perturbed graph G̃, we define S̃x = {(i, j) : m̃ij = x} as the set

of node pairs with similarity measure m̃ij = x. Figure 3.3 shows how the proportions
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Figure 3.2: Similarity measure vs. the prob. of true edges in the original graph (ρ(Sx))
for polbooks

of true edges in S̃x (i.e., the probability of existence of a link) are varied with similarity

measure values x in terms of four measures in the randomized polbooks network. We

can observe that the same pattern still holds even if the randomized graph itself is

quite different from the original one (200 false edges out of 441 edges). In the next

section, we will show how attackers exploit m̃ij in the perturbed graph G̃ to improve

their posterior belief on existence of a true link between nodes (i, j) in the original

graph.

Proximity measures have been shown to be effective in the classic link prediction

problem [62] (i.e., predicting the future existence of links among nodes given a snap-

shot of a current graph). In [62], the authors compute the similarity measures of all

the node pairs, and regard the node pairs with high similarity has greater probability

to be connected in the future. The strategy is consistent with our observation.
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Figure 3.3: Similarity measure vs. the prob. of true edges in the randomized graph
(ρ(S̃x)) for polbooks

3.2.2 Link Prediction by Exploiting Similarity Measure

In this section, we quantify how much the posterior belief can be enhanced by ex-

ploiting similarity measure between two nodes (i, j) in the randomized graph. Recall

that the randomization strategy is to randomly add k false edges followed by deleting

k true edges. In other words, every true link is to be deleted independently with prob-

ability p1 and every non-existing link is to be added independently with probability

p2. We can easily derive p1 = k/m and p2 = k/[
(

n
2

)−m].

Let m̃ij denote the similarity measure of nodes i and j in G̃. We define S̃x = {(i, j) :

m̃ij = x} as the set of node pairs with m̃ij = x in the perturbed graph. Then we

have Pr(aij = 1|m̃ij = x) = ρ(S̃x), and Pr(aij = 0|m̃ij = x) = 1− ρ(S̃x). Recall that

ρ(S̃x) denotes the proportion of true edges in the set S̃x derived from the perturbed

graph. Also notice that Pr(ãij = 1|aij = 1) = 1 − p1 and Pr(ãij = 1|aij = 0) = p2.
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With the Bayes’ theorem, the posterior belief is then given by

Pr(aij = 1|ãij = 1, m̃ij = x) =
(1− p1)ρ(S̃x)

(1− p1)ρ(S̃x) + p2[1− ρ(S̃x)]
, (3.13)

Pr(aij = 1|ãij = 0, m̃ij = x) =
p1ρ(S̃x)

p1ρ(S̃x) + (1− p2)[1− ρ(S̃x)]
. (3.14)

(3.13) ((3.14)) shows the enhanced posterior belief that an observed (missing) edge

(i, j) in the G̃ is a true edge in G. The following property shows that the event of

an observed link ãij = 1 usually has more indications to be a true link than that of

ãij = 0.

Property 3.1: Let r denote the sparse ratio of the graph, r = m/
(

n
2

)
. If k ≤ (1−r)m,

given a fixed x, we have the following inequality stands:

Pr(aij = 1|ãij = 1, m̃ij = x) ≥ Pr(aij = 1|ãij = 0, m̃ij = x). (3.15)

Proof. It is easy to verify that when 1− p1 − p2 ≥ 0, Inequality (3.15) stands if and

only if (1− p1 − p2)[1− ρ(S̃x)] ≥ 0. We need only guarantee 1− p1 − p2 ≥ 0. Notice

that p1 = k
m

, and p2 = k

(n
2)−m

, then we have

1− p1 − p2 ≥ 0 ⇔ 1− k

m
− k(

n
2

)−m
≥ 0 ⇔

(
n

2

)
k ≤ m

[(
n

2

)
−m

]

⇔ k ≤
[
1− m(

n
2

)
]

m = (1− r)m.

Many real-world social networks are very sparse (r ≈ 0). Hence k ≤ (1 − r)m is

usually satisfied. We thus focus on the risk of the released links, Pr(aij = 1|ãij =

1, m̃ij = x).

One issue here is that attackers cannot know the proportion of true edges in S̃x

from the perturbed graph. What they can know actually is the proportion of observed

edges in S̃x. Our next result shows the maximum likelihood estimate of ρ(S̃x) can be
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derived from the proportion of observed edges in S̃x.

Result 3.4: Given the perturbed graph and a fixed x, define S̃1
x = S̃x ∩ Ẽ = {(i, j) :

ãij = 1, m̃ij = x}. Assume p1 + p2 6= 1, then the maximum likelihood estimator

(MLE) of ρ(S̃x) is given by

ρ̂
(
S̃x

)
=
|S̃1

x|/|S̃x| − p2

1− p1 − p2

, (3.16)

and the MLE is unbiased.

Proof. Let N = |S̃x|, N1 = |S̃1
x| and ρ = ρ(S̃x). Then, for a randomly selected node

pair (i, j), ãij is a Bernoulli random variable:

Pr(ãij = 1|m̃ij = x) = (1− p1)ρ + p2(1− ρ)

Pr(ãij = 0|m̃ij = x) = p1ρ + (1− p2)(1− ρ)

Then the likelihood function of S̃x is

L = [(1− p1)ρ + p2(1− ρ)]N1 [p1ρ + (1− p2)(1− ρ)]N−N1 .

Take derivative to ln L with respect of ρ, we have

d ln L

dρ
=

N1(1− p1 − p2)

(1− p1)ρ + p2(1− ρ)
− (N −N1)(1− p1 − p2)

p1ρ + (1− p2)(1− ρ)
.

Set d ln L
dρ

= 0, we have ρ̂ = N1/N−p2

1−p1−p2
, and the unbiasedness is then obvious.

By replacing ρ(S̃x) in (3.13) with ρ̂(S̃x) (shown in (3.16)), we have derived our en-

hanced posterior belief Pr(aij = 1|ãij = 1, m̃ij = x). Attackers may simply calculate

the posterior belief of all node pairs in the perturbed graph and choose top-t node

pairs as predicted candidate links.

For those similarity measures with continuous ranges (e.g., commute time), the

number of node pairs with similarity measure equal exactly to x is usually small.

In practice, we can apply histogram approximation by partitioning the value of the
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similarity measure: x0 ≤ x1 ≤ · · · ≤ xi ≤ · · · , and for x ∈ [xi−1, xi)

|S̃1
x|

|S̃x|
=
|{(i, j) : ãij = 1, m̃ij = x ∈ [xi−1, xi)}|

|{(i, j) : m̃ij = x ∈ [xi−1, xi)}| .

A probably more statistically preferred method is to use the kernel estimator:

|S̃1
x|

|S̃x|
=

∑
i<j ãijK[(x−mij)/h]∑

i<j K[(x−mij)/h]
,

where K(x) is the p.d.f. of the standard normal distribution and h is the parameter

controlling the smoothness.

We would emphasize that our enhanced posterior belief Pr(aij = 1|ãij = 1, m̃ij = x)

more accurately reflects the existence of a true link than the posterior belief Pr(aij =

1|ãij = 1) without exploiting the similarity measure derived in previous work [106].

We can see that Pr(aij = 1|ãij = 1) (shown in (3.2)) is the same for all observed

links. On the contrary, our enhanced posterior belief Pr(aij = 1|ãij = 1, m̃ij = x)

tends to be larger for those observed links with higher similarity values, and tends to

be smaller for links with lower similarity values. Hence, it can more accurately reflect

the existence of true links. We show our theoretical explanations in Results 3.5 and

3.6 and will compare the precisions of top-t predicted links derived from these two

posterior beliefs in our empirical evaluations.

Result 3.5: Pr(aij = 1|ãij = 1, m̃ij = x) is an increasing function of ρ(S̃x), and when

ρ(S̃x) ≥ p2

p1+p2
, we have the following inequality stands:

Pr(aij = 1|ãij = 1, m̃ij = x) ≥ Pr(aij = 1|ãij = 1). (3.17)

Proof. Notice that Pr(aij = 1|ãij = 1) = m−k
m

= 1− p1, and with (3.13), it is easy to

verify this result.

Our next result shows more clearly the relationship between a-priori belief (3.1),

posterior belief without exploiting similarity measures (3.2), and our enhanced pos-

terior belief with exploiting similarity measures in (3.13) and (3.14).
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Result 3.6: Both the sum of a-priori belief over all node pairs and the sum of

posterior belief (without exploiting similarity measures) overall all node pairs are

equal to the number of edges:

∑
i<j Pr(aij = 1) =

∑
i<j Pr(aij = 1|ãij) = m.

The sum of our enhanced posterior belief (with exploiting similarity measures) also

approaches to the number of edges:

∑
i<j Pr(aij = 1|ãij, m̃ij) → m as n →∞.

Proof.
∑

i<j Pr(aij = 1) = m is obvious. Notice that the number of edges does not

change along the perturbation, then we have

∑
i<j

Pr(aij = 1|ãij) =
∑

(i,j)∈Ẽ

Pr(aij = 1|ãij = 1) +
∑

(i,j) 6∈Ẽ

Pr(aij = 1|ãij = 0)

= m · m− k

m
+

[(
n

2

)
−m

]
· k(

n
2

)−m
= m. (3.18)

Given a randomized graph G̃, ãij and m̃ij are fixed for all i and j. Let Φ denote

the set of m̃ij values in G̃, we have

1

m

∑
i<j

Pr(aij = 1|ãij, m̃ij) =
∑
x∈Φ





1

m

∑

(i,j)∈S̃1
x

Pr(aij = 1|ãij = 1, m̃ij = x)

+
1

m

∑

(i,j)∈S̃x−S̃1
x

Pr(aij = 1|ãij = 0, m̃ij = x)



 . (3.19)

Consider the first term of the right hand side of (3.19). To make the notation simple,

we write ρ = ρ(S̃x).

1

m

∑

(i,j)∈S̃1
x

Pr(aij = 1|ãij = 1, m̃ij = x) =
(1− p1)ρ

(1− p1)ρ + p2(1− ρ)
·
∑

i<j ãij

|S̃x|
· |S̃x|

m
. (3.20)

Since |S̃x| → ∞ as m →∞. Given x, for all (i, j) ∈ S̃x, ãij are i.i.d. bernoulli random
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variables, and with the law of large numbers, we have

∑
i<j ãij

|S̃x|
→ Pr(ãij = 1) = (1− p1)ρ + p2(1− ρ), as |S̃x| → ∞ (3.21)

Substituting (3.21) into (3.20), we have,

lim
m→∞


 1

m

∑

(i,j)∈S̃1
x

Pr(aij = 1|ãij = 1, m̃ij = x)


 = (1− p1)ρ

|S̃x|
m

. (3.22)

Note that |S̃x|
m
≤ 1, the above equation is well defined. Similarly, we also have

lim
m→∞


 1

m

∑

(i,j)∈S̃x−S̃1
x

Pr(aij = 1|ãij = 0, m̃ij = x)


 = p1ρ

|S̃1
x|

m
. (3.23)

Combining (3.19), (3.22) and (3.23) together, we have

1

m

∑
i<j

Pr(aij = 1|ãij, m̃ij) →
∑
x∈Φ

(
[(1− p1)ρ + p1ρ]

|S̃1
x|

m

)
→ 1 as m →∞.

Then, due to the law of large number, we can conclude that we prove the result.
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Figure 3.4: Posterior belief for polbooks network

Figure 3.4 shows the relationship between the two posterior beliefs and the common

neighbors for the polbooks data. We set k = 200. We can observe that the posterior

belief without exploiting the similarity measure, Pr(aij = 1|ãij = 1), is 0.55 for

all observed links. However, our enhanced posterior belief Pr(aij = 1|ãij = 1, m̃ij)
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are greater than 0.55 for those links with more than 2 common neighbors as shown

in Figure 3.4(a). Figure 3.4(b) shows the distribution of the calculated posterior

belief values. We can observe that 33.5% of released links have their posterior beliefs

enhanced with similarity measures.

3.2.3 Privacy Protection vs Perturbation k

When attackers utilize the similarity measure, the absolute measure of protection

for an individual link (i, j) can be defined as

τa(i, j) = 1−max
x

{
max
t=0,1

Pr(aij = 1|ãij = t, m̃ij = x)

}
(3.24)

where the second term denotes the maximal suspicion of existing aij = 1. Compared

with the protection under the attack without exploiting similarity measures, we define

the relative measure of protection as

τr(i, j) =
τa(i, j)

1−maxt=0,1 Pr(aij = 1|ãij = t)
.

The measures of protection (τa and τr) are defined in terms of one individual

edge. In the privacy preserving data mining, one natural question is how many

perturbations we need such that we can guarantee the protection for all individual

edges are above the threshold. Our next result shows the formula of the minimum

number of perturbations to achieve the protection of all individual links. It is of

great importance to evaluate the relationship between the required minimum number

of perturbations and the utility loss of the perturbed graph.

Result 3.7: In the original graph, let Sx = {(i, j) : mij = x}, ρmax = maxx ρ(Sx),

and sparse ratio r = m/
(

n
2

)
. When the protection threshold ε < 1−ρmax

1−r
, there exists

the minimum k such that τr(i, j) ≥ ε stands for all the node pair (i, j) is given by:

kmin =
[(1− r)ερmax − r(1− ρmax)]m

ε(ρmax − r)
. (3.25)
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Proof. When k ≤ (1− r)m, with Result 3.1 and 3.5, we have that

max
x

{
max
t=0,1

Pr(aij = 1|ãij = t, m̃ij = x)

}
= Pr(aij = 1|ãij = 1, m̃ij = x0),

where x0 is the value such that ρ(S̃x) is maximized: ρ(S̃x0) = maxx ρ(S̃x). Let

ρ̃max = ρ(S̃x0). Meanwhile,we can also conclude

max
t=0,1

Pr(aij = 1|ãij = t) = Pr(aij = 1|ãij = 1).

Then we have

τr(i, j) =
p2[1− ρ̃max]

p1[(1− p1)ρ̃max + p2(1− ρ̃max)]
. (3.26)

Substitute p1 = k
m

= k
rN

and p2 = k
N−m

= k
(1−r)N

into (3.26), we can verify that τr(i, j)

is an increasing function of k, and the maximum value is 1−ρ̃max

1−r
when k = (1− r)m.

When k ≥ (1− r)m, we similarly have the following:

max
x

{
max
t=0,1

Pr(aij = 1|ãij = t, m̃ij = x)

}
= Pr(aij = 1|ãij = 0, m̃ij = x0),

max
t=0,1

Pr(aij = 1|ãij = t) = Pr(aij = 1|ãij = 0).

In this case, τr(i, j) is a decreasing function of k, and the maximum is also 1−ρ̃max

1−r
when

k = (1 − r)m. Therefore, kmin exists if and only if ε ≤ 1−ρ̃max

1−r
, and kmin < (1 − r)m.

Then, τr(i, j) is given by (3.26). Solving the inequality τr(i, j) ≥ ε, we have that

k ≥ [(1− r)ερ̃max − r(1− ρ̃max)]m

ε(ρ̃max − r)
.

However, ρ̃max = maxx ρ(S̃x) varies from time to time due to the perturbation, and

data owner can substitute it with the true maximum value ρmax = maxx ρ(Sx), then

we get the result.

3.2.4 Empirical Evaluation

We use four network data sets (polbooks, Enron, E-mail, polblogs) in our evaluation.

For each graph G, we randomly add k false edges and delete k true edges. We set
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k = 0.3m, 0.5m, 0.7m in our work. We apply four similarity measures (Common

neighbors, Katz, Adamic/Adar, Commute time) to predict top-t candidate links.

The prediction performance is evaluated by the precision of the top-t predicted links.

We vary t values from 0.1m to 0.5m for all four data sets.

For each t, we calculate the precision of prediction links with different similarity

measures. We also calculate the precision of prediction links using the posterior belief

without exploiting the similarity measure. Figure 3.5 plots our results on four data

sets. We can observe that for all four data sets we can achieve very high accuracy

(greater than 0.8) by using our enhanced posterior belief for a subset (top 0.1m) of

released links, which indicates severe privacy disclosures for those sensitive links. We

can also see that our enhanced posterior belief achieves higher precisions than the

previous posterior belief without exploiting similarity measures for most links (0.5m)

with high similarity measure values, indicating that the network topology does indeed

contain latent information from which to infer interactions. From Figure 3.5, we can

also observe that we achieve different precisions using different similarity measures:

one measure which achieves the highest precision for one data set is not necessarily

the one for another data set. It is of great significance to explore what similarity

measures can be exploited by attackers to achieve the highest privacy disclosure for

a given social network. We will investigate this in our future work.

In the next experiment, we vary the noise magnitude k from 0.3m to 0.7m. Table

3.2 shows the precisions of top t predictions using different similarity measures on

four networks. We can see that for every noise magnitude, predictions that utilize

similarity measures achieve a higher accuracy than those without exploiting similar-

ity measures. We can also observe that, for any t, the precision decreases as noise

magnitude k increases. This is intuitively reasonable, for large noises can greatly re-

duce the correlation between the similarity measures and existences of links, and thus

decrease the prediction precision. We would point out that k = 0.7m corresponds to
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Figure 3.5: Precision of top t predictions by the posterior belief w/o similarity mea-
sures for four data sets, k = 0.5m

a large randomization (i.e., 70% original links have been removed). The posterior be-

lief without exploiting similarity measures, Pr(aij = 1|ãij = 1) is only 0.3. However,

the posterior belief with exploiting similarity measures is significantly improved. For

example, the precision of top 0.1m predictions using common neighbors is 0.87 for

polblogs data.

3.3 Summary

In this chapter, we conduct privacy analysis for Rand Add/Del and Rand Switch

procedures. We derive the attacker’s prior belief (without the released graph) and

posterior belief (with the observation of an existing or non-existing link) on the ex-

istence of a sensitive link. We derive the minimal randomization magnitude needed

for Rand Add/Del and Rand Switch procedures to preserve privacy to a given level.

We also conduct theoretical analysis on the attacking model in which the attacker
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exploits node proximity measures to enhance his posterior belief on sensitive links.

Our empirical evaluations show that, by exploiting nodes’ similarity measures, the

attacker can significantly increase his confidence on the existence of a sensitive link

between two nodes with high similarity value.
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Table 3.2: Precision of top t predictions by the posterior belief w/o similarity measures
for four data sets, k = 0.3m, 0.5m, 0.7m

(a) Without similarity measures

polbooks Enron E-mail polblogs
k: 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m

t: 0.1m 0.69 0.52 0.28 0.70 0.51 0.30 0.71 0.50 0.30 0.69 0.49 0.29
0.2m 0.70 0.49 0.33 0.70 0.51 0.30 0.69 0.49 0.30 0.70 0.49 0.29
0.3m 0.69 0.53 0.30 0.71 0.48 0.30 0.70 0.49 0.31 0.69 0.50 0.30
0.4m 0.71 0.50 0.30 0.70 0.51 0.28 0.70 0.50 0.30 0.71 0.50 0.29
0.5m 0.72 0.50 0.28 0.69 0.51 0.31 0.70 0.50 0.29 0.70 0.51 0.30

(b) Commute time

polbooks Enron E-mail polblogs
k: 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m

t: 0.1m 0.93 0.76 0.39 0.93 0.81 0.42 0.94 0.88 0.68 0.98 0.96 0.87
0.2m 0.85 0.67 0.36 0.86 0.67 0.41 0.90 0.79 0.48 0.96 0.91 0.69
0.3m 0.82 0.58 0.39 0.81 0.59 0.39 0.88 0.70 0.36 0.95 0.83 0.48
0.4m 0.74 0.54 0.36 0.78 0.54 0.32 0.83 0.59 0.33 0.90 0.71 0.33
0.5m 0.70 0.47 0.30 0.72 0.50 0.28 0.76 0.51 0.29 0.84 0.57 0.23

(c) Katz

polbooks Enron E-mail polblogs
k: 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m

t: 0.1m 0.94 0.79 0.59 0.95 0.75 0.39 0.97 0.88 0.69 1.00 0.98 0.90
0.2m 0.81 0.65 0.42 0.91 0.79 0.36 0.98 0.79 0.53 0.98 0.94 0.73
0.3m 0.75 0.54 0.30 0.87 0.64 0.32 0.94 0.58 0.40 0.97 0.86 0.49
0.4m 0.76 0.53 0.23 0.80 0.53 0.32 0.88 0.55 0.30 0.94 0.73 0.32
0.5m 0.70 0.50 0.27 0.75 0.49 0.30 0.79 0.48 0.24 0.88 0.52 0.20

(d) Common neighbors

polbooks Enron E-mail polblogs
k: 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m

t: 0.1m 0.97 0.85 0.45 0.97 0.86 0.41 0.99 0.96 0.70 0.99 0.98 0.87
0.2m 0.94 0.72 0.35 0.96 0.76 0.34 0.98 0.86 0.49 0.98 0.94 0.58
0.3m 0.90 0.64 0.33 0.93 0.66 0.32 0.96 0.70 0.44 0.97 0.86 0.39
0.4m 0.84 0.59 0.26 0.89 0.60 0.31 0.91 0.60 0.34 0.95 0.70 0.26
0.5m 0.82 0.43 0.28 0.83 0.49 0.28 0.82 0.49 0.27 0.90 0.50 0.22

(e) Adamic/Adar

polbooks Enron E-mail polblogs
k: 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m 0.3m 0.5m 0.7m

t: 0.1m 0.98 0.83 0.43 0.98 0.85 0.42 1.00 0.97 0.67 1.00 0.98 0.86
0.2m 0.94 0.67 0.37 0.96 0.73 0.36 0.99 0.82 0.54 0.99 0.94 0.57
0.3m 0.90 0.59 0.33 0.93 0.65 0.31 0.95 0.74 0.45 0.97 0.85 0.41
0.4m 0.83 0.55 0.34 0.89 0.59 0.29 0.90 0.60 0.34 0.94 0.66 0.27
0.5m 0.81 0.49 0.29 0.84 0.51 0.28 0.84 0.49 0.28 0.91 0.51 0.23



CHAPTER 4: IDENTITY DISCLOSURE ANALYSIS

The link disclosure corresponds to the scenario where the sensitive relationship be-

tween two individuals is disclosed. The identity disclosure corresponds to the scenario

where the identity of an individual who is associated with a node is revealed. In this

chapter, we assume all individuals (nodes) and relationships (links) among them are

sensitive. To prevent identity disclosures, one natural approach is to publish a node-

anonymized version of the network that permits useful analysis without disclosing

the identity of the individuals represented by the nodes. However, as pointed out in

[8, 46], this simple technique of anonymizing graphs by replacing the identifying infor-

mation of the nodes with random ID’s does not guarantee identity/link privacy since

adversaries may potentially construct a highly distinguishable subgraph with edges

to a set of targeted nodes, and then to re-identify the subgraph and consequently the

targets in the released anonymized network.

Adversaries usually rely on background knowledge in order to de-anonymize nodes

and learn the link relations between de-anonymized individuals from the released

perturbed graph. It is challenging to model all types of background knowledge of

adversaries in the scenario of publishing social networks with privacy preservation.

In [114], the authors listed several types of background knowledge: attributes of

vertices, vertex degrees, specific link relationships between some target individuals,

neighborhoods of some target individuals, embedded subgraphs, graph metrics (e.g.,

betweenness, closeness, centrality). We first focus on one most widely used type of

background knowledge, vertex degree and quantify both identity disclosure and link

disclosure when adversaries know the degrees of target individuals, leaving other other
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types of background knowledge for future work.

Let Ω denote the set of all individual identifiers in the network: Ω ={Alice, Bob,. . . , Zack},
and let ψ(·) be the mapping from the individual identifier to the node random id in

the anonymized graph: for any α ∈ Ω, ψ(α) is the node index of the individual α, and

ψ−1(i) is the identity of node i. One natural question for data owners is, compared to

not releasing the graph, to what extent releasing an anonymized/randomized graph

G̃ jeopardizes the privacy.

Resilience to Structural Attacks. Recall that in both active attacks and passive

attacks [8], the adversary needs to construct a highly distinguishable subgraph H with

edges to a set of target nodes, and then to re-identify the subgraph and consequently

the targets in the released anonymized network. As shown in Figure 4.1(a), attackers

form an subgraph H in the original graph G, and attacker 1 and 2 send links to the

target individuals α and β. After randomization using either Rand Add/Del or Rand

Switch, the structure of subgraph H as well G is changed. The re-identifiability of

the subgraph H from the randomized released graph G̃ may significantly decrease

when the magnitude of perturbation is medium or large. Even if the subgraph H

can still be distinguished, as shown in Figure 4.1(b), link (u, s) and (v, t) in G̃ can

be false links. Hence nodes s and t do not correspond to target individuals α and β.

Furthermore (e.g. in the released graph with unchanged node identifier information),

even individuals α and β have been identified, the observed link between α and β can

still be a false link. Hence, the link privacy can still be protected. In summary, it is

more difficult for the adversary to breach the identity privacy and link privacy.

Similarly for structural queries [46], because of randomization, the adversary cannot

simply exclude from those nodes that do not match the structural properties of the

target. Instead, the adversary needs to consider the set of all possible graphs implied

by G̃ and k. Informally, this set contains any graph Gp that could result in G̃ under

k perturbations from Gp, and the size of the set is
(

m
k

)((n
2)−m

k

)
. The candidate set of
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(b) the released graph

Figure 4.1: Resilient to subgraph attacks

a target node includes every node y if it is a candidate in some possible graph. The

probability associated with a candidate y is the probability of choosing a possible

graph in which y is a candidate. The computation is equivalent to compute a query

answer over a probabilistic database and is likely to be intractable.

Disclosure Risk Measures. To quantify disclosure risk, we define two risk mea-

sures: prior risk measure r(ω) is defined as the adversary’s prior confidence on the

event ω without the released graph G̃; and the posterior risk measure r(ω|G̃) is defined

as the adversary’s posterior confidence given the released graph G̃.

For identity disclosure, we assume the adversary has vertex degree background

knowledge, i.e., the target individual’s degree is known to adversaries. To make the

notation concise, we use dα to denote the degree of individual α. We use r(α) to

denote the adversary’s prior confidence on identification of the target individual α.

Correspondingly, we use r(α|dα, G̃) to denote the posterior risk of individual α given

the released randomized graph G̃ and the degree of the target individual α (i.e., vertex

degree background knowledge). We present our quantification results in Section 4.1.1.

For link disclosure, adversaries need to first identity target individual nodes (incor-

porating the vertex degree background knowledge, dα, dβ, with the released graph G̃)

and then compute the posteriori belief of existence of the sensitive link (α, β). We use
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R(aαβ) and R(aαβ|dα, dβ, G̃) to denote the prior risk and posterior risk respectively.

We present our results in Section 4.1.2. In Section 4.2, we compare Rand Add/Del

with the K-degree approach [63]. Some results in this chapter are also reported in

[107].

4.1 Disclosure Analysis in Rand Add/Del

Throughout this section, we illustrate our theoretical results using empirical evalu-

ations on polbooks network. Figure 4.2(b) shows the histogram of its degree sequence.

For example, there are 22 nodes with degree 5 and one node with degree 20. In the re-

mainder of this section, we use one node (random id 15, identifier label “Breakdown”)

with degree 5 and the node (random id 30, identifier label “The Price of Loyalty”)

with degree 20 to illustrate our results.
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Figure 4.2: The politics book network and the histogram of its degree sequence.

4.1.1 Identity Disclosure

In this section, we focus on identity disclosure in the randomized graph. We study

the adversary’s strategy and then quantify identity disclosure. We assume that the

adversary has vertex degree background knowledge, i.e., the degree of the target

individual is known. The adversary needs to take a guess on the mapping function

ψ based on his background knowledge and the released graph G̃. In other words, the

adversary wants to re-identify which node is corresponding to the target individual α
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using the background knowledge of degree dα. To re-identify α in the node set, the

adversary can utilize the randomized degree sequence d̃ = (d̃1, d̃1, . . . , d̃n). Hence,

we can write the posterior risk measure r(α|dα, G̃) as r(α|dα, d̃). Let ψ̂(·) denote the

adversary’s guess of the mapping.

Without the released randomized graph, the background knowledge (such as the

true degree of a target individual) cannot be used to enhance the adversary’s confi-

dence on the identity mapping. Hence, the prior risk measure r(α|dα) = 1
n
. Next we

deduct the posterior risk measure r(α|dα, d̃).

Recall that, in Rand Add/Del scheme, each true edge can remain in the graph with

a probability p11 = m−k
m

, and each non-existing link can be added with a probability

p10 = k
N−m

, where N =
(

n
2

)
. Let di and d̃i denote the degree of node i in the G and

G̃ graph respectively, and d̂i is the adversary’s estimator of di.

