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ABSTRACT

KRISTY ALEXANDRA HECHT. Additive Manufacturable Metasurfaces for RF
Application. (Under the direction of DR. MARIO JUNIOR MENCAGLI)

Materials found in nature exhibit behaviors with certain properties such as mass

density, permeability, and permittivity. Unfortunately, there are limitations and re-

strictions to the behaviors of these materials that can be overcome with the use of

metamaterials. To improve the capabilities of metamaterials, three-dimensional meta-

materials were created into planar metamaterials called metasurfaces. The transition

making them from three-dimensional to two-dimensional resulted in the properties

being controlled changing. Whereas three-dimensional electromagnetic metamaterials

typically utilize the properties of negative permittivity and negativity permeability,

metasurfaces use surface impedance to change properties such as polarization, beam

shaping, and angle of reflection.

This thesis examines additive manufacturable metasurfaces through a sinusoidally

modulated antenna and polarization splitting metasurface. In order to design the

metasurfaces, the ideas of periodicity are explored along with impedance boundary

conditions. Using an isotropic impedance boundary condition and periodic unit cells

of cylinders of varying heights, the design of a sinusoidally modulated is discussed.

The antenna is designed with two different materials to examine the versatility. The

metallic antenna is designed for broadside and non-broadside propagation and also

simulated with the non-ideal conductive material. The simulation results showed the

antenna with a propagation corresponding to its designed parameters. In addition,

the non-ideal materials performed almost identically to the PEC antenna.

The metasurface was also designed using periodic boundaries, but utilized a tensor

as impedance making the metasurface anisotropic. The metasurface performs as a

polarization splitter such that depending on the excitation mode, the angle the beam
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is steered is different. This is designed using five different unit cells of varying phases,

each with three-layers to introduce an extra degree of freedom for impedance. Results

for each unit cell are provided including the magnitude and phase of each unit cell.

Using a commercial 3D printer, the two metasurfaces can be produced easily. The

ability of the additive manufacturing electromagnetic devices allows easy access to

components with different functions at low cost. Although demonstrated with a center

frequency of 15 GHz, the antenna can easily be adapted for a design with any center

frequency and pointing angle at the limitations of the preciseness of the additive

manufacturing printer. The ability of the adaptable designs allows antennas to be

designed for the specific need of the person, such as testing in an anechoic chamber, at

a low cost and quick production time. Another advantage of this antenna is the fact

that it is excitable with a simple coaxial cable structure in the center of the antenna

which cannot be done currently with transmit arrays and other current technologies.
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CHAPTER 1: INTRODUCTION

1.1 Background of Metamaterials

Materials found in nature exhibit behaviors with certain properties such as Young’s

modulus, bulk modulus, mass density, permeability, and permitivity. These properties

define how the materials behave such as stiffness in the case of Young’s modulus or

how conductive or magnetic the material is in the case of permitivity and permeability.

The elements in the periodic table, shown in Fig 1.1, are the fundamental building

blocks for materials and their properties. Unfortunately, there are limitations and

restrictions to the behaviors of these materials that can be overcome with the use of

metamaterials.

Figure 1.1: Periodic Table of Elements [1]

Metamaterials exceed the limitations of these properties and behaviors found in
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nature through a host medium to create an effective bulk behavior that is able to

exhibit unique properties. Through the composition, orientation, density, selection

of host medium, geometry, and shape, a large number of applications ranging from

thermodynamics and acoustics to mechanics and electromagnetism can be studied.

1.1.1 Thermodynamic Metamaterials

According to the laws of thermodynamics, a spontaneous process cannot be re-

versed and the spontaneity leads to an equilibrium process. The work done on a

system to reach an equilibrium is expelled as heat [13]. In addition, since energy can

neither be created nor destroyed, the energy ends up dispersing unless a metamaterial

is introduced to take advantage of the laws of thermodynamics. Since the laws do

not restrict how the process takes place in terms of time and space, the heat can be

manipulated in a spatio-temporal behavior. A simple example of this is by restrict-

ing the flow of heat in one direction and concentrating it into another direction via

anisotropic thermal metamaterials. Anisotropic materials are created through alter-

ing layers of two different mediums in which one has high heat conductivity and the

other has low heat conductivity creating a "laminate." Laminates are typically used

for thermal cloaking [3]. In [2], the structure of the laminate is exposed to a hot heat

bath on one half and a cold heat bath on the opposite half to encourage the heat to

flow from the hot side to the cold side. This method prevents an object from heating

from the inside effectively cloaking the heat. The cloak makes the heat-flow distribu-

tion the same for both a homogeneous plate and the downstream side thus making

the iso-temperature curves become vertical. The fabricated heat cloak is shown in

Fig. 1.2.

Laminates can also be used for both thermal concentration, thermal inverting [14],

and diffusion. Diffusion is currently being used for drug-delivery to make vesicles

invisible to the immune system [15].
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Figure 1.2: Example of fabricated thermodynamic heat cloak [2]

1.1.2 Acoustic Metamaterials

Acoustic waves naturally have positive phase velocities. Through manipulating

sound waves to have a negative phase velocity and taking the negative phase velocity

and mapping it to a fictitious coordinate system typically on an inhomogeneous and

anisotropic material, cloaking in air and liquid can be performed. Acoustic metama-

terials are analogous to electromagnetic metamaterials in the sense that the inverse

of the bulk modulus corresponds to permitivity and mass density to permeability [3].

The first example ever tested of an acoustic metamaterial with a negative bulk

modulus and negative mass density was performed with soft rubber spheres that

were suspended in water. With the assumption that the finite shear of rubber is

negligible, the rubber is treated to have a bulk modulus smaller than that of water

resulting in low-frequency vibrational resonances. This relationship causes the rubber

to shrink in frequencies below the resonance point and expand with frequencies above

the resonance point along with a shift of 180o. Since the mass density is related to

the pressure, the bulk modulus becomes negative above the monopole resonance [16].

Acoustic metamaterials can also be created using hard-walled boundaries creating
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pressure in order to slow down the wave. The normal component of the velocity with

respect to the boundary’s surface is zero at the surface [3]. This is accomplished

through space-coiling in [4]. Using low-frequency ensures the wavelength to be long.

The long wavelengths combined with unit cells that have thin, hard, solid plates

forces the wave to propagate in a zigzag pattern as opposed to a straight line. The

structure created by [4] is shown in Fig. 1.3 where the red "X" is a fluid channel that

has a higher relative refractive index than the background fluid. The green structure

is representative of the solid plates. By changing the liquid in the channel, the phase

velocity of acoustic waves can be controlled.

Figure 1.3: Four unit cells of a hard walled boundary acoustic metamaterial to control
phase velocity by adjusting the liquid in the red square channel [3, 4]

The same concept of coiling the wave through space has also been accomplished

for a two-dimensional airborne acoustic metamaterial and was fabricated through

additive manufacturing to print thermoplastic walls [17,18]. The idea of space-coiling

acoustic metamaterials for two-dimensional structures can be further extrapolated

into a three-dimensional metamaterials as well [19].

The idea of using hard walled boundaries to create properties that are not natu-
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rally occurring also can be applied to optics. In [20], a pair of periodically arranged

perforated metal films are constructed into a fishnet design. The metal films are sep-

arated by a dielectric spacer and arranged in the normal direction. The metal film

structure is designed to exhibit both negative magnetic permeability and negative

electric permitivity around the resonance point of the design.

Another popular topic in metamaterials is the ability to cloak as seen in sec-

tion 1.1.1. The idea of acoustic cloaking can be accomplished by manipulating

the construction of Helmholtz resonators to control the effective phase velocity and

impedance for a specific operational frequency [21]. An example of this is seen in [22]

with a two-dimensional model in water through coordinate transformations that maps

a point onto a circle. The Helmholtz resonators, machined into aluminum, help guide

the pressure waves around the inner circle of the metamaterial effectively making

the waves invisible. Recent advancements in technologies have expanded acoustic

cloaking to be able to create a unidirectional free-space acoustic cloak in air that di-

minishes the scattering via the cloak and inner sphere. The experimental data proved

to reduce scattering by a factor of ten [23].

1.1.3 Mechanical and Elastodynamic Metamaterials

There are a multitude of different types of mechanical and elastodynamic metama-

terials in order to accomplish tasks that cannot be done with natural materials. For

example, one desired material is one that is ultra lightweight, but also is stiff.

The mass density and stiffness, or Young’s modulus, are typically positively propor-

tionate, so making a naturally stiff material light weight is practically impossible [3].

Using stereolithography and electroplating with copper, [24] fabricated a mechanical

metamaterial that had properties that had not previously been observed. The mate-

rial changes the relationship of Young’s modulus to static mass density from cubed

to squared. The resulting material is so lightweight that air in the empty spaces of

the material has comparable mass to the structure of the metamaterial.



6

When squeezing a sponge horizontally, the top and bottom of the sponge expands

laterally due to its positive Poisson ratio. This behavior is common for isotropic

elastic materials. An auxetic material opposes the common, natural behavior due

to its negative Poisson ratio. Mechanical auxetic materials can also be intentionally

anisotropic [3]. A naturally occurring anisotropic auxetic material is living bone

tissue [25].

All rationally designed and fabricable auxetic metamaterials are based on a few

motifs. As seen in Fig. 1.4 (a) the bow-tie structure is one of the motifs. The

bow-tie structure contracts along the X and Z direction when pushed along the Z

axis. The Poisson ratio magnitude and sign are controlled by the angle, α. The

two-dimensional structure of the bow-tie can be constructed to perform as a three-

dimensional metamaterial shown in Fig. 1.4 (b) [5].

Another motif to create auxetic mechanical metamaterials is a dilation element. [26]

is researching materials to achieve an isotropic stable material with a Poisson ratio

of -1. The unit cell has inner squares that rotate and the structure contracts along

both orthogonal directions when pressure is applied to one side of the material. The

rotation of the adjacent unit cells are opposite throughout the three-dimensional

structure proven mathematically in [27]. As the limit of the thickness of the inner

squares approach zero, the Poisson ratio also approaches -1.

Just like thermodynamic and acoustic metamaterials, mechanical metamaterials

can also perform cloaking. A flexural wave is one that propagates in the xy plane, but

has displacement on the thin membrane in the z direction. When the thickness of the

membrane is significantly larger than the wavelength, bulk behavior is observed [3].

