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ABSTRACT

ANAY NARENDRA JOSHI. A Discrete Element Study of the Uniaxial Compressive
Response of Plain Concrete using the JCFPM Constitutive Model. (Under the
direction of DR. HARISH P. CHERUKURI AND DR. MIGUEL A. PANDO)

The standard bonded-particle models available in many discrete element method

(DEM) codes are known to predict unrealistically low values for the ratio of ultimate

compressive strength (UCS) to tensile strength (UTS) for concrete. To correct this,

various modifications to the bonded particle models or new constitutive laws have

been proposed by various researchers. One of these is the Jointed Cohesive Frictional

Particle Model (JCFPM) that introduced a parameter called the interaction range

to account for high UCS to UTS ratios. In this work, JCFPM model is used to

model the response of concrete under uniaxial compressive loading. A parametric

study is carried out to study the effect that various DEM parameters such as the

cohesion, packing density, particle generation methods and the interaction range have

on the response of the concrete cylinder. Based on these studies, a calibrated DEM

model that predicts results in agreement with the experimentally observed results is

presented.
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CHAPTER 1: INTRODUCTION

A granular medium is composed of particles which displace independently from

one another and interact only at contact points [1]. The discrete character of the

medium results in a complex behavior under conditions of loading and unloading [1].

To capture the behavior of a granular medium, a numerical method first developed

by Cundall and Strack, called the discrete element method (DEM) is most widely

used. The discrete representation has also been shown in the literature to effectively

capture the degradation and failure by fracture of granular media such as concrete.

In this research work, the focus is on the application of DEM for uni-axial com-

pressive behavior of a concrete cylinder. The behavior of concrete under uniaxial

loading can be studied with three different approaches: Physical testing (experimen-

tal methods), analytical methods and numerical simulations. Experimental testing of

this particular application is most reliable. As the dimensions of the selected sample

are experimentally feasible, experimental results are much more reliable for the se-

lected application. However, it is not always the best approach to go with, as there

are several limitations to this, like experimental conditions. Analytical methods are

also popular, but they are very tedious and not very efficient to use. These equations

are derived from empirical correlations and are limited to their applicability. This

approach is also used to validate and understand the results obtained from numerical

simulations.

The third approach which is used in this research work is the use of numerical

methods. Numerical methods are relatively easier to implement and flexible for testing

compared to experimental testing. The results obtained by the simulations need to

be validated with one of the two methods mentioned above. A Major advantage of
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this method is that it has the capacity to test various input parameters with less

time. This method allows the control over the parameters and allows control to

predict the response of the model. This method also has an advantage that it allows

to understand the variation of parameters which would be very time consuming and

in some cases even difficult to understand through experimental procedures. It also

has abilities to visualize and study the behavior of crack origination and propagation

process within the model. Usually, this process is expensive in terms of cost and

time to perform experimentally [2]. Numerical models are based on the continuum

concept. Numerical models are representation of the material which can be continuous

or discrete. Numerical modeling of unreinforced concrete can be done using finite

element method as well as discrete element method. The choice of method in this

work is the discrete element as it captures the movements and flows of the particles

better than finite element methods.

Many finite element packages include nonlinear constitutive models for modeling

concrete behavior. Although finite element is a popular approach to model mechanical

behavior of concrete, the response of such a heterogeneous material is difficult to

solve numerically due to the large displacements associated with it [3]. However, the

discrete element approach is much more suitable for this kind of behavior since, it can

capture more accurate behavior of the heterogeneous material and large displacements

associated with it. DEM was first proposed by P.A. Cundall for studying large-scale

movements in rock system [4] and was later developed for various particle models

like bonded particle model [5], concrete particle model [6], jointed cohesive friction

particle model, etc. This research work is based on the Jointed Cohesive Friction

Particle Model (JCFPM) [6].

1.1 Thesis objectives

The objectives of the present study are:

• Develop a 3-dimensional DEM model for plain concrete cylinder under uni-axial
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compression loading.

• To study and use the Jointed Cohesive Friction Particle Method(JCFPM) to

initialize the interactions between discrete element particles.

• To study and analyze the influence of different input parameters of JCFPM

method on the macro properties of the material.

• To calibrate the 3D model to the desired strength with the help of quantitative

data from the parametric study.

• To validate the numerical stress-strain results with the known experimental

results.

• Study the effect of poly-disperse particle generation method on the stress-strain

response of concrete.

1.2 Organization of thesis

This thesis is divided into six chapters. Besides the introduction chapter, chapter 2

presents a general overview of DEM. The theory behind the contact model is explained

in detail for both cohesive and non-cohesive type of interaction between discrete el-

ements. Chapter 3 represents some more background about DEM and two contact

models used in this research. Moreover, detailed mechanics behind jointed cohesive

friction particle method model is discussed. Chapter 4 describes the implementa-

tion of the selected contact model in Yade open-source software. Particle generation,

implementation of bonds and bond breakage criterion are discussed in detail. With

Yade, particle generation module, packing density, distribution, effect of interaction

radius is studied to optimize the particle size modeling parameters required for the

modeling of DEM. It also involves the representation of the concrete cylinder and

boundary conditions. Chapter 5 consists of the results of the numerical simulations.

It also represents modeling parameter effects on the stress-strain response of the ma-

terial. Parameters such as packing density, particle distribution inside the domain,
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particle size, interaction range, cohesion and mono and polydisperse particle genera-

tion method are also discussed in this chapter. This chapter also discusses the bulk

behavior of the material model. Chapter 6 summarizes all the results and important

conclusions. The recommendations for future work are mentioned at the end of this

chapter.



CHAPTER 2: LITERATURE REVIEW

The work performed in this thesis has two main objectives. First objective is to

perform discrete element simulation to capture the response of uniaxial compression

on the concrete cylinder and validate the model with the experiments performed in

the laboratory. The second objective is to provide the input to a broader research

program to understand the effects of different micro parameters. This work also

validates selection of some of the micro parameters and their effect on the response

of the material under uniaxial compression. This literature review is to provide the

background information for this topic and basis for this research work.

This chapter is divided into two parts. The first part comprises of a review of discrete

element modeling (DEM), and the second part is composed of the experimental and

numerical studies done with respect to uniaxial compression test.

2.1 Discrete Element Modeling (DEM)

The discrete element modeling is a numerical technique in which mechanical re-

sponse of granular materials/structures is studied effectively. DEM models can be

used to study the fracture, large displacement, behavior location and to predict the

macroscale response of various materials. Compared to the other continuum modeling

methods, DEM is computationally more expensive and this particular requirement of

DEM creates difficulties in industrial applications. However, with increase in com-

putation power in recent times, DEM has become a choice of modeling in various

industries such as mining, geotechnical engineering, civil engineering, powder metal-

lurgy, food handling industry and automotive industry. This method is fast growing

hand in hand with the boost in processing power and use of different algorithms to
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perform nearest neighbor search. This allows to simulate large number of particles in

the model using a single processor [1]. This increased ability allows DEM to perform

simulations of structures consisting large number of particles like soils, grains, etc.

First use of discrete element modeling started with the study of earth materials by

Cundall & Strack [4] who explored the study of granular media with no cohesion.

The study of soil with cohesion was done by Liu et al. [7]; examination of models of

soil with cohesion was performed by Yao & Anandarajah [8] and also rock problems

modeled with DEM are noted by Potyondy & Cundall [5] and Moon et al. [9].

DEM can be combined with other continuum software to model more complex and

hybrid modeling as in case of earth-moving machines. One of such analysis involving

soil-tool interaction, requires the hybrid finite-discrete element numerical modeling.

This captures large displacement of soil particles and small deformation of the tool.

Mechanics of material removal in rock cutting was studied by B. Aresh [10] using a

hybrid finite-discrete commercial package. Along with this, in the modeling of rock

cutting, consideration of the tool being rigid is discussed by J. Rojeck [11].