Lemma 4.1 shows the calculation of Pr(d̃i = x|di), i.e., the probability of a node’s

degree d̃i after randomization given its original degree di.

Lemma 4.1: The distribution of d̃i is given by

Pr(d̃i = x|di) =
x∑

t=0

B(t; di, p11)B(x− t; n− 1− di, p10), (4.1)

where B(t; n, p) denotes the probability mass function of the binomial distribution

with parameter n and p. The expectation and variance of d̃i are given by:

E(d̃i) = p11di + p10(n− 1− di), (4.2)

V(d̃i) = dip11(1− p11) + (n− 1− di)p10(1− p10). (4.3)

Proof. Let d+
i denote the remaining true edges after Add/Del process, and d−i denote

the added links by the process. Since each existing or non-existing link are processed

independently, d+
i and d−i follow the binomial distributions B(di, p11) and B(n− 1−
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di, p10) respectively:

Pr(d+
i = t|di) = B(t; di, p11) =

(
di

t

)
pt

11(1− p11)
di−t. (4.4)

Pr(d−i = t|di) = B(t; n− 1− di, p10) =

(
n− 1− d̃i

t

)
pt

10(1− p10)
n−1−d̃i−t. (4.5)

Since d̃i = d+
i + d−i , the distribution of d̃i is just the convolution of (4.4) and (4.5)

and we get (4.1). Note the d+
i and d−i are independent, then

E(d̃i) = E(d+
i ) + E(d−i ) = p11di + p10(n− 1− di),

V(d̃i) = V(d+
i ) + V(d−i ) = dip11(1− p11) + (n− 1− di)p10(1− p10).

Rearrange (4.2), we can have the following result:

Lemma 4.2: Given a randomized graph, the moment estimator (ME) of di is given

by:

d̂i =
d̃i − p10(n− 1)

p11 − p10

, (4.6)

and d̂i is the unbiased estimator of di.

The unbias property is straightforward from (4.2).

By combining Lemma 4.1 and Lemma 4.2, we can calculate the posterior probability

Pr(dα|d̃i) (i.e., the likelihood of the observed node i having the degree dα in the original

graph).

Lemma 4.3: In the randomized graph G̃, the adversary observes a node i with degree

d̃i, then the adversary’s confidence on di = x is given by

Pr(di = x|d̃i) =
Pr(d̃i|di = x) Pr(di = x)∑n−1
d=0 Pr(d̃i|d = x) Pr(d = x)

. (4.7)

When the original degree distribution is unavailable to the adversary, the estimated

degree sequence from (4.6) can be applied instead.
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Lemma 4.3 is a direct result from Bayes’ theorem.
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Figure 4.3: Values of Pr(di|d̃i = 5) and Pr(di|d̃i = 20) after applying Rand Add/Del
on polbooks network (k=10%m),

Figure 4.3 shows values of two posterior probabilities: Pr(di|d̃i = 5) and Pr(di|d̃i =

20). Generally speaking, the distribution of Pr(di|d̃i) is not symmetric, and it skews

to the side with larger degree frequency. In Figure 4.3, for a node with d̃i = 20,

Pr(di = 21|d̃i = 20) > Pr(di = 20|d̃i = 20) > Pr(di = 19|d̃i = 20),

this is because the adversary can estimate that, in the original graph Pr(di = 21) >

Pr(di = 20) > Pr(di = 19), and Lemma 4.3 incorporates this information in the

calculation. We can also observe that the posterior probability that the original degree

value di is far away from the observed value d̃i tends to be zero. In other words, it is

very unlikely that a node’s degree has a significant change after perturbation.

Recall our node identification problem is that given the true degree dα of a target

individual α, the adversary aims to discover which node in the randomized graph

corresponds to individual α. To the adversary, every node in the randomized graph

is possible with probability Pr(dα|d̃i).

Given a list of posterior probabilities Pr(dα|d̃i) calculated using Lemma 4.3, the
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adversary can make the following probabilistic decision:

ψ̂(α) = i, with probability
Pr(di = dα|d̃i)∑n

j=1 Pr(dj = dα|d̃j)
. (4.8)

Result 4.1: Assume the node identities are unknown to the adversary. For any

individual α ∈ Ω, the prior risk measure is

r(α|dα) =
1

n
. (4.9)

The posterior risk measure, which equals to the accuracy of the probabilistic decision

in (4.8), is then given by:

r(α|dα, d̃) = Pr[ψ̂(α) = ψ(α)] =
Pr(dα|d̃α)∑n

j=1 Pr(dj = dα|d̃j)
. (4.10)
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Figure 4.4: Apply Rand Add/Del on polbooks network (k=10%m), values of Pr(di =
5|d̃i) and Pr(di = 20|d̃i) when d̃i varies.

In our polbooks example, recall that we select two individuals: α (label “Break-

down”) with known degree 5 and β (label “The Price of Loyalty”) with known degree

20. From Figure 4.2(b), we can see that there are 22 nodes with degree 5 and only one

node with degree 20. Figure 4.4 shows values of Pr(di = 5|d̃i) and Pr(di = 20|d̃i). Us-

ing Equation 4.10, we can easily calculate identity disclosure risk, r(α|dα = 5) = 0.135

and r(β|dβ = 20) = 0.024. It is intuitive to learn that identify disclosure risk given the
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Figure 4.5: r(α|dα) vs. k after applying Rand Add/Del on polbooks network

vertex degree background knowledge is dependent on the degree distribution Pr(di)

of the original graph.

Another question is how the identity risk disclosure r(α|dα) varies with the mag-

nitude of randomization. In Figure 4.5, we show how two identity disclosure risks,

r(α|dα = 5) and r(β|dβ = 20), vary as the perturbation magnitude (k) changes. We

can observe that both identity disclosure risks decrease when k increases. The risk

value r(α|dα = 5) is consistently low even if very few or no perturbations are intro-

duced. This is because there are 22 nodes with the degree 5 in the original graph.

However, for r(β|dβ = 20), we can see that randomization can significantly decrease

its disclosure risk: the disclosure risk is 100% when we release the anonymized graph

without edge randomization while the disclosure risk decreases 0.39 (0.2) when we

apply Rand Add/Del with k = 2.5%m(5%m).

4.1.2 Link Disclosure

The adversary’s goal is to predict whether there is a sensitive link between two tar-

get individuals α, β ∈ Ω by exploiting the released graph and individual degrees dα, dβ.

Given the true degrees of α and β and one released graph G̃, let R(α, β|dα, dβ, G̃)

denote the posterior risk measure on the link between α and β when the node iden-

tities are unknown to the adversary. Similarly, R(α, β) is the prior risk measure on
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link disclosure.

Lemma 4.4: For Rand Add/Del scheme, the prior and posterior risk measures of the

existence of a link between node i and j are given by:

Pr(aij = 1) =
m

N
; (4.11)

Pr(aij = 1|ãij) =





m−k
m

, if ãij = 1,

k
N−m

, if ãij = 0.

(4.12)

where N = n(n− 1)/2.

Lemma 4.4 shows the link disclosure risks on the simple scenario where node iden-

tities are available to adversaries, i.e., for any target individual α ∈ Ω, the adversary

knows its corresponding index, ψ(α) = i, in the released randomized graph.

In general, the adversary does not know individuals’ corresponding node indices in

the released graph. Instead, the adversary may only have vertex degree background

knowledge, i.e., the degrees of target individuals are known.

Result 4.2: In the scenario where node identities are unknown to the adversary, for

any two individuals α, β ∈ Ω, the prior risk measure and the posterior risk measure

given G̃ on the link between α and β after applying Rand Add/Del scheme are given

by:

R(aαβ) =
m

n2N
, (4.13)

R(aαβ|dα, dβ, G̃) =
m− k

m

(
Pr(dα|d̃α)∑n

j=1 Pr(dj = dα|d̃j)

)(
Pr(dβ|d̃β)∑n

j=1 Pr(dj = dβ|d̃j)

)
.

(4.14)

Proof. Since our risk measures are essentially the accuracy of the adversary’s predic-
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tions, risk measures can be expressed as:

R(aαβ) = r(α)r(β) Pr(aij = 1) (4.15)

R(aαβ|dα, dβ, G̃) = r(α|dα, d̃)r(β|dβ, d̃) Pr(aij = 1|ãij). (4.16)

Combining (4.11), (4.12), (4.9), and (4.10) into (4.15) and (4.16), we have the result

on the link risk for Rand Add/Del when node identities are unknown.

4.1.3 Privacy Protection vs. Perturbation k

From the data owner point of view, we are interested in how much perturbation

should be introduced to protect privacy. To measure the privacy protection, we

thus further define protection measures: the absolute protection measure τa(ω) and

the relative protection measure of τr(ω). We are interested in relationships between

identity (link) privacy protection and the perturbation magnitude k.

Identity Privacy Protection. The absolute and relative identity protection mea-

sures are straightforwardly defined as:

τa(α|d̃) = 1− r(α|dα, d̃), τr(α|d̃) =
1− r(α|dα, d̃)

1− 1/n
.

Figure 4.6 shows the histogram distributions of relative protection measures τr(α|G̃)

under three different perturbation magnitudes (k = 5%, 10%, 20%m). We can easily

observe that more nodes are protected when k increases. We can also observe that

the distribution generally has skewness, which indicates the majority of nodes are

resilient to vertex degree background knowledge attack even under a relatively mod-

erate perturbation. The calculation of r(α|dα, d̃) in (4.10) needs an instance of the

randomized graph. In practice, the data owner may expect to determine k before ap-

plying Rand Add/Del such that the randomized data satisfies some privacy protection

threshold. Hence, we should use the expected randomized degree sequence shown in
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(c) k = 20%m

Figure 4.6: Histogram of τr(α|G̃) for 105 nodes in polbooks network, under Rand
Add/Del scheme. The skewness of the distribution increases, indicating more nodes
are well protected as k increases.

(4.2) to evaluate the protection measure and choose k such that

J(k) = min
α∈Ω

τr[α|E(d̃)] ≥ 1− ε.

Link Privacy Protection. Similarly, the link privacy protection measures are shown

as:

Γa(aαβ|G̃) = 1−R(aαβ|dα, dβ, G̃),

Γr(aαβ|G̃) =
1−R(aαβ|dα, dβ, G̃)

1−R(α, β)
.

Figure 4.7 shows the histogram of Γr(aαβ|G̃) for polbooks network after we apply Rand

Add/Del scheme (k = 10%m). We can see that all Γr values are greater than 90%,

and most links have their relative protection measure values close to 1, indicating that

the protection of Rand Add/Del with k = 10%m almost achieves the same protection
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Figure 4.7: Histogram of Γr(aαβ) for polbooks network,Rand Add/Del (k = 10%m)

Table 4.1: Perturbation parameter k that meet the protection requirement for polbooks
network

1− ε k for identity protection k for link protection
0.5 27 8
0.6 32 9
0.7 59 12
0.8 110 16
0.9 257 37

as without a released graph. Formally, we expect to choose a k such that

J(k) := min
aαβ

Γr(aαβ|G̃) ≥ 1− ε. (4.17)

Note that we use E(d̃) and ãαβ = 1 in calculating (4.17).

Table 4.1 shows the minimal k that meets the identity (link) protection requirement

in (4.17) for polbooks network. We can see that Rand Add/Del scheme can generally

achieve both identity protection and link protection with small or medium perturba-

tions, e.g., k = 59 (or k = 12 ) for the relative protection threshold 0.7 of identity

privacy (or link privacy). We can also observe that Rand Add/Del needs much fewer

perturbations to achieve the link protection than the identity protection. This is

because the adversary needs to identify the target two individuals before predicting

the existence of a link between these two individuals.
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4.2 Comparison with K-degree Generalization Scheme

In this section, we compare the Rand Add/Del scheme with the representative

generalization based scheme (K-degree) in terms of the tradeoff between privacy

protection and utility loss. Since the K-degree scheme is designed to protect the

re-identification of individuals, we focus on identity privacy protection in empirical

evaluations.

4.2.1 Identity Privacy Protection vs. Utility Loss

Graph Characteristics vs. Utility. To achieve utility, we expect the released

randomized graph should also keep structural properties not much changed or those

properties can be reconstructed from the randomized graph. In this section, we use the

following representative real space features: harmonic mean of the shortest distance

h, modularity Q, and transitivity C. We also consider the two spectral features: the

eigenvalues of the adjacency matrix A λ1, and the second eigenvalue of the Laplacian

matrix µ2.

Table 4.2 shows our empirical evaluations on three networks: Polbooks, Polblogs,

and Enron. For each network, we vary K from 2 to 10 and apply both Rand Add/Del

and K-degree Generalization schemes. For Rand Add/Del, we use the absolute iden-

tity protection measure, τa(α|d̃) ≥ 1−1/K, to determine the perturbation magnitude

k and then generate a randomized network using k. We can observe that both Rand

Add/Del and K-degree schemes generally decrease structural properties. For example,

both Q (indicating the goodness of the community structure) and µ2 (showing how

good the communities separate, with smaller values corresponding to better com-

munity structures) increase along K, which indicates the goodness of the community

structure is affected due to edge modification. We can also observe from Table 4.2 that

K-degree scheme generally better preserves structural features than Rand Add/Del.

This is because that K-degree scheme examines the degree sequence of nodes and
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chooses a subset of nodes (that violates the K-degree anonymity property) for edge

modification while Rand Add/Del scheme treats all nodes (edges) equally during ran-

domization. We expect that reconstruction methods can be designed for the purely

randomized graph so features derived from the reconstructed graph (rather than di-

rectly from the released randomized graph) can be more accurate. It is our belief

that it is very hard, if not impossible, to figure out reconstruction methods on the

released data randomized using K-degree scheme. We will investigate reconstruction

methods in our future work.

4.2.2 Further Improvement

Since Rand Add/Del randomly adds and deletes edges, a large number of pertur-

bations are applied to those nodes in low risks. As a result, we sacrifice graph utility

without further improving identity protection. One natural idea is that we can di-

vide the graph into several blocks according to the degree sequence and apply Rand

Add/Del separately to each block using different randomization parameters k.

In many real-world networks, we have fewer nodes with high degrees while more

nodes with low degrees. By simply partitioning the graph into blocks according to

the degree sequence, we expect to introduce fewer perturbations (with better utility

preservation) to achieve the same privacy protection. For each block b, we say an

existing (or non-existing) link (i, j) is in block b if node i or j is in the block. Let nb

be the number of nodes and and mb be the number of links in block b. We randomly

add and delete kb links, then each existing link remains in the randomized graph

with probability p
(b)
11 = 1 − kb

mb
, and each non-existing link is added with probability

p
(b)
10 = kb

Nb−mb
where Nb =

(
nb

2

) − nb(n − nb). We can use the same methodologies in

calculating the identity/link risks except for replacing the overall p11 and p10 with p
(b)
11

and p
(b)
10 . We call this method blockwise random add/delete strategy, or simply Rand

Add/Del-B for short.

Figure 4.8 shows preliminary results of Rand Add/Del-B on Enron network. In
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Figure 4.8: Identity Protection K vs. Feature Change on Enron data

this experiment, we simply divide the graph into two blocks: nodes with degree

greater than 30 are in the first block while the rest nodes with high degree frequency

values are in the second block. We can observe from Figure 4.8 that this simple

strategy can better preserve graph features than Rand Add/Del. We expect to achieve

even better utility preservation when we have better block partitions (e.g., using

histogram partition algorithms). As we discussed previously, we will also investigate

reconstruction methods on the released data using Rand Add/Del-B scheme.
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4.3 Summary

In this chapter, we quantify both identity disclosure and link disclosure risks as-

sociated with Rand Add/Del and Rand Switch procedures based on one most widely

used type of background knowledge, vertex degree. We compare our Rand Add/Del

with another representative edge modification scheme K-degree generalization scheme

proposed in [63] in terms of the tradeoff between disclosure risks and utility loss. Our

empirical results show that generalized graph via the K-degree generalization scheme

generally better preserves structural features than the randomized graph via the Rand

Add/Del. It is also worth pointing out that the K-degree generalization scheme is

designed to only protect the re-identification of individuals while the Rand Add/Del

can provide both identity and link privacy protection.
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Table 4.2: Identity protection K vs. Feature Changes between Rand Add/Del scheme
(denoted as Rand) and K-degree Generalization scheme (denoted as K-deg); Rows
with K = 1 show the feature values of the original networks

K λ1 µ2 h Q C

Rand K-deg Rand K-deg Rand K-deg Rand K-deg Rand K-deg
polbooks

1 11.93 0.32 2.45 0.40 0.34
2 11.64 12.00 0.61 0.43 2.31 2.35 0.37 0.39 0.30 0.33
3 11.51 12.05 0.79 0.45 2.28 2.32 0.36 0.39 0.29 0.33
4 11.04 12.11 1.16 0.60 2.20 2.28 0.31 0.38 0.22 0.32
5 10.50 12.22 1.43 0.60 2.16 2.28 0.26 0.38 0.17 0.33
6 10.33 12.30 1.16 0.79 2.16 2.23 0.24 0.36 0.15 0.30
7 10.15 12.31 1.41 0.63 2.14 2.27 0.21 0.37 0.13 0.31
8 9.83 12.64 1.53 0.65 2.13 2.26 0.15 0.37 0.10 0.32
9 9.72 12.72 1.43 0.97 2.13 2.20 0.14 0.34 0.10 0.29
10 9.75 12.85 1.61 0.88 2.13 2.19 0.14 0.35 0.1 0.30

polblogs
1 74.08 0.168 2.506 0.405 0.226
2 30.19 74.89 9.30 0.168 2.35 2.500 0.067 0.402 0.027 0.225
3 28.55 74.50 10.58 0.168 2.35 2.484 0.024 0.401 0.022 0.223
4 28.50 75.16 10.72 0.168 2.35 2.494 0.020 0.401 0.022 0.224
5 28.49 75.10 11.11 0.168 2.35 2.475 0.018 0.396 0.022 0.221
6 28.47 76.32 10.86 0.168 2.35 2.469 0.019 0.394 0.022 0.222
7 28.46 75.82 11.09 0.168 2.35 2.461 0.018 0.395 0.022 0.22
8 28.46 76.67 11.14 0.168 2.35 2.462 0.016 0.389 0.022 0.219
9 28.46 77.42 10.68 0.168 2.35 2.486 0.019 0.387 0.022 0.221
10 28.46 78.42 10.72 0.168 2.35 2.458 0.015 0.385 0.022 0.221

Enron
1 17.83 0.80 2.278 0.0074 0.344
2 13.90 18.16 1.60 0.84 2.096 2.25 0.0046 0.0072 0.127 0.33
3 12.69 18.29 3.20 0.86 2.079 2.24 0.0037 0.0072 0.081 0.33
4 12.65 18.45 2.99 1.00 2.079 2.17 0.0037 0.0069 0.078 0.31
5 12.66 19.31 3.04 0.85 2.078 2.17 0.0037 0.0066 0.080 0.31
6 12.63 19.41 2.89 0.84 2.078 2.19 0.0037 0.0065 0.078 0.31
7 12.60 20.04 3.04 0.82 2.078 2.19 0.0037 0.0069 0.078 0.31
8 12.60 19.92 3.11 0.82 2.079 2.12 0.0037 0.0063 0.079 0.29
9 12.61 20.42 2.84 1.45 2.079 2.13 0.0037 0.0061 0.079 0.30
10 12.62 21.39 2.96 0.98 2.077 2.05 0.0037 0.0058 0.078 0.29



CHAPTER 5: FEATURE PRESERVING RANDOMIZATION

Edge randomization may significantly affect the utility of the released randomized

graph. To preserve utility, certain aggregate characteristics (a.k.a., feature) of the

original graph should remain basically unchanged or at least some properties can

be reconstructed from the randomized graph. However, as we show below, many

topological features are lost due to Rand Add/Del or Rand Switch.

Figure 5.1 shows the trend of the change of graph characteristics (including two

spectral, λ1, µ2 and four real, harmonic mean of geodesic path, modularity, tran-

sitivity, and subgraph centrality) as Rand Add/Del and Rand Switch perturbation

strategies are applied to graph polbooks. We can observe that, except the λ1 in Rand

Switch procedure, the graph features can be greatly changed as the randomization

magnitude parameter k increases. For example, µ2 and modularity measure Q are

very different from the original value when k approaches 200, indicating the com-

munity structure is not resilient to random perturbation. The harmonic mean of

the geodesic path shows the similar trend. This is intuitively reasonable, as aver-

age vertex-vertex distance may change sharply when edges across communities are

switched with edges within communities. Note that we have 441 edges in this graph,

even the medium randomization (k = 100) significantly decreases the utility of the

released graph. Generally more perturbation can lead to stronger privacy protection,

but it also greatly changes many features of the network, decreasing the information

utility. For example, network resilience and community structure are of particular

importance in epidemiology where removal of vertices or edges in a contact network

may correspond to vaccination of individuals against a disease. Then the epidemio-



77

0 50 100 150 200
9.5

10

10.5

11

11.5

12

k
λ 1

Rand Add/Del
Rand Switch

(a) λ1

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

k

µ 2 Rand Add/Del
Rand Switch

(b) µ2

0 50 100 150 200
2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

k

ha
rm

on
ic

 m
ea

n 
of

 g
eo

de
si

c 
pa

th

Rand Add/Del
Rand Switch

(c) harmonic mean of geodesic
path

0 50 100 150 200
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

m
od

ul
ar

ity
 v

al
ue

Rand Add/Del
Rand Switch

(d) modularity

0 50 100 150 200
0.1

0.15

0.2

0.25

0.3

0.35

k

T
ra

ns
iti

vi
ty

Rand Add/Del
Rand Switch

(e) transitivity

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

k

S
ub

gr
ap

h 
ce

nt
ra

lit
y

Rand Add/Del
Rand Switch

(f) subgraph centrality

Figure 5.1: Graph characteristic vs. perturbation with varying k for Rand Add/Del
and Rand Switch

logical solution developed from the randomly perturbed graph may not be applicable

to the real graph.

In this chapter, we investigate how to perturb graphs without changing much net-

work structural features. In Section 5.1, we develop the spectrum preserving random-

ization procedures which preserves some eigenvalues of graph matrices. In Section

5.2, we introduce the Markov chain based randomization procedure, which can pre-

serve any graph feature specified by the users. Some of the results in this chapter are

also reported in [104, 106].
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5.1 Spectrum Preserving Randomization

5.1.1 Theoretical Analysis on Spectral Perturbation

The theory of graph perturbations is concerned primarily with changes in eigen-

values which result from local modifications of a graph such as adding or deleting

an edge. In the following, we let A and Ã be the adjacency matrices of the orig-

inal graph G and the perturbed graph G′ with spectra λ1 ≥ λ2 ≥ · · · ≥ λn and

λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n respectively.

Lemma 5.1: [25] λ̃1 < λ1 whenever G′ is obtained from G by deleting an edge or

vertex. Similarly, λ̃1 > λ1 whenever G′ is obtained from G by adding an edge or a

non-isolated vertex.

Lemma 5.1 shows any proper subgraph of G has smaller index value λ1 and any

supgraph of G has larger index value λ1. This is also one reason why we only focus

on the perturbation strategies that keep the number of edges unchanged. Otherwise,

the index of the graph λ1 may be significantly changed, which will affect many real

space graph characteristics.

Theorem 5.1: Weyl’s Theorem [49]. Given two n×n symmetric matrices A and E,

assume λ1 ≥ λ2 ≥ · · · ≥ λn and ε1 ≥ ε2 ≥ · · · ≥ εn are their eigenvalues respectively.

Let Ã = A + E, and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n are its eigenvalues. Then the Weyl’s

inequalities are

λ̃i+j−1 ≤ λi + εj ≤ λ̃i+j−n (5.1)

for 1 ≤ i, j, i + j − 1, i + j − n ≤ n.

Weyl’s theorem states that the eigenvalues of a matrix are perfectly conditioned,

i.e., no eigenvalue can move more than the range specified by (5.1).

Some graph features (e.g., the number of vertices n, the number of edges m) remain

unchanged after randomization and are assumed to be available to attackers. We also

assume that the number of perturbations k is available to both data miners and
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attackers. The reason is that k denotes the magnitude of perturbation which may be

needed to analyze the perturbed graph by data miners. In this section, we present to

what extent the graph spectrum may change with respect to those graph invariants,

specifically, k and n for Rand Add/Del and k, n and di for Rand Switch where di is

the degree of vertex i.

When k = 1, we call the perturbation matrix as the elementary perturbation matrix

(EPM). Obviously, the perturbation matrix E when k > 1 is the sum of EPMs along

the perturbation.

For Rand Add/Del, we have two different cases. One is that we add the edge (i, p)

and delete an existing edge (i, q). In this case, the EPM has the form as below:

E(i,p,q) = Ã− A =




0 1 −1

1 0 0

−1 0 0



⊕ 0n−3. (5.2)

Specifically, eip = epi = 1, and eiq = eqi = −1, where eij denotes the component of E.

The other case is that we add the edge (i, j) and then remove one existing edge (p, q)

where i, j, p, q are distinct. Then,

E(i,j,p,q) =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0



⊕ 0n−4. (5.3)

Specifically, eij = eji = 1, and epq = eqp = −1.

For Rand Switch, when we switch one pair of edges, (t, w), (u, v) to (t, v) and (u,w),
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the EPM is:

E(t,w,u,v) =




0 1 −1 0

1 0 0 −1

−1 0 0 1

0 −1 1 0



⊕ 0n−4 (5.4)

Specifically, etw = ewt = euv = evu = −1, and etv = evt = euw = ewu = 1. We can

easily derive ε1 = 2,εn = −2, and εi = 0 (2 ≤ i ≤ n− 1).

However, when k > 1, it is hard to derive directly the eigenvalues of E based on

the released k. In the following, we show our result based on the Gershgorin Circle

Theorem [49].

Theorem 5.2: Gershgorin Circle Theorem. For an n × n matrix A, define Ri =
∑n

j=1,j 6=i |aij|. Then each eigenvalue of A must be in at least one of the disks in the

complex plane: Ci(A) = {z : |z − aii| ≤ Ri}.

Result 5.1: Let ε1 ≥ ε2 ≥ · · · ≥ εn be the eigenvalues of E. For all i(1 ≤ i ≤ n), we

have

εn ≤
∣∣∣λi − λ̃i

∣∣∣ ≤ ε1 (5.5)

or more loosely ∣∣∣λi − λ̃i

∣∣∣ ≤ ‖E‖2 , (5.6)

where for Rand Add/Del,

‖E‖2 ≤ min{2k, n− 1}, (5.7)

and for Rand Switch,

‖E‖2 ≤ 2 min
{

k, max
i

(min{di, n− 1− di})
}

(5.8)

Proof. (5.5) and (5.6) can be easily derived from the Weyl’s theorem.

Notice that the diagonal elements of E are always 0. Hence,

Ci(E) = {z : |z − eii| ≤ Ri} = {z : |z| ≤ Ri} .
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All these circles are concentric, and all the eigenvalues of A are thus in the circle

of the largest radius: ‖E‖2 ≤ maxi{Ri}. and Ri =
∑

j 6=i |eij| is actually the totaly

number of added and deleted edges of vertex i.

Hence, for Rand Add/Del, when k < n/2, the worst case is that all the perturbations

involve the same vertex; when k ≥ n/2, the worst case happens when a certain vertex

is removed all original edges to its neighbors and adds new edges to all the rest

vertices. In this case, maxi{Ri} ≤ min{2k, n− 1}, and (5.7) follows.

For Rand Switch, if one edge is deleted, there must be an edge added to the same

vertex. Therefore

1

2
Ri ≤ min{di, n− 1− di},

through which we immediately get

max
i

Ri ≤ 2 min
{

k, max
i

(min{di, n− 1− di})
}

,

and (5.8) follows.

Actually, the bound given in (5.8) is the loose bound in the worst case. It may

not accurately reflect the magnitude of spectrum change. In Section 4, we develop

our spectrum preserving randomization approach which can control the change of

spectrum during the randomization process. Note that all the above results can be

easily extended to the Laplacian matrix with some simple adjustment since L̃− L =

A− Ã = −E.

5.1.2 Spectrum Preserving Randomization

It has been shown that the eigenvalues of a network are intimately connected to

many important topological features. For example, The eigenvalues of A encode

information about the cycles of a network as well as its diameter. The maximum

degree, chromatic number, clique number, and extend of branching in a connected

graph are all related to λ1. In [96], the authors studied how a virus propagates in a
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real work and proved that the epidemic threshold for a network is closely related to

λ1. Refer to [84] for more relationships between the spectral and real characteristics

of graphs.

Since many graph structures are shown to have strong association with the spec-

trum, a very nature idea is whether we can figure out a perturbation strategy such

that one or some particular eigenvalues will not significantly change. Hence the new

strategy is more probable to better preserve structural characteristics without much

scarifying the privacy protection.