Through alternating concentric rings of effective small and large Young’s modulus,

a homogeneous material is constructed so the phase velocity is slowed down. This

causes the azimuthal component of the cloak to be larger than the phase velocity.

This was tested by exciting flexural waves with a loudspeaker creating back scattering
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Figure 1.4: (a) Single bow-tie cell for a common type of auxetic material (b) Three-
dimensional structure built by combining the singular cells shown in (a) (c) Top view
of the three-dimensional structures shown in (b) [5]

and distortion. With the cloak applied, scattering and distortions were drastically

reduced, but at high frequencies, the wavelength is not large enough to qualify as a

bi-harmonic wave equation and the cloak loses its effectiveness [28].

There is an abundance of research currently in metamaterials to make cloaking a

possibility for other fields in mechanics. For example, engineers are studying elas-

tostatic cloaking using conformal coordinate transformations and a pentamode ma-

terial [29]. A pentamode material, also called an anti-auxetic metamaterial, is one

that deforms in six different ways where five of these deformations take practically

zero force to accomplish. The last deformation supports one mode of a pentamode

material [3]. In [30], the authors first suggested the idea of a pentamode material in
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1995. Their design consisted of double-cone elements organized on a face-centered

cubic translational lattice. Applying force to the metamaterial on all sides compresses

the double-cone giving the structure a finite bulk modulus, but if any of the unit cells

shears, the metamaterial falls apart. More recently, pentamode materials have been

transformed into two-dimensional bi-mode materials through a honeycomb lattice

shape [31,32] or ‘metal water’ [33].

1.1.4 Electromagnetic Metamaterials

Electromagnetic metamaterials are comprised of electrically small unit cells to cre-

ate a material that performs with a electromagnetic bulk behavior. A periodic array

of conducting elements where the wavelength is comparably larger than the individ-

ual cell dimensions and lattice spacing can also create a medium with effective bulk

behavior [6]. Veselago initially proposed the idea of negative permeability, µ, and

permitivity, ε, in 1968 in [34]. He theorized that creating a medium with both nega-

tive µ and ε would introduce propagation characteristics that deviated from anything

ever seen before such as a reverse Doppler shift, reverse Cherenkov radiation, and

abnormal refraction. Refraction is where an electromagnetic wave is incident to a

surface at an arbitrary angle and the direction of propagation is related to the refrac-

tive index and the materials the wave travels through and reflects off. The idea of

refraction is used to design lenses and imaging [7]. A material with both negative µ

and ε is classified as a ‘left-handed’ material. This type of material was not possible

until Pendry et.al created a periodic array of nonmagnetic conducting cells to create

a medium with a bulk behavior of magnetic permeability. At low frequencies, the

effective µ proved to be very large, but at high frequencies, the material exemplified

negative effective µ values [35]. Pendry used split ring resonators to accomplish these

characteristics such as the one shown in Fig. 1.5 along with its resonance curve. The

splits in the ring allows control over the resonant frequency wavelength to be much

larger than the diameter of the rings. When the split-ring resonators are combined
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in a periodic structure, strong magnetic coupling between unit cells is introduced

creating an effective permeability.

Figure 1.5: Split ring resonator to create negative effective µ and its corresponding
resonance curve [6]

This same method of using split ring resonators to create a left hand material is

seen in [7]. The structure, shown in Fig. 1.6, is a dimensionally periodic array of

square split ring resonators with wires on the opposite side fabricated via shadow

masking and etching techniques. This give the metamaterial properties of effective

permeability, effective permitivity, and effective refractive index.

Similarly to metamaterials in the other fields, cloaking is a popular topic of re-

search in electromagnetism commonly accomplished through coordinate transforma-

tions [36]. The coordinate transformation method excludes the interior fields of the

penetrable object without effecting the external fields in theory making the interior

fields appear invisible. This approach works for a media that is anisotropic with in-

dependently controlled µ and ε with relative magnitudes less than one. In turn, this

limits the bandwidth to a small range of frequencies the metamaterial will be able

to cloak [37]. The prospect of cloaking is still a relatively new research and the real-
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Figure 1.6: Square split ring resonators periodically arranged to perform as a left-
handed material [7]

ization and ability of an electromagnetic cloak is discussed in [38]. Cummer explains

how the metamaterial does not rely on system resonances or the dependence on the

sign of µ and ε and how the derivations for a cloak are not unique. These factors

will possibly allow small perturbations to the cloaking shell to not affect the cloaking

abilities. Full-wave simulations for an electromagnetic cloak are explained in [38].

Conceptual cloaks are also being examined such as the space-time cloak [39]. This

concept also uses a coordinate transformation that works in both space and time.

1.1.4.1 Disadvantages of Three-Dimensional Metamaterials

As discussed in section 1.1.4, the appeal of electromagnetic metamaterials is their

ability of negative permitivity and permeability to create a negative refractive in-

dex [6, 7]. The ability to cloak using an anisotropic inhomogeneous metamaterial

drew in lots of interest, but cloaking experimentally exhibited high loss and strong

dispersion at the resonant frequencies and with the use of conductive materials. Fab-

rication of metamaterials also presented to be an issue. The construction of the

materials tend to need micro and nano-fabrication which poses a feasibility of fabri-

cation issue [40]. As an alternative, a metamaterial can be designed to be a planar

structure, as opposed to three-dimensional, that can be fabricated with technologies

that already exist such as lithography and nanoprinting methods. The ability to fab-
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ricate the planar metamaterials, also known as a metasurface, is pushing the research

away from three-dimensional metamaterials to metasurfaces. The thickness of the

metasurfaces are typically sub-wavelength, thus a propagation constant is minimal

making the effective permeability and permitivity of less importance. The focus on

metasurfaces tends to be on modulated surface impedance and its ability to con-

trol aspects such as polarization, amplitude, and phase. Metasurfaces can also be

implemented in various ways such as modulated surface impedance antennas and

metascreens. Because metasurfaces are planar, the issue of loss from metamaterials is

overcome using metasurfaces through the thinness of the planar structure and using

the appropriate materials. In general, the issues encountered from three-dimensional

metasurfaces and bulk behavior are overcome by metasurfaces while still providing

sufficiently strong waves [41].

1.2 Motivation

The main application of metasurfaces and modulated metasurface antennas is for

space due to the size and weight. Currently, satellites and other space technologies

use reflectors or a phased array. Reflectors do not perform with a low profile and

the phased arrays require a complex feeding system for reflection and transmission

modules which can be costly and expel a large amount of energy. A modulated meta-

surface antenna is a alternative to other methods such as the reflectors or phased

array due to its simple feeding mechanism, size, weight, cost, manufacturability, and

customizability. In addition, it can be created to operate with specific electromagnetic

characteristics to fulfill the requirements of varying designs. Typically metasurfaces

are fabricated using printed circuit board technology. The two proposed metasur-

faces in this thesis can be fabricated using a commercial 3D printer and use additive

manufacturing to build the designs.

The first design presented is a modulated metasurface leaky wave antenna perform-

ing a surface wave transformation as shown in Fig. 1.7. As it propagates, it "leaks"
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meaning all the power radiates upward at easily accommodated pointing angles with

the ability to propagate both forward and backward. Modulated metasurface anten-

nas began to grow in popularity after the Oliner and Hessel published their findings

in [42]. Due to their flexibility and versatility in design, beam control, application to

a magnitude of technologies, controllability of surface waves, controllability of aper-

ture fields, and their characteristics of maintaining a low profile and low envelope of

high gain antennas has drawn a lot of attention to the development of this technol-

ogy [11, 43, 44]. In addition, the attractive properties of the modulated metasurface

antennas makes it a appealing for space applications such as satellites for observing

earth, space exploration, and the instruments used for data transmission [45,46]. Two

different antenna designs are provided with one antenna being fully metallic and the

other fully dielectric. The fully metallic form of the antenna can be utilized in harsher

environments such as in space and earth observation and satellite communication [46].

In addition, with a low-loss conductive material, it can be additive manufactured in a

laboratory setting. Since the antenna is fabricated of a metallic material, the antenna

can be heavy and bulky. Thus, the fully dielectric modulated metasurface leaky wave

antenna is presented to display the similarities of the performances for the two dif-

ferent material antennas. Unlike low-loss conductive filament, dielectric is low-cost,

light, and easy to work with. Being able to create a fully dielectric antenna with

additive manufacturing, an antenna with the same electromagnetic properties as the

metallic antenna can be created, but at a lot cheaper price and a lot lighter weight.

Being able to easily and cheaply make a modulated metasurface antenna with a com-

mercial 3D printer makes the fabrication of this type of antenna easily accessible. In

addition, the characteristics, such as the pointing angle, are easily adjustable allowing

the design of the antenna to be easily manipulated to the desired application. The

dielectric antenna also can be used in applications of satellite communication and

wireless communication.
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Figure 1.7: Wave being transformed as it propagates across the surface from the
surface impedance

The second proposed metasurface is a polarization splitting metasurface through a

space wave transformation. Two examples of space wave transformations are shown

in Fig. 1.8 with the left showing a transformation of linear polarization to circular

polarization and the right showing a beam steering effect. Most metascreens and

metasurfaces currently published and researched are singularly polarized. To over-

come this limitation, the metasurface presented is able to steer a beam at a prede-

termined angle dependent on the polarization. The impedance seen by a x-polarized

wave is different than the impedance seen by a y-polarized wave thus creating different

reflected angles from the screen. This technology can be incorporated into wireless

communication, wireless tracking, imaging, and automotive radar.

Figure 1.8: Left side shows a linearly polarized wave to a circularly polarized wave.
The right shows a beam steering effect. Both show space wave transformations
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1.3 Thesis Structure

The first chapter of this thesis covers a broad introduction into the field of metama-

terials exploring different types amongst thermodynamics, acoustics, mechanical, and

electromagnetism. This section also discusses some areas of improvement for meta-

materials and how metasurfaces can fulfill those needs. The second section covers the

motivation for the research for both the sinusoidally modulated metasurface metallic

and dielectric antenna and the polarization splitting metasurface. The lasts section

is the thesis structure.

