
TOWARDS AI-EMPOWERED WIRELESS NETWORKS: FROM EDGE TO
CORE

by

Prabhu Janakaraj

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computing and Information Systems

Charlotte

2021

Approved by:

Dr. Pu Wang

Dr. Minwoo Lee

Dr. Dong Dai

Dr. Gabriel Terejanu

Dr. Jiang Xie



ii

©2021
Prabhu Janakaraj

ALL RIGHTS RESERVED



iii

ABSTRACT

PRABHU JANAKARAJ. Towards AI-Empowered Wireless Networks: From Edge to

Core. (Under the direction of DR. PU WANG)

Wireless multi-hop networks have been widely exploited for deploying cost-efficient

network backbones including wireless community mesh networks, high-speed urban

networks, global wireless internet infrastructure, battlefield networks, and public

safety/disaster rescue networks. Federated learning (FL) is a distributed machine

learning technology for next-generation AI systems that can collaboratively improve

a shared global model while preserving user privacy and encompassing users at a

larger-scale. FL systems are designed to be used on Single-hop wireless networks

which consists of edge servers that are connected to the high-speed internet core.

Enabling FL over wireless multi-hop networks can democratize AI and make it ac-

cessible in a cost-effective manner. However, our preliminary study found that FL

over wireless multi-hop networks possess significant challenges due to the presence

of multiple noisy interference-rich wireless links which not only slows the learning

process due to the underlying communication delay but also leads to nomadic model

updates. The inherent bottleneck for FL over wireless multi-hop networks are (1)

One-size-for-all model deployment and training, where each edge device process the

same number of local iterations for model updates (2) Model-based optimization is

not feasible for multi-hop FL, since FL performance metrics cannot be formulated

as a closed-form function for network control parameters such as packet forwarding

decision and transmission power for each router.

In this thesis, we proposed a novel Artificial Intelligence (AI) empowered wireless

network systems that can guarantee stability, high accuracy, and faster convergence

speed by taming communication latency, system heterogeneity, and statistical hetero-

geneity. Towards this goal (1) We have developed a Programmable Wireless Network



iv

Operating System (WINOS), which allows the user to implement AI routing solutions

(2) We have developed a novel Hierarchical Synchronous FL system architecture that

can maximize communication efficiency in addition to tolerating stragglers for non-

blocking executions (3) We have implemented a naturally federated application, Gait

based user authentication and recognition mechanism using millimeter wave, which

is one of the privacy-preserving biometric authentication mechanism (4) We have

developed a novel domain adaptation solutions that helps in applying FL system

trained in single domain to different domains that possess spatial variations. Finally,

our experimentation result shows that AI enabled wireless networked systems are

extremely efficient in handling heterogeneity and communication latency, surpassing

the traditional network systems performance.



v

ACKNOWLEDGEMENTS

Throughout the journey of my PhD program, I received tremendous support and

assistance. I extend my gratitude to my advisor, Dr. Pu Wang, who has been

a great support with his expertise in interdisciplinary research. His perpetual push

empowered me to enhance my competence as a researcher with much-broadened skills.

I am grateful to my doctoral committee members for their worthwhile suggestions

in shaping my research. I thank them for their consideration to serve in my committee

and their valuable time in evaluating my doctoral dissertation.

I would like to thank my fellow lab members for their support and collaboration. I

am grateful to have such an incredible team with diverse backgrounds and skill-sets.

I am thankful to the College of Computing and Informatics and UNC Charlotte

for supporting me by GASP scholarship throughout my PhD program. I would also

like to acknowledge Idaho National Laboratory and the National Science Foundation

for the invaluable support with the research fundings.

Finally, I would like to thank my thanks to my loving wife, parents, friends and

family members for their patience, care and support over the past few years.



vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Problem Description 2

1.2.1. Wireless Core - Why we need to apply Machine Learn-
ing for Networking ?

2

1.2.2. Wireless Edge - Why we need to optimize network for
Machine Learning ?

4

1.2.3. FL Application on Wireless Edge 5

1.3. Overview of the Proposed Research 6

CHAPTER 2: AI-Oriented Wireless Network Operating System: WiNOS 8

2.1. Overview 8

2.1.1. Challenges 9

2.1.2. Our Contributions 9

2.2. Wireless Network Operating System (WiNOS) with In-band
Telemetry

10

2.2.1. OpenFlow Manager 11

2.2.2. Telemetry Manager 12

2.2.3. Network State and Telemetry database 12

2.2.4. Link Discovery Module and Radio Interface Manager 13

2.2.5. Telemetry-enabled OpenFlow Datapath 13



vii

2.3. S-INT: Distributed In-band Per-Packet Network Telemetry 14

2.3.1. S-INT telemetry header 14

2.3.2. PUSH and POP Actions 15

2.3.3. Telemetry processor 17

2.3.4. Packet Parser 18

2.3.5. Header Extractor 18

2.3.6. Flowtable 19

2.4. Multi-Agent Reinforcement Routing for Self-driving Wireless
Mesh Networks

20

2.4.1. MDP for delay-optimal Traffic Engineering 20

2.4.2. Multi-agent Off-policy Softmax RL Algorithm 21

2.4.3. Local Actor for Policy Improvement 22

2.4.4. Learning Algorithm Implementation as an Application
of WiNOS

22

2.4.5. Backward Neighbor Q Estimation 23

2.4.6. Implementation details 24

2.5. Experimental Evaluations 25

2.5.1. Testbed Setup 25

2.5.2. Learning-algorithms in the fields 27

2.5.3. Stability Analysis 28

2.5.4. Overhead Analysis 29

2.6. Conclusion 30



viii

CHAPTER 3: FedEdge: Towards Network-Accelerated Federated Learn-
ing over Wireless Edge

31

3.1. Overview 31

3.1.1. Challenges in Multi-hop Federated Learning 32

3.1.2. Our Contributions: 33

3.2. Runtime convergence of Federated Learning 34

3.2.1. Federated Learning via Regularized Local SGD 34

3.2.2. Convergence of Local SGD 36

3.2.3. Hierarchical Synchronous FL system 38

3.3. Optimizing FL Convergence via Reinforcement Learning 40

3.3.1. Delay-optimal Model Update via Multi-agent Rein-
forcement Learning

41

3.4. FedEdge Design and Prototyping 43

3.4.1. FedEdge Overall Design 43

3.4.2. FL Engine 46

3.4.3. WiNOS: AI-oriented Wireless Network Operating
System

54

3.5. Experimental Evaluation 55

3.5.1. Hierarchical Synchronous FL 61

3.6. Conclusion 63

CHAPTER 4: Domain-invariant Gait Recognition via Millimeter Wave
Radar

65

4.1. Overview 65

4.1.1. Challenges 66



ix

4.1.2. Our Solution 67

4.2. System Design 68

4.2.1. Preliminaries 68

4.2.2. Radar Data Processing 70

4.2.3. Feature Extraction and Classification 75

4.3. Spatial and Temporal Detection 75

4.3.1. Dataset 75

4.3.2. Presence of TDS and SDS: 77

4.4. Unsupervised Domain Adaptation 82

4.5. Experiments 85

4.5.1. Interplay between TDS and SDS 87

4.5.2. Adversarial Domain Adaptation Performance 88

4.5.3. Domain Importance 89

4.5.4. Data-efficient Domain Adaptation 90

4.6. Conclusion 92

CHAPTER 5: Summary and Future Directions 93

5.1. Future Directions: 94

REFERENCES 96



x

LIST OF TABLES

TABLE 3.1: FL Hyperarameters 57

TABLE 3.2: FL Hyperarameters 59

TABLE 4.1: Model Accuracies 88

TABLE 4.2: Model Accuracies of Unsupervised and Supervised Domain
Adaption

92



xi

LIST OF FIGURES

FIGURE 2.1: WINOS with telemetry-enabled OpenFlow datapath 11

FIGURE 2.2: Packet stucture with S-INT Telemetry Header and Teleme-
try Template

15

FIGURE 2.3: Telemetry-enabled OpenFlow Datapath/Processing
Pipeline: PUSH INTL performed by the telemetry sender

16

FIGURE 2.4: Telemetry-enabled OpenFlow Datapath/Processing
Pipeline: POP INTL performed by the telemetry receiver

16

FIGURE 2.5: S-INT Overall Architecture. Packet leaving WB1 contains
the timestamped (tx_ts) and WB2 telemetry processor computes
different between local timestamp (rx_ts) and packet timestamp
(tx_ts) to get the delay

18

FIGURE 2.6: S-INT: OpenFlow rules in Flowtable for delay estimation
between Telemetry enabled OpenFlow datapath WB1 and WB2

19

FIGURE 2.7: multi-agent actor-critic reinforcement routing can be
quickly prototyped as an application running on the WINOS

23

FIGURE 2.8: Backward Neighbor Q estimation 24

FIGURE 2.9: (a) Testbed Topology (b) Nvidia Jetson Xavier Wireless
Router

25

FIGURE 2.10: Average of 10 runs under high network increasing load
conditions, we measured the network metrics for every 1 minute

26

FIGURE 2.11: Stability Analysis of Off-policy softmax routing and short-
est path routing

28

FIGURE 2.12: Performance comparison between probes and S-INT (single
run)

29

FIGURE 3.1: Federated learning via local SGD 34



xii

FIGURE 3.2: We use Nvidia Xavier nodes to implement two workers and
one server to train MNIST dataset for digit recognition task. To test
the impact of wireless networking, we use the exactly same parame-
ters (e.g., initial model weights, number of rounds, number of local
iterations, batch size, and learning rate) for FL over single-hop and
multi-hop wireless networks, respectively. (a. Network topology)
for single-hop network, we use IEEE 802.11ac for wireless connec-
tions. For multi-hop mesh network, we use IEEE 802.11s for multi-
hop routing, which still uses IEEE 802.11ac for MAC/PHY functions.
The testbeds are deployed in the first floor of UNCC CS depart-
ment with interferences from co-existing campus WiFi networks (b.
Runtime Convergence) The wireless multi-hop FL converges much
slower with respect to the true training runtime (wallclock time) (c.
Iteration Convergence) The single-hop and multi-hop FL systems
have the same iteration convergence performance.

37

FIGURE 3.3: Hierarchical Synchronous Federated Learning System (HS-
FL)

38

FIGURE 3.4: Architecture of FedEdge Framework 44

FIGURE 3.5: FedEdge Communication Protocol 53

FIGURE 3.6: Testbed - Topology 56

FIGURE 3.7: 57

FIGURE 3.8: Convergence of CNN and MCLR model with regularized
local SGD

57

FIGURE 3.9: Testbed - Topology 58

FIGURE 3.10: Comparison results after 20 epochs of accuracy over time
of 802.11s routing (black), On-policy ε−greedy (red), and On-policy
softmax (blue) RL-based routing, respectively, by varying the load
of background traffic from None, (1) Mbps, and (2) Mbps (solid,
dashed, dotted)-lines.

60

FIGURE 3.11: Total convergence time comparison of 802.11s routing, On-
policy ε−greedy, and On-policy softmax.

60

FIGURE 3.12: Hierarchical - Topology 62



xiii

FIGURE 3.13: Convergence of CNN and MCLR model with regularized
local SGD

63

FIGURE 4.1: FMCW signal with linear ramp 68

FIGURE 4.2: Overview of Radar Data Processing 71

FIGURE 4.3: Range-Time Map 73

FIGURE 4.4: Pre-processed Range-Time Map 73

FIGURE 4.5: (a) Range-Time Map (b) Pre-processed Range-Time Map 73

FIGURE 4.6: Range-Doppler Map with Static Reflections 74

FIGURE 4.7: Highpass-filtered Range-Doppler Map with Dynamic
Reflections

74

FIGURE 4.8: Gait spectrograms of the same person for 5 days at differ-
ent locations. First row: Source (our lab), second row: Conference
Room, third row: Server space and fourth row: Office room

76

FIGURE 4.9: Embeddings from model trained on source and target do-
main data. (Top) model trained one day of source, server and confer-
ence data, (Middle) model trained via one day of source and confer-
ence data, (Bottom) model trained via one day of source and server
data

78

FIGURE 4.10: Results obtained from training only on source location
data for varying number of days.

79

FIGURE 4.11: 80

FIGURE 4.12: Mean distance from known class centers obtained from the
source, server, and conference data for a varying number of days.

81

FIGURE 4.13: Adversarial domain adaptation 82

FIGURE 4.14: Results obtained from training on source, server, and con-
ference location data for varying number of days. The data from
office location is not used for training and only for testing

88

FIGURE 4.15: Results obtained by training models between 1 - 3 days
on all locations and the respective daily test accuracies

89



xiv

FIGURE 4.16: (Top) Results obtained from training on the source and
server data for a varying number of days. (Bottom) Results obtained
from training on the source and conference data for a varying number
of days. Data from office location is for testing only

90

FIGURE 4.17: Overview of data efficient domain adaptation 91



CHAPTER 1: INTRODUCTION

1.1 Motivation

The enormous growth of wireless devices such as Internet-of-Things, smart home

sensors, wireless medical devices and smart home gadgets are possessing severe de-

mands to build efficient and intelligent wireless networks that can guarantee optimal

network performance. Next generation smart factories are adopting, Industry 4.0 a

new industrial revolution that heavily embraces on adopting digital technology such

as Internet-of-Things, remotely controlled robots, sensor networks and vision systems

to access and control manufacturing facility in real-time. Upcoming mmWave 5G

mobile network, seek to enable wireless application services with high throughput

and sub-millisecond latency to improve users Quality of Experience (QoE). Different

from cellular systems with high deployment and operational costs, wireless multi-hop

networks, consisting of a mesh of interconnected wireless routers, have been widely ex-

ploited to build cost-efficient communication backbones, including wireless community

mesh networks [1] (e.g., NYC mesh [2]), high-speed urban networks (e.g., Facebook

Terragraph network [3], global wireless Internet infrastructures (e.g., SpaceX Starlink

satellite constellation [4] and Google Loon balloon network [5]), battlefield networks

(e.g., rajant kinetic battlefield mesh networks [6]), and public safety/disaster recuse

networks [7]. Conventional communication networks only carried user’s traffic such

as email, web browsing, video and voice but today’s networks also transports data be-

tween machines (Machine-to-Machine) that are used for real-time control of physical

elements such as actuator of a robot. Wide range of modern day environments dis-

cussed above demand for a wireless core communication network infrastructure that

can provide guaranteed network performance such as low communication delay, pri-



2

ority based forwarding, robust against dynamic link conditions such high interference

and time-varying network topology.

1.2 Problem Description

1.2.1 Wireless Core - Why we need to apply Machine Learning for Net-

working ?

Traffic engineering (TE) [8] is a widely applied technique for optimizing network

performance by optimal measurement, real-time network traffic analysis, designing

optimal forwarding and routing rules to improve the quality of service (QoS) require-

ments for a large volume of traffic flows. End-to-end (E2E) delay is one of the key QoS

metrics TE aims to optimize. Well know TE solutions are simply a variant of short-

est path routing protocol including OSPF, IEEE 802.11s [9], and [10] B.A.T.M.A.N.

Besides their simplicity in easing the implementation, they cannot guarantee optimal

E2E TE performance. Large body of theoretical research work on stochastic network

utility maximization (NUM) [11,12] exists on optimal TE, where multi-hop TE prob-

lem is formulated as constrained maximization problem of the utility function under

stochastic dynamics in user traffic and time-varying wireless channels. However, these

solutions suffer from the some key issues. Firstly, there exists some strong assump-

tions on the network model, such as per-flow per-link queuing structure, unbounded

buffer size for each queue, and bounded variance of traffic arrivals. The former two

assumptions may not hold for actual routers and the latter assumption does not

hold for heavy tailed traffic flows, which have been identified in real networking sys-

tems [13–15]. Second, they cannot be used to minimize E2E delay because E2E delay

cannot be explicitly and mathematically related to the TE control parameters, such

as traffic balancing ratio over each output link, which, however, have to be included in

the utility function in the NUM formulation. Third, they are not designed to handle

non-stationary conditions caused by the time-varying network dynamics, such as the

dynamic traffic patterns. Lastly, some key factors such as the instantaneous link rate



3

are required as the input, however they cannot be accurately estimated in wireless

networks. Because of above limitations, these solutions are barely implemented as

the TE solutions to handle real multi-hop wireless networks.

Artificial Intelligence (AI) has made numerous break throughs in variety of appli-

cations including computer vision, gaming, robotics, self-driving cars and complex

domains such as natural language processing. Recently, using AI in communica-

tion networks is gaining attraction due to growing complexity of network elements

along with highly dynamic demand from applications. A specific machine learning

paradigm, reinforcement learning (RL) has provided diverse solutions to complex

problems such as robotics [16, 17], cloud computing [18, 19], advertisement [20], and

finance [21]. Adoption of reinforcement learning has been enabling experience-based

model-free TE [22–25], which has several key advantages: (1) it needs neither strong

assumptions nor accurate modeling of the network, thus allowing it to achieve robust

and resilient performance in complex networking systems with high-level uncertainties

and randomness, (2) it is designed to handle non-stationarity, and thus it is able to

automatically adapt to the time-varying network dynamics, (3) it can deal with large

and sophisticated state/action spaces when it is combined with the recent advances

in linear and non-linear function approximation (i.e. deep learning).

Existing research works on distributed model-free TE mainly focuses on applying

Q-learning and its variants in a multi-agent setting [26–30]. However, Q-learning

based TE has fundamental limitations. Q-learning is an off-policy learning method,

which suffers from higher variance and slower convergence. Due to the aforementioned

limitation Q-learning, leads to a sub-optimal TE performance when there is not suffi-

cient experience to learn. Besides Q-learning is an action-value based method, which

can only learn deterministic TE policy. This lead to the case that each traffic flow

can only take a single routing path to reach the final destination. Many varieties of

RL algorithms and their extensions that can address the limitations of Q-learning in



4

theory and in the general sense. However, it is still unclear (1) How these algorithms

can be generalized to a multi-agent setting to enable distributed TE? (2) What is the

actual performance of these algorithms when applied for TE problems? [31]. Many

solutions have been proposed in literature but none of them have been shown working

on the real hardware nor on a realistic network emulator due to lack of a cohesive

system framework. In addition, RL based solutions require explicit control channel to

exchange network states that aids the agent to make a timely control decision such as

next-hop for forwarding the packet. However, employing a dedicated control channel

in wireless network will lead to wastage of limited channel resource. Although, there

exists a range of network measurement tools they are generally centralized solutions

and do not explicitly provide key metrics required for real-time control decision at

the immediate network element.

1.2.2 Wireless Edge - Why we need to optimize network for Machine

Learning ?

Distributed machine learning, specially federated learning (FL), has been envi-

sioned as a key technology for enabling next-generation AI at-scale. FL significantly

reduces privacy risks and communication costs, which are critical in modern AI sys-

tems. Recently, FL systems over edge computing networks have received increasing

attention. In FL, the workers, i.e., edge devices, collaboratively learn a shared global

model while keeping their data locally to prevent privacy leakage. The workers only

need to send their local model updates to the server, which aggregates these updates

to continuously improve the shared global model. With single-hop wireless connec-

tions, edge devices can quickly reach the FL servers co-located with cellular base

stations [32–34]. Different from single-hop wireless connections, wireless multi-hop

networks are much more cost-effective and robust against service disruptions posed

by single point of failure such as failure of edge server co-located at the cellular station.

Enabling FL over wireless multi-hop networks not only can augment AI experiences



5

for urban mobile users, but also can democratize AI and make it accessible in a

low-cost manner to everyone, including the large population of people in low-income

communities and under-developed regions.

Despite the impressive features of federated learning and wireless multi-hop net-

work, there are incumbent challenges that could inherently affect the model accuracy.

The FL algorithms generally adopt a single-layer server-client architecture, where a

central server collects and aggregates the model updates of all workers. The wireless

routing paths towards the central server can be easily saturated in such flat FL ar-

chitecture. the de-facto FL algorithm, FedAvg [35] and many its variants operate in

a synchronized manner where the server has to wait and collect a minimum number

of local model updates before performing model aggregation and moving to the next

round. The long and random multi-hop delay dramatically increases the number of

stragglers (slow devices), therefore prolonging the training time per-round.

So far, there are limited research efforts on optimizing wireless FL systems. Existing

efforts all focus on single-hop FL over cellular edging computing system [32, 34, 36].

With such assumption, the impact of wireless communication control parameters

(e.g., transmission power) on the FL related metrics (e.g., model update delay and

loss reduction) can be formulated in an explicit closed-form mathematical model,

which greatly eases the FL system optimization. Such model-based optimization is

not feasible in multi-hop FL, where the FL performance metrics (e.g., FL convergence

time) cannot be explicitly formulated as a closed-form function of the networking

control parameters, such as transmission power and packet forwarding decision at

each router.

