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ABSTRACT 

 
 

MICAH D. THOMAS.  Econometric determinants of residential solar development in the 
United States.  (Under the direction of DR. PETER SCHWARZ) 

 
 

 I perform a comprehensive econometric analysis of the demographic determinants 

of residential solar installations in the contiguous United States. The exponential growth of 

residential solar in the United States has been aided by declining component costs, 

environmental concern, and government incentives. Contentious debate surrounds solar 

incentives as there is uncertainty over their efficacy and equity. Previous research has 

attempted to provide context to this debate by modeling the development of residential solar 

in the United States, but it has relied upon partial datasets and Generalized Linear Models. I 

utilize the comprehensive DeepSolar database on residential solar in the US and, contrary to 

previous research, find that a Cragg Hurdle model specification outperforms the Generalized 

Linear Model frameworks. Results of this model suggest that solar incentives have had a 

positive impact on residential solar development and that residential solar adoption in the 

United States has been pursued by counties that are characterized by the middle class. This 

suggests that solar incentives have been both more effective and perhaps more equitable 

than previously thought. 

  



iv 

 

 

 

ACKNOWLEDGMENTS 
 
 

 Thank you to my patient wife Mikala. This thesis stands as a testament to the time 

that I owed to you, but spent in academic studies. Thank you for your kind encouragement 

and stoicism throughout this endeavor. Your warm love and cheerful humor sustained my 

sanity. 

 Thank you to my parents, Phillip and Cynthia. Your love and encouragement 

regardless of my self-deprecation has kept me motivated. 

I extend my sincerest thanks to my thesis chair, Dr. Schwarz. I greatly appreciate 

your patience and guidance over the past several years. Your mentorship has been invaluable 

in developing my understanding of economics. 

 Thank you to Dr. Amato for your continuing support. You have been a great teacher 

and mentor and I will always be grateful for what you have done for me. 

 Thank you to Dr. Depken for all of your time. Your classroom instruction and 

academic demeanor has left a positive impact on my growth as a student. Your approach to 

economics was both refreshing and inspiring and I will not shortly forget it. 

  



v 

 

 

 

TABLE OF CONTENTS 

 
 

LIST OF TABLES .............................................................................................................................. vi 

LIST OF FIGURES .......................................................................................................................... vii 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

CHAPTER 2: DESCRIPTION AND DATA ................................................................................ 7 

CHAPTER 3: MODEL SELECTION .......................................................................................... 14 

3.1 Dependent Variable Characteristics .......................................................................... 14 

3.2 Generalized Linear Models (GLM) ........................................................................... 17 

3.2.1 Generalized Linear Model Framework ............................................................... 17 

3.2.2 Poisson Regression Model (PRM) ...................................................................... 18 

3.2.3 Negative Binomial Regression Model (NBRM) .................................................. 19 

3.2.4 Zero-Inflated GLM Framework......................................................................... 20 

3.3 Censored Regression Models (CRM) ........................................................................ 21 

3.3.1 Tobit Regression Model ..................................................................................... 21 

3.3.2 Cragg Hurdle Model .......................................................................................... 21 

3.3.3 Heckman Two-step Regression Model ............................................................... 23 

3.3.4 Stochastic Frontier Analysis ............................................................................... 23 

3.4 Overdispersion Testing ............................................................................................ 23 

3.5 Model Performance .................................................................................................. 26 

CHAPTER 4: RESULTS .................................................................................................................. 27 

4.1 First Stage Selection Model ....................................................................................... 29 

4.2 Second Stage Model ................................................................................................. 29 

4.3 Complete Model ....................................................................................................... 30 

CHAPTER 5: CONCLUSIONS ..................................................................................................... 32 

REFERENCES .................................................................................................................................. 34 

 
  



vi 

 

 

 

LIST OF TABLES 
 
 
TABLE 1: Variable Descriptions and Sources ................................................................................ 8 

TABLE 2: Summary Statistics ............................................................................................................ 9 

TABLE 3: Overdispersion Tests for the PRM .............................................................................. 24 

TABLE 4: Dispersion Values for the GLM Methods .................................................................. 25 

TABLE 5: Performance Statistics of GLMs and CRMs .............................................................. 26 

TABLE 6: Cragg Hurdle Model Results ......................................................................................... 28 

TABLE 7: Average Marginal Effects of the Cragg Hurdle Model. ............................................ 30 

 
  



vii 

 

 

 

LIST OF FIGURES 
 
 
FIGURE 1. Histogram of the number of residential solar installations in the US .................. 15 

FIGURE 2. Residuals vs fitted values of the OLS regression ..................................................... 16 

FIGURE 3. Dispersion Comparison of the GLM Methods ....................................................... 25 



 

 

 

 

CHAPTER 1: INTRODUCTION 
 
 

Over the past several decades, residential solar saw tremendous growth in its 

development and adoption in the United States. Attributed largely to economies of scale and 

advances in materials and manufacturing, the cost of a residential system has decreased 

dramatically (Kavlak et al., 2017). According to National Renewable Energy Laboratory’s 

(NREL) U.S. Solar Photovoltaic System Cost Benchmark, the price per watt of installed 

capacity fell from $7.34 in 2010 to $2.70 by 2018. These declining costs have made investing 

in a residential solar system more feasible for a greater portion of the population. In addition 

to declining costs, the prevalence of grid-connected residential solar energy programs have 

increased. Where available, solar energy produced in excess of demand by an individual’s 

system can be “sold” back to the local electric utility. There exist different mechanisms by 

which individuals are compensated for their excess generation). This “sale” of excess 

generation creates the potential to produce long-run net-profits for those who install 

systems.  

Aside from financial motivations, increasing concern over environmental issues has 

increased interest into environmentally conscious investments. This is reflected by the 

change in funding allocated by governments toward climate change related issues. In the US, 

annual investments of this nature by the federal government increased from $2.4 billion in 

1993 to $13.2 billion in 2017 (Government Accountability Office, 2018). For context, the US 

federal government has allocated a total of $8.1 billion dollars to the National Science 

Foundation for fiscal year 2020 (Ambrose, 2019). Environmental advocates argue in favor of 

these investments, specifically those targeted at reducing greenhouse gas emissions, because 

of the theorized potential to slow the advance of climate change and avoid greater future 
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costs. Residential solar is one such investment. Residential solar can reduce overall demand 

for electricity from utilities and result in a reduction in net carbon emissions. Energy 

produced from a residential solar installation is carbon-free whereas a majority of grid 

generation is carbon intensive (63.5 percent of total US utility generation in 2018 was 

comprised of carbon-based fuels according to the U.S. Energy Information Administration 

(EIA)).  

At a larger scale, governments have had an impact on the development of residential 

solar. From the federal government to local municipalities, various incentives have been 

devised to increase the number of residential installations. Yet, the motivation of 

governments to do so can be debated. It cannot be known whether politicians act out of 

genuine environmental concern or if renewable energy is simply a beneficial political 

position. Regardless, these incentives are aggressively pursued. A variety of incentives 

including property and sales tax rebates and cash discounts have been implemented. One 

such incentive is the Residential Renewable Energy Tax Credit (RRETC). Instituted in 2005, 

the RRETC allows taxpayers to claim a federal income tax credit equal to a percentage of 

expenditures on eligible renewable energy technologies (Bipartisan Budget Act of 2018). This 

is one example of many programs designed to spur growth in renewable energy technologies 

with a specific focus on residential solar. 