A numerical method must recognize the new contacts automatically upon every

iteration and it must allow finite displacements and rotations of discrete elements in

order to be considered as a DEM [4]. The numerical scheme will be limited to small

numbers of bodies as the interactions are known in advance and no new contacts

will be automatically detected. The second part is specifically important; otherwise,

DEM will fail to produce the discontinuous medium.

There are two basic components of discrete element model, the elements and con-

tacts between them. The elements are individual physical bodies mostly treated as

rigid bodies or sometimes collection of individual bodies. The elements can have

different shape, sizes and distribution over the domain. Considering computational

cost, the circular particles or facets in 2D and spherical particles in 3D prove to give

accurate model response and are easy to handle [12]. When the distance between
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two elements is zero, they are said to be in contact but when this distance becomes

negative, there is an overlap and magnitude of this overlap defines the compressive

force acting on them. Other parameters like frictional force, normal and shear con-

tact stiffness, damping coefficient, etc. are then calculated inside the contact model

to model overall bulk behavior. In some contact models like the jointed cohesive fric-

tion particle model, contact normal and contact shear stiffness can also be mentioned

manually and their ratio can be set to achieve the expected goal [6]; This serves as

a major contributor and main contact model in this work. The contact model is

described in detailed in section 3.3.

2.1.1 General model mechanism

Different particle models are available in DEM and those work with specific set of

parameters proposed by Schneider et al. [13] and Potyondy and Cundall [5]. These

particle models are used in various DEM packages available in the industry. However,

there is a generalized mechanism behind every model which is briefly discussed in this

section. There are mainly four different stages of the modeling which is used by many

packages. They are,

• Particle generation and distribution

• Initiation of interactions

• Contact model

• Failure

2.1.1.1 Particle Generation And Distribution

The model volume is filled with the number of particles which represent the material

properties under consideration. This basic process is termed as particle generation.

Size of the particles is user defined. Many packages allow variable sized particles

with different shapes and structures as mentioned earlier. For this thesis work, con-

sidering complexity of the simulation, particle shape is chosen to be spherical. The
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spherical particles have brought interesting insights to the characterization of failure

mechanisms in cohesive materials [6]. The aim is to model discrete elements which

are in close proximity of the elements in the actual structure. In case of granular

structures like concrete, sand or applications in mining, the geometry is filled with

thousands of densely packed particles which need to be defined randomly. There are

several particle generation algorithms in place. There are three main classes of these

algorithms [12] which are described below.

1. Constructive algorithms:

Constructive algorithms are based on the geometry under consideration. Yade uses

sweep and prune type of constructive algorithm [14]. This generates particles in a

closed geometry. Once the particles are generated there is no need of any secondary

arrangement or process on the particles. This makes the algorithm more efficient than

other two algorithms. In this method, spheres of specific diameter defined by the user

are placed at the axis aligned bounding boxes, which overlap only if overlap is along

all the axes. The complexity of this algorithm is O(n log n). The algorithm makes

sure that no newly created particles overlap with the previously created particle.

If any such incident is occurred then the newly created particle is discarded from

the model. This process is repeated until the domain is filled with the maximum

number of tries to place a particle is reached and no new particle is accepted by the

algorithm. As mentioned earlier, this method is only useful for the domain which is a

closed structure. Figure 2.1(a) shows the domain filling process with the constructive

algorithm.

2. Collective rearrangement algorithms:

In this particle generation algorithm, the user defines a fixed number of particles

for the entire domain. The overall process takes place in two steps. In the first

step, the defined number of particles are generated and are randomly placed in the

domain. As the first step can have particle overlaps, in the second step, particles are
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displaced as per their overlap magnitude. As this algorithm is two step, it is usually

computationally more expensive than the constructive algorithm. Figure 2.1(b) shows

the representation of the collective rearrangement technique.

3. Dynamic algorithm:

In this algorithm, the particles are initially located at random positions in a user

defined plane, which can be called as particle generation factory and then are al-

lowed to fall in the domain by gravity. For this particular algorithm, the domain of

the required geometry is necessary in order to have rearrangement of the particles

in the domain. This method is computationally most expensive as DEM solutions

and particle generation happens at the same time. Figure 2.1(c) shows the particle

generation from the top factory plane which are allowed to rearrange themselves in

the domain simultaneously.

A size of the particle and total number of particles in the domain are fundamental

phenomena for DEM modeling. Although it is difficult to represent each grain of the

material with DE particle, it is important to have sufficient number of DE particles

in the model to ensure high resolution to study the material behavior. The particle

size distribution in case of spheres can be of 3 different types. Monodisperse [15],

which uses single size of particles, Bidisperse [16], which uses two different sizes of

particles in the domain and Polydisperse [17], which uses multiple sizes of particles

for the particular domain.
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(a) Constructive algorithm

(b) Collective rearrangement technique

(c) Dynamic technique

Figure 2.1: Particle generation techniques in DEM [18].
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2.1.1.2 Initialization of Interactions

Interactions differ between cohesive and non-cohesive materials in DEM. Inclusion

of interactions as a cohesion is usually modeled in materials like cement where the

joint between grains is found. These interactions are treated as bond between discrete

elements in many models. There are various methods on the mechanism of these

bonds like Bonded Particle Method defined by Potyondy and Cundall [5], Jointed

Cohesive Friction Particle Model (JCFPM) [6], Concrete Particle Method (CPM) [14],

etc. This research work mainly deals with JCFPM method for modeling. Unlike the

classic description of the medium in many packages which allow interaction between

only particles which are in direct contact, e.g. Itasca PFC [19], ESyS-Particle [6] and

also the first version YADE [20], the current implementation of the model introduces

a parameter called interaction range, which allows to link elements which are not

in direct contact with each other but within the interaction zone. This parameter

directly affects the interlocking between particles and has direct effect on the response

of the material. Proposed work for this parameter also mentions about forming the

numerical medium according to micro-structural complexity of the material model.

Along with this, interaction range has direct effect on the coordination number and

total number of bonds. The interaction range and its influence is discussed in detail in

later chapters. These bonded contacts or interactions can then be treated accordingly

to calculate relative resisting forces for the model. For any DE model, as the number

of bonds go on decreasing, material starts to behave more granular in nature and the

validity of the model needs to be verified [21].

2.1.2 Advantages of discrete element modeling

In DEM individual particles have their own velocity and forces. Each particle

can influence other particle only when the two particles come in contact with each

other. The shape of the discrete elements vary from application to application and
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complexity. The basic technique uses spherical shaped particles whereas advanced

techniques can have various shapes of particles. This is specifically important in

case of the material which has arbitrary shaped composition. This composition can

be modeled with very close accuracy with DEM. DEM is also capable of modeling

heterogeneous material response better than FEM and is also capable of handling

large displacements of particles, which is difficult to model with FEM. DEM allows

to study the effects of various macro parameters of the material on the bulk response

much more efficiently compared to FEM.

DEM is the choice of method in the applications where granular flows are especially

important because, DEM has better flexibility to model the behavior of granular

media as compared to other numerical techniques.

Following section describes some of the industrial applications of DEM and a few

limitations for this modeling method.

2.1.3 Applications and limitations Of DEM

A method first proposed by Cundall and Strack in 1979 was first applied in the

geomechanics. This method gives detailed insight into the mechanism of governing

particle flow, contact behavior and detailed interactions at the particle level. DEM

allows us to increase our knowledge regarding granular materials and help us to

improve the design and operation of particulate systems. The complexity of the

method finds its application in the modeling of natural processes like the landslide.

DEM finds its application even outside of the soil mechanics and geotechnical en-

gineering. DEM has been widely used by chemical and process engineers, by food

industry, mining engineering, geomechanical engineering, pharmaceutical science and

automobile industry [22]. There are several DEM applications in process industry

such as ball mills [23], silo filling [24], die filling for tableting [25], flow in screw

conveyors [26] and granular mixing blenders.