Chapter 2 covers the design and analysis of metasurfaces starting with Floquet-

Bloch theorem to solve periodic differential equations for both a one-dimensional and

two-dimensional structure. The second section covers surface wave characteristics

and analysis. Surface impedance characterization and surface wave dispersion char-

acteristics are defined and examples are provided. The last section of the chapter is

on modulated metasurfaces starting with impedance boundary conditions and how

to find them. Next, isotropic and anisotropic metasurfaces are described and defined

with mathematical derivations and examples.

Chapter 3 presents the process of the design and analysis of the sinusoidally mod-

ulated metasurface starting with a single unit cell. The process of creating an

impedance to pin height database is discussed and exemplified with a linear case of

modulation and a cylindrical modulation. The results are presented for a broadside

antenna for both the metallic and dielectric antenna. The results are also presented

for a non-broadside propagation for the metallic design and forward and backward

propagation are shown to work with the dielectric antenna. Lastly, fabrication of

this antenna is discussed using additive manufacturing and simulation results for the

metallic printed antenna is provided.

Chapter 4 discusses the polarization splitting metasurface. The equivalent local

transmission line model is presented along with the corresponding ABCD matrix to
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find the admittances of the screen for each polarization. A singular polarization of a

beam being steered as it passes through the screen is exampled. This transitions to

the dual polarization models and methods. The last section of this chapter discusses

the optimization method that is used to find the different unit cell shapes to create a

range of admittances. The last chapter presents the conclusions of this thesis.



CHAPTER 2: DESIGN AND ANALYSIS OF METASURFACES

Metasurfaces are planar metamaterials designed with sub-wavelength periodic unit

cells with the ability to manipulate electromagnetic properties such as polarization,

phase, and direction of propagation. Their properties of dispersion and reflection are

utilized to create impedance surfaces imposing boundary conditions on the relation-

ship between the tangential electric and magnetic fields. The impedance boundary

conditions of the individual metasurfaces vary depending on their purpose, but they

can either be isotropic or anisotropic. This chapter provides the analytical techniques

required to solve periodic planar metasurfaces.

Figure 2.1: Local periodicity is assumed in order to simplify the analysis

In order to design the metasurfaces, a few assumptions need to be discussed in order

to do the analysis. In order to solve for the fields and behaviors of how the metasurface

will work, local periodicity is assumed. This means that unit cell geometry is assumed

to be infinitely repeating in both the X and Y direction and their characteristics can

be derived from the local geometry. Each patch in the metasurface can be seen such

that it is embedded in a periodic metasurface simplifying the design a lot as shown in

Fig. 2.1. Periodic Green’s Function and the method of moments can be used to find

the scattering and wave parameters and standard commercial software for a single
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unit cell. Lastly, only the dominant Floquet modes are considered, which means n is

equal to m is equal to zero in order to homogenize the fields and boundary conditions.

The first section of this chapter discusses the analysis of periodic structures through

the Floquet-Bloch theorem. The second section describes surface impedance char-

acterization and surface wave dispersion characteristics. The last section provides

details explaining the difference between an isotropic and an isotropic modulated

metasurface for impedance boundary conditions.

2.1 Floquet-Bloch Theorem

In the late 19th century, mathematician Gaston Floquet published his research and

derivation for solving one-dimensional differential equations with periodic coefficients

[47]. A periodic structure is one that expands periodically in a defined direction with

varying shape, size, and material. Almost fifty years later, Felix Bloch expanded

Floquet’s derivation to apply to three-dimensional systems specifically for electrons

travelling across a periodic crystal lattice. Bloch explained the solution for a three-

dimensional periodic function is the product of a plane wave multiplied by a periodic

function that has an equivalent period to the lattice [48].

Consider an infinite structure that has a spatial periodicity, Dx, along the x axis

of a Cartesian coordinate system with a wave vector for a plane wave defined as

(kix, k
i
y, k

i
z). The diffracted field originates with two generic sections defined by x1

and x2 where the difference of the two section, x1 − x2, is equal to nDx. For a one-

dimensional derivation, the relationship in the fields is only dependent on x conveyed

in Eq. 2.1.

E(x2) = E(x1 + nDx) = E(x1)e−jk
i
xnDx (2.1)

Equation 2.1 can be manipulated into a generic equation for a diffracted field as seen

in Eq. 2.2

E(x) = E(ρ)(x)e−jk
i
xx (2.2)
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where E(ρ)(x) is equal to E(ρ)(x + nDx) for any integer, n. Consequently, for any

integer multiple of Dx on the x axis, the boundary conditions for the diffraction

problem are identical. The difference is only seen in the different phase factors when

excited by an incident wave. According to Maxwell’s equations and the properties

of uniqueness, it can be assumed that the fields that are at these distances are the

same and only differ from the same phase factor previously mentioned. Because of

the properties of uniqueness for Maxwell’s equation, the expression of E(ρ)(x) can be

developed into a Fourier series expansion written as:

E(ρ)(x) =
∞∑

n=−∞

E(ρ)
n ej2πn

x
Dx (2.3)

The coefficient of the Fourier series provided in Eq. 2.3 is expressed as:

E(ρ)
n =

1

Dx

∫ Dx

0

E(ρ)(x)j2πn
x
Dx dx (2.4)

Through substituting Eq. 2.3 into Eq. 2.2, the field for the periodic structure can be

rewritten as:

E(x) =
∞∑

n=−∞

E(ρ)
n e−j(k

i
x− 2πn

Dx
)x (2.5)

Equation 2.5 can be considered the summation of plane waves with a constant

propagation along the x axis. Below, in Eq. 2.6, represents the spatial periodicity

of a structure propagating along the x axis leading to a discretization of possible

directions of propagation of re-radiated fields.

kx = kix −
2πn

Dx

(2.6)

The spatial periodicity for a planar periodic structure, with a purely real wave

vector, can help determine the direction of propagation for the transmitted and re-
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flected waves shown in Fig 2.2. The figure shows a left and right hemisphere with

rays equal to the wave number for the reflected wave, kro, and the transmitted wave,

kto. The dashed lines in the figure are indicative of the periodic spacing. According to

Maxwell’s equations, the propagation vectors for Floquet modes must equate to the

wave number in the medium it propagates through dictating the propagation vectors

end at the curvature of the circle. Due to the limitations of Maxwell’s equations

and properties of uniqueness, the wave propagating along the x axis has its direction

determined by Eq. 2.6.

Figure 2.2: Spacial periodicity for a planar periodic structure [8]

The same concepts applied to the one-dimensional derivation of Floquet’s theorem

can be applied to both a two-dimensional and three-dimensional periodic structure.

A two-dimensional version of the Floquet theorem applies to metasurfaces and three-

dimensional derivation applies to metamaterials. Suppose a plane wave has a wave

vector (kix, k
i
y, k

i
z) and is incident on an infinite, impenetrable structure and is spatially

periodic along x and y. The periodic variables are defined as Dx and Dy respectively.

An example of a periodic structure in the x and y direction is shown in Fig. 2.3 where
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the unit cell is clearly repeated in both directions [9].

Figure 2.3: Example of a structure periodic along x and y [9]

Equation 2.2 can be expanded for a metasurface application as a function of electric

field, E dependent of x, y, and z with the periodicity factors Dx and Dy with a phase

dependence of kx and ky written as:

E(x, y, z) = E(ρ)(x, y, z)e−j(k
i
xx+kiyy) (2.7)

Suppose a plane wave passes through a two-dimensional structure in free space at

an angle. In order to solve this, periodic boundary conditions and port boundary

conditions are imposed. The direction and polarization of the incoming and outgoing

wave need to be defined to accurately solve the periodic analysis. Equation 2.7 can

be expanded into its two-dimension Fourier series representation in Eq. 2.8.

E(ρ)(x, y, z) =
∞∑

n=−∞

∞∑
n=−∞

E(ρ)
nme

j2π
(
n x
Dx

+m y
Dy

)
(2.8)

The coefficients of the Fourier series expansion are:

E(ρ)
nm(z) =

1

DxDy

∫ Dx

0

∫ Dy

0

E(ρ)(x, y, z)e
j2π

(
n x
Dx

+m y
Dy

)
dxdy (2.9)
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Through substituting Eq. 2.8 into Eq. 2.7, the field can be represented as:

E(x, y, z) =
∞∑

n=−∞

∞∑
n=−∞

E(ρ)
nme

−j(kxnx+kymy) (2.10)

where the wave numbers for x and y are:

kxn = kix −
2πn

Dx

(2.11)

kym = kiy −
2πm

Dy

(2.12)

The electric field defined in Eq. 2.10 must satisfy the Helmholtz equation derived

from Maxwell’s equations where k is the wave number of the medium.

∇2E + k2E = 0 (2.13)

By replacing Eq. 2.10 into Eq. 2.13, the equation becomes:

∞∑
n=−∞

∞∑
m=−∞

[
δ2

δz2
E(ρ)
nm(z)− k2

xnE
(ρ)
nm(z)− k2

ymE
(ρ)
nm(z) + k2E(ρ)

nm(z)

]
= 0 (2.14)

Rewriting the equation through combining constant terms and substituting a variable

to represent the wave numbers, the equation is simplified to:

∞∑
n=−∞

∞∑
m=−∞

[
δ2

δz2
E(ρ)
nm(z) + k2

znmE
(ρ)
nm(z)

]
= 0 (2.15)

k2
znm = k2 − k2

xn − k2
yn (2.16)

Taking the solution of the wave equation in square brackets in Eq. 2.15 yields:

E(ρ)
nm(z) = E(ρ0)

nm e−jkznmz (2.17)
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where E(ρ0)
nm is a constant. Substituting Eq. 2.17 into Eq. 2.10 brings the final ex-

pression of the electric field of a two-dimensional periodic structure shown in Eq.

2.18.

E(x, y, z) =
∞∑

n=−∞

∞∑
m=−∞

E(ρ0)
nm e−j(kxnx+kumy+kznmz) (2.18)

The n and m terms dictate the Floquet modes of the spatial harmonic wave. When

both n and m are equal to zero, the fundamental Floquet mode is being excited.