1.2.3 FL Application on Wireless Edge

Deep Learning has been the most powerful tool for providing rich user experience on

mobile devices through AI based applications such as smart keyboards for predictive

text, recommender systems, advertising and user authentication using techniques such



6

as facial recognition. These applications generally share the small portion of the user

data with the service providers infrastructure to improve the respective AI models.

However, recent advocacy on privacy and data locality possess huge challenge to

service providers for model training, as the data should not leave the end-users device.

As a solution to user privacy and data locality there has been a spike in implementing

FL applications, since the workers only need to send their local model updates instead

of raw data. Majority of the studies on FL infrastructure and implementations focused

on conventional infrastructures such as datacenter’s and network deployments which

has reliable network conditions such as guaranteed network bandwidth and end-to-

end delay. The performance and complexity of FL application over multi-hop wireless

network is still unexplored.

1.3 Overview of the Proposed Research

In this thesis, we would like to develop wireless specific machine learning solutions

that can systematically benefit (1) Wireless Core Network (2) Wireless Edge Devices

and (3) FL applications running on Wireless Edge Devices. Towards this goal, we

propose three inter-dependent thrusts:

• AI-Enabled Wireless Core Network: To develop a system-in-loop emulator

for wireless network along with distributed In-Band network telemetry system

(S-INT). Our objective for the emulator is to facilitate a simple but realistic

platform for implementing RL routing solutions that can improve the agent’s

experience in a virtual environment and then transfer the acquired knowledge to

commercial off-the-shelf hardware seamlessly. In particular, we will develop an

ML-oriented wireless network operating systems (WINOS) framework and dat-

aplane which enables In-Network telemetry system to obtain realtime network

condition and experience of data packets such as 1-hop delay and E2E delay.

Our WiNOS framework, dataplane and S-INT telemetry system will allow users

to rapidly prototype of RL algorithms that can seamlessly operate online and



7

adapte to realtime network conditions gathered by telemetry system.

• AI-Assisted Wireless Edge System: Wireless edge computing networks

provide sophisticated edge devices, equipped with rich sensing, computation,

and storage resources. In this scenario, we will develop novel distributed compu-

tation systems that leverage our AI-optimized wireless core networks to enable

distributed ML, i.e., federated learning (FL), where edge devices collaboratively

learn a shared global model while keeping their data locally to prevent privacy

leakage.

• FL on AI-Empowered Wireless Edge: Finally, we will develop a deep radar

sensing system as a representative wireless application running on the edge. On

the one hand, our radar system will utilize deep neural networks to learn the

salient features from high-dimension radar signals for a variety of downstream

applications. On the other hand, our radar system will exploit our proposed

FL system to address the domain adaptation issues and improve the model

generalization in the presence of spatio-temporal radar signal variations.



CHAPTER 2: AI-Oriented Wireless Network Operating System: WiNOS

2.1 Overview

Self-driving network is evolving as an automated network orchestration design

paradigm for next-generation network systems. The core of such design is based

on training autonomous network systems with real-time experiences such as network

state measurements using machine learning algorithms. However, existing network

measurement techniques cannot gather such real-time experiences because of central-

ized architecture leading to considerable control overheads in wireless networks. In

this chapter, we designed and implemented AI-Oriented Wireless Network Operating

System (WINOS) framework and a distributed In-band network telemetry system

(S-INT). Our proposed S-INT system reduces network measurement overhead by em-

bedding telemetry into flowing data traffic with a specialized packet header. WINOS

system, on the other hand, enables programmable wireless network control and pro-

grammable measurement using S-INT. Efficacy of the proposed system is validated

by implementing Multi-Agent Reinforcement routing as a traffic engineering appli-

cation to optimize end-to-end performance. To the best of our knowledge, our im-

plementation is the first one in the literature that enables multi-agent reinforcement

learning algorithm to run on an actual physical wireless multi-hop network. Promis-

ing networking performance in terms of delay, throughput, and packet loss observed

in the initial experiments show that our distributed wireless network OS, WINOS

integrated with S-INT serves as the first step towards the realization of self-driving

wireless networks. The content of this chapter is partly reprinted with permission

from P. Janakaraj, P. Pinyoanuntapong, P. Wang and M. Lee, "Towards In-Band

Telemetry for Self Driving Wireless Networks," IEEE INFOCOM ©2020.



9

2.1.1 Challenges

Reinforcement learning algorithms are experience-driven optimization solutions.

Therefore, how to efficiently and effectively collect experiences or network measure-

ments is of significant importance. In the traditional wired SDN architecture, out-of-

band centralized telemetry approach is generally exploited. In this case, by using the

reliable dedicated control channel between the control plane and the data plane along

with a variety of network monitoring tools, such as OpenFlow statistics, SNMP [37],

sFlow [38], and NetFlow [39], key network telemetry data such as network topology,

link delay, port status, queue delay, and link congestion can be obtained at the net-

work controller, where the centralized machine learning algorithms can be performed

to automate and optimize network management. However, due to the limited band-

width and dynamic wireless conditions, wireless networks can not be optimized in a

centralized manner. This demands the deployment of distributed reinforcement learn-

ing algorithms [26,40], which in turn requires distributed In-band Network Telemetry

(INT) systems. INT [41], originated from The P4 Language Consortium (P4.org), is a

solution that enables collecting and reporting of network status, by the data channel

(plane), without utilization and intervention of the control channel (plane). However,

P4 INT requires additional hardware support and lacks OpenFlow integration, where

Openflow is the de-facto SDN protocol that supports the programmable forwarding

of network routers.

2.1.2 Our Contributions

Our objective in this work is to develop a framework that can be used on Commercial-

off-the-shelf hardwares and as well as within system-in-loop emulator framework to

allow users to seamlessly implement and validate the effectiveness of RL routing so-

lutions. Towards this goal,

• We have developed a AI-OrientedWireless Network Operating System (WINOS)



10

which seamlessly integrates programmable measurement, i.e., the proposed S-

INT In-band telemetry framework and the programmable wireless network con-

trol.

• We have designed and implemented S-INT, a distributed in-band telemetry

system, where each router runs its own telemetry module that is built on the

top of OpenFlow datapath/processing pipeline.

• We have implemented a Multi-Agent Reinforcement Routing application for

Self-Driving Wireless Mesh Networks using WINOS. In particular, each router,

acting as an agent, learns the optimal local traffic engineering (TE) policy in

such a way that the collective TE policy of all routers can achieve the optimal

end-to-end (E2E) TE performance in terms of delay, throughput, and packet

loss.

• We conducted extensive experiments using WINOS and S-INT systems in a

wireless multi-hop network testbed. Our preliminary results show that the

S-INT is a cost-effective in-band network telemetry solution and our WINOS

framework can effectively utilize the telemetry data to prototype RL routing

application.

2.2 Wireless Network Operating System (WiNOS) with In-band Teleme-

try

We propose the distributed Wireless Network Operating System (WINOS), which

provides extended modules to realize the vision of self driving wireless networks. As

shown in Figure 2.1, WINOS is designed to support the fast prototyping of AI algo-

rithms for intelligent networking. It is built on the top of OpenFlow Manager based

on RYU controller [42], telemetry-enabled datapath based on Ofsoftswitch13 [43]

software switch, telemetry manager, network state and telemetry database based on

MangoDB [44], and radio interface manager based on NetLink library. To implement



11

Wireless Network Operating System 

(WiNOS)

Telemetry Enabled Datapath
(INT – OfSoftswitch13)

MAC80211

Radio-1 Radio-2

PHY 

Control

Flow 

Manager
Topology 

Discovery

Telemetry 

Manager

Neighbor-Q 

Estimator

Netlink

W
iN

OS
 -

 D
at

ap
la

ne
W

iN
OS

 -
 C

or
e

W
iN

OS
 -

 A
pp

s

NorthBound Protocol – REST API

π 
Q-Network

Q-table

Actor Crtic

SouthBound Protocol - OpenFlow

Radio Intf 

Control

Network State 

Database

Radio-3

Figure 2.1: WINOS with telemetry-enabled OpenFlow datapath

S-INT telemetry system we need extensive modification on OpenFlow datapath and

OpenFlow manager. In particular, OpenFlow datapath should be able to interpret

telemetry data and OpenFlow manager should be able to collect and serve the data

to other applications.

2.2.1 OpenFlow Manager

SDN strongly relies on OpenFlow due to its simplicity of MATCH, ACTION and

STATISTICS criterion. Although adopting the same principle for self-driving net-

works seems dauntingly useful, it should be capable to convey the experience of the



12

network packets as results of followed ACTION. Hence, we propose to extend the

OpenFlow STATISTICS module to incorporate telemetry data for conveying packet

experience.

OpenFlow1.3 protocol defines the structure of messages for representing the datap-

ath elements such as ports, flowtable, packet, and so forth. OpenFlow enables switch

interface to communicate with the controller using OpenFlow protocol. This imposes

a requirement that any new functionality implemented on the datapath certainly re-

quires modifying the OpenFlow protocol itself. In our case, to share the telemetry

data from dataplane to the control plane, we have extended OpenFlow flow statistics

message structure with our telemetry template fields such as SRC DPID, DST DPID

and TLV fields.

2.2.2 Telemetry Manager

Telemetry data access control and gathering process is handled by the teleme-

try manager. Any network application, which requires such telemetry data, sends

the request to telemetry manager. After receiving the request, it checks Telemetry

database and OpenFlow manager to identify if such data is already being gathered.

If the application request type is new, then telemetry manager will identify the flows

of interest and instructs the OpenFlow manager to disseminate OpenFlow rules to

the corresponding datapath.

2.2.3 Network State and Telemetry database

Our network state database provides a RPC based interfaces for data access within

within kernel layer and also provides access interface via Northbound API for network

applications, such as reinforcement learning based routing algorithm. By having

a database within the network controller, it is possible to enable stateful network

applications as firewall and also we can develop applications for data intensive traffic

engineering applications. In our work, we extensively use MangoDB to store and



13

serve the telemetry data. In addition, our state base also stores the network state

such as link condition and topology formation in a time sequence manner.

2.2.4 Link Discovery Module and Radio Interface Manager

Network orchestration and control in SDN network highly rely on the gathered

network topology information. In a fully closed/connected network such as wired

networks, network topology is discovered using extended link layer discovery protocol

(LLDP). However, such network discovery mechanism fails in wireless networks. The

primary reason for such failure is related to how the links and nodes are perceived

in OpenFlow. In paricular, direct adoption of the existing link discovery mechanism

in wireless multi-hop networks will make all wireless nodes appear as if they are all

1-hop away from each other and they connect to a single port on the data plane.

This complicates how we forward packets to the wireless nodes that are several hops

away. Wireless channel is a broadcast medium and nodes accept packets that are

transmitted with wireless interface MAC address. Hence, we propose to extend the

link discovery mechanism to be integrated with MAC80211 SoftMAC module [45].

MAC80211 itself contains discovery schemes that tells which nodes are connected to

each other along with the link status. This combination enables network control and

visibility in wireless multi-hop networks. In addition, with our integrated system we

can control inherent wireless network properties such as link interference, transmit

power, channel selection, topology formation and transmit contention window size.

2.2.5 Telemetry-enabled OpenFlow Datapath

To implement our S-INT telemetry framework, we modified the key modules of

Ofsoftswitch13 according to the details in section 2.3. Ofsoftswitch13 is a software

switch that is designed based on the specifications of OpenFlow protocol version 1.3.

This software switch runs entirely on userspace, thus making it the most suitable

for prototyping new packet handling routines. The userspace switching leverages



14

Linux TAP/TUN interface for integration with the operating system network stack.

Ofsoftswitch13 supports attaching both virtual and physical ports to its datapath

bridge. Packets received on these ports are processed through four key modules

including packet parser, header extractor, flow table lookup, telemetry processor,

and datapath executor as shown in Figure 2.3 and 2.4.

2.3 S-INT: Distributed In-band Per-Packet Network Telemetry

Self-driving networks is only feasible with accurate and timely feedback from the

network elements. In-band telemetry service can utilize data packets traversing the

network ports for network metric measurement and transportation. However, ex-

isting in-band telemetry solutions are proposed for wired networks and centralized

architectures [46], [47] [48], where in-band telemetry metadata increases the packet

size by a significant order. Wired networks are capable of transporting fat packets of

size 9000 bytes. Wireless networks are cannot handle fat packets. First, fat packets

require additional wireless transmission time which will reduce the overall network

utilization. Second, wireless networks can only have a maximum packet size of 2304

bytes. Thus, implementing the in-band telemetry system in wireless is challenging

and every telemetry header can only have a specific metric.

Taking into account the practicability, we have designed and implemented S-INT,

a distributed in-band telemetry system, where each router runs its own telemetry

module, which is built on the top of OpenFlow datapath/processing pipeline. The

proposed in-band telemetry system is enabled by three key components: new packet

header called S-INT telemetry header, new packet matching actions: PUSH_INTL

and POP_INTL, and the telemetry processor.

2.3.1 S-INT telemetry header

We have defined a new header called S-INT telemetry header of size 16 bytes with

experimental EtherType that can be appended to data packets traversing the port.



15

Figure 2.2 shows the packet structure with our proposed header. Network application

developers can utilize the fields within the header through our extended OpenFlow

actions to gather the interested metrics. They can also specify sampling frequency,

hop count, or even end-to-end datapath’s as their constraints for measurement. In

addition, we propose a template-based telemetry system where each telemetry tem-

plate is unique and have their own measurement objective such as delay, bandwidth,

and hop collection measurement. Telemetry header consists of three fields for rep-

resenting source datapath ID (the telemetry sender), destination datapath ID (the

telemetry receiver/sink), and TLV field to specify which telemetry template is used.

Each packet can only carry a single template due to the limitation of MTU size.

However, in scenarios requiring to obtain two or more telemetry data we suggest to

use alternate templates over a sequence of packets.

Payload

L4 header - TCP / UDP

L3 header - IP 

L2 – header - Ethernet

Telemetry

SRC DPID

DST DPID

TLV

Packet Header 

Telemetry Header 

Fields

Hop Delay Bandwidth

Hop 

Count
E2E Delay

Telemetry Templates

Packet Structure

Figure 2.2: Packet stucture with S-INT Telemetry Header and Telemetry Template

2.3.2 PUSH and POP Actions

OpenFlow protocol provides functions to encapsulate and decapsulate packets with

headers such as MPLS, VLAN and so forth for data transport. We leverage the same

functions to add and remove telemetry header to and from data packets. Figure



16

Packet Parser
Header 

Extractor
Flowtable

(MATCH, ACTION)

Telemetry 

Processor
(PUSH INTL)

Datapath 

Executor

Update flow

 statistics

Figure 2.3: Telemetry-enabled OpenFlow Datapath/Processing Pipeline: PUSH
INTL performed by the telemetry sender

Packet Parser
Header 

Extractor
Flowtable - 1

(MATCH INTL Header)

Telemetry 

Processor
(POP INTL)

Datapath 

Executor

Update flow

 statistics

Flowtable - 2
(MATCH, ACTION)

Update telemetry 

statistics

Figure 2.4: Telemetry-enabled OpenFlow Datapath/Processing Pipeline: POP
INTL performed by the telemetry receiver

2.3 shows the datapath processing chain for PUSH telemetry header ACTION. At

the sender’s datpath, flowtable lookup is performed to identify the packet forwarding

path based on MATCH and ACTION selection. If the path traversed by the packet

is of interest for telemetry information, then the packet will have an additional action

PUSH_INTL:template_type. This action appends the data packet with a new header

and modifies the packet EtherType to local experimental EtherType. The above

mentioned action is the last executed action by the datapath executor, before sending

out the packet. Flow statistics of the respective flow is then updated by the datapath

executor in terms of cumulative packet count and volume in bytes.

Datapath processing pipeline for POP action follows the sequence as in figure 2.4.

Since local experimental EtherType is used as the identifier to know if the received

packet contains telemetry header, at the receiver’s datapath, flowtable MATCH is

first performed to identify the EtherType. If it contains S-INT header, then the next

ACTION to be performed on the packet is POP_INTL and then the EtherType is

changed to IPv4 Packet. Packet is then handled in a normal dataplane processing



17

pipeline, where a second flowtable lookup is performed for MATCH and ACTION.

Datapath executor then forwards the packet following the ACTION and updates the

flow statistics.

Depending on the hop in which we implement the POP_INTL action, we can

obtain 1-hop and End-to-End telemetry data. If the we are only looking for 1-hop

telemetry data, then we can even send the packets without any further encapsulation.

However, if we are looking for 1-hop away or end-to-end telemetry data, then we need

to encapsulate the packet further with transport headers such as MPLS.

2.3.3 Telemetry processor

Telemetry processor is the core of our S-INT framework. The PUSH_INTL and

POP_INTL actions determines the operations performed by telemetry processor. If

the action is PUSH_INTL:template_type, then the telemetry processor appends the

header with the fields for the respective template type. If the received packet contains

the telemetry header, upon identifying the telemetry template from the header simple

arithmetic operations are performed with the telemetry data to retrieve link delay,

bandwidth, and other network state information. After retrieving data, telemetry

processor updates the telemetry statistics with the new data.

In Figure 2.5, we show an illustrating example for measuring the link delay be-

tween two telemetry-enabled OpenFlow datapath using our S-INT system. Consider

host STA1 sends a packet to the host STA2. With OpenFlow rule as show in figure

2.6, WB1 adds telemetry header to the packet with the template type as delay using

the PUSH_INTL action. Delay adds timestamp (tx_ts) to telemetry header before

sending our the packet. Once the packet is received by WB2 and telemetry header

is removed with the POP_INTL action and template_type as delay. After retriev-

ing the timestamp from the removed header, difference between current timestamp

(rx_ts) on WB2 and packet header timestamp (tx_ts) is computed to get the delay

experienced by the packet.



18

WB -1WB -1 WB-3WB-3

WB-2WB-2

STA - 1 STA - 3

STA - 2

Wireless Link

Text

Telemetry processor 

delay=(rx_ts–tx_ts)

Telemetry processor 

delay=(rx_ts–tx_ts)

tx_ts

rx_ts

Dataplane

Telemetry

Manager

Intelligent 

Applications

OpenFlow 

Manager

Control 

Plane

OpenFlow

PUSH INTL

HDR (tx_ts)

POP INTL

HDR

Figure 2.5: S-INT Overall Architecture. Packet leaving WB1 contains the
timestamped (tx_ts) and WB2 telemetry processor computes different between

local timestamp (rx_ts) and packet timestamp (tx_ts) to get the delay

In order to realize the above mentioned illustration we should also extend the below

listed datapath modules:

2.3.4 Packet Parser

Packet parser typically consists of the structure of every packet that exits in today’s

network including IPv4, IPv4, TCP, UDP, and ICMP. Once a packet is received on

the switch port, the conformity of the packet is verified by checking the structure.

Non-conformed packets are automatically dropped. We extended the data structure

of the packet library to include our customer header structure as in figure 2.2 to pass

the verification stage.

2.3.5 Header Extractor

The header extractor identifies the fields within the received packet based on the

packet type determined by packet parser. Every packet type has strictly defined



19

MATCH ACTION STATS

in_port = 1
apply: push_intl, delay,

out_port = 2
tx_pkts, rx_pkts, intl_delay

in_port = 2 tx_pkts, rx_pkts, intl_delay
apply: pop_intl, delay,

out_port = 1

OpenFlow rule 

on

WB2

WB1

Figure 2.6: S-INT: OpenFlow rules in Flowtable for delay estimation between
Telemetry enabled OpenFlow datapath WB1 and WB2

header attributes with own data type. The header extractor scrutinizes the received

packet and identifies the values for the specific header type attributes. For instance,

if it receives a Ethernet packet then header extractor will identify the source and des-

tination Ethernet addresses. We extended this module with our new header structure

and data type shown in Fig. 2.2.

2.3.6 Flowtable

Packet forwarding in SDN is handled based on the MATCH and ACTION instruc-

tions. The flowtable is a multidimensional row and column with depth of upto 1024.

Typical structure of the flowtable is grouped into MATCH, ACTION and STATIS-

TICS columns. MATCH columns will generally comprise of fields in L2, L3 and L4

packet headers in addition to datapath port numbers. ACTION column will contain

the instruction of how to handle the matched packet. Typically, it can have a simple

instruction such as forward the packet to a specified port, modify a packet, encap-

sulate or decapsulate a packet. STATISTICS columns are built with a handful of

counters that identify statistics such as count and size of packets processed by the

specific rule. To implement our telemetry templates, we extended the STATISTICS

counters with additional fields to include telemetry metrics such as delay, bandwidth,

and hop count. Figure 2.6 shows an example of flowtable structure with telemetry

flows. Based on the chosen telemetry template, the resulting statistics fields will be

varying. As a result, our PUSH_INTL and POP_INTL actions should be indepen-



20

dent from the normal datapath processing action.