These incentives are not free, however, and come at a significant cost to the tax base. 

This naturally led to contentious debate as to the efficacy and equity of such incentives. 

Advocates champion the potential environmental and grid benefits, while opponents of such 

measures argue that the benefits of these incentives disproportionately benefit wealthy 

individuals and that many of those who are installing systems would do so regardless of 
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incentives. This disproportionate benefit attained by the wealthy could represent a significant 

cross-subsidization. Cross-subsidization in this context is the subsidization of residential 

solar for wealthy individuals by middle- and low-income individuals. If this is the case, it 

presents an important equity concern to policy makers. 

Previous research informed the debate by analyzing various solar incentives. Yet, this 

research is limited by the lack of a comprehensive database of residential solar installations in 

the United States. Some regions kept better records than others, but it remained a disjointed 

collection of data from differing regions. Institutions such as the Solar Energy Industries 

Administration (SEIA) and the Interstate Renewable Energy Council (IREC) attempted to 

use industry, utility, and state data to create more comprehensive databases. These resources 

are only available for purchase often at a significant cost. There have also been publicly 

available resources such as the Open PV Project by National Renewable Energy Laboratory 

(NREL) and Berkeley Lab’s Tracking the Sun dataset. Both the public and private datasets 

have been used in research, but they share a common weakness; the presumed validity of 

these resources is only supported by approximately matching the estimated annual 

generation from residential solar.   

The lack of a comprehensive resource left policy makers in the US to rely upon 

domestic research utilizing second best resources, or foreign studies, to guide domestic 

policy design. Yu et. al. (2018) attempts to solve this issue by developing the DeepSolar 

database. DeepSolar is a comprehensive database of residential solar installations in the 

United States based on satellite imagery. The theory behind the approach is that solar panels 

must have a clear view of the sky to function, so every residential solar installation must be 

visible with satellite imagery. To accomplish this, they developed a machine learning 
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algorithm to analyze and accurately identify residential solar installations from satellite 

imagery. Currently, the DeepSolar database only contains the number of systems installed by 

the date of the imagery analysis, but it is possible for this database to be continually updated 

in the future.  

Much of the research to date on residential solar focuses on the impact of incentives 

on residential solar growth. One recent study by Matisoff & Johnson (2017) performed an 

analysis of 400 various state and utility incentives to quantify their respective impacts on 

residential solar growth. Of the incentives, some operate by reducing the initial cost burden 

of installation while others employ longer-term compensation strategies. They found 

incentives of the former resulted in the greatest impact while 67 percent of overall incentives 

had no statistically significant impact on residential solar. 

Research has sought to create predictive solar development models. Some 

approaches focused on predictability alone at the cost of causal interpretation. Yu et. al. 

(2018) developed a Random Forest Regression model using the DeepSolar database. The 

Random Forest Regression is a machine learning process whereby a decision tree is formed 

by fitting a variable to randomly selected training and testing portions of the data. The model 

produced significantly better predictability and out-of-sample fit, but such a process 

produces a decision tree that has little causal interpretation. Other approaches have applied 

more traditional econometric methods with an emphasis on causal interpretation. De Groote 

et. al. (2016) analyzed residential solar data in Flanders, Belgium. They developed a series of 

Poisson regression models focused on capturing the heterogeneity in solar adoption. 

There are two potential problems in the existing literature: the first is the reliance on 

incomplete databases, as discussed earlier, and the second is model selection. Many previous 

studies have relied upon Zero-Inflated Poisson and Zero-Inflated Negative Binomial 
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regressions. These modified forms of the Poisson and Negative Binomial Regressions 

attempt to account for data with an overabundance of zero observations, otherwise known 

as zero-inflated data. Zero-inflation is a likely condition of residential solar installation count 

data, as adoption has not become so widespread as to sufficiently reduce the prevalence of 

zero counts. Previous studies have selected these models in large part by relying upon the 

Voung Test, a likelihood-ratio test that compares the predicted probabilities of two non-

nested models. Recent research has shown this test to have inherent bias in favor of the 

zero-inflated alternatives and to be unfit for determining the presence of zero inflation 

(Wilson, 2015).  

I address these issues by applying the comprehensive DeepSolar database and a 

model selection process based on information criterion that includes analysis of Censored 

Regression Models. These models are specifically designed to handle data where there is 

evidence of censoring. I hypothesize that there is censoring in the zero-inflation process 

because it may be generated by some underlying censoring mechanism. That mechanism 

may be the theoretical zero lower bound of count data where an individual may have a 

negative propensity to install a residential solar installation, but their decision-making 

process is bounded by zero. If an individual finds residential solar to be unsightly or 

perceives residential solar as a threat they may have a negative disposition towards residential 

solar that would be reflected in a negative propensity to install. Thus, censored regression 

models which attempt to parameterize the censoring mechanism could perform better than a 

modified count distribution as applied in the Generalized Linear Model framework. Lastly, 

relying on information criterion rather than the Vuong Test ensures the selection process is 

unbiased. 
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I intend to provide insight into the demographic characteristics of residential solar 

adopters. By better understanding the population that is installing residential solar, 

researchers can attain a better understanding of the impacts of solar incentives. As 

previously mentioned, much of the debate around solar incentives revolves around the 

contention that cross-subsidies benefit wealthy residential solar adopters. By evaluating 

demographic characteristics such as mean income, income inequality, and the value of 

owner-occupied housing units, this study seeks to better identify the populations that have 

installed residential solar and gain a clearer picture of the efficacy and equity implications of 

solar development. 

I find that a Cragg Hurdle Model specification outperforms the Generalized Linear 

Models applied in previous research. Based on the results of the model, I find evidence that 

state-level residential solar incentives have a positive impact on residential solar 

development. I also find that middle-class populations pursue residential solar development 

suggesting that a cross-subsidy for residential solar is not present.  
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CHAPTER 2: DESCRIPTION AND DATA 
 
 

In this study, I use data to model, at the county level in the contiguous United States, 

the demographic characteristics of households that adopted residential solar. In the 

estimated models, the count of residential solar is the dependent variable and a selection of 

demographic variables are the independent variables. I regress the demographic variables on 

the count of residential solar installations to develop the economic relationship between the 

two. I describe the variables selected, the economic intuition for their inclusion in the model, 

and a description of the variable source. I use Stata 16 to conduct the econometric analysis. 

I use the DeepSolar Database as the source of information on the count of 

residential solar installations in the US. Treating this variable as the dependent variable lets 

the developed models capture the impacts of various demographic variables on the 

development of residential solar. The DeepSolar database was created by developing a 

machine-learning algorithm to accurately identify installed residential solar from satellite 

imagery. Being the most comprehensive of the available datasets on residential solar 

installations, this resource enables a thorough analysis of residential solar development 

across the United States.  

The remaining variables used in this model comprise the set of independent variables 

used to estimate changes in residential solar development. Table 1 contains descriptions and 

sources for all the variables used in this study. Table 2 contains the summary statistics for 

those variables. 