Eq. 2.18 conveys that the diffracted electric field for a two-dimensional periodic struc-

ture is the infinite sum of Floquet modes. In cases where the squares of the wave

vector in x and y added are less than the wave number squared, Eq. 2.19, the z

component of the wave vector will be real.

k2
xn + k2

ym ≤ k2 (2.19)

The z component of the wave vector when real can be written as:

kznm =
√
k2 − k2

xn − k2
ym (2.20)

When Eq. 2.20 is real, the harmonics are traditional planes waves and are considered

to be homogeneous and non-evanescent. Since the result is a plane wave, the phase

is constant across the entire wave. In addition, because the wave is homogeneous,

the amplitude is also constant through the plane perpendicular to the direction of

propagation. Oppositely, the sum of the squares for the x and y component of the wave

vector can become larger than the wave number of the medium shown in Eq. 2.21.

k2
xn + k2

ym > k2 (2.21)
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The results of this is that the wave vector for z becomes completely imaginary:

kznm = −j
√
k2 − k2

xn − k2
ym (2.22)

When the z component of the wave vector is purely imaginary, the wave is con-

sidered to propagate with evanescent modes. These waves propagate orthogonal to

a surface with constant phase. The magnitude of these waves also decrease expo-

nentially orthogonal again to a constant width surface. Without losses, the wave

propagates in the xy plane and attenuates along z. These types of evanescent waves

are commonly used for the design of metasurfaces.

2.2 Surface Wave Characteristic and Analysis

This section discusses surface wave characteristics and analysis. The first part of

this section provides details on the characterization of surface impedance. The latter

half of the section talks about equivalent circuit theory to create a dispersion diagram

for a surface wave.

2.2.1 Surface Impedance Characterization

An electromagnetic wave bound to an interface between two different materials is

considered a surface wave. The surface impedance of a metal surface can be manipu-

lated by adding texture to control the surface wave properties such as determining if

the surface is inductive or capacitive, magnitude, and phase. Consider a surface with

an impedance Zs with an attenuation constant, α shown in Fig. 2.4.

Figure 2.4: Surface wave attenuating in the z direction with an attenuation constant,
α [10]
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Through Maxwell’s equations applied to the surface impedance in relation to sur-

face waves, transverse magnetic (TM) waves are shown to occur on inductive surfaces

expressed as:

Zs,TM =
jα

ωε
(2.23)

Oppositely, transverse electric waves (TE), occur on capacitive surfaces expressed as:

Zs,TE =
−jωµ
α

(2.24)

In both equations, µ and ε are the permeability and permitivity respectively and ω

is the angular frequency. In addition, both equations are considered purely reactive

and respect Foster’s theorem. TE waves are electromagnetic waves that have electric

field transverse to the propagating wave. For example, a wave propagating in the x

direction would have field in the y direction. A TM wave is the same concept, except

the wave has a magnetic field in the transverse direction of propagation [10].

2.2.2 Surface Wave Dispersion Characteristic

For a metasurface, as previously discussed, the surface acts as an effective medium

when the unit cells are very small in comparison to the wavelength. If the metasurface

is designed with metallic patches that have narrow spaces, the effective impedance ap-

pears capacitive. If a current oscillates between neighboring patches, the impedance

becomes inductive. Oftentimes, the surface has both capacitive and inductive ele-

ments and can be modeled using a parallel LC resonant circuit. Consequentially, the

impedance of the surface can be modeled as:

Zs =
jωL

1− ω2LC
(2.25)

Figure 2.5(a) pictorially describes the capacitive coupling behavior with the capacitor
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notated by the C and the positive and negative symbols in the gap of the circuit.

The current loop creating inductance is also shown using the circular arrow with an

inductor value L. Figure 2.5(b) is the symbolic circuit to represent the behavior of

the metasurface and the top half of the figure.

Figure 2.5: LC circuit representation of a metasurface [10]

The resonant frequency, ω0, is thus 1/
√
LC. From Eq. 2.25, the surface is inductive

below the resonant frequency which supports TM waves and the surface is capacitive

above the resonant frequency supporting a TE wave. As frequency approaches a

resonant value, the impedance approaches becoming purely real and a surface wave

is not supported.

To describe the impedance surfaces, an effective surface impedance model is used.

The approach of using an equivalent lumped element circuit is only valid when the

unit cells are much much smaller than the wavelength. This model is used to predict

the reflection properties. The dispersion relation is described as:

k2 = µ0ε0ω
2 + α2 (2.26)

In the above equation k is the wave number, µ0 is the free space permeability, ε0 is

the free space permitivity, ω is the radial frequency, and α is the attenuation constant

or sometimes called the decay constant.
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Through combining Eq. 2.23 and Eq. 2.26, the wave number can be expressed as a

function of the radial frequency and free space impedance for a TM wave where c as

the speed of light in a vacuum.

kTM =
ω

c

√
1− Z2

s

η2
(2.27)

The same concept can be applied to a TE wave by combining Eq. 2.24 and Eq. 2.26.

kTE =
ω

c

√
1− η2

Z2
s

(2.28)

Substituting Eq. 2.25 into both Eq. 2.27 and Eq. 2.28, the dispersion diagram is

created. An example of a dispersion diagram is provided in Fig. 2.6. The resonant

frequency is marked by an f0 making it obvious that TM modes are supported below

the resonance point and TE waves are supported for frequencies above the resonance.

Also note, at the lower end of the dispersion curve, the waves are close to the light

line and not strongly bound to the surface, but as the frequency increases, the curves

bend away from the light line and become more strongly bound to the surface.

Figure 2.6: Example of a surface wave dispersion diagram for a surface with
C=0.05 pF and L=2 nH [10]
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The model described above helps predict electromagnetic properties such as beam

shape, polarization, and the reflection phase.

2.3 Modulated Metasurfaces

Modulated metasurfaces are designed based on their impedance boundary condi-

tions. This sections describes what an impedance boundary condition is in relation to

Maxwell’s equations. Isotropic and anisotropic boundaries are explained theoretically,

derived mathematically, and examples are provided to show their difference.

2.3.1 Impedance Boundary Conditions

Metamaterials and metasurfaces use scattering of waves in a medium in order to

achieve the desired characteristics, but modeling this can be difficult since the field

expands both inside and outside of the scattering material. Since the field scatters

three-dimensionally, volume integrals would be required to solve for the fields. If an

electromagnetic wave is incident on a surface, the analysis can be simplified to surface

area integrals through incorporating impedance boundary conditions [49]. Impedance

boundary conditions relates the tangential components of the electric and magnetic

field using an impedance factor that is a function of the surface properties, such as

capacitance or inductance, and the incident field.

When the electromagnetic wave interfaces between two non-perfectly conducting

isotropic homogeneous mediums is considered an exact boundary condition. Under

these conditions, the cross product of normal vector to the electric field and the normal

vector to the magnetic field equals to zero at the surface. Also, the dot product of

the normal vector to the electric field density and the normal vector dotted with the

magnetic field density is also equal to zero at the surface. These properties are not

independent of each other and thus create an impedance boundary condition. This

method relates the first medium to the second medium. When the second medium

is a perfect electric conductor (PEC), only the fields in free space or dielectric are



28

considered. This changes the initial conditions of this type of boundary condition to:

n̂× E = 0 (2.29)

n̂ ·B = 0 (2.30)

n̂ ·D = δ (2.31)

n̂×H = K (2.32)

where δ is the charge distribution and K is the current distribution. If the refractive

index of the PEC is large compared to free space, Eq. 2.29 and Eq. 2.30 will be the only

fields that appear in free space [50]. The way to instruct the local characteristics of a

metasurface is by studying the scattering from an infinite two dimensional dielectric

slab as shown in Fig. 2.7. This structure is analogous to a transmission line with

the top part of the model representing air and the dielectric slab representing the

dielectric in the transmission line.

2.3.1.1 Isotropic Modulated Metasurfaces

Assume a uniform impedance boundary with a uniform inductive reactance making

it considered isotropic for a cylindrically modulated surface. Since the reactance is

inductive, the type of fundamental wave being excited is TM as explained in section

2.2.1. This also dictates that the relationship between the tangential components of

the electric field and the tangential components can be expressed as:

jXsz × (H × z)|z=0 = E × z|z=0 (2.33)

where Xs is a positive scalar value. The tangential electric and magnetic surface

waves are defined as:
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Figure 2.7: Two dominant mode for an incident wave on a dielectric slab analogous
to a transmission line

Etan
sw = ITMjXsH

(2)
1 (βswρ)ρ̂ (2.34)

H tan
sw = −ITMXsH

(2)
1 (βswρ)Φ̂ (2.35)

where ITM is the current, Xs is the impedance, βsw is the phase constant of the surface

wave, H(2)
1 is the first order Hankel function of the second kind, and the ρ̂ and Φ̂ are

components of a radial coordinate system. The phase constant of the surface wave

can be found by imposing a resonance for a free space propagating TM mode wave:

βsw = k

√
1 +

(
Xs

ζ

)2

(2.36)

If metallic periodic cladding is added to the dielectric slabs in Fig. 2.7, a surface

impedance is added to the transmission line model modeled in Fig. 2.8. A surface
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is considered isotropic if the geometry of the cells that make up the surface are

symmetric with respect to the direction of propagation of the supported mode.

Figure 2.8: Periodic cladding added to the infinite dielectric slab creating an isotropic
surface impedance

An example of this type of isotropic surface impedance is shown in Fig. 2.9. The

periodic PEC square and circle patches on a grounded slab are symmetric to a circu-

larly polarized wave. Another thing to note is that the individual unit cells are small

in comparison to the wavelength of the operating frequency.

To create a modulated impedance, each cell is designed for a specific value of

impedance in turn making the overall impedance of the surface appear to modulate

as a smooth, continuous impedance expressed as a scalar, Xs. Since this is a scalar,

the relationship of the tangential components of the electric and magnetic field is

equal to jXs(ρ).

For both transverse electric and transverse magnetic waves, the amplitude of the

transverse wave vector is kt = kt(ρ)k̂t(ρ). The dispersion equation for an isotropic
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Figure 2.9: Two examples of metasurfaces with isotropic boundary conditions [11]

impedance can be expressed through the transverse resonance method below.

ktn(ρ) = k

√
1 +

(
Xs(ρ)

ζ

)2

(2.37)

where k is the wave number of the medium and ζ is the impedance of free space.

Equation 2.37 shows that when ktn is greater than the free space wave number, the

fields attenuates exponentially normal to the metasurface shown in Fig. 2.10 with the

spiral pattern indication the pattern of the impedance.

