
PHASE STRUCTURED WAVEFIELDS   
WITH PHASE SINGULARITIES AND BISPECTRAL PROPERTIES 

 
 
 

by 
 

Marco Scipioni 
 
 
 
 

A dissertation submitted to the faculty of  
The University of North Carolina at Charlotte 

 in partial fulfillment of the requirements 
 for the degree of Doctor of Philosophy in 

Optical Science and Engineering 
 

Charlotte 
 

2010 
 

 

 

 

 

Approved by:  

 

Dr. Robert K. Tyson 

  

Dr. Michael A. Fiddy  

              
Dr. Greg Gbur 

 
Dr. Jacek Dmochowski



 ii
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

©2010 
Marco Scipioni 

ALL RIGHTS RESERVED



 iii
ABSTRACT 

 
 

The work presented in this dissertation can be subdivided into two parts. The first 

part illustrates the novel use of a 37 actuator segmented deformable mirror for the creation 

of optical vortex beams ranging in topological charge from 1 to 10. The segmented 

deformable mirror offers a dynamic, polarization independent alternative for creating 

vortex beams with arbitrary charge. An optical vortex mode purity comparison between the 

deformable mirror and multi-step diffractive phase plates with 16 and 32 discrete steps is 

carried out both analytically and in simulation. Computer simulations show the intensity 

and phase of the vortices generated with the two methods. The deformable mirror, by being 

reconfigurable, shows better mode purity for high charge OVs, while the static phase plate 

mode efficiency declines due to the fixed number phase quantization. 

The second part of the dissertation reviews the concept of the bispectrum (3rd order 

polyspectrum) and the possibility of creating partially spatially coherent beams with 

nonzero bispectral characteristics. Numerical simulations show that bispectral properties 

encoded in an input wavefield are invariant upon propagation in free space.  

This result opens the possibility of using the bispectrum as a new degree of freedom for 

encoding information in a wavefield.  
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CHAPTER 1: INTRODUCTION 
 
1.1 INTRODUCTION  
 
 

Electromagnetic wavefield properties can be manipulated in order to tailor the 

field’s profile to specialized applications. This dissertation focuses on wavefields that 

exhibit nontrivial phase structures.  It has been demonstrated that the phase construction 

significantly influences the field behavior. 

Optical vortex beams are electromagnetic wavefields with peculiar phase 

structure: they contain phase singularities and have helicoidal wavefronts. They present 

high robustness and self-healing properties upon propagation in disturbing media. 

There are a growing number of applications that take advantage of the beneficial 

properties of optical vortex beams. That leads to the development of new and enhanced 

methods for the generation of wavefields containing optical vortices. 

This dissertation presents the novel and successful use of a 37 actuator segmented 

deformable mirror for the generation of optical vortex beams with topological charge 

from 1 to 10. The segmented deformable mirror is shown to be a viable alternative to 

other existing methods for creating vortex beams.  The incessant progress in segmented 

deformable mirror technology is an assurance of improved performance for deformable 

mirrors in terms of vortex beam generation capability. New dielectric coatings will 

extend the use of segmented DMs and optical vortex fields to high power application
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where other methods are less suitable. There is work in progress that aims at changing 

the segments’ shape at the phase jump discontinuity from hexagonal to rectangular in 

order to generate better vortices. 

The deformable mirror offers several advantages over other methods: it is a 

dynamic, polarization and wavelength independent device.  

An optical vortex mode purity comparison between the mirror and multi-step 

diffractive phase plates (SPP) with 16 and 32 discrete steps was carried out both 

analytically and in simulation in order to quantify the DM performance.  

The comparison represents the metric used to support the adoption of the DM for vortex 

beam applications.  

Computer simulations show both the intensity and phase profile of the vortex 

fields generated by the DM and SPP. The dynamic deformable mirror can generate 

optical vortices with higher mode purity, while the static phase plate mode efficiency 

declines due to the phase steps quantization. The mode purity comparison serves to 

evaluate the performance of the DM for applications based on high topological charge 

optical vortex fields. My results conclude that the DM is a versatile device that can be 

used in applications that employ vortex fields. 

The final part and contribution of this research was to introduce the possibility 

of creating phase structured wavefields with nonzero bispectral characteristics. These 

wavefields show an intrinsic statistical phase structure due to the presence of quadratic 

phase coupling in the field angular momentum and consequential nonzero bispectrum.  
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The concept of bispectrum (3rd order polyspectrum) is used to create a 

probabilistic wavefield model. So far the bispectrum has been mostly used as a 

statistical tool to characterize the nonlinear properties of systems and signals.  

I encoded a specific bispectral signature in the input partially spatially coherent 

wavefield. The field was then propagated in free space. Numerical simulations showed 

that the bispectral signature remains perfectly intact and invariant upon propagation. 

This result can be exploited to design partially spatial coherent wavefields with nonzero 

bispectrum and create new fields with improved propagation characteristics.  The 

bispectral wavefields do not need to be just a theoretical proposition: a 4-F spatial 

filtering system can be efficiently used to experimentally generate partially coherent 

fields with nonzero bispectrum.  

My analysis and result support the conclusion that the bispectrum and its spatial 

counterpart, the 3-point autocorrelation, behave as “coherence waves” and travel 

undisturbed through free space as realized by other authors in the past.  I reintroduced 

the bispectrum as a new degree of freedom for encoding information in a wavefield and 

verified this concept using a bispectral design where quadratic phase coupling was 

applied to spectral components arranged in a symmetric circular configuration.  