Solar irradiance, measured in kWh/m2/day, is a measure of the level of potential 

solar generation available to a location on the surface of a planet. I expect that residential 

solar development increases as the level of solar irradiance increases. This is because higher 

solar irradiance means greater potential solar generation, which allows a system to produce 
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better return on investment. I sourced this variable from the National Renewable Energy 

Laboratory (NREL).  

 

Table 1: Variable Descriptions and Sources 

Variable Description 

FIPS 1 Five Digit FIPS Code 
State 1 State 
County 1 County 
System Count 2 Number of residential solar systems in 2017 
Irradiance 3 Solar radiation (kWh/m2/day) 
Population Density 4 Thousand people per square mile (population/1000/mi2) 
GDP  5 2017 real GDP in millions of 2012 chained dollars 
RPP  5 Regional Price Parity (RPP) by MSA 
Democratic Vote 6 Percent of presidential vote received by Democrats in 2016  
Rural 7 Dummy variable indicating a region is not part of an MSA  
Housing Value 1 Median normalized value of owner-occupied housing units ($/1000) 
Owner Occupancy 1 Percent of owner-occupied housing units 
Mortgage Rate 1 Percent of owner-occupied housing units with mortgage 
Gini 1 Estimated Gini coefficient (0 = perfect income equality) 
Median Age 1 Median age of the population 
Unemployment Rate 1 Unemployment rate (proportion of unemployed per 100 individuals) 
Mean Income 1 Mean household income in thousands of normalized dollars ($/1000) 
State Incentives 8 Number of state incentives for residential solar energy 
Net Metering 8 Number of years since the start of state net metering policy 
Feed-in Tariffs 8 Number of years since the start of state feed-in tariffs 
Sales Tax Rebate 8 Number of years since the start of state sales tax incentives 
Retail Rate 9 Average normalized residential retail rate of electricity from 2013 through 2017 
Less Than High School 1 Percent of population with less than a 12th grade education 
High School Education 1 Percent of population with high school education 
Some College Education 1 Percent of population with some college education 
Associate Degree 1 Percent of population with an associate degree 
Bachelor’s Degree 1 Percent of population with a bachelor’s degree 
Graduate Degree 1 Percent of population with a graduate degree 

Note. Superscripts denote the data sources as follows:  

(1) US Census Bureau’s American Community Survey 5-Year Estimates 2017  
(2) DeepSolar Database  
(3) National Renewable Energy Laboratory  
(4) US Census Bureau National Counties Gazetteer File 
(5) Bureau of Economic Analysis – 2017 Data Tables 
(6) MIT Election Data and Science Lab - County Presidential Election Returns 2000-2016 
(7) National Bureau of Economic Research 2017 County Crosswalk File 
(8) N.C. Clean Energy Technology Center’s DSIRE Database  
(9) Energy Information Administration 
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Table 2: Summary Statistics 

Variable Units Mean.  Std. Dev. Min Max 

System Count - 447 3822 0 96874 
Irradiance  kWh/m2/Day 4.98 0.502 3.72 6.75 
Population Density  Population/1000/mi2 0.0006 0.00192 .000008 0.0963 
GDP $ Millions 5983 27969 17.8 688661 
Regional Price Parity - 0.908 0.0759 0.816 1.18 
Democratic Vote  % 0.313 0.151 0.0314 0.909 
Rural  Binary 1=non-MSA 0.631 0.483 0 1 
Housing Value $ Thousands 0.696 0.443 0.0009 1.77 
Owner Occupancy % x 100 71.6 7.98 19.7 93.5 
Mortgage Rate % x 100 51.9 12.3 0 85.9 
Gini  - 0.445 0.0353 0.339 0.598 
Median Age  - 41.2 5.31 23.5 66.4 
Unemployment Rate  % x 100 6.33 2.98 0 28.7 
Mean Income  $ Thousands 59.7 18.7 25.7 187 
State Incentives  - 5.76 3.7 1 17 
Net Metering  - 12.3 9.27 0 35 
Feed-in Tariffs  - 0.351 1.81 0 11 
Sales Tax Rebate  - 3.12 6.3 0 40 
Retail Rate  Cents 8.66 2.23 6.32 18.04 
Less Than High School  Exclusion Category 13.8 6.5 1.1 58.6 
High School Education % 34.5 7.1 8 54.9 
Some College Education  % 21.8 3.81 6.5 36.6 
Associate Degree  % 8.74 2.612 0.8 21.7 
Bachelor’s Degree % 13.7 5.54 2.4 43.7 
Graduate Degree  % 7.31 4.12 0 40.3 

 

I also include Gross Domestic Product (GDP) and Regional Price Parity (RPP) in 

this analysis. GDP represents the total economic output at the county level and is expected 

to show a positive correlation with residential solar development. As a region’s GDP grows, 

the region’s overall wealth increases which is expected to increase the development of 

residential solar within the region. RPPs represent price level adjustments across the United 

States. Purchasing power across the United States is not homogenous, so it is necessary to 

use RPP to normalize other pricing variables included in this study to ensure that results are 

not skewed by the price level. I retrieved both variables from the Bureau of Economic 

Analysis (BEA). 

I include population density and a dummy variable for Metropolitan Statistical Area 

(MSA) to capture the effects of urbanization on residential solar development. Population 
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density, measured as thousand people per square mile, yields a parabolic relationship with 

residential solar development. I expect that residential solar development will be lowest in 

areas with the highest population densities, which correspond to urban environments where 

housing units are primarily condos and apartments. The parabolic shape is likely to result 

from an optimality in increasing population density corresponding to a point where the 

housing characteristics turn from suburban areas to more urban regions. Inclusion in an 

MSA captures the effect of urban economies as compared to rural economies. An MSA is a 

region of interrelated economies that transcends localized borders. Inclusion of the MSA 

variable captures the effect of proximity to economic centers and is expected to have a 

positive impact on residential solar development, as a more robust economy should generate 

greater wealth. I sourced data on population density from the US Census Bureau National 

Counties Gazetteer File. I use information from the National Bureau of Economic Research 

(NBER) on Metropolitan Statistical Areas. 

The average residential retail rate of electricity per kWh included in these models 

captures the effect of the cost of electricity on residential solar development. Intuitively, I 

expect residential solar development to increase as the price of electricity increases since this 

would make the return on investment of a residential installation greater.  I normalize these 

values with the RPP. I sourced data on the per kWh retail rate of electricity from the EIA. 

I expect that personal political ideology has an impact on an individual’s propensity 

to adopt residential solar. To capture this effect, I use the percentage of votes cast for the 

Democratic candidate in each county in the 2016 Presidential Election . I theorize that, on 

average, Democratic voters tend to have a more favorable view of renewable energy 

technologies and a greater willingness to invest in environmental measures. This would cause 
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the level of residential solar development to increase as the percentage of Democratic votes 

increases. Election results are from the MIT Election Data and Science Lab. 

I include data on the number of state solar incentives, the number of years since the 

implementation of net metering, the number of years since the implementation of feed-in 

tariffs, and the number of years since the implementation of a sales tax rebate program to 

capture the effects of solar incentives on the development of residential solar. Since these are 

all state incentives designed to stimulate the growth of residential solar development, I 

expect that all of these would have a positive impact if they are effective. I use the N.C. 