As mentioned before, due to the computation complexity there are limitations in
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the use of DEM for industrial applications. The important aspect of DEM models

is the input parameters. Calibration of these input parameters in reasonable time

is one of the difficulties with DEM. A DEM model is a simplification of real-life

physical system. This consists of contact, deformation, geometry of the particles and

number of the particles. However, as the real system usually has millions of particles

with variable sizes and distributions, the calibration of input parameters essentially

becomes time consuming.

To overcome this computation difficulty, O’Sullivan recommends use of 2D or 3D

model numerical study. The advantage with 2D modeling is, it is computationally very

cheap and is able to capture key mechanical response of granular particles. However, it

comes with caution that it may be inappropriate to draw qualitative conclusions from

2D simulations as actual experiment is 3 dimensional and calibration of 2 dimensional

model needs to be done with care.

2.2 Utilization of DEM in Geomechanics

DEM is commonly used in geomechanics simulations of both cohesionless and ce-

mented sand/rock masses of bonded particles. Discrete element methods are usually

applied to particles larger than 0.1 mm in size to ensure that the surface attraction

forces are insignificant compared to the particle inertia [27].

As mentioned by O’Sullivan [22], DEM within geomechanics literature may be

broadly classified into several categories as, DEMmodel validation and calibration, in-

vestigation of relationships between macroscale material response and microscale me-

chanics, modification of DEM algorithms, development of interpretation techniques,

or simulation of field-scale boundary value problems.

Applications of DEM in the geomechanics are mentioned in the Fig 2.2. It is to

be noted that there are far more studies than those listed in the Fig 2.2, however,

to highlight the breadth of laboratory tests which have been simulated using DEM,

only limited references are provided. The purpose of the list of studies is to show the
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reach of laboratory element tests which have been studied using DEM.

Figure 2.2: List of general application of DEM in geomechanics [22].

The use of DEM in the study of laboratory element tests is well established within

the research community, with much of the focus on 3D simulations to accurately

represent real-life conditions. Section 2.2.1 will provide a deeper look into the purpose

of such studies, specifically parametric study of the input parameters of discrete

element model and their effects on the behavior of the material.

2.2.1 DEM parameter sensitivity studies

One of the major advantages of DEM is the ability to perform parametric study of

the model. The sensitivity of model behavior to specific material micro parameters

can be studied effectively with DEM. Some of the important parameters include

particle size, friction angle, number of particles, particle stiffness, and particle shape.

This section provides an overview of past DEM studies utilizing laboratory element

tests and DEM simulations to study the effect of model micro parameters on the

material behavior.

A wide range of various laboratory tests have been performed to study the particle

scale effects of the material behavior. Simulations of biaxial tests of steel rods[22]



15

consider the sensitivity of the model response to particle shape and surface friction.

Wu et al. (2010)[24] performed uniaxial compression tests on asphalt to investigate

the effect of variations in internal particle geometry, distribution of bond strengths

and friction angle. Powrie et al. (2005)[11] used plane strain test on sand to test

effects of porosity of the model and interparticle friction.

Studies mentioned in Fig 2.2 consists of steel spheres under triaxial loading to

analyze the sensitivity of the macro-scale material response to the friction coefficient.

Cui and O’Sullivan (2006) simulated direct shear box tests to investigate the effects

of surface friction and particle generation approach.

Certain studies select ideal rod-shaped or spherical shaped particles to avoid nu-

merical complexity and misinterpretation of irregular soil grains [22],[26]. However,

many other researchers conducted studies on various shapes, which adds in the dif-

ficulty of accurately representing particle shape and distribution. Studies have also

investigated the effect of particle size polydispersity, however very limited research

has been conducted in polydisperse particle generation in the DEM[5].

It seems judicious, if one is not interested in investigating the effect of particle

shape, one can go by selecting rod-shaped or spherical particles for the simulation to

avoid complications in the model. By keeping the particle shape effect aside, more

concentration can be given on the other micro parameters such as particle friction,

size, stiffness, polydispersity and various boundary conditions.

2.2.2 DEM studies on the effect of particle size

Effect of particle size has been studied by very few researchers making it very

difficult to find research work related to it. No DEM studies were found on the

effect of particle size on the calibrated DEM. Even though there aren’t many sources

available, some notable studies related to the effect of particle size and angle of repose

on the ultimate compressive strength of concrete under uniaxial compression load[18]

is summarized in the following section.
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The effect of particle size on the angle of repose has been studied experimen-

tally with the monodisperse powders[13] and granular material in a rotatable drum

apparatus[26]. The general conclusion drawn is that an increase in particle size will

decrease the angle of repose. Cartensen and Chan(1976) suggested that the particle

size effect in powders is related to particle cohesive force and sliding friction coef-

ficient, particularly, coefficient of sliding friction decreases with increasing particle

size.

Another research conducted by N. Tannu states the effect of particle size in the

concrete medium on the ultimate compressive strength of concrete under uniaxial

loading. The conclusion drawn is as the particle size decreases the packing density

of the model increases. Furthermore, with the decrease in particle size, the ultimate

compressive strength and strain to failure are increased. However, below a particular

particle size, this effect is no longer significant. The conclusion that can be drawn

from this study, is that, after a particular resolution of the model, further decrease in

particle size would only result in increase in computation cost.

It can be seen from this attempt that, reviewing DEM studies on the effect of

particle size is quiet rare within the research community. Some studies of cemented

material are available, but more research on this parameter must be conducted. As

concrete has various particle size distributions, it seems natural to conduct study

on the effect of particle size on the material behavior. In this thesis, several micro

parameters are studied; therefore, eliminating the variability of particle size in a given

computer simulation is important.

2.2.3 DEM studies on effect of interaction range

The concept of interaction range is introduced by Scholtes̀ et al. (2011) in his

contact model called jointed cohesive friction particle model (JCFPM). This model

behavior is different than traditional bonded particle model proposed by Cundall [5].

The traditional bonded particle model fails to reach the high ratio of compressive
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strength to tensile strength, which results in over prediction of material strength[6].

Interaction range allows interaction between particles within the range which results

into better interlocking between particles which enables JCFPM to overcome the

above limitation. One of the objectives of this thesis is to study the effect of interac-

tion range on the axial stress-strain response of the concrete material.

Scholtes̀ et al. (2011) studied the effect of interaction range in his research and

the conclusion drawn was that, as the interaction range is increased the ultimate

compressive strength of the model increases. As the interaction range is increased,

more number of links are formed in the model and particle interlocking is better,

which results into the increase in the force required to break the bond between two

particles. However, as claimed in the literature, brittleness of the model is increased

with increasing interaction range.

It seems wise to understand and test the effect of interaction range in more detail as

it directly affects the stress-strain response of the material. In this research, focus is

given on understanding the effect of interaction range, however, as there are only few

researches done regarding that, it is difficult to co-relate and decide the appropriate

value for interaction range coefficient.

2.2.4 Calibration of DEM models using uniaxial compression test

One of the objectives of this thesis is to investigate the effects of various input

parameters on stress-strain response of concrete under uniaxial compression load-

ing. Previous studies indicate that uniaxial compression testing is particularly suited

to calibrate and test the micro parameters of material in DEM simulations. This

section focuses on summarizing past DEM calibration studies that have utilized uni-

axial compression testing and explain the reasoning behind the selection of uniaxial

compression as the laboratory test for this research.

In uniaxial compression test, axial stress is applied to the specimen and strains in

any direction are not constrained. Shear and compressive stresses, axial and radial



18

strains can be observed during the test. However, it is difficult for a specimen to fail

in shear, hence, compression is the primary source of strain[21].