 
1.2 OPTICAL VORTICES  
 

Singular Optics is a rapidly developing branch of optics that investigates 

anomalous features like phase and polarization singularities in wavefields. These 

mathematical anomalies where certain field properties fail to be defined are actually not 

that anomalous: it turns out that singular field behaviors are very common and 
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mathematically generic in real life interference phenomena like speckle fields. Optical 

vortices probably represent the most popular and studied singular optics topic.  

An optical vortex (also known as a screw dislocation or phase singularity) is a zero of 

an optical field, a point of zero intensity [1]. Light is twisted like a corkscrew around its 

axis of propagation [2,3]. Because of the twisting, the light waves at the axis itself 

cancel each other out. An optical vortex looks like a ring of light, with a dark hole in the 

center. The vortex is given a number, called the topological chargeA , related to the 

orbital angular momentum of the field. The wavefront of an optical vortex is a 

continuous surface consisting of embedded helicoids, each with A λA  pitch, spaced 

from each other one wavelengthλ .  As an example, Figure 1.1 represents the wavefront 

of a charge 3=A  vortex propagating along the z-axis, illustrating the three intertwined 

helicoids. 

 

 

 

 

Fig.1.1 Wavefront of an optical vortex with charge 3=A (arbitrary spatial units) 

 

 

 

 

Fig. 1.2 Transverse vortex phase profile. 
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The generalized functional form for a field hosting an optical vortex is, in a plane 

transverse to propagation direction, locally given by 

                                                                       (1.1) 
θθθ AierAr ),(),( =f

where ),( θrA  can be any square integrable, continuous and smooth complex amplitude 

wave function in cylindrical polar coordinates. The phase argument θ  represents the 

distinctive, transverse vortex phase profile, impressing a linear phase increase in the 

azimuthal direction to the field. The charge of a vortex can be an integer or fraction, and 

also positive or negative, depending on the handedness of the twist. Figure 1.2 shows a 

map of the phase profile of a vortex beam. The phase jumps by a value π2A at the 

discontinuity. 

Vortex beams have been successfully employed in optical tweezers applications 

[8,11], because they offer the advantage of trapping and spinning low index (with 

respect to the hosting medium) dielectric particles in their zero intensity region. 

 

 Vortex carrying beams also have interesting potential for use in free-space optical 

communications [4,5,7]. Of particular interest is the ability of vortex beams to conserve 

their charge through atmospheric turbulence [12]. Also, vortex beams “self-heal” 

around obstacles [13], and experiments have shown that vortices are conserved through fog 

[14]. These properties make it an ideal extension to conventional coding schemes such 

as on-off keying or coherent modulation techniques. 

 
1.3 ZEROS OF VECTOR WAVEFIELDS 
 

The study of wavefields containing optical vortices is usually based on the scalar 

theory assumption. In the paraxial approximation there are solutions to the paraxial 

vector wave equation in which the direction of the electric field E is spatially non-
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homogeneous: the electric field polarization is a function of transverse position in the 

beam. These solutions present points of zero intensity the same way as field with optical 

vortices do. No matter the type of wavefield, a zero of intensity is always a phase 

singularity.  However these vector beams do not necessarily have optical vortices: the 

phase landscape surrounding the zeros does not need to have an azimuthal variation.  

r

Beams with azimuthal or radial polarization are examples of beams with 

intensity zeros that are not optical vortices. The zeros of intensity arise because the 

electric field oscillates simultaneously in all directions and destructive interference 

occurs. The phase in this case is not undefined: it is the linear polarization that is 

undefined. 

This does not mean that paraxial wavefields with radial or azimuthal 

polarization cannot contain optical vortices. But if the wavefield is linearly polarized a 

zero of intensity can only occur if an optical vortex is present.  

 
1.4 ANGULAR MOMENTUM OF RADIATION 
 

It is well established that electromagnetic radiation carries both energy and 

momentum which can be exchanged with matter upon interaction. Electromagnetic 

phenomena are generally modeled using two complex-valued vector fields, the electric 

field  and the magnetic field . These two fields are interrelated via four 

partial differential equations, Maxwell equations, from which two wave equations, one 

for  and one for , can be derived. That is an the mathematical evidence that 

electromagnetic radiation is a wave-like phenomenon and that E  and B  are capable of 

transporting energy. Classical electromagnetic theory treats electromagnetic radiation as 

a continuum which is best described in terms of density functions. The electromagnetic 

),( trE

E

),( trB

B
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energy density (energy per unit volume)  , defined in terms of the complex  

and , is  

),( tw r ),( trE

),( trB

                         ]|),(|1|), 2tr +(|[
2
1=),( 2

0
0 ttw rBEr

μ
ε                                   (1.2) 

In vacuum,  where ctt /|),(|=|),(| rErB
00

1=c
με

 is the speed of light. The 

electromagnetic energy is equiparted between the electric and magnetic fields. The 

fields  and  also serve to compose a very useful vector quantity 

representing the energy-current density (energy flux) of electromagnetic radiation:  

)t,(rE ),( trB

                                 )],(),( trE ×[1=),(
0

tt rBr
μ

S                                             (1.3) 

The vector  is called the Poynting vector and has units . This vector is 

directly related to the concept of radiation pressure 

),( trS )/( 2mW

c
Prad

><= S(  ), and its magnitude 

quantifies energy flux per unit area per unit time. The wavefield linear momentum 

density g  (linear momentum per unit volume) of the electromagnetic field is given by  

                         20
>),(<>=)],( tB r

dVg

),([<=
c

ttE rSr ×εg                                   (1.4) 

where  represent the time averaging operation. The total linear momentum of an 

electromagnetic field is given by an integral over the volume occupied by the field:  