Clean Energy Technology Center’s DSIRE Database as the source for information on solar 

incentives. 

The number of state solar incentives is a proxy for the state level investment into 

solar. Ideally, information on each incentive and its value could be incorporated to gain more 

accurate insights, but the exact implementation of incentives and the legislative structure of 

such incentives vary greatly. This simplification allows for a general analysis of the impact of 

increasing solar incentives.  

The number of years since the start of net metering captures the impact of net 

metering policies. Net metering is a compensation framework for residential solar wherein 

the system owner receives energy credits for unused solar generation transmitted to the 

connected electric grid. The number of years since the start of feed-in tariffs captures the 

impacts of state feed-in tariff policies. Feed-in tariffs guarantee solar adopters fixed value for 

their solar generation for a period of years. In theory, this should encourage solar 

development by providing long term certain returns to solar adopters. Lastly, I include the 

number of years since the start of a sales tax rebate program to capture the effect of sales tax 

rebate programs on residential solar development. These programs exempt residential solar 
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installations from sales tax on purchased components. This lowers the upfront cost of such a 

system and likely incentivizes the development of residential solar. 

The remaining demographic variables are all from the US Census Bureau’s American 

Community Survey 2017. This survey provides publicly available information on a wide 

variety of topics across the United States. This study utilizes the five-year estimate version of 

the dataset. This version of the survey includes the most granular data and provides the best 

insight into the true population values by averaging the estimates across the five-year period 

preceding the date of publication. 

The median normalized value of owner-occupied housing units captures the value of 

housing within regions having residential solar. If solar incentives are encouraging the 

wealthy to install residential solar, then we would expect a positive relationship between the 

value of housing and residential solar development. I use only data on owner-occupied 

housing because renters are not likely to invest in residential solar. A tenant has little to gain 

from investing in a residential solar installation as the return on investment spans decades . 

A landlord similarly has little incentive to install systems on their rental properties because 

tenants most often pay utilities which would negate landlord benefits of installing a solar 

system. For this same reason, I include the percentage of owner-occupied housing units in 

each county. 

 The last of the housing characteristics included in this analysis is the percentage of 

households with mortgages. Since a residential solar installation presents a significant 

investment, which may require a loan to purchase for most households , the level of housing 

debt an individual has may impact the rate of solar development. Mortgages, representing 

home debt, may be a significant consideration for homeowners when evaluating residential 

solar. The return on installing a residential system may not outweigh the cost particularly 
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when the return is weighted by existing debt. This means that residential solar is likely to 

have lower development in regions with greater proportions of homes with mortgages. 

 Educational attainment of the population and median age are also included. Median 

age is intended to capture generational differences in solar adoption. Younger generations 

are likely to be more environmentally conscious and thus more likely to invest in a residential 

solar system. More educated individuals are likely to have a greater propensity to support 

environmental issues, so the number of residential solar installations is likely to increase as 

educational attainment increases. I consider education at several levels: less than high school, 

high school degree, some college education, associate’s degree, bachelor’s degree, and 

graduate degree. These variables contain the percentage of the population in each county by 

their highest level of educational attainment. The category of less than high school is the 

exclusion category in each estimated model. 

 The remaining variables are the Gini coefficient, the unemployment rate, and mean 

income. The Gini coefficient measures the level of income inequality in a region. A Gini 

coefficient of 0 indicates perfect income equality and a coefficient of 1 indicates perfect 

income equality. If only the wealthiest individuals within a region pursue residential solar , 

then there will be a positive correlation between the Gini coefficient and the count of 

residential solar. The unemployment rate is also included to help describe the characteristics 

of regions that have adopted residential solar. If residential solar is pursued in areas 

characterized by higher levels of unemployment, then the unemployment rate will have a 

positive correlation with residential solar development. The last of these variables is mean 

income. Inclusion of mean income, normalized by the Regional Price Parity, gets at the core 

of the cross-subsidization issue. If cross-subsidization is taking place, then we expect to see a 

positive correlation between mean income and residential solar development.   
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CHAPTER 3: MODEL SELECTION  
 
 
3.1 Dependent Variable Characteristics 

The variable of interest in this study is the count of residential solar installations in 

each county of the contiguous United States. In general, the distribution of a count variable 

will have significant impacts on the methods selected to model its behavior. Intuition 

suggests that these data contain clustering at the zero-lower bound and characteristics of 

zero inflation driven by censoring. Zero inflation is a condition wherein the data process is 

characterized by an overabundance of zero observations. Clustering is a condition wherein a 

significant portion of observations are contained within a small portion of the distribution 

relative to the size of the sample. Clustering in this application is likely a result of the fact 

that residential solar is not prevalent in most of the United States, so the number of installed 

systems in most counties is relatively low. The censoring occurs because the propensity to 

install a residential system is bounded by zero, even though propensity could be negative. A 

negative propensity to install captures the effects of individuals who possess a negative 

disposition towards residential solar resulting from various reasons such as personal 

preference or hostile political positions. This censoring leads to an inflated number of zero 

observations. 

It is important to note the difference between censoring and truncation. These two 

definitions are often associated with count data models and can lead to confusion. 

Truncation occurs when values that exceed a threshold are dropped from the data. 

Censoring, on the other hand, is a process by which values that exceed a threshold are 

contained within a value. This can be visualized as an inequality operator where in this 

instance zero is not just zero but a placeholder that represents all values less than or equal to 
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zero. Simply put, truncation excludes the additional information and censoring includes it, 

albeit inside a different value. 

I first visually inspect the data for evidence of zero-inflation and censoring. Figure 1 

contains a histogram of the number of residential solar installations in the US. This figure 

provides graphical evidence of censoring at the zero-lower bound, as well as significant 

clustering of values near zero. 

 

 

Figure 1. Histogram of the number of residential solar installations in the US 

 

This histogram is limited in its ability to provide further insight into the remaining 

distribution of count values because it is heavily driven by lower count observations. 

Examining the summary statistics and variable distribution can assist in this evaluation. The 

number of zero observations constitutes approximately 12 percent of the entire sample while 

approximately 56 percent of the observations contain ten or fewer systems. With a mean 

count of 448, a maximum observation of 96,874, and a standard deviation of 3,823, the 
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distribution is certainly clustered near zero and contains a sizeable number of zero 

observations. This is not to suggest that the mere presence of many zeros is evidence 

enough to imply zero inflation. Zero inflation is a specific instance that occurs when the 

underlying process by which those many zeros are present is driven by a different underlying 

process than the rest of the observations. I will discuss this further in the latter portion of 

this chapter. 

Having established with theory and evidence that the count-based dependent 

variable may be censored at the zero-lower bound, it is important to contemplate bias in the 

data generation process. If the process by which count data is collected is biased, then the 

data itself contain bias. In this instance, there is no reason to expect that any values 

produced by the DeepSolar method were altered in an intentionally systematic way. In fact, 

with the high level of accuracy achieved by the methodology, it may be safe to assume that 

the exclusions are minimal (Yu et. al., 2018) and likely to be the result of randomness rather 

than systematic bias.  