Figure 2.10: Field attenuating exponentially normal to a metasurface with a spiral
pattered impedance [11]

The modulation of the wave vector obtained through a modulated surface impedance
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produces a change in the phase velocity and the path of propagation for the surface

wave supported by the metasurface. This is done through the imposed boundary

conditions that will increase or decrease kt locally in order for the wave to follow the

changing impedance. The propagating wave path is thus defined by the local refrac-

tive index and invoking the Fermat principle of a wave taking the minimum optical

path.

2.3.1.2 Anisotropic Modulated Metasurfaces

An anisotropic impedance boundary condition is created when the tangential fields

on the surface are Esw|z=0+ = Z · (z× Hsw)|z=0+ . An anisotropic boundary condition

implies that the impedance is a tensor that relates the tangential electric field to the

tangential magnetic field. The TE and TM modes are coupled because the impedance

is anisotropic illustrated in Fig. 2.11.

Figure 2.11: Anisotropic surface impedance on an infinite dielectric slab showing the
TE and TM coupling effect
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The way to design an anisotropic surface is to create a shape that is not symmetric

to the surface wave propagation. Four different examples of this are exhibited in

Fig. 2.12 with the arrow designating the direction of incident wave [51].

Figure 2.12: Four different examples of unit cells to create an anisotropic boundary
conditions with arrows indicating the direction of incident wave [12]

The unit cells in Fig. 2.12 are designed based on two specific non-dimensional

parameters labeled as Ψ and a and a′ related as a/a′. These two variables are used to

create the impedance profile for the metasurface. The important thing to note about

these unit cells is that the incident wave direction changes the impedance of the unit

cell making it considered anisotropic.



CHAPTER 3: SINUSOIDALLY MODULATED METASURFACE ANTENNAS

This chapter will discuss the design and analysis of a two-dimensional isotropic

modulated metasurface antenna. The first section describes the process for a one-

dimensional modulation along x and how to create an impedance to height database

using an eigenmode simulation. The second section expands the one-dimensional

modulation to a two-dimensional modulation dependent on ρ and φ. The results

are provided for a metallic and dielectric broadside design. The following section

demonstrates the versatility of the antenna by providing the results of three different

pointing angles with one of the angles being backward radiation. The last section

discusses the process of fabrication for both the metallic and dielectric antennas.

3.1 Synthesis and Design

Assume a modulated surface with an average inductance defined as Xav to support

the propagation of a transverse magnetic (TM) surface wave. The wave number for

this wave can be expressed as:

βsw = k

√
1 +

(
Xav

ζ

)2

(3.1)

where k is the free space wave number and ζ is the free space impedance. A sinusoidal

modulation can be applied to this surface. For a one-dimensional modulation, the

impedance of the surface is described in Eq. 3.2. For this equation, the surface wave

propagates along the x axis with the modulation factor notated as M and d is the

period of modulation.

Xs(s) = Xav

[
1 +M sin

(
2πx

d

)]
(3.2)
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The transverse to z wave number for an n-indexed Floquet mode expansion is provided

below:

ktn = βsw + β∆ − jα +
2πn

d
(3.3)

β∆ is the perturbations in the phase constant and α is the perturbations in the

attenuation constant caused from modulation. If M = 0, there are no perturbations

and βsw accurately describes the transverse wave number, kt. If the real part of the

transverse wave number, kt,n is less than the free space wave number, k, the surface

wave becomes a leaky wave. The dominant mode of the leaky wave occurrs when the

refractive index, n, is equal to -1 thus producing a radiation in the direction given

by:

βsw + β∆ −
2π

d
= k sin θo (3.4)

where θo is the angle with respect to the z-axis. Through plugging Eq. 3.1 into

Eq. 3.4 and ignoring the effects of the phase constant perturbations, the period of a

singular forward beam can be defined as shown in Eq. 3.5. Considering the waves

are propagating in free space, the equation is able to be simplified and written with

a dependence on wavelength.

d =
2π

k

1√
1 +

(
X̂
ζ

)2

− sin θo

=
λ√

1 +
(
X̂
ζ

)2

− sin θo

(3.5)

Eq. 3.5 is accurate when X̂/ζ >
√

4 sin θo(1 + sin θo). For frequencies below 100 GHz,

the impedance modulation can be achieved through the design of individual unit cells

that are substantially smaller than the wavelength to acquire the desired properties.

For frequencies in the terahertz range, losses in a dielectric can pose an issue. Both

a fully metallic and a fully dielectric antenna are presented in this chapter with an
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operational frequency of 15 GHz so results can be compared.

To create a database in order fulfill the modulation range in a period from Eq. 3.2,

a square unit cell with sides, a, is created with a cylindrical pin inside with an arbi-

trary radius that is able to cover the entire database of impedance for a modulation.

Figure 3.1(a) shows a metallic pin with a radius of 0.35 mm and Fig. 3.1(b) shows a

dielectric pin with a radius of 1.35 mm inside an air box. To gather the dimensions of

the unit cell and modulation period, θo is equated to 1o. For one period, there are six

pins making the period of modulation, d, 16.61 mm and the individual unit cell size

2.77 mm from Eq. 3.5 and dividing it by the number of unit cells per period. Notice

the radius of the dielectric pin is much larger than the metallic pin in order to reach

the desired impedance range. The dielectric pin is only able to reach the required

values of impedance when the diameter of the pin is close to the size of the unit cell.

The permitivity of PEC is infinite, but the permitivity of a dielectric is a lot smaller

requiring a lot more material in order to carry the surface wave.

(a) Metallic pin (b) Dielectric Pin

Figure 3.1: Unit cells for the metallic and dielectric antenna in a tall air box used in
an eigenmode simulation to find corresponding impedance to the height of the pin

To be able to construct an accurate database of heights to match impedance, a
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range of heights is swept across a phase range of 10o − 175o using the simulation

software Ansys High Frequency Structure Simulator (HFSS). Phase below 10o pro-

duces non-useful data because it is too close to the light line. Since the structure is

periodic, the phase is stopped right before 180o. Local periodicity is assumed and

periodic boundaries are applied to the unit cell. To ensure no complex Floquet modes

are introduced, the height of the air box is always at least three periods taller than

the pin. For the metallic pin, the results of the first three modes of the eigenmode

simulation when the pin height is 1 mm is provided showing the relationship between

the phase and frequency. Figure 3.2 shows the first mode in a red, solid line, the

second mode in a blue, dashed line, and the third mode in a green, dotted line.

Figure 3.2: Phase versus frequency for an eigenmode solution for a metallic pin with
radius of 0.35 mm and a unit cell size designed with θo. The first Floquet mode is a
red, solid line, the second mode is a blue, dashed line, and the third mode is a green,
dotted line

The dispersion of the wave for the first Floquet mode of a metallic pin with a height

of 1 mm is shown with a solid, red line in Fig 3.3 compared against the light line in

a dashed, blue line. The plot is indicative of the broadside metallic design.
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Figure 3.3: Beta versus frequency with the dispersion of the wave for the first Floquet
mode of a metallic pin with a height of 1 mm is shown with a solid, red line against
the light line in a dashed blue line for comparison

A transverse resonance condition is applied between jX and the free space TM

impedance to obtain Eq. 3.6.

X = ζ

√
β2
sw − k2

k2
(3.6)

Using the above equation, the varying βsw for the different heights are utilized to

find the corresponding impedance for different heights of pins. The black dots in

Fig. 3.4 are indicative of the values of impedances collected from the simulation using

Eq. 3.6 for the varying heights. The red line is the interpolated values for the heights

to match the impedances for the metallic setup and the blue line is the interpolated

heights for the dielectric pin. Notice the required height range for the dielectric is

a lot larger to cover the range of impedances than the range for the metallic pins.

Again, this is due to the low value of the permitivity of the dielectric.

Equation 3.2 is plotted and shown as the magenta line in Fig. 3.5 displaying one

period of impedance for a one-dimensional sinusoidal modulation with a modulation
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(a) Metallic Impedance-Height Database

(b) Dielectric Impedance-Height Database

Figure 3.4: Database of impedance to corresponding height for the metallic and
dielectric pins for a broadside design with the block dots calculated from simulation
and the smooth colored line interpolating those values

index of M = 0.65 and Xav = 0.7/ζ. The period is divided by N, which is six, and

the impedance is taken at the center value of each section represented as black dots

in Fig. 3.5. The black dots are the values of the individual pins for an impedance
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considered at the center of the unit cell.

Figure 3.5: Impedance of one period for a one-dimensional modulation with the ma-
genta line representing the modulation and the black dots representing the impedance
of the individual unit cells for an impedance taken at the center of the cell

The values of the impedance and the corresponding metallic pin heights are shown in

Table 3.1 for the metallic pins.

Table 3.1: 1D Modulation Impedance and Height for Metallic Broadside Antenna

Cell in Modulation Impedance (Ω) Height (mm)
1 349.42 3.09
2 435.12 3.45
3 349.42 3.09
4 178 1.95
5 92.3 1.11
6 178 1.95

The values in Table 3.1 are used to create a one-dimensional sinusoidally modulated

metallic structure as shown in Fig. 3.6. The same process can also be applied to

the dielectric pins, but only the metallic setup will be demonstrated for the one-

dimensional case. Periodic boundaries are applied the front and back of the air box
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and a radiation boundary is applied to the top. The dark blue boxes are perfect

electric conductors (PEC) and are sized so the tops of the pins are aligned allowing

the surface wave to "leak" as it travels across the pins. Theoretically, the pins should

not need to be aligned on top, but the wave cannot penetrate the PEC. Aligning the

tops of the pins helps increase the interaction of the surface wave by eliminating the

ability of the wave to go in between the spaces of the pins. On the other hand, the

wave can penetrate dielectric, so the the pins do not need to be aligned on the top to

increase the interaction of the surface impedance and the surface wave.

Figure 3.6: One period of modulation for a one-dimensional metallic broadside design

For the wave to fully radiate and display the leaky-wave behaviors, multiple periods

need to be connected. Because this is the one-dimensional case, the periods contain

the same six pins that repeat every period. Figure 3.7 shows six periods of modulation,

equating to a length of 5λ, and the corresponding electric field when the structure

is excited on the left port. The figure clearly shows the field strength dissipating as

it crosses the length of the structure due to the field radiating upwards. With more

periods, the field completely disappears by the time it reaches the opposite port.

Another important note is the size of the air box for the periodic structure. Pictured,

the air box has a height of five times the period. If the air box is too short, the

field does not have the space to radiate and portray proper leaky-wave behaviors.