<>

∫                                               G =                                                           

(1.5)where  is the elementary volume. After defining electromagnetic linear 

momentum it comes natural to discuss the angular momentum density of an 

electromagnetic field given by  

dV
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                                                 grl ×=                                                            (1.6) 

where  is the arm vector from the arbitrarily chosen coordinate system origin and r g  is 

the field linear momentum density. The total angular momentum contained in a 

wavefield is  

                                          dV)(= 0 grL ×∫ε                                                    (1.7) 

In the case of monochromatic fields with time dependence  (tie ω− ω is the angular 

frequency), after several vector manipulations and using Maxwell’s equation 

EB ×∇
ωi
1= , the time-averaged vector  turns out to be  L

                                   =>)(<>=< 0 dVgrL ×∫ε  

                       dV
i

)]}()([({
4

= 0 ∗∗ ×∇×+×∇×∫ EEEEr
ω
ε                               (1.8) 

Our interest in paraxial wavefields propagating along the −z direction leads us to focus 

on the components of  for paraxial fields, which is derived to be equal to  −z L

                      dVEE
i zjzj ])()([

2
>=< 0 EExLz ×+∇× ∗∗∫ω

ε                             (1.9) 

It is helpful to express the first addend in the integrand of  in polar coordinates >< zL

),( φr  and the second addend in Cartesian coordinates  in order to gain insight in 

the angular momentum generation mechanisms. The quantity  then becomes  

)y

< zL

,(x

>

                     dVEEEE
E

E
i xyyx

j
j ][

2
>=< 0 ∗∗∗ −+

∂

∂
∫ φω

ε
zL                                (1.10) 

The term 
φ∂

∂ jE
 suggests that angular momentum will exist in a paraxial field if any of 

the  field components vary with the position coordinate E φ . This first type of angular 



 9

momentum contribution is called  “orbital”' angular momentum and depends solely on 

the phase structure of the wavefield, regardless of the polarization state. The second 

portion of the integrand , , corresponds essentially to the fourth Stokes 

parameter which measures the degree of elliptical polarization and depends on relative 

phase and amplitude of field components. This angular momentum contribution is 

called the “spin “ angular momentum of the wavefield. Beth in the 1930s conducted an 

experiment using a quarter wave plate and showed that circularly polarized light has 

angular momentum of 

)( xyyx EEEE ∗∗ −

σ=  per photon, where 1|<<|0 σ  for elliptical polarization, 

0|=|σ  for linear polarization and 1|=|σ  for circular polarization. In order to fully 

appreciate the nature of orbital angular mometum it is important to draw attention to the 

fact that a general paraxial wavefield is never a pure transverse wavefield (TEM) like 

wavefields existing in waveguides. Any paraxial field must have a longitudinal field 

component  along the propagation direction  besides its transverse components 

. The longitudinal component is in general significantly smaller in magnitude 

than the transverse components. The existence of the longitudinal field component  

is indispensible for the existence of orbital angular momentum in the 

zE z

yx EE ,

zE

−z direction: the 

azimuthal component of the Poynting vector S , , circulates around the propagation 

axis  and gives rise to orbital angular momentum. The orbital angular mometum 

density is given by  

φS

z

                      >)= 2 φBE×
c
r

z (<>=< S=>)<(1
2 Sr×

c z

0),,(

2c
r

φl                    (1.10) 

and  only if 0×B > ≠φ< E ≠zyxEz  (or 0),,(xBradial ≠zy ).  Optical vortex beam is 

an umbrella term that encompasses all those paraxial wavefields (Laguerre-Gauss, 
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Bessel-Gauss, Mathieu-Gauss,etc...) with a transverse, azimuthal phase profile and 

phase singularity at their center. Optical vortices carry orbital angular momentum due to 

their azimuthal phase variation.  

Optical wavefields oscillate at temporal frequencies that are too large for the current 

measuring devices to keep up with the instataneous field amplitude or irradiance.   

A direct observation of the instantaneous irradiance can instead be performed in 

the radio or microwave regime. In that regime the instantaneous irradiance of a vortex 

field with  charge  and charge |1|| =A 2|=A   is given by two and four rotating lobes 

respectively as illustrated in the figure 1.4 below: 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.3 Instantaneous irradiance for a vortex Field with | (left), 1|=A

 and | 2|=A (right). 
 

At optical frequencies the lobed patterns rotate so fast that it is only possible to record 

the time averaged intensity. The vortex irradiance patterns result in closed rings: 
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Fig. 1.4.Time-averaged irradiance patterns for 1|| =A (left), 

 and 2|| =A (right) vortex fields. 
  

Another important aspect worth remembering is that the presence of orbital angular 

momentum cannot be always associated with the presence of phase singularities: there 

are wavefields with nonzero orbital angular momentum that do not have phase 

singularities. Astigmatic Gaussian beams and twisted beams in general are an example. 

These fields have elliptical irradiance cross section instead of circular cross section. The 

constant  intensity ellipses and iso-phase ellipses are oriented at an angle with respect to 

each other. The orientation between the ellipses changes over free space propagation 

causing energy rotation within the field [23,24]. 

From the photon perspective, orbital angular momentum is always quantized to integer 

multiples  of , where A  is the signed integer indicating the strength of the phase 

singularity and equal to the number of 

A =

π2  phase increments gained by the phase around 

the beam axis. In optical vortex beams the azimuthal momentum per photon is always 

equal to 
r
A=  where r  is the radial distance from the beam center. Beams that are not 

optical vortices but carry orbital angular momentum do not necessarily respect this 

relation.