 

 
Figure 2. Residuals vs fitted values of the OLS regression 
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In the presence of censoring and zero-inflated data, the normality assumption is 

likely violated. As an example, a simple Ordinary Least Squares (OLS) regression was fit on 

the full model. In the presence of censored data, standard OLS will be inconsistent, but the 

residuals can still provide insight. Figure 2 contains a plot of fitted values versus residuals. 

This plot shows a clear picture of heteroskedasticity in the error. Relying on normality as the 

underlying distributional assumption is not likely a valid approach for this data.  

3.2 Generalized Linear Models (GLM) 

3.2.1 Generalized Linear Model Framework 

A censored count variable as the dependent variable suggests that a Generalized 

Linear Model (GLM) is appropriate. GLMs are of the family of Maximum Likelihood 

Estimators (MLE) that seek to maximize the log-likelihood of the general form shown in 

Equation 1: 

 

 𝑄(𝜃) = ∑ ln 𝑓 (𝑦𝑖|𝑥𝑖 
𝑁
𝑖=1 , 𝜃)   , (1) 

 

where 𝑓(𝑦𝑖|𝑥𝑖 , 𝜃) is the conditional density for a continuous y (Cameron and Trivedi, 2009). 

Generalized Linear Models allow for the underlying probability distribution of the 

dependent variable to differ from the standard normal distribution as applied in Ordinary 

Least Squares regressions. This is done by associating the response variable to the linear 

model by a link function based on a linear exponential function. The general form of the 

GLM estimator is shown in Equation 2: 

 

  𝑄(𝜃) =  ∑  [𝑎(𝑚𝑁
𝑖=1 (𝑥𝑖, 𝛽)) +  𝑏(𝑦𝑖) +  𝑐(𝑚(𝑥𝑖, 𝛽))𝑦𝑖]   , (2) 
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where 𝑚(𝑥𝑖 , 𝛽) =  𝐸(𝑦|𝑥); 𝐸(𝑦|𝑥) is the conditional mean of y, a(-) and c(-) correspond to 

different exponential linear functions, and b(-) is a normalizing constant (Cameron and 

Trivedi, 2009).  

The count data perspective and the censoring of the data are two separate issues to 

be addressed by the GLM framework. GLMs in general are designed to better encapsulate 

count data behavior by allowing the count distribution to vary with the link function. Special 

versions of these GLMs are specifically designed to address the censoring. A zero-inflated 

specification treats the outcome variable as a two-part process. This allows zeros in the 

count data to be the result of some binary function and a predictive count function 

(Cameron and Trivedi, 2009). 

As discussed previously, the censoring in this instance likely results in zero inflation, 

so a specification that accounts for the zeros would provide a better alternative. It is possible 

that the zeros do not represent inflation in which case the nonzero-inflated version of the 

GLM will perform better. In this study, I apply the Poisson and the Negative Binomial 

distribution as alternative linear exponential link functions.   

3.2.2 Poisson Regression Model (PRM) 

The first of the probability distributions to be evaluated is the Poisson distribution. 

This is often the first distribution applied in the presence of count data. The Poisson 

regression is a subset of GLM that assumes that the response variable follows a Poisson 

distribution of the form in Equation 3: 

 

   𝑓(𝑦|𝑥) = 𝑒−𝜇𝜇𝑦/y!   , (3) 
 

where 𝜇 is the conditional mean given by 𝐸(𝑦|𝑥) = exp (𝑥′𝛽). The exponential form of the 

conditional mean ensures that it is positive and in line with non-negative count values and 
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thus the solutions to the maximum likelihood process produce estimates where the count 

occurrence is both positive and dependent upon a Poisson distribution (Cameron & Trivedi, 

2009). 

The PRM is a parsimonious approach compared to other GLMs, but it has two 

restrictive assumptions. First, it assumes the independence of events. This is a particularly 

troublesome assumption in this study as it is likely that the installation of solar accelerates as 

a more robust residential solar community develops in a region. Second, the PRM assumes 

that the data exhibits equidispersion, meaning, the conditional mean is equal to the 

conditional variance. This condition is commonly violated in the presence of count data and 

requires estimation with robust standard errors or a different distributional assumption 

(Cameron & Trivedi, 1986).  

3.2.3 Negative Binomial Regression Model (NBRM) 

 The Negative Binomial Regression Model is a GLM where the underlying link 

function is based on the negative binomial distribution. The NBRM is a generalized form of 

the Poisson Regression Model that relaxes the condition of equidispersion. The application 

of the NBRM used in this study, known as NB2, is built on a Poisson-gamma distribution. 

This gamma distribution is shown in Equation 5: 

 

   𝑓(𝜆𝑖) =
1

Γ(𝑣𝑖)
(

𝑣𝑖𝜆𝑖

𝜙𝑖
)

𝑣𝑖

exp (
−𝑣𝑖𝜆𝑖

𝜙𝑖
)

1

𝜆𝑖
   , (5) 

 

where 𝜆𝑖 ~ Gamma(𝜙𝑖, 𝑣𝑖),  𝜙𝑖 is the mean,  𝑣𝑖  is the smoothing parameter, 𝜆𝑖 > 0, 𝜙𝑖 > 0, and 

 𝑣𝑖 > 0. From this distribution, the variance is estimated as shown in Equation 6: 

 

   𝑉𝑎𝑟(𝑦) =  𝜙𝑖 + 𝛼 𝜙𝑖
2   , (6) 
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where 𝛼 is the adjusted smoothing parameter of the form (1 𝑣𝑖)⁄  from Equation 5. This 

allows the variance to be greater than the mean and thus allows for inter-regional 

heterogeneity (Cameron & Trivedi, 1986). The smoothing parameter 𝛼 is used to minimize 

the interference of noise in the probabilistic process. This term is parameterized in the 

estimation process and as it approaches zero, the NBRM converges to the PRM. 

3.2.4 Zero-Inflated GLM Framework 

 A weakness of standard models in the GLM framework is their inability to properly 

capture the process of zero inflation. This led to the development of Zero-Inflated GLMs 

whereby the zeros are modeled by a more flexible process involving the count density and a 

binary process. Zeros can result in two ways: when the binary process is equal to zero or 

when the binary process is 1 and the count density then equals zero. This functional 

relationship is modeled in Equation 7: 

 

   𝑓(𝑦) =  {
𝑓1(0) + {1 − 𝑓1(0)}𝑓2(0)         𝑖𝑓 𝑦 = 0
{1 − 𝑓1(0)}𝑓2(𝑦)                         𝑖𝑓 𝑦 ≥ 1

    , (7) 

 

where 𝑓2(∗) represents the count density and 𝑓1(∗) is the density function of a binary process. 