Table 5.1: Conditions on adjusting λ1 and µ2 for Spctr Add/Del

Condition Action

xixj − xpxq > 0 λ̃1 > λ1

xixj − xpxq < 0, and

λ1 − λ2 >
x2

i +x2
j+x2

p+x2
q

2(xpxq−xixj)

λ̃1 < λ1

yiyj − ypyq > 0 µ̃2 < µ2

yiyj − ypyq < 0, and

µ3 − µ2 >
y2

i +y2
j +y2

p+y2
q

2(ypyq−yiyj)

µ̃2 > µ2

Table 5.2: Conditions on adjusting λ1 and µ2 for Spctr Switch

Condition Action

(xt − xu)(xv − xw) > 0 λ̃1 > λ1

(xt − xu)(xv − xw) < 0, and
λ1 − λ2 > xt−xu

xw−xv
+ xw−xv

xt−xu

λ̃1 < λ1

(yt − yu)(yv − yw) > 0 µ̃2 < µ2

(yt − yu)(yv − yw) < 0, and
µ3 − µ2 > yt−yu

yw−yv
+ yw−yv

yt−yu

µ̃2 > µ2

From matrix perturbation community, researchers have achieved results on the

intermediate eigenvalue problem of the second type, i.e., how to determine E such

that the eigenvalue λ1 of A + E can be greater or less than that of A. Specifically,

Cvetkovic et al.[25] gave results on how to increase or decrease λ1 of the adjacency
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matrix by constructing the noise matrix E based on the principal eigenvector values

of the adjacency matrix. We list their results in the first two rows of Table 5.1 and

Table 5.2. For example, according to row 1 in Table 5.1, if we add edge (i, j) and

delete edge (p, q) and xixj − xpxq > 0 stands, λ1 necessarily increases. Note that xi

denotes the ith component in the principal eigenvector of λ1.

In our work, we also need to know whether the eigenvalue µ2 of the Laplacian

matrix L of a particular graph G increases or decreases when an edge is relocated.

We derive sufficient conditions on how to adjust µ2 of the Laplacian matrix for two

random strategies Add/Del and Switch. We summarize our results in the last two

rows of Table 5.1. Note that µ2 is the important eigenvalue of the Laplacian matrix

L. We use µi and µ̃i to denote the ith smallest eigenvalue of L and L̃ respectively,

and u2 denotes the eigenvector of µ2. yi is the ith component of u2. Next, we give

the proof of the conditions for adjusting µ2.

Proof. Let ui and ũi be the eigenvector corresponding to µi and µ̃i. Consider the

minimum problem:

min
x∈S

{
xT L̃x

}
,

where S =
{
x : xT ũ1 = 0, and ‖x‖2 = 1

}
.

Since u1 = ũ1, u2 ∈ S. Then

min
x∈S

{
xT L̃x

}
≤ uT

2 L̃u2 = µ2 − uT
2 Eu2

On the other hand, take x to be ũ2, µ̃2 = minx∈S

{
xT L̃x

}
, hence µ̃2 ≤ µ2−uT

2 Eu2.

When uT
2 Eu2 > 0, µ̃2 < µ2 always holds. With the concrete form of EPM, in Add/Del

strategy:

uT
2 Eu2 = 2(yiyj − ypyq),

and in Switch:

uT
2 Eu2 = 2(yt − yu)(yv − yw).
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For the rest part of the table, we focus on the Switch strategy. and Add/Del

strategy can be proved similarly by using the corresponding perturbation matrix E.

Denote λi(M) for ith eigenvalues of matrix M sorted in non-decreasing order:

λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M). We take t = 1, v = 2, u = 3, w = 4 without loss of

generality. Then, with the second part of the theorem, we have (y1−y3)(y2−y4) < 0,

and

E =




0 1 0 −1

1 0 −1 0
...

0 −1 0 1

−1 0 1 0

· · · 0(n−4)×(n−4)




,

Based on Laplacian matrix, we construct our own Ē and L̄ needed in the proof:

Ē = (δ + 2)I − E, and L̄ = L− (δ + 2)I, where δ > 0 is a parameter. Then,

• Ē is positive definite;

• λi(L̄) = λi(L)− (δ + 2), and λi(L̄) and λi(L) have the same eigenvector;

• L̄+Ē = L−E = L̃, and therefore µ2 = λ2(L̃) = λ2(L̄+Ē) ≥ λ2(L̄+ĒP2) where

P2 is the orthogonal projection onto the subspace spanned by {Ē−1u1, Ē
−1u2}.

(see [25] for more details).

With the similar deduction outlined in [25], we can calculate λ2(L̄ + ĒP2) and thus

get a lower bound of µ̃2:

µ̃2 ≥ min{µ2 − 2− δ + γ, µ3 − 2− δ}, (5.9)

where

γ =
δ(2 + δ)(4 + δ)

δ(δ + 4)− 2bδ + 2a
(5.10)

and a = (y1 + y2− y3− y4)
2, b = (y1− y3)(y4− y2) > 0. γ is an increasing function of
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δ with range (0,∞). We thus can always choose δ > 0 such that γ = µ3 − µ2, then

we rewrite (5.9) asµ̃2 ≥ µ3 − 2− δ.

Next we deduct the condition under which this lower bound is always greater than

µ2, or equivalently the following inequalities and equation always stands:





µ̃2 ≥ µ3 − 2− δ > µ2

γ =
δ(2 + δ)(4 + δ)

δ(δ + 4)− 2bδ + 2a

γ = µ3 − µ2

(5.11)

It is not difficult to show that when γ = µ3 − µ2 > 2 + a
b
, and (5.11) stands. Since

2 +
a

b
=

(y1 − y3)

(y4 − y2)
+

(y4 − y2)

(y1 − y3)
,

when µ3 − µ2 > (y1−y3)
(y4−y2)

+ (y4−y2)
(y1−y3)

, µ̃2 > µ2 stands. The rest parts of the result are

proved.

Based on the derived conditions, we develop our spectrum preserving approach

which can improve the simple edge randomization by considering the change of spec-

trum in the randomization process. Here we can determine which edges we should

add/remove or switch so that we can control the move of target eigenvalues. As a re-

sult, real graph characteristics (or graph utility) are expected to be better preserved.

We show our Spctr Switch algorithm in Algorithm 1.

In Row 2 of Algorithm 1, we only calculate the first one or two eigenvalues of the

corresponding graph matrices. It is not necessary or desirable to calculate the entire

eigen-decomposition. Note that calculation of the eigenvectors of an n × n matrix

takes in general a number of operations O(n3). An efficient Lanczos method [38]

can be applied to find the second eigenvector of a sparse matrix with m/(λ3 − λ2),

where m is the number of edges in the graph. Row 4 gives the loop condition of

repeated switch operations (we will discuss details on J2(k) and the input privacy

protection threshold ε in Section 5.2). Rows from 6 to 11 present how to switch
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Algorithm 1 Spectrum Preserving Graph Randomization through Edge Switch

Input: graph data G, protection threshold ε

1. Derive the adjacency matrix A and the Laplacian matrix L.

2. Calculate the eigenvalues and eigenvectors (λ1, λ2, e1) of A and (µ2, µ3, u2) of
L respectively.

3. k = 0

4. While J2(k) ≤ 1− ε

5. From graph G, randomly pick one edge (t, w);

6. If k/2 == 0

7. Find all the edge combinations such that λ̃1 > λ1 and µ̃2 > µ2;

8. Randomly pick one (u, v), switch (t, w) and (u, v) to (t, v) and (u,w) ;

9. otherwise

10. Find all the edge combinations such that λ̃1 < λ1 and µ̃2 < µ2;

11. Randomly pick one (u, v), switch (t, w) and (u, v) to (t, v) and (u,w) ;

12. k = k + 1

based on the sufficient conditions listed in Table 5.2. Algorithm can be modified

to Spctr Add/Del with some minor changes: replacing J2(k) with J1(k) in Row 4;

replacing the switch process with the Add/Del process in Row 8 and 11; and finally,

in Row 7 and 10 referring to Table 5.1 for the conditions under which the eigenvalues

increase or decrease.

It is ideal to derive the sufficient conditions on how much one or some particular

eigenvalues will change. This is the problem of estimating changes in eigenvalues

under a wide range of perturbations. The eigenvalues of the perturbed graph can be

determined as implicit functions of algebraic and geometric invariants of the original

graph. However, this problem has not been solved in the matrix perturbation field.

5.1.3 Empirical Evaluation

In this section, we focus on four real space characteristics of a graph: harmonic

mean of the shortest distance h, modularity Q, transitivity C, and subgraph cen-

trality SC. Figure 5.2 shows spectral randomization can significantly better preserve

both graph spectrum and real space characteristics of the political book graph data
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Figure 5.2: Graph characteristic vs. varying k between Spctr Switch and Rand Switch

set than the previous random perturbation which does not consider spectrum pre-

serving during the perturbation process. Due to space limitations, we only include

comparison between Spctr Switch and Rand Switch. We can see that Spctr Switch can

significantly better keep both spectral characteristics and real characteristics close to

those computed from the original graph even when we increase the number of switches

k to 180. Note that the spectrum preserving approach adjusts both λ1 and µ2. The

intuition here is that the more eigenvalues we control in perturbation, the more real

space characteristics we can preserve in the randomized graph.
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Table 5.3: Change of the measures for the US political blogs graph where the values
in bold font denote the relative change from Spctr Switch while those in regular font
denote the relative change from Rand Switch

k λ1(%) µ2(%) h(%) Q(%) C(%) SC(%)
300 0.35, 0.33 15.24, 15.68 1.24, 1.13 4.25, 3.87 4.83, 4.55 22.59, 21.67
600 0.55, 0.51 25.75, 22.81 1.94, 1.70 8.31, 6.91 9.07, 7.69 33.05, 30.77
900 0.68, 0.58 28.66, 29.83 2.44, 2.01 12.16, 9.33 12.73, 9.88 39.42, 34.06
1200 0.77, 0.60 32.01, 35.18 2.81, 2.17 15.82, 11.26 15.91, 11.49 43.23, 34.57
1500 0.83, 0.58 37.78, 47.38 3.09, 2.26 19.31, 12.94 18.69, 12.65 45.36, 33.04
1800 0.85, 0.49 28.93, 38.11 3.31, 2.27 22.61, 14.22 21.12, 13.35 46.50, 27.76
2100 0.82, 0.41 37.89, 30.05 3.46, 2.25 25.78, 15.49 23.12, 13.89 45.13, 22.58
2400 0.79, 0.31 50.45, 33.37 3.59, 2.25 28.82, 16.72 24.88, 14.35 43.68, 15.90
2700 0.75, 0.23 50.55, 20.22 3.70, 2.24 31.77, 17.92 26.44, 14.78 42.00, 10.55
3000 0.69, 0.14 54.27, 20.35 3.77, 2.19 34.53, 19.01 27.66, 15.07 39.32, 2.48

We also conduct evaluation on a relatively large data set polblogs. Table 5.3 shows

the relative change of the spectrum λ1, µ2 and the real characteristics (including

the harmonic mean of geodesic path h, modularity Q, transitivity C, and subgraph

centrality SC) between Spctr Switch and Rand Switch when we vary k from 300

to 3000. It is easy to observe that Spctr Switch preserve both spectrum and real

characteristics of the graph much better than Rand Switch.

5.2 Markov Chain Based Feature Preserving Randomization

The degree sequence and topological features are of great importance to the graph

structure. One natural idea is that it can better preserve the data utility if the

released graph G̃ preserves the original degree sequence and a certain topological

feature, such as transitivity or average shortest distance. On the other hand, to

preserve data utility, data owners may want to preserve some particular feature S

within a precise range in the released graph. All the graphs that satisfy the degree

sequence d and the feature constraint S form a graph space Gd,S (or Gd if no feature

constraint). Starting with the original graph, series of switches form a Markov chain

that can explore the graph space Gd,S. In [104], we developed an algorithm that can

generate any graph in Gd,S with equal probability.
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Markov Chain. Suppose we have a finite Markov chain on the random variable X,

X has finite states {x1, x2, . . . , xM}, and X t is the random variable at time t. Denote

pij = Pr(X t+1 = xj|X t = xi),

as the probability that a process at state space xi moves to state xj in a single step

and naturally
∑

j pij = 1. Pr = {pij}M×M is the transition matrix of the Markov

chain with row sums equal to 1.

Lemma 5.2: [69] Suppose that a finite Markov chain on random variable X has M

states x1, x2, . . . , xM , and it satisfies: 1) any two of its states are accessible from each

other, and 2) any state has a positive probability to stay in itself. Then, the Markov

chain has the unique stationary distribution π = (π1, π2, . . . , πM)T regardless of

the initial state, where:

πi = lim
t→∞

Pr(X t = xi).

Moreover, π satisfies π = P T π, i.e., π is the eigenvector of P T with eigenvalue 1.

We first revisit previous switching based method (shown in Algorithm 2) on gen-

erating graphs without feature constraints. We then extend this method to generate

graphs with feature range constraints.

5.2.1 Graph Generation without Feature Constraints

Algorithm 2 Uniform graph generator [92]

Input: initial graph G0

Output: Gk as one sample

1: for t ← 1 to a large number k do
2: Gt ← SingleSwitch(Gt−1);
3: end for
4: return Gk;

It has been well studied on how to generate graphs uniformly from the ensemble

of all graphs that have the given degree sequence from the original graph. We show

it in Algorithm 2. The algorithm uses a Markov chain to generate a random graph.
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Procedure 1 Single switch

Gt+1 ← SingleSwitch(Gt)

1: r ← a random number from (0, 1);
2: if r ≥ 1/2 then
3: Randomly pick up two edges (a, b) and (c, d) in Gt;
4: if edge (a, b) and (c, d) are switchable then
5: Gt+1 ←switch (a, b) and (c, d) in Gt;
6: end if
7: end if

The method starts from the original graph and involves carrying out a series of Monte

Carlo switching steps whereby a pair of edges (a-b, c-d) is selected at random and

is exchanged to give (a-d, b-c) or (a-c, b-d), illustrated in Figure 5.3. The switches

preserve the degree sequence for all the graphs along the chain. The exchange is only

performed if it generates no multiple edges or self-edges (we call this switchable in

Procedure 1. The entire process is repeated k times. In the following, we explain

that Algorithm 2 can generate graphs uniformly from the ensemble of all graphs that

have the given degree sequence from the original graph.

ca

b d

(a)

ca

b d

(b)

ca

b d

(c)

Figure 5.3: Switch edges

Theorem 5.3: Let Gd be the set of all the graphs with degree sequence d = {d1, d2, . . . , dn}.
Given the starting point G0 ∈ Gd, the stationary distribution of the Markov Chain in

Algorithm 2 is the uniform distribution over Gd.

Each graph in Gd corresponds to a state in the Markov chain. Line 1 and 2 in

Procedure 1 makes all states have positive probabilities to remain in itself. Also, any

two graphs in Gd are accessible from each other by switchings [92], and with Lemma
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5.2, the Markov chain has the unique stationary distribution π satisfying π = P T π.

For two graphs Gi and Gj in Gd,

pij := Pr[Gt+1 = Gj|Gt = Gi] =
1

2m(m− 1)
(5.12)

if the two graphs can be reached from each other by a single switch, and pij = 0

otherwise. Naturally pij = pji, i.e., P T = P , and hence π is the eigenvector of P

with eigenvalue 1. Since P has its row sums equal to 1, P has the uniform stationary

distribution.
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Figure 5.4: 7 graphs with degree sequence {3, 2, 2, 2, 3}

Example: Consider all the 7 graphs with the degree sequence {3, 2, 2, 2, 3}, shown
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in Figure 5.4. Figure 5.4(h) shows their neighbor relations.

With (5.12), we can easily set the transition matrix of the Markov chain for this

example. In P the off-diagonal entry pij(i 6= j) is

pij =





1
60

, if Gi is adjacent to Gj;

0, if Gi is not adjacent to Gj;

(5.13)

and diagonal entries are set so that the row sum is equal to 1. It’s easy to verify that

P in (5.13) has uniform stationary distribution.

We start with graph G1 and apply Algorithm 2 to generate N = 1000 graphs

(k = 500). The fraction of graphs of each type is shown as below.

Graph G1 G2 G3 G4 G5 G6 G7

Count 128 138 158 143 140 144 149
(5.14)

The χ2-statistics can be easily calculated as

χ2
6 =

7∑
i=1

[Count(Gi)−N/7]2

N/7
= 3.65 (5.15)

and the corresponding p-value1 is 0.7245, which significantly indicates the uniformity

of the generated samples. ¤

Discussion: It is worth pointing out that not all transition matrices can generate

uniformly sampled graphs. For example, to generate a random graph, one might apply

the naive approach: start with G0, for Gt, find all switchable edge pairs, randomly

pick up one pair, switch them and get Gt+1; repeat the above steps. However, this

naive approach cannot produce the uniform distribution because it actually finds all

the neighbors of Gt and those graphs with more neighbors have higher probability to

be generated.

One open theoretical question is how to determine the number of steps k or provide

1p-value is the fraction of test statistic values that are more extreme than that satisfying uniform
distribution.
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bounds for the mixing of the Markov chain so that the chain can approach station-

arity. Theoretical bounds on the mixing time exist only for specific near-regular

sequences. However, it has been shown that for many networks, k = 10m appear to

be adequate [70], and in [94] the author studied how to accelerate the chain. In our

empirical evaluation, we simply set k = 20m to ensure stationarity. Another problem

of applying Markov chain is that there may exist dependence among the generated

samples. There are various methods to reduce the dependence [35].

Estimate Feature Distribution over Gd. Since graphs obtained by Algorithm

2 are from the uniform stationary distribution. One immediate application of the

uniform graph generator is to estimate statistic of features of graphs in Gd or approxi-

mately construct feature distributions. Let S(·) be a graph feature, and G1, G2, . . . , GN

are N samples obtained by Algorithm 2, then the unbiased estimator of E[S(G)] and

V ar[S(G)] over Gd are given by:

µ̂ =
1

N

N∑
i=1

S(Gi), σ̂2 =
1

N − 1

N∑
i=1

[S(Gi)− µ̂]2.

Example continued: In our previous example, the transitivity values are

C(G1) = 0, C(G2) = · · · = C(G7) = 1/3,

and the mean and variance of transitivity over Gd can be calculated as E(C) = 0.2857

and V ar(C) = 0.0136. The estimated mean and variance of transitivity from the

sample group (5.14) is µ̂ = 0.2907 and σ̂2 = 0.0124. The 95% confidence interval

for µ̂ is [0.2838, 0.2976], and we can see that the true mean value falls within the

confidence interval. ¤

Furthermore, we can use the sample distribution to approximate the population

distribution. Let f(x) be the p.d.f. of S over Gd. One method to estimate f(x) using
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the generated samples is the kernel density estimator:

f̂h(x) =
1

Nh

N∑
i=1

K

[
x− S(Gi)

h

]
(5.16)

where K(·) denotes the p.d.f. of the standard normal distribution and bandwidth h

is the smoothing parameter.

5.2.2 Graph Generation with Feature Range Constraints

In this section, we study the problem of generating a synthetic graph whose feature

S value is within a precise range of that of the original graph2. This is of great

importance for privacy preserving social network analysis where we aim to preserve

both utility and link privacy in the released perturbed graph.

We would emphasize that graphs generated by Algorithm 2 cannot preserve the

utility of the original graph in general. Table 5.4 shows our empirical evaluation

on four real-world social networks. We generate 3000 samples in Gd for each graph

data using our uniform graph generator . For each feature (λ1, µ2, harmonic mean

of geodesic path h, transitivity C), we calculate its sample mean µ̂ and standard

deviation σ̂. We also include the feature values of the original graphs. We can

observe that there are usually large variations (in terms of feature standard deviation)

in generated graphs. So how to generate graphs satisfying feature constraints is of

great importance.

Formally, let Gd,S denote the ensemble of graphs with the given degree sequence d

and the prescribed feature constraint S. Given an initial graph G0 with its S feature

value s0 and a constraint range [s−, s+], we expect to generate a random graph G ∈ Gd

that satisfies S(G) ∈ [s−, s+]. One simple method is to check S(Gt) value at every

switch step. Algorithm 3 outlines this algorithm3.

2In many practical situations, it is infeasible to require that the features (such as the harmonic
mean of the shortest distance or the transitivity measure) are maintained exactly.

3Note that when s0 6∈ [s−, s+], we can simply call uniform generator to reach a graph where
s0 ∈ [s−, s+] and then run Algorithm 3
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Table 5.4: Features of 4 graphs, including the graph value and the sample mean and
standard deviation

Graphs: dolphins Karate Enron polbooks
n 62 34 151 105
m 159 78 869 441

µ̂ 6.90 7.08 17.54 11.90
λ1 σ̂ 0.09 0.13 0.14 0.15

G 7.19 6.73 17.83 11.93
µ̂ 0.45 0.71 0.91 1.62

µ2 σ̂ 0.19 0.17 0.08 0.17
G 0.17 0.47 0.81 0.32
µ̂ 2.26 1.86 2.05 2.11

h σ̂ 0.03 0.02 0.01 0.01
G 2.53 1.91 2.18 2.46
µ̂ 0.11 0.22 0.15 0.13

C σ̂ 0.02 0.03 0.01 0.01
G 0.31 0.26 0.34 0.35

Algorithm 3 Graph generator with feature range constraint

Input: G0, [s−, s+], S(G0) ∈ [s−, s+]
Output: Gk as one sample

1: for t ← 1 to a large number k do
2: Gt ← SingleSwitch(Gt−1);
3: if S(Gt) 6∈ [s−, s+] then
4: Gt ← Gt−1;
5: end if
6: end for
7: return Gk;

One interesting question is that when we preserve one feature of the graph, whether

other features can also be preserved. We conduct some empirical evaluations to

address this problem. We generate N = 500 synthetic graphs by Algorithm 3 for each

of four feature range constraints, Sλ1 , Sµ2 , Sh and SC . The range is S(G) ± 0.5σ̂,

where S(G) is the feature of the true graph and σ̂ is the standard deviation of feature

S in Gd (shown in Table 5.4).

For those synthetic graphs, we also compute the means and standard deviations of

other three uncontrolled features. Table 5.5 shows the means and standard deviations
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of the feature values of the generated graphs for four networks. By comparing with

Table 5.4, we can see that when λ1 is constrained (the Sλ1 column) for polbooks, the

µ2, h or C of the generated graphs is not close to the original graph’s. Instead, their

distributions are similar to that of the synthetic graphs generated with no constraints.

However, when µ2 or h is constrained for polbooks, other three features are also well

preserved.

We also observe that preserving µ2 or h does not always preserve other features.

For Enron data set, when µ2 or h is confined within the range, other three features

can be very different from the original graph’s. This phenomenon indicates that

constraining different features has different strength in preserving data utility, and

this effect changes on different data sets.

Another question regarding preserving graph features is that whether attackers

can exploit the feature constraint information to breach the individual privacy. We

examine this problem in the next section.

5.2.3 Link Privacy Analysis

We are interested in how well graph generation can preserve the link privacy. Specif-

ically we investigate how attackers exploit the released graph as well as feature con-

straints 4 to breach link privacy. In Section 5.2.3, we present one attacking method

and empirically show its effectiveness in breaching link privacy.

Attacking Method. Let G and G̃ denote the original graph and the released graph

respectively. To simplify the notation, we also use G and G̃ to denote their corre-

sponding adjacency matrices.

The attacker can calculate the posterior probability of existence of a link by ex-

ploiting the Gd,S (or Gd when there is no feature constraints). Naturally, if many

graphs in Gd,S have an edge at (i, j), the original graph is also very likely to have the

4We assume that data owners need to release the switch strategy and the feature constraints S
for data mining purposes.
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Table 5.5: Feature means and standard deviations of synthetic graphs with feature
constraints

dolpins Karate
Sλ1 Sµ2 Sh SC Sλ1 Sµ2 Sh SC

E(λ1) – 6.96 7.20 7.74 – 7.16 7.35 7.21
σ(λ1) – 0.09 0.09 0.23 – 0.13 0.09 0.09
E(µ2) 0.34 – 0.01 0.27 0.84 – 0.40 0.64
σ(µ2) 0.20 – 0.03 0.18 0.12 – 0.13 0.17
E(h) 2.32 2.28 – 2.41 1.83 1.88 – 1.88
σ(h) 0.05 0.02 – 0.06 0.01 0.02 – 0.02
E(C) 0.14 0.12 0.15 – 0.18 0.24 0.27 –
σ(C) 0.02 0.02 0.03 – 0.02 0.03 0.03 –

polbooks Enron
Sλ1 Sµ2 Sh SC Sλ1 Sµ2 Sh SC

E(λ1) – 11.6 11.9 14.9 – 17.6 18.4 21.3
σ(λ1) – 0.11 0.14 0.50 – 0.16 0.17 0.14
E(µ2) 1.62 – 0.19 1.36 0.91 – 0.10 0.84
σ(µ2) 0.18 – 0.04 0.16 0.10 – 0.10 0.12
E(h) 2.11 2.29 – 2.23 2.07 2.06 – 2.16
σ(h) 0.01 0.02 – 0.02 0.01 0.01 – 0.02
E(C) 0.14 0.24 0.27 – 0.16 0.16 0.18 –
σ(C) 0.01 0.01 0.02 – 0.01 0.01 0.01 –

edge (i, j), and hence

Pr[G(i, j) = 1|Gd,S] =
1

|Gd,S|
∑

Gs∈Gd,S

Gs(i, j). (5.17)

Data owner Public

true graph G
Markov chain−−−−−−−−→

with S

G̃ & S

p̂ij
estimate←−−−− G̃1, . . . , G̃N

Markov chain←−−−−−−−−
know S

Attacker

Figure 5.5: Graph publishing and attacking process

The attacking method works as follows. Starting with the released graph G̃,

attackers apply the same randomization strategy to generate N samples G̃s (s =

1, 2, . . . , N). Then attackers calculate the posterior probability of existence of a link
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for all node pairs as p̂ij = 1
N

∑N
s=1 G̃s(i, j) and choose top t as predicted links. Figure

5.5 illustrates this attacking methods.

The attacking method works because the convergence of the Markov chain to the

stationary distribution does not depend on the initial point. In other words, starting

with the released graph G̃, attackers can also explore the graph space Gd,S similarly

as starting from the original graph. Since the single switch procedure can uniformly

generate graphs in Gd, for those graphs accessible by the Algorithm 3, they are also

equally likely to be generated. Due to this property, p̂ij is an unbiased estimator of

the posterior probability.

Intuitively, the more strict the constraint is, the closer graphs in Gd,S is to the

original graph. Figure 5.6 shows the attacker’s precisions when the range constraint on

µ2 for polbooks varies from S(G)±0.5σ̂ to S(G)±2σ̂. We compute the precisions of top

t predictions, where t varies from 0.1m to m. We can see that the precision decreases

as the range increases. When the range is S(G)± 2σ̂, the precision approaches that

without constraints. This is obvious, for as the constraints becomes wider, the graph

space Gd,S grows larger and eventually equal to Gd.
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Figure 5.6: Precision of Top t predictions with µ2 confined within different ranges for
polbooks.

Figure 5.7 shows the precisions of top t predictions using four different features.
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We can see that for all the cases, the attacker can achieve high accuracy, especially

for those top 0.2m candidate links. Even when t is increased to m, the precision is

much higher than random guess (with random guess the accuracy should be equal

to the sparse ratio 0.08 for polbooks). Moreover, when µ2 or h is confined within

the range, the attacker can achieve even higher accuracy, and is almost sure that the

top 0.2m candidate links are true links in the original graph. These results indicate

that, by exploiting the graph space, the attacker can effectively breach the individual

privacy.
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Figure 5.7: Precision of top t predictions for polbooks

We can also observe in Figure 5.7 that, when λ1 or transitivity (C) are confined

within the range, the attacker does not achieve accuracy higher than the case with

no constraints, indicating that preserving features does not always jeopardize private

information. We will discuss this phenomenon in the next section.

Features vs. Privacy. From Figure 5.7, we observe that preserving some feature in

the released graph can significantly violate the privacy, while preserving others may

not. We should also point out that, one feature that jeopardizes privacy in one graph

does not necessarily jeopardize privacy in another. We evaluate the attacking method

on other three networks. We can observe from Figure 5.8(c) that, for the Enron

network, unlike the polbook, the attacker can not achieve higher precision when µ2
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or h are preserved. In this section, we discuss about what causes this phenomenon.
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Figure 5.8: Precisions of top t predictions for different networks

Intuitively, we can measure the distance between two graphs in the graph space by

the number of different edges they have. Then, two graphs that have approximately

equal feature values are very likely to have shorter distance to each other.