 

CHAPTER 2: EXPERIMENTAL GENERATION OF OPTICAL VORTICES 

 

2.1 METHODS OF GENERATION OF OPTICAL VORTICES 

Optical vortices can be generated in a number of ways.  We briefly review the 

methods here.  Details of the methods and operation are found in the citations. 

A. Spatial Light Modulators 

One commonly used device for their generation of an optical vortex is the liquid crystal 

spatial light modulator (LC SLM) [8]. Commercial LC SLMs are either optically or 

electrically addressed and can modulate the amplitude, the phase, or both for an incident 

input field. Their main strength is that they are dynamically reprogrammable.  

Nematic SLM, the most common, have a time response of roughly 60Hz. When 

an SLM is used, any significant incident beam power must be distributed, in order to 

avoid boiling the liquid crystal element, so the amount of incident power can be a 

limitation. 

In the case of amplitude-only spatial light modulators, an optical vortex of a given charge 

and wavelength can be made from a computer generated hologram (CGH) [8]. Computer-

generated holograms are the digitally calculated interferograms between a plane wave 

beam and a beam carrying an optical vortex. The resulting CGH resembles a diffraction 

grating with a characteristic "fork" dislocation having the number of prongs in the fork 

directly related to the topological charge of the design vortex
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(number of prongs = desired topological charge+1). The interference is called a fork 

pattern because the central constructive interference fringe splits into constructive 

interference prongs pictorially looking like the multi-prong utensil. The CGH is then is 

applied to the spatial light modulator.  

In the case of phase-only spatial light modulators, the phase profile is the sum of 

the desired optical vortex phase and a phase tilt needed to steer the reflected incident 

beam away from the direction of incidence. The result is a blazed phase grating that still 

has a fork feature in its center. Because the blazed phase grating is not perfect, multiple 

diffraction orders appear after the beam is reflected off the SLM.  The first diffraction 

order contains the optical vortex with the desired topological charge and is the most 

intense diffraction order. The zero diffraction order is the specular reflection off the 

SLM. The other diffraction orders are vortex beams with topological charge equal to the 

diffraction order number multiplied by the topological charge of the desired vortex beam.  

B. Mode Converters 

Hermite-Gaussian laser modes form an orthogonal family of laser beams. An 

appropriately weighted superposition of two Hermite-Gauss beams, with the right mode 

order, can result in a Laguerre-Gauss beam carrying an optical vortex of the desired 

topological charge at its center. The superposition is achieved through a system of 

cylindrical lenses by making use of the Gouy effect [12]. This set-up presents alignment 

challenges and requires high order Hermite-Gauss beams to obtain high order vortex 

beams, thus limiting the flexibility of the configuration. 
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C. Helical Mirror 

A helical mirror was recently proposed [14] to create optical phase singularities of 

various topological charges. The mirror shape, controlled by a piezoelectric actuator, 

provides a continuous phase variation along the azimuthal direction, but also introduces 

radial phase variations, because of unavoidable material stresses, thus lowering the 

quality of the generated vortex beams. 

D. Dielectric Wedges 

By stacking dielectric wedges [13], it was shown to be possible to create a system 

capable of producing optical vortices of topological charge higher than one. The charge 

of the vortex beams corresponds to the number of wedges used in the system. 

E. Spiral phase plates 

 A simple, adjustable spiral phase plate has also been used to create vortex beams [10]. 

The plate is constructed from a parallel-sided transparent plate with polished surfaces in 

which a crack is induced starting at one edge and terminating close to its center. 

Static spiral phase plates (SPPs) are very common. They are spiral-shaped pieces of 

crystal or plastic that approximate the ideal spiral with a discrete number of phase steps. 

SPPs are engineered specifically to the desired topological charge and incident 

wavelength [11,12]. They are efficient, yet expensive, and show high topological charge 

purity only for low topological charge  [11,14]. A

F. Deformable mirrors 

A deformable mirror (DM) can be used to generate a vortex. A conventional continuous 

faceplate DM is not well-suited for this action because the surface must have a 

discontinuous line (not necessarily straight) between the singularity and the edge. On the 
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other hand, a segmented DM, with discontinuities already in place between the segments, 

can be formed into a vortex shape, which is transferred to the phase of a beam reflecting 

from the surface.  

If, at the discontinuity, the surface jumps one-half of the wavelength of the light, the 

reflected beam will have a phase jump of one full wave, and the beam will have a vortex 

charge A . By simply multiplying the amplitudes of the segment pistons and tilts, we 

can apply any charge to the beam up to the mechanical limits of the DM. This allows us a 

great variability of charge and even fractional charges. Because the mirror is simply a 

reflecting surface, it can be used at multiple wavelengths. 

1=

 2.2 RESULTS WITH A SEGMENTED DEFORMABLE MIRROR 

We have performed a number of experiments with our 37-segment deformable 

mirror and have shown that we can generate a vortex. We can vary the charge and have 

verified the charge in the pupil plane and in the far-field after propagation.  The device 

used to demonstrate vortex generation is the Iris AO S37-X segmented deformable mirror 

[16]. See Figure 2.1. The S37-X deformable mirror is fabricated with micromachining 

technology, making it a compact, low mass modulator. The 3.5 mm aperture DM consists 

of 37 hexagonal segments tiled into an array. 

 

                         

 

 

 

Fig.2.1 Iris AO S37-X segmented deformable mirror. 
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The DM segment consists of an actuator platform elevated above the substrate as 

a result of engineered residual stresses in the bimorph flexures. The actuator platform and 

underlying electrodes form parallel plate capacitors. Placing a voltage across the 

capacitors generates Coulombic forces that pull the segment towards the substrate. By 

varying the voltages on the lower electrodes, the actuator can move in piston (pure 

vertical), tip and tilt directions. The forces are solely attractive, so bidirectional actuation 

is achieved by biasing the segment at the half-way point.  