2.4 Multi-Agent Reinforcement Routing for Self-driving Wireless Mesh

Networks

As one of the most important network management methods, traffic engineering

(TE) aims to dynamically analyze real-time network traffic, and planning optimal

routing rules to meet the quality of service (QoS) requirements for the traffic flows.

Optimizing these E2E TE metrics such as E2E delay and throughput is very chal-

lenging in wireless multi-hop networks due to the profound dynamics in traffic flow

patterns, wireless link status, working conditions of wireless routers, and time-varying

network topology. Recent advances in reinforcement learning (RL) have provided

promising technologies for enabling experience-based model-free TE [25,26,40].

In this section, we demonstrate a prototype of the self-driving wireless network by

implementing a learning-based routing application on a WINOS-empowered wireless

mesh network testbed. In particular, this routing application is based on our multi-

agent reinforcement learning-based TE framework proposed in [40].

2.4.1 MDP for delay-optimal Traffic Engineering

The distributed traffic engineering (TE) can be formulated as multi-agent extension

of Markov decision process (MA-MDP) for N routers [40], which is defined as a

tuple of 〈S,O1:N ,A1:N ,P , r1:N〉.. In this MA-MDP formulation, The environmental

states S consist of the network topology, the source and destination (i.e., source

and destination IP addresses) of each packet in each router, the number of packets

(queue size) of each router, and the status of links of each router. Oi defines the

local observation of each router i. It contains the network state information, which

is available at each router i. Ai is the set of actions that can be performed by router

i. For our TE application, Ai contains the IDs of the next-hop neighbors of router

i that router i can use as the next-hop forwarding node. P is the network state



21

transition probabilities, which are generally unknown. ri is the reward function of

each router i, which is the (negative) 1-hop delay from router i to its neighbor. For

each packet that enters the router i, the router needs to determine the forwarding

action (a ∈ Ai) based on its local observation o ∈ Oi of the network status. After

the forwarding action is performed or the packet is sent out, the router will receive a

reward ri (i.e., the (negative) delay ) when the packet arrives at its next-hop router

i + 1, which has its own local observation o′ ∈ Oi+1. The return Gi =
∑T

i=1 ri is

the accumulated reward (i.e., negative E2E delay) induced by forwarding a packet

from its ingress router to its egress router. Each router selects forwarding actions

based on a local policy πi, which tells how the router chooses its action based on the

observation. The policy can be stochastic by choosing an action according to certain

probability or deterministic by choosing a fixed action. Our objective is to find the

optimal policy πi for each router so that the expected return J(π) of the joint policy

π = π1, ..., πN is maximized (2.1), i.e.,

J(π) = E[Gi|π] = E[
∑T

i=1
ri|π] (2.1)

2.4.2 Multi-agent Off-policy Softmax RL Algorithm

To solve the above MA-MDP problem, we adopt the multi-agent actor-critic (MA-

AC) architecture [40]. In this case, each router has its own actor and critic running

locally. The local critic uses exponential moving average to estimate the action-

value functions qπii (s, a), which criticize the action selections. Using critic’s inputs,

the actor improves the target policy towards the direction that can maximize the

expected return,

Local Critic for Policy Evaluation: The performance of the policy π is mea-

sured by the action-value qπi (s, a), which is a E2E TE metric. The action-value qπi (s, a)

of router i can be written as the sum of 1-hop reward of router i and the action-value



22

of the next-hop router i+ 1, i.e.,

qπii (s, a) = E
[
ri + q

πi+1

i+1 (s′, a′)
]
. (2.2)

By applying exponential weighted average, the estimate of qπii (s, a), denoted by

Qπi
i (s, a), can be updated based on 1-hop experience tuples (s, a, ri, s

′, a′) and the

estimate of qπi+1

i+1 (s′, a′) of next-hop router, denoted by Qπi+1

i+1 (s
′, a′), i.e.,

Qπi
i (s, a)← Qπi

i (s, a) + α[ri +Q
πi+1

i+1 (s
′, a′)−Qπi

i (s, a)] (2.3)

where α ∈ (0, 1] is the learning rate.

2.4.3 Local Actor for Policy Improvement

Based on the estimated action-value, i.e., Q value, the local actor aims to improve

the local policy towards the direction that can maximize the expected return J(π)

in eq. (2.1). In this paper, we adopt the off-policy softmax algorithm as the local

routing policy. In this case, the target policy the router aims to learn and improve

is the greedy policy, i.e., selecting the action with the maximum estimated action-

value. The behavior policy, which generates the actual actions for the learning agent,

i.e., router, is softmax policy, where each action a is selected with a probability P (a)

based on the exponential Boltzmann distribution

P (a) =
exp(Qπi

i (s, a)/τ)∑
b∈Ai

exp(Qπi
i (s, b)/τ)

2.4.4 Learning Algorithm Implementation as an Application of WiNOS

The implementation of off-policy softmax learning algorithm is based on two north-

bound APIs provided by WINOS as shown in Fig. 2.7. The first API provided by

network state database will provide the Q estimation for the local critic. Based on

the Q value, the actor improves the target greedy policy, while generating the ac-



23

Actor Neighbor

Q - Estimator

Local 

Q - Estimator

Critic

Openflow

Manager

Network State / 

Telemetry

(MangoDB)

NorthBound - REST API

Telemetry 

Manager

Figure 2.7: multi-agent actor-critic reinforcement routing can be quickly prototyped
as an application running on the WINOS

tual actions to be performed by router based on softmax policy. The actual action,

i.e., next-hop router selection, is then forwarded to the OpenFlow manager based on

another northbound API, Finally, the OpenFlow manager will translate the human-

readable actual actions to the underlying OpenFlow instructions.

2.4.5 Backward Neighbor Q Estimation

The key challenge to implement reinforcement routing algorithms is how to estimate

the Q value without inducing so much control overhead. In particular, estimating

Q value relies on the measurement of per-hop per-packet delay as shown in eq. 3.6.

Directly requesting the delay information from the neighboring router could introduce

overhead to the bandwidth-limited wireless channel. Therefore, it is necessary to

redesign the way of exchanging information among neighbor. As illustrated in Fig

2.8, we propose the backward neighbor Q estimation for each router i, which aims

to estimate the action-value of the (backward) neighbors whom the router i receives

data from. The local Q estimation of router i is directly coming from its forward

neighbors. The motivation of such design is based on the fact that the action-value

Q1 of predecessor router 1 is estimated based on the reward r1 and the action-value

Q2 of current router 2. Both r1 and Q2 are immediately available at current router 2,



24

Figure 2.8: Backward Neighbor Q estimation

instead of the predecessor router 1. Therefore, it is more cost-effective to let current

router estimate the action-value of its backward router. Such scheme allows the

action-value to be updated at the line speed, i.e., the speed at which packets come in

the router and also reduce the overhead delay in control channel.

2.4.6 Implementation details

In our implementation, the local agent periodically observes the flow table from

local controller REST API, which is provided by RYU rest_ofctl application. Accord-

ing to Fig. 2.8, when a packet from Router 1 is sent to Router 2, if there is a MATCH

entry for the packet header fields, the forwarding rule at Router 2 is executed, which

is defined by ACTION fields. In particular, MATCH fields contain [source destina-

tion mac, destination mac address, destination IP], where the destination IP of the

packet is used as the local state/observation at each router. Based on such local state,

the ACTION set_field (i.e., source destination mac, destination mac address and

output port) is modified according to the softmax behavior policy, which needs the

the local Q estimation that can be obtained from the forward neighbor router of the

router 2. To stabilize the learning process, the ACTION fields are only updated for



25

every N packets.

At the same time, whenever router 2 receives a packet from the router 1, router 2

will keep updating the Q value of router 1 according to Qπ1
1 (s, a)← Qπ1

1 (s, a)+α[r+

Qπ2
2 (s′, a′)−Qπ1

1 (s, a)], where the reward r is the negative one-hop delay from router

1 to router 2. r is obtained by the proposed S-INT framework. Finally, router 2 will

send the updated Q1 back to Router 1 periodically via POST request. After Router

1 receives the Q1 from router 2, it uses the new Q1 as its local Q estimator.

2.5 Experimental Evaluations
435G

435F

435E

435D

435C

435B

435A

423C

423B

423A

430E

430D

430C

430B

430A

410H

410G

410F

410E

410D

410C

410B

410A

409

403E

403D

403C

403B403A
402A

	/	402
401

437

411
436

425
424

422C

432A
	/	432B

405
431

432A
	/	432B

STR
1

409

409

R1

R2

R3

R4

R5

Client
Server

Figure 2.9: (a) Testbed Topology (b) Nvidia Jetson Xavier Wireless Router

2.5.1 Testbed Setup

Our experimental physical testbed consisted of 5 Nvidia Jetson Xavier nodes with

Compex WLE900VX wireless interface card. We deployed our WINOS system on

top of Ubuntu 18.04 Linux operating system running on each Nvidia Jetson node.

Each wireless router was configured to operate on fixed 5Ghz Channel 36 and 40Mhz

channel width in 802.11ac operating mode. We installed 5 wireless routers at various

locations covering our lab floor area and 2 client hosts were connected at locations

R1 and R3 as show in Figure 2.9. After the deployment, we manually inspected the

topologies formed at every router and noticed that there were two possible paths from

the client to the server. First, the upper bound path goes through R3 → R2 → R1



26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (Minutes)

0.5

1.0

1.5

2.0

2.5

3.0

De
la

y 
(s

)

Shortest path
Off policy softmax

1.0 1.15 1.30
Network Loads (Mbps)

(a) E2E Delay

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (Minutes)

600

700

800

900

1000

Bi
tra

te
 (k

bp
s)

Shortest path
Off policy softmax

1.0 1.15 1.30
Network Loads (Mbps)

(b) Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (Minutes)

20

30

40

50

60

70

Pa
ck

et
 lo

ss

Shortest path
Off policy softmax

1.0 1.15 1.30
Network Loads (Mbps)

(c) Packet Loss

Figure 2.10: Average of 10 runs under high network increasing load conditions, we
measured the network metrics for every 1 minute



27

(2 hops) and lower bound path from R3 → R 4 → R5 → R1 (3 hops).

A client sends a UDP traffic flow to the server with the varying traffic intensity

of 1.0, 1.15 and 1.30 Mbps respectively following a Poisson distributed packet inter-

departure time per second. The traffic flow lasts for 15 minutes. Each data traffic

intensity keeps unchanged for 5 minutes and then the intensity is increased to next

level. We use the average end-to-end throughput,the average end-to-end packet delay,

and average end-to-end packet loss as the performance metrics. Since the wireless

network conditions are dynamically changing overtime, we average the experiment

results of 10 runs that are performed at different times (e.g., morning and night) of

two consecutive days.

2.5.2 Learning-algorithms in the fields

The objective of our experiments is to show that the proposed S-INT and WINOS

enables the quick prototyping of learning-based algorithms for self-driving wireless

networks. Towards this goal, the widely used shortest path (in terms of hop) was

selected as a baseline to compare to off-policy algorithm with softmax action selection.

As mentioned in [40], softmax action-selection, in general, helps the agent to select

second-best control links with a probability, and it helps the exploration of other paths

to balance the traffic in high network loads and to reduce average packet delivery time.

Thus, we selected softmax policy as a behavior policy for the agent and learning rate

is set 0.1. The path from R3 → R2 → R1 was used as the shortest path to send a

packet from the client to the server. Figure 2.10 shows the average delay, throughput,

and packet loss rate for every 1 minute and the top x-axis shows the data traffic load

increasing every 5 minutes. The dynamic network environment comes from the nature

of the wireless medium (link delay) and increasing traffic load (queuing delay). The

overall performances show the efficient routing policies of the learning-based TE since

it is able to adapt to the non-stationary network environment and learn the optimal

path dynamically. In term of the end-to-end delay, it can be seen that the off-policy



28

softmax remains the same packet delivery delay as low as 0.5 second for the whole

experiment. The shortest path routing performs poorly i.e., delay increases as traffic

load increases. In Figure 2.10(b), the throughput of off-policy softmax surges up when

higher data traffic (1.15 and 1.30 Mbps) is injected into the network. However, the

throughput of shortest path increases only around 100 Kbps due to congestion, and

the packet losses of shortest path routing continuously rise up to around 70 packets

per second as shown in Figure 2.10(c).

1.0 1.15 1.30
Traffic Loads (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
la

y 
(s

)

0.84

1.35

2.43

0.40 0.45 0.48

Shortest path
Off policy softmax

(a) E2E Delay

1.0 1.15 1.30
Traffic Loads (Mbps)

400

500

600

700

800

900

1000

1100

Bi
tra

te
 (k

bp
s)

636

710 704

773

860

990
Shortest path
Off policy softmax

(b) Throughputs

Figure 2.11: Stability Analysis of Off-policy softmax routing and shortest path
routing

2.5.3 Stability Analysis

The performance gap we observed in the previous section becomes even more ev-

ident when we evaluate the stability analysis over 10 runs. Figure 2.11 illustrates

the mean and variance of the delay and throughput for each network load condition.

Although the wireless network environment is heavily dynamic, the variances of delay

and throughput of learning-based TE maintain low around 0.9 sec in term of delay

and 100 Kbits in term of throughput. For example, even with highest network traffic

(1.3 Mbits) injected into network, the average and variance of the end-to-end delay

remains relatively small as 0.48 ±0.81 for learning-based TE, while the shortest path



29

1.0 1.15 1.30
Traffic Loads (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
la

y 
(s

)

1.99

2.36 2.30

0.37 0.40 0.43

Probes
S-INT

(a) E2E Delay

1.0 1.15 1.30
Traffic Loads (Mbps)

400

500

600

700

800

900

1000

Bi
tra

te
 (k

bp
s)

691
663

766

711

846

902
Probes
S-INT

(b) Throughput

Figure 2.12: Performance comparison between probes and S-INT (single run)

routing experiences high average delay along with high delay variance (i.e., jitter)

Similar phenomenon is also observed for the end-to-end throughput. To sum up, as

the network traffic load grows, the learning-based TE algorithm leads to much stable

and superior networking performance.

2.5.4 Overhead Analysis

The key feature of S-INT is to reduce the control overhead when the learning

algorithms need to collect experiences for training. To observe the effectiveness of

S-INT, we compare it to the probe-based measurement method, which sends extra

probe packets to collect the network metrics such as link delay. The ICMP data

packet is used to carry timestamp. Each router sends a timestamp probe packet after

each data packet is sent out. In this way, the probe-based approach can achieve the

same per-packet telemetry as S-INT.

We evaluate the network delay and throughput performance under S-INT and

probe-based telemetry respectively in Figure 2.12. X-axis represents the varying

traffic loads, and y-axis shows the average of end-to-end delay and throughput for

5 minutes. The figure clearly shows that S-INT approach significantly reduces the

control overhead and leads to much higher throughput and lower delay. This is



30

because even with the small size (56 bytes) of probe packets, sending a probe packet

out for every out-going data packet is very costly.

2.6 Conclusion

In this chapter, we proposed a distributed In-band telemetry system (S-INT) and

a wireless network operating system (WINOS) for self-driving wireless networks. Our

proposed system provides two key benefits (1) Programmable measurement using

S-INT, resulting in low-overhead telemetry system and (2) Programmable wireless

network control from WINOS for quick and easy implementation of AI-enabled dis-

tributed traffic engineering solutions such as Multi-Agent reinforcement routing. We

implemented a traffic engineering application based on Multi-Agent Reinforcement

routing on a physical wireless mesh testbed, using S-INT and WINOS systems.

Our results show promising network performance in terms of delay, packet loss and

throughput. We strongly believe, our proposed distributed WINOS and S-INT sys-

tems will open more research opportunities to realize Self-Driving wireless networks.



CHAPTER 3: FedEdge: Towards Network-Accelerated Federated

Learning over Wireless Edge

3.1 Overview

Federated learning (FL) is a distributed machine learning technology for next-

generation AI systems that allows a number of workers, i.e., edge devices, collabora-

tively learn a shared global model while keeping their data locally to prevent privacy

leakage. Enabling FL over wireless multi-hop networks can democratize AI and make

it accessible in a cost-effective manner. However, the noisy bandwidth-limited multi-

hop wireless connections along with statistical and system heterogeneities can lead to

delayed and nomadic model updates, which significantly slows down the FL conver-

gence speed.

To address such challenge, in this chapter, the regularized local stochastic gradient

descent (SGD) is first adopted to mitigate computation-induced convergence latency

caused by statistical and system heterogeneities. Then, to combat communication-

induced convergence slowdown, the multi-agent reinforcement learning (MA-RL) al-

gorithms are developed, which find the delay-optimal routing paths to minimize the

model exchange latency between the edge devices (i.e., workers) and the remote server.

To validate the proposed solutions, FedEdge is developed and implemented, which is

the first experimental framework in the literature for FL over multi-hop wireless edge

computing networks. FedEdge allows us to fast prototype, deploy and evaluate novel

FL algorithms along with RL-based system optimization methods in real wireless

devices. Finally, using FedEdge, our experimentation results in a physical testbed

show that the proposed network-accelerated FL system can significantly improve FL

convergence speed. The content of this chapter is partly reprinted with permission



32

from P. Pinyoanuntapong, P. Janakaraj, P. Wang, M. Lee and C. Chen, "FedAir:

Towards Multi-hop Federated Learning Over-the-Air," ©2020 IEEE.

3.1.1 Challenges in Multi-hop Federated Learning

Despite its great potential advantages to democratize AI, multi-hop FL, short for

FL over multi-hop wireless edge computing networks, is still an unexploited area.

The classic FL systems use single-hop wireless communications to directly connect

to the edge servers or connect to edge routers that then reaches the remote cloud

servers via high-speed Internet core. In multi-hop FL networks, the end-to-end (E2E)

model updates between the server and workers need to go through multiple noisy and

bandwidth-limited wireless links. This results in much slower and nomadic model

updates due to much longer and more random E2E delay. Such profound communi-

cation constraints fundamentally challenge the efficiency and effectiveness of classic

FL systems as detailed below:

• Degraded scalability of FL over wireless multi-hop networks: The FL

algorithms generally adopt a server-client architecture, where a central server

collects and aggregates the model updates of all workers. The routing paths

towards the central server can be easily saturated in wireless multi-hop net-

works due to the limited network bandwidth. In addition, different from classic

distributed model training in data centers, FL exploits production networks to

carry on model training traffic between workers and the server. Therefore, FL

traffic has to compete with the background production network traffic (e.g.,

Internet traffic) for limited network bandwidth. As a result, when the number

of workers or the background traffic volume increases, network congestion will

deteriorate progressively, which critically degrades the benefits of computation

parallelization and slows down convergence speed.

• Difficulties of model-based optimization for multi-hop FL system:



33

so far, there are limited research efforts on optimizing wireless FL systems.

Existing efforts all focus on single-hop FL over cellular edge computing sys-

tems [32,34,36]. With such assumption, the impact of wireless communication

control parameters (e.g., transmission power) on the FL related metrics (e.g.,

model update delay and loss reduction) can be formulated in an explicit closed-

form mathematical model, which greatly eases the FL system optimization.

Such model-based optimization is not feasible in multi-hop FL, where the FL

performance metrics (e.g., FL convergence time) cannot be explicitly formu-

lated as a closed-form function of the networking control parameters, such as

packet forwarding decision at each router.

3.1.2 Our Contributions:

The objective of this work is to develop a novel multi-hop FL system that can

guarantee high accuracy and faster convergence by systematically taming algorithm

and networking-induced delay.

• To our knowledge, this is the first work in the literature to reveal, formulate,

and experiment on the inherent interplay between multi-hop wireless networking

and federated learning.

• To minimize the FL convergence time, we exploit multi-agent reinforcement

learning for FL system optimization, which minimizes the networked-induced

convergence latency by learning the delay-minimum routing paths for FL traffic

flows.

• We develop and prototype FedEdge, which is the first experimental framework in

the literature for FL over multi-hop wireless edge computing networks. FedEdge

allows us to fast prototype, deploy and evaluate novel FL algorithms along with

machine learning-based FL system optimization methods in real-life wireless

devices.



34

• We demonstrate via extensive experiments that the proposed FedEdge system

and reinforcement learning-based FL system optimization have the great po-

tential to effectively improve the convergence performance of FL in wireless

multi-hop networks.