One measure to denote the distance of two graphs is ‖G1 − G2‖2
F , where ‖ · ‖F is

the Frobenius norm. Since G̃s and G have the same number of edges, it is easy to

check that 1
4
‖G̃s −G‖2

F is the number of different edges, and we can then define the

relative distance measure between the original graph and the synthetic graph:

d(G̃s, G) =
‖G̃s −G‖2

F

2‖G‖2
F

=
‖G̃s −G‖2

F

4m
. (5.18)

We can see that d(G̃s, G) is the proportion of different edges.

Table 5.6 lists the means and standard deviations of d(G̃s, G) of the attacker’s N

samples for different graphs. We can see that, for polbooks, when λ1 or C is confined

within the range, the mean of d(G̃s, G) is not much different from the case without

constraints. However, when µ2 or h is preserved, the mean of d(G̃s, G) is significantly

smaller than the case without constraints, indicating that graphs whose µ2 or h is

constrained have less edges different from the original graph, and thus release more

private information. This is consistent with our previous result that the attacker can

achieve higher attacking precision when these two features are preserved for polbooks.

However, for Enron network, the means of d(G̃s, G) are approximately equal in all
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cases, indicating that preserving any of the features does not produce graphs closer

to the original one.

Actually, as shown in our next result, the average distance of the graph space to

the true graph directly affects the attacker’s precision:

Result 5.2: Let d̄ denote the expectation of d(G̃s, G) over Gd,S:

d̄ = E[d(G̃s, G)] =
1

|Gd,S|
∑

G̃s∈Gd,S

d(G̃s, G).

When the sample size is large (N →∞), for the true edges (ij ∈ G), we have

∑
i<j,ij∈G

p̂ij → m(1− d̄). (5.19)

Proof. Let G̃s, s = 1, 2, . . . , N be the N samples uniformly from the Gd,S.

1

N

N∑
s=1

‖G̃s −G‖2
F =

1

N

∣∣∣∣∣
N∑

s=1

(G̃s −G).2

∣∣∣∣∣ =

∣∣∣∣∣
1

N

(∑
s

G̃.2
s − 2G⊗

∑
s

G̃s + NG.2

)∣∣∣∣∣ ,

(5.20)

where ⊗ and .2 denote the entry-wise multiplication and square respectively, and | · |
denotes the sum of all the elements in the matrix. Since G̃s and G are 0-1 matrices,

we have G̃.2
s = G̃s and G.2 = G, then continue with (5.20), we have

1

N

N∑
s=1

‖G̃s −G‖2
F =

∣∣∣∣∣
1

N

∑
s

G̃s − 2G⊗
(

1

N

∑
s

G̃s

)
+ G

∣∣∣∣∣

=
∑
i,j

pij − 2
∑
ij∈E

pij + 2m

=4m− 2
∑
ij∈E

pij (note
∑

ij pij = 2m).

Therefore,

1

N

N∑
s=1

d(G̃s, G) =
1

N

N∑
s=1

‖G̃s −G‖
4m

= 1− 1

m

∑
i<j,ij∈E

p̂ij.

With the law of large number 1
N

∑N
s=1 d(G̃s, G) → d̄ as N →∞, and we have reached
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the conclusion of (5.19).

From (5.19), we can see that if the constraint S specifies a graph space which

has smaller average distance to the true graph (smaller d̄), the true edges must have

higher estimated posterior probability p̂ij. On the other hand, since

∑

i<j,ij 6∈G

p̂ij +
∑

i<j,ij∈G

p̂ij =
∑
i<j

p̂ij = m,

higher p̂ij for true edges implies that the missing edges in G must have lower p̂ij.

Therefore, when the attacker sorts the node pairs (i, j) by p̂ij in descending order,

the top t candidates contain more true edges and are thus more accurate.

Table 5.6: Means and standard deviations of d(G̃s, G) over different spaces with and
without range constraints

constraint no S Sλ1 Sµ2 Sh SC

dolphins
E(d) .852 .848 .850 .844 .849
σ(d) .025 .024 .025 .030 .025

Karate
E(d) .655 .650 .654 .651 .656
σ(d) .038 .042 .037 .036 .038

polbooks
E(d) .843 .844 .736 .700 .824
σ(d) .015 .015 .017 .018 .033

Enron
E(d) .825 .823 .824 .821 .812
σ(d) .011 .009 .011 .010 .023

5.2.4 Relaxed Graph Generation with Feature Range Constraints

In this section and Section 5.2.5, we present two graph generation algorithms for

the purpose of statistical testing. In the statistical testing, the graph generation

has stricter requirements. For example, the generator should be able to access all

potential graphs so that the testing result is not biased. In some other cases, the

feature values of the generated graphs should follow some prescribed distribution.
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All these problems involve constructing a Markov chain with a required stationary

distribution. The Metropolis-Hastings method [45] is one of the standard methods of

converting a Markov chain with one stationary distribution to another Markov chain

with a different stationary distribution.

Metropolis-Hastings Method. Suppose on the random variable X we have a

Markov chain M with transition matrix P and the stationary distribution π, and

we want to construct a Markov chain M∗ whose stationary distribution is q =

{q1, q2, . . . , qM}. The Metropolis-Hastings method works as follows: suppose at time

t, X t = xi, run Markov chain M and X t+1 = xj, then move to xj with probability

αij = min

(
1,

qjpji

qipij

)
, (5.21)

and stay in xi otherwise. Particularly, if P is symmetric,

αij = min (1, qj/qi) . (5.22)

Generally speaking, the graph generator with feature range constraint shown in

Algorithm 3 may not access all the graphs that satisfies the constraint. To overcome

this problem, we develop a relaxed algorithm in this section. The relaxed algorithm,

shown in Algorithm 4, can access all the graphs in Gd,S and achieve approximate

uniformity.

Algorithm 4 Relaxed graph generator with feature range constraint

Input: G0, [s−, s+], q(·) = ψ[S(·)]
Output: Gk as one sample

1: for t ← 1 to k do
2: Gt ← SingleSwitch(Gt−1);

3: if rand() ≥ min
(
1, q(Gt)

q(Gt−1)

)
then

4: Gt ← Gt−1

5: end if
6: end for
7: return Gk;

We modify Algorithm 2 into a Markov chain with q(·) as its stationary distribution.
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In generating graphs, q(G) is the probability that a graph G is produced by the relaxed

generator, and q(G) should be high for those graphs in Gd,S and should be low for

those graphs not in Gd,S. Generally speaking, we can choose

q(G) =
ψ[S(G)]

K
, (5.23)

where ψ(·) is a positive function over the real axis such that it decreases on [s0, +∞)

and increases on (−∞, s0] and K is a normalizer to ensure
∑

G∈Gd
q(G) = 1. Notice

that Line 3 indicates Algorithm 4 only depends on the ratio of two probabilities, we

can simply set

q(G) ← ψ[S(G)]. (5.24)

The transition matrix in Algorithm 2 is symmetric, and we can thus set the ac-

ceptance ratio q(Gt)/q(Gt−1) as (5.22). The connectivity of the Markov chain in

Algorithm 4 is guaranteed for the acceptance ratio must be positive. Hence the chain

can reach any graph in Gd,S.

One way of choosing ψ(·) is to choose the p.d.f. of a normal distribution with mean

equal to s0:

ψ(s) =





1
σ1

√
2π

exp
[
− (s−s0)2

2σ2
1

]
, if s ≥ s0

1
σ2

√
2π

exp
[
− (s−s0)2

2σ2
2

]
, if s < s0

(5.25)

where σ1 = s0−s−
2

and σ1 = s+−s0

2
. When s0 6∈ [s−, s+], we can simply substitute s0

with s−+s+

2
in (5.25). When we set ψ(·) as

ψ(s) =





1 if s ∈ [s−, s+]

0 otherwise

(5.26)

we get Algorithm 3. We can see that Algorithm 3 is a special case of the relaxed

generator.

Theoretical Discussion. One theoretical question regarding to our relaxed gener-

ator is what are the feature distributions of the generated graphs. Actually, for the
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relaxed generator, the distribution of S(G)depends on both our choice of ψ(·) and

the natural distribution f(x) of feature S.

Property 5.1: Suppose that graph G is generated by the relaxed graph generator

with feature range constraint (Algorithm 4) whose q(·) is set as (5.23), then S(G) has

the distribution with p.d.f. 1
Ef [ψ(s)]

ψ(s)f(s) where Ef [ψ(s)] denote the expectation of

ψ(s) under p.d.f. f(·).

Proof. Note that f(s)|Gd| is the number of graphs in Gd whose S value equal to s,

and each such graph will be generated with probability ψ(s)
K

. Hence we have

Pr[s(G) = s] =
ψ(s)

K
f(s)|Gd|, (5.27)

Then for any interval [a, b], we have

Pr[a ≤ S(G) ≤ b] =
|Gd|
K

∫ b

a

ψ(s)f(s)ds. (5.28)

Let the range be the whole real axis, then

1 = Pr[S(G) ∈ R] =
|Gd|
K

∫

R
ψ(s)f(s)ds =

|Gd|
K

Ef [ψ(s)],

and we have K = |Gd|Ef [ψ(s)]. Combining this with (5.28), we have the property

proved.

From Property 5.1, we can know that for any two graphs G1, G2 ∈ Gd satisfying

ψ[S(G1)] = ψ[S(G2)], they have the same probability to be generated by Algorithm

4. If ψ(·) is a continuous function, q(G1) ≈ q(G2) when S(G1) ≈ S(G2).

We also know that not all graphs generated by the relaxed generator have their S

values within the range. According to Property 5.1, if graph G is from the relaxed

generator, we have

Pr(G ∈ Gd,S) =
1

Ef [ψ(s)]

∫ s+

s−
ψ(s)f(s)ds. (5.29)
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We can see that low value of f(x) over [s−, s+] reduces the probability in (5.29).

Given the graph space Gd and the range [s−, s+], f(x) over the range is determined,

and we can then increase ψ(·) over the range to improve the probability in (5.29).

When we choose ψ(·) as (5.26), we have that the relaxed generator will then always

on a graph within the range, for the probability in (5.29) is always equal to 1.

Figure 5.9 illustrates two choices of ψ(·). ψ(·) is the p.d.f. of a normal distribution

as shown in (5.25). To make the discussion easy, we assume s0 = s−+s+

2
, then σ1 = σ2.

If we choose a small σ as ψ1(·), ψ1(·) is large over [s−, s+] and the relaxed generator

has higher probability to generate a graph in Gd,S. However, the value of ψ(·) changes

more dramatically within the range, which reduces the uniformity of the generated

graphs. When σ is large as ψ2(·), ψ(·) does not change greatly over the range and we

can guarantee the uniformity, but it reduces the probability that the generated graph

is in Gd,S.

s
−

s
+

←ψ
1
(x)

←ψ
2
(x)

Figure 5.9: Choice of ψ(·)

5.2.5 Graph Generation with Feature Distribution Constraints

In this Section, we study the generator that can generate graphs whose feature

value satisfies a prescribed distribution.

Let g(x) denote the p.d.f. of the target distribution of feature S. On the other

hand, S has its own p.d.f. f(x) over Gd. Algorithm 5 outlines the graph generator
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with feature distribution constraint.

Algorithm 5 Graph generator with feature distribution constraint

Input: G0, g(·), f(·)
Output: Gk as one sample

1: for t ← 1 to k do
2: Gt ← SingleSwitch(Gt−1);

3: if rand() ≥ min
(
1, g[S(Gt)]f [S(Gt−1)]

g[S(Gt−1)]f [S(Gt)]

)
then

4: Gt ← Gt−1

5: end if
6: end for
7: return Gk;

From Property 5.1, we know that given any input function ψ(x), the generated

distribution of S value has the p.d.f. as 1
Ef [ψ(x)]

ψ(x)f(x). By replacing ψ(x) with g(x)
f(x)

in (5.29), we have

Ef [ψ(s)] = Ef

[
g(x)

f(x)

]
=

∫ +∞

−∞

g(x)

f(x)
f(x)dx = 1.

Then also from (5.29) we have

Pr[S(G) ≤ x] =
1

Ef [ψ(s)]

∫ x

−∞

g(t)

f(t)
f(t)dt

=

∫ x

−∞
g(t)dt,

and then the p.d.f. of S value is equal to g(x). Hence, by setting q(·) in (5.22) as

q(G) ← g[S(G)]/f [S(G)], (5.30)

we can achieve the target distribution in Algorithm 5. We would like to point out

that, if we know that statistic S has uniform distribution over Gd, (5.30) is reduced

to set q(G) ← g[S(G)]. However, generally speaking, statistic S is not uniformly

distributed and we can not just set q(G) ← g[S(G)].

Example continued: Continue with the previous example. In Gd, G1 has transi-

tivity value 0 and the remaining six graphs have the same transitivity value 1
3
. The
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probability function of transitivity in Gd is

C value 0 1/3

f(x) 1/7 6/7

Suppose that we want to generate a series of graphs in Gd so that the required prob-

ability function g(x) on transitivity to be:

C value 0 1/3

g(x) 0.4 0.6
(5.31)

We set q(·) as in (5.30): q(Gi) = g[C(Gi)]/f [C(Gi)]. Let Q denote the transition

matrix of this Markov chain, then Qij = pij ×min{1, q(Gj)/q(Gi)} for i 6= j, and set

the diagonal entries so that Q has row sums equal to 1:

Q = 10−2 ×




97.50 0.42 0.42 0.42 0.42 0.42 0.42

1.67 93.33 1.67 1.67 0 0 1.67

1.67 1.67 93.33 0 1.67 1.67 0

1.67 1.67 0 93.33 1.67 1.67 0

1.67 0 1.67 1.67 93.33 0 1.67

1.67 0 1.67 1.67 0 93.33 1.67

1.67 1.67 0 0 1.67 1.67 93.33




.

We can verify that the stationary distribution of the new Markov chain is

(0.4, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),

which makes the transitivity distributed as shown in (5.31). We apply Algorithm 5

on this example, and sample group (5.32) lists 1000 samples (k = 500):

Graph G1 G2 G3 G4 G5 G6 G7

Count 399 90 93 109 97 105 107
(5.32)

Comparing sample group (5.32) with the stationary distribution, we have the χ2-
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statistics equal to 3.1325 with its p-value equal to 0.7920, which indicates the gener-

ated graphs well match the target distribution. ¤

5.2.6 Empirical Evaluation

µµ−2σ µ+2σ

(a) uniform

µµ−2σ µ+2σ

(b) double-triangle

Figure 5.10: Target distributions g(x)

We apply Algorithm 5 on graph polbooks to simulate two distributions for four

features: λ1, µ2, harmonic mean of shortest distance (h), and transitivity (C). The

first distribution is the uniform distribution on interval [µ̂− 2σ̂, µ̂ + 2σ̂], where µ̂ and

σ̂ are the sample mean and standard deviation of graph polbooks from Table 5.4.

The second distribution is a double-triangle-shaped distribution:

g(x) =
|x− µ̂|

4σ̂2
, x ∈ [µ̂− 2σ̂, µ̂ + 2σ̂].

The shapes of the two target distributions are shown in Figure 5.10. Both of them are

very different from the features’ natural distributions f(x). When applying Algorithm

5, we need to know the natural distribution of those features f(x), and we use the

kernel density estimator shown in (5.16) to estimate f(x) from the 3000 uniformly

generated samples. Figure 5.11 shows the distributions of the four features of the 500

generated samples (k = 6000) using Algorithm 5. We can observe from Figure 5.11

that all the four features of generated samples match well the target distributions

(shown in Figure 5.10).

In many practical cases that some feature distribution f(·) over Gd is unknown,
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the cost of estimating f(·) can be high since we need to generate a large number of

uniformly sampled graphs. To reduce the cost, we may simply specify f(·) as some

a-priori distribution (e.g., normal or uniform distribution) although it may sacrifice

the accuracy of feature target distribution of the generated samples.

5.3 Summary

In this chapter, we develop two types of feature-preserving graph randomization

procedures. The first type is the spectrum preserving graph randomization proce-

dures, Spctr Add/Del and Spctr Switch, which can better preserve graph character-

istics via preserving two eigenvalues of graph matrices, λ1 and µ2. The second type

of graph randomization procedure we presented is a simple switching based graph

generator which can preserve any feature of a real graph specified by users. We then

investigate the potential disclosure of sensitive links due to the preserved features.

Based on Metropolis-Hastings sampling, our graph generator can be easily modified

to generate synthetic graphs whose features satisfy a given distribution. This is of

great importance for significance testing of network analysis results.
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Figure 5.11: Feature distributions of generated graphs with feature distribution con-
straints shown in Figure 5.10 for polbooks.



CHAPTER 6: SPECTRAL ANALYSIS OF SOCIAL NETWORKS

In Chapter 5, we discussed the spectrum-preserving randomization procedures that

can preserve graph features via preserving some graph spectra. In this chapter, we

conduct more studies on the relation between the graph spectrum and the topological

patterns of the graph. One general question is that what information about the graph

the spectrum decodes. The real-world social networks are very different from the

random ones. As we apply randomization to a real-world graph, the graph approaches

to a random one. Then, can the graph spectrum captures the change from a real-world

graph to a random one? How can we measure the difference between a real-world

graph (or a randomized one) and a pure random one? In this chapter, we develop a

consistent framework to measure the randomness at the edge, node, subgraph, and

the overall graph level. The measures are based on the adjacency spectral space.

We further develop a community partition algorithm utilizing the adjacency spectral

geometry.

Let λi be the i-th largest eigenvalues of A and xi the corresponding eigenvectors,

and λ1 ≥ λ2 ≥ · · · ≥ λn. The spectral decomposition of A is A =
∑

i λixix
T
i . Let xi

be the unit eigenvector of λi and let xij denote the j’th entry of xi.

As shown in (6.1), the eigenvector xi is represented as a column vector. The row

vector (x1u, x2u, · · · , xnu) represents the coordinates of node u in the n-dimensional

spectral space. In Section 6.1, we show that only the coordinates of node u in the first

k-dimensional spectral space determine the randomness of u where k indicates the

number of communities within the graph. Hence we define αu = (x1u, x2u, . . . , xku) ∈
R1×k as the spectral coordinate of node u in the k-dimensional space.
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x1 xi xk xn

↓

αu →




x11 · · · xi1 · · · xk1

...
...

...

x1u · · · xiu · · · xku

...
...

...

x1n · · · xin · · · xkn

· · · xn1

...

· · · xnu

...

· · · xnn




(6.1)

In Section 6.1, we introduce the graph spectral geometry and its relationship with

the graph topology, especially the community structure. Based on the graph spectral

patterns, in Section 6.2, we develop a consistent framework to measure the random-

ness contained in the graph at the edge, node, sub-graph to the overall graph level.

We compare the graph patterns in the adjacency spectral space with those in other

spectral spaces in Section 6.3. We report our evaluation results in Section 6.4. In Sec-

tion 6.5, we present a community partition algorithm based on the adjacency spectral

geometry. Some of the results in this Chapter are also reported in [105, 108].

6.1 Graph Spectral Geometry

In this section, we explore how the spectral coordinate (α) of a node point locates

in the projected spectral space. Especially we show that node points locate along k

quasi-orthogonal lines when graph G contains k communities 1.

Proposition 6.1: For a graph with k communities, the coordinate of node u in k-

dimensional space, αu = (x1u, x2u, . . . , xku) ∈ R1×k, denotes the likelihood of node

u’s attachment to these k communities. Node points within one community form a

line that goes through the origin in the k-dimensional space. Nodes in k communities

form k quasi-orthogonal lines in the spectral space.

1Communities are loosely defined as collections of individuals who interact unusually frequently.
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Proof. Consider the division of a graph G into k non-overlapping communities G1, G2, . . . , Gk.

Let si = (si1, si2, . . . , sin) be the index vector of community Gi, and sij equals to 1 if

node j belongs to community Gi and 0 otherwise. Note that si and sj are mutually

orthogonal, i.e., sT
i sj = 0.

For community Gi, we can define its density as

D(Gi) :=
# of edges in Gi

# of nodes in Gi

.

It can be expressed as

D(Gi) =
sT

i Asi

sT
i si

where A is the adjacency matrix of graph G. The density for this division of the

graph is
k∑

i=1

D(Gi) =
k∑

i=1

sT
i Asi

sT
i si

(6.2)

The task of our graph partition is to maximize (6.2) subject to sij ∈ {0, 1} and

sT
i sj = 0, if i 6= j. This optimization problem is NP-complete. However, if we relax

sij ∈ {0, 1} to real space, based on the Wielandt’s theory [90], we have that the target

function reaches the maximum
∑k

i=1 λi when taking si to be xi.

Replacing A with
∑

i λixix
T
i in (6.2), we can derive that

∑k
i=1 D(Gi) would be

maximized by choosing the si proportional to the ith eigenvector xi of the adjacency

matrix when we relax the basic constraint sij ∈ {0, 1}. Hence we can conclude that

xij reflects the degree of node j’s attachment to the community Gi.

Property 6.1: A node u belongs to one community Gt if the tth entry of αu, xtu, is

much greater than the rest entries and xiu ≈ 0 for i 6= t.

A node u does not belong to any community if all the entries of αu are close to 0,

or equivalently, ‖α‖2 ≈ 0. We call such nodes noise nodes.

Property 6.2: If nodes u and v belong to the same community, then

| cos(αu, αv) |≈ 1.
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If nodes u and v belong to two different communities respectively, then

| cos(αu, αv) |≈ 0.

Otherwise, if node u belongs to one community Gt and bridging node v locates in

the overlap of two communities Gt and Gw, then | cos(αu, αv) | is not close to either

0 or 1.

Explanation. Notice that

cos(αu, αv) =
αuα

T
v

‖αu‖2‖αv‖2

.

When node u and v are in the same community Gt, xtu, we have that xtv is much

greater than the rest entries in αu and αv. Hence

αuα
T
v

‖αu‖2‖αv‖2

=

∑k
i=1 xiuxiv(∑k

i=1 x2
iu

) 1
2
(∑k

i=1 x2
iv

) 1
2

≈ xtuxtv

|xtu||xtv| = ±1.

In other words, points αu and αv approximately locate along a straight line that goes

through the origin.

Similarly, when node u and v are in two different communities Gt and Gw respec-

tively, with xwu ≈ 0 and xtv ≈ 0, we have

αuα
T
v

‖αu‖2‖αv‖2

≈ xtuxtv + xwuxwv

|xtu||xwv| ≈ 0,

which means that αu and αv are approximately orthogonal.

If a bridging node v is in the overlap of two communities St and Sw, both tth and

wth entries in αv are not negligible. Hence, ‖αv‖2 ≈ (x2
tv + x2

wv)
1
2 . For a node u from

Gt, we have ∣∣αuα
T
v

∣∣
‖αu‖2‖αv‖2

≈ |xtuxtv|
|xtu| (x2

tv + x2
wv)

1
2

=
|xtv|

(x2
tv + x2

wv)
1
2

.

Since neither xtv nor xwv is close to 0, | cos(u, v)| is not close to either 1 or 0, which
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indicates that bridging nodes locate between the quasi-orthogonal lines formed by

communities, and are also away from the origin.
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Figure 6.1: A synthetic network with 3 communities and its spectral coordinates
projected in 3-D plot.

Figure 6.1(b) shows the 3-D spectral geometries of a synthetic network as shown

in Figure 6.1(a). In Figure 6.1(a), there exist three dense subgraphs (denoted by red,

blue and pink color respectively), which are separated by one bridging node (node 61,

denoted by a white triangle), in addition to some random nodes (denoted by green

color). We can observe from Figure 6.1(b) that nodes in the three dense subgraphs are

projected along three straight and quasi-orthogonal lines in the 3-D spectral space

and nodes in green locate around the origin in the projected space. We can also

observe that node 61 (white triangle), which bridges the three communities, locates

away from the origin and among the three quasi-orthogonal lines.

6.2 A Framework of Measuring Graph Non-randomness

In this section, we present our framework which can quantify randomness at all

granularity levels from edge, node, subgraph, to the overall graph. We begin with

a study of edge non-randomness by spectral coordinates of its two connected nodes

in the spectral space. We then define the node non-randomness as the sum of non-
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randomness values of all edges that connect to it. Similarly, we define the overall

graph (subgraph) non-randomness as the sum of non-randomness values of all edges

within the the whole graph (subgraph). The formal definition is given below.

Definition 6.1: Denote αu = (x1u, x2u, . . . , xku) ∈ Rk as the spectral coordinate of

node u and αv = (x1v, x2v, . . . , xkv) ∈ Rk as the spectral coordinate of node v.

1. The edge non-randomness R(u, v) is defined as

R(u, v) = αuα
T
v =

k∑
i=1

xiuxiv.

2. The node non-randomness R(u) is defined as

R(u) =
∑

v∈Γ(u)

R(u, v),

where Γ(u) denotes the neighbor set of node u.

3. Let G1 be a subgraph of G(V, E) with node set V1 ⊆ V and edge set E1 ⊆ E.

The subgraph non-randomness R(G1) (with respect to the G) is defined as:

R(G1) =
∑

(u,v)∈E1

R(u, v). (6.3)

4. The graph non-randomness RG is defined as

RG =
∑

(u,v)∈E

R(u, v).

Throughout this section, we use polbooks network as an example to illustrate how we

define and calculate graph non-randomness at various levels. Figure 6.2(b) shows the

2-D spectral geometries of the politics book network data. We can observe from Figure

6.2(b) that the majority of vertices projected in the 2-D spectral space distribute along

two straight and quasi-orthogonal lines. It indicates that there exist two communities

with sparse edges connecting them. The first up-trend line consists of most nodes in
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Figure 6.2: Politics book social network

red color while the second down-trend line consists of most nodes in blue color. White

nodes distribute either around the origin or between two quasi-orthogonal lines in the

projected space.

6.2.1 Edge Non-randomness: R(u, v)

From Section 6.1, we know that the spectral coordinates of a node reflect its relative

attachment to different communities in G. When it comes to the measure of non-

randomness of an edge that connects two nodes, intuitively, we need to incorporate

the relationship of two nodes’ spectral vectors.
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Figure 6.3: Snapshot of different types of edges characterized by edge non-randomness
of politics book network

The edge non-randomness measure R(u, v) in Definition 1 can be rewritten as

R(u, v) = ‖αu‖2‖αv‖2 cos(αu, αu),
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which is determined by the product of ‖αu‖2‖αv‖2 and the cosine of the angle between

αu and αu. Generally, R(u, v) tends to be large when u and v are clearly belong to the

same community (since cos(αu, αu) ≈ 1). R(u, v) tends to be small when 1) u and v

are from two different communities (since cos(αu, αu) ≈ 0); 2) or either node (or both

nodes) is noisy (since ‖αu‖2‖αv‖2 ≈ 0). This intuitively reflects the formation of real

world social networks: two individuals within the same community have relatively

higher probability to be connected than those in different communities.

Figure 6.3(a) plots the distribution of edge non-randomness values, where x-axis

is the cosine value between αu and αv while y-axis denotes the product of the two

vector lengths. Figure 6.3(b) shows a snapshot of different types of 441 edges char-

acterized by edge non-randomness values of politics book network. We can observe

that distributions of edge non-randomness values characterized by different regions

reflect different types of edges in the original graph: edges with large cosine value

(plotted along the vertex line x = 1 and denoted by the blue ’+’) mostly connect two

nodes within the same community; edges with small vector length product (green ’+’

and plotted along the line y = 0) mostly connect to non-central nodes; edges plotted

in other area forms bridging edges between the two communities. All the above is

consistent with our previous explanations in Section 6.1.

6.2.2 Node Non-randomness: R(u)

A node’s non-randomness is characterized by the non-randomness of edges con-

nected to this node. This is well understood since edges in social networks often

exhibit patterns that indicate properties of the nodes such as the importance, rank,

or category of the corresponding individuals. Result 6.1 shows how to calculate the

node non-randomness using the spectral coordinates as well as the first k eigenvalues

of the adjacency matrix.

Result 6.1: The non-randomness of node u is the length of its spectral vector with
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eigenvalue weighted on corresponding dimensions:

R(u) =
∑k

i=1λix
2
iu = αuΛkα

T
u , (6.4)

where Λk = diag{λ1, λ2, . . . , λk}.

Proof. Let au denote the u’th row of the adjacency matrix A. Since xi satisfies

Axi = λixi and A is symmetric,




a1

...

an




xi = Axi = λi




xi1

...

xin




.

Hence, auxi = λixiu, and we have

R(u) =
∑

v∈Γ(u)

R(u, v) =
n∑

v=1

k∑
i=1

auvxiuxiv

=
k∑

i=1

(
xiu

n∑
v=1

auvxiv

)

=
k∑

i=1

xiuauxi =
k∑

i=1

λix
2
iu = αuΛkα

T
u .

We can see that the result is elegant since the node non-randomness is actually

determined by its vector length weighted by eigenvalues of the adjacency matrix.