Oppositely, if the air box is too tall, the wave begins to curve as it radiates upward
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and creates side lobes in the electric field.

Figure 3.7: Six periods of modulation for a one-dimensional metallic broadside design
electric field

Fig. 3.8 shows the directivity of the metallic periodic structure designed to operate

with the pointing angle of θo = 1o and the structure performing as designed. The

figure clearly shows the main lobes pointing at 1o when φ = 90o. The directivity is

taken at this point to make sure the directivity shows the field as a cut of the antenna.

There is a small side lobe in the directivity plot, but the magnitude is small enough

that it can be ignored.

Figure 3.8: Polar plot of directivity for the metallic broadside antenna

3.2 Versatility of Pointing Angles

This section delves into three different design angles. The metallic antenna is

designed for a pointing angle of θo = 10o. The dielectric antenna is designed for

θo = 30o and then rotated to demonstrate backward radiation.
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3.2.1 Broadside Propagation

Section 3.1 covered the theory, math, and design for a one-dimensional modulation

along the x axis. This section expands Eq. 3.2 to cylindrical coordinates with mod-

ulation dependent of both ρ and φ. The isotropic representation of the cylindrical

sinusoidally modulated surface can be expressed as:

Xs(ρ, φ) = Xav(1 +M sin(βswρ− kρ sin θo cosφ± φ)) (3.7)

where ρ =
√
x2 + y2 and φ = arctan(y/x). To allow the wave to fully radiate, the

radius of the antenna is chosen to be 5λ which is equal to six periods, seeing as the

wave was almost able to completely radiate over this length in the one-dimensional

design. Due to the pointing angle being the same value as the design in section 3.1,

the same database can be used for the two-dimensional antenna meaning the unit cell

size, pin radius, and period of modulation are the same. Using the database created

from the interpolated values in Fig. 3.4, a map of the pin heights is constructed for

the design dependent on both ρ and φ by matching the correlating impedance to the

respective pin height. Lastly, to ensure the map of the heights is accurate, an error

plot is constructed by comparing the desired impedance value for each individual

pin from Eq. 3.7 to what is available in the impedance height database in Fig. 3.4.

Provided in Fig. 3.9 are the plots for the desired impedance, pin height, and error

for a metallic pin antenna with a pointing angle of 1o and an antenna radius of 5λ.

The required impedance for this antenna design ranges from 92.3 Ω to 435 Ω which

is covered using pin heights that range from 1.11 mm to 3.44 mm respectively. The

impedance plot is shown with the impedance positions in respect to the x and y axis

with each grid block indicating an individual pin impedance. Since there are six pins

per period of modulation and six periods of modulation, the diameter of the antenna
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consists of 72 pins. As clearly shown, although the individual pins have a single value

of impedance, the overall impedance of the surface appears modulated.

Figure 3.9: Impedance map, pin height map, and respective error map for metallic
antenna designed for broadside propagation with a radius of 5 λ

The same impedance pattern is applied to a dielectric antenna with the same

pointing angle of 1o since material does not effect the impedance modulation. To

achieve the impedance range of 92.3 Ω to 435 Ω, the dielectric pins vary from 1.21 mm

to 13.38 mm. Since the wave does not radiate as quickly with the dielectric pins as it

does with the metallic pins, the antenna radius is expanded to 9 λ to allow the wave

to fully radiate across the surface. Recall the radius of the dielectric pins is 1.35 mm

and the unit cell size if 2.77 mm.

Figure 3.10(a) shows the top view of the antenna showing the periodic unit cells

with the pins in the center. Although the modulation of the heights cannot be seen
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in this view, it nicely shows the periodicity of the surface. Figure 3.10(b) is the con-

structed antenna exemplifying the modulation. Again, the metallic pins are aligned

on top and are sitting on varying size PEC boxes. For the dielectric antenna, the pins

are simulated using acrylonitrile butadiene styrene (ABS) with a relative permitivity

of εr = 3 and not placed on any box to line the tops of the pins.

(a) Top view of antenna (b) Constructed antenna in HFSS

Figure 3.10: Metallic antenna for broadside propagation build

To simulate the structure using HFSS, the antenna is place on a PEC sheet. An air

box with perfectly matched layer (PML) boundaries on all sides, except the bottom

surface of the air box, is placed around the antenna ensuring the air box is at least

λ/4 larger than the antenna at all points. The bottom surface of the air box has an

additional PEC boundary assigned. A small circle of pins at the center of the antenna

are removed. The extra space created by removing the pins allows the inserted small

dipole excitation to have enough space to effectively radiate. The dipole inserted has

a radius of 0.1 mm, a half dipole length of 1 mm, and a gap between the two half

dipole cylinders of 0.1 mm. For all further antennas, this is the excitation method

used other than the one specifically mentioned that is excited with a waveguide. The

antenna is simulated at a frequency of 15 GHz and the electric field and directivity

are recorded.

Figure 3.11 shows the results of the magnitude of electric field for the metallic

antenna from a top view on a sheet placed approximately 1 mm higher than the
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top of the pins. The concentration of the field is clearly the strongest at the dipole

excitation. The pattern of the field is indicative of the upward radiation conveyed

through the field weakening as the wave travels outward. The blue on the outside of

the antenna proves the antenna is not radiating outside the antenna.

Figure 3.11: Electric field for metallic broadside antenna

Figure 3.12: LHCP in magenta and RHCP in dashed black for metallic broadside
antenna



47

Figure 3.12 and Fig 3.13 show the left hand circular polarization (LHCP) in ma-

genta and the right hand circular polarization (RHCP) in black for φ = 0o for the

metallic and dielectric antenna respectively. The RHCP shows a peak at θo = 1o

proving the design method worked properly. The gain of the antenna at θo = 1o for

the metallic structure is approximately 24 dB and the gain for the dielectric antenna

is approximately 26 dB. Due to the extra size of the dielectric antenna, the gain is a

bit higher. Subsequently, the dielectric antenna has more side lobes as well. Other

than the small difference due to size, the fully metallic and the fully dielectric antenna

performed very similarly.

Figure 3.13: LHCP in magenta and RHCP in dashed black for dielectric broadside
antenna

To test the bandwidth of the antenna, a circular waveguide is used to excite the

dielectric antenna with a center frequency slightly higher than the antenna to guar-

antee the fundamental mode is excited. This antenna is operable in a broadband

of frequencies as conveyed through the reflection coefficient, S11, in Fig. 3.14. S11
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crosses -10 dB at around 11 GHz, but stays consistently around -30 dB after 18 GHz.

The broadband nature of this antenna allows it to be versatile in its functions.

Figure 3.14: Bandwidth of broadside dielectric antenna

3.2.2 Angles Beyond Broadside

The antenna is designable for a large range of pointing angles including both pos-

itive and negative values. Three different angles and designs will be discussed and

analyzed in this section. The metallic antenna example provided is designed to have

a pointing angle of θo = 10o. Using Eq. 3.5, the period of modulation is 19.09 mm.

With N=6, the unit cell size is 3.18 mm. The radius of the pin is also scaled up to

adjust to the larger unit cell and becomes 0.403 mm. The radius of the antenna is

kept the same from the broadside radiation design of 5λ. Although the value of θo

changes, the range of impedance that is required to be covered using Eq. 3.7 is only

negligibly effected. The lowest impedance for θo = 10o is 92.3 Ω achieved with a pin

height of 1.24 mm and the highest impedance is 435 Ω achieved with a pin height of
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3.53 mm. The corresponding impedance map and respective pin height map is shown

in Fig. 3.15 for a metallic antenna with a pointing angle of 10o and antenna radius of

5λ. Notice the map for this angle is slightly asymmetric because it is not broadside.

Figure 3.15: Impedance map and pin height map for metallic antenna designed for
θo = 10o propagation with a radius of 5 λ

The magnitude of the electric field for the non-broadside metallic antenna is shown

in Fig. 3.16. The radiation is clearly the most concentrated at the dipole excitation

and dissipates laterally across the antenna as it radiates upwards. The blue corners

are indicative the antenna is not radiating outward because the field magnitude is

zero by the time it reaches the edge of the antenna.

Figure 3.16: Electric field for metallic antenna designed for θo = 10o
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Comparing Fig. 3.12 and Fig. 3.17, the results are almost identical other than

the shift in the peak gain from θo = 1o to θo = 10o. The gain of the RHCP is

approximately 24 dB and the LHCP, the cross polarization, drops to below 0 dB.

Figure 3.17: LHCP in magenta and RHCP in dashed black for metallic antenna
designed for θo = 10o

For the purpose of showing the diversity of the antenna, the dielectric antenna is

designed for a pointing angle of θo = 30o. Using Eq. 3.5, the period of modulation is

27.73 mm. With N=6, the unit cell size is 4.62 mm. The radius of the pin is adjusted

to the larger value of 2.2 mm to accommodate the larger unit cell size. This dielectric

antenna is designed to have a radius of 9λ to allow the wave to radiate to the edge

of the antenna. The lowest pin height for this design is 1.19 mm for an impedance

of 92.3 Ω and the tallest is 19.74 mm for an impedance of 435 Ω. Figure 3.18 shows

the impedance, pin heights, and error of the data for the θo = 30o dielectric antenna.

The asymmetry for this design is a lot more apparent than θo = 10o since it is far

away from broadside propagation.
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Figure 3.18: Impedance map, pin height map, and respective error map for dielectric
antenna designed for θo = 30o with a radius of 9 λ

The simulated dielectric antenna is shown in Fig. 3.19. The sinusoidal modulation

becomes apparent with this type of antenna design.

Figure 3.19: Constructed dielectric antenna designed for θo = 30o with a radius of
9 λ in HFSS
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To achieve a pointing angle of θo = −30o, the entire structure is rotated 180o re-

sulting in an impedance diagram shown in Fig. 3.20. This was accomplishments by

subtracting 180oc from the phase of each pin in order to rotate the structure.