The maximum stroke is around 5 μm with ±5 mrad tip/tilt. The DM also shows 

good temperature resistance with peak to valley bow of 0.56 nm/C.  

Electrostatic actuation has a nonlinear response between position and voltage. 

Furthermore, the segment piston/tip/tilt positions are coupled, making the position versus 

voltage response more complicated. Iris AO has developed a controller that linearizes this 

response. The user simply enters desired piston/tip/tilt positions and the controller, using 

a calibrated model, determines the required voltages and sets them on the drive 

electronics. The controller has demonstrated open-loop positioning of 30 nm rms residual 

surface figure errors. Thus, a vortex can be created with the DM in open-loop operation. 

  

 

 

 

 

Fig. 2.2 DM Segment numbering (left) and segment anatomy (right) 
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Fig. 2.3 (a) Ideal linear spiral ramp and (b) ramp approximated by 

Iris AO deformable mirror. 
 

Figure 2.3(b) shows the spiral ramp generated by the DM compared to the ideal,  

smooth spiral vortex ramp. 

Beams carrying topological charge are highly unstable to small symmetry-

breaking azimuthal perturbations and decompose, upon propagation, into elementary 

charge vortices of the same sign, symmetrically distributed around the center of the 

beam, thus conserving the initial net topological charge [2,3]. Astigmatism in the beam or 

small defects in the diffracting/reflecting optical device are the probable causes of this 

fragmentation.  

1>A

 Figure 2.4 illustrates the unfolding. A dipole in Figure 2.4 (b), a tripole in Figure 2.4(c), 

and quadrupole in Figure 2.4(d) are shown from the decay of charge 2, 3, and 4 optical 

vortex beams created with the Iris AO deformable mirror. 
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              (a)       (b) 

 
 
 
 
 
 
 
 

         (c)       (d) 
 

Fig. 2.4 Decay of multiple –charge optical vortices into charge 1 vortices: (a) charge=1; 
(b) charge=2; (c) charge= 3 (close-up view); (d) charge=4 (close-up view); 

 
 

We also verified the optical charge from interference patterns in the pupil plane. The 

interference patterns between a reference plane wave and a beam carrying optical vortices 

were generated by using a Michelson interferometer. 

The resulting interference patterns shown in Figure 2.5 reveal the typical fork pattern 

which is an indicator of the presence of the phase singularities in the beam reflecting off 

the deformable mirror. 

 In Figure 2.5(b) the interference fringes represent the deformable mirror commanded to a 

flat profile. In Figure 2.5(d) the two-pronged fork pattern for a charge 1 vortex is shown 

and in agreement with the simulation. For Figure 2.5(f), we placed amplitudes on the 

deformable mirror that would generate a charge 5 optical vortex. The simulated and 



 19

experimental patterns are different because, upon the short propagation length within the 

interferometer (a few centimeters), the charge 5 vortex apparently unfolded into 5 

elementary charge 1 vortices, as expected. We interpret the interference pattern to be the 

presence of 5 two-pronged forks within the pattern, indicating the presence of a charge 5 

vortex.  

   

                   

                                                                                                 

 

 
 
 
 
 
 
 
 

             
 
 
 
 
 
 
 

 
Fig. 2.5 Interference pattern (simulated (left) and experimental (right)) between reference 
plane wave and plane wave reflected off deformable mirror illustrating fork patterns due 

to the phase singularities present in the beam. 
 

Optical vortices with half-integer topological charge exhibit, in the near field, a 

radial line of low intensity attributed to the presence of a chain of  charge 1 vortices of 

alternating sign along the radial phase discontinuity [20,21].  
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In the far field, however, only a finite number of same-sign vortices appear near the beam 

axis [18,19]. The number results from rounding the fractional chargeA  of the vortex to 

the nearest higher integer. For example, if 5.0=A

5.2

, the far field will show one charge 1 

vortex, and similarly, three charge 1 vortices if 5.3<≤ A . The intensity pattern of a 

beam with fractional topological charge resembles a broken ring. 

In Figure 2.6, each dark region indicates the presence of an optical vortex in the field. By 

increasing the height of the phase discontinuity in discrete increments, it is interesting to 

follow the evolution of the intensity of the beam as the discontinuity changes from one 

integer value of the wavelength to the next higher one. It is apparent from Figure 2.6, as 

predicted from theory [20,21], that as the discontinuity passes a half integer value of the 

wavelength λ , a new vortex fully appears in the beam, migrating from the periphery 

along the radial phase discontinuity, to the central area of the beam. 
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           Charge 0.0     Charge 0.2               Charge 0.4          Charge 0.6 

                 

           Charge 0.8     Charge 1.0               Charge 1.2          Charge 1.4 

                 

          Charge 1.6                Charge 1.8               Charge 2.0          Charge 2.5                           

                    

            Charge 3.0                Charge 3.5              Charge 4.0                           Charge 4.5                                          

    

             Charge: 5.0 

Fig.2.6. Evolution of the intensity pattern for the beam reflected off the deformable 
mirror from charge 0.0 to charge 5.0 obtained by gradually increasing the phase 

discontinuity. 
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2.3 CONCLUSIONS   
 

We made use of the discontinuous surface of a segmented DM to create an optical 

vortex that, by definition, requires a phase discontinuity.  The reflective surface allows 

for generation of vortices of any wavelength and the simple open-loop nature of the 

controller allows for integer and fractional vortex charge at any wavelength. 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 3:  MODE PURITY COMPARISON OF OPTICAL VORTICES 
GENERATED BY A SEGMENTED DEFORMABLE MIRROR AND A 