3.2 Runtime convergence of Federated Learning

3.2.1 Federated Learning via Regularized Local SGD

1x

Kx

Local DatasetLocal  Model

Local Model update:   

Kw

Kw

Local Model Local Dataset

1

Distribute Updated 
Global Model to Devices

3

2 Global Model Aggregation: 

Minimize Regularized Local Loss

Perform SGD for        iterations

Central Sever

AI-router

AI-Router

AI-router

Internet 

Global Model

1
w

1
C

t
w


K
w

1
w

 
1 1

K
k

k

C

t
w w

 


 ( ; ) 2 ( )k k k k C

tw w f w x w w     
1

1

1

  1

NC k k

k

N k

n

t
w w

where


















2

loss function regularization

kk k k C
tw E f w x w ww   arg min [ ( ; )] || ||( )

k
w

k
H

Figure 3.1: Federated learning via local SGD

Federated learning methods are designed to handle distributed training of neural

networks over multiple devices, where the devices have their local training data and

aim to find a common model that yields the minimum training loss. Such a scenario

can be modeled as the following distributed parallel non-convex optimization

min
w
F (w) =

N∑
k=1

λkF k(w), F k(w) = E
[
f(wk;xk)

]
(3.1)

where F (w) is the global loss, F k(w) is the local loss of device k, N is the number

of devices, λk = nk

n
and

∑N
k=1 λ

k = 1, where nk is the number of training samples

on device k and n =
∑

k n
k is the total number of training samples in network. The

local loss F k(w) is a non-convex function over data distribution xk ∼ Dk, which is

possibly different for different device k. The optimization problem in eq. (3.1) can be



35

generalized by adding a quadric regularization term in the objective function [?, 49],

i.e.,

F k(w) = E [f(wk;xk)]︸ ︷︷ ︸
loss

+ ρ||wk − wCt ||2︸ ︷︷ ︸
regularization

(3.2)

where wCt is the global model and ρ is the penalty parameter that determines how

much deviations from the global model the local model is allowed.

To solve above optimization problem, FL methods are following a common stochas-

tic optimization technique, called local SGD, which alternates between local SGD iter-

ating and global model averaging for multiple (server-worker communication) rounds,

where the worker is the device that participates in the collaborative model training.

As shown in Fig. 3.1, during each round, the worker tries to reduce its local loss

F k(w) by performing Hk mini-batch SGD iterations with each iteration updating the

model weights, following:

Local SGD Iterating: wk ← wk − η 1
B

∑
xk∈Ik

(
∇f(wk;xk) + 2ρ(wk − wCt )

)
(3.3)

where Ik is a subset (mini-batch) of the training samples on worker k and B = |Ik| is

the size of the mini-batch. After finishing Hk local SGD iterations, the workers send

their local models {wk}k≤K to the central server, which averages them and updates

the global model accordingly

Global Model Averaging: wc =
K∑
k=1

λkwk (3.4)

where K is the number of devices selected to be the workers. The new global model

is sent to the workers and the above procedure is repeated.

It is worthy to notice that minimizing regularized loss ensures that the local workers

will not fall into the model update trajectories that are far away from the current



36

global model. Such practice can effectively prevent the potential divergence caused

by statistical heterogeneity [50] and system heterogeneity [51]. On the one hand, the

workers involved in FL training tend to possess significantly diverse data samples

so that they follow unbalanced and non-IID data distribution, thereby introducing

statistical heterogeneity. On the other hand, the workers generally possess diverse

computation resources (e.g., CPU, GPU and RAM). To mitigate the blocking effects

of stragglers (slow workers) and reduce computation-induced latency, each worker

can perform different number of local iterations Hk according to its computation

constraint, which leads to system heterogeneity. When the penalty parameter equals

to zero, i.e., ρ = 0 and all workers adopts the uniform local updates, i.e., Hk =

H, ∀k ≤ N , then the local SGD algorithm in eq. (3.3) and (3.4) becomes the classic

FedAvg algorithm [35].

3.2.2 Convergence of Local SGD

3.2.2.1 Iteration Convergence

Before local SGD is applied in FL settings, it already showed very promising perfor-

mances for distributed optimization in data center environments. The key advantage

of local SGD is its low communication overhead along with high convergence speed.

Recent research shows that for non-convex optimization with both IID and non-IID

data, local SGD can achieve fast O(1/
√
KT ) convergence [52,53], i.e., achieving linear

speedup w.r.t. the number of workers K, where T is the total number of iterations

performed by each worker. This is the optimal convergence performance achieved by

the celebrated parallel mini-batch SGD methods [54,55], where each worker sends its

model or gradient to the server after each local SGD iteration is done. Therefore,

parallel mini-batch SGD achieves the optimal O(1/
√
KT ) convergence at the cost of

T communication rounds. However, to achieve the same convergence performance,

local SGD only needs O(T 3/4K3/4) communication rounds [52, 53]. In other words,

local SGD can preserve the fast convergence with significant less communication costs



37

by putting more computation loads on the workers, i.e., by letting workers perform

O(T 1/4/K3/4) local SGD iterations instead of one.

Single-Hop FL over WiFi

Multi-Hop FL over Wireless Mesh

Central Sever 

Worker 1
(Nvidia Xavier)

Worker 2

Worker 1

Worker 2

Central Sever 

relay

relay

(a)

0 25 50 75 100 125 150
Time (Minutes)

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e 

Lo
ss

Single-hop
Multi-hop

(b)

0 2 4 6 8
Iterations

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e 

Lo
ss

Single-hop
Multi-hop

(c)

Figure 3.2: We use Nvidia Xavier nodes to implement two workers and one server to
train MNIST dataset for digit recognition task. To test the impact of wireless

networking, we use the exactly same parameters (e.g., initial model weights, number
of rounds, number of local iterations, batch size, and learning rate) for FL over

single-hop and multi-hop wireless networks, respectively. (a. Network topology)
for single-hop network, we use IEEE 802.11ac for wireless connections. For

multi-hop mesh network, we use IEEE 802.11s for multi-hop routing, which still
uses IEEE 802.11ac for MAC/PHY functions. The testbeds are deployed in the first
floor of UNCC CS department with interferences from co-existing campus WiFi

networks (b. Runtime Convergence) The wireless multi-hop FL converges much
slower with respect to the true training runtime (wallclock time) (c. Iteration

Convergence) The single-hop and multi-hop FL systems have the same iteration
convergence performance.

3.2.2.2 Runtime Convergence of Local SGD

Local SGD method (e.g., de-factor FL algorithm FedAvg) is generally implemented

in a synchronous manner, where the SGD update sequences on the workers are syn-

chronized (by model averaging). In other words, the server needs to wait for the model

updates from all workers and then it can perform model aggregation, after which the

workers can resume their local SGD updates for the next round. As a result, if the

actual training runtime (wallclock time) t is used instead of iteration index T , the

convergence of local SGD could be as worst as O(√τmax/
√
Kt)(where each worker

only performs one local iteration). τmax is the delay of the slowest worker (straggler)

to deliver its local model to the server, which could be very small in high-speed data



38

center networks and wireless single-hop networks (e.g., WiFi or cellular). In wireless

multi-hop networks, τmax becomes a more dominant factor affecting the true runtime

convergence due to the large, random and heterogeneous E2E communication delays

experienced by the workers. As a result, the theoretically fast convergence of local

SGD can be practically slowed down in wireless multi-hop networks. Such projection

is also verified through a simple experiment (Fig. 3.2). Moreover, the linear conver-

gence speedup by increasing the number of workers K could also be accompanied

with the increased delay τmax due to escalated network congestion, which leads to

convergence slowdown.

3.2.3 Hierarchical Synchronous FL system

1x

Kx

Local DatasetLocal  Model

Local Model update:   

Kw

1w

Kw

Spatial-Arithmetic Model Averaging 

1
1

K k

k
where 

=
=  

Local Model Local Dataset

1

2

Distribute Updated 
Global Model to Devices

4

3 Synchronous Central Model 
Aggregation: 

Synchronous Edge Model 
Aggregation: 

Minimize Regularized Local Loss

Perform SGD for     Iterations

Central Sever

Edge Sever

Edge Sever

Edge Sever

Internet 

H

Global Model

1w
Ew

1
C
t

w
+

1

K

k

E k kww 
=

=   

Kw

1w

 
1 1

K
k

k

C
t

w w
= +


( )( ; ) 2 ( )k k k k C

tw w f w x w w  −  + −

2

loss function regularization

kk k k C
tw E f w x w ww = + −arg min [ ( ; )] || ||( )

1

EC e e

e
ww 

= = 

1
1

E e

e
where 

=
=  

Figure 3.3: Hierarchical Synchronous Federated Learning System (HS-FL)

The standalone synchronous or asynchronous local SGD cannot achieve good accuracy-

runtime trade off due to the adverse impacts of straggler and staleness. In addition,

existing local SGD methods generally adopt single-layer server-worker architecture,

where the central server is responsible for receiving and aggregating the model up-

dates from all workers. This is not a scalable solution because the central server and

its neighboring network links become the bottleneck of the whole FL system. We

proposed Hierarchical Synchronous FL system (HS-FL), which is a variant of local

SGD with (1) layered computation to improve system scalability.



39

Step 1. Local model update. As shown in Fig. 3.3, each worker tries to minimize

regularized loss function, which contains a quadratic penalty term,

wk = argwmin(E [f(wk;xk)]︸ ︷︷ ︸
lossfunction

+ ρ||wk − wCt ||2︸ ︷︷ ︸
regularization

)

where wCt is the current global model and ρ is the penalty parameter that determines

how much deviations from the global model the local model is allowed to have. Min-

imizing regularized loss ensures that the local workers will not fall into the model

update trajectories that are far away from the current global model, thus preventing

the potential divergence of local SGD methods under IID and non-IID data distribu-

tions [50]. In this case, the model update via SGD at worker k follows

wk ← wk − η
(
∇f(w;xk) + 2ρ(wk − wCt )

)
.

The above update rule can be substituted by momentum SGD [53], which is shown

recently to have good stability and convergence improvements under non-IID. With

two-layer aggregation, each edge server acts as the local aggregator to aggregate the

model updates from its locally served edge devices, while the central server acts as the

global aggregator to aggregate the synthesized updates from edge servers to update

the global model.

Step 2. Synchronous edge model averaging. The edge server waits for the

model updates from all the workers in its served area and then aggregates them into

a single edge model wE to maximize communication efficiency of the whole system,

i.e.,

wE =
∑K

k=1
λkwk

where
∑K

k=1 λ
k = 1. Besides communication efficiency, applying synchronous model

averaging within the small service area of each edge server will not induce much



40

adverse impact of the stragglers because the single-hop wireless communication gen-

erally has much less delay compared with multi-hop communications. Moreover, syn-

chronous model averaging will not create stale updates, thus helping us to improve

the model accuracy.

Step 3. Synchronous global model averaging. Whenever the edge models ar-

rive, the central server applies synchronous model averaging methods to continuously

aggregate the edge models into the global model wCt+1 following:

wC =
∑E

e=1
λewe

Step 4. Global model distribution. The new global model wCt+1 is sent back to

the edge devices to replace their local models. As we only need to send global models

to edge workers, the global traffic is significantly reduced for model exchange.

3.3 Optimizing FL Convergence via Reinforcement Learning

Our overall objective is to minimize the run-time convergence time to achieve a

desired FL accuracy. Towards this goal, the optimal strategy is to minimize the

worker-server delay of the slowest straggler, which experiences the maximum delay

among all workers. However, in the highly dynamic wireless environments, the role of

straggler can be randomly switched among different workers as time proceeds. In this

paper, we sought a sub-optimal solution, where we minimize the average end-to-end

(E2E) delay between all workers and the server. However, even for such sub-optimal

solution, we cannot apply the classic model-based optimization because the server-

worker E2E delay cannot be explicitly formulated as a closed-form function of the

routing/forwarding decisions. As a result, the model-free optimization strategy based

on multi-agent reinforcement learning is much more desirable, where each wireless

router exploits its instantaneous local experiences to collaboratively learn the delay-

optimal routing paths between the workers and the server.



41

In particular, this problem can be formulated as the multi-agent Markov decision

processes (MA-MDP), which can be solved by multi-agent reinforcement learning

algorithms. Given the local observation oi, which is the source IP and destination

IP of the incoming FL packet, each router i selects an action a, i.e., the next-hop

router, to forward this packet, according to a local forwarding policy πi. After this

packet is forwarded, the router i receives a reward ri, which is the negative one-hop

effective delay between router i and the selected next-hop router. The effective delay,

calculated by di,i+1/pdri,i+1, captures the joint effects of packet delivery delay di,i+1

and packet loss rate or packet delivery ratio (pdri,i+1) due to noisy wireless channel

between router i and i + 1. The packet delivery delay di,i+1 is the time interval

between the time when packet arriving at router i and the time when the packet

arriving at the next-hop router i+1. The packet delivery delay di,i+1, which contains

the queueing delay, processing delay and transmission delay, is a random value real-

timely measured by in-network telemetry module introduced in the next section. The

return Gi =
∑T

k=i rk is the total reward from intermediate state si to final state sT ,

where si and sT are the states when a FL packet arrives at the relay router i and

destination router T , respectively. Let s1 be the initial state when a FL packet enters

the network from its source router. The source/destination router is the router that

a worker or the server is attached to. The goal is to find the optimal policy πi for

router i so that the expected return J(π) from the initial state (i.e.,E2E server-worker

delay) is optimal, where J(π) = E[G1|π] = E[
∑T

i=1 ri|π] where π = π1, ..., πN .

3.3.1 Delay-optimal Model Update via Multi-agent Reinforcement Learn-

ing

To solve the above MA-MDP problem, we exploit the multi-agent reinforcement

learning, where the routers (agents) distributively learn the optimal target forwarding

policy π to minimize the average server-worker delay. To implement the multi-agent

reinforcement learning algorithm, we utilize the actor-critic-executor architecture pro-



42

posed in our previous work [40], where each router individually runs a local critic, a

local actor, and a local executor.

Critic for Policy Evaluation

The performance of the policy π is measured by the action-value qπi (s, a), which is

a E2E TE metric. The action-value qπi (s, a) of router i can be written as the sum of

1-hop reward of router i and the action-value of the next-hop router i+ 1, i.e.,

qπii (s, a) = E
[
ri + q

πi+1

i+1 (s′, a′)
]
. (3.5)

By applying exponential weighted average, the estimate of qπii (s, a), denoted by

Qπi
i (s, a), can be updated based on 1-hop experience tuples (s, a, ri, s

′, a′) and the

estimate of qπi+1

i+1 (s′, a′) of next-hop router, denoted by Qπi+1

i+1 (s
′, a′), i.e.,

Qπi
i (s, a)← Qπi

i (s, a) + α[ri +Q
πi+1

i+1 (s
′, a′)−Qπi

i (s, a)] (3.6)

where α ∈ (0, 1] is the learning rate.

Local Actor for Policy Improvement

Based on criticâs inputs, the local actor improves the local policy, which aims to

maximize the cumulative sum of reward J(π). This can be done by applying greedy

policy, where each router i greedily improve its current policy πi, i.e., select the action

with the maximum estimated action-value,

πi(s)← argmax
a
Qπi
i (s, a).

Besides greedy policy, we also exploit two near-greedy policies to encourage explo-

ration. The first one is ε−greedy policy with exponential decay. With such policy,

the router selects the greedy action defined in eq. (3.6) with with probability 1− ε(t)



43

and select other actions with probability ε(t). The ε decays exponentially as time

proceeds, i.e., ε(t) = ε0β
t, where 0 < ε0 < 1 and 0 < β < 1. The second near-greedy

policy is softmax-greedy policy, where each action a is selected with a probability

P (a) according to the exponential Boltzmann distribution,

P (a) =
exp(Qπi

i (s, a)/τ)∑
b∈Ai

exp(Qπi
i (s, b)/τ)

(3.7)

Local Executor

The local executor performs the actions according to the behavior policy, which is

either same as the target policy πi ( on-policy learning) or similar to the target policy

but more exploratory (off-policy learning). For off-policy learning, the the target

policy is generally the greedy policy and the behavior policy is generally near-greedy

to enable explorations.

3.4 FedEdge Design and Prototyping

3.4.1 FedEdge Overall Design

Existing FL experimental frameworks (e.g., TensorFlow Federated (TFF) [56] and

PySyft [57] ) only support simulations of federated learning without taking into ac-

count any networking impacts. In addition, the frameworks mentioned above were

highly dependent on websockets for their communication, which leads to a reactive

disconnection between the worker and server when their links experience a short-lived

delay. Moreover, these frameworks can not be readily deployed on the physical edge

devices without cumbersome modifications. To address above challenges, we develop

and prototype FedEdge, which is the first experimental framework for wireless multi-

hop FL. FedEdge allows us to fast prototype, deploy and evaluate novel FL algorithms

along with RL-based system optimization methods in real-life wireless devices.

FedEdge has two unique features. The first feature is its modularity for both com-



44

FL Engine Wireless Network Operating System 

(WiNOS)

Telemetry Enabled Datapath
(INT – OfSoftswitch13)

MAC80211

Radio-1 Radio-2

PHY 

Control

Flow 

Manager
Topology 

Discovery

Telemetry 

Manager

Neighbor-Q 

Estimator

Netlink

W
iN

O
S 

- 
Da

ta
pl

an
e

W
iN

O
S 

- 
Co

re
W

iN
O

S 
- 

Ap
ps

NorthBound Protocol – REST API

π 
Q-Network

Q-table

Actor Crtic

Da
ta

se
ts

Co
m

pu
te

Co
m

m
un

ic
at

io
n

TFDS LEAF
Custom 

Dataset

Data Filter
Data 

Sampler
Data Meta

ModelsModels

TRAIN

GRPC

REST-API

ProtoBuf

JSON

Local

End-Point Router

Model Repo

Global
SouthBound Protocol - OpenFlow

Radio Intf 

Control

Network State 

Database

Radio-3

Figure 3.4: Architecture of FedEdge Framework



45

munication and computation functions. This allows programmers to from both worlds

to simultaneously evolve and evaluate the complex FL system under diverse network

and computation conditions. Second, FedEdge is a highly programmable experimen-

tation platform that can be easily deployed on real wireless systems. With these

two features, we can design and deploy new FL algorithms along with customized

datasets, preprocessing schemes and training pipelines. Simultaneously, we can in-

novate on various networking mechanisms and test their impact on the performance

on federated learning systems. Meanwhile, we can also specify different communica-

tion protocols used for the training execution, such as TCP/UDP, SYNC, or ASYNC

HTTP connections

As shown in Figure 3.4, FedEdge consists of two key components: FL engine,

which customizes and configures FL-related functions (e.g., FL training algorithm

setup, model selection, and dataset preparation) and WiNOS, which is a distributed

AI-oriented wireless network operating system. WiNOS is responsible for providing

fast wireless networking connections between the aggregator and workers. What is

more important, WiNOS is designed in nature to facilitate AI-empowered networking

optimization, including customizable actor-critic RL agent for instantiating a variety

of AI-enabled routing algorithms, in-band telemetry that enables cost-efficient data

collections for online RL training, and programmable routing table (datapath) for

real-time RL policy executions.

Each FedEdge component follows a layered design. In particular, FL engine consists

of three layers. (1) FL Datasets layer stores the datasets for federated training (2) FL

compute layer provides vital functions to train the model and save the models and

(3) FL communicate layer establishes logic and reliable connections between work-

ers and aggregator by using the proposed FedEdge communication protocol (FedEdge

COMM). AI-WiNOS is composed of 3 layers. (1) WiNOS dataplane incorporates SDN

software switch with our proposed in-band telemetry scheme to enable programmable



46

packet forwarding, while simultaneously providing low-cost real-time collection and

reporting of network state measurements. (2) WiNOS Core provides essential net-

working services and functions. such as topology discovery, network state database,

and traffic flow management. (3) WiNOS application layer hosts the actor-critic RL

agent to enable delay-optimal routing between the aggregator and the workers.

3.4.2 FL Engine

3.4.2.1 FL Datasets

Federated learning is based on the well-established machine learning technique with

a key significant difference in how the data is used to train the models. One of the FL

techniqueâs primary objectives is to protect the userâs privacy by avoiding sharing

data from the origin device. Firstly, without reinventing the wheels, we leverage the

existing datasets hosted by Tensorflow TFDS [58] and LEAF [59], both of which are

well known in the FL community. We also provide extended APIs to incorporate

custom datasets specific to the experimenter to integrate within our FL framework.

Dataset-Setup

In our FL training pipeline, the first step is to distribute the datasets to different

workers in the training process. To do so, the experimenter has to specify three

primary parameters, which are (1) Number of workers involved and (2) the Data

distribution type - I.I.D or non-I.I.D and (3) Dataset name and the repository of the

dataset (TFDS, LEAF, or CUSTOM). Next, our FedEdge Datasets module will split

the dataset respectively and transfer them over to the worker/clients.