Figure 3.20: Impedance map, pin height map, and respective error map for dielectric
antenna designed for θo = −30o with a radius of 9 λ

The directivity of both positive and negative 30o are shown in Fig. 3.21 and

Fig. 3.22. The result of the θo = 30o is similar to the previous data with the gain peak

of the RHCP at the designed pointing angle and the cross polarization plummeting

at that angle. The side lobes are all also relatively low in respect to the peak that

occurs at approximately 22 dB. By rotating the antenna 180o around the z axis, the

antenna exhibits some interesting behavior. The peak gain of the RHCP occurs at

the desired angle of −30o with a value of 30 dB and the cross polarization plummets

downward at that point. In addition, the side lobes become more extreme in respect
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to the peak gain value.

Figure 3.21: LHCP in magenta and RHCP in dashed black for dielectric antenna
designed for θo = 30o

Figure 3.22: LHCP in magenta and RHCP in dashed black for dielectric antenna
designed for θo = −30o
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3.2.3 Fabrication

The frequency of operation was chosen for both antennas to be 15 GHz so the size of

the antenna is additive manufacturable. This means the wavelength is approximately

20 mm and unit cells that are much much smaller than 20 mm are printable using

a commercial 3D printer. The 3D printer the antennas will be printed with is the

Raise3D Pro2 which can print with a layer height of 0.1 mm and accuracy of 0.005 mm.

The printer is also capable of various type of filaments such as conductive or a typical

plastic filament. The conductive filament that will be used to print the metallic

antenna is Multi3D’s Electrifi conductive filament that has a resistivity of 0.006 Ω cm.

ABS will be used as the dielectric for additive manufacturing. ABS is a cheap,

lightweight, and durable material making the fabrication of the dielectric antenna

desirable. In addition, since the antenna is easy to design and cheap and quick

to make, it is fast to go through the process of designing and creating for various

applications.

Figure 3.23: Electric field for metallic broadside antenna using conductive filament

The metallic antennas in the previous sections are simulated using a perfect electric

conductor (PEC), but the metallic filament that can be used to create this has a bulk
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conductivity of 16667 S/m. The antenna is resimulated for the θ0 = 1o design using

this information and the electric field is plotted in Fig. 3.23 with the same scaling

as the electric field from Fig. 3.11. The results using the PEC versus the conductive

filament are nearly identical. The leaky wave behavior of the wave is not very effected

as long as the conductivity of the material is high.

Figure 3.24: LHCP in magenta and RHCP in dashed black for metallic broadside
antenna using conductive filament

The directivity of the θ0 = 1o metallic antenna using conductive filament is shown

in Fig. 3.24. Again, the directivity is not effected by using a non perfect conductive

material and has approximately the same gain and points in the same direction as

the antenna designed with a PEC.



CHAPTER 4: POLARIZATION SPLITTING METASURFACE

Three-dimensional metamaterials that have an electrically large wavelength in re-

spect to the unit cell are considered to be in the quasi-static region. Classical mixing

formulas such as Maxwell’s equations and Rayleigh scattering can be utilized to be

able to find the electromagnetic properties of the material such as permitivity, ε ,and

permeability, µ. The second region of operation is when the wavelength is relative

to the size of or smaller than the unit cell such that the wavelength does not see

the material as an effective medium. The metamaterials in this region are designed

through a full-wave approach, but do not act as an effective medium. The last region

occurs when the wavelength is large compared to the unit cell, but the unit cells can

resonate which allows interesting behavior such as double negative materials. The

material is considered a metamaterial at frequencies at which the unit cells resonate.

In addition, the material is dispersive, but can be described with its electromagnetic

properties because it acts as an effective medium [52].

These regions apply for both three-dimensional and two-dimensional materials.

With a two-dimensional material that falls into the region with resonances, it is called

a metasurface. These materials are typically created to operate in the fundamental

mode due to the complexity of higher order Floquet-Bloch modes. There are a few

types of metasurfaces dependent of their geometry. A metasurface that is created

with apertures as the unit cell resembling a fishnet-like structure is considered a

metascreen. Oppositely, a metasurface designed with isolated conductive patches as

the unit cell is considered a metafilm. A metasurface with a combinations of both

apertures and patches that does not have a specific name is considered a metasurface

[52].
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This chapter discuss a three layer polarization splitting metasurface composed of

three layers of metallic patches in a dielectric slab. The first section will describe the

theoretical design principles needed to be able to create this metasurface. The second

section will detail the design approach to create the metasurface.

4.1 Design Principles

The concept of the metascreen is based on a generalization of Snell’s Law provided

in Eq. 4.1 due to the additional gradient of the phase represented by change of phase

in respect to space divided by the wave number. The generalization of Snell’s law

states that the permitivity and phase of the first medium with an additional phase is

related to the permitivity and phase of the second medium.

√
εr1 sin θ1 +

1

k

δφ

δx
=
√
εr2 sin θ2 (4.1)

The metascreen presented is derived of three layers of metallic period unit cells

in a dielectric slab. The three layer approach to the metascreen design provides

multiple degrees of freedom that can achieve perfect transmission and a large phase

coverage [53,54]. For each polarization, a local transmission model representation can

be utilized with each layer in the screen represented by a shunt admittance as shown

in Fig. 4.1 where kz is the wave number of free space above and below the screen

with a corresponding impedance of Z0 for the excited mode. Also, in reference to the

figure, kz1 is the wave number of the dielectric slab of the screen with a corresponding

impedance of Z1 for the excited mode.

Figure 4.1: Local transmission line model for metascreen for single polarization
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The wave number, kz, is denoted by kz = k0

√
1− sin2 θi where θi is the incident

wave; if the incident wave is 0o, kz is equal to k0. The wave number of the dielectric is

defined as kz1 = k0

√
εr − sin2 θi where εr is the relative permitivity. The impedance

of free space for a transverse magnetic excited wave is related as ZTM
0 = ζ0kz

k0
and sim-

plified to just the free space impedance when the incident angle is 0o. The impedance

of a free space transverse electric wave is ZTE
0 = ζ0k0

kz
and simplified to free space

impedance with an incident angle of 0o. Similarly, the impedance of the dielectric for

a TM wave is ZTM
1 = ζ1kz1

k1
and is ZTE

1 = ζ1k1
kz1

for a TE wave.

Fig. 4.1 can be solved using the the transmission matrix which is referred to as the

ABCD matrix. The ABCD matrix utilized for this local transmission line model is

a two-port network. The ABCD matrix is defined as:

V1

I1

 =

A B

C D


V2

I2

 (4.2)

where the ABCD matrix is the admittance matrix of the two port network [55]. For

the metascreen and the transmission representation in Fig. 4.1, the ABCD matrix

for the dielectric slab is expressed as:

ABCDd =

 cos(kz1d) jZTM,TE
1 sin(kz1d)

j 1

ZTM,TE1

sin(kz1d) cos(kz1d)

 (4.3)

Since the transmission line is represented as a shunt admittance, the individual

values of the metascreen layers are seen as the C position in the matrix. The ABCD

matrices for the two different screen admittances can be defined as:
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ABCDMTS,1 =

 1 0

Y TM,TE
1 1

 (4.4)

ABCDMTS,2 =

 1 0

Y TM,TE
2 1

 (4.5)

The total admittance of the screen can be solved by multiplying the ABCD matrix

of each section of the transmission line starting from the left with the first screen layer

and passing through the dielectric, the second layer of the screen, another dielectric,

and finally the last screen layer. This is shown by:

ABCDtot = ABCDMTS,1ABCDdABCDMTS,2ABCDdABCDMTS,1 (4.6)

Using the ABCDtot matrix, the reflection coefficient and the transmission coefficient

can be expressed in Eq. 4.7 and Eq. 4.8 written in a generic form to include both TM

and TE excitations.

S11 =
A+B/ZTM,TE

0 − CZTM,TE
0 −D

A+B/ZTM,TE
0 + CZTM,TE

0 +D
(4.7)

S21 =
2(AD −BC)

A+B/ZTM,TE
0 + CZTM,TE

0 +D
(4.8)

The transmission line is thus solved to achieve the reflection coefficient, S11, equal

to zero and transmission coefficient, S12, equal to ejφ where φ is the phase shift in the

polarization. Equation 4.9 shows the representation of the impedance of the outer

screens and Eq. 4.10 is the impedance of the middle screen to achieve the desired
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scattering parameters.

Y1 =
j

Zd tan(kdd)
+

j

Z0 tan
(
φ
2

) (4.9)

Y2 =
j
[
Z0 sin

(
φ
2

)
+ Z0 sin

(
3φ
2

)
+ 2Zd sin(2kdd) cos

(
φ
2

)]
2Z2

d cos
(
φ
2

)
sin2(kdd)

(4.10)

Due to the dual polarization of the presented metascreen, the impedances can

be represented as tensors as shown in Eq. 4.11 and Eq. 4.12. This representation

shows that the impedance is dependent on whether the propagating wave is in the x

direction or in the y direction thus producing different deflected angles dependent on

the polarization.

Y1 →= Y
1

Y xx
1 0

0 Y yy
1

 (4.11)

Y2 →= Y
2

Y xx
2 0

0 Y yy
2

 (4.12)

The screen between air and dielectric is locally modeled in Fig. 4.2 with the left half

of figure as a snippet of the transmission line model and right half shows the wave

propagating into the screen and dielectric and the reflection in air.

(a) Transmission line model (b) Pictorial representation

Figure 4.2: Local model of Y1 impedance
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The impedance of metascreen, Z, can solved using the reflection coefficient as shown

in Eq. 4.13.

ZY 1 = ZTM,TE
0

1 + S11

1− S11

(4.13)

Equation 4.13 can be substituted into Eq. 4.14 where Y TM,TE
1 is 1/ZTM,TE

1 in order

to obtain the admittance of the outer layers of the metasurface.

Y TM,TE
MTS,1 =

1

ZY 1

− Y TM,TE
1 (4.14)

The same process is used to determine the admittance of the middle layer of the

middle screen, but the two surrounding materials are dielectric. The impedance of

the middle layer is:

ZY 2 = ZTM,TE
1

1 + S11

1− S11

(4.15)

Equation 4.15 is substituted into Eq. 4.16 to obtain the impedance of the middle layer

of the metascreen.

Y TM,TE
MTS,2 =

1

ZY 2

− Y TM,TE
1 (4.16)

4.2 Design Approach

The electric field used to excite the metasurface is a plane wave which is defined

as Ey = E0e
−jkzp . Considering the plane wave is excited in free space, the magnetic

field can be expressed through dividing the electric field by the free space impedance,
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or Hy = −Ey
ζ

. The phase of the screen can be obtained by adding the phase of the

incoming field and incorporating the holographic principle. The holographic principle

in microwave applications utilizes a source wave as a reference to another wave inter-

ference to create an image of the resulting radiation pattern. Equation 4.17 shows the

phase of the screen with the phase of the initial field subtracted with the holographic

principle.