MULTILEVEL PHASE PLATE 
 
3.1 SPIRAL PHASE RAMP 

 
The ideal, perfect OV phase profile on a light beam is a linear, continuous, and infinitely 

smooth phase ramp, like the one represented in Figure 3.1(a). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.1 Ideal smooth vortex phase ramp 1(a) and DM generated vortex phase ramp 1(b) 

 

Transmissive static phase plates (SPP) are efficient and widely used phase-only optical 

elements that create a good approximation to the linear spiral phase ramp [12].
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The SPPs can be created with continuous phase profiles using fabrication methods like 

resist melting or reflow. However, these methods are expensive and technically 

challenging to implement due to large phase depths. In order to ease the fabrication of 

these micro-optical phase components, the phase topography is usually quantized in N 

discrete phase levels with equal height (equivalent to N/2 Aπ ). This approximates the 

continuous surface by a staircase profile [9,10,14,15]. The phase profile can also be 

blazed [4,5,12,13], due to the insensitivity of light to an integer number of π2  phase 

jumps [1]. The multilevel micro-relieves, with features ranging from submicron to 

millimeter dimensions, and the possible etching and alignment errors in the 

photolithographic process, often introduce phase errors in the structure which 

consequentially deviate the surface from the ideal profile [3]. A 37 segment deformable 

mirror (DM), based upon an actual device used in experiments and reported elsewhere 

[16], offers a viable alternative to the SPPs for creating optical vortex beams. The DM is 

a reflective, reconfigurable, phase only, and polarization- independent device, that 

approximates the desired linear phase ramp by adjusting tip, tilt, and piston values of the 

37 available segments [17] as represented in Figure 3.1(b). The segments have a diameter 

of 700 mμ  with mμ4 gaps between them (99 % fill factor). The DM aperture is 3.5 mm 

in diameter.  

This chapter presents a comparison between the phase profile created by the deformable 

segmented mirror and that of a multilevel, static, phase plate with 16 or 32 discrete levels. 

The comparison uses vortex mode purity analysis based on circular harmonic 

decomposition that uses optical vortices with topological charge ranging from 1 to 10. 
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The vortex mode purity is an indication of the presence of spurious optical vortices in the 

field. 

3.2 CIRCULAR HARMONIC DECOMPOSITION 
 

The circular harmonic decomposition is simply a one-dimensional Fourier series 

expansion, where the independent variable is the azimuthal angleθ .  We used it to 

analyze the vortex mode purity of a complex field with vortex phase ramp profile 

produced by a stepped SPP and a field with vortex phase ramp profile generated by the 

DM. The orthogonal functions used in the decomposition of the field are the orthonormal 

complex functions{ } ∞−∞= tom
ime θ

. The function ),( θrf  represents the field profile, 

represented by a series expansion   

                  .                                  (3.1) 
θθ im

meCrf ∑
+∞

∞−

=),(

The coefficients of the series become 

θθ
π

π
θ derfC im

m ∫ −=
2

0

),(
2
1

   .                                  (3.2) 

The resulting complex coefficients  are the amplitudes of vortex modes resulting from 

the decomposition. A quantized phase SPP acts like a linear kinoform grating structure. It 

always produces the desired optical vortex with charge , but it will include extra 

diffraction orders with unwanted optical vortices of charge other than . 

mC

A

A

For the case of the SPP, we can show that by quantizing a field carrying a smooth vortex 

phase profile, we can generate the weighting factors of the unwanted modes. 

Mathematically, the mapping of the smooth complex vortex field into a field with a 

quantized vortex phase can be described by: 
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The phasor can be synthesized with appropriately weighted vortex modes:  
)(θϕquantizedie
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The resulting coefficients give also the efficiency mη = 
2

mC of the various vortex 

modes : m
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which shows that the mode amplitude decreases as 2

1
m

 for increasing order . The 

second term in the expression is zero for 

m

kNm =  and third term is indeterminate 

for . However, the numerator in the third term goes to zero faster than the 

denominator and from l’ Hopital’s rule, in the limit

kNm =−A

kNm +→ A , the third term is finite. 

The logarithmic plot in Figure 3.2 shows the efficiency of the extra vortex modes 

generated by a step ramp designed for topological charge 1=A  with N=16 steps 

(continuous line), and the efficiency for the vortex modes generated by the segmented 

mirror (segmented line) for the same design charge 1=A . 
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Fig. 3.2 Log plot of mode intensity versus diffraction vortex mode charge for SPP 
(continuous line) and DM (segmented line) 

 

It is easy to notice how the stepped SPP efficiently reproduces the design mode  (more 

than 90%) and shows another strong mode of 

A

17=m  , consistently with Eq. (5). 

Figure 3.3 illustrates the mode purity versus design topological charge for a 16-step, 

static, phase spiral ramp versus the phase spiral obtained by using the 37 segment DM. 

The topological charge on the horizontal axis represents the vortex charge that the device 

is intended to generate. 
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Fig. 3.3 Vortex mode purity versus topological charge for the 16-step SPP and DM 

generated phase ramp 
 

If the phase ramp was perfectly smooth, the graph would show 100% purity for any 

design topological charge.  The DM and the SPP cannot attain that ideal result, and will 

generate, therefore, extra vortex modes. 

The stepped spiral shows a significant decrease in mode purity with increasing design 

topological charge after the 2=m value at which both the DM and the 16-step SPP have 

comparable purity. 