If the binary process equals 0, then y = 0, with a probability of 𝑓1(∗). If the binary process 

equals 1, then y draws a value from the count density 𝑓2(∗) with a probability of 𝑓1(1). This 

flexible framework allows the parameters that describe the two densities to differ. This 

approach can be applied to both the Poisson Regression Model (creating the Zero-Inflated 

Poisson Regression Model) and the Negative Binomial Regression Model (creating the Zero-

Inflated Negative Binomial Regression Model) where 𝑓2(∗) then represents the respective 

count density (Cameron & Trivedi, 2009).  
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3.3 Censored Regression Models (CRM) 

3.3.1 Tobit Regression Model 

GLMs are not the only available approach. Research on modeling with censored data 

has created its own category of censored regression approaches. The first and most basic of 

these models is the Tobit Regression Model. It attempts to account for censoring by 

modeling the outcome variable as a function of some unobserved latent variable. The issue 

in this instance is that the Tobit model relies heavily on normal residuals to produce 

consistent estimators and this characteristic is not likely to be present in these data. In a 

general approach, the data may be transformed to produce normal residuals. This analysis, 

however, relies on zero-inflated count data making it unwise to transform the data in 

traditional ways, i.e. log transform the dependent variable. Transformation of this nature 

would exclude the zero observations and give inaccurate results. Instead, using the original 

count data in an alternative censored model approach is the best course of action.  

3.3.2 Cragg Hurdle Model 

The alternative approach applied here is a specific form of hurdle model. Hurdle 

models, called two-part models, allow for the zero values in the dependent variable to be 

produced by two independent processes. They are designed to capture the two-step 

decision- making process in the dependent variable. First there is the decision to be in the 

participant group and then there is the decision to participate (Cameron and Trivedi, 2009). 

In terms of this study, the first model predicts whether any residential solar systems will be 

installed in a county and a second model predicts how many systems will be installed given 

the first model predicts that county will have solar. These two decisions are treated as two 

independent models and separately estimated. 
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I apply a specific version of Hurdle Model that is known as the Exponential Cragg 

Hurdle Model. This model assumes a lower bound of 0 and is characterized by the model in 

Equation 8: 

 

   𝑦𝑖 =  𝑠𝑖ℎ𝑖
∗   , (8) 

 

where 𝑦𝑖  represents the observed value of the dependent variable and ℎ𝑖
∗ is a continuous 

latent variable observed when the selection variable 𝑠𝑖 is equal to 1. The term ℎ𝑖
∗ in the 

exponential framework is of the form shown in Equation 9: 

 

   ℎ𝑖
∗ =  exp (𝑥𝑖𝛽 + 𝑣𝑖)   , (9) 

 

where 𝑥𝑖 is a vector of explanatory variables, β is a vector of coefficients, and 𝑣𝑖 is an error 

term with a normal distribution. The selection variable 𝑠𝑖 is modeled in Equation 10: 

 

   𝑠𝑖  =  {
1             𝑖𝑓 𝑧𝑖 𝛾 + 𝑒𝑖 > 0
0                      otherwise

    , (10) 

 

where 𝑧𝑖 is a vector of explanatory variables, 𝛾 is a vector of coefficients, and 𝑒𝑖 is a standard 

normal error term (StataCorp, 2019a). 

 The specification used in this study applies a Probit approach to the selection 

variable, and then fits the exponential outcome model on the dependent variable. This 

process treats the values at zero (which is the censoring point in these data) as being 

observed rather than censored. This means that observations at the censored value are not 

treated as the result of an inability to observe the distribution below the censoring point 

(StataCorp, 2019a). 
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3.3.3 Heckman Two-step Regression Model 

The Heckman Two-step Regression Model is another censored regression model 

commonly used in data analysis. The approach is similar in nature to the Cragg Hurdle 

Model in that it attempts to account for a sample selection issue by first modeling the sample 

selection via a Probit specification and then modeling the behavior with least squares 

regression. However, the Cragg Hurdle is designed to account for censorship in the data and 

the Heckman Two-step Model is designed to account for truncation in the data. Given that 

the dataset of interest in this study is assumed to be censored and not truncated, the Cragg 

Hurdle approach is more appropriate (Cameron and Trivedi, 2009).  

3.3.4 Stochastic Frontier Analysis 

The last of the relevant censored regression model approaches is Stochastic Frontier 

Analysis. Originally designed to model inefficiency in the production of a firm, stochastic 

frontier models have expanded to analyze a variety of censored econometric problems. They 

have also been used to analyze consumer demand. By modeling the deviation from the 

estimated frontier, researchers can estimate the demand characteristics of a sample. The 

general approach is to model the outcome error as some function of an efficiency term and 

then log transform both sides of the equation. This approach is not applicable in this 

instance due to the use of count level data with likely zero inflation. A transformation of the 

data as applied in Stochastic Frontier Analysis will alter the data in such a way as to distort 

the model results. For this reason, this model is not pursued further in this study (StataCorp, 

2019a).  

3.4 Overdispersion Testing 

The first of the Generalized Linear Models to be estimated is traditionally the 

parsimonious Poisson regression. If the Poisson is properly specified and fits the data well, it 



24 

 

 

can outperform the more complicated alternatives. The first step in evaluating the Poisson 

regression is to verify the property of equidispersion. In a properly specified Poisson model, 

we expect to find that the conditional variance is equal to the conditional mean. Often this 

property is violated, in which case there is overdispersion in the data and additional steps 

must be taken. Table 3 contains the results of the Deviance and Pearson goodness-of-fit 

tests for the Poisson regression.  

 

Table 3: Overdispersion Tests for the PRM 

Deviance goodness-of-fit: 929961 

Prob > 𝜒2 (df = 3024) 0.000 
 

 

Pearson goodness-of-fit: 1531565 

Prob > 𝜒2 (df = 3024) 0.000 

Note. Null hypothesis is the presence of equidispersion. 

 

 

These tests measure how well the Poisson model fits the data. With p-values of zero, both 

reject the null hypothesis of equidispersion. This suggests that a Negative Binomial 

regression or a Poisson regression with robust standard errors may provide more accurate 

estimators of the probabilistic outcomes than the standard Poisson regression.  

In all, I estimate a Poisson regression (PRM), a Negative Binomial regression 

(NBRM), a Zero-Inflated Negative Binomial regression (ZINB), and a Zero-Inflated 

Negative Poisson regression (ZIP) on the full model with an inflation specification 

containing all variables. All models are estimated using robust standard errors. Figure 3 and 

Table 4 display the dispersion values for each model. All the models struggle to properly 

model the zero counts to some extent. From the graph, the PRM presents high levels of 

overdispersion relative to the other models which exhibit underdispersion. This suggests that 

a NBRM will outperform the PRM due to its ability to parameterize the overdispersion. 
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However, it is likely that the zero-inflated alternatives will outperform the NBRM in the 

presence of underdispersion because the NBRM has difficultly estimating the additional 

smoothing parameter under these conditions. Of the zero-inflated alternatives, the ZINB 

presents the greatest dispersion, but this doesn’t automatically imply that the ZIP is the 

preferred model. It does, however, raise the possibility that the underdispersion could 

present difficulties in properly modeling the ZINB. The numerical approximation methods 

of the ZINB tend to have difficulties in the presence of underdispersion.  

 

 
Figure 3. Dispersion Comparison of the GLM Methods 

 

Table 4: Dispersion Values for the GLM Methods 

Model Maximum Difference At Value Mean Difference 

PRM  0.029 0 0.007 
NBRM -0.025 0 0.007 
ZIP -0.033 0 0.008 
ZINB -0.048 0 0.012 
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3.5 Model Performance 

A comparison of model performance across all the estimated models is contained in 

Table 5. All models had the same specification. The dependent variable was system count. 

The independent variable set was comprised of the study dataset excluding educational 

attainment, real GDP, and population density. I selected these independent variables for the 

sake of numerical optimization and parsimony among all the models.  