Walsh (1998) simulated uniaxial compression tests to investigate the effects of initial

specimen density on the stress-strain response of a granular medium under uniaxial

compression. It is also mentioned in the research that the friction angle determined

from the two dimensional soil models were lower than those found in three dimensional

soil models. Several other studies which include the effect of particle rigidity, lateral

earth pressure measurements and crack nature are deliberately not included since,

they are beyond the scope of this research.

Chung and Ooi (2006) [28] studied particle friction parameters through three-

particle sliding tests, and particle elastic modulus was calibrated by single particle

compression tests. Furthermore, Chung and Ooi simulated uniaxial compression tests

of corn grains and glass beads for comparison with laboratory results. Along with

this, the process of load transmission was also studied by same authors.

This overview indicates that, a well designed uniaxial compression serves as a

good test for providing inputs to the DEM researchers. Some applications include

simulation of corn grains; even though not directly related to this research, it justifies

the usefulness of uniaxial compression testing in model calibration. Based on the

literature mentioned in this section and experimental testing performed by Pando

and Flores [29], uniaxial compression of concrete was selected for this thesis.

2.2.5 DEM modeling of uniaxial compression response of concrete material

This section provides a general overview of existing numerical studies of concrete

under unconfined compression test, particularly those with combined experimental

and numerical methods. As there are only limited researches available which studies

the effect of various DEM parameters on the response of the material, only the work

related to the effect of packing density, particle size and interaction range is mentioned

in this section.
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Some studies in literature have combined laboratory tests with 3D DEM models

[30]. It was shown that DEM is capable of modeling uniaxial compression of concrete

cube specimen. Results of simulations performed were validated by the laboratory

experiments and results of DEM simulations strongly correlated to the experimental

results. Literature also mentions that the compressive strength, Young’s modulus

and stress-strain response can be reproduced with high accuracy [30].

Experiments performed by Walsh studied the local constitutive model for DEM

and tested with uniaxial compression of concrete material. Conclusions of this study

can be summarized as, the DEM model presents an accurate and reliable numerical

method for uniaxial compression test of geomaterials and concrete under mechanical

loading [31]. However, it is mentioned that, further validation is still needed to asses

its convergence for the non-linear analysis of cohesive materials in terms of number

and size of the discrete elements.

There are very few studies available on the effect of various DEM parameters on

the stress strain response of the material. Scholtès (2011) [6] studied the effect of

interaction range on the stress-strain response of the material. The conclusion drawn

was, that, as the interaction range increases the ultimate compressive strength (UCS)

for the respective material increases with small increase in peak strain value. However,

only this literature talks about the effect of interaction range and hence this opens

an area for young researchers to study this parameter further.

From the examples above, it is clear that numerical simulations are able to accu-

rately model the uniaxial compression test on concrete material. Having experimental

results for calibration and comparison increases the assurance of choice of the method.

On the basis of this literature survey, the selected method for numerical analysis of

concrete under compression is the correct choice of method. In this thesis work, uni-

axial compression test is used considering two main factors; Firstly, the laboratory

experiments performed by Pando and Flores [29] are available for calibration, and sec-
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ondly for parametric study of the effect of particle size, packing density, interaction

range, cohesion between particles and particle generation techniques.

The results of this thesis aim to supplement those from Scholtès et al. 2011, who

first noticed the significance of interaction range on the stress strain behavior of ma-

terial. By calibrating an equivalent DEM model with accurate uniaxial compression

laboratory tests, this thesis aims to provide further insights into the effect of var-

ious other input parameters and to create a base for further research steps in the

compression testing of concrete using DEM.



CHAPTER 3: BACKGROUND TO THE DISCRETE ELEMENT METHOD

This chapter provides basic knowledge about the discrete element method, its

formulations, contact model and interaction mechanism. This chapter provides an

overview of the basic concepts used in DEM to have better understanding of this

research work.

3.1 Background

Basic principle behind the discrete element method is to divide the domain of

interest into a collection of small and large number of discrete element particles.

These particles are considered to be rigid in nature, and they behave like an individual

body inside the domain. These particles contain the information about the micro

properties of the material. These particles interact with each other at respective

contact points and depending on the contact law for the particular model, forces and

displacements are derived from them. The magnitude of the force on each particle

is proportional to the magnitude of the overlap between two particles at contact.

The interactions between the particles are divided into two different types, bonded

and non-bonded. Depending upon the type of material, the interaction is defined.

Cohesive material has bonded interaction whereas non-cohesive material does not

need bonded interactions to get accurate response of the behavior. In case of the

non-bonded model, a contact between the particles is necessary to get interaction

forces on each particle. However, in case of the bonded model, a physical contact is

not necessary between the particles. For the purpose of this research work, the chosen

material is plain concrete, which is cohesive in nature. Hence, in the discrete element

model, physical contact between particles is not necessarily required. The overlap
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between the particles represents the particle deformation when they interact with each

other. It is considered that the overlap area between the particles is comparatively

smaller than the size of the particles. DEM works in several steps which include

particle generation, collision detection, interaction creation, calculation of forces and

displacement and numerical time integration. The flow chart of the overall DEM

method is shown in Figure 3.1. According to the mechanism of DEM, as the contacts

are determined, the forces resulting from particle interaction are determined using

force-displacement laws depending on the type of contact model. With the help of

Newton’s second law, acceleration for each element is calculated. These accelerations

are then time integrated to calculate the new positions of each element. The new

positioned particles develop a new contact, and this process keeps on going until the

end condition is specified as shown in Fig 3.1.
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Figure 3.1: Generic DEM flow algorithm [22].

3.2 Contact Models

In this research work, suitable particle model for concrete structure is chosen to

be cohesive particle model. Within the numerous cohesive models available in DEM,

Jointed Cohesive Friction Particle Model(JCFPM) is chosen for this study. Particle

models which are used to represent the behavior of the cohesive materials are required

to have contact model that is capable of dealing with bonded as well as non-bonded

contacts. As the bond is broken, particles may come in contact with each other and
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to capture those interactions, a non-bonded contact must be available in the model.

Numerical simulations in this research work are performed using an open source DEM

package YADE (The Yade project) [14]. There are several particle models available in

Yade and being an open source code, one can even modify the base script to include

and modify the different particle models. The implemented contact model in the code

is based on the recent research of Scholtès and Donzè [6]. The model is described in

detail in the following sections.

3.2.1 Linear(Cundall) Contact Model

Linear contact model was first proposed by Cundall in 1979 [27] and is widely used

in the discrete element method. Highlight of this model is, the normal force Fn is

a linear function of normal displacement, which is the overlap between DE particles

while the shear force is a linear function of shear displacement. However, shear force

is limited by the Coulomb linear friction in the model. This model is implemented in

Yade by Law2_ScGeom_FrictPhys_CundallStrack().
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Figure 3.2: Representation of normal stiffness of contact between two contacting
particles.

As shown in the Fig 3.2, the two particles are connected to each other by imaginary

spring. These imaginary springs allows the necessary interaction between discrete

element. Normal stiffness of the spring is related to Youngs̀ modulus of the both

particle materials. To define the contact stiffness, the contact area between two

particles needs to be defined correctly. Consider the two particles in the Fig 3.2; The

total length of the spring is the addition of two individual spring lengths l = l1 + l2.

Each spring has the length equal to the radius of individual particle li. The effective

length between two particles is the total length minus the overlap. The contact area

is defined as,

A = πmin(l1l2)
2 (3.1)

The connector can be considered as an imaginary cylinder having the radius of the

lesser sphere, spanning between their respective centers. Hence, the normal stiffness
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of the spring is,

kn =
(

l1
E1A

+
l2
E2A

)−1

(3.2)

Where, E1 & E2 are the respective Youngs̀ modulus of each particle. The tangent

stiffness is a fraction of kn, given as,

kt =
(
kt
kn

)
kn (3.3)

where the ratio is the average between two materials in contact.

Friction angle on the contact is computed as following,

tanφ = min[(tanφ)1, (tanφ)2] (3.4)

However, the material without friction will not have frictional contacts, regardless of

friction of the other material.