Pipeline

In the FL training process, the experimenter can choose the data for training in an

arbitrary fashion for each global round. For each global round, the aggregator may

specify the class and number of samples used for the current epoch. With such flexi-

bility in the training process, we provide a highly customizable pipeline for consuming



47

data during the training process with two sub-modules including data filtering and

sampling. At each round of global training step, the aggregator can pass parameters

such as the data class to filter and sampling technique for the training process. In

this case, the sampling procedure will determine either the entire filtered data should

be used or have to be sub-sampled to limit the number of samples consumed for the

training step. To simplify the above-mentioned process, we consider all datasets will

contain a META which provides the key statistics about the dataset, such as the

number of classes and number of samples for each class and in-total.

3.4.2.2 FL Compute

Our motivation for designing FedEdge compute module is to provide an extensible

processing stack such that it is easy to customize the training pipeline without being

limited to the communication protocol. Compute module is comprised of 3 stages of

processing: (1) Data Staging (2) Model Repo and (3) Model Trainer. In the following

section, we will briefly describe the functionality of each stages.

Data Staging

Data for the worker is selected at the beginning of the FL training procedure. In

this data staging process, the user can further preprocess the data using FedEdge’s in-

built functions to encode, normalize and standardize the data. Such synthesized data

is then gathered into batches by the batch size specified during the initial training

epoch. Furthermore, batches are then converted to a Tensorflow accelerated data

pipeline to avoid the IO bottleneck, thereby accelerating each epoch runtime.

Model Repo

Federated training procedure mandates frequently exchanging model under training

between worker and the aggregator. Some FL algorithms require the model of current

round to be updated using the models from the previous training rounds. To facilitate

such procedure, we implemented a model repo that stores the global and local models



48

for a specified time duration. Each model is timestamped before writing to the repo

so that it is easy to distinguish the current model and historical models.

FL train

It involves two types of nodes that perform different operations. To further simplify

the context of FedEdge compute, we describe the functions of FedEdge compute based

on the nodeâs role in the training process and the sequence of communication among

the nodes are shown as the sequential flow in 3.5. The detailed operations of FL

training are shown in Algorithm 1 and 2.

FedEdge aggregator node is the central node that controls the life cycle of FL train-

ing. The aggregator has a crucial role in initiating, coordinating, and monitoring the

FL training cycle. Before beginning the FL training cycle, each worker should register

their IDs, a combination of IP and port numbers to the aggregator’s worker registry

built into the FedEdge Communicate End-point router module. This registry is con-

structed using a hash map that stores worker ID as the key and their communication

HTTP/GRPC end-point as the value. Only registered workers can participate in

the training cycle. The aggregator performs a two-stage process to launch the FL

training sequence: (1) Construct the model and upload it to the workers (2) Launch

the training with the user-supplied training configuration. In the following section,

we briefly discuss the two-stage process:

• Stage-1: Our FedEdge compute module provides in-built models for image clas-

sification tasks using convolutional neural network (CNN) and multi-class lo-

gistic regression (MCLR). Besides, users can easily modify the in-built models

and integrate their customized loss functions. Each model will then be trained

with the user’s choice of optimization algorithms. Currently, FedEdge compute

module provides in-built support for the regularized local SDG algorithm by

default, which can be considered as the generalized FedAvg. This newly created

model is then shared with the workers for training. To send the model, the



49

Algorithm 1 Local SGD - Aggregator
Input: maxround rm, worker epoch Hk, k ≤ N , batch size B
Output: Global Model W c

AGGREGATOR PROCESS
1: Initialize Worker Registry: R
2: Initialize Current Model Queue: Qfresh

3: Initialize Worker State Queue: Qs

4: WORKER NODE REGISTRATION
5: On request for register
6: K ← workerid
7: for round r ≤ rm do
8: if r = 1 then
9: Initialize : wc

10: for k in R in parallel do
11: updateWorker ← wc

12: Qs ← GLOBAL_MODEL_RECV (k)
13: end for
14: for k in R in parallel do
15: Initiate training sequence : w t

16: Qfresh ← wk ← train(k,Hk,B)
17: Qs ← LOCAL_MODEL_RECV (k)
18: end for
19: else
20: Perform Model Aggregation
21: wct ←

∑E
e=1 λ

kwe

22: for k in R in parallel do
23: updateWorker ← wc

24: Qs ← GLOBAL_MODEL_RECV (k)
25: end for
26: for k in R in parallel do
27: Initiate training sequence : w t

28: Qfresh ← wk ← train(k,Ht,B)
29: Qs ← LOCAL_MODEL_RECV (k)
30: end for
31: end if
32: end for
33: return W c



50

Algorithm 2 Local SGD - Worker
Input: workerid k, worker epoch Hk, batch size B
Output: Local Model wk

Initialize Status Queue: Qw

Initialize Dataset Store: DS

REGISTER(workerid)
FUNCTION train(k,Hk,B)

3: Qw ← TRAINING_STARTED
while i < Hk do
for bs in Ds do

6: wk ← wk − η 1
B

∑
xk∈Ik

(
∇f(wk;xk) + 2ρ(wk − wCt )

)
end for

end while
9: Qw ← TRAINING_FINISHED

return wk to AGGREGATOR

aggregator revisits the worker registry to obtain each workerâs HTTP/GRPC

end-points. If the worker successfully received the model, then the correspond-

ing worker state will be updated based on the message from the worker with

the context GLOBAL_MODEL_RECV .

• Stage-2: To begin the FL training cycle, user needs to supply the following

parameters at the minimum: global rounds, local rounds per node, dataset

repo and dataset, model to train, and data partition type. The global round

controls the total number of rounds workers will use to train the shared model,

and local rounds define the number of epochs each worker will use to update

it local model. Since our FedEdge framework hosts datasets from a variety of

repo’s, users should specifically mention the dataset and the repo used for the

experiment. With the user-supplied parameters, a training cycle is constructed

where a cycle is defined as (1) launching a global round (2) wait to receive

models from all workers and updates the state of the corresponding worker to

LOCAL_MODEL_RECV . (3) perform model aggregation, and (4) finally

share the aggregated model with the workers. This cycle will terminate once

the required number of global rounds are reached or when the target accuracy



51

is achieved.

FedEdge worker node operates on the request of the aggregator node. FedEdge

aggregator interacts with the worker node to initiate the training sequence by shar-

ing the global model and initial training parameters. The model received from the

aggreagator node will be stored as a global model into the model repo. Worker node

loads the global model and creates its copy of the local model by cloning. This local

model is then used to train over multiple epochs with the supplied optimization algo-

rithm to minimize the local loss function. Finally, the updated model is then shared

with the aggregator.

3.4.2.3 FL Communication

The reliability of the FL system is heavily dependent on the robust communication

stack for collaborative learning. As more research efforts are focused on improving

the overall FL system performance by improvising computation, little to no effort has

been targeted towards optimizing the communication layer. We believe the lack of a

flexible platform is one of the inherent challenges to pursue research in this venue. Ex-

tendability and ease of programmability as the objective, we adopted modular design

which consists (1) End-point router and (2) FL-Transport Layer as the submodules.

In the following section, we will briefly discuss the functionality of the modules as

mentioned earlier:

End-point router

FedEdge platform exposes functions for FedEdge compute and dataset layers through

End-Point router (EPR). This routing layer routes messages from external nodes to

the respective processing function to handle data pipeline, model training, and model

exchange. Since each FedEdge node provides some service in-addition to consuming a

service, EPR is designed to function in a dual role such as a server and client. In the

client role, the FedEdge node can send registration requests, upload local models, and



52

reply to the aggregatorâs status query. On the other hand, it accepts requests from

the aggregator to preprocess the dataset, launch training, and receive a global model

in the server role. To adopt a synergy in FedEdge nodes, we proposed a communi-

cation protocol. The general idea of the FedEdge communication protocol (FedEdge

COMM) is to define the messages that should be exchanged between the aggregator

and worker nodes. Besides, the protocol also defines the status flags that should be set

by each node based on the role type and its current status. The communication flow

of our FedEdge COMM is shown in figure 3.5. Following the FedEdge COMM, the

aggregator node first initializes the port for accepting connections from the worker.

Besides, the connection state tracker is initialized to keep track of the nodes commu-

nicating with the aggregator. After this phase, worker nodes register their IP address

and device ID to the worker registry within the connection state tracker module.

Once the aggregator has received the training resources, it will initialize the global

model and share it with all the workers within the worker registry. If the workers

successfully received the model, a notification will be sent to the aggregator. If the

aggregator determines it has the required number of workers for the training phase,

then the training request is dispatched to all workers with the batch size and number

of rounds. On receiving training requests, the worker initiates a training round and

updates the local model to the aggregator at the end of the training.

FL-Transport Layer

FedEdge nodes on Wireless multi-hop networks are prone to experience dynamic

network conditions that might cause unreliable transport layer operation. With mod-

ularity at the core of the FedEdge framework design, we let programmers freely de-

fine the underlying transport layer mechanism for the FedEdge COMM. While EPR

submodule exposes FedEdge compute and dataset layersâ functions, these APIs are

accessible based on the transport layer of FL (FL-Transport). With service-based

architecture as the design principle behind FL-transportâs transport layer, we have



53

S
e

rv
e

r

W
o

rk
e
r

INITIALIZE – Open Server Port

REGISTER

TRAIN (device_id, round_num, batch_size) 

LOCAL_MODEL_SEND

GLOBAL_MODEL_SEND

GLOBAL_MODEL_RECV

TRAIN (device_id, round_num, batch_size) 

LOCAL_MODEL_SEND

GLOBAL_MODEL_SEND

GLOBAL_MODEL_RECV

TRAIN (device_id, round_num, batch_size) 

LOCAL_MODEL_SEND

GLOBAL_MODEL_SEND

GLOBAL_MODEL_RECV

TRAIN (device_id, round_num, batch_size) 

LOCAL_MODEL_SEND

GLOBAL_MODEL_SEND

GLOBAL_MODEL_RECV
ro

u
n
d
 -

 1
ro

u
n
d
 -

 2

REST API – FEDCO COM API

Figure 3.5: FedEdge Communication Protocol

adopted two communication mechanisms (1) HTTP- REST API and (2) GRPC.

HTTP-REST API: The widely used service based infrastructure protocol, HTTP-

REST API operates on the principle of standard request/response format. Our

HTTP- TCP REST API is constructed on top of the TCP protocol stack. Therefore,

we extend REST APIs programmability to configure the number of TCP streams,

session control, and keep alive. To simplify the payload transport, we utilized JSON

message format to transport the FL model. In addition to the FL model, the user

can easily extend the API to add additional attributes such as the time stamp of

the model and the total time take to complete training by defining new key/value

pair before JSON encoding. To simplify the implementation efforts, we adopted a

range of frameworks such as FastAPI [60], Asyncio [61] and HTTPx [62] for building

the communication protocol. FastAPI framework facilitates application developers

to implement REST API for functions that can be invoked by remote nodes using

HTTP as the transport protocol. Asyncio and HTTPx enable the developers to im-



54

plement asynchronous HTTP clients so that the aggregator can communicate with all

workers within the cluster concurrently. While server function within the aggregator

and worker is built around FastAPI and HTTPx, client functions are built on top of

AiOHTTP and Asyncio.

GRPC: Google Remote Procedure Call [63] is a high performance framework for

calling remote methods by passing parameters alike local functions. The core idea of

the GRPC framework is to define a service that will implement the interfaces which

can be called by the remote entities to execute an operation. In FedEdge framework,

we leveraged GRPC as the communication channel between the server and all workers.

Besides, dual message format is supported for over the channel such using either

JSON or Protocol buffers. While JSON encodes messages as texts, protocol buffers

uses compiler to transcode structured data into serialized byte streams. In addition,

there exists native support for asynchronous execution, HTTP2 and data compression,

which significantly reduce the overall traffic volume in wireless multi-hop FL.

3.4.3 WiNOS: AI-oriented Wireless Network Operating System

In the previous section, we detailed our design and implementation of FL engine.

The key objective of our work is to improve the convergence time of federated learn-

ing systems by optimizing communication delay over multi-hop wireless networks. To

tame the network latency and to implement reinforcement learning routing module,

first we need a platform that enables visibility of per-packet networking statistics

(such as delay) for RL training. In addition, we need to realize distributed and pro-

grammable network control so that the MA-RL policies can be learned, deployed and

executed in a real-time fashion. To satisfy above two requirement, we adopts WiNOS,

which is a distributed AI-oriented wireless network operating system proposed in our

previous work [64]. WiNOS is built by exploiting software-defined networking tech-

nologies and in-band network telemetry. In particular, WiNOS is composed of three

layers (1) WiNOS dataplane (2) WiNOS Core & (3) WiNOS Apps - Generic RL



55

framework.

3.5 Experimental Evaluation

Our overall objective in this evaluation study is to show that RL-based networking

can efficiently improve the convergence speed of FL algorithms in a physical testbed

with our proposed system design. Towards this objective, first we show that FL

algorithms convergence time can be improved presence of stragglers if the local model

updates are regularized. Then, we show that FL algorithms convergence can be

accelerated further when the underlying network routing paths are optimized using

RL routing algorithms. Finally, we study the convergence time of our proposed FL

system under single-layer and hierarchical synchronous architecture with RL routing.

Models and Dataset: To evaluate the performance of Federate learning, we used

FedAvg, which trains a deep learning model on the MNIST [65] digit recognition task.

The training experiments are performed over two separate models whose weights get

updated using federated learning.

MNIST CNN: we used a CNN with two convolution layers, with 32 and 64

filters respectively. Each convolutional layer was followed by a 2x2 max pooling

layer. The convolutions were followed by a fully connected layer with 128 units

with Relu activation. A final fully connected layer with softmax activation was

used as the final output layer. The model has a size of 5.8 Mbytes. MNIST

LSTM: we used two stacked LSTM layers each with 128 hidden units. We

added a dropout layer after each LSTM layer. The LSTMs were followed by a

fully connected layer with 32 units and Relu activation, and a fully connected

layer with softmax activation was used as the model output layer. The model

has a size of 0.8 Mbytes.



56

435G

435F

435E

435D

435C

435B

435A

423C

423B

423A

430E

430D

430C

430B

430A

R9

410H

410G

410F

410E

410D

410C

410B

410A

409

403E

403D

403C

403B403A

R3

402A / 402
401

437

R7

411
436

425
424

422C

432A / 432B

R4

R2

R8

R5

405
431

432A / 432B

STR1

409

409

44

R1

R6

435G

435F

435E

435D

435C

435B

435A

423C

423B

423A

430E

430D

430C

430B

430A

R9
Worker

8

410H

410G

410F

410E

410D

410C

410B

410A

409

403E

403D

403C

403B403A

R3

402A / 402
401

437

R7

Worker
6

411
436

425
424

422C

432A / 432B

R4

R2

R8

R5

Server 

Worker
9

Worker
1

Worker
3

Worker
7

R10

Worker
4

405
431

432A / 432B

STR1

409

R1

R6

Worker
2

Worker
5

Figure 3.6: Testbed - Topology

3.5.0.1 Regularized local SGD:

In this evaluation, we show that by performing regularized model updates, we can

improve the convergence in presence of heterogeneous workers. We study the effect

of stragglers by letting each worker to process less number of local rounds, which

will lead to model divergence because of varying number of local updates by workers.

Then, we show that the straggler effect is evident from the noisy updates when the

model is unregularized (i.e., µ = 0). And then we show that, when the local model

updates are regularized (i.e., µ > 0), the convergence is less noisy and prevents the

model divergence.

Testbed Setup: As shown in Fig.3.6, a software-defined wireless mesh network

testbed was deployed on the 4th floor of Woodward Hall at UNCC. This testbed

consists of 10 Nvidia Jetson Xavier nodes connected to Gateway 5400 multi-radio

wireless nodes as shown in figure 9. Each Nvidia Jetson node serves as FedEdge node

with FL engine for FL training. On the other hand, Gateworks routers serves as

FedEdge-node with the programmable wireless network operating system on top of

Ubuntu 20.04 Linux.

Analysis: We trained the FL model under different straggler constraints to 50%

and 90%, which limits the number of local SGD updates in the workers. This variation



57

(a) FEMNIST CNN - Accuracy (b) FEMNIST CNN - Loss

Figure 3.7

(a) FEMNIST MCLR - Accuracy (b) FEMNIST MCLR - Loss

Figure 3.8: Convergence of CNN and MCLR model with regularized local SGD

in stragglers will affect the global model update noise, potentially leading to degraded

convergence. In addition, we used different learning rate combinations to see the

stragglers effects. First, fig:??, we concluded that when CNN models are trained

with higher learning rate lr = 0.1, the global model tends to diverge much quickly

when compared to much lower learning rates. However, when local SGD updates

are regularized (i.e., µ = 0.9), we can prevent the model divergence. Though the

Table 3.1: FL Hyperarameters

Parameter FEMNIST CNN FEMNIST LSTM

Number of global rounds 50 50
Batch size 32 32
learning rate 0.05 0.05
Model size 5.8 Mbytes 0.8 Mbytes



58

43
5G

43
5F

43
5E

43
5D

43
5C

43
5B

43
5A

42
3E

42
3C

42
3B

42
3A

43
0E

43
0D

43
0C

43
0B

43
0A

42
5

40
4

R3

Worker 3

Worker 4

Worker 540
5

Background Traffic
Worker 1

41
0H

41
0G

41
0F

41
0E

41
0D

41
0C

41
0B

40
9

Server R4 40
3G

40
3F

40
3E

40
3D

40
3C

40
3B 40
3A

40
2A

	/	
40
2

40
1

43
1

43
2A

	/	
43
2B

ST
R
1

R6

R2

41
2

R5
43
7

41
1

43
6

42
4

42
2C

42
1A

ST
R
2 43
2A

	/	
43
2B

R1

Worker 2

Figure 3.9: Testbed - Topology

quantifiable loss is only marginal in CNN, for simpler models like MCLR model

divergence is accelerated as we can see from fig: 3.13. In this analysis, we concluded

that stragglers divergence is more evident for simple model such as MCLR and it can

be prevented by regularized local SGD updates.

3.5.0.2 Delay Optimal Model Update with RL routing:

Testbed Setup: As shown in Fig. 3.9, a software-defined wireless mesh network

testbed was deployed on the 4th floor of Woodward Hall at UNCC. This testbed con-

sists of six Nvidia Jetson Xavier nodes connected with WLE900VX wireless interface

card and WINOS system on top of Ubuntu 18.04 Linux operating system running on

each Nvidia Jetson node. Each mesh router was configured to operate in Mesh point

(MP) mode, with fixed 5 Ghz channel, 40 Mhz channel width in 802.11ac operating

mode, and 30 dBm transmission power. The Nvidia Jetson not only serves as a wire-

less mesh node to form a wireless multi-hop backbone, but also host local workers to

train the federated learning model. We deployed five local workers on three routers

(R1, R2, and R3), where each local worker has its own IP address. The server is

connected to R4 to run the global model updates as shown in Fig. 2.9. Worker 1 and

a background traffic client were attached to R1. Worker 2 was deployed on R2. We



59

Table 3.2: FL Hyperarameters

Parameter MNIST CNN MNIST LSTM

Number of global rounds 20 20
Number of local iterator 1 1
Batch size 32 32
learning rate 0.01 0.01
Model size 5.8 Mbytes 0.8 Mbytes

deployed the other workers on R3.

We study the FL convergence time under different network congestion conditions by

varying the background traffic intensity from none to 1 Mbps and 2 Mbps respectively

from a client at R1 and with different model complexities. The background traffic is

generated by the client at R1 and sent to server following a fixed routing path of

(R2 → R3 → R4). To emphasize the impact of networking, we use the exactly same

parameters shown in Table 3.2 for FL across different experiments.

Analysis: Fig. 3.10 and Fig. 3.11 depict the FL performance in accuracy and

convergence time when varying the network traffic load and model complexity. When

there is no injected background traffic (solid line with diamond marker), FL traffic can

fully utilize all the network resources without any interference from other application

traffic. As the straggler (worker 1) can freely send the FL packets to the right path

straight away, which is faster than the left one, we can observe that all algorithms

achieved a similar performance in terms of accuracy with (98.7%).