 

Table 5: Performance Statistics of GLMs and CRMs 

Model 
Log-Likelihood 

Ratio (null) 
Log-Likelihood 

Ratio (model) 
df AIC BIC 

PRM -4503954 -619938 20 1239916 1240036 
ZIP -4330739 -611359 38 1222794 1223023 
NBRM -15478.6 -12734.6 21 25511.26 25637.79 
ZINB -15433.4 -12691.6 39 25461.13 25696.11 
CRAGG -12017.1 -10226.3 39 20530.67 20765.66 

Note. Bold values represent the best performance. df: Degrees of Freedom. AIC: Akaike Information Criteria. 
BIC: Bayesian Information Criteria. Dependent variable was the count of residential installations. The 
independent variable set was comprised of the study dataset excluding housing built and education percentages. 
Selector variable set was the same as the independent variable set excluding GDP and population density. 
These selections were made for the sake of numerical optimization and parsimony among all the models. 

 

 

Based on the log-likelihood ratios and both the AIC and BIC statistics, there is 

strong evidence that the Cragg Hurdle Model is the preferred model overall. While the two-

step modeling of the dependent variable presents a more complicated model than either the 

PRM or the NBRM, the causal interpretation of the Cragg Hurdle model is more 

straightforward than that of the ZIP or the ZINB. Based on these results, the Cragg Hurdle 

Model is the best approach. 
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CHAPTER 4: RESULTS 
 
 

The Cragg Hurdle specification applied in this study is a two-step approach 

employing a first stage Probit Regression and a second stage Zero Truncated Negative 

Binomial Regression. In terms of this study, the first stage models the likelihood of a county 

looking to install residential solar and the second stage models the amount of residential 

solar installed given that a county has at least one homeowner who has chosen to install 

solar. A unique feature of the two-step approach is the ability to independently evaluate the 

first stage of the model before combining it with the second stage of the overall model. This 

allows the selection decision as modeled by the first stage to be analyzed further. The results 

of the Cragg Hurdle Model are contained in Table 6. The independent variables included are 

assumed to be exogenous to the process such that the model results are interpreted to be 

causal. 

The coefficients produced by the Cragg Hurdle, in both the first and second stage, 

cannot be interpreted in the traditional linear sense. These coefficients represent the log 

odds ratios which is an alternative specification for probability. Odds ratios represent a 

proportion of theoretical outcome and the log of the odds ratio is often applied in models to 

overcome issues that may arise with small sample data. The sign of coefficients can still be 

analyzed for a directional impact in the first stage selection model. The variables that are 

significant can provide some context to the second stage model, but neither the sign nor 

magnitude provide insight as its effects are reliant upon the first stage. 

 Marginal effects of the overall model must be estimated to interpret the coefficients 

in a traditional sense. Marginal effects are calculated as the partial derivative of the 

independent variable with respect to the dependent variable. The average marginal effects 
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that evaluate the average change in predicted values for a change in the independent variable 

are used in this study.  

 

Table 6: Cragg Hurdle Model Results 
 First Stage Second Stage 

Variable  Coef  Std.Err. p-value Coef Std.Err. p-value 

Irradiance  -0.918 1.286 0.476’’’ 0.6073 0.051 0.000*** 
Irradiance 2 0.124 0.124 0.317’’’    
Gini  4.836 17.968 0.788’’’ 9.942 2.505 0.000*** 
Gini 2 -1.285 19.833 0.948’’’    
ln(GDP)  0.255 0.649 0.695’’’ 1.801 0.168 0.000*** 
ln(GDP) 2 0.054 0.060 0.363’’’    
Gini x ln(GDP)    -1.423 0.362 0.000*** 
Population Density 634.239 1366.849 0.643’’’ 193.879 108.237 0.073* 
Population Density 2 -2623.008 18594.470 0.888’’’    
Population Density x ln(GDP) -31.042 236.744 0.896’’’ -17.383 8.112 0.032** 
Rural    1.994 0.224 0.000*** 
Rural x ln(GDP)    -0.334 0.030 0.000*** 
Housing Value     0.557 0.187 0.003*** 
Housing Value 2    -0.423 0.135 0.002*** 
Owner Occupancy  0.188 0.069 0.007*** 0.149 0.024 0.000*** 
Owner Occupancy 2 -0.001 0.000 0.005*** -0.001 0.000 0.000*** 
Mortgage Rate  0.065 0.023 0.005*** 0.085 0.013 0.000*** 
Mortgage Rate 2 -0.001 0.000 0.055** -0.001 0.000 0.000*** 
Median Age 0.115 0.089 0.198 -0.193 0.052 0.000*** 
Median Age 2 -0.002 0.001 0.091* 0.002 0.001 0.000*** 
Unemployment Rate     0.104 0.023 0.000*** 
Unemployment Rate 2    -0.004 0.001 0.001*** 
Mean Income  -0.019 0.005 0.000*** -0.016 0.006 0.006*** 
Mean Income 2    0.0001 0.000 0.005*** 
Democratic Vote     -0.491 0.255 0.054** 
Net Metering     -0.006 0.006 0.572 
Net Metering x Retail Rate    .004 0.001 0.004*** 
Democratic Vote x Net Metering    -0.077 0.016 0.000*** 
State Incentives     -0.051 0.017 0.003*** 
Democratic Vote x State 
Incentives 

   0.269 0.047 0.000*** 

Feed-in Tariffs     0.025 0.040 0.536’’’ 
Democratic Vote x Feed-in 
Tariffs 

   0.107 0.084 0.205’’’ 

Sales Tax Rebate     0.029 0.010 0.003*** 
Democratic Vote x Sales Tax 
Rebate 

   -0.005 0.020 0.802’’’ 

Retail Rate     -0.043 0.027 0.111 
High School Education  0.034 0.011 0.003*** 0.017 0.006 0.013** 
Some College Education  0.048 0.013 0.000*** 0.019 0.007 0.004*** 
Associate Degree  0.070 0.018 0.000*** 0.015 0.009 0.125’’’ 
Bachelor’s Degree  0.040 0.015 0.009*** 0.023 0.008 0.007*** 
Graduate Degree  0.050 0.023 0.032** -0.002 0.009 0.683’’’ 

Note. The first stage represents the Probit selection model only. Second stage represents the Zero Truncated 
Negative Binomial where Coef is the coefficient as the log odds ratio and Std. Err is the robust standard error. 
*** p<0.01, ** p<0.05, * p<0.1, ’’’ joint significance 
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4.1 First Stage Selection Model 

For many of the variables in the selection model, quadratic specifications are 

optimal. Gini, population density, mortgage rate, owner occupancy, and median age all have 

a parabolic specification where the quadratic terms imply an optimality point towards the 

middle of the distribution of the variable’s values with a decreasing impact at the ends of the 

distribution. Irradiance and the log of GDP both show traditional quadratic relationships 

where the effect increases in the positive direction. This relationship implies that as the log 

of GDP or irradiance increases, the probability of being a solar county increases. All the 

coefficients on education were statistically significant and positive. This implies that 

increases to all levels of education have a positive impact on the probability of being a solar 

county as compared to the percentage of the population that has less than a high school 

degree. 