The normal force response is computed from the normal displacement,

Fn = unkn (3.5)

and the contact is broken when un > 0.

The tangential force is incrementally computed from tangential relative velocity u̇

and may get reduced to coulomb criterion.

∆Ft = (u̇)t∆tktF
T
t = Ft + ∆Ft (3.6)

The Elastic potential stored in a contact is the triangular area below the force-

displacement diagram and is given by,
1

2

(
F 2
n

kn
+
F 2
t

kt

)
(3.7)

Plastically dissipated energy is the elastic energy removed by the tangent slip, which

is an area ABCD as shown in Fig3.3.
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Figure 3.3: Linear contact model for energy dissipation in slip.

3.2.2 Jointed Cohesive Friction Particle Model

The mechanical behavior of cementitious material is modelled in DEM using in-

clusion of bonds between discrete elements. There are various methods and models

to govern the behavior of these bonds like Bonded Particle Model, concrete particle

model, etc. The ratio between uni-axial compressive strength (σc) and the tensile

strength (σt) of brittle rocks is one of the most important characteristics of any

model [32]. Even though the compressive response is the most widely used param-

eter to characterize the rock, the ratio mentioned above holds a good influence in

the brittle failure of the rock. The study of DEM has brought deeper knowledge to

the characterization of failure mechanisms in cohesive materials. However, there are

some limitations to the basic formulation of models. These various models are not

able to reach high (σc/σt) ratio which is a representative of brittle rocks [5][31]. One

drawback of this is, while calibrating compressive strength of the material, it results

in the over prediction of its related tensile strength. This can be the point of problem

where the nature of the stress maybe tension or compression [6].

This limitation of classical DEM models can be overcome by an additional texture
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property like irregular shape or improving the grain interlocking. Thus, a model which

is capable of accurately replicating the material behavior must have the flexibility to

include these texture properties. The limitations with the irregular shaped particles

include the computation complexity and cost. Another approach includes enhancing

the micro-structure of the packing by increasing the bond density between the par-

ticles. This approach was proposed by Donze et al.(1997) [33]. However, no precise

analyses have been performed to validate the approach, considering the macroscopic

response of the simulated medium.

The modeling method proposed by Scholtes and Donze in 2011 called as the Jointed

Cohesive Friction Particle Model overcomes the limitation in classical modeling meth-

ods. This model represents a formulation capable of properly simulating the micro-

scopic behavior of material. The formulation provides the balance between the ac-

curacy of the response and computation cost. Use of spherical particles with this

approach is best suited to replicate the material response with considerable accuracy.

The advantage of this method is that, the higher values of (σc/σt) ratio can be ob-

tained and can be manipulated as well. This method introduces a parameter which

controls the grain interlocking between the discrete elements. By adjusting the value

of the interlocking, the macroscopic response of the material can be simulated to the

targeted material behavior. The brief description of the JCFPM model is mentioned

below.

As shown in the Fig 3.4, the interaction force F represents the action of particle A

on particle B, which is composed of normal force Fn and a shear force Fs. These forces

are related to the relative normal displacement and incremental shear displacement

through normal stiffness kn and shear stiffness ks at the contact area.
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Figure 3.4: Representation of normal and shear force between two discrete elements.

The calculation of normal interaction forces is performed through local constitutive

law as shown in Fig 3.5. It can be split into two components, compressive and the

tensile component. In compression, Fn is linear and is given by,

Fn = kn∆D (3.8)

where, Fn is the normal force, ∆D is the relative displacement between the interacting

discrete elements, and kn is the normal stiffness given by,

kn = Eeq
RARB

(RA +RB)
(3.9)

where, Eeq is an equivalent bulk modulus and RA & RB are the respective radii of

the discrete elements.
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Figure 3.5: Constitutive law for normal interaction force [6].

In tension, the maximum acceptable tensile force Fn,max defined as a function of

tensile strength t is given as,

Fn,max = −tAint (3.10)

where, Aint = π(min(RA, RB))2 is the contact area between particles [6]. After

maximum tensile force is reached, the stiffness can be modified by a term called

softening factor ζ to control the energy dissipation due to breakage as,

Fn = (∆D −Drupture)
kn
ζ

(3.11)

When, ∆D > Drupture tensile rupture takes place and forces are reset to zero. How-

ever, in the current version of Yade DEM package, which is used for the simulation

in this research work, the value of the softening factor ζ is non-adjustable and is by

default set to 1 [14].

The shear force Fs is computed in an incremental manner by updating its intensity

and orientation depending on the increment of the shear force ∆Fs = ks∆us which is

developed at interaction point, defined by Hart et al. [34].

Fs = {Fs}updated + ks∆us (3.12)
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with ks be the shear stiffness and ∆us be the incremental tangential displacement.

A modified Coulomb law as shown in Fig 3.6 is used to model the non-linear

behavior of the material. The maximum allowable shear force is given by,

Fs,max = Fntanφb + cAint (3.13)

where, φb is the local friction angle and c is the cohesion between discrete elements.

Figure 3.6: Modified mohr coulomb law. (Adapted from [6]).

Shear rupture occurs when Fs ≥ Fs,max. After that, the interaction becomes purely

frictional between discrete elements and the maximum shear force becomes,

Fs,max = Fntanφc (3.14)

where, φc is the residual friction angle. In the current version of Yade,

φb = φc = φ (3.15)

is taken for the numerical calculations.

With the base developed in this chapter about JCFPM method, it is important to

carefully model the setup of the numerical simulation with Yade. Yade is an open

source software and has very limited user interface. The complete model, right from

building its geometry, the boundary conditions, and loading it to obtain the required



32

output data is completely hand coded in python script by the user. This script is then

compiled with Yade to get the required simulation output data. The next chapter

talks about the modeling with yade in detail.



CHAPTER 4: DEM MODEL OF UNIAXIAL COMPRESSION OF CONCRETE
CYLINDER

The interaction between discrete elements is due to the contact forces between

them. The behavior and the response of the material is governed by these interactions.

There are several different contact laws currently present in DEM which define these

interactions. The selection of a contact law which would represent the behavior most

accurately is very crucial and important in DEM. Yade has the capability to include

various different contact laws. Yade is a general public license software framework,

designed with dynamic libraries. This allows the user to add and modify the numerical

models and their respective behavior for their own applications. The open source

nature of the software provides a good flexibility and applicability for the research

on the present material models. For the study of the cementitious material JCFPM

method which is the method selected for this research uses two contact models, as

stated in section 3.2.

As mentioned in section 2.1.1, there are different particle generation techniques in

DEM. Each packing technique generates different particle arrangement in the domain.

As mentioned in section 2.1.1, yade uses constructive algorithm for particle generation.

Yade also provides different sub-packing arrangements like, random dense packing,

hexagonal packing, orthogonal packing, etc. Different sub-packings generate particles

in different orientation and are used for particular type of application. In the current

research, the code is tested with two different packing methods, random dense and

hexagonal packing to understand the effects and structure. Later random dense

packing arrangement is used for this study. A brief description is given in the following

section. The effect of packing arrangement, number of particles and packing density

is mentioned in the following section.
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4.1 Particle Generation And Packing In Yade

Particle arrangement inside the domain plays a crucial role in the response of

the material in DEM simulations. The overall behavior in many aspects vary as

per the packing. The chosen algorithm should ideally have the maximum possible

dense structure of discrete elements in the domain. Due to the wide range of the

particle sizes in the physical material like concrete, it is usually difficult to model

every particle in the computer software. Some basic and plausible assumptions are

made while developing the model to record the response of the material. Due to

the time complexity and the cost of the simulation, simplest but accurate particle

generation technique is used in Yade. As the particle arrangement inside the domain

affects the macroscopic behavior of the material, the suitable method needs to be

studied and taken into account while modeling for a respective application.