Using node non-randomness measure, we can easily separate singleton nodes 2

and noise nodes (with small R(u) values) from those nodes strongly attached to some

community (with large R(u) values). We can also identify those nodes bridging across

several groups by examining its relative positions to orthogonal lines corresponding

to different communities.

Comparison with HITS. Our node non-randomness R(u) can be used to identify

2The singletons are degree-zero nodes who joined the network but have never made an interaction
with another user in the social network.
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those non-random individuals. However, it is different from those traditional link

based object ranking methods based on centrality measures. For example, HITS

algorithm [55] uses the principle eigenvector to assign authority/hub scores to each

node. For undirected social networks, since A is now symmetric, authority and hub

scores are the same, which are the principle eigenvector of A2. Denote A = XΛXT as

the eigen-decomposition of A. Since X is orthogonal, A2 = XΛ2X, the authority/hub

scores from HITS algorithm in undirected networks are equivalent to the entries of

x1. Therefore, if we are sure that the graph has only one community, our measure is

reduced to the HITS score. However, many real-world graphs contain more then one

community.

Table 6.1: Comparison of top 10 non-random nodes identified by R(u) and HITS.

HITS label R(u) label
85 liberal 9 conservative
74 liberal 13 conservative
73 liberal 85 liberal
31 liberal 74 liberal
67 liberal 73 liberal
75 liberal 4 conservative
76 liberal 31 liberal
77 neutral 67 liberal
87 liberal 12 conservative
72 liberal 75 liberal

Table 6.1 compares the difference between the top 10 non-random nodes identified

by our measure and the those identified by HITS for polbooks network. We can observe

from the Table 6.1 that top 10 nodes identified by our measures include important

nodes from two communities while HITS only identifies nodes from one community.

This is because HITS uses x1 only, the scores only reflect relative positions of points

along the x1-axis in Figure 6.2(b). Hence they can only discover central nodes in one

community (labeled as liberal) with the highest density. On the contrary, our node

non-randomness measure, which uses the weighted vector length in the k-dimensional



122

spectral space, can successfully discover non-random nodes from all k communities.

This empirical evaluation indicates our node non-random measure is different from

the traditional centrality measures used to rank nodes.

6.2.3 Graph Non-randomness RG and Relative Non-randomness R∗
G

In our framework, the graph non-randomness RG is defined as the sum of non-

randomness values of all edges within the graph. Result 6.2 shows RG can be directly

calculated using the first k eigenvalues.

Result 6.2: The graph non-randomness of the overall graph G can be calculated as

RG =
∑

(u,v)∈E

R(u, v) =
∑
u∈G

R(u) =
k∑

i=1

λi (6.5)

Proof. The second equation is straightforward. For the third equation, denote X as

(x1, x2, . . . , xk) where each column is an eigenvector of A: Axi = λixi, hence we have

∑

(u,v)∈E

R(u, v) =
∑
u,v

auvαuα
T
v = trace(XT AX) =

k∑
i=1

λi.

The above result is elegant since we can use the sum of the first k eigenvalues

to determine the non-randomness of the overall graph. Recall that k indicates the

number of communities in the graph. In this paper, we assume the value of k is either

specified by domain users or discovered by those graph partition methods. There are

tons of work on how to partition graph into k communities (refer to a survey paper

[16]).

Chung and Graham indicated the use of the largest eigenvalue λ1 as an index of

the non-randomness of the overall graph since the first eigenvalue of random graphs

characterizes the frequency of subgraphs [21]. Our analysis shows that λ1 may not be

an appropriate measure to quantify the graph non-randomness for real-world social
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networks since they usually contain more than one communities. Actually, we can

see that the index of graph non-randomness using λ1 is a special case of our proposed

measure RG with k = 1.

All real networks lie somewhere between the extremes of complete order and com-

plete randomness. While the absolute non-randomness measure RG can indicate how

random a graph G is, it is more desirable to give a relative measure so that graphs

with different size and density can be compared. One intuitive approach is comparing

the graph’s non-randomness value with the expectation of non-randomness value of

all random graphs generated by ER model. We can use the standardized measure

defined as

R∗
G =

RG − E(RG)

σ(RG)

where E(RG) and σ(RG) denote the expectation and standard deviation of the graph

non-randomness under ER model. Our Theorem 6.1 shows the distribution of RG.

Theorem 6.1: For a graph G with k(¿ n) communities where each community

is generated by ER model with parameter n
k

and p, then RG has an asymptotically

normal distribution with mean (n−2k)p+k and variance 2kp(1−p) where p = 2km
n(n−k)

.

Proof. In G each community has n/k nodes, and hence

p =
2m

k n
k
(n

k
− 1)

=
2km

n(n− k)
.

Let λi be the largest eigenvalue of the ith community (i = 1, 2, . . . , k), then RG =
∑k

i=1 λi. Since λi has the asymptotical normal distribution with mean (n
k
− 2)p + 1

and variance 2p(1 − p)[34], then RG also has the asymptotical normal distribution

with mean and variance as in the theorem.

With Theorem 6.1, we directly have the following result.

Result 6.3: The relative non-randomness of the overall graph G(n,m) can be cal-



124

culated as

R∗
G =

RG − [(n− 2k)p + k]√
2kp(1− p)

, (6.6)

where p = 2km
n(n−k)

.

For any two graphs, G1 and G2, if |R∗
G1
| < |R∗

G2
|, we can conclude that G1 is more

random than G2. Since the relative non-randomness measure R∗
G of ER graph approx-

imately follows the standard normal distribution with mean 0 and standard variance

1, we can use 1−Φ(R∗
G) to indicate the similarity between this graph and a random

graph, where Φ(x) denotes the cumulative distribution function of the standard nor-

mal distribution. Given a significance level α, when R∗
G = RG−[(n−2k)p+k]√

2kp(1−p)
≥ Φ−1(1−α),

we can safely reject that G is a random graph.

r−regular 0
 ER−graph

R
G
* l−complete

← ≈ 1−Φ(R
G
* )

Figure 6.4: Relative non-randomness measure and its distribution

The relative measure indicates to what extent one real world graph is different

from random graphs in terms of probability. As illustrated in Figure 6.4, when R∗
G

is close to 0, the graph G tends to be more likely generated by ER model. From

the statistical hypothesis testing point of view, we cannot reject the null hypothesis

that G is generated by ER model. On the contrary, when R∗
G is far away from 0, it

indicates the graph G is towards extreme ordered graph. We can safely reject the null

hypothesis since 1−Φ(R∗
G) (denoted as the gray region in Figure 6.4) is significantly

small.
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Another interesting property illustrated in Figure 6.4 is that R∗
G of any graph

is lower (upper) bounded by that of r-regular (l-complete) graph respectively. For

graphs G(n,m) with k communities, we define the r-regular graph as a graph with

each node having r neighbors and the l-complete graph here as a graph where each

community is a clique of l nodes.

Theorem 6.2: For any graph G(n,m) with k communities, we have

R∗
Gr−regular

≤ R∗
G ≤ R∗

Gl−complete

where R∗
Gr−regular

and R∗
Gl−complete

denote the relative non-randomness value of r-

regular graph and l-complete graph respectively. Similarly, we have

RGr−regular
≤ RG ≤ RGl−complete

Their expressions are shown in Table 6.2.

Table 6.2: Non-randomness measure for different graphs with the same (n,m) and k
communities

Graph, p = 2km
n(n−k)

RG R∗
G

ER model (n− 2k)p + k 0
r-regular
(m = krn

2
)

kr − k√
2kp(1−p)

l-complete

(m = kl(l−1)
2

)
k(l − 1) kl−(n−2k)p−2k√

2kp(1−p)

Proof. We first prove the case k = 1. When k = 1, RG = λ1. Let dmin, dmax and

d̄ be the minimum, maximum, and the average degree. We have the following two

inequalities [24]:

dmin ≤ d̄ =
2m

n
≤ λ1 ≤ dmax (6.7)

λ1 ≤
√

2m− n− 1 (6.8)

Assume that m = rn/2 for some integer r, then we can construct a r-regular graph
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with m edges. In r-regular graph d̄ = 2m
n

= dmax = r, with Inequality (6.7), we have

RG = λ1 = r. Since for any graph with the same parameters, we have λ1 ≥ 2m
n

.

Hence the r-regular graph has the smallest non-randomness value.

The relative non-randomness measure is

R∗
Gr−regular

=
r − (n− 2)p− 1√

2p(1− p)
, (6.9)

where p = r
n−1

for r-regular graph. When n is large, we can further simplify (6.9) as:

R∗
Gr−regular

= − 1√
2p(1− p)

.

Assume that m = l(l−1)
2

for some integer l, then we can construct a complete graph

with node 1, 2, . . . , l, leaving the rest nodes isolated. Then, RGl−complete
= l− 1. Since

any graph with the same parameters must involve no less than l non-isolated nodes,

and with Inequality (6.8), we have

λ1 ≤
√

2m− l − 1 = l − 1.

Hence the l-complete graph reaches the upper bound. Its relative non-randomness is

straightforwardly derived from the definition.

When k > 1, it is easy to verify that the minimum and maximum are reached

when the graph has k equal-sized r-regular graphs or l-complete graphs. We have the

theorem proved.

Discussion. When it comes to a graph with one community, our graph non-randomness

measure RG is reduced as λ1 as shown in 6.5. It has been shown in [34] that the largest

eigenvalue has asymptotically the normal distribution with mean (n − 2)p + 1 and

variance 2p(1 − p) when graph G follows ER model with parameter n and p. This

can be considered as a special case of our results shown in Theorem 6.1.

Theorem 6.2 shows that r-regular graph and l-complete graph are most non-random

graphs among all graphs G(n,m). The relative non-randomness value of r-regular
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Figure 6.5: Upper and lower bounds of R∗
G for graphs with n = 30, k = 1, and varying

m

graph reaches the largest negative value while that of l-complete graph reaches the

largest positive value. Recall that the expectation of the relative non-randomness

value of ER graphs is 0. Figure 6.5 illustrates how the relative non-randomness values

of r-regular graph and l-complete graph vary when the density of graph increases.

Note that the number of nodes across all graphs is fixed (n = 30). When we increase

the number of edges, the range determined by the bounds decreases. In the extreme

case of m = 435, both relative non-randomness values are zero since the graph is a

fully complete graph.

6.2.4 Subgraph Non-randomness R(G1)

Let G1 denote a subgraph of G(V, E) with node set V1 ⊆ V and edge set E1 ⊆
E, |V1| = n1 and |E1| = m1. The subgraph non-randomness measure is R(G1) =
∑

(u,v)∈E1
R(u, v). It can indicate how much the subgraph G1 contributes to the non-

randomness of the whole graph.

For example, in the polbook network, a subgraph G1 with 53 nodes and 230 edges

(formed by choosing 50% of the nodes with the highest degrees and all the edges

among them), R(G1) = 17.86. Compared with the non-randomness of the whole

graph RG = 23.55, G1 with only 230
441

= 52.2% edges accounts for 17.86
23.55

= 75.8% of

the non-randomness of the whole graph. It indicates that G1 makes a significant
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contribution to the whole graph structure.

One natural question is what is the relationship between R(G1) and RG1 . The later

RG1 denotes the graph non-randomness when we regard G1 as an independent graph.

Lemma 6.1: Let G1 be a subgraph of G, given the same k as G, we have R(G1) ≤
RG1 .

Proof. First, we give a slightly different version of Corollary IV.4.4 in [90] as a lemma.

Lemma 6.2: Let X ∈ Rn×k have orthogonal columns. Let λ1 ≥ λ2 ≥ · · · ≥ λn be

the eigenvalues of symmetric matrix A, and µ1 ≥ µ2 ≥ · · · ≥ µk be the eigenvalues of

XT AX, then for i = 1, 2, . . . , k, λi ≥ µi.

Let A1 denote the adjacency matrix of G1, and let µi be the i-th largest eigenvalue

of A1 with eigenvector yi. Then, we have

R(G1) =
∑

(u,v)∈E1

R(u, v) =
∑

u,v∈V1

auvαuαT
v

= trace


XT




A1 0

0 0


 X


 = trace(M).

Let ηi (i = 1, 2, . . . , k) be the i-th largest eigenvalues of M . With Lemma 6.2, we

know that ηi ≤ µi, then

R(G1) = trace(M) =
k∑

i=1

ηi ≤
k∑

i=1

µi = RG1 .

We have Lemma 6.1 proved.

Lemma 6.1 can be used to derive an upper bound of non-randomness of the whole

graph G.

Result 6.4: We randomly select m1 edges (m1 ≤ m) from the whole graph and form

a subgraph G1, then we have RG ≤ m
m1

RG1 .
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Proof. With Lemma 6.1, we have:

RG1 ≥ R(G1) =
∑

(u,v)∈E1

R(u, v) ≈ m1

m

∑

(u,v)∈E

R(u, v) =
m1

m
RG. (6.10)

The approximation in (6.10) is because the m1 edges are randomly selected, and
∑

(u,v)∈E1
R(u, v) approaches m1

m

∑
(u,v)∈E R(u, v) as the graph size increases. Then,

we immediately get RG ≤ m
m1

RG1 .

We can also derive a lower bound of RG.

Result 6.5: Given a closed subgraph G1, we have RG ≥ RG1 . By closed subgraph,

we mean that subgraph G1(V1, E1) satisfies E1 = E ∩ (V1 × V1).

Proof. To make the expression simple, we assume G1 contains node V1 = {1, 2, . . . , n1}.
When G1 is a closed subgraph, we can rewrite the symmetric adjacency matrix A as

A =




A1 A12

A12 A2


 ,

where A2 is the adjacency matrix of the closed subgraph formed by node {n1 +

1, . . . , n} and A12 represents the edges between these two subgraphs. Note λi is the

i-th largest eigenvalue of A with eigenvector xi, and let Y = (y1, y2, . . . , yk), then

RG1 =
k∑

i=1

µi = trace(Y T A1Y ) = trace


(Y T 0)A




Y

0





 .

With Lemma 6.2, we have

RG1 =
k∑

i=1

µi ≤
k∑

i=1

λi = RG.

We have Result 6.5 proved.

We can use this lower bound to determine whether the whole graph G is a random
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one. Since

R∗
G =

RG − [(n− 2k)p + k]√
2kp(1− p)

≥ RG1 − [(n− 2k)p + k]√
2kp(1− p)

,

if
RG1

−[(n−2k)p+k]√
2kp(1−p)

≥ Φ−1(1 − α), we can reject that G is a random graph with the

significance level α.

Recall the subgraph G1 containing 50% of the nodes with the highest degrees in the

polbook network, it is a closed subgraph with RG1 = 20.54. Given the significance

level α = 0.05, the critical value is r0 = 19.69. Since RG ≥ RG1 ≥ r0, the whole graph

G must be significantly different from a random one.

Results 6.4 and 6.5 can significantly reduce the computation cost for (non-)randomness

testing of the overall graph G. RG involves the calculation of the k largest eigenvalues

of G. It generally takes O(n3) operations to compute eigenvalues and eigenvectors

[38]. The derived upper and lower bounds only need to calculate RG1 where G1 is a

much smaller graph.

6.3 Comparison with Other Graph Spectra

The graph spectrum has been well investigated in the graph analysis field. It has

been shown that the eigenvectors of the Laplacian matrix and the normal matrix are

also good indicators of community clusters [27, 72, 86, 97]. One important question

is whether a similar non-randomness framework can also be derived using spectra of

the Laplacian or normal matrix. In this section, we present our theoretical results

and characterize differences among non-randomness measures derived using different

spectra.

6.3.1 Laplacian Spectrum

Laplacian matrix of a graph is defined as L = D−A, where D = diag{d1, d2, . . . , dn}
and di is the degree of node i. Let µi be the i-th smallest eigenvalue of L with

eigenvector yi. The smallest eigenvalue µ1 = 0 whose eigenvector is y1 ≡ 1. The

eigenvectors of L are good indicators of the community structure. This fact can be
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derived from the following minimization problem [84]: assign a k-dimensional vector

(p1u, p2u . . . , pku) to node u, so that the sum of the distances over the existing edges

is minimized, i.e.,

min JL(P ) =
1

2

∑
u,v

{
auv

k∑
i=1

(piu − piv)
2

}

s.t. P T P = I

(6.11)

where P = (p1|p2| · · · |pk) and piu is the u-th entry of pi. The target function can be

rewritten as JL(P ) = trace(P T LP ). Then, taking pi = yi gives the optimal solution,

and the minimum value is given by J(Y ) =
∑k

i=1 µi, where Y = (y1|y2| · · · |yk).

y1 yi yk yn

↓

βu →




y11 · · · yi1 · · · yk1

...
...

...

y1u · · · yiu · · · yku

...
...

...

y1n · · · yin · · · ykn

· · · yn1

...

· · · ynu

...

· · · ynn




(6.12)

With the same spirit of adjacency matrix, we can define β = (y1u, y2u, . . . , yku) ∈
R1×k to be the Laplacian matrix based spectral coordinates. β and yi are shown in

Formula (6.12). From (6.11), we know that the smaller distance between βu and βv

indicates the stronger community relation of node u and v, i.e., the edge is less likely

to be a random one. The spectral geometry of y2 and y3 for the three-community

synthetic graph in Figure 6.1(a) is shown in Figure 6.6(a). We neglect y1 for y1 ≡ 1.

We can see that the three communities form three clusters in the spectral space with

the bridging node at the middle, and those noise nodes are sparsely located. There-

fore, we need to define the Laplacian matrix based edges non-randomness measure
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via the Euclidean distance ‖βu − βv‖:

RL(u, v) = c− ‖βu − βv‖2
2. (6.13)

We use a constant c to minus the squared Euclidean distance. A smaller non-

randomness value indicates the edge is more likely to be a random one. Similarly, we

can further derive the node non-randomness measure RL(u) as

RL(u) =
∑

v∈Γ(u)

RL(u, v) = cdu −
n∑

v=1

{
auv

k∑
i=1

(yiu − yiv)
2

}

=cdu −
k∑

i=1

µiy
2
iu +

k∑
i=1

n∑
v=1

auvyiv(yiu − yiv);

(6.14)

and the graph non-randomness RL
G as

RL
G =

∑

(u,v)∈E

RL(u, v) = 2cm−
n∑

u,v=1

k∑
i=1

au,v(yiu − yiv)
2

=2cm− 2JL(Y ) = 2cm− 2
k∑

i=1

µi.

(6.15)

Then, from (6.15), we can see that the graph non-randomness measure is directly

related to the eigenvalues of the Laplacian matrix. However, unlike the case of the

adjacency matrix, the node non-randomness measure RL(u) defined in (6.14) does

not have a concise expression. The third term of (6.14) contains the information of

neighbor nodes, and we thus are unable to identify those non-random nodes simply

via their vector lengths. From Figure 6.6(a), we can see those noise nodes are not

particularly far from (or close to) the origin.

Another problem involved with the non-randomness measures is that it is difficult

to choose the constant c properly. One idea is that choose c to be the maximum of

‖βu − βv‖2
2. Obviously, ‖βu − βv‖2

2 ≤ ‖βu‖2
2 + ‖βv‖2

2 ≤ 2, and when node u and v

are two isolated nodes ‖βu − βv‖2
2 = 2, and we can thus choose c = 2. However,

the scales of the second and third term of (6.14) are usually small compared with
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2du, then the node non-randomness measure based on the Laplacian matrix is almost

solely determined by the node’s degree, and the graph non-randomness measure is

also almost determined by the first term 4m.

The other extreme case is choosing c = 0, or equivalently RL(u, v) = ‖βu − βv‖2
2.

This choice is also problematic. Consider the following two type of nodes: nodes

connecting by many non-random edges (small edge non-randomness value), and nodes

connecting by one random edge (large edge non-randomness value). These two types

are very different: the former denotes the central node in the community, while the

later is usually the noisy one. However, the node non-randomness values of these two

types of nodes can be equal or very close, which makes impossible to distinguish them

using the node non-randomness measure based on the Laplician spectrum.

We can also have some other ways to define the non-randomness measures, for

example, define RL(u, v) = 1/‖βu − βv‖. But they will not give a consistent frame

work as the case of the adjacency matrix.
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Figure 6.6: Spectral geometry of the three-community synthetic network in Figure
6.1(a), based on Laplacian and normal matrix spectra.

6.3.2 Normal Spectrum

Normal matrix of a graph is defined as N = D− 1
2 AD− 1

2 . Let νi be the largest

eigenvalue of N , and zi be its eigenvector. We have that the largest eigenvalue ν1 = 1
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whose eigenvector z1 = (
√

d1, . . . ,
√

dn)T , 1 = ν1 ≥ ν2 ≥ · · · ≥ νn ≥ −1, and νn = −1

if and only if the graph is a bipartite one, in which case νi and −νi appear pairwise

in the normal spectrum.

The relation between the normal spectrum and the graph structure can be shown in

the same minimization problem as Problem (6.11) but with the constraint normalized

by the nodes’ degrees [84]:

min JN(Q) =
1

2

∑
u,v

{
auv

k∑
i=1

(qiu − qiv)
2

}

s.t. QT DQ = I

(6.16)

where Q = (q1|q2| · · · |qk) and qiu is the u-th entry of qi. With the method of Lagrange

multipliers and setting the derivatives equal 0, the necessary condition for optimality

is given by (D−A)qi = ζiDqi, where ζi is the Lagrange multiplier. With some simple

deduction, we have ND
1
2 qi = (1 − ζi)D

1
2 qi. Therefore, the solution is given by ζi =

1 − νi and qi = D− 1
2 zi. The constraint in Problem (6.16) is naturally satisfied, and

the minimum value is givn by JN(D− 1
2 Z) = k −∑k

i=1 νi, where Z = (z1|z2| · · · |zk).

D− 1
2 zi

↓

γu →




z11√
d1
· · · zi1√

d1
· · · zk1√

d1

...
...

...

z1u√
du

· · · ziu√
du

· · · zku√
du

...
...

...

z1n√
dn

· · · zin√
dn

· · · zkn√
dn

· · · zn1√
d1

...

· · · znu√
du

...

· · · znn√
dn




(6.17)

Since qi = D− 1
2 zi, with the same logic as the case of Laplacian matrix, we need

to define the normal matrix based spectral coordinate γu = 1√
du

(z1u, z2u, . . . , zku)

as shown in Formula (6.17). Figure 6.6(b) shows the spectral geometry of D− 1
2 z2

and D− 1
2 z3 for the three-community synthetic graph, D− 1

2 z1 ≡ 1. Similarly as the
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Laplacian geometry, the three communities form three clusters with the bridging node

in the middle, and the noisy nodes are scattered sparsely.

Similar to the case of Laplacian matrix, we can define the edge non-randomness

measure based on normal matrix via the Euclidean distance:

RN(u, v) = c− ‖γu − γv‖2
2. (6.18)

We further define the node non-randomness measure as

RN(u) =
∑

v∈Γ(u)

RN(u, v) = cdu −
n∑

v=1

{
auv

k∑
i=1

(
ziu√
du

− ziv√
dv

)2
}

=cdu +
k∑

i=1

(2νi − 1)z2
iu −

k∑
i=1

n∑
v=1

auvz
2
iv

dv

;

(6.19)

and the graph non-randomness measure as

RN
G =

∑

(u,v)∈E

RN(u, v) = 2cm−
∑
u,v

auv

{
k∑

i=1

(
ziu√
du

− ziv√
dv

)2

}

=2cm− 2JN(D− 1
2 Z) = 2cm− 2k + 2

k∑
i=1

νi.

(6.20)

Similar as the case of the Laplacian matrix, RN(u) does not have a concise expres-

sion, and it is difficult to choose the constant c.

6.3.3 Modularity

Define the modularity matrix B as buv = auv − dudv

2m
, and let ηi be the i-th largest

eigenvalue of B with eigenvector si. The spectrum of B also has a close relation with

the graph community structure. This is because finding the best community partition

to maximize modularity Q can be written as follows:

max Q =
1

2m
trace(JT BJ) (6.21)

s.t. JT J is diagonal and trace(JT J) = n
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where J is the n × k index matrix: Jij = 1 if node i belongs to community j and

0 otherwise. Relaxing the 0-1 constraint, we have the i-th column of J is si except

for the vector length, and max Q =
∑k

i=1 ηi, suppressing a multiplicative constant.

We can also similarly define the spectral coordinate based on modularity matrix

B as δu = (s1u, s2u, . . . , sku), and [74] suggests that the direction of δu indicates

the community partition. However, generally speaking, communities forms neither

orthogonal lines nor clusters in the k-dimensional spectral space, and hence defining

edge non-randomness measure via inner product or Euclidean distance is impropriate.

Therefore, it is difficult to define a consistent framework based on matrix B.

It is worth pointing out that the authors in [74] defined the community centrality

of node u (denoted by CC(u) in our paper) to measure the node’s contribution to the

community structure, and CC(u) = (
∑k

i=1 ηjs
2
iu)

1
2 . Then, Q =

∑n
u=1 CC(u)2. The

community centrality measure based on the modularity matrix B has a similar con-

cise expression as our node non-randomness measure based on the adjacency matrix

A. However, the community centrality actually measures to what extent the node’s

contribution to the community structure exceeds its expected value [74] while our

node non-randomness incorporates randomness values of all its connected edges.

In the synthetic graph shown in Figure 6.1(a), the bridging node (node 61) has its

community centrality value equal to 0.084, which ranks 57 among the 61 nodes. This

means that the bridging nodes makes little contribution to the modularity Q. We can

see that the the community centrality does not take the bridging effect into account,

and is thus unable to distinguish the bridging nodes from the noise nodes. However,

our node non-randomness can be used to separate the the bridging node from noise

ones (R(u) = 0.659 with rank 16, much higher than those noise nodes).

6.4 Empirical Evaluations

Data Sets. We used several network data sets in our evaluation, polbooks, polblogs,

dolphins, karate, netsci, and Enron. We also generated two synthetic graph with
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the same size: synthetic-1 with only one community that is generated using the ER

model with parameters n = 1000 and p = 0.2; and synthetic-1 with two disconnected

communities each of which is generated via ER model and has 500 nodes and 49910

edges.

In this section, we focus on graph non-randomness of both synthetic networks and

real social networks. We have also analyzed how edge non-randomness and node

non-randomness distribute in real-world social networks and random graphs. Our

results show that edge non-randomness and node non-randomness of real-world social

networks usually display some high skewed distributions, obeying either a power law

or an exponential law. On the contrary, random graphs display approximate normal

distributions.

Graph Non-randomness of Various Social Networks. Table 6.3 shows graph

statistics, and graph non-randomness values (calculated using RG and R∗
G) of various

social networks. We can observe that the relative non-randomness measures (R∗
G))

of real world social networks are significantly greater than zero while that of the

synthetic random graph is very close to zero. Using R∗
G, we can relatively compare

the randomness of graphs with different sizes and densities. For example, we can

observe that the network of the dolphins contains less randomness than the karate

data since R∗
G of the dolphins (1.61) is greater than that of the karate data (1.22).

Furthermore, R∗
G also indicates to what extent the graph is different from random

graphs. For karate graph, we have R∗
G = 1.22 and 1−Φ(R∗

G) = 0.11, which indicates

how less likely the karate graph is generated by ER model. Similarly, for dolphins

data, we have R∗
G = 1.61 and 1− Φ(R∗

G) = 0.054.

We are also concerned with the connection between various real graph characteris-

tics and our graph non-randomness measure (which is derived from graph spectrum).

We conducted two types of perturbations on politics book: addition/deletion of ran-

domly chosen edges, and switches of edges. For each perturbed graph, we calculated
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Table 6.3: Graph non-randomness and characteristics of various social networks
Network n m Q RG R∗

G

synthetic 1000 99820 0.06 200 0.02
karate 34 78 0.44 11.7 1.22

dolphins 62 159 0.54 13.1 1.61
polbooks 105 441 0.53 23.5 6.87
Enron 151 869 0.51 41.2 4.18
polblogs 1222 16714 0.80 134 187
netsci 1589 2742 0.92 38.5 128
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Figure 6.7: Graph characteristic vs. non-randomness measure for politics book net-
work with various perturbations.

λ1, RG with k = 2, and two real graph characteristics: transitivity C and Modu-

larity Q. The transitivity measure, C, is one type of clustering coefficient measure

and characterizes the presence of local loops near a vertex. It is formally defined as

C = 3N∆

N3
where N∆ is the number of triangles and N3 is the number of connected

triples.

Intuitively, when the magnitude of perturbation increases, we expect the graph

tends to lose its structural properties. Figure 6.7(a) and 6.7(b) show our empirical

evaluations on how Transitivity, Modularity, λ1, and RG are changed along pertur-

bations on politics book. Furthermore, our graph non-randomness measure RG can

better reflect the change trend indicated by Transitivity and Modularity than λ1.