This is due to the fact that as the charge increases, the step size increases as well, while 

the number of discrete steps remains the same. This corresponds to a decrease in angular 

phase resolution. 

Figure 3.4 presents a mode purity analysis between a 32-step SPP and the phase produced 

by the DM. For optical vortices with topological charge < 6, the SPP has slightly 

superior mode purity, but for higher charges the DM shows a higher purity.  

A
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Fig.3.4 Vortex mode purity versus topological charge for the 32-step SPP and DM 

generated phase ramp 
 

In the case of the stepped SSP, the efficiency clearly increases with the number of the 

quantization levels. However, microlithographic fabrication puts a limit on the number of 

discrete phase steps that can actually be realized. 

The segmented DM shows more consistent vortex mode purity with increasing 

topological charge, due to the tilting ability of the segments to better approximate a 

smooth and continuous surface. 

It is interesting to bring to the reader’s attention a result first discovered by Molina-

Terriza et al. [22]. They showed that net topological charge of a single beam hosting 

multiple signed vortices is simply the algebraic sum of all the charges. Also they show 

that the net topological charge of a single beam (that is instead composed of multiple, 

separate, collinear beams, each carrying a vortex) depends on the relative phase, 

amplitude, and charge of the individual beams. However, both in the case of the SPP and 

DM, the beams that carry a vortex charge which is different from the desired design 

charge, have little effect, in altering the net charge because their amplitude is much 

smaller.  
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3.3 SIMULATED INTENSITY AND PHASE AFTER PROPAGATION 

We performed a wave-optics simulation of various vortex beams. Figure 3.5(a -f) 

shows the intensity (a,c,e) and phase (b,d,f) of optical vortices with a 32-step phase ramp.  

 

 

    

                   (a)                (b)        (h)             (g)        

(c)                            (d) 

       (e)             (l) 

Fig. 3.5 Intensity and phase for vortex beams of charge +1, +6, +10 generated by SPP 
(5(a-f)). Intensity and phase for vortex beams of charge +1, +6, +10 generated by DM 
(5(g-n)) 
 

Figure 3.5(g-n) shows the intensity (g,i,m) and phase (h,l,n) of optical vortices generated 

by the DM. The vortices have charges +1, +6 and +10 respectively. The propagation 

distance is 100 m to reach the far field (Fresnel number <<1), the wavelength is 

632.8 nm , and the input beam was a uniform amplitude, plane wave with a diameter or 3 

mm and the beam at 100 m has a nominal diameter of 27 mm.  

The simulation shows that the DM generated phase ramp is effective in creating optical 

vortices, since both the annular intensity pattern and the phase topography are consistent 

with the expected theoretical results. The phase figures also show the separation of the 

vortex into elementary charge 1 vortices. For the fields with topological charge +6 and 

+10, the separation is recognizable by the fact that the discontinuity phase lines (where 
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there is a sharp jump from black to white) are not connected and do not meet at a 

common point. 

The intensity and phase of optical vortices generated by the SSP appear less noisy and 

closer to the ideal results for < 6, as expected by Fig. 3.4, due to the asymmetry 

introduced by the central segment in the DM phase ramp. 

A

For charge +10, the optical vortex generated by the DM, in Figure 3.5(m) and 3.5(n), has 

intensity and phase profiles very comparable to the intensity and phase profiles of the 

SPP in Fig. 3.5(e) and 3.5(f). 

 
3.4 CONCLUSIONS 
 

The circular harmonic decomposition and free space propagation simulation were 

the two methods used to perform a comparison between a segmented DM and a static 16 

and 32 step SPP in their ability to generate optical vortices. The DM, because of its 

reconfigurability and wavelength independence, has higher mode purity than the 16-step 

SPP for charge , and higher mode purity for  in the case of the 32-step SPP. 2>A 6>A

Although the mode purity is high in the case of the DM, the intensity distribution seen 

from the propagation simulation is irregular, due to the symmetry breaking central 

segment and jagged phase discontinuity line due to the hexagonal shape of the mirror 

segments along the line. 

It appears that mode purity is sufficient for either device for low charge. 

However, for higher charge, there exists the single-wavelength and single charge 

limitation of the SPP and the broadband capability and variability of the DM.



 

CHAPTER 4: SPATIAL RANDOM FIELDS AND BISPECTRUM 

 

4.1 RANDOM FIELDS AND SPATIAL COHERENCE 

 A random signal can be considered as one realization out of the collection of 

infinite realizations (called an ensemble) of a random field, which is a spatial domain 

equivalent of a time-domain stochastic process, that is indexed by both a spatial variable 

 and a time variable . A random field is a structure describing a phenomenon whose 

evolution is irregular and unpredictable in space-time with probabilistic properties. There 

are two types of dynamics: a stochastic one (linear or nonlinear) and  chaotic dynamics 

(typical of some deterministic nonlinear systems). A random field, like a random process, 

can only be described statistically, since its realizations are different from one another 

and it is impossible to predict with deterministic certainty their temporal evolution: at 

every fixed instant of time  the random field values at different spatial locations r  

represent realizations of the random variables forming the random field.  

r t

0= tt

The random field can be viewed as an array of random variables arranged in a 

certain configuration in space. At later time instants  new realizations of the random 

field occur. Spatial isotropy and spatial homogeneity are two of the main assumptions 

often made about random spatial fields in order to simplify their statistical analysis. 