In the case of 1 Mbps background traffic load, both on-policy softmax and ε−greedy

RL-based routing algorithms performed slightly better than the baseline (802.11s) in

terms of the total convergence time. Both RL-based routing algorithms converged to

select the left path and learned to avoid sending the FL traffic of worker 1 at R1 to

the right path, which is congested by a continuous background traffic flow and FL

traffic from the workers (2-5). However, the benefit of selecting the left path is not

that evident in this case because the end-to-end throughput of the left path was less



60

0 25 50 75 100 125 150 175
Time (Minutes)

0.976

0.978

0.980

0.982

0.984

0.986

0.988

0.990

Ac
cu

ra
cy

MNIST CNN

802.11S (None)
On policy -greedy (None)
On policy softmax (None)
802.11S (1)
On policy -greedy (1)
On policy softmax (1)
802.11S (2)
On policy -greedy (2)
On policy softmax (2)

(a) MNIST CNN

0 25 50 75 100 125 150 175
Time (Minutes)

0.976

0.978

0.980

0.982

0.984

0.986

0.988

0.990

Ac
cu

ra
cy

MNIST LSTM

802.11S (0)
on policy -greedy (0)
on policy softmax (0)
802.11S (1)
on policy -greedy (1)
on policy softmax (1)
802.11S (2)
on policy -greedy (2)
on policy softmax (2)

(b) MNIST LSTM

Figure 3.10: Comparison results after 20 epochs of accuracy over time of 802.11s
routing (black), On-policy ε−greedy (red), and On-policy softmax (blue) RL-based

routing, respectively, by varying the load of background traffic from None, (1)
Mbps, and (2) Mbps (solid, dashed, dotted)-lines.

None (1.0) Mbps (2.0) Mbps
Background Traffic Loads

0

20

40

60

80

100

120

140

160

180

To
ta

l T
im

e 
(M

in
ut

es
)

29.02

82.55

171.77

29.59

80.50

110.56

32.44

73.81

103.40

MNIST CNN
802.11S
On policy -greedy ( =0.1) 
On policy softmax

(a) MNIST CNN

None (1.0) Mbps (2.0) Mbps
Background Traffic Loads

0

20

40

60

80

100

120

140

160

180

To
ta

l T
im

e 
(M

in
ut

es
)

38.36

69.93

98.11

36.99
44.78 42.24

36.36
42.59 43.27

MNIST LSTM
802.11S
On policy -greedy ( =0.1) 
On policy softmax

(b) MNIST LSTM

Figure 3.11: Total convergence time comparison of 802.11s routing, On-policy
ε−greedy, and On-policy softmax.



61

than the right path and the model size of MNIST CNN (5.8 Mbytes) is relatively

large,

The performance gain significantly increased when the background traffic increased

to 2 Mbps (dotted-line with square marker). Since 802.11s is a layer 2 unicast routing

protocol, only the destination MAC address is used to route the packet without taking

into account the traffic source information. As a result, 802.11s was not able to

distinguish the background traffic flow from FL traffic from worker 1. Therefore,

it forwarded both background and FL traffic flows to the same link/path, which

increased the communication time between straggler (worker 1) and the server. As

shown in Fig. 3.11(a), 802.11s took almost up to 3 hours (171 Minutes) to finish

the 20 rounds of training whereas both RL-based routing algorithms took less than

2 hours (110 Minutes) because they learned to optimally distribute different flows

among different routing paths.

By varying the model complexity, we investigate how computational and commu-

nication overhead affect the FL performance. For both CNN and LSTM, when there

is no communication overhead, CNN enjoys the fast local computation. Thus, we

observe about 30 minutes of convergence time for CNN and a bit longer 37 minutes

for LSTM. However, when the background traffic is injected, the simplicity of the

model benefits as it lowers the communication overhead. We can observe that the

overall time is greatly reduced with LSTM (even with 802.11s).

Our experiments showed that RL-based networking can efficiently improve the

convergence performance of FL algorithms especially when model is complex and the

network traffic load is high. Interestingly, the results also show that the choice of

model complexity can be another factor to affect the performance of FL.

3.5.1 Hierarchical Synchronous FL

Testbed Setup: As shown in Fig.3.12, a software-defined wireless mesh network

testbed was deployed on the 4th floor of Woodward Hall at UNCC. This testbed



62

consists of 10 Nvidia Jetson Xavier nodes connected to Gateway 5400 multi-radio

wireless nodes as shown in figure 9. Each Nvidia Jetson node serves as FedEdge node

with FL engine for FL training. On the other hand, Gateworks routers serves as

FedEdge-node with the programmable wireless network operating system on top of

Ubuntu 20.04 Linux.
435G

435F

435E

435D

435C

435B

435A

423C

423B

423A

430E

430D

430C

430B

430A

R9

410H

410G

410F

410E

410D

410C

410B

410A

409

403E

403D

403C

403B403A

R3

402A / 402
401

437

R7

411
436

425
424

422C

432A / 432B

R4

R2

R8

R5

Worker
4

Worker
5

Worker
6

Worker
7

Worker
8

Worker
9

Server 

405
431

432A / 432B

STR1

409

409

R10

R1

R6

Worker
1

Worker
2

Worker
3

Figure 3.12: Hierarchical - Topology

Analysis: In this study, we analyzed the FL convergence and wall clock time under

hierarchical and single layer architecture. For flat architecture, we used the same

topology as in subsection 3.5.0.1. For hierarchical architecture, we used the topology

as shown in fig: 3.12. In single layer architecture central server have to communicate

with all 9 workers independently, whereas in hierarchical architecture central server

only communicates with the edge server and edge server will communicate with the

edge worker for the training. In addition, to study the effect of communication

bounds in both the architectures, we evenly distributed the workers for each edge

server. From ??, we can see that our proposed hierarchical architecture reduces the

convergence time and overall training time for 50 global rounds. On the other hand,

flat architecture takes twice the time to reach the same accuracy.



63

(a) FEMNIST CNN - Accuracy (b) FEMNIST CNN - Loss

(c) FEMNIST MCLR - Accuracy (d) FEMNIST MCLR - Loss
Figure 3.13: Convergence of CNN and MCLR model with regularized local SGD

3.6 Conclusion

FL over wireless multi-hop networks is challenging due to dynamic network per-

formance resulting in non-optimal routing paths and high communication delay. To

maximize the FL accuracy with minimum convergence time, we proposed MARL

methods as model-free optimization approaches, where the distributed routers exploit

their instantaneous local experiences to collaboratively tune networking parameters

on-the-fly. To analyze the convergence of FL system with MARL routing solution,

we developed FedEdge, a modular wireless edge system for federated learning with

programmable network control. Our experimental results show that the RL-routing

algorithms have a great potential to accelerate the convergence of FL in the wireless

multi-hop networks, compared with the widely-adopted standardized IEEE 802.11s

protocol. To the best of our knowledge, this is the first work to prototype, optimize



64

and demonstrate the wireless multi-hop FL system.



CHAPTER 4: Domain-invariant Gait Recognition via Millimeter Wave

Radar

4.1 Overview

Radar-based biometric identification is an emerging user identification platform

that exploits radar return signals to capture human biometrics (such as gait, ges-

ture, lip motion, and cardiac motion), which can be used to predict a user’s iden-

tity. Despite its unique advantages (such as privacy-preserving and resilience to

weather/lighting conditions), the generalization performance of this technology is still

unknown and greatly hinders its practical deployment. To address this challenge, we

collect and investigate a non-synthetic dataset, which revealed the existence of distinct

spatial and temporal domain shifts in radar-based gait biometric data. We show that

spatio-temporal domain shifts, when not addressed jointly, can significantly degrade

identification accuracy. Moreover, we propose a data-efficient yet straightforward do-

main shift mitigation approach for tuning deep learning models over their entire life

cycle. Our approach exploits an unsupervised domain shift detector to measure the

malignancy of domain shifts. Such metrics allow us to determine the domains that

maximize the net contributions upon adapting to, after which an appropriate domain

adaption method is utilized to improve both spatial and temporal generalization.

We show that our approach improves data efficiency by reducing the number of do-

mains that necessitate adaptation while maintaining the generalization performance

of a blind approach that uses data from all domains. The content of this chapter is

partly reprinted with permission from P. Janakaraj, K. Jakkala, A. Bhuyan, Z. Sun,

P. Wang and M. Lee, "STAR: Simultaneous Tracking and Recognition through Mil-

limeter Waves and Deep Learning," 2019 12th IFIP Wireless and Mobile Networking



66

Conference (WMNC) ©2019.

4.1.1 Challenges

The root cause of this generalization issue is dataset shift [66]. Simply put, it

occurs when the testing data distribution differs from that of the training data, i.e.,

the i.i.d. assumption is violated. Depending on the type of difference in the test data

distribution, it can be categorized as a covariate, posterior probability, or concept

shift. Mitigating dataset shift, also known as dataset drift or domain shift, is known

to be one of the hardest problems in machine learning and is prevalent in numerous

application domains. This leads us to the ethos of Domain Adaptation, addressed by

myriads of methods in literature [67].

After an in-depth analysis of dataset shifts and domain adaptation, we found the

current taxonomy of domain shifts is not adequate to explain the full extent of our

problem. Apart from the manifestations of domain shifts mentioned above, we seek

to distinguish them further. Concretely, we acknowledge the presence of spatial and

temporal domain shifts (SDS/TDS). We treat TDS as shifts that arise temporally

as a consequence of the inherent dynamics of a domain while, treating SDS as shifts

induced from introducing new spatial locations. This distinction allows us to under-

stand and explain the behavior of the shifts that manifest in radar-based gait data.

Before addressing a shift, we need to be aware of its presence. An overwhelming

amount of domain adaptation methods only address shifts that behave similar to

SDS [67], i.e., they only consider explicitly introduced domains. So, the problem of

detecting the presence of a shift, which is a sine qua non for TDS, has not received the

attention it deserves. Moreover, among the work available on drift detection [68], a

majority of them make assumptions about the behavior of softmax classifiers, which

have long been invalidated [69, 70]. We draw attention to a simple yet effective

unsupervised domain shift detector based on metric learning [71].



67

4.1.2 Our Solution

In this chapter, We draw attention to a simple yet effective unsupervised domain

shift detector based on metric learning [71]. Our shift detector enables a data-efficient

domain shift mitigation approach, where the shift malignancy of each domain is first

measured, and domains that maximize the net contributions upon adapting are se-

lected. An appropriate domain adaption method is then applied only to the selected

domains to improve model generalization. Our prominent contributions and findings

are as follows:

• We curated a non-synthetic dataset consisting of radar-based gait biometric

data. This dataset, for the first time, allows one to study and improve the spatio-

temporal generalization performance of a radar-based biometric identification

system.

• We introduced the distinction of TDS and SDS, which enables us to explain the

system performance degradation.

• We uncovered a correlation between TDS and SDS, which unveiled significant

ramifications for data collection and domain adaptation. In particular, we found

SDS can be mitigated to a certain extent by using the TD data and vice-

versa, but both SDS and TDS have to be addressed explicitly for consistent

generalization performance.

• We revealed that if multiple sources of domain shifts appear, each source of

domain shifts yields a different net contribution to generalization upon adapting

to that domain.

• We elucidated the effectiveness of metric learning based shift detectors and

reaffirm the limitations of softmax thresholding for out of domain detection.



68

• Finally, we exploit our shift detector to develop a data-efficient domain shift

mitigation approach.

4.2 System Design

4.2.1 Preliminaries

Figure 4.1: FMCW signal with linear ramp

The fundamental concept in radar systems is the transmission of a signal, which

is reflected by the objects in its propagation path. The key advantage of Frequency

Modulated Continuous Wave (FMCW) radar system is its capability of measuring the

range/location and the velocity of the moving target simultaneously. In particular,

the signal used in FMCW radars is called chirp, whose frequency increases linearly

with time as shown in Fig. 4.1. The chirp is characterized by a start frequency

(i.e., carrier frequency) fc, bandwidth B and duration Tc. The slope of the chirp

S = B/Tc characterizes the frequency changing rate. The transmitter of the radar

sends a chirp signal and the receiver captures the reflected chirp generated by the

object. A frequency mixer combines the transmitted and received chirps to produce

the beat signal. For a target at distance d, the beat signal can be described by

A exp(j2π(f0t+ 2d/λc) = A exp(j2π(2d/λc)) exp(j2πf0t) (4.1)

where A is the signal attenuation gain. f0 = 2dS/C is called beat frequency.

λc = C/fc is the wavelength of the carrier frequency where C is the speed of light.

Exploiting the beat frequency f0, the distance of the target can be easily obtained by



69

d =
f0C

2S
. (4.2)

When the target is moving to a new location, the frequency of beat signal will be

changed if the distance between the previous location and the new location is larger

than the radar range resolution, which is directly related to the bandwidth B, i.e.,

dres =
C

2B
. (4.3)

Due to extremely high carrier frequency of mmwave FMCW radar, very large band-

width B can be used, which leads to fine-grained range resolution.

While the frequency of the beat signal is used to measure target distance, the phase

of the beat signal exp(j2π(2d/λc)) defined in eq. (4.1) can be exploited to measure

the target velocity even if the radar can not detect the location change of the target

due to the range resolution constraint. Assume the target moves over an very small

distance after N chirps are sent and received, which generates N beat signals. In this

case, all N beat signals will have the same beat frequency but with different phases.

In particular, the phase of the beat signal n ∈ (1, 2, ..., N) is equal to

exp(j2π(2v/λc)nTc) (4.4)

where 2v/λc is called Doppler frequency. The eq. (4.4) indicates the phases of

beat signals for each distinguishable distance constitute a new signal whose carrier

frequency is exactly the Doppler frequency. When a human subject is walking, the

different human parts (e.g., arms, legs, foots, and torso) move at different velocities,

which lead to different Doppler frequencies. The radar can distinguish the movements

of two parts only if their speed difference is larger than the velocity resolution, which

is determined by the observation duration NTc and the carrier wavelength λc, i.e.,



70

vres =
λc

2NTc
. (4.5)

Since mmWave radar has a wavelength in the scale of millimeters, it characterizes

fine-grained motion dynamics of human gait. For example, compared with sub-6GHz

radar, the 77GHz mmWave radar can achieve over 12 times higher velocity resolution.

Why DNN for mmWave Gait recognition?

The key challenges to exploit mmWave micro-Doppler signatures for gait recogni-

tion are two-fold. First, the micro-Doppler signatures come from the reflections that

directly bounce off from human bodies. However, mmWave signals have very short

wavelengths and thus can be easily reflected back by surrounding obstructions. These

reflections carry the environment-dependent information, which is harmful for the

recognition task and has to be removed. In particular, these environment reflections

include static ones, which are directly induced by the stationary obstructions (e.g.,

walls) and dynamics ones, which indirectly bounce from other stationary obstructions

and then bounce from human bodies. The harmful environment reflections carry de-

layed and distorted micro-Doppler information. Second, mmWave gait biometric is

of high dimensional data. Therefore, heuristically selecting features from such data

is suboptimal, which may fail to characterize the salient and discriminative patterns

to distinguish a large number of people from each other. This naturally requires us

to implement automatic feature extraction by exploiting deep neural networks.

4.2.2 Radar Data Processing

Our system consists of three subsystems including human target detection, local-

ization & tracking and human target recognition.

Firstly, the human target detection subsystem is responsible for detecting the hu-

man subject. Secondly, the detected human target’s location is tracked by estimating

the velocity of the walking. The traveling locations and traveling time are used to



71

Range 
Estimation
(1D-FFT)

Object 
Detection
(CA-CFAR)

Doppler 
Estimation
(2D-FFT)

Static Clutter 
Removal

(Mean subtraction)

Angle of Arrival 
Estimation

(MVDR)

3D-Point Cloud
(range, angle, 
velocity, SNR)

Extended 
Kalman Filter

Tracking 
Management

Spectrogram

Filtering

mD Radar Returns Human Target Detection Localization & Tracking

Time-Frequency AnalysisFeature Extraction & Prediction Model

Class Label

Figure 4.2: Overview of Radar Data Processing

determine the dimension of mmWave data sample (i.e., K and N). The collected

data samples from a group of human subjects are then converted into mmWave gait

biometric samples, which are fed into the recognition subsystem. The recognition

subsystem exploits these samples to train a deep neural network that automatically

learns the salient features of the mmWave gait biometrics. The trained network is

used to identify the human subjects. To make sure the system works well in the

multipath-rich environments (e.g., indoor scenes), dedicated data-preprocessing solu-

tions, such as high-pass filter, angular localization using minimum variance distortion

loss(MVDR), cell averaging constant false alarm rate detector (CA-CFAR), extended

kalman filter (EKF) and spectorgram enhancement scheme, are also integrated into

the system to mitigate the distortions in the mmWave biometric samples caused by

environment-induced static/dynamic reflections and background noise. The system

architecture is shown in fig:4.2 and the details of each system block are presented in

the following sections.



72

4.2.2.1 Human Target Detection

Instantaneously varying walking velocity of human subject with irregular surface

contour intensifies the challenge for mmWave application to indoor environments.

As mmWave radar identifies targets based on the energy level from reflected RF

waves, prevailing objects within the environment (eg. walls and furnitures) may have

tremendous ramification in human target detection. To suppress, the environment

induced ramifications and narrow the target detection to human body we utilized a

multi stage approach. Radar return signals (i.e., Chirps) from human subject and

environment are processed by applying 1D-FFT to resolve the range of the reflector

from the radar. Since the objective is to obtain the range of the subject, FFT is

applied over the range dimension resulting in a Range-Time map as show in fig:4.3.

As we recall that the radar reflections are heavily impacted by the environments,

the Range-time map is further processed to remove the reflections contributed by the

static objects (eg: walls, chairs) as shown in fig: 4.6. Since static objects are station-

ary with zero velocity, the corresponding reflection signals can be simply removed by

subtracting the mean of 1D-FFT data from all chirps for each antenna. Considering

the fact that human subjects tends to have dynamic motion the relative velocity can

be exploited to distill the radar reflection from ambiances (i.e., dynamic). In addi-

tion, since mmWave radar has antenna array with angular variations, we can exploit

the azimuth angle to further synthesize the radar return signals. Since our mmWave

radar consists of antenna array with 4 antenna elements spaced at equally separable

distance, we applied the digital beamforming for RF processing technique that can

virtually separate the radio returns received at different angle and elevations.

In particular, we utilized CAPON beamformer [72] to improve the angular res-

olution which resulted in rich range-azimuth heat map. The objective of CAPON

beamformer is to eliminate the interference by negating the noise and improvising

the signal of interest (SOI). By exploiting the SNR of SOI at various Rx antenna and



73

0.5
(a)
0

range-time map

1 2 3 4 5

Time (s)

10

15

20

25

30

ra
n
g
e
 i
n
d
e
x

Figure 4.3: Range-Time Map

0.5
(a)
1

range-time map

1 2 3 4 5

Time (s)

10

15

20

25

30

ra
n
g
e
 i
n
d
e
x

Figure 4.4: Pre-processed Range-Time Map

Figure 4.5: (a) Range-Time Map (b) Pre-processed Range-Time Map

dynamically adjusting the weights for each antenna’s SNR, we can adaptively enhance

the radar reflections from each azimuth angle of the antenna. However, the dynamic

reflections still exists due to the co-existence and multi-path propagation effects as

shown in fig:4.7. In order to remove such effects, we then applied object detection

technique based on thresholding. In particular, we adopted Two pass CA-CFAR [73],

which is one of most commonly used target detectors for noisy and interference-rich

environments. In this case, the threshold characterizes the expected false-alarm prob-

ability and the average noise level encompassing the cell-under-test. The resulting



74

Figure 4.6: Range-Doppler Map with Static Reflections

Figure 4.7: Highpass-filtered Range-Doppler Map with Dynamic Reflections

CA-CFAR output will be a set of points that describes the target elevation, range,

azimuth and doppler.

4.2.2.2 Localization & Tracking

Contrary to computer vision based tracking solutions, realizing target tracking for

mmWave radar is quite challenging, particularly for indoor case. To counter such

a challenge, we have applied extended Kalman filter (EKF) to predict and estimate

the target state (location, velocity, and direction) so that the virtual targets, which

have large state deviations from the real tracking target, can be eliminated. Firstly,

multiple points are clustered together based on the distance metric and then the

centroid of the target is set as the tracking vector for that point cloud. Then, for



75

each frame or time-interval we keep track of the centroid of the point cloud which

will then be projected as the trajectory of the target. In other words, EKF acts a

moving spatial passband filter that can only allow to pass the point clouds/reflections

orientated from the human moving trajectory.

4.2.2.3 mmWave Biometric Generation and Enhancement

The pre-processed range-time map is then converted into a mmWave biometric

sample, which is an aggregated spectrogram. To improve recognition accuracy, we

further enhance the spectrogram. First, the spectrogram is normalized by dividing the

amplitude of each point in the spectrogram with the total energy of the spectrogram,

which is the sum of the amplitudes of all points in the spectrogram. Second, mean

filtering is applied by calculating the mean of the spectrogram, which is treated as

the estimated noise floor. Then, the noise floor is subtracted from the spectrogram.