Different simulations are carried out to study the packing density of two different

sub-packing algorithms. For the purpose of this study, hexagonal packing method

and random dense packing method are studied. Out of these two methods, random

dense packing method is chosen as it represents the true random nature of grain

arrangement inside concrete. Also, packing density with different particle sizes and

packing density with mono-disperse and poly-disperse distribution is also studied.

Packing density is calculated as follows,

Packing density =
total volume occupied by particles

volume of the selected domain
× 100 (4.1)

where,

Total volume occupied by particles = volume of single particle × N (4.2)

where, N = total number of particles in the domain.

Selected dimension and parameters for the mono disperse and poly disperse distri-

bution are discussed in the following section. Particle size is varied from 0.25 mm to

1.25 mm to study the packing density of mono disperse distribution. Table 4.1 pro-

vides the domain information and table 2 gives information about packing densities
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according to the particle size.

Table 4.1: Dimensions of the test sample selected for this research work

Height of

cylinder (mm)

Diameter of

cylinder (mm)

Total volume

(mm)3

100 50 196349.57

Table 4.2: Calculated packing densities for different particle sizes of monodisperse
arrangement.

Particle size(mm) Volume of

each

particle

(mm)3

Total

number of

particles

Total

volume

occupied by

particles

(mm)3

Packing

density

(%)

1.25 8.1812 11569 94648.3028 48

1 4.1887 23112 96809.2344 49.2

0.75 1.7671 56332 99544.27 50

0.5 0.5235 194857 102007 52

0.25 0.065 1604774 104310 53.5

The following Fig 4.1 shows the relation between size of the discrete element particle

and the packing density. As mentioned above, particle sizes are varied from 0.25 mm

to 1.25 mm radius of particle. The analysis observation shows that there is a linear

relationship between particle size and packing density. It can be observed that as

particle size goes on decreasing, the packing density of the particles goes on increasing.

The maximum density obtained with the random distribution in Yade is observed to

be 53.5% for 0.25 mm radius particle. Any decrease in the particle radius after this

does not have a significant effect on the packing density. However, any change in the
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radius of the particle changes the total number of particles by a very large amount.

Figure 4.1: Effect of particle size on packing density.

For the purpose of this research, simulations with particles sizes 0.75mm, 1mm and

1.25 mm are chosen as they are relatively suitable for accuracy with less computation

cost.

4.2 Bond Initialization

Bond models applied to simulate the behavior of cohesive material are different

than other bond models as these models capture the joints between concrete grains

to the desired accuracy. In the current research work, these bonds are represented

by JCFPM which is capable of resisting the separation of the particles as well as

governing the mechanism of non-bonded particles. An initial criterion must be defined

to determine which particles are bonded to each other. This criterion exists in the

JCFPM which must be met by particles to be considered as bonded. A user defined

range called Interaction range is used for the bonding in this method. Particles



37

coming under this range are considered bonded. This provides the flexibility for

grain interlocking inside the material. Interaction range is defined as follows,

Interaction range = Ri + (γRi) (4.3)

where, Ri is the radius of the respective particle and γ is the interaction range co-

efficient. Table 4.3 represents the parameters used for the bond formation between

discrete elements.

Table 4.3: Bond parameters used for bond formation.

Young modulus Poisson’s ratio Bond stiffness Interaction

radius

Cohesion

E ν kn, ks γ t

The parameter γ defines the interaction range coefficient, which helps search for

a contact with the neighboring particles which are not directly in contact with each

other. Thus any two particles which are not directly in contact with each other can

still be bonded together. This allows user to control the grain interlocking which then

affects the behavior of the material. If the interaction range coefficient is increased,

the number of bonds increases. If this parameter is set to be 1 then the bonds will

be created within the particles which are in direct contact with each other and hence

this model can be transformed in the other known models in DEM. The following Fig

4.2 represents the effect of interaction range.



38

Figure 4.2: Graphical representation of interaction range.

4.3 Failure Criteria

For cohesive material like concrete, the material will have a microscopic failure

when compression induced tensile loading on two cemented elements exceeds the

bond strength. The material will undergo total failure when enough number of bonds

are broken. The property of bond breakage between particles when bond strength

exceeds at any point inside the domain gives an advantage over FEM in terms of

crack origination and propagation.

Failure of bonds in the DEM requires a criterion through which bonds between

particles can break. This mode is predefined in the material model used for the

modeling. For the JCFPM model discussed in section 3.2.2, this criteria is based on

the limits of the forces given in the same section.

4.4 Modeling

This section defines the modeling of the test specimen with DEM in Yade. Guided

by the material and behavioral properties of concrete, a set of parameters is decided to

guide the modeling of the test specimen. The predictive capabilities of the calibrated
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parameters are simulated using a cylinder of the dimensions mentioned in section

4.4.1, which are exactly same as used in the experimental tests[29]. For the loading

configuration and the geometry, the effort is to get the material response as close as

the physical experimental tests under uniaxial compression performed by Pando and

Flores [29]. The cylinder geometry, material properties and contact properties are

discussed in the following.

All simulations were carried out by Yade, an open source DEM code. Simulations

were performed on a local Ubuntu system at UNC Charlotte with 16 GB RAM.

4.4.1 Geometry

Fig 4.3 shows the test cylinder geometry and the DEM model. Yade requires an

initial domain volume for the generation of particles. As discussed in chapter 1,

constructive algorithm is used and spherical shaped particles are coded in the python

script. The particle sizes and distribution are manually inserted in the packing module

function included in the python script. Once the particles are generated and contacts

are established, the respective position of particles is stored in the simulator. To

simulate the uniaxial compression behavior of the material, a condition is given, in

which two sets of bodies located around each end of the cylinder are allowed to

displace towards each other. This is similar to the approach of having two invisible

plates at both ends and are displaced towards each other as shown in Fig 4.4
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Figure 4.3: Graphical representation of the domain.

Figure 4.4: Graphical representation of the test sample.
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4.4.2 Boundary Conditions

The loading configuration for uni-axial loading in the current model is achieved

through displacement loading at the top and bottom ends of the cylinder. In this

particular code, this is achieved by an inbuilt function in Yade which allows a group

of bodies perpendicular to the loading plane on respective end of the cylinder to

move towards each other with particular velocity along the loading axis, z-axis in this

case. To maintain the quasi-static loading, the loading rate should be small enough

compared to the size of numerical problem. To have this condition maintained in the

current study, loading rate is set to be 0.05mm/ms. As DEM simulations are fully

dynamic, a local non-viscous damping is necessary in the model to dissipate kinetic

energy [5]. The simulations in this code are run with the numerical damping of 0.4

[6].

4.4.3 Model Parameters

The DEM is very much parameter sensitive numerical method. Every parameter,

right from the type of the particle to its material properties, has its own impact on

the response of the material. In this study, according to the application, the rigid

discrete element particles are selected for modeling. A set of parameters were decided

that were capable of predicting the behavior of concrete material. These parameters

were used to create simulations to predict the bulk behavior of concrete.

The material parameters for the simulation are given in Table 4.4. The values

for the simulation are taken from the laboratory experiment and general material

properties of concrete. Even though in the further study, the value of cohesion is

changed to understand the direct effect on the material response, value mentioned

in the table provides with the best material response for a particular particle size.

Details about the parameter are discussed in chapter 5.
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Table 4.4: Bond parameters used for current DEM model.