For example, in Figure 6.7(b), λ1 remains almost unchanged even when the graph is

significantly perturbed by random switches.
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One interesting phenomenon is that the relative non-randomness measure always

decreases when the magnitude of perturbations increases. Formally, we have the

following theorem.

Theorem 6.3: Let Graph G(n,m) be a graph with k communities and p = 2m
n(n−1)

<

1
2
, and graph is G′ obtained by randomly adding edges to G: each non-existing edge

is to be added with probability ∆p, ∆p < p and p + ∆p < 1
2
. Assume k communities

will not merge. If RG− [(n− 2k)p + k] ∈ O(pn), we have E(R∗
G′) < R∗

G, as the graph

becomes large.

Proof. Let A and Ã be the adjacency matrix of G and G′ respectively, E = Ã − A.

Let λi, λ̃i and εi be the i-th largest eigenvalue of A, Ã and E respectively. With

Theorem IV-4.8 in [90], we have

RG′ =
k∑

i=1

λ̃i ≤
k∑

i=1

λi +
k∑

i=1

εi = RG +
k∑

i=1

εi,

and hence

E(RG′) ≤ RG + E

(
k∑

i=1

εi

)
. (6.22)

We know that E(ε1) = (n− 2)∆p + 1 and with the Semicircle Law [32], we have

E(εi) ≤ 2
√

n∆p(1−∆p), i = 2, 3, . . . , k. (6.23)

Combining (6.6), (6.22) and (6.23), we have

E(R∗
G′) =

E(R∗
G′)− [(n− 2k)(p + ∆p) + k]√
2k(p + ∆p)(1− p−∆p)

≤RG + (n− 2)∆p + 1 + 2(k − 1)
√

n∆p(1−∆p)√
2k(p + ∆p)(1− p−∆p)

− (n− 2k)(p + ∆p) + k√
2k(p + ∆p)(1− p−∆p)

≤RG − [(n + 2k)p + k] + M√
2k(p + ∆p)(1− p−∆p)

(let M = 2(k − 1)
[
∆p +

√
n∆p(1−∆p)

]
+ 1)
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Hence, to prove E(R∗
G′) < R∗

G, we need only to show

RG − [(n + 2k)p + k] + M

RG − [(n− 2k)p + k]
<

√
(p + ∆p)(1− p−∆p)√

p(1− p)
. (6.24)

Since RG − [(n + 2k)p + k] ∈ O(pn) while M ∈ O(
√

∆pn), when n is large, the

left-hand side of Inequality (6.24) is close to 1. Notice that p < p + ∆p < 1
2
, the

right-hand side of Inequality (6.24) is greater than 1 regardless of n, then when n

goes large, we must have Inequality (6.24) stands.

Distributions of Node Non-randomness and Edge Non-randomness. It is

well known that the degree distributions in many real-world networks, such as the

power-law distribution observed for the Internet and the the Web graph, differ signif-

icantly from the Poisson distribution of random graphs [16]. We are interested in the

edge non-randomness distribution as well as the node non-randomness distribution

in real-world networks and how they are different from synthetic random networks

generated by the ER model.
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Figure 6.8: Edge non-randomness distributions

We conducted experiments using three networks: synthetic data generated by the

ER model with n = 1000 and p = 0.2, politics books, and Enron network. Figure

6.8 (Figure 6.9) shows distributions of edge (node) non-randomness of these three

networks. We can observe from Figure 6.8(a) and Figure 6.9(a) that the distributions

of both edge non-randomness and node non-randomness follow approximately normal

distributions.
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Figure 6.9: Node non-randomness distributions

The linear-log plot in Figure 6.8(b) indicates that edge non-randomness R(u, v)

of 441 edges in politics book has a highly skewed form, approximately obeying an

exponential law. However, Figure 6.8(c) shows that edge non-randomness R(u, v) of

the majority edges in Enron email network only approximately obeys an exponential

law. The log-log plot in Figure 6.9(b) indicates that node non-randomness R(u) of

105 nodes in politics book clearly follows a power law distribution. However, there is

no evidence to display the power law pattern for node non-randomness distribution

of 151 nodes in Enron data as shown in Figure 6.9(c).

The distributions of both edge non-randomness and node non-randomness for real

networks are quite different from those for random graphs. We also conducted evalu-

ations on other real-world social networks. Although we cannot reach the conclusion

that they definitely follow power law (or exponential law) distributions, our empirical

evaluations did show that they are usually highly skewed, with a small number of

edges (nodes) having an unusually large non-randomness values and a large number

of edges (nodes) having small non-randomness values.

The Effect of k. In Section 6.2, we have shown that the graph non-randomness

measure is determined by the sum of the first k eigenvalues, where k indicates the

number of communities in the graph. In this experiment, we are interested in how

different choices of k affect the graph non-randomness. We used the Enrol network

and perturbed it by randomly adding/deleting edges. For each perturbed graph,
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Figure 6.10: graph characteristics vs. non-randomness measures for Enron with
Add/Delete perturbations

we calculated one real graph characteristics, the Transitivity measure C, the first

eigenvalue λ1, and our non-randomness measure RG with three different k values (5,

50, 151). Note that there exist five roughly separated groups in Enron network. We

expected RG with k = 5 should best match the trend characterized by Transitivity

measure.

Figure 6.10 shows our experiment results. We can observe that λ1 did not match

the perturbations as well as RG with k = 5. RG with k = 50 and k = 151 are totally

unmatched with the perturbations. Specifically, RG with k = 151 remains unchanged

across all perturbed graphs while RG with k = 50 displayed opposite trend from that

suggested by Transitivity measure. We have shown in Section 6.2 that RG is always

zero when k equals the number of nodes n.

Evolution of Graph Non-randomness. We are interested in how the graph non-

randomness may change for dynamic social networks. We performed the randomness

analysis on the monthly email graphs from Enron data. In Table 6.4, we list graph

relative non-randomness values for 12 graphs constructed from Enron dataset from

June 2001 to May 2002. Each graph Gt is formed by the total email data in months

from 1 to t. We regard there’s an edge between node u and v in Gt when there is at

least three communications between u and v during this period. We use mt to denote
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Table 6.4: Enron dynamic relative non-randomness (k = 3)
mt R∗

Gt
R∗

Ht
R∗

Gt
−R∗

Gt−1
R∗

Ht
−R∗

Gt−1

G1 87 12.99 – – –
G2 187 12.41 4.84 −0.58 −8.16
G3 327 12.45 4.07 0.04 −8.35
G4 429 9.81 7.14 −2.63 −5.31
G5 627 7.89 2.01 −1.92 −7.81
G6 726 7.22 4.29 −0.67 −3.60
G7 765 7.12 5.82 −0.10 −1.40
G8 805 5.91 5.74 −1.20 −1.38
G9 826 5.69 5.22 −0.22 −0.70
G10 851 5.19 4.85 −0.51 −0.84
G11 879 4.88 4.27 −0.31 −0.92
G12 922 4.36 3.56 −0.52 −1.32

Table 6.5: Comparison of top k non-random nodes across monthly networks of Enron
data

| St | Jt

2 3 4 5 6 7 8 9 10 11 12
10 0.67 0.67 0.54 0.67 0.54 0.43 0.43 0.82 0.54 0.54 0.67
20 0.60 0.60 0.54 0.74 0.60 0.33 0.38 0.60 0.54 0.60 0.67
30 0.71 0.58 0.58 0.82 0.62 0.54 0.58 0.71 0.62 0.54 0.76
40 0.63 0.63 0.63 0.82 0.74 0.57 0.57 0.78 0.57 0.57 0.74
50 0.69 0.64 0.67 0.85 0.75 0.56 0.69 0.85 0.69 0.64 0.85

the number of edges of Gt. We can easily observe that Gt−1 ⊆ Gt and mt−1 < mt. We

use R∗
Gt

(k = 3) to denote the relative non-randomness of Gt. We can observe that

for most real Enron data sets, R∗
Gt

< R∗
Gt−1

(except G3), showing that the relative

non-randomness of the graph decreases along the time.

One interesting question here is how those newly added edges in each month are

different from randomly added edges. To answer this question, we construct synthetic

data sets Ht by randomly adding mt −mt−1 edges to Gt−1. We can see in Table 6.4

that R∗
Ht

is always less than R∗
Gt−1

since the randomly added edges increase the graph

non-randomness. Specifically, the 39 newly added edges in the real graph G7 decreases

the relative non-randomness by 0.10. However, when we randomly add 39 edges to

G6, the relative non-randomness of H7 decreases by 1.40. This difference indicates

those 39 newly added edges in G7 are significantly different from randomly added
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edges. On the contrary, 40 newly added edges in G8 are not significantly different

from randomly added edges.

Since the number of nodes are unchanged across all monthly graphs, we are also

interested in how the subset of individuals identified as top non-random nodes (e.g.,

top 30) is varied dynamically. We used Jaccard’s index measuring the similarity

between two subsets. Formally, we define

Jt =
| St−1 ∩ St |
| St−1 ∪ St |

where St denotes the subset of non-randomness nodes from data Gt. We can observe

from Table 6.5 that those non-random nodes do change along the time. Hence, our

node non-randomness measure R(u) can be applied in practice to monitor the change

of individual’s roles in terms of its randomness in the social network.

6.5 Adjacency Cut via Line Fitting

In this section, we present a novel graph partition algorithm, AdjCut, which utilizes

the line orthogonality pattern in the spectral space of the adjacency matrix. Our idea

is to fit node spectral coordinates with the k orthogonal lines in the k-dimensional

spectral space. Our algorithm is different from traditional spectral partition algo-

rithms [17, 27, 43, 50, 76, 78, 86] that utilize the cluster pattern in the spectral space

of Laplacian or normal matrix.

6.5.1 Problem Formalization

For a fixed k, let the unit row vector li = (li1, . . . , lik), i = 1, . . . , k, denote the k

orthogonal fitted lines. Each line corresponds to a community in the graph. If li is

well fitted, the spectral coordinate αu should be close to the line corresponding to the

community the node belongs to. When we project each node to its closest line, the

length of the projection vector α̂u should be large as shown in Figure 6.11. Hence,

we can estimate the k orthogonal lines by maximizing the total sum of projection
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lengths: J =
∑n

u=1 ‖α̂u‖2.

O

αu

α̂u

eu

lr

Figure 6.11: Vectors: lr, αu, α̂u and eu

Suppose lr is the line closest to a certain point αu. Then, the projection vector

is α̂u = (lrα
T
u )lr and |liαT

u | is the projection length. We denote eu the residual

vector eu = αu − α̂u. Moreover, ‖α̂u‖2 should be the largest among all |liαT
u |, i.e,

r = arg maxi |liαT
u |. Then the objective function can be written as follows:

J =
n∑

u=1

‖α̂u‖2 =
n∑

u=1

k∑
i=1

huiliα
T ,

where hui = sign(liα
T
u ) if i = r and 0 otherwise.

Let L be the matrix of k lines: the i-th row of L is li, Yk = (y1|y2| · · · |yk), and let

H = (hui)n×k. Our optimization problem can be formalized as

max
H,L

J = trace(LY T
k H) (6.25)

s.t. hij ∈ {−1, 0, 1}, LT L = Ik.

The constraint LT L = Ik guarantees that the k fitted lines are orthogonal to each

other. H naturally indicates the community partition: node u is assigned to Ci if hui

is non-zero.

Once the lines are properly fitted, we can determine bridging nodes by examining

their locations with respect to the k fitted lines. Bridging nodes are those ones con-

necting to multiple communities. They usually lie on the boundaries of communities,

bridging gaps between otherwise disconnected groups. In the spectral space, they are

neither close to the origin, nor close to any orthogonal fitted line corresponding to a
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certain community. Therefore, we can mark a node as a bridging node if ‖αu‖2 ≥ τ1

and cos(αu, α̂u) = ‖α̂u‖2/‖αu‖2 ≤ τ2, where τ1 and τ2 are some thresholds.

6.5.2 Fitting k Orthogonal Lines

For the optimization problem shown in (6.25), it is difficult to obtain the optimal

H and L simultaneously. Here we present an iterative algorithm to solve this opti-

mization problem by fixing H or L and solving for the other matrix in each step, as

outlined in Algorithm 6.

Algorithm 6 AdjCut: Fitting k lines

1: t = 0, Initiate L(0);
2: while not converge do
3: for u = 1, 2, . . . , n do
4: r = arg maxi |l(t)i αT

u |;
5: h

(t)
ur = sign

(
l
(t)
r αT

u

)
, and h

(t)
ui = 0 for i 6= r;

6: end for
7: USV T = Y T

k H, and L(t+1) = V UT ;
8: t = t + 1;
9: end while

When L is fixed, the loop from Line 3 to 6 determines the optimal H. Given k

lines determined at step t, it assigns each node to the line closest to it. When H is

fixed, we have

J = trace(LY T
k H) = trace(LM),

where we write M = Y T
k H. Let M = USV T be the SVD of matrix M , where

S = diag(σ1, . . . , σk) and σi is the singular value of M . Then we have

J = trace(LM) = trace(LUSV T ) = trace(SV T LU) ≤
k∑

i=1

σi, (6.26)

and when L = V UT , J reaches the maximum value in (6.26) (Line 7). During the

iterations, the objective function J (t) = trace(L(t)Y T
k H(t)) is non-decreasing, and the

process hence converges to a local maximal.

Calculation of the eigenvectors of an n × n matrix takes in general a number of
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operations O(n3), which is almost inapplicable for large networks. However, in our

framework, we only need to calculate the first k eigen-pairs. Furthermore, adjacency

matrices in our context are usually sparse. The Arnoldi/Lanczos algorithm [38] gen-

erally needs O(n) rather than O(n2) floating point operations at each iteration. The

cost of our k orthogonal line fitting algorithm is O(k3n).

Initiate L. To have a proper initial L, we can apply the greedy search in the spectral

space, as shown in Procedure 2. We start with the searching subspace equal to the

full k-dimensional space. At iteration j, we pick up the vector with the largest length

in the searching space, normalize its length, and get lj (Line 2). The new searching

space is then the subspace orthogonal to lj and all vectors are projected to the new

searching space via the Graham-Schmidt process (Line 3). Apparently, the solution

L from the greedy search is an orthogonal matrix. When the spectral coordinates

form clear k quasi-orthogonal lines in the spectral space, the k fitted lines found by

the greedy algorithm are already close to the optimal solution, and the convergence

can then be very fast.

Procedure 2 Greedy Search for L

1: for j = 1, . . . , k do
2: s = arg maxi ‖αi‖2, and lj = αT

s /‖αs‖2;
3: αi = αi − (αilj)l

T
j for i = 1, . . . , n;

4: end for

Determining Proper k. The objective function J is not appropriate in comparing

the goodness of fit when k varies. This is because the error length generally increases

as the dimension k increases. Next we propose the use of the normalized error to

determine proper k. Formally, we define the measure as

ρ =

∑n
u=1 ‖eu‖2

2

(k − 1)
∑n

u=1 ‖αu‖2
2

. (6.27)

The measure is normalized by k − 1 since eu has the degree of freedom k − 1. Once

we fit the data by k orthogonal lines, we can calculate the statistic ρ. When k = 1,
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ρ is always 0 since we do the projection in a 1-dimensional subspace. For, k ≥ 2, we

have 0 ≤ ρ ≤ 1. When the graph contains k clear communities, spectral coordinates

form k quasi-orthogonal lines in the k-dimensional subspace. We can find the k

orthogonal lines that well fit the data. In this case ρ should be close to 0. However,

in the subspace spanned by less or more eigenvectors, the coordinates scatter from

those lines, and we will not obtain a very good fit of the data. So our strategy is to

determine a k value that incurs a low ρ value.

6.5.3 Evaluation of Adjacency Cut Algorithm

Data Sets. We use several real network data sets in our evaluation: polbooks, pol-

blogs, Enron and Facebook. We also generate two synthetic graphs: Synthetic-1 and

Synthetic-2. The Synthetic-1 has 5 communities with the number of nodes 200, 180,

170, 150, and 140 respectively, and each community is generated separately with

a power law degree distribution with the parameter 2.3 3. We add cross commu-

nity edges randomly and keep the ratio between inter-community edges and inner-

community edges as 20% in Synthetic-1. Synthetic-2 is the same as the Synthetic-1

except that we increase the number of links between community C4 and C5 to 80%.

As a result, the Synthetic-2 has four communities. Table 6.6 shows the statistics of

these data sets.

Line Orthogonality Property. We first check how line orthogonality property

holds in various networks. We can clearly observe from Figures 6.12(a), 6.12(b),

and 6.12(c) that there exist five orthogonal lines in the spectral space spanned by

x1, · · · , x5 and nodes from the same community (denoted by different colors) lie on

the same line for Synthetic-1. For Synthetic-2, we are particularly interested in the

subspace spanned by x3, x4, x5. As shown in Figure 6.12(d), we cannot observe any

clear line orthogonality pattern, which demonstrates our theoretical results since there

3Real social network data with one major component usually follow a power law degree distribu-
tion with the parameter between 2 to 3.48 according to [5].
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Figure 6.12: The plots of spectral coordinates for various networks

are actually four communities in Synthetic-2. We also show the 2-D and 3-D spectral

plots of polblogs. As we know, there are two communities in this data. Hence, we can

observe that spectral coordinates form two orthogonal lines in the subspace spanned

by x1 and x2 as shown in Figure 6.12(e). However, we cannot observe any clear line

orthogonality pattern when we introduce the additional eigenvector x3, as shown in

Figure 6.12(f).

Quality of Community Partition. Our strategy of determining k is to choose the

one with the small normalized error ρ. Figure 6.13 shows how ρ changes when we

vary k for various networks. We also circle out the k value we choose for each social

network in Figure 6.13. For Synthetic-1, we can observe from Figure 6.13(a) that

ρ reaches the minimum (0.0047) when k = 5 whereas for Synthetic-2, ρ reaches the

minimum (0.0069) when k = 4 for Synthetic-2 from Figure 6.13(a). This phenomenon

matches the community numbers we used to generate data. For polbooks, polblogs,

and Enron, we choose k that incurs the minimum ρ value. For Facebook, we can see

there are several good choices of k from Figure 6.13(f). Although k = 2 incurs the
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Figure 6.13: Normalized error ρ vs. varied k

minimum ρ value, we instead choose k = 10 in our evaluation, which incurs small ρ

and matches our manual examination.

Since the original data descriptions of polbooks and polblogs (and Synthetic) provide

node-community relations, we evaluate the accuracy of our partition algorithm using
∑k

i=1 |Ci∩Ĉi|
n

where Ĉi denotes the i-th community produced by our algorithm. The

last column of Table 6.6 shows our results. We can see our algorithm achieves high

accuracy values. We also calculate the modularity Q of our partition algorithm on

all networks.

Table 6.6: Statistics of networks and partition quality
n m k Q Accuracy(%)

Synth-1 840 4917 5 0.38 90.83
Synth-2 840 5743 4 0.39 89.17
polbooks 105 441 2 0.45 96.7
polblogs 1222 16714 2 0.42 94.7
Enron 148 869 6 0.48 �

Facebook 63392 816886 10 0.52 �

Comparison with Normalized Cut. Researchers have developed several different
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versions of normalized spectral clustering algorithms. In this paper, we use the nor-

malized cut algorithm in [86] for comparison. The quality of the partitioning produced

by our algorithm is comparable or better than that produced by the normalized cut

for a wide range of graphs in terms of accuracy and modularity measures, as shown

in Figure 6.14.

One well known problem of the normalized cut algorithm is that it tends to produce

some small-sized partitions. Table 6.7 shows some statistics of the partition results

on Facebook data. All the last four communities produced by the normalized cut

contain less than 100 nodes, and have very few links to the rest of the graph. Take

the community of size 10 as example, the community has 24 edges within itself and

only 1 link connecting to other communities. These small communities do not make

significant contributions to network topology although they are good candidates to

minimize the number of cut edges. Clusters should be reasonably large groups of

nodes. Our AdjCut algorithm produce more balanced partitions.

Table 6.7: Partition statistics on the Facebook network (k = 10)
Algorithm Sizes of Ci Q
AdjCut 29492, 7574, 7420, 6791, 3107, 2862, 1728, 1579,

1496, 1341
0.5389

Normalized cut 28709, 13325, 9236, 4548, 4394, 3092, 65, 10, 7, 6 0.6014

For the normalized cut and its variants, node u tends to be assigned to Ci if node

u has more links to Ci than to other communities. Our AdjCut algorithm assigns u

to its nearest line in the spectral space. Nodes are deviated from rrri due to its direct

connections to other communities. Note that rrri is the closest line, and for any j 6= i

we have the following inequality:

xiu =
∑
v∈Ci
v∼u

xiv

λi

>
∑

v∈Γj
u

xjv

λj

.

Note that xiv or xjv indicates the “belongings” of node v in community Ci or Cj.

When the neighbors of node u in Ci have the largest total “belongings” (scaled by
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Figure 6.14: Comparison of community partition results

λi), AdjCut assigns node u to community Ci even though node u may have more links

to Cj than to Ci. The AdjCut may be more suitable for large and complex social

networks, because it takes the association to the communities into consideration: a

user is more likely to belong to the community when her friends in that community

are core members than other community even with more connections to unimportant

nodes.

6.6 Summary

In this chapter, we first discover the line orthogonality pattern in the spectral space

of the adjacency matrix. Based on this pattern, we then present a framework which

can quantify graph non-randomness at the edge, node, subgraph, and overall graph

levels. We show that all graph non-randomness measures can be obtained mathemat-

ically from the spectrum of the adjacency matrix of the network. We also present a

relative non-randomness measure of the overall graph, which allows quantitative com-

parisons between various social networks with different sizes and densities or between

different snapshots of a dynamic social network.

We explore whether other graph spectra (such as Laplacian spectrum and normal

spectrum) could also be used to derive a framework of non-randomness measures. Our

theoretical results show that they are unlikely, if not impossible, to have a consistent
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framework to evaluate randomness accurately at all granularity levels.

Utilizing the line orthogonality pattern in the adjacency spectral space, we develop

a novel algorithm AdjCut to partition graph communities. We also discuss how to

choose a proper k and conduct empirical comparison with the normal cut algorithm.

Wu et al. explore the spectral patterns of singed graphs [100]. In our future work,

we would like to extend our framework of graph non-randomness to signed graphs,

weighted graphs, directed graphs, and other types of rich graphs.



CHAPTER 7: SPECTRUM BASED NETWORK FRAUD DETECTION

In the preceding chapters, we mainly focus on the privacy-preserving graph random-

ization. Usually this type of randomization procedure is applied by the data owner.

In this chapter, we consider another special type of randomization: the randomization

caused by attackers. In large-scale and dynamic networks, each participant is vul-

nerable to various attacks including spam, denial of service, Sybil attacks, etc. The

attackers can also join the social network and create links among themselves or to

legitimate users, which constructs fraudulent nodes, links and subgraphs in the orig-

inal social network. One type of such attack models is the active attack. Generally

speaking, the subgraphs constructed by the attackers contain some patterns different

from that of the original graph to some extent. One questions is that how we detect

such subgraphs.

Specifically, we develop a fraud detection algorithm based on the non-randomness

spectral framework to identify various attacks. Our approach, which exploits the

spectral space of the underlying interaction structure of the network, is different from

traditional topological analysis approaches [19, 77, 88]. Traditional topology based

detection methods explore the graph topology directly and discover abnormal connec-

tivity patterns caused by attacks. Our approach is based on graph spectral analysis

that deals with the analysis of the spectra (eigenvalues and eigenvector components)

of the adjacency matrix. We study how to identify attackers by characterizing their

distributions in the spectral space.

Attacks in Social Networks. Social networks have always been vulnerable to

various attacks including spam emails, annoying telemarketing calls, viral market-
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ing, and individual re-identification in anonymized social network publishing. Spam

email has been one of the most effective attacks. A majority of such spam emails are

sent to victim email addresses that are generated randomly or chosen from existing

mailing lists. Victims are unrelated generally and lack the variety of mutual per-

sonal, professional, institutional ties among individuals. Various techniques against

spam [13, 14, 37, 42, 57, 83] have been developed. The key idea has been to build

classification models using machine learning and data mining algorithms.

A Viral Marketing attack aims to leverage the power of social networks to produce

rapid increase in brand awareness. Viral marketing is based on the fact that users

are more receptive to a product or service recommended by their friends. In viral

marketing, the marketer or attacker can create a set of seemingly innocent profiles, use

them to make friendship links with a large set of seed users, then send advertisements

to those seed users. It is expected that some seed users will recommend advertisements

to their friends.

In an auction network1, reputation systems have been used extensively by auction

sites to prevent auction fraud [20, 77, 81]. However, it is difficult to truly assess the

trustworthiness and show faithful representation of users’ reputation. Many fraud-

sters can be detected by identifying relatively small and densely connected subgraphs

since they usually interact in small cliques of their own (in order to mutually boost

their credibility). The authors [19, 77] uncovered a different modus operandi for

fraudsters in auction networks, which leads to the formation of near bipartite cores.

Fraudsters make use of accomplices, who behave like honest users, except that they

interact heavily with a small set of fraudsters in order to boost their reputation. The

fraud identities are the ones used eventually to carry out the actual fraud, while the

accomplices exist only to help the fraudsters carry out their job by boosting their

feedback rating.

1Transactions among users are modeled as a graph, with a node for each user and an edge for
one or more transactions between two users
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Recently, the authors in [88] provided a general abstraction, called the Random

Link Attack (RLA), which identifies the collaborative nature of these attacks to evade

detection. In an RLA, the malicious user creates a set of false identities and uses them

to connect with a large set of victim nodes. To evade detection, the malicious user also

creates various interactions among false identities, which make the subgraph formed

by false identities similar to that formed by regular users. This property makes the

discovery of the attack and the responsible entities a difficult task.

The rest of this chapter is organized as follows. In Section 7.1, we first give our

result on the change of eigenvectors during graph perturbation. In Section 7.2, we

present a theoretical framework for detecting collaborative attacks based on spectral

coordinates. In Section 7.3, we focus on RLAs. We derive distributions of spectral

coordinates of attacking nodes and present our algorithm to filter attacking groups

using their spectral characteristics. In Section 7.4, we conduct empirical evaluations

and compare with topology based approaches. We extend RLAs to other attacking

scenarios and offer our concluding remarks and discuss future work in Section 7.5.

Some results in this chapter are also reported in [109, 110].

7.1 Graph Spectral Analysis

Our observed graph G̃ with adjacency matrix Ã contains some fake links and nodes

generated by the attackers. We use E to denote the difference matrix: Ã = A + E

(if new nodes are added, we simply extend A to the same dimension of Ã by adding

all-zero rows and columns). Let λj(λ̃j) denote the j-th largest eigenvalue of A(Ã)

with eigenvector xj(x̃j). We are interested in how the graph spectra (eigenvalue and

eigenvector) are affected by perturbation.

The relationship between x̃j and xj has also been well studied. In [90] (refer to

Theorem 2.7 and 2.8), it was shown that x̃j can be approximated by a function of all

original eigenvectors and the perturbation matrix E. However, it is difficult to apply

them to separate fraud nodes from regular ones in the perturbed spectral space. In
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this paper, we apply the Power Iteration method [38] to derive the following result.

Result 7.1: Suppose eigenvalue λj satisfies |λj| À ‖E‖2. For small integer t, the

eigenvector of λj, x̃j, can be approximated by:

x̃j ≈ xj +
t∑

l=1

1

λl
j

(A + E)l−1Exj. (7.1)

Proof. To derive the relationship between x̃j and xj, we first introduce the Power

Iteration method [38].

Let A be a n×n symmetric matrix, and e(0) be an nonzero n× 1 vector, assuming

xT
1 e(0) 6= 0. Then, series e(s+1) = Ae(s)

‖Ae(s)‖ converges to the eigenvector corresponding

to the largest eigenvector of A. To compute xi, starting with e(0) that satisfies

xT
i e(0) 6= 0, series e(s+1) = Ae(s)

‖Ae(s)‖⊥xj, j = 1, . . . , i− 1, converges to xi, where v⊥xj

means orthogonalizing vector v with previous eigenvectors.