Φscreen = − 6 Ey − k sin(θ0Y ) (4.17)

When exciting with a plane wave, the phase is considered constant and can be as-

sumed to be zero since there are no interferences making Eq. 4.17 equal to−k sin(θ0Y ).

The phase of the three-layer screen becomes the phase of the transmission coefficient

since the the excitation wave is a plane wave. Figure 4.3 shows the magenta, thicker

line as the phase of the screen using Eq. 4.17 and the blue, thinner line shows the

transmission phase using the ABCD matrix method. This graph proves mathemati-

cal the screen should perform as predicted.

Figure 4.3: Phase of the screen plotted against phase of transmission coefficient
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To prove the beam shifting using a surface impedance to create a phase variance

is feasible, a surface impedance to create a beam steering of 10o was designed. The

required impedance values for the surface for the varying positions were imported

into Comsol to create a two-dimensional simulation. In the center of Fig. 4.4, the

darker black line is the placement of the screen with the two dielectric layers in the

middle. The height of the dielectric layers for this simulation are both λ/250. The

top and bottom layers are assigned an impedance map that correlates to Y1 and the

middle layer has an impedance equivalent to the calculated Y2. Figure 4.4 clearly

shows the plane wave steering 10o with normal incidence once it passes through the

screen indicating the desired behavior is accomplished.

Figure 4.4: Simulation of normal incidence with the beam steered 10o

Figure 4.4 shows a singularly polarized screen, but the screen proposed is dually po-

larized and performs as a polarization splitter. This means that depending on whether

the screen is excited with a TE wave or TM wave, the resulting wave is deflected to

a different angle since the incident wave sees difference impedance values. The new

local model to represent this screen is shown in Fig. 4.5 with the black electric and
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magnetic field corresponding to a TM polarization and the red electric and magnetic

field corresponding to a TE polarization with their respectively reflected waves when

the distance between the screen are much much smaller than the wavelength.

Figure 4.5: Dual polarization model showing electric and magnetic field for each
polarization

The distance between the screens makes a large impact on the results of the meta-

surface behavior. The distance between the layers of the screen has to be small

enough to prevent phase shifts from the higher order Floquet modes that compound

from screen to screen introducing complexity into the design that would prevent it

from working. If the layers of the screen are too close, the wave will see the screen

as one block of impedance instead of three individual layers of screens preventing the

screen from working. The distance between the layers for the proposed metasurface

is 0.5 mm.

Using an example of unit cell to create the screen, the independent polarizations are

shown in Fig. 4.6. The left figure is a x-polarized wave excited with a TM mode wave

and the right figure shows an y-polarized wave excited with a TE mode wave. Due to

the dual polarization, the transmission line model representing the metasurface has
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to be reconsidered to account for the polarization in both the x and y direction as

shown in Fig. 4.7. The difference between this transmission line model and Fig. 4.1

is that the impedances are now dependent on their polarization.

(a) X-Polarization (b) Y-Polarization

Figure 4.6: Two different mode excitations on an example unit cell showing the
independent polarizations

(a) X-Polarization (b) Y-Polarization

Figure 4.7: Local transmission line model for metasurface for single polarization

To obtain the phase coverage needed to create the metasurface, the screen is de-

signed with five different unit cells. The unit cells produce phases that are approxi-

mately 72o apart starting at 36o. Due to adjacent unit cells being different, an infinite

periodicity assumption is not completely accurate. As the capacitance between cells

increases, the inaccuracy of the model also increases. Because the metasurface can

be described using transmission line theory, the increased capacitance also means
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increased bandwidth. There is a direct trade-off between the bandwidth and the ac-

curacy of the local periodicity assumption. By using five unit cells equally spaced,

the local periodicity assumption can still be accurately used and a large bandwidth

can also be accomplished [53].

4.3 Optimization of Design

The design of the metasurface uses five different unit cells to create the modulation

phase to create the beam steering angle. The basic design of all the unit cells are

inspired by a Jerusalem cross. Figure 4.8 shows the basic shape and the changing

parameters for the middle layer of the metasurface. The top and bottom layer also

are derived using this shape, but the name of parameters are in term of b instead of a.

For example, a1 becomes b1 and and w_la1 is w_lb1. All the variables that change

the shape changing the impedance for x polarization end with a 1. Not labeled, but

the other excitation would be changed with variables labeled 2 to ensure the shape is

not symmetric and can act with independent polarization.

Figure 4.8: Basis of unit cell design with parameters labeled
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Using the pattern search optimization option in HFSS, the individual unit cells

were varied for both the top and bottom layer and the middle layer to find the five

different phases that span −180o to 180o. Table 4.1 shows the values of the parameters

for their respective phase. For 36o and 108o, the basic cross shape was not able to

be varied in a way to accomplish these phases. To create the higher phase of 108o,

a capacitive element was added to both. To achieve a phase with a magnitude of at

least half power, a capacitor-like shape with plates having a thickness of 0.25 mm and

distanced by 0.5 mm is added to the middle layer. Using an optimization search in

HFSS, the best position was found such that the start of the capacitor shape is shifted

4 mm from the top and bottom flanges. The positioning of this creates a square in

the middle of the unit cell which raises the magnitude of the opposite polarization

a small amount, but the magnitude of the opposing polarization remains under 0.1.

To introduce more inductance into the unit cell to create a phase of 36o, two smaller

rails are added adjacent to either side of the middle rail of the unit cell. The extra

rails are offset from the center rail by 0.5 mm and have the same height as a1 with

a width of 0.2 mm. In addition, a small hole is cut from the top and bottom flanges

introducing capacitive behavior from the gap and inductive behavior from the loop

formed. The hole is a ratio of the two-dimensions that define that flange with the

horizontal component of w_la1/2.4 and the vertical component with a cutout size

of l_a1/2. Again, the hole dimensions along with the placement and size of the

additional rails are found using the pattern search optimization method in HFSS.

Table 4.1: Unit Cell Parameter Specifications Per Phase

φ w_a1 w_b1 w_la1 w_lb1 l_a1 l_b1
36o 0.5 mm 0.5 mm 8 mm 7 mm 0.481 mm 0.4 mm
108o 0.5 mm 0.51875 mm 4.35 mm 7 mm 0.481 mm 0.4 mm
−180o 2.5 mm 1 mm 6 mm 7 mm 0.5 mm 0.5 mm
−108o 0.5 mm 0.456 mm 7.3 mm 4.88 mm 0.4 mm 0.5 mm
−36o 0.275 mm 0.75 mm 6 mm 7 mm 0.5 mm 0.5 mm
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The individual unit cells for each phase for the top and bottom layer, Y1, are shown

in Fig. 4.9 and their respective middle layer, Y2, shown in Fig. 4.10. The left and

right flanges are 5 mm as to prevent any coupling between the side flanges and the

top flanges. This ensures the modes will not be effected by the opposite polarization

parameters.

(a) 36o (b) 108o (c) −180o (d) −108o (e) −36o

Figure 4.9: Top and bottom layer of unit cell for each phase

(a) 36o (b) 108o (c) −180o (d) −108o (e) −36o

Figure 4.10: Middle layer of unit cell for each phase

Each unit cell is simulated with periodic boundaries. The discussed parameters

effect the x-polarization. The magnitude and phase of the transmission coefficient

for both the polarization of each unit cell are listed in Table 4.2 where mode 1 is y

polarization and mode 2 is x polarization.

The magnitudes of the second mode are substantial, whereas the magnitude of mode

1 are negligible. There is some consistency in the phase for mode 1, but that does

not effect mode 2 since the magnitude corresponding to those phases are so small.

The full metasurface will be created using these five unit cell measurements. The

parameters discussed will be used to define the admittance and phase profile for the
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Table 4.2: Phase and Magnitude for Mode 1 and 2 For Each Unit Cell

Goal φ Mode 1 φ Mode 2 φ Mode 1 |S21| Mode 2 |S21|
36o −92.6o 40.8o 0.0858 0.9170
108o 76.1o 108.2o 0.0947 0.7484
−180o −94.3o −178.4o 0.0485 0.8878
−108o 75.7o −107.1o 0.1001 0.8381
−36o 75.9o −35.3o 0.1001 0.8729

x-polarization. The orthogonal geometries will be adjusted to create the admittance

and phase profile for the y-polarization.



CHAPTER 5: CONCLUSION

This thesis presented two different applications of modulated metasurfaces for RF

application fabricable with additive manufacturing. The first metasurface presented

was a sinusoidally modulated leaky wave antenna with designs for a fully metallic and

fully dielectric antenna. The metallic and dielectric antenna had comparable results

showing that the same behavior can be achieved with a material ranging from a very

low permitivity to infinite permitivity. The antenna was also shown to operate with

different pointing angles. The metallic antenna performed perfectly with a pointing

angle at the designed value with gain. The electric field attenuated with leaky wave

behavior and dissipated by the edge of the antenna. The dielectric antenna designed

for non-broadside propagation performed as predicted. The antenna was rotated 180o

and was able to operate efficiently with a backward radiation. The initial dielectric

antennas were simulated using the permitivity of a common additive manufacturing

filament, but the metallic was simulated using PEC. The results of the PEC antenna

at broadside were compared to the conductive filament metallic broadside antenna

and the results were practically identical proving the feasibility of fabricating both

the metallic and dielectric antenna with a commercial 3D printer. This antenna

design can be utilized for wireless technology and space applications such as satellites

and space and Earth observation. In addition, the dielectric antenna is a low-cost,

light weight, easily fabricable alternative to a traditionally heavy and higher priced

antenna.

The second metasurface presented is a three-layer polarization splitter. The unit

cells are designed to be able to compensate any beam angle providing a full range of

phase. Each cell was demonstrated to produce a specific phase. The beam steering
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angle of the metasurface is dependent on whether the screen is excited with a TE

or TM wave. The results proved that a dual polarization metasurface is feasible

with independent impedance profiles based on excitation. With most metasurfaces

currently available being singularly polarized, this metasurface introduces the second

polarization allowing for more control and customization of design.
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