Third, a 2D-Gaussian filter is convolved over the spectrogram to further reduce noise.

4.2.3 Feature Extraction and Classification

Spectrograms contains unique deep features that are representative biometric sig-

natures for each human subject. Indeed it is impossible to different the signature of

two human subjects with naked eye and formal detectors. Owing to the success of

neural networks in extracting the deep features of images, we adopted deep convo-

lutional neural network (DCNN) to learn high-level salient features from mmWave

biometric data samples.

4.3 Spatial and Temporal Detection

4.3.1 Dataset

Our experimental study comprehended a dataset collected gait data from 10 vol-

unteers between the ages of 18-35. Our dataset was collected using a TI IWR1642

mmWave sensor. The radar chirp configuration 10 used in was utilized to collect data

from 4 different locations. The primary location, which was 11 used as the source do-



76

Figure 4.8: Gait spectrograms of the same person for 5 days at different locations.
First row: Source (our lab), second row: Conference Room, third row: Server space

and fourth row: Office room

main, was a research lab with cubicles. Each of the ten subjects was asked to 12 walk

back and forth in the room with a radar pointed at them. The subjectâs path was

pre-determined 13 and was always perpendicular to the radar signalâs propagation di-

rection. Moreover, each day of a 14 userâs data contains 100 data samples. 4-seconds

of walking data was considered as an individual 15 data sample. Each subject’s data

was collected in four different locations. The source location was a research space

with cubicles, and the other three areas consisted of a server, conference, and an of-

fice room. As naturally originating phenomenon, diverse locations induce significant



77

shifts in radar returns for each subject due to environments. By maintaining four

distinct locations, we introduce Spatial Domain Shift (SDS). In the source location,

data was collected on ten different days for each subject. Five separate days of data

was acquired for each of the three other locations, which are used as target domains.

Fig:4.8 shows the spectrogram images for the same person at 4 different locations on

5 days.

The data collection was limited to 100 data samples in the source location and

50 data samples in each of the target locations on any given day. Unlike cameras,

radars collect data actively by broadcasting signals into the environments. Unique

movement patterns (e.g., gait) can induce different micro-Doppler frequency shifts

in radar return signals, which can be represented as a spectrogram. Thus, a radar

spectrogram can serve as the biometric print for user identification [74–83]. Apart

from biometric traits, spectrogram data could also contain spatio-temporally varying

noises from signal reflections and interference, which cannot be completely removed.

This leads to environment-induced Temporal Domain Shift (TDS) and SDS. To add

on, human gait, although unique to each individual, could contain minute variations,

potentially as a consequence of a subject’s mood, clothing, footwear, or some other

similar aspect, which combined with the environment-induced shifts, further aggra-

vates TDS. Changing the number of days in the train and test sets changes the amount

of TDS. Similarly, using a subset of the available locations, SDS can be controlled,

which makes it possible to study how the two variants of shifts interact with each

other.

4.3.2 Presence of TDS and SDS:

As we can see from Fig. 4.8 the spectrograms from all locations look very similar.

This is because they are spectrograms representing the same action (gait). Most of

the environmental data is filtered out by the preprocessing methods, but the minus-

cule amounts of environmental information that seeps through was enough to induce



78

1.0
(a)
0

1.0
(b)
1

1.0
(c)
b

Figure 4.9: Embeddings from model trained on source and target domain data.
(Top) model trained one day of source, server and conference data, (Middle) model
trained via one day of source and conference data, (Bottom) model trained via one

day of source and server data

domain shifts. We show the t-SNE [84] embeddings for each domain in our dataset

alongside the training data embeddings. The model used to generate the embeddings

was trained on a single day’s data from the source location. The embeddings in

Fig:4.9 show a domain shift in each new domain. However, this might not be very

evident in the absence of the knowledge of the data collection procedure.



79

Figure 4.10: Results obtained from training only on source location data for varying
number of days.

Our first experiment establishes the presence of TDS and SDS in our dataset. We

trained a model on data only from the first day of our source location. Test accuracies

of data from the remaining nine days of the source location and all target locations

are reported in Fig. 4.10. The temporal degradation in the source and target domains

is evident in the first row of Fig. 4.10.

The target domains also suffer from SDS apart from TDS, which is evident from

the overall performance degradation in the target domains. This unequivocally es-

tablishes the presence of both TDS and SDS in our dataset. We also found a rather

unexpected outcome from this experiment. There is a temporal degradation both in

the source and target locations, but the deterioration does not strictly correlate with

time progression. We conjecture that this behavior is a consequence of the malig-

nancy of shifts. That is, not every shift is equally harmful. We further elaborate on

this in Section 4.5.3.

Shift and Malignancy Detection: Upon further investigation, we found metric

learning-based models are well suited for detecting domain shifts as well. Domain

shift detection is the process of identifying shifts in the testing data. Unlike SDS, the

presence of TDS is not always known. A few methods have been proposed for domain

shift detection, but most either fail to detect shifts in an online fashion [68,85] or base

their predictions on softmax thresholding. However, it is well established that [69,70]



80

softmax classifiers are not suitable for detecting domain shifts, especially for out of

domain data.

To address aforementioned challenge, we rely on thresholding embeddings gener-

ated by metric learning models. Softmax classifiers are optimized to make closed-set

predictions [86], i.e., pick one of the classes present in the training dataset as the pre-

diction. Such an assumption is too strong and grossly underestimates the likelihood

of seeing unknown classes or out of distribution data during testing. Metric learning

methods do not make such assumptions or, at the very least, not to the extent soft-

max based solutions do. Metric learning optimizes a metric on embeddings generated

by a base classifier, which potentially allows the classifier to ignore the concept of

closed set predictions, thereby overcoming overconfident predictions and calibration

issues.

Metric Learning Based Shift and Malignancy Detection Algorithm: We

utilize Algorithm 1 to compute thresholds used for detecting outliers. In our exper-

iments, L2 distance was used along with a margin m of 10. Upon computing class

thresholds Threshold and trained model M , any new data samples that were ob-

served, were subject to class-wise thresholding DistanceMetric between the known

class centers CTrain and the generated embedding for the new data point.

Figure 4.11



81

We exploit this premise to detect domain shifts. By maintaining dictionaries of

class-wise mean embeddings and thresholding any new data point’s distance from

known embeddings, we can recognize shifts and their magnitude. Furthermore, such

an approach does not require any specific offline training and can be deployed on

online data sources. Not to mention, the detector will also be unsupervised, as no

labeled data is required to detect a shift. The notion of detecting outliers or novel

classes from embeddings is certainly not unheard of. We re-purpose it for detecting

the presence and extent of domain shifts. Our experiments show that the approach

agrees with labeled shift detectors.

Figure 4.12: Mean distance from known class centers obtained from the source,
server, and conference data for a varying number of days.

As mentioned in Section 4.4, before addressing domain shifts, we must be aware

of the existence of a shift in their data. So far, we used an offline approach for

shift detection, where the accuracy of the model trained using ground truth labels

is used to uncover the presence of domain shifts. We now propose to sidestep this

issue. By thresholding the distance to known training data embeddings, we acquire

results similar to our labeled, accuracy based observations. Not only does this need no

ground truth labels, but it can also be deployed online without any specific training

for the problem. We note that a separate holdout dataset will be required to tune

the thresholds. An added advantage of such an approach is its capability of detecting

the malignancy of a shift. The accuracy-based approach does not necessarily convey

the amount of shift introduced [69, 70]. We amend this issue by interpreting the

magnitudes of the distance from class centers as an indicator of its malignancy. In

Fig. 4.12, we present the results of Fig. 4.14, but with metric learning based shift



82

metrics. We find that the results strongly correlate with our hypothesis along with

insights into the malignancy of each domain.

4.4 Unsupervised Domain Adaptation

Class 
Label

Domain 
Label

+ FC Layer

FC Layer FC Layer

+ FC Layer

FC Layer FC Layer

Generator (G)

Label Classifier (C)

Domain Classifier (D)

FC Layer
(AMCA-Softmax)

Source

Target

Figure 4.13: Adversarial domain adaptation

Gait recognition suffers from the inherent challenges that arises in applying SOTA

DNN for real world applications. In section 4.3.2, we have shown that spectrogram

data show distribution drifts both temporaly and spatially. Besides, we would like to

consider the cases when we only have access to partially labelled data in source domain

and extensive unlabelled data in the target domains. Towards this goal, we exploit

unsupervised domain adaptation techniques for domain-invariant gait recognition.

In specially, we adopt adversarial domain adaption methods to learn the domain-

invariant gait representation, which is also discriminative enough for accurate user

identification. As shown in Fig. 4.13, adversarial domain adaptation follows the

adversarial learning strategy in a two-player minmax game similarly to Generative

Adversarial Networks (GANs). A domain discriminator is trained to distinguish the

source from the target domains, while a generator or encoder learns transferable

embeddings that are indistinguishable by the domain discriminator.

The general problem of unsupervised domain adaptation may deal with two do-

mains Ds and Dt corresponding to labeled samples in source domain and unlabeled

samples from target domain that can represented as:



83

Ds = {(xsi , ysi )}nsi=1 (4.6)

Dt = {xtj}nti=1 (4.7)

where ns and nt are the number of labeled and unlabeled samples for the domains.

Besides, the samples are from the join distributions P (xs, ys) and Q(xt, yt) leading to

commonly known i.i.d assumption. Our goal is to design a deep neural network G :

x → y to minimize the data shift distribution across domains so that the prediction

error of target domain LGt = E(xs,ys)∼P )[G(x
t) 6= yt] is bounded by the prediction

error of source domain LGs = E(xs,ys)∼Q)[G(x
s) 6= ys].

The adversarial domain adaptation problem can be formulated as a minimax opti-

mization problem as follows

min
G
Lcls(Xs, Ys, G) (4.8)

min
D

max
G

LadvD(Xs, Xt, G)− LadvG(Xs, Xt, D) (4.9)

where Lcls(Xs, Ys, G) is the supervised classification loss for the source domain, LadvD(Xs, Xt, G)

is the domain discrimination loss and LadvG(Xs, Xt, D) is the domain confusion lose.

The above optimization problem can be reformulated as following format for avoiding

training the generator twice, i.e.,

min
G
Lcls(Xs, Ys, G) + λLadvG(Xs, Xt, D) (4.10)

min
D

LadvD(Xs, Xt, G) (4.11)

where λ is the hyper-parameter that controls the tradeoff between source classification

loss and domain confusion loss.

To learn highly discriminative representations, we adopt metric learning loss func-



84

tions for Lcls(Xs, Ys, G). Training networks with metric learning allows one to in-

troduce new classes after training a base model, without having to train the model

again, which translates to adding new user identities without the need for retraining.

Another benefit of using metric learning is its theoretical underpinning, which is the

cluster assumption. The cluster assumption states that the decision margins lie in

low density or relatively unoccupied regions of the classification manifold. This as-

sumption has previously been exploited in numerous domain adaptation techniques

and is known to promote adaptation under certain constraints. Metric learning reaf-

firms this assumption by maximizing inter-class distances and minimizing intra-class

distances. In this work, we integrate the additive margin softmax loss function [87]

with two additional regularization terms [88], which, as shown in our experiments,

can help to learn highly discriminative feature. First, the AM-softmax loss is given

as follows.

LAM = −log es.(cosθyi−m)

es.(cosθyi−m) +
∑c

j=1,j 6=yi e
s.cosθj

(4.12)

Then, a constrictive regularizer RC scheme is introduced that ensures for each class

weight vector ||Wj||22 will be equal to the average norm and it defined as:

Rc =
1

4N

N∑
j

(||Wj||22 − µ(||W ||22))2 (4.13)

where N is the total number of all classes. And µ(||W ||22))2 can be computed as:

µ(||W ||22))2 =
1

N

N∑
n

||Wn||22 (4.14)

Moreover, annular regularizer scheme is applied to ensure that norm of each feature

equals is scaled and it defined as:



85

RA =
1

4M

M∑
i

(||xi||22 − µ(||x||22))2 (4.15)

whereM is the batch size and xi corresponds to the feature of i-th training sample.

And µ(||x||22))2 can be computed as:

µ(||x||22))2 =
1

M

M∑
n

||xn||22 (4.16)

Then, combing AM-softmax with above two regularizers leads to final loss function

Lcls(Xs, Ys, G)

Lcls(Xs, Ys, G) = LAM + λRc + βRA (4.17)

While Lcls(Xs, Ys, G) is used for train the generator to learn discriminative rep-

resentations, then generator is also updated to fool the discriminator using domain

confusion loss (or the inverted label loss function which is given by:

LadvG(Xs, Xt, D) = −Ext∼Xt [log(D(G(xs)] (4.18)

Since domain discriminator aims to classify whether a sample is coming from source

domain or target domain, the domain discrimination loss is a standard binary super-

vised loss

LadvD(Xs, Xt, G) = −Exs∼Xs [log(D(G(xs)]− Ext∼Xt [log(1−D(G(xt)] (4.19)

4.5 Experiments

Model: All our experiments used an 18-layer Resnet as defined in [89]. Resid-

ual layers are stacks of convolutional, activation, batch normalization and addition

layers with a skip connection. The skip connection allows the features to propagate



86

forward via both the main stack of layers and the skip connection bypassing the pri-

mary stack. This promotes better feature extraction and gradient flow during back

propagation. We utilize 2 types of residual layers, identity and convolutional residual

layers. The identity residual layers do not have any operations on the skip connection

and maintain the feature map’s height and width. The convolutional residual layers

have convolutional and batch normalization operations in the skip connections, and

the operation reduces the dimension of the output feature map. Our discriminator is

constructed with a multi-layer perceptron with 128 hidden units and final layer with

hidden units equal to the number of domains. And the label classifer is constructed

using a Multi-Layered Perceptron (MLP) with 128 hidden units and a final layer

with hidden units equal to the number of classes (10). The 128 dimensional fully

connected layer’s output was used as an embedding layer. Moreover, a Constrictive

Regularizer [90] was utilized as the activity regularizer. Moreover, the last fully con-

nected layer also used a Constrictive Regularizer for the kernel weights instead of the

activations. Additionally, given the definition of Additive Margin Loss [91], we do not

have any bias variables in the last layer. Finally, the logits were activated following

the definition in [91].

Optimizer: At first step, the generator function is trained using cross entropy

loss. The training step is optimized using the ADAM optimizer with initial learning

rate lr = 0.0001 and the scheduler is utilized to decay the learning rate over epochs.

Besides, we used SELU as the activation function for all the layers. The discriminator

on the other hand is trained using the same configuration as the generator and all

our experiments were using the same set of parameters. In addition, we used s = 10,

m = 0.1 and λ = 0.0004 as the hyper parameters for the softmax loss functions.

Data Sampling:In all our supervised experiments, data from each available do-

main was shuffled together and sampled in batches. This was done irrespective of

the domain each sample belonged to. For our unsupervised experiments, data from



87

each available domain was sampled separately, which allowed us to generate embed-

dings for data from each domain. We generate domain predictions with an MLP with

128 hidden units followed by another layer with hidden units equal to the number of

domains being used for training. The domain classifier MLP was either prepended

by a gradient reversal layer (GRL) [92] or treated as a discriminator in a Generative

Adversarial Network (GAN) [93].

4.5.1 Interplay between TDS and SDS

Mitigating SDS via TD data: We now show that it is not possible to entirely

mitigate SDS by introducing source domain’s temporal data alone and vice-versa.

Limitations of improving SDS generalization by using TD data are evident in Fig. 4.10.

We trained models from two, all the way up to nine days of labeled source location

data, which is followed by an evaluation of daily accuracies. By introducing more

temporal data, the source location generalization improves as time progresses. But

as one might expect, we start to see diminishing returns in terms of source location

accuracy as we increase the number of training days. Moreover, after introducing more

source domain’s temporal data, the target location performance also has diminishing

returns so that each target location’s performance is seldom on par with the source.

Mitigating TDS via SD data: We move on to establish the limitation of in-

troducing more target/spatial domain data to alleviate TDS. We trained a model on

a single day of labeled data from the source, conference, and server locations. From

the first row of Fig. 4.14, it is clear that even when data from target domains is

introduced, individual location’s temporal shifts are not completely mitigated.

However, we do find that the model performance in the office location improves

when compared to introducing only temporal data. Since no data from the office was

used in training, we interpret it as the true SDS generalization of the model. This

implies that the primary benefits of training on data from a particular type of shift

is confined to easing similar kinds of shifts.



88

Figure 4.14: Results obtained from training on source, server, and conference
location data for varying number of days. The data from office location is not used

for training and only for testing

Correlation of TDS and SDS: We now draw attention to the correlation be-

tween TDS and SDS. It is evident from our prior experiments that TD or SD data

individually cannot mitigate both. Nevertheless, from Fig. 4.10 and Fig. 4.14, and

the findings mentioned above, a correlation between the two is evident. It might be

the reason no clear distinction has been established so far, but the implication of this

is rather profound. Collecting TD and SD data might incur varying costs. When

the cost disparity is substantial, it is possible to trade one for the other to a certain

extent. This brings us to one of the most exciting findings of our paper. That is, TDS

and SDS have to be addressed jointly to bring substantial generalization improvement.

We trained models with both TD and SD data along with the initial source data.

We find in Fig. 4.14 that when both shifts are addressed together, we attain the best

generalization in both TD and SD. By introducing multiple (2 - 3) days of data from

every location, we address TDS individually in each location. Introducing data from

multiple target locations (server and conference rooms) addresses SDS. Moreover,

such jointly trained model generalizes well to the unseen target domain (office).

4.5.2 Adversarial Domain Adaptation Performance

Table 4.1: Model Accuracies

Method Source->Temporal Source->Server Source->Conference Source->Office AVG
Our (GAN) 0.99 0.97 0.97 0.96 0.98
Our (GRL) 0.99 0.93 0.95 0.97 0.96
DDAN 0.97 0.85 0.92 0.81 0.89
ADDA 0.97 0.85 0.95 0.89 0.92
ST 0.97 0.86 0.95 0.85 0.90



89

Figure 4.15: Results obtained by training models between 1 - 3 days on all locations
and the respective daily test accuracies

In table: ??, we reported the performance of our domain adaptation technique

and the three baselines (ADDA [94], DDAN [95] and ST [96]). During the study, we

trained our model and baselines models on source domain and then tested against the

target domains separately. For example, first we train the model on 3-days’ source

domain labeled data and 3-days source domain unlabeled data, then test on the data

of the remaining 4 days in source domain. For each target locations, we trained our

model with 3-days’ source domain labeled data and 3-days’ target domain unlabeled

data. Then, we test the remaining 2-days’ target domain data. Our results conclude

that our model achieve high identification accuracy and outperforms the baselines.

In addition, we also studies the impact of increasing the training days from source

domain on the target domain identification accuracy. From Fig.4.15, we can see that

overall the adaptation performance improved when more days of data is included for

the training. Moreover, our proposed model also outperforms other baseline methods.

4.5.3 Domain Importance

As mentioned in Section 4.3.2, we notice a disparity in the malignancy of each

domain shift. From the plethora of research conducted on adversarial learning [97],

it is evident that not every kind of data noise is equally harmful. Networks can

overcome small amounts of noise in the data. This is true even when the models have

not been explicitly trained with adversarial methods. Similarly, adversarial training

with arbitrary data perturbations is not always a precursor for domain generalization.



90

Figure 4.16: (Top) Results obtained from training on the source and server data for
a varying number of days. (Bottom) Results obtained from training on the source
and conference data for a varying number of days. Data from office location is for

testing only

We find this to be the case for domain adaptation as well. Not all available domains

are worth adapting to. In our dataset, the conference location exhibits a domain

shift, but it is not equally worth adapting to when compared to server room data.

We found that by adapting to the server location alone, we can generalize to all other

locations shown in Fig. 4.16. The server room can be considered more adversarial

than the conference room. When we train a model on the source and server data,

the information discrepancy amongst the two domains is substantial compared to the

source and conference room data. This results in spatial generalization with only half

of the spatial target domain data. Admittedly, the model trained with source and

server data is not as good as the model trained with source and conference data in

every aspect. However, the overall generalization is better. Depending on the cost of

data collection, it might be well worth the marginal loss in accuracy.

4.5.4 Data-efficient Domain Adaptation

Exploiting the proposed domain shift detector enables us to develop a data-efficient

domain shift mitigation approach. Life cycle of the proposed approach is shown in

fig: 4.17. Instead of blindly collecting a large amount of labeled or unlabeled data

from all spatial and temporal domains, we use the shift detector to measure the shift

malignancy of each domain. Next, domains with insignificant shifts are discarded.