Spatial isotropy implies that there is not a preferential spatial direction in the random

0> tt
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field: statistics along different directions are the same. Spatial homogeneity states instead 

that the local statistics are the same everywhere, at any spatial position in the random 

field: the mean, variance, joint moments, and all other statistical quantities are not a 

function of . All the finite dimensional distribution functions defining the process 

remain the same if shifted anywhere in the spatial Cartesian domain. Isotropic, 

homogeneous, scalar random fields, where the random field value at a specific space 

location represents the electric (magnetic) field as a random variable, are the type of 

random fields discussed in this dissertation. The probabilistic structure of random fields 

is determined by the correlation (coherence) functions of various order. The coherence 

functions investigate and measure the statistical relationship existing between the values 

of the random wavefield at multiple different spatial locations  and multiple 

different instants in time . In the case the field observations are made at a 

fixed single spatial location, i.e. , but at different instants of time, the 

``temporal coherence'' properties of the optical wavefield are measured and explored. 

The property of homogeneity allows us to freely choose any spatial location r  for our 

observations, since the statistical properties are independent of spatial position r  

(different spatial locations have the same statistical characteristics). If the optical 

wavefield is instead probed at multiple different spatial points ``simultaneously'', at the 

same instant , the ``spatial coherence'' properties of optical wavefield are inspected. 

The topics treated in this thesis focus on the spatial coherence of optical fields.  

r

t
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4.2 SPATIAL CORRELATION FUNCTIONS 

               Correlation (coherence) functions are simply a different name for the ``joint'' 

central moments, which are functions that specify a complex-valued random field. The 

joint central moments  of order rmψ r  are obtained selecting a number 2≥r  of centered 

(zero mean) random variables ),...(),(), 32 rr( 1r ψψψ in the random field. The vector 

variable  represents the two-dimensional Cartesian position vector  in a plane at 

arbitrary distance . Denoting the field random variables 

r ), yx(

z 1=)( ψψ 1r , ...= 2)( ψψ 2r , ][⋅E  

as the expectation operator, ,...),...;2 21 r,r,1( ψψf  as the joint probability distribution 

function, the joint moment rmψ of ord 32,,  (studied in this dissertation) are 

defined as ensemble averages which are averaging operations along the ensemble of the 

field realizations. The first moment is defined

s 

 as  

er 1=r

    )(1=)]([=);(=][=)(
1=

1111
1 rrrr 11 ψψψψψψψ ∑∫ ∞→

∞

∞−

N

i
N N

limEdfEm           (4.1) 

In practice (experiments and computer simulations) the number  of realizations is 

finite and only estimation (approximation) of the moments can be obtained. The 2nd- and 

3rd moments follow analogous definitions:  

N

                                  (4.2) 21212111
2 );,(=][=)( ψψψψψψψψψ ddfEm 2121 r,rr,r ∗∞

∞−

∗ ∫

               (4.3) 32132!321321
3 );,,(=]()[=)( ψψψψψψψψψψψψψ dddfEm 321321 r,r,rr,r,r ∗∞

∞−

∗ ∫

The complex conjugation can be applied either on one or two entries of the triple 

product in . The choice is purely academic. The resulting moments will turn 

out to be different functions containing the same information. Higher order moments 

∗

)(3
321 r,r,rψm
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( 4≥r ) can also be defined as the ensemble averages of the products of four or more 

random field variables. 

If a field is completely coherent the various autocorrelation functions factorize into a 

product of the fields at separate spatial points. A “perfectly” coherent field can be defined 

as one whose autocorrelation functions of all imaginable orders can be factored.    

Closely related to joint moments  are the joint cumulant functions or order rmψ
r
ψκ r . 

For a zero-mean complex random field ψ  the joint cumulant functions  are linear 

combinations of joint moments . Limiting out attention to the order r  the joint 

cumulant-joint moments relations are  

r
ψκ

2,1,=r
ψm 3

                                                                                               (4.4) )(=)( 11
11 rr ψψκ m

                                                                                       (4.5) )(=)( 22
2121 r,rr,r ψψκ m

                                                                               (4.6) )(=)( 23
321321 r,r,rr,r,r ψψκ m

A recursion relation can be used in order to calculate higher order cumulants from central 

moments. Cumulants represent an alternative way to describe a random field structure 

[25,33,34,41]. Because of the postulated spatial homogeneity of the random fields studied 

in this thesis, all the joint moments and joint cumulants are invariant upon any translation 

in space, i.e. they are space-independent and become only function of position difference 

vectors:  

                                                                                    (4.7) constant==)( 11
ψψ κκ 1r

                                                                                         (4.8) )'(=)( 22 rr,r 21 Δψψ κκ

                                                                             (4.9) ),'(=)( 33 r"rr,r,r 321 ΔΔψψ κκ
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I chose to use joint cumulants for three reasons: 1)  The cumulants of a random field that 

sum of statistically ``independent'' random fields is the sum of the cumulants of the 

individual random fields [25,31]; 2) Homogeneous, additive noise random fields with 

symmetric marginal probability distribution functions (homogeneous Laplacian, 

Gaussian, uniform, Bernoulli Gaussian are symmetrically distributed random fields) have 

all their joint moments  and joint cumulants  with order rmψ
r
ψκ r  being an odd number 

are automatically zero. For a white or colored Gaussian random field all the cumulants of 

order 2>r  (odd or even) are equal to zero. This implies that any Gaussian random field 

is completely characterized by its first two central moments (or central cumulants). 

Cumulants are a useful method to estimate the degree of departure from Gaussianity of a 

random field.  

    3) White noise has joint cumulants that are multidimensional Dirac impulse functions. 

The polyspectra of this type of noise are multidimensionally flat.  

4.3 GAUSSIANITY AND 2ND ORDER STATISTICS  

 To gain complete knowledge of