Consider computing x̃1 and λ̃1 using the power iteration method. Since the noise

is moderate, the original eigenvector x1 is a good initial vector, and hence Ãtx1

‖Ãtx1‖2 is

a good approximation of x̃1. To make the later proofs concise, we normalize Ãtx1 by

λt
1 instead of it exact vector length ‖Ãtx1‖2. Let x̃

(t)
1 = Ãtx1/λ

t
1, then we have

x̃
(t)
1 =

(A + E)tx1

λt
1

= x1 +
t∑

l=1

1

λl
1

(A + E)l−1Ex1. (7.2)

When t is not too large, ‖x̃(t)
1 ‖2 is close to 1. This is because E is formed by adding

edges, and hence λt
1 ≤ ‖Ãtx1‖2 ≤ λ̃t

1 ≤ (λ1 + ‖E‖2)
t. When λ1 À ‖E‖2 and t is not

too large, we have 1/‖Ãtx1‖2 ≈ 1/λt
1. Altogether, we have

x̃1 ≈ Ãtx1

‖Ãtx1‖2

≈ Ãtx1

λt
1

= x̃
(t)
1 . (7.3)

Note that vector x̃
(t)
1 and Ãtx1

‖Ãtx1‖2 have the same direction but slightly different

vector lengths, and x̃
(t)
1 thus converges to x̃1 in direction. Let θt denote the angle

between x̃1 and x̃
(t)
1 . With the power iteration, we have cos θt = 1 − O(| λ̃2

λ̃1
|t), i.e.,

cos θt approaches to 1 geometrically with ratio | λ̃2

λ̃1
| [38].
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Similarly, we can show (7.1) stands for x̃j (j 6= 1) when λj À ‖E‖2. When it

comes to x̃j (j 6= 1), we need to ensure the orthogonality of the eigenvectors. The

orthogonality approximately stands since ‖Exj‖2 ≤ ‖E‖2 ¿ |λj|.
Remarks: The approximation in (7.3) stands when t is small, in which case

‖Ãtx1‖2 ≈ λt
1. How to determine t and what is the exact form of the error term

are beyond the scope of this work. We would like to give some illustration here.

Eigenvectors x̃i (i = 1, . . . , n) form a basis in Rn. Let x1 =
∑n

i=1 cix̃i, where ci

is the coefficient, ci = xT
1 x̃i. When the noise is moderate, x̃1 and x1 are close in

direction, i.e., c1 is close to 1 while ci (i 6= 1) is close to 0 (note that
∑

i c
2
i = 1). Then

x̃
(t)
1 = Ãtx1

λk
1

=
∑n

i=1 ci(
λ̃i

λ1
)tx̃i. Hence the error term is

‖x̃(t)
1 − x̃1‖2 =

∥∥∥∥∥[c1(
λ̃1

λ1

)t − 1]x̃1 +
n∑

i=2

ci(
λ̃i

λ1

)tx̃i

∥∥∥∥∥
2

=

(
[c1(

λ̃1

λ1

)t − 1]2 +
n∑

i=2

c2
i (

λ̃i

λ1

)2t

) 1
2

≈ |1− c1(
λ̃1

λ1

)t|. (ci ≈ 0, for i 6= 1)

Similarly, we can have

‖x1 − x̃1‖2 =

[
(c1 − 1)2 +

n∑
i=2

c2
i

] 1
2

≈ |1− c1|.

Note that c1 is a constant less than 1, and λ̃1

λ1
> 1. When t is small, c1(

λ̃1

λ1
)t is closer

to 1 than c1, and hence ‖x̃(t)
1 − x̃1‖2 ≤ ‖x1 − x̃1‖2. As t increases, c1(

λ̃1

λ1
)t goes to

infinity, and hence the error increases. This is because, when t is large, ‖Ãtx1‖2 can

be much greater than λt
1, and more accurate normalization in vector length is desired.

In our work, we only use t = 1, 2. We find the above approximations are very stable

in most practical cases.

We can see that in our approximation x̃j is expressed as a function of only xj and

E for those leading eigenvectors (|λj| À ‖E‖2). The approximation in (7.3) stands
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when t is small. How to determine the optimal t is beyond the scope of this work.

Please refer to our proof and remarks in Appendix 1 for the discussion of the error

term. In this paper, we use t = 1, 2 and find the above approximations are very stable

in most practical cases.

7.2 A Spectrum Based Framework for Detecting Attacks

In this section, we present a spectrum based fraud detection framework, which

is different from the traditional topology based fraud detection. In our framework,

we exploit the spectral space and characterize the difference between the spectral

coordinates of regular users and that of attackers, rather than exploring the graph

topology directly.

In a collaborative attack, the malicious user has complete control over the attacking

nodes and uses them to attack (e.g., send emails) a large set of victim nodes. Assume

there are c (c ¿ n) attacking nodes and they form a subgraph with adjacency matrix

C = {cij}c×c. The outgoing links from attacking nodes to regular nodes form the

subgraph with adjacency matrix B = (bij)n×c: bij = 1 if the j-th attacking node has

a link to the i-th regular node, and bij = 0 otherwise. The graph after attacks G̃ has

N = n + c nodes, and we can arrange the nodes in the graph so that node 1 to c are

attacking nodes and node c + 1 to N are regular ones. We have:

A =




0 0

0 An


 , Ã =




C BT

B An


 , E =




C BT

B 0


 (7.4)

The degree of node i, di, is the number of links connecting to node i in G̃, including

the attacking links: di =
∑N

j=1 ãij.

Let zj be the eigenvector of A associated to λj, and z̃j be the eigenvector of Ã

associated to eigenvalue λ̃j. Then, zj and z̃j can be partitioned as follows:

zj =

(
0c×1

xj

)
, z̃j =

(
ỹj

x̃j

)
,
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where ỹj = (ỹj1, . . . , ỹjc)
T denotes the entries corresponding to the attackers in z̃j

and x̃j = (x̃j1, . . . , x̃jn)T denotes the entries corresponding to those regular nodes in

z̃j. Since A is expanded by adding 0’s into An, xj is then the eigenvector of An along

with the eigenvalue λj. Let x̄j be the mean value of entries in xj: x̄j = 1
n
1T

nxj. To

make the deduction simple, we choose the sign of xj so that x̄j ≥ 0.

We utilize the leading k eigenvalues and eigenvectors to detect attacks in network

data. In the following sections, we denote αu = (x1u, x2u, · · · , xku) as the spectral

coordinate of regular node u in the original spectral space. It is the u-th row in

the bottom part of the matrix shown in (7.5). Denote βi = (y1i, y2i, · · · , yki) as the

spectral coordinate of attacking node i (the i-th row in the upper part of the matrix

in (7.5)). Since we assume there is no attack in the original graph, βi is actually a

zero vector. Similarly, we denote α̃u = (x̃1u, x̃2u, · · · , x̃ku) and β̃i = (ỹ1i, ỹ2i, · · · , ỹki)

as the spectral coordinate of regular node u and attacking node i in the perturbed

spectral space respectively, as shown in (7.6).




0 · · · 0

x1 · · · xk


 =




0 · · · 0 · · · 0

...
...

...

0 · · · 0 · · · 0

x11 · · · xj1 · · · xk1

...
...

...

x1n · · · xjn · · · xkn




← βi

← αu

(7.5)




ỹ1 · · · ỹk

x̃1 · · · x̃k


 =




ỹ11 · · · ỹj1 · · · ỹk1

...
...

...

ỹ1c · · · ỹjc · · · ỹkc

x̃11 · · · x̃j1 · · · x̃k1

...
...

...

x̃1n · · · x̃jn · · · x̃kn




← β̃i

← α̃u

(7.6)
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Result 7.2: In a graph G̃ under collaborative attacks, for attacking node i, the

eigenvector entry ỹji (1 ≤ i ≤ c, 1 ≤ j ≤ k) can be approximated by:

ỹji ≈ 1

λj

∑
u∈Ωi

xju +
1

λ2
j

c∑
r=1

(
cir

∑
u∈Ωr

xju

)
, (7.7)

where Ωr denotes the victim set of attacking node r. For any regular node u, 1 ≤
u ≤ n, x̃ju is approximately unchanged: x̃ju ≈ xju.

Proof. Substituting the corresponding matrices as shown in (7.4) to Result 7.1, we

can approximate the eigenvectors after attacks z̃j by zj and λj:




ỹj

x̃j


 ≈




0

xj


 +

1

λj




BT xj

0


 +

1

λ2
j




CBT xj

BBT xj


 .

With the above expression, we can write the i-th entry in ỹj as

ỹji ≈ 1

λj

bT
i xj +

1

λ2
j

c∑
r=1

cirb
T
r xj

=
1

λj

n∑
u=1

buixju +
1

λ2
j

c∑
r=1

(
cir

n∑
u=1

burxju

)
. (7.8)

Note that br is the index vector for the victims attacked by node r, then
∑n

u=1 burxju =
∑

u∈Ωr
xju, and we get (7.7).

For the the regular nodes, it is unlikely that a regular node u is attacked by many

RLA attackers, and hence the terms of λ−2
j can be further neglected, and we have

x̃ju ≈ xju. We prove the result.

Result 7.2 shows that the spectral coordinate of an attacking node can be approx-

imated by the spectral coordinates of its victims. Figure 7.1 shows a collaborative

attack example. Attacking nodes (black ones in the dashed region) form an inner

subgraph and each attacking node links to some victims (gray ones). For example,

the victim set of attacking node p, Ωp, includes victims u, v, w. For example, the

spectral coordinate of attacking node p is mainly determined by the sum of spectral
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Figure 7.1: A collaborative attack example

coordinates of its victim set Ωp scaled by 1/λj (the first term of the right hand side

of (7.7)). The second term captures the effect of all its neighbor attacking nodes’

victims, Ωq and Ωt (scaled by 1/λ2
j).

When attackers do not collaborate with each other (C = 0c×c), the second term

of the right hand side of (7.7) disappears. We simply have ỹji ≈ 1
λj

∑
u∈Ωi

xju, which

indicates the attacker’s spectral coordinate is fully determined by that of its victims.

From (7.7) we can also observe that the inner structure C among the attackers only

affects ỹji in the order of λ−2
j . When λj is large, the second term of the right hand

side of (7.7) is already negligible, which means that the inner subgraph structure has

little impact on the distribution of attackers in the spectral space.

The above result is mathematically elegant. We show that the spectral coordinate

of an attacker is mainly determined by that of its victims and the inner structure

among collaborative attackers has negligible impact on attackers’ spectral coordinate

distributions in the spectral space. Hence the efforts by the collaborative attack-

ers of resembling the rest of the network do not help much in hiding their spectral

characteristics in the spectral space.

In practice users have no knowledge about which nodes are attackers (or victims).

In other words, users do not know the true spectral coordinates of victim nodes

(i.e., xji) as well as the eigenvalues of the original graph (i.e., λj). As a result, we
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cannot derive the exact spectral coordinates of attacking nodes (i.e., yji). In the

next section, we will present our results on the random link attack. We will show

that the distribution of attackers’ spectral coordinates under random link attack are

determined by z̃j and λ̃j, which can be calculated directly from the observed graph

Ã.

7.3 Detecting Random Link Attack

A Random Link Attack (RLA) is a special type of collaborative attacks. The ma-

licious user has complete control over the attacking nodes and uses them to attack

(e.g., send emails) a large randomly chosen set of victim nodes. To masquerade as

regular users, the attackers usually form a dense subgraph by increasing the number

of edges among themselves such that the attacker’s neighborhood is structurally sim-

ilar to that of a regular user. One assumption here is that the attacker’s victim set

is selected randomly. In other words, each regular node in the graph has an equal

probability to be attacked, independent of other victims. Also note that for a suc-

cessful attack, the size of the victim set is typically large as compared to the size of

the attacker set. If this is not true, then the scope of the RLA attack is severely

constrained. The nodes in the neighborhood of a regular user typically contains a set

of communities, or a group of nodes that also have edges between themselves. On

the contrary, the randomly chosen victim nodes in the neighborhood of the attackers

have a different structure with fewer edges between themselves.

Definition 7.1: Random Link Attack (RLA) In a RLA, the malicious user cre-

ates c(¿ n) false identities (attacking nodes) and uses them to connect with a large

set of victims. Attacking node i randomly attack vi victims and each regular node

has the same probability to be a victim. The total number of victims is v =
∑c

i=1 vi.

To evade detection, the malicious user also creates mc links among attacking nodes,

which may make the subgraph formed by attacking nodes similar to that formed by

regular users.
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Figure 7.2: Spectral coordinates of political blogsphere data under a degree attack
with 20 attackers.

Throughout this section, we use polblogs as an example to illustrate our theoretical

results. Figure 7.2 plots the node spectral coordinates under a degree attack2 with 20

attackers. We also show node degrees in the z-axis. We can observe from the figure

that the majority of nodes projected in the 2-D spectral space distribute along two

straight and quasi-orthogonal lines. This indicates that there exist two communities

with sparse edges connecting them. We also observe that attacking nodes (denoted as

black) locate between the two quasi-orthogonal lines in the spectral projection space.

7.3.1 Identifying Suspects in Spectral Space

In this section, we investigate how attackers distribute in the spectral space. By

identifying the distribution of attackers’ spectral coordinates, we expect to separate

attacking nodes from regular ones in the spectral space.

Result 7.3: Let Λk = diag(λ1, . . . , λk) and Xk = (x1, . . . , xk). When all attackers

satisfy vi ≤ λk and di ≤ n
2
, the spectral coordinate β̃i(ỹ1i, ỹ2i, . . . , ỹki) asymptotically

follows the multivariate normal distribution whose mean and covariance satisfy the

2Attacking nodes have the same degree distribution as the regular nodes. For attacking node i,
it attacks 2di

3 victims.
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following two inequalities3:

E(β̃i) ≤ diX̄kΛ
−1
k = di

(
x̄1

λ1

, . . . ,
x̄k

λk

)
, (7.9)

Cov(β̃i) ≤ di

n

(
1− di

n

)
Λ−2

k . (7.10)

Furthermore, ỹsi and ỹti (s 6= t) are independent. When attackers do not collaborate

with each other (C = 0c×c), the expectation and variance reach their upper bounds.

Proof. Since each regular node has the same probability to be attacked, and entries

of bi are i.i.d. bernoulli random variables with parameter pi = vi

n
. We thus have

E(bi) =
vi

n
1n×1, Cov(bi) =

vi

n
(1− vi

n
)In×n.

With (7.8), ỹji is a linear function of bi and br. Since entries of bi (or br) are i.i.d.

bernoulli random variables, when n is large, ỹji asymptotically follows the multivariate

normal distribution. Taking the expectation of (7.8), we have

E(ỹji) =
1

λj

E(bi)
T xj +

1

λ2
j

c∑
r=1

cir E(br)
T xj

=
vix̄j

λj

+
1

λ2
j

c∑
r=1

cirvrx̄j (7.11)

With vr ≤ λj, we have

E(ỹji) ≤ vix̄j

λj

+
1

λj

c∑
r=1

cirx̄j

=
x̄j

λj

(
vi +

c∑
r=1

cir

)
=

dix̄j

λj

.

We have proved the upper bound for the expectation shown in (7.9). Note that when

C = 0, E(ỹji) is reduced to

E(ỹji) =
1

λj

E(bi)
T xj =

vix̄j

λj

=
dix̄j

λj

.

3By using “≤” between two vectors or matrices, we mean entry-wise less or equal.
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The last equality holds because there is no link among attackers( vi = di). In this

case, the expectation reaches the upper bound.

With (7.8), we can write β̃i = (ỹ1i, . . . , ỹki) in matrix form:

β̃i = bT
i XkΛ

−1
k +

c∑
r=1

cirb
T
r XkΛ

−2
k .

When the graph is large, we simply regard that bi and br are independent. Also

notice that cii ≡ 1, and we have

Cov(β̃i) = Λ−1
k XT

k Cov(bi)XkΛ
−1
k

+
c∑

r=1

cirΛ
−2
k XT

k Cov(br)XkΛ
−2
k

=
vi

n
(1− vi

n
)Λ−2

k + Λ−4
k

c∑
r=1

cir
vr

n
(1− vr

n
). (7.12)

When vi ≤ di ≤ n
2
, vi

n
(1 − vi

n
) < di

n
(1 − di

n
). We can thus enlarge the first term of

(7.12) to di

n
(1− di

n
)Λ−2

k , and the term of Λ−4
k is then negligible. In summary, we have

Cov(β̃i) ≤ di

n

(
1− di

n

)
Λ−2

k .

Notice that the covariance matrix in (7.12) is an diagonal matrix. For multivariate

normal distribution, we know that two entries ỹsi and ỹti (s 6= t) are then independent.

When C = 0, the second term of (7.12) is 0, and Cov(β̃i) then reaches the upper

bound.

Specifically, ỹji follows the normal distribution whose mean and variance satisfy

the following two inequalities:

E(ỹji) ≤ dix̄j

λj

, V(ỹji) ≤ di

n

(
1− di

n

)
1

λ2
j

. (7.13)

When attackers do not collaborate with each other, we know the exact values of
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expectation and variance of ỹji.

E(ỹji) =
dix̄j

λj

, V(ỹji) =
di

n

(
1− di

n

)
1

λ2
j

. (7.14)

Lemma 7.1: In the setting of RLA, let ¯̃zj denote the mean of z̃j: ¯̃zj = 1
n+c

1T
n+cz̃j.

When λj À ‖E‖2, we have ¯̃zj → x̄j, as n →∞.

Proof. When G is attacked by RLA (either with or without collaboration), z̃j can be

approximated to the first order as z̃j ≈
( 1

λj
BT xj

xj

)
. Then, we have

¯̃zj =
1

n + c
1T

n+cz̃j =
1

n + c
(1T

c ,1T
n )




1
λj

BT xj

xj




=
1

n + c

(
1

λj

1T
c BT xj + nx̄j

)

→ 1

n + c

(
1

λj

1T
c E(BT xj) + nx̄j

)
, as n →∞. (7.15)

Note that E(BT xj) = diag(v1x̄j, v2x̄j, . . . , vcx̄j), we have

1

λj

1T
c E(BT xj) =

x̄j

λj

c∑
i=1

vi =
vx̄j

λj

.

Continue with (7.15), and we have

¯̃zj → v

(n + c)λj

x̄j +
n

n + c
x̄j. (7.16)

Since v ≤ n and λj À 1, the first term in (7.16) is negligible. The second term in

(7.16) approaches 1 since c ¿ n, and we get the result ¯̃zj → x̄j as n →∞.

One problem here is that users do not know the values of x̄j. Lemma 7.1 shows that

in the setting of RLA, x̄j can be approximated by ¯̃zj, which can be directly calculated

from the observed Ã. Hence, we can simply use ¯̃zj to replace x̄j in (7.9),(7.10), (7.13),

and (7.14) . We can see that both expectation and variance are functions of node

degree.

We can regard node i as a suspect if the corresponding entry ỹji is within the
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confidence interval E(ỹji) ± ε
√

V(ỹji) where ε > 0 denotes the 1+p
2

quantile of the

standard normal distribution (i.e., interval [−ε, ε] covers probability p). In our work,

we choose ε = 2 if not otherwise noted, and the confidence interval covers more than

probability 0.954.
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(b) z̃2 (mc = 0, v̄i = 60)
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(c) z̃1 (mc = 0, v̄i = 30)
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Figure 7.3: Spectral plot of RLAs in polblogs network, 20 attacking nodes. Attackers
do not establish any connections among themselves.

Figure 7.3 and Figure 7.4 plot z̃1 vs. degree (or z̃2 vs. degree) of both attacking

nodes and regular nodes under various RLA attacking schemes (with and without

collaboration). Figure 7.3(c) and Figure 7.3(d) correspond to one independent RLA

with 30 attacking nodes and each having 30 outgoing links on average (v̄i = 30),

whereas Figure 7.3(a) and Figure 7.3(b) corresponds the RLA with each attacking

node having 60 outgoing links on average (v̄i = 60). The number of victims of

attacking node i is uniformly chosen from the interval [v̄i − 10, v̄i + 10]. We plot

the mean value (the black line) and the upper and lower bounds (the dashed lines).

We can observe that a majority of attacking nodes (denoted as black) form a region
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(a) x̃1 (pin = .5, v̄i = 30)
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(b) x̃2 (pin = .5, v̄i = 30)
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(c) x̃1, degree attacks
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(d) x̃2, degree attacks

Figure 7.4: Spectral plot of RLAs in polblogs network, 20 attacking nodes. Attackers
establish some connections among themselves.

which locates within 2 standard deviations from the mean values while the majority

of regular nodes locate in different regions. Hence we can regard nodes within two

dashed lines as suspects. We can also observe that the more outgoing links (victims)

of attacking nodes, the farther their spectral coordinates are away from those regular

ones.

In the next attacking schemes, we introduce various inner link structures in the

attacking subgraph. In Figure 7.4(a) and Figure 7.4(b), connections among attacking

nodes follow the ER-model with probability 0.5 In Figure 7.4(c) and Figure 7.4(d),

we masquerade attacking nodes as good users by specifying a degree distribution for

connections among attacking nodes with the same parameters as the regular nodes

(degree attack). Our result shows that we can successfully separate attacking nodes

from regular ones no matter how the malicious creates links among attacking nodes.

In other words, our method is robust with the subgraph C formed by attacking nodes.
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When attackers do collaborate with each other, ỹji still follows the normal distri-

bution. However, we only have the upper bound of its expectation and variance as

shown in (7.13). We shown the formula of the derived confidence interval in our next

result.

Result 7.4: Given probability p ∈ [0, 1], let ε > 0 denote the 1+p
2

quantile of the

standard normal distribution (i.e. interval [−ε, ε] covers probability p). RLAs. For

an attacker i with observed degree di ≤ N
2
, ỹji has probability more than p to fall

into the interval [τlw, τup], where

τup =
di

¯̃zj

λ̃j

+
ε

λ̃j

[
di

N

(
1− di

N

)] 1
2

, (7.17)

τlw =
v∗ ¯̃zj

λ̃j

− ε

λ̃j

[
v∗

N

(
1− v∗

N

)] 1
2

, (7.18)

and v∗ = min{di,
N
2
[1− Nx̄j

(ε2+N2x̄2
j )1/2 ]}.

Proof. If node i perform the RLA, ỹji is normally distributed, and has probability p

to fall into interval [τ1, τ2] = E(ỹji)± ε
√

V(ỹji). When vi ≤ di ≤ n
2
, with (7.13), it is

easy to get that the upper bound of τ2:

τ2 ≤ dix̄j

λj

+
ε

λj

[
di

n

(
1− di

n

)] 1
2

. (7.19)

Note that the upper bound is obtained when attacker i does not collaborate with

other attackers.

Next, we obtain an lower bound for τ1. Neglecting terms of λ−2
j and higher in (7.11)

and (7.12), we have that τ1 can be expressed as a function of vi:

τ1(vi) = E(ỹji)− ε
√

V(ỹji) =
vix̄j

λj

− ε

λj

[vi

n

(
1− vi

n

)] 1
2
. (7.20)

By taking the derivative and setting it to be 0, we have that τ1(vi) reaches the

minimum when

vi = vmin :=
n

2

[
1− nx̄j

(ε2 + n2x̄2
j)

1
2

]
. (7.21)
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Moreover, τ1(vi) is a decreasing function when 0 ≤ vi ≤ vmin, and is an increasing func-

tion when vi > vmin. Notice that vi ∈ [0, di], and we thus have τ1 ≤ τ1(min{di, v
∗}),

and the lower bound is obtained when attacker i attacks min{di, v
∗} victims.

When the graph is large and the number of attackers c is much smaller than the

graph size N , x̄j ≈ ¯̃zj (with Lemma 7.1), λ̃j ≈ λj (with the Weyl’s Theorem) and N ≈
n. By substituting the unknown values (x̄j, λj and n) with those values obtainable

from Ã (¯̃zj, λ̃j and N) in (7.19), (7.20) and (7.21), we get the result.

Although we can filter out attackers by checking whether their spectral coordinate

values locate within the confidence interval at each dimension, it is very tedious in

practice. Users would prefer a single metric to quantify each node’s likelihood of

being an attacker. Next, we adopt a combined metric, the node non-randomness, to

identify suspects.

In Section 6.2 we presented a framework that can quantify non-randomness at

all granularity levels from edge, node, subgraph, to the overall graph. All graph

non-randomness measures can be obtained mathematically from the spectra of the

adjacency matrix of the network. The node non-randomness can be calculated as

Ru =
∑k

j=1λjx
2
ju = αuΛkα

T
u , where Λk = diag{λ1, λ2, . . . , λk}, which means the non-

randomness of node u is the length of its spectral vector with eigenvalue weighted

on corresponding dimensions. As pointed by [90], eigenvalues and eigenvectors with

large eigen-gaps are generally more stable under perturbation. In our work we choose

k so that λk − λk+1 is maximized.

Result 7.5: For attacking node i, its node non-randomness is defined as

Ri = β̃iΛ̃kβ̃
T
i =

k∑
j=1

λ̃j ỹ
2
ji. (7.22)

Then, the expectation and variance of Ri have the following upper bounds respec-
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tively: E(Ri) ≤ UE
i , and V(Ri) ≤ UV

i , where

UE
i = d2

i

k∑
j=1

x̄2
j

λj

+
di

n
(1− di

n
)

k∑
j=1

1

λj

; (7.23)

UV
i =

4d3
i

n
(1− di

n
)

k∑
j=1

x̄2
j

λ2
j

+
2d2

i

n2
(1− di

n
)2

k∑
j=1

1

λ2
j

. (7.24)

E(Ri) and V(Ri) reach the upper bounds when the attackers do not collaborate

(mc = 0).

Proof. For attacking node i, Ri =
∑k

j=1 λj ỹ
2
ji. Since ỹji is normally distributed with

mean µji and variance σ2
ji, ỹ2

ji/σ
2
ji follows the noncentral χ2-distribution with degree

of freedom 1 and parameter µ2
ji/σ

2
ji, and hence we have

E

(
ỹ2

ji

σ2
ji

)
= 1 +

µ2
ji

σ2
ji

, V

(
ỹ2

ji

σ2
ji

)
= 2 +

4µ2
ji

σ2
ji

.

Then, E(ỹ2
ji) = µ2

ji + σ2
ji, and we have

E(Ri) =
k∑

j=1

λj E(ỹ2
ji) =

k∑
j=1

λj(µ
2
ji + σ2

ji).

Substitute µji and σ2
ji with their upper bounds shown in (7.13), we get the upper

bound of E(Ri) shown in (7.23).

Similarly, V(ỹ2
ji) = 2σ4

ji + 4µ2
jiσ

2
ji, and hence

V(Ri) =
k∑

j=1

λ2
j V(ỹ2

ji) =
k∑

j=1

λ2
j(2σ

4
ji + 4µ2

jiσ
2
ji).

Substitute µji and σ2
ji with their upper bounds shown in (7.13), we get the upper

bound of V(Ri) shown in (7.24).

Ri is non-negative and it is naturally lower bounded by zero. Ri is a linear combi-

nation of noncentral χ2 random variables. The distribution of such type of random

variable was given in [79]. We can then choose a proper ε such that, for attacking

node i, Ri has a high probability to fall into the interval [0, µ + εσ]. Substituting the
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mean and standard deviation with their upper bounds, we can regard node i as a

suspect if

Ri ≤ UE
i + ε(UV

i )
1
2 . (7.25)

Similarly, we can replace the unknown variables (x̄j, λj and n) in (7.23) and (7.24) by

those values obtainable from Ã (¯̃zj, λ̃j and N). The non-randomness test to identify

suspects is shown in Procedure 3.

Procedure 3 Node non-randomness test

Input: Ã, Output: suspect set Vsusp

1: Calculate λ̃j, z̃j and ¯̃zj from Ã, j = 1, . . . , k;
2: for i ← 1 to N do
3: Calculate node non-randomness Ri by (7.22);
4: Calculate UE

i , UV
i by (7.23) and (7.24);

5: if Ri ≤ UE
i + ε(UV

i )
1
2 then

6: Vsusp ← Vsusp ∪ {i};
7: end if
8: end for

Figure 7.5 plots Ri vs. degree under four RLA attacking scenarios. The inner

structure of the attacking groups is formed by Erdos-Renyi model [30] with parameter

pin: any two attacking nodes are connected with probability pin. The black line

shows the expected value of attacking nodes. The dashed pink line is the decision

line corresponding to the upper bound as shown in (7.25). We regard nodes under

the decision line as suspects. We can observe that for all four attacking scenarios

non-randomness values of those fraud nodes are well below the decision lines, which

indicates that our node non-randomness test is robust with any inner structure of the

subgraph formed by attackers.

Comparison with Topology Based Testing. The authors in [88] first formalized

the RLA property. Basically, an attack set A is called a RLA iff it satisfies 1) |A| ≤ k;

2)the size of the victim set is larger than a constant (α) factor of the attack set; and 3)

the number of distinct external triangles (formed by attackers and with the rest of the

graph) 4A ≤ θ. They proposed two tests, the clustering test and the neighborhood
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(a) Ri, pin = 0
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(b) Ri, pin = .5
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(c) Ri, pin = 1
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(d) Ri, degree attack

Figure 7.5: Node randomness measure of various RLAs (20 attackers). (a)-(c): ER
attacks with parameter pin and v̄i = 30; (d): degree attacks.

independence test, to identify suspects. Identification of the suspect set is the first

step towards finding an RLA, i.e., the identification of a set of suspect nodes that are

potentially part of the attacking group.