Parameter Description Value

ρ Density (kg/m3) 2400

E Young’s Modulus (GPa) 17

ν Poisson’s ratio 0.15

σt Tensile strength (MPa) 3.163

c Cohesion (MPa) 9

φc Friction angle (Deg) 34.25

γ Interaction range coefficient 1.4

Parameter values for bond stiffness between two particles are calculated internally

as,

kn =
2E1R1E2R2

E1R1 + E2R2

(4.4)

ks =
2E1R1ν1E2R2ν2
E1R1ν1 + E2R2ν2

(4.5)

Thus, stiffness parameters change as per the particle radius, which makes the model

less affected by the size of the particles in model as proposed in literature [6]. However,

this claim is tested in the further research and described in chapter 5. Table 4.5 shows

the calibrated bond parameter with varying particle size. As seen in the Table 4.5,

the ratio of kn/ks is 6.66 in all the cases except with the particle size of 0.25mm

radius.
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Table 4.5: Calibrated bond parameters for various particle sizes.

Particle size (mm) E(GPa) ν γ Packing

(%)

kn ks

0.25 17 0.15 1.45 53.5 4.25 0.63

0.5 (17 0.15 1.45 52 8.5 1.275

0.75 17 0.15 1.45 50 12.75 1.9125

1 17 0.15 1.45 49.2 17 2.55

1.25 17 0.15 1.45 48 21.25 3.1875



CHAPTER 5: RESULTS AND DISCUSSION

In this chapter, the response of a concrete cylinder under the action of uni-axial

compressive load is studied. A parametric study is carried out to analyze the effects

of various input parameters on the response of the concrete cylinder. The bulk me-

chanical properties such as strain at failure and ultimate compressive strength for

each parameter variation are evaluated and compared. The values of particle size,

packing method(mono-disperse and poly-disperse), interaction range, cohesion, par-

ticle distribution(random and hexagonal), and packing density used and compared to

obtain the required material response are discussed in the following section.

5.1 Stress-Strain Response Of Concrete Cylinder

Uni-axial compression test is the most widely used method to determine the com-

pressive strength of a material and hence is used in this research. It is also known

as the prime engineering property in case of concrete material. A schematic of the

displacement controlled uni-axial compression is shown in Fig 5.1. If the graph of

nominal stress versus nominal strain is plotted, the maximum stress reached is called

as ultimate compressive strength (UCS) and the strain corresponding to UCS is called

the strain at failure. In this study, to obtain accurate results with less computation

time, a particle size of 1.25 mm radius is chosen to calibrate the DEM model to the

experimental results provided by Pando and Flores[29]. The axial stress-strain curve

obtained is shown in Fig 5.2. Later in the study, the effect of particle size variation

is discussed in detail.

Average stress (σavg) and average strain (εavg) are calculated for model comparison

are as follows,
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σavg =
(
∑
Positive forces) + (

∑
Negative forces)

2× (Ac/s)
(5.1)

where, Positiveforces & Negativeforces are the forces at two ends of the cylinder

and Ac/s is the cross section area at two surfaces of the cylinder normal to the loading

axis.

Figure 5.1: Graphical representation of the uni-axial test.
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Figure 5.2: Predicted stress-strain curve for monodisperse particles of 1.25 mm.

The average strain is calculated as,

εavg =
Current height of cylinder − Initial height of cylinder

Initial height of cylinder
(5.2)

Pando and Flores conducted an experiment[29] which is used in this study to

calibrate the simulation results. The results obtained by the experiment are in psi

and are shown in the Fig 5.3. For the purpose of this study, only the axial stress

and axial strain of the first test sample is considered to calibrate the DEM model.

As seen in the Fig 5.3, ultimate compressive strength for plain concrete is, 1990 psi

which is approximately equal to 13.8 MPa and strain at failure is, 0.00197. The

results obtained from the simulation for 1.25 mm particle size are listed in the table.

The UCS obtained from the simulation is in MPa and equal to 14.0275 MPa. It is

then converted to psi and compared with the experimental results. The UCS value

from the simulation is 2019 psi which is within the 1.6% of the experimental value

and strain to failure is 0.0022 which is within 10% of the experimental value.
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Figure 5.3: Experimental results for uniaxial compression test.

Table 5.1: Bulk material properties of material with particle size 1.25 mm.

Parameter Description DEM

simulation

results

Experimental

results

σu Ultimate Compressive Strength (psi) 2019 1990

εc Strain to failure 0.0022 0.0021

The nature of the graph obtained from the DEM simulation represents two different

slopes and change starts to occur at 0.001 strain. However, this change in the slope

occurs approximately at 0.0015 strain in the experimental results. This indicates

the deviation of numerical results from the experimental tests. The slope changing

pattern of DEM curves is also seen in some of the literature at the point of material

failure; However, no literature mentions about this behavior. To understand the

cause behind this change, further studies on the calculation of stress and strain in the

numerical code needs to be performed.
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5.2 Effect Of Particle Size

To understand the effect of particle size on the response of the material in the DEM,

three other particle sizes were considered in this study. Particle sizes, 0.5 mm, 0.75

mm & 1.0 mm were chosen as these particle sizes exhibit denser packing compared

to 1.25 mm radius particle.

Keeping all the other parameters same, only the radius of the particles is varied to

evaluate the three cases. Similar to 1.25 mm particle, stress-strain curve is obtained

for different particle sizes. The effect of the particle sizes on the response of the

material can be seen in the Fig 5.4. From the obtained results, it is observed that,

the response of the material changes with the particle sizes. This contradicts the

statement in JCFPM model, that particle sizes have no reasonable effect on the

behavior of the material [6]. As particle size decreases from 1.25 mm to 0.5 mm,

the ultimate compressive strength(UCS) increases from 14.02 MPa to 15.8 MPa.

However, strain to failure does not get affected much. Strain to failure for 1.25 mm,

0.75 mm and 0.5 mm is observed to be 0.0022 and strain to failure for 1.0 mm particle

is observed to be 0.0023.

Figure 5.4: Effect of particle size on the stress-strain curve.

Even though the domain size and particle generation method is same for all the
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cases, the number of particles inside the domain varies with the size of particle. This

increases the packing density of the overall domain as shown in Table 4.5 and can be

seen in the following Fig 5.5. Also, the position of each particle for each simulation

is random inside the domain.

Figure 5.5: Effect particle size on the packing density.

Higher packing density leads to higher number of bonds inside the domain. Thus,

the interlocking between particles is stronger than the domain with lesser packing

density. Thus, higher force is required to break the bonds between elements, which

might have lead to the increase in the UCS of the material. However, as we further

decrease the particle size, the effect on the material stress-strain response is minimal.

Therefore, it is safe to state that, after a certain resolution of the model, further

decresae in particle size does not affect the material response.

The effect of particle size on the ultimate tensile strength and peak strain is shown

in Fig 5.6 & Fig 5.7 respectively.
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Figure 5.6: Effect of particle size on the UCS.

Figure 5.7: Effect of particle size on the peak strain.

5.3 Solution Parameter Set

As DEM is highly sensitive to input parameters, it is very likely to get more than

one combination of input parameters to yield same numerical solution. Thus, in DEM

modeling, there is no unique solution set of parameters to achieve the desired response

of the material. In this section, it is shown that due to this flexibility provided in the
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material model, a stress-strain response obtained for 1.0 mm particle can be adjusted

so as to get close to the stress-strain response of 1.25 mm particle as shown in Fig

5.8.

Figure 5.8: Material response for two different sizes of particles.

The blue coloured graph in the figure represents the material response for 1 mm

particle and the yellow coloured graph represents the material response for 1.25 mm

particle. It can be seen from the Fig 5.8 that the 1 mm particle response is brought

closer to the 1.25 mm particle response by varying a couple of parameters. This

flexibility offered by JCFPM is very convenient and helpful in reproducing or changing

the material response according to the user input.

5.4 Influence Of Interaction Range

As described in chapter 4, unlike the classic material models where only discrete

elements which are in direct contact are connected, JCFPM offers a parameter called

interaction range. This feature provides the flexibility of adjusting the degree of in-

terlocking of the discrete elements forming the numerical medium [6]. Bonds are con-

nected between discrete elements if respective interaction ranges overlap each other.
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By defining interaction range to be 1, the classic material model behavior can be ob-

tained with this method. This is similar to clump particle logic proposed by Cho et

al. (2007). However, this model has lesser computational complexity. The resulting

medium consists of a packing where particles are not described by a unique contact

anymore.