91

Figure 4.17: Overview of data efficient domain adaptation

Based on the cost of collecting labeled/unlabelled TD/SD data in different domains,

a heuristic approach is utilized to determine and collect an appropriate type and

amount of data. After this, the available domains are adapted to using an appropriate

domain adaption strategy. Utilizing the domain shift detector, the number of domains

to adapt was reduced, i.e., we only use the server location data with the highest

domain shifts, while ignoring data from conference and office locations. In this case,

as shown in Table 4.2, our unsupervised domain adaption method can achieve the

same performance as the supervised method, where the model is trained with labeled

data from source domain and the server location. Furthermore, we conjecture that

by incorporating few-shot learning methods, the source location labeled data could

also be reduced. A single day of source location data currently consists of only 1000

labeled data samples, which hinders the performance as it is not sufficient to train

a robust model. We addressed this issue by using labeled data from three days of

the source location. However, using other techniques such as initialization with pre-

trained model weights might also work well, thereby reducing the source location’s

labeled data.



92

Table 4.2: Model Accuracies of Unsupervised and Supervised Domain Adaption

Source-Temporal Server-Test Conference-Test Office-Test
Labeled 0.99 0.98 0.99 0.97

Our (GAN) 0.99 0.98 0.99 0.97

4.6 Conclusion

Our work has established the need to differentiate spatial and temporal shifts. Con-

trary to some beliefs, we show that these drifts can be particularly harmful, which is

especially true for radar-based gait recognition, in which the presence of the issue was

not well known. The dataset we introduced has unveiled the previously unbeknown

relation between TDS and SDS. We further uncovered the impact of adapting to one

domain could have on other domains and introduced the promising yet straightforward

avenue of methods that use metric learning to detect and estimate a shift’s potential

impact. Finally, we show our proposed life-cycle to tune and decide which domains

to adapt to substantially optimized our adaptation efforts. Our overall approach to

handling shifts establishes a promising layout for improving the generalization per-

formance of radar-based biometric identification systems in a data-efficient manner.



CHAPTER 5: Summary and Future Directions

The rapid growth of internet-enabled devices and applications demands cost-effective

network backbones with stringent quality of service requirements. While single-hop

access point based networks can guarantee service requirements, they are expensive

to deploy and manage. Wireless mesh networks is a multi-hop wireless network which

is cost-efficient and have been deployed for wireless community mesh networks, high-

speed urban networks, global wireless internet infrastructure, battlefield networks,

and public safety/disaster rescue networks. Vast amount of data in todayâs networks

are generally privacy sensitive and feature-rich data points which are then used to

improve centralized machine learning model of an AI-based application. Recently,

a distributed machine learning technology known to be Federated Learning (FL) is

exploited to collaboratively improve a shared global model using edge servers. Our

preliminary study shows that FL systems perform much worse when deployed over

multi-hop wireless networks due to noisy interference-rich wireless links. In addition,

the classic single layer FL system architecture converges slows down global model

convergence due to unpredictable network link delay.

In this dissertation, we have developed a novel Artificial Intelligence-based wire-

less network system which provides guaranteed network stability, thereby accelerating

convergence speed and accuracy of FL systems. In particular, our approach signifi-

cantly reduces the communication latency by introducing AI-based routing solutions,

which is the first ever experimentation on the actual physical testbed. Firstly, we

have developed and implemented distributed in-band telemetry system and wire-

less network operating system. This system simplifies implementing AI-based traffic

engineering solutions such as multi-agent reinforcement learning routing. Our exper-



94

imental validation shows promising network performance in terms of delay, packet

loss, and throughput. Secondly, we have developed FedEdge, which is the first ever

multi-hop FL system framework for multi-hop wireless networks. FedEdge frame-

works allow developers to evaluate and optimize FL algorithms that are deployed

over multi-hop networks. In addition, developers can optimize FedEdge network de-

vices routing paths using reinforcement learning-based routing algorithms to improve

the convergence time. In this work, we validated that FL system accuracy and con-

vergence time can be improved by optimizing the routing paths between the edge

servers and the remote server using Multi-agent reinforcement learning algorithms.

Finally, we considered mmWave radar based bio-metric identification as one of the po-

tential applications for FL systems and studied the generalization issues in practical

deployments. Our study shows that the existence of spatial and temporal shifts hin-

ders model generalization due to the underlying domain shift issues. To address the

case, we have developed a data-efficient domain shift mitigation technique that can

be used to tune deep learning models. We exploited unsupervised domain adaptation

to improve temporal and spatial generalization issues.

5.1 Future Directions:

Our work on AI-based wireless network systems is carried out on physical hard-

ware’s which are time consuming to setup and tune for multiple experiments. We had

to rely on the hardware setup because of the fact that none of the current network

simulators are capable of emulating a distributed multi-radio multi-hop wireless net-

work with real-time performance. Existing network emulators such as mininet-wifi,

ns-3 and mininet are widely used for networking research, however they cannot be

used for validating a distributed AI-based network systems. The main reason for

such shortfall is because the emulators tend to share the CPU time thereby leading

to sequential processing. However, in real-world processing and packet transmission

happens in parallel. Hence, I believe designing a hardware accelerated network emu-



95

lator with parallel processing capability is one of the promising directions to bridge

the gap between realistic network deployment and emulated network scenarios.

Federated learning on multi-hop wireless networks is more challenging because of

random network delay. While we try to solve the convergence time by optimizing the

network, we could also improve the convergence by employing various computation

techniques such as importance sampling, quantized model updates and asynchronous

FL training. By optimizing FL systems at all layers, we may be able to reduce the

wall-clock time significantly with high accuracy.



REFERENCES

[1] “wireless community networks,” available: https://en.wikipedia.org/wiki/List_
of_wireless_community_networks_by_region.

[2] “New york city (nyc) mesh network,” available: https://www.nycmesh.net/.

[3] “Facebook terragraph network,” available: https://terragraph.com/.

[4] “Spacex satellite constellation wireless internet,” available: https://en.m.
wikipedia.org/wiki/Starlink.

[5] “Google balloon powered global wireless internet,” available: https://loon.com/
technology/.

[6] “rajant kinetic mesh networks for battlefield communication,” available: https:
//rajant.com/markets/federal-military-civilian/.

[7] M. Portmann and A. Pirzada, “Wireless mesh networks for public safety and
crisis management applications,” IEEE Internet Computing, vol. 12, no. 1, pp.
18–25, 2008.

[8] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in software
defined networks,” in 2013 Proceedings of IEEE INFOCOM. IEEE, 2013, pp.
2211–2219.

[9] G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, and
B. Walke, “Ieee 802.11 s: the wlan mesh standard,” IEEE Wireless Communica-
tions, vol. 17, no. 1, 2010.

[10] The open mesh networks consortium. [Online]. Available: http://www.
open-mesh.org

[11] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for net-
work utility maximization,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 8, pp. 1439–1451, 2006.

[12] S. Lin, P. Wang, I. F. Akyildiz, and L. Min, “Utility-optimal wireless routing in
the presence of heavy tails,” IEEE Transactions on Vehicular Technology, 2018.

[13] V. Ramaswami, K. Jain, R. Jana, and V. Aggarwal, “Modeling heavy tails in
traffic sources for network performance evaluation,” Computational Intelligence,
Cyber Security and Computational Models, vol. 246, pp. 23–44, 2014.



97

[14] A. Ghosh, R. Jana, V. Ramaswami, J. Rowland, and N. K. Shankaranarayanan,
“Modeling and characterization of large-scale WI-FI traffic in public hot-spots,”
in IEEE INFOCOM. IEEE, 2011, pp. 2921–2929.

[15] P. Wang and I. F. Akyildiz, “Spatial correlation and mobility aware traffic mod-
eling for wireless sensor networks,” IEEE/ACM Transactions on Networking,
vol. 19, no. 6, pp. 1860–1873, 2011.

[16] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially Aware Motion Planning
with Deep Reinforcement Learning,” in 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2017, pp. 1343–1350.

[17] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-
Grew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hindsight Experience
Replay,” in Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 2017, pp. 5048–5058.

[18] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang, “A Hierar-
chical Framework of Cloud Resource Allocation and Power Management Using
Deep Reinforcement Learning,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 372–382.

[19] D. Yang, W. Rang, and D. Cheng, “Joint optimization of mapreduce scheduling
and network policy in hierarchical clouds,” in Proceedings of the 47th Interna-
tional Conference on Parallel Processing. ACM, 2018, p. 66.

[20] J. Zhao, G. Qiu, Z. Guan, W. Zhao, and X. He, “Deep Reinforcement Learning for
Sponsored Search Real-time Bidding.” arXiv preprint arXiv:1803.00259, 2018.

[21] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep Direct Reinforcement
Learning for Financial Signal Representation and Trading.” IEEE transactions
on neural networks and learning systems, vol. 28, no. 3, pp. 653–664, 2017.

[22] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive routing
in multi-layer hierarchical software defined networks: a reinforcement learning
approach,” in Services Computing (SCC), 2016 IEEE International Conference
on. IEEE, 2016, pp. 25–33.

[23] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntés-Mulero, and A. Cabellos,
“A deep-reinforcement learning approach for software-defined networking routing
optimization,” arXiv preprint arXiv:1709.07080, 2017.

[24] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani,
“State-of-the-art deep learning: Evolving machine intelligence toward tomorrows
intelligent network traffic control systems,” IEEE Communications Surveys Tu-
torials, vol. 19, no. 4, pp. 2432–2455, 2017.



98

[25] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. Liu, and D. Yang, “Experience-
driven networking: a deep reinforcement learning based approach,” in Proc. of
IEEE Infocom, 2018.

[26] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing net-
works: A reinforcement learning approach,” in Advances in neural information
processing systems (NIPS), 1994, pp. 671–678.

[27] L. Peshkin and V. Savova, “Reinforcement learning for adaptive routing,” in
Proceedings of the 2002 International Joint Conference on Neural Networks
(IJCNN’02), vol. 2. IEEE, 2002, pp. 1825–1830.

[28] Y. Shilova, M. Kavalerov, and I. Bezukladnikov, “Full echo q-routing with adap-
tive learning rates: a reinforcement learning approach to network routing,” in
2016 IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus),. IEEE, 2016, pp. 341–344.

[29] M. Kavalerov, Y. Shilova, and Y. Likhacheva, “Adaptive q-routing with random
echo and route memory,” in 2017 20th Conference of Open Innovations Associ-
ation (FRUCT). IEEE, 2017, pp. 138–145.

[30] M. V. Kavalerov, Y. A. Shilova, and I. I. Bezukladnikov, “Preventing instability
in full echo q-routing with adaptive learning rates,” in 2017 IEEE Conference
of Russian Young Researchers in Electrical and Electronic Engineering (EICon-
Rus),. IEEE, 2017, pp. 155–159.

[31] P. Pinyoanuntapong, M. Lee, and P. Wang, “Delay-optimal traffic engineering
through multi-agent reinforcement learning,” in 2019 IEEE INFOCOM Work-
shop: NI 2019: Network Intelligence: Machine Learning for Networking, 2019.

[32] M. Chen, Z. Yang, W. Saad, C. Yin, and S. C. H. Poor, “A joint learning and
communications framework for federated learning over wireless networks,” 2019,
available: https://arxiv.org/abs/1909.07972.

[33] M. Amiri and D. Gunduz, “Over-the-air machine learning at the wireless edge,”
in Proc. IEEE SPAWC, 2019.

[34] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning based on over-the-air
computation,” in Proc. IEEE ICC, 2019.

[35] H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas,
“Communication-efficient learning of deep networks from decentralized data,”
in Proc. AISTATS, 2016.

[36] M. Amiri and D. Gunduz, “Federated learning over wireless fading channels.”
Available: https://arxiv.org/abs/1907.09769, 2019.



99

[37] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple network management
protocol,” STD 15, RFC 1157, SNMP Research, Performance Systems Interna-
tional, MIT âŠ, Tech. Rep., 1990.

[38] S. U. Rehman, W.-C. Song, and M. Kang, “Network-wide traffic visibility in of@
tein sdn testbed using sflow,” in The 16th Asia-Pacific Network Operations and
Management Symposium. IEEE, 2014, pp. 1–6.

[39] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better netflow,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp. 245–256,
2004.

[40] P. Pinyoanuntapong, M. Lee, and P. Wang, “Delay-optimal traffic engineering
through multi-agent reinforcement learning,” in IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2019.

[41] J. Hyun and J. W.-K. Hong, “Knowledge-defined networking using in-band net-
work telemetry,” in 2017 19th Asia-Pacific Network Operations and Management
Symposium (APNOMS). IEEE, 2017, pp. 54–57.

[42] Ryu: Sdn controller. [Online]. Available: https://osrg.github.io/ryu/

[43] “Ofsoftswitch13,” available: https://github.com/CPqD/ofsoftswitch13.

[44] “Mangodb,” available: https://www.mongodb.com/.

[45] “Softmac,” available: http://bit.ly/2Rq6vwG.

[46] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker, “In-band
network telemetry via programmable dataplanes,” in ACM SIGCOMM, 2015.

[47] N. Van Tu, J. Hyun, and J. W.-K. Hong, “Towards onos-based sdn monitoring
using in-band network telemetry,” in 2017 19th Asia-Pacific Network Operations
and Management Symposium (APNOMS). IEEE, 2017, pp. 76–81.

[48] T. Mizrahi, G. Navon, G. Fioccola, M. Cociglio, M. Chen, and G. Mirsky, “Am-
pm: Efficient network telemetry using alternate marking,” IEEE Network, ac-
cepted, 2019.

[49] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous Federated Optimization,” arXiv
e-prints, p. arXiv:1903.03934, Mar. 2019.

[50] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,” 2019,
available:https://arxiv.org/abs/1903.03934.

[51] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated
optimization in heterogeneous networks,” 2020.



100

[52] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster convergence and
less communication: Demystifying why model averagingworks for deep learning,”
in Proc. AAAI 2019, 2019.

[53] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communication ef-
ficient momentum sgd for distributed non-convex optimization,” in Proc. PMLR
2019, 2019.

[54] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed
online prediction using mini-batches,” Journal of Machine Learning Research,
vol. 13, pp. 165–202, 2012.

[55] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient dis-
tributed machine learning with the parameter server,” in Proc. NIPS, 2014.

[56] “Tennsorflow federated,” available: https://www.tensorflow.org/federated.

[57] “Pysyft websocket mnist digit recognition task example,” available:
https://github.com/OpenMined/PySyft/tree/master/examples/tutorials/
advanced/websockets-example-MNIST.

[58] “Tensorflow federated datasets,” available: https://www.tensorflow.org/datasets.

[59] S. Caldas, S. Meher Karthik Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A Benchmark for Federated Settings,” arXiv
e-prints, p. arXiv:1812.01097, Dec. 2018.

[60] “Fastapi web framework,” available: https://fastapi.tiangolo.com/.

[61] “Asyncio,” available: https://asyncio.readthedocs.io/en/latest/.

[62] “Httpx,” available: https://www.python-httpx.org.

[63] “Grpc,” available: https://grpc.io.

[64] P. Janakaraj, P. Pinyoanuntapong, P. Wang, and M. Lee, “Towards in-band
telemetry for self driving wireless networks,” in IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS),
2020, pp. 766–773.

[65] L. Deng, “The mnist database of handwritten digit images for machine learning
research [best of the web],” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[66] J. G. Moreno-Torres, T. Raeder, R. Alaiz-RodríGuez, N. V. Chawla, and F. Her-
rera, “A unifying view on dataset shift in classification,” Pattern recognition,
vol. 45, no. 1, pp. 521–530, 2012.

[67] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocom-
puting, vol. 312, pp. 135–153, 2018.



101

[68] S. Rabanser, S. Günnemann, and Z. Lipton, “Failing loudly: an empirical study
of methods for detecting dataset shift,” in Advances in Neural Information Pro-
cessing Systems, 2019, pp. 1394–1406.

[69] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning,” in international conference on machine
learning, 2016, pp. 1050–1059.

[70] J. Snoek, Y. Ovadia, E. Fertig, B. Lakshminarayanan, S. Nowozin, D. Scul-
ley, J. Dillon, J. Ren, and Z. Nado, “Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift,” in Advances in Neural
Information Processing Systems, 2019, pp. 13 969–13 980.

[71] M. Kaya and H. Ş. Bilge, “Deep metric learning: a survey,” Symmetry, vol. 11,
no. 9, p. 1066, 2019.

[72] J. Li and P. Stoica, Robust adaptive beamforming. Wiley Online Library, 2006.

[73] M. A. Richards, Fundamentals of radar signal processing. Tata McGraw-Hill
Education, 2005.

[74] W. Wang, A. X. Liu, and M. Shahzad, “Gait recognition using wifi signals,” in
2016 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting (UbiComp). ACM, 2016, pp. 363 – 373.

[75] A. Pokkunuru, K. Jakkala, A. Bhuyan, P. Wang, and Z. Sun, “Neuralwave: Gait-
based user identification through commodity wifi and deep learning,” in IECON
2018-44th Annual Conference of the IEEE Industrial Electronics Society. IEEE,
2018, pp. 758–765.

[76] K. Jakkala, A. Bhuya, Z. Sun, P. Wang, and Z. Cheng, “Deep csi learning for
gait biometric sensing and recognition,” arXiv preprint arXiv:1902.02300, 2019.

[77] P. Janakaraj, K. Jakkala, A. Bhuyan, Z. Sun, P. Wang, and M. Lee, “Star: Simul-
taneous tracking and recognition through millimeter waves and deep learning,” in
2019 12th IFIP Wireless and Mobile Networking Conference (WMNC). IEEE,
2019, pp. 211–218.

[78] J. Pegoraro, F. Meneghello, and M. Rossi, “Multi-person continuous track-
ing and identification from mm-wave micro-doppler signatures,” arXiv preprint
arXiv:2003.03571, 2020.

[79] X. Huang, J. Ding, D. Liang, and L. Wen, “Multi-person recognition using sep-
arated micro-doppler signatures,” IEEE Sensors Journal, 2020.

[80] Y. Lang, Q. Wang, Y. Yang, C. Hou, Y. He, and J. Xu, “Person identification
with limited training data using radar micro-doppler signatures,” Microwave and
Optical Technology Letters, 2019.



102

[81] S. Abdulatif, F. Aziz, K. Armanious, B. Kleiner, B. Yang, and U. Schneider,
“A study of human body characteristics effect on micro-doppler-based person
identification using deep learning,” arXiv preprint arXiv:1811.07173, 2018.

[82] X. Qiao, T. Shan, and R. Tao, “Human identification based on radar micro-
doppler signatures separation,” Electronics Letters, vol. 56, no. 4, pp. 195–196,
2020.

[83] Y. Lang, Q. Wang, Y. Yang, C. Hou, H. Liu, and Y. He, “Joint motion classifi-
cation and person identification via multitask learning for smart homes,” IEEE
Internet of Things Journal, vol. 6, no. 6, pp. 9596–9605, 2019.

[84] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[85] Z. C. Lipton, Y.-X. Wang, and A. Smola, “Detecting and correcting for label
shift with black box predictors,” arXiv preprint arXiv:1802.03916, 2018.

[86] C. Geng, S.-j. Huang, and S. Chen, “Recent advances in open set recognition: A
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[87] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for face
verification,” IEEE Signal Processing Letters, vol. 25, no. 7, pp. 926–930, 2018.

[88] J.-B. Liu, Y.-P. Huang, Q. Zou, and S.-C. Wang, “Learning representative
features via constrictive annular loss for image classification,” Applied
Intelligence, vol. 49, no. 8, p. 3082â3092, Aug. 2019. [Online]. Available:
https://doi.org/10.1007/s10489-019-01434-3

[89] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[90] J.-B. Liu, Y.-P. Huang, Q. Zou, and S.-C. Wang, “Learning representative fea-
tures via constrictive annular loss for image classification,” Applied Intelligence,
vol. 49, no. 8, pp. 3082–3092, 2019.

[91] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for face
verification,” IEEE Signal Processing Letters, vol. 25, no. 7, pp. 926–930, 2018.

[92] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural net-
works,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2096–2030,
2016.

[93] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.



103

[94] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative
domain adaptation,” 2017.

[95] H. Zhao, J. Hu, Z. Zhu, A. Coates, and G. Gordon, “Deep generative and discrim-
inative domain adaptation,” in Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, ser. AAMAS ’19. Richland,
SC: International Foundation for Autonomous Agents and Multiagent Systems,
2019, p. 2315â2317.

[96] S. Abbasi, M. Hajabdollahi, N. Karimi, and S. Samavi, “Modeling teacher-
student techniques in deep neural networks for knowledge distillation,” 2019.

[97] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay,
“Adversarial attacks and defences: A survey,” arXiv preprint arXiv:1810.00069,
2018.