A node in the graph is marked as a suspect if it fails either the clustering property

or the neighborhood independence property. A node i satisfies the clustering prop-

erty iff 4i ≥ ρdi(di − 1)/2 where 4i denotes the number of triangles of node i. A

node i satisfies the neighborhood independence property iff the size of the maximum

independent set in the neighborhood of node i4 is less than α − θ
k

(more accurately,

see inequality (5) in [88]). There are several limitations of this topology based test

approach. First, the testing procedures contain too many parameters. In practice,

it is hard to determine those parameters properly for a given network. Hence, the

4In the independence test, an independent set is defined as a set of nodes such that no two nodes
share an edge.
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identified suspect set contains a large number of false positives (good nodes marked as

suspects). Second, the neighborhood independence test involves huge computational

cost since it needs to find the maximum independent set for each node.

Table 7.1: Testing results for polblogs network, 20 attackers in all cases (ρ = 0.0865
in clustering test). ssp: number of suspects found by the testing; atk: true attackers
in the suspects.

indpdt. ER attacks, v̄i = 30 degree
v̄i = 60 pin = 0 pin = .5 pin = 1 attack
ssp atk ssp atk ssp atk ssp atk ssp atk

Node nonrandomness test
22 20 22 20 22 20 23 20 21 19

θ Cluster and Neighborhood independence test
100 63 20 211 20 210 20 212 20 282 16
150 68 20 240 20 236 20 236 20 321 18
200 74 20 293 20 291 20 290 20 386 20
250 76 20 324 20 326 20 318 20 440 20
300 84 20 390 20 398 20 396 20 496 20

Table 7.1 shows the comparison between the topology based test approach and our

spectrum based test approach for polblogs under five attacking scenarios. For each

attack, we report the number of suspect nodes identified by each approach and the

number of true attacking nodes among the identified suspect nodes. We follow their

strategy by setting ρ = .0865 so that 95% of the nodes in the original graph satisfy

the clustering property. We vary the θ with different values in the neighborhood

independence test. We can see that for all five attacking scenarios (especially degree

attack) the topology based test generates a large number of false positives, which will

affect both accuracy and efficiency of catching the true attacking groups in the next

step. In contrast, our spectrum based test results in much fewer false positives across

all attacking scenarios.

7.3.2 Spectrum Based RLA Detection Algorithm

In this section, we present our spectrum based detection algorithm called Spctra

to catch RLAs. The algorithm consists of three steps, as shown in Algorithm 7. In
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Algorithm 7 Spctra: Spectrum based RLA Detection

Input: Ã, Output: attacking groups

1: Vsusp ←node nonrandomness test on Ã by Procedure 3;
2: Gsusp ← subgraph formed by Vsusp;
3: Find dense subgraphs Hs, s = 1 . . . , l, in Gsusp via the algorithm in [18];
4: for each dense subgraph Hs do
5: if Hs pass node nonrandomness test then
6: return Hs as an attacking group
7: end if
8: end for

the first step, we conduct node non-randomness test to identify suspects as shown in

Procedure 3.

The subgraph Gsusp formed by suspects expect to contain most attacking nodes as

well as some regular ones. It is unlikely that regular nodes in the suspect set form

dense subgraphs in Gsusp. In the second step, from Gsusp we identify suspect groups as

candidates of RLA groups. In our work, we implemented the greedy algorithm [18] to

approximately find dense subgraphs in O(nsusp) time. The algorithm starts with the

full graph (Gsusp in our setting). At each iteration, the node with minimum degree

is delete, and the density of the remaining subgraph is calculated and recorded. The

subgraph with the maximum density is finally returned.

In the third step, we test whether each dense subgraph is a true RLA group. As

a result, we can filter out dense subgraphs accidentally formed by regular nodes.

We regard nodes in a suspect group Hs as one single super-node regardless its inner

structure. If Hs is mainly formed by a true RLA, the super-node expects to behave

as an independent RLA node. We then check the super-node using the node non-

randomness test. This requires the calculation of the eigenvector entries of the super-

node. With Result 7.2, we can approximate the corresponding eigenvector entries.

Let ΩHs denote the set of nodes connected to Hs. Then, its corresponding entry in
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the j-the eigenvalue and the node non-randomness measure can be approximated by:

ỹj,Hs =
1

λ̃j

∑
u∈ΩHs

x̃ju, and RHs =
k∑

j=1

λ̃j ỹ
2
j,Hs

.

Similarly, UE
Hs

and UV
Hs

can be calculated by replacing di with dHs = |ΩHs | in (7.23)

and (7.24). If RHs ≤ UE
Hs

+ ε(UV
Hs

)
1
2 , we consider Hs as a RLA group.

Complexity. Our algorithm involves the calculation of the first k eigenvectors of a

graph in Line 1 of Procedure 3. In general, eigen-decomposition of an n × n matrix

takes a number of operations O(n3). In our framework, we only need calculate the first

k largest eigenvalues and their eigenvectors. Furthermore, adjacency matrices in our

context are usually sparse and well structured. We implemented the Arnoldi/Lanczos

algorithm [38] which generally needs O(n) rather than O(n2) floating point operations

at each iteration. The storage cost is reduced to nO(k)+O(k2). The greedy algorithm

to find dense subgraphs from the suspect set, in Line 3 of Algorithm 7, takes O(nsusp).

The authors in [88] developed the Greedy algorithm to catch RLAs from the sus-

pect set. The Greedy algorithm is to mine subgraphs satisfying the RLA-property,

starting from the suspect nodes identified by two tests. It grows a potential attack

cluster by iteratively adding nodes with a high degree of connectivity with the cluster.

However, the Greedy algorithm does not scale well for large graphs since it makes

many calls to the expensive Filter procedure (to find the maximum independent set).

The time complexity of the neighborhood independence test is O(
∑

i d
2
i ) = O(m2)

(the approximation algorithm to find the maximum independent set around node i

needs O(d2
i ) time). To catch attacking groups among nsusp suspects, the Greedy

needs O(m2
susp) time. The authors also developed the second technique, triangle ran-

dom walk (Trwalk), which performs a randomized graph traversal starting at each

suspect. They reported the Trwalk is 8 to 10 times more efficient than the Greedy

but Trwalk is less accurate than the Greedy.
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7.4 Experimental Results

One challenging research issue is how to effectively separate fraud nodes under a

set of mixed attacks from regular users in large networks. Since different attacks can

form different topological patterns, we evaluate how effectively our Spctra algorithm

can characterize them in large-scale networks. We also compare our algorithm with

the topology based detection approach [88].

Data Set and Setting. We conducted experiments on the Web Spam Challenge

2007 data [6], which contains over 105 million pages in 114,529 hosts in the .UK

domain. The number of links among these hosts is 1,836,228. It also contains a small

labeled training data set (6,382 hosts) where 341 hosts were labeled as spam. Our

node non-randomness test identified 1,127 hosts as suspects (i.e., their node non-

randomness values are below the decision line), among which 54 hosts were labeled

as spam in the training data set. These 54 nodes randomly attack 14,283 victims in

total. We analyzed the inner subgraph formed by these 54 nodes is very sparse and

there is no evidence to show they are from a collaborative random link attack.

To evaluate the efficacy of our algorithm, we generated a mixed instance of at-

tacks and added them together to the original network. We then ran our algorithm

to detect the attack set on this modified network. We implemented our spectrum

based detection algorithm and the topology based detection algorithm [88] (including

two testing procedures, clustering test and neighborhood independence test, and the

Greedy algorithm) in Matlab. We evaluated both run-time and the accuracy of

catching RLAs. Our experiments were carried out on a Windows XP64 workstation

with a 3.0 GHz Pentium-IV CPU and 2GB RAM.

Accuracy of Detecting RLAs. We generated 8 RLAs with varied sizes and con-

nection patterns (links between attackers and victims and internal links among the

attackers), as shown in Table 7.2. The total number of attacking nodes is 650 and

the size of victims is 56,144. Our goal is to test whether algorithms (Spctra and
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Table 7.2: Evaluation results on Web Spam data set, 8 RLA attacking groups, 650
total attackers, and 56144 total victims.

setting Spctra Greedy
RLA size v̄i pin ssp atck ssp atck

1 50 100 .3 50 50 49 47
2 50 100 .6 50 50 0 0
3 50 100 1 50 50 50 50
4 50 200 .3 50 50 79 47
5 100 100 .3 100 100 3 3
6 50 degree 49 49 20 20
7 100 degree 97 97 6 6
8 200 degree 188 188 27 27

final results (total) 634 634 4534 200

Greedy) can catch them and how accurate they achieve. Each algorithm output a

set of suspect groups (i.e., RLA candidates).

Our Spctra algorithm (with k = 3) successfully identified all 8 RLAs and no false

suspect group was reported. For the first five RLAs (generated by ER model), our

Spctra algorithm achieved 100% accuracy and no false positive or false negative

node was introduced, as shown in Table 7.2. Even for those degree based RLAs (6,

7, 8), our Spctra algorithm achieved more than 94% accuracy.

In contrast, the Greedy algorithm (with the best chosen parameters: the max-

imum size of attacking groups is 200, ρ = 0.008, θ = 300, α = 50) output 4,534

suspect nodes. It successfully identified RLA 3, in which attackers form a clique

among themselves. However, it missed most attacking nodes in other RLAs (e.g.,

2,5,7). The number of true attacking nodes among the output suspect groups was

only 200. Table 7.2 shows our detailed comparisons.

Table 7.3: Execution time (in seconds) of for different data sets
Data set Alg. Testing Grouping Total
polblogs Spctra 0.037 0.041 0.078

(1222, 16714) Greedy 16.20 6.047 22.24
Web Spam (33%) Spctra 0.702 0.239 0.941
(37562, 199406) Greedy 577.2 515.4 1093

Web Spam Spctra 4.017 29.68 33.69
(114529, 1836228) Greedy 12728 83314 96043
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Running Time. In this experiment, we compare the running times of the Spctra

and Greedy algorithms using three data sets, polblogs, Web Spam, and a sample

of Web Spam data. In Table 7.3, we report the running time for both Spctra

and Greedy including the testing step (catching suspects) and the grouping step

(catching RLAs). We can see that the time taken by Greedy is 285, 1161, and 2851

times more than our Spctra algorithm. For example, the Greedy takes more than

23 hours for the Web Spam Data while our Spctra takes only 34 seconds. Although

the Trwalk improves the efficiency to some extent, it is still not scalable for large

social networks since it uses the same expensive testing procedures.

7.5 Summary and Future Work

There are other types of collaborative attacks that can be considered as RLA

variations.

Bipartite Core Attack. Pandit et. al. [19, 77] uncovered a new type of attack called

the bipartite cores attack in auction networks. As illustrated in Figure 7.6(a), there

are two types of identities: fraudsters (denoted as red cycle) and accomplices (denoted

as blue +). The attacker creates some fake identities (denoted as fraudsters). The

attacker is also capable of controlling a small set of regular identities (denoted as

accomplices). Accomplices behave like honest users, except that they interact heavily

with the set of fraudsters in order to boost their reputation. The fraudster identities

are the ones used eventually to carry out the actual fraud. To avoid detection, the

fraudsters or accomplices have few links to nodes of the same type, and they hence

form a (nearly) bipartite subgraph in the network. In the bipartite core attacks,

we assume that each regular node has the same probability to be controlled by the

attacker. Then, the links between the accomplices and the fraudsters follow the

random pattern, and the bipartite core attack can be regard as a special type of

RLA. Therefore, the node non-randomness Ri for the frausters should also satisfy

Result 7.5.
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Figure 7.6: The spectral patterns for polblogs: bipartite core attacks with 20 fraudsters
and 30 accomplices

Figure 7.6 shows the spectral patterns of the bipartite core attacks for polblogs

network. The dashed pink line in Figure 7.6(d) is the decision line under which nodes

are regarded as suspects of fraudsters. We can easily observe that the fraudsters nodes

locate in the region different from regular nodes, and the distribution of fraudsters

is also characterized by the means and variances shown in Result 7.3 and 7.5. The

accomplices which are from the regular nodes are not distinct from other regular

nodes. However, once the majority of fraudsters are captured, we can further detect

related accomplices by searching the links.

DDoS Attacks. In the distributed denial of service attack (DDoS), the attacker

randomly control a large number of regular nodes and create links from the controlled

nodes to a target node, and the links between the target node and the controlled nodes

follow the random pattern. Meanwhile, the target node also have its regular links,
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but the proportion of regular links is small compared with the attacking links.

Figure 7.7 shows one DDoS attack on the polblogs network. In this attack, we

randomly selected 10% nodes as attacking nodes and used them to attack one vic-

tim node. The spectral positions of the victim node before (blue star) and after

(red circle) attacks are shown in the figure. By comparing spectral projects before

and after attacks, we can easily locate the victim node and then identify attacking

nodes through links connected to the victim. We can see from Figure 7.7 that the

victim’s non-randomness value remains almost unchanged while its degree increases

significantly. This is very different from the change pattern of regular nodes’ non-

randomness values during graph evolution.
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Figure 7.7: DDoS attacks on polblogs network.

In summary, we have presented a novel framework that exploits the spectral space

of underlying network topology to identify frauds or attacks. Our theoretical results

showed that attackers locate in a different region of the spectral space from regular

users. By identifying fraud patterns in graph spectral spaces, we can detect various

collaborative attacks that are hard to be identified from original topological struc-

tures. Focusing on RLAs, we presented an efficient algorithm, Spctra, and com-

pared with the topology based detection approach [88]. Empirical evaluations show

that our approach significantly improves both effectiveness and efficiency especially

when a mix of RLAs are introduced.
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In our future work, we will explore various other attacking scenarios in both social

networks and communication networks. Specifically, we will study how our spectrum

based detection works when attackers choose victims purposely (rather than randomly

) or only attack very few victims when they launch their collaborative attacks. For

example, in the passive and active attacks [8], an adversary may only identify tar-

geted individuals or derive sensitive relationships between targeted individuals from

published node-anonymized social networks. The adversary constructs a highly dis-

tinguishable subgraph with edges to a set of targeted nodes, and then re-identifies the

subgraph and consequently the targets in the released anonymized network. We will

explore the effectiveness and efficiency of using spectral characteristics to detect the

attacking subgraph. Another example is the Sybil attack. In a direct Sybil attack [75],

a physical device controlled by adversaries may demonstrate multiple identities to its

neighbors. A Sybil attack usually forms a group that has very few edges with the vic-

tims. We will empirically study whether we can still use the spectral characteristics

to identify them. In practice, networks are constantly changing as both legitimate

and fraud nodes (edges) can be added as networks evolve. Since the detection of some

interested events depends on observing anomaly changes of network parameters over

a time duration, we will consider time an important dimension in data representation

and attack detection. We will extend our approach to use the temporal information in

these evolving networks to identify and catch potential attacks. We will also explore

matrix visualization and organization approaches that enable interactive navigation

between network topology and its spectral spaces.



CHAPTER 8: CONCLUSIONS AND FUTURE WORK

In our work, we investigated the application of graph randomization techniques on

social network data to preserve both data privacy and data utility. We conducted the-

oretical studies and empirical evaluations on the tradeoff between utility and privacy

of various graph randomization techniques as well as investigation of some potential

attacking methods from adversaries.

We studied various adjacency spectral properties of many real-world networks as

well as some random ones. To quantify the data utility, we developed a consis-

tent framework of non-randomness measures and applied it to community partition

and fraud detection in social network settings. Extensive theoretical analysis and

empirical evaluations were conducted to demonstrate the efficacy of our developed

techniques.

8.1 Privacy Analysis of Social Network Randomization

Privacy Disclosure Risks. We first investigated the link disclosure risk of a ran-

domized graph. To quantify the link disclosure risk, we considered the three proba-

bilities on a sensitive link (i, j): the prior probability, the posterior probability given

the existing (or non-existing) link (i, j) in the randomized graph, and the enhanced

posterior probability utilizing the observed link as well as the some proximity measure

between the two nodes.

For Rand Add/Del and Rand Switch randomization procedure, we established the

relationship between the posterior probabilities and the magnitude of randomization.

Not surprisingly, the posterior probabilities decrease as the randomization magni-

tude increases. We then calculated the minimal randomization magnitude needed to
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protect the link privacy to a tolerable level.

The enhanced posterior probability based on proximity measures was derived for

Rand Add/Del procedure. We studied the attacking model in which the attacker

can learn the correlation between the proximity value and the existence of a link in

the randomized graph, estimate the correlation in the original graph, and improve his

prediction of sensitive links. Our empirical results showed that the enhanced posterior

probability can greatly increase the attacker’s ability of inferring the presence of a

link and the prediction accuracy for those links between nodes with high similarity

values.

We also proved one important property of the prior probability, posterior probabil-

ity, and the enhanced posterior probability: the summations of the three probabilities

are all (or approximately) equal to the total number of edges m. This equality in-

dicates that, the more information the attacker utilizes, the higher accuracy he can

achieve in predicting sensitive links.

In addition to the link disclosure risk, we investigated the identity disclosure risk of

randomization. Our studies were based on one most widely used type of background

knowledge, node degree. Although the nodes’ degrees in the randomized graph are

generally different from those in the original graph, our theoretical studies showed that

the attacker could still estimate the degree sequence of the original graph based on the

degree sequence of the randomized graph. We also derived the minimal randomization

magnitude needed to protect the identity privacy given tolerable level.

Feature Preserving Randomization. Our empirical evaluations showed that pure

randomization can significantly incur the loss of graph utility. Therefore, we devel-

oped two randomization procedures to better preserve graph characteristics without

sacrificing much privacy protection during randomization.

The spectrum based randomization procedures, Spctr Add/Del and Spctr Switch,

preserve the data utility by preserving some certain eigenvalues of the graph matrices.
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We derived the conditions that the edge modification will increase or decrease the ran-

domized eigenvalues. Then, our algorithms carefully choose the edges to be modified

during the randomization, so that the eigenvalues of the randomized graph are close

to the original values. Our evaluations showed that, compared with Rand Add/Del

and Rand Switch, Spctr Add/Del and Spctr Switch procedures can not only better

preserve the targeted eigenvalues but also many topological features of networks.

One limitation of the spectrum based randomization procedures is that they only

consider some certain eigenvalues. Hence to what extent they can preserve general

topological features is not guaranteed. We further developed the Markov chain based

randomization procedure that could preserve any graph feature specified by users.

The users or analysts usually require some feature of the randomized graph is close to

the original value, resulting in a feature constraint on the randomized graph. When

a feature constraint is placed, we established the switch-based Markov chain that

can access any graph with the original degree sequence and satisfying the feature

constraint. Using Metropolis-Hastings sampling, a standard method for generating a

Markov chain with a target distribution, our graph generator can output any graph in

the graph space with equal probability. Note that this graph generator (possibly with

some minor adjustment) can also be used in testing the significance of data mining

results.

We further investigated the potential disclosure of sensitive links due to the pre-

served features. We studied the attacking model in which the attacker can estimate

the probability of a true link by uniformly sampling the graph space and thus breach

the link privacy. One interesting finding by our evaluation is that, for some features,

the constraints do not increase the attacker’s posterior belief on true links (compared

with the randomization without constraints). This is very important to data miners,

because if the graph feature they focus on is one of such features, the data owner

can safely place the feature constraint on the randomized graph to preserve the data
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utility without increasing privacy disclosure risks. The extent to which the feature

constraint can increase the privacy disclosure risk depends on the characteristics of

the graph space specified by the feature constraint, which we would like to further

investigate as our future work.

8.2 Spectral Analysis of Social Network Randomization

We discovered that the adjacency spectral spaces of many real-world graphs have

clear patterns different from random ones. If the graph has k disconnected commu-

nities, the spectral coordinates of the nodes lie only on the axes in the space spanned

by the leading k eigenvectors of the adjacency matrix, forming k strictly orthogonal

lines. Nodes from the same community all lie on one axis with the central nodes far

from the origin and the noisy ones close to the origin. When the communities are

loosely connected, the nodes form k quasi-orthogonal lines that are rotated away from

the axes for a certain degree. Those nodes with links outwards their own communities

would deviate away from the lines. This pattern is different from those displayed in

the spectral space of normal or Laplacian matrix. In the normal or Laplacian matrix,

the communities form some clusters, and hence it is usually difficult to distinguish

the central nodes from the noisy ones.

Based on this phenomenon, we then developed a consistent framework to quantify

the graph non-randomness at edge, node, subgraph and the overall graph levels. We

showed that all graph non-randomness measures can be obtained mathematically

from the spectra of the adjacency matrix of the network. A relative non-randomness

measure of the overall graph was also presented. It allows quantitative comparisons

between various social networks with different sizes and densities or between different

snapshots of a dynamic social network. We proved that the relative non-randomness

measure of any graph is lower (upper) bounded by the regular (complete) graph. We

also analyzed the distributions of both edge and node non-randomness for real-world

social networks and random graphs. Our results showed that edge non-randomness
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and node non-randomness of real-world social networks usually display some high

skewed distributions, obeying either a power law or an exponential law. On the

contrary, random graphs display approximate normal distributions.

We further studied two applications of the non-randomness framework: commu-

nity partition and fraud detection. Utilizing the property of line orthogonality, we

developed the algorithm, AdjCut, to partition the communities by fitting orthogonal

lines in the spectral space. Our algorithm achieves comparable accuracy with the nor-

mal spectrum based cutting algorithm and better than the Laplacian spectrum based

algorithm. Our evaluations showed that the communities produced by our AdjCut

algorithm have more balanced sizes. One difference between our AdjCut algorithm

and the normal spectrum based cutting algorithm is that the normal spectrum based

algorithm partitions the communities by cutting as few edges as possible, whereas our

AdjCut algorithm does the partition by assigning a node to the community to which

it has the strongest association.

The second application of the non-randomness measures we studied is the fraud

detection in social network settings. We developed a novel framework that exploited

the spectral space of underlying network topology to identify frauds or attacks. Our

theoretical results showed that attackers locate in a region different legitimate users in

the spectral space. Specifically, the spectral coordinate of an attacker is mainly deter-

mined by that of its victims. The inner structure among collaborative attackers has

limited impact on attackers’ distributions in the spectral space. By identifying fraud

patterns in graph spectral spaces, we can detect various collaborative attacks that are

hard to be identified via graph topology. For random link attacks, we proved that the

spectral coordinates of the fraudulent nodes should follow the multivariate normal

distribution in the adjacency spectral space. Therefore, the node non-randomness

values of the fraudulent nodes follow the χ2-distribution and are significantly lower

than the values of the legitimate nodes. Based on this statistical property, we de-
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veloped an efficient algorithm, Spctra, to filter the fraudulent nodes. Empirical

evaluations showed that our approach significantly improved both effectiveness and

efficiency especially when a mix of RLAs were introduced.

8.3 Future Work

In our future work, we would like to further study the privacy disclosure risks for

the feature-preserving randomization procedures. As we discussed earlier, preserving

some features would jeopardize the privacy while preserving some others would not.

We are interested in what aspects of characteristics of the features make this differ-

ence. We will investigate how to efficiently randomize graphs to preserve multiple

features, and study its impacts on privacy disclosure risks.

We will conduct comprehensive comparisons among the randomization, K-anonymity,

and generalization based privacy-preserving techniques. Based on the background

knowledge of nodes’ degrees, some preliminary comparison results between the ran-

domization and K-degree techniques have been reported in Section 4.2. More com-

parisons merit further study, especially when adversaries are able to exploit various

complex background knowledge in their attacks.

We will also study the scalability issue of graph randomization techniques and

conduct empirical evaluations on large social networks. The computational cost of

some graph features can be very expensive, which raises an challenge to preserve

such features for large social networks. For example, we may preserve the feature

with high computational cost by preserving a highly correlated feature but with low

computational cost, and approximate the feature rather than calculate it precisely

during the randomization.

For spectral analysis of social network randomization, we have shown that the

graph non-randomness measures are determined by the spectral space spanned by

the leading k adjacency eigenvalues, where k indicates the number of communities

in the graph. We will also investigate the full relationship between our proposed
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non-randomness measures (especially the graph non-randomness) and the traditional

topology based measures.

For the adjacency spectrum based fraud detection, we will explore more attacking

scenarios in both social networks and communication networks. Specifically, we will

study how our spectrum based detection works when attackers choose victims pur-

posely (rather than randomly) or only attack very few victims when they launch their

collaborative attacks. For example, in the active and passive attacks, an adversary

may only attack a small number of targeted individuals and derive sensitive relation-

ships among them. We will empirically study whether we can still use the spectral

characteristics to identify the attacking nodes. In practice, networks are constantly

changing as both legitimate and fraudulent nodes (edges) can be added as networks

evolve. We will extend our approach to use the temporal information in these evolv-

ing networks to identify and catch potential attacks. We will also explore matrix

visualization and organization approaches that enable interactive navigation between

network topology and its spectral spaces.

We will investigate differentially private algorithms for social network data. It

involves deriving accurate sensitivity values of various social network features and

graph mining algorithms. The differential privacy mechanism is very different from

those non-interactive social network release mechanisms which can be used to answer

an unlimited number of queries. In our future work, we would like to compare the

differential privacy and non-interactive social network release mechanisms for the

social network data.



REFERENCES

[1] L. Adamic and N. Glance. The political blogosphere and the 2004 us elec-
tion: divided they blog. In Proceedings of the WWW-2005 Workshop on the
Weblogging Ecosystem, 2005.

[2] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social Networks,
25(3):211–230, 2003.

[3] D. Agrawal and C. Agrawal. On the design and quantification of privacy preserv-
ing data mining algorithms. In Proceedings of the 20th Symposium on Principles
of Database Systems, 2001.

[4] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages
439–450. Dallas, Texas, May 2000.

[5] W. Aiello, F. Chung, and L. Lu. A random graph model for power law graphs.
Experimental Mathematics, 10(1):53–66, 2001.

[6] AIRWeb. Web spam challenge. In http://webspam.lip6.fr/wiki/pmwiki.php,
2007.

[7] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in
large social networks: membership, growth, and evolution. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 44–54, 2006.

[8] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography.
In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, pages 181–190, 2007.

[9] J. Baumes, M. K. Goldberg, M. Magdon-Ismail, and W. A. Wallace. Discovering
hidden groups in communication networks. In ISI, pages 378–389, 2004.

[10] T. Y. Berger-Wolf and J. Saia. A framework for analysis of dynamic social
networks. In KDD, pages 523–528, 2006.

[11] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Class-based
graph anaonymization for social network data. In Proc. of 35th International
Conference on Very Large Data Base, 2009.



192

[12] F. Bonchi, A. Gionis, and T. Tassa. Identity obfuscation in graphs through the
information theoretic lens. In ICDE, 2011.

[13] P. Boykin and V. Roychowdhury. Leveraging social networks to fight spam.
COMPUTER, pages 61–68, 2005.

[14] A. Bratko, B. Filipič, G. Cormack, T. Lynam, and B. Zupan. Spam filtering
using statistical data compression models. The Journal of Machine Learning
Research, 7:2673–2698, 2006.

[15] A. Campan and T. M. Truta. A clustering approach for data and structural
anonymity in social networks. In PinKDD, 2008.

[16] D. Chakrabarti and C. Faloutsos. Graph mining: laws, generators, and algo-
rithms. ACM Comput. Surv., 38(1):2, 2006.

[17] P. Chan, M. Schlag, and J. Zien. Spectral k-way ratio-cut partitioning and clus-
tering. In Proceedings of the 30th international Design Automation Conference,
pages 749–754. ACM, 1993.

[18] M. Charikar. Greedy approximation algorithms for finding dense components in
a graph. In APPROX ’00: Proceedings of the Third International Workshop on
Approximation Algorithms for Combinatorial Optimization, pages 84–95, 2000.

[19] D. H. Chau, S. Pandit, and C. Faloutsos. Detecting fraudulent personalities in
networks of online auctioneers. In PKDD, pages 103–114, 2006.

[20] C. E. H. Chua and J. E. Wareham. Fighting internet auction fraud: An assess-
ment and proposal. COMPUTER, pages 31–37, 2004.

[21] F. Chung and R. Graham. Sparse quasi-random graphs. Combinatorica, 22 (2):
217–244, 2002.

[22] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing bipartite graph
data using safe groupings. In Proc. of VLDB08, pages 833–844, 2008.

[23] L. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas. Characterization
of complex networks: A survey of measurements. Advances In Physics, 56:167,
2007.

[24] D. Cvetkovic and P. Rowlinson. The largest eigenvalue of a graph: A survey.
Linear and multilinear algebra, 28:3–33, 1990.

[25] D. Cvetkovic, P. Rowlinson, and S. Simic. Eigenspaces of Graphs. Cambridge
University Press, 1997.
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