As interaction range is increased, more number of particles will be connected to

each parent particle and overall interlocking of the packing will be increased. This

should directly affect the force required for bond breakage and ultimately the ultimate

compressive strength of the material should ideally be increased as shown in Fig 5.9.

Figure 5.9: Influence of interaction range on material behavior.

These results are validated through the work of Scholtès and Donzé. They have

presented similar effect of the interaction range on the behavior of the material.

5.5 Influence Of Cohesion

From the parametric study, it is observed that the value of cohesion affects the

behavior of material in terms of both stress and strain response. As mentioned in the

chapter 3, cohesion value directly affects the maximum shear force Fs,max as,

Fs,max = Fntanφb + cAint (5.3)
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Hence, as we increase the value of c, the value of Fs,max increases. This implies that,

larger force will be required to break the bonds between discrete element particles.

The influence of the cohesion is shown in Fig 5.10.

Figure 5.10: Influence of cohesion of material behavior.

From the obtained results, it can be seen that, as the cohesion value is increased

the ultimate compressive strength as well as strain to failure is also increased.

5.6 Influence Of Particle Distribution Inside The Domain

Two different packing arrangements are used to study the effect of this parameter.

Four different particle particle sizes are used for this study. For each size variation,

the domain was filled with particles with random distribution packing and hexagonal

distribution packing. The packing densities and response of the material behavior is

studied for every case. Fig 5.11 and Fig 5.12 shows the packing variation between

the two methods for 1 mm particle size.
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Figure 5.11: 1 mm particle with random distribution packing.

Figure 5.12: 1 mm particle with hexagonal distribution packing.

Fig 5.13 and Fig 5.14 shows the packing variation between two methods for 0.75

mm particle size
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Figure 5.13: 0.75 mm particle with random distribution packing.

Figure 5.14: 0.75 mm particle with hexagonal distribution packing.

Fig 5.15 and Fig 5.16 shows the packing variation between two methods for 0.5

mm particle size
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Figure 5.15: 0.5 mm particle with random distribution packing.

Figure 5.16: 0.5 mm particle with hexagonal distribution packing.

Above figures represent structure for various particle radii. To understand the ef-

fect more effectively, the stress-strain curve and packing densities need to be studied

for this. Fig 5.17 & Fig5.18 shows the representation of the structure and Fig 5.20

shows the packing densities comparison for hexagonal packing and random distribu-

tion packing.
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Figure 5.17: 1.25 mm particle with random distribution packing.

Figure 5.18: 1.25 mm particle with hexagonal distribution packing.

Following table 5.2 represents the values of packing densities for hexagonal packing

and random packing for different particle sizes and Fig 5.19 provides the graphical

representation of these densities.
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Table 5.2: Comparison of packing densities between hexagonal and random distri-
bution methods.

Particle size (mm) Random distribution packing

(%)

Hexagonal distribution

packing (%)

0.25 53.5 72.2

0.5 52 70.19

0.75 50 67.97

1.0 49.2 66.2

1.25 48) 65

Figure 5.19: Packing densities for hexagonal and random packing.

As shown in Fig 5.20, hexagonal distribution of particles gives larger values of UCS

and strain to failure. However, an abnormal peak is seen in the nature of the graph.

This peak is undesirable and this result might not represent the accurate behavior of

the system. Even though the values of UCS and strain to failure are lesser in case of

random packing, the nature of the curve is smooth and these values can be adjusted

to required values by adjusting the other parameters of the model.
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Figure 5.20: Material response for hexagonal and random packing.

5.7 Influence Of Particle Generation Method

In DEM, particle generation method has large influence on the response of the

material. As stated in chapter 2, there are mainly three particle generation methods,

• Mono-disperse

• Bi-disperse

• Poly-disperse

In this study mono-disperse and poly-disperse generation methods are studied. In

Yade, poly-disperse particle generation can be controlled by a parameter called fuzz.

As per the user input of the fuzz value, DEM code evaluates and distributes the

particles of different radii in the domain. Radius variation inside the domain is

computed as follows.

Particle radius = initial particle radius ± (initial particle radius× fuzz) (5.4)

Corresponding to the fuzz input, particles of all three dimensions as shown in equation

5.4 are generated inside the domain. The selection and distribution of these radii are

random inside the domain. Following figures represent fuzz variation for 1.25 mm

particle size.
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(a)

(b)

Figure 5.21: Fuzz variation coefficient 0.2
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(a)

(b)

Figure 5.22: Fuzz variation coefficient 0.4
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(a)

(b)

Figure 5.23: Fuzz variation coefficient 0.6

To understand the effect of poly-disperse particle generation method, each case of

the fuzz variation is simulated with same DEM parameters used for 1.25 mm mono-

disperse particle generation code. Following Fig 5.24 shows the effect of different fuzz
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values on the behavior of material.

Figure 5.24: Material response for different poly-disperse particle generation algo-
rithms.

As the fuzz coefficient is increased, the UCS and strain to failure decreases in all the

other cases except for fuzz = 0.2. Further in-detail analysis needs to be performed

to understand the mechanism behind this particular response.



CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

6.1 Conclusions

This chapter summarizes the results presented in this research work. With properly

calibrated parameters, it can be concluded that JCFPM can be successfully used in

DEM to model cementitious materials like plain concrete. Yade is the simulation

tool used in this research, because it has the flexibility of particle generation and

packing inside the domain which allows it to provide an accurate response of granular

material behavior like concrete with less computational complexity. Yade is also

computationally less expensive compared to other DEM packages. The simulation

results obtained in this research work are in close agreement with the experiments

performed by Flores and Pando [29].

As mentioned in the previous chapter, a parametric study including various micro

and macro parameters was performed to calibrate DEM parameters in this research

work. The implemented particle model in this study provides the accurate mate-

rial response for plain concrete under a uniaxial compression test. From the results

presented in this study, it can be concluded that the bulk response of the material

depends upon the parameters such as, particle size, packing method, particle arrange-

ment inside the domain, and material micro-properties. Due to the dependency of

the model on parameters, care must be taken in deriving bulk properties of material

based only on DEM simulations.

From the parametric study performed in this research work and results shown in

section 5.3, it can be concluded that there is no unique set of parameters which gives

accurate response in DEM. Therefore, validation of DEM models is important. As
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there is no baseline for selection of parameter values in DEM, it opens the scope for

future work to understand the optimal range of parameter values so that models can

be accurately use to show bulk response of the material.

6.2 Recommendation For Future Work

The current research work demonstrates the modeling of a uniaxial compression re-

sponse of a plain concrete using jointed cohesive friction particle model method. This

research focuses on the unconfined loading conditions for concrete and the influence

of model parameters on the response. However, there are several areas in this model

which would need to be studied furthermore.

Parameter variation in this research was limited to five DEM parameters and their

response on the material behavior. Further studies on influence of other parameters

like modulus of elasticity, poisson’s ratio and friction angle would help to understand

the behavior in more detail.

Particle distribution in this study was limited to spherical particles. However, in

physical material the particles are not exactly spherical. To model this, other shapes

and combinations of shapes for particles need to be studied further. Also, response

of poly-disperse method was studied at very preliminary stages. More simulations

and detailed study need to be done in this particle generation method. If carefully

designed, poly-disperse method would provide more insights into the packing density

of the domain. Ideally larger packing can be obtained by filling a particle with small

radii into the gaps between two large sized particles. However, this hypothesis is also

preliminary and more studies need to be done.

Another extension of this study would be to include hoop strain calculation and

validate it using experimental data. Although the study only focused on unconfined

compression, it needs to be extended to confined compression test using DEM as well

as validated to gain a better understanding about material modeling using DEM.
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