4.2 Second Stage Model 

In the second stage model, interactions between the percentage of Democratic vote 

and state incentives, sales tax rebate, and feed-in tariffs show that there is a statistically 

significant relationship. This implies that there are greater impacts of these incentives in 

regions with a higher percentage of Democratic voters. This would be expected as policies 

pursued by politicians are largely based on their constituency and any policies pursued are 

likely to have an electorate that would respond positively.  
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4.3 Complete Model 

Table 7 contains the estimated average marginal effects for the full Cragg Hurdle 

Model. From these results, I derive a clear picture of the demographic characteristics of 

residential solar adoption. On average, residential solar installations are associated with 

populations that are younger, more educated, and lean Democratic politically. These results 

are in line with an intuitive assessment of residential solar, which would suggest that these 

populations are more willing to adopt such technologies.  

 

Table 7: Average Marginal Effects of the Cragg Hurdle Model. 

Variable dy/dx Robust Std. Err. z-stat p-value 95% Confidence Interval 

Irradiance 272.609 36.878 7.39 0.000*** 200.3301 344.888 

Gini -2897.197 838.522 -3.46 0.001*** -4540.67 -1253.725 

ln(GDP) 486.350 49.367 9.85 0.000*** 389.5923 583.1069 

Population Density -2663.634 7448.877 -0.36 0.721 -17263.16 11935.9 

Democratic Vote 907.255 266.128 3.41 0.001*** 385.6542 1428.856 

Rural -369.865 37.124 -9.96 0.000*** -442.6257 -297.104 

Housing Value -176.131 60.351 -2.92 0.004*** -294.4175 -57.84461 

Owner Occupancy 10.514 2.539 4.14 0.000*** 5.537774 15.48952 

Mortgage Rate -4.370 2.800 -1.56 0.119 -9.858645 1.118617 

Median Age -6.553 2.926 -2.24 0.025** -12.28756 -0.8191023 

Unemployment Rate 20.560 4.523 4.55 0.000*** 11.69576 29.42446 

Mean Income 0.744 1.127 0.66 0.509 -1.465163 2.954087 

Net Metering 0.989 3.938 0.25 0.802 -6.72873 8.706216 

State Incentives 50.172 8.842 5.67 0.000*** 32.84202 67.50167 

Feed-in Tariffs 39.943 9.689 4.12 0.000*** 20.95372 58.93203 

Sales Tax Rebate 11.537 2.378 4.85 0.000*** 6.877134 16.19732 

Retail Rate 11.643 6.982 1.67 0.095* -2.041334 25.32722 

High School Education  7.550 2.748 2.75 0.006** 2.163323 12.93673 

Some College Education  8.722 2.951 2.96 0.003*** 2.938557 14.50564 

Associate Degree  6.878 4.177 1.65 0.100* -1.308823 15.06428 

Bachelor’s degree  10.298 3.514 2.93 0.003*** 3.409836 17.1861 

Graduate Degree  -0.644 3.852 -0.17 0.867 -8.192549 6.905343 

Note. dy/dx is the average marginal effect. All errors are robust where: *** p<0.01, ** p<0.05, * p<0.1. 
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Regions with higher prevalence of residential solar have more solar irradiance, higher 

retail electricity rates, and greater economic output. These results are to be expected, as more 

solar irradiance suggests the ability to generate more energy annually, higher retail electricity 

rates suggest that installing solar has a shorter return on investment, and a larger economy 

suggests more overall wealth.  

Regions with higher prevalence of residential solar are also characterized by less 

income inequality. The Gini coefficient, bounded by 0 and 1 with a value of 1 meaning there 

is perfect income inequality, represents a fractional change in income inequality. The 

negative average marginal effect of Gini implies that as the level of income inequality 

increases, the number of residential solar installations decreases. This suggests that income 

within a county that has more residential solar is more evenly distributed.   

Household characteristics of regions with greater solar penetration have higher rates 

of owner occupancy and lower values of owner-occupied housing units. State residential 

solar incentives, on average, increase the number of residential solar installations by fifty per 

county for each additional incentive. Feed-in tariffs and sales tax rebates have a positive 

impact on the number of residential solar installations while mean income, population 

density, and net metering have a neutral average impact on the prevalence of residential 

solar.  
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CHAPTER 5: CONCLUSIONS 
 
 

The results of this study present several contributions to the literature including the 

relevance of hurdle model approaches in modeling residential solar adoption, evidence to 

support the efficacy of solar incentives, and evidence against the presence of income cross-

subsidization for residential solar.  

This study highlights the need to evaluate hurdle models as a potential modeling 

mechanism when evaluating residential solar. They not only present a more intuitive 

econometric interpretation, but these results showed that a properly specified hurdle model 

approach (a Cragg Hurdle Model was most appropriate in this study) can outperform the 

more often applied Generalized Linear Models. The flexibility in the design of hurdle models 

may allow researchers to more accurately model the solar adoption process. 

I find evidence to support the efficacy of solar incentives in increasing residential 

solar. The variable State Incentives, representing the total of all residential solar incentives, 

had a s positive and statistically significant average marginal effect. This would suggest that 

for each additional state solar incentive, the number of residential solar installations in each 

county will increase. It is possible with better data, that some incentives are the drivers of 

this result while others have a negligible impact. Of the two incentives that were modeled 

separately, it was found that feed-in tariffs and sales tax rebates both have a positive impact 

on residential solar development.  

It was also found that net metering policies, on average, have an insignificant impact 

on the number of residential solar installations once political sentiment and the retail rate of 

electricity are considered. This finding is in line with Matisoff & Johnson (2017) who find 

that long term compensation incentives had minimal impact on increasing residential solar 

adoption. Net metering represents a compensation strategy that impacts the solar owner in 
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the long run. It would seem reasonable to suggest that solar adopters consider their long-

term compensation strategy, but as is nature with most future compensation, the present 

may matter more. Factors such as the current retail rate of electricity and personal political 

sentiment have a more immediate and direct impact on the process. Additionally, outside of 

having direct insight into others’ experience with net metering, a potential solar adopter may 

not be able to gather a complete picture of the potential positives and negatives of such a 

policy. 

Lastly, I find a lack of evidence to support the notion of an income cross-subsidy. 

Higher levels of residential solar are associated with larger economies as measured by real 

GDP, but they are also associated with lower values of owner-occupied housing units. 

Assuming wealthier families own more expensive housing, this is evidence that the 

wealthiest populations are not those that are pursuing residential solar. More importantly, I 

found that mean income of a county had a zero impact on average in the overall model and 

a negative impact in the Probit selection model. If solar energy was truly pursued only by the 

wealthiest households, then we would expect to see more installed solar as the mean income 

of a county and the value of owner-occupied housing units increases. These factors 

considered, suggest that residential solar is likely pursued in counties that are characterized 

by the middle class. If this is true, the issue of cross-subsidization, a situation where wealthy 

individuals are subsidized by low-income individuals, is muted.  

A limitation of these findings is the reliance on aggregate county level data where 

kurtosis, or distributional tail effects, are possible. It may be that households that install solar 

in these counties are the wealthiest households, but the data are driven by those who do not 

have solar. Future research with more granular data can further examine this issue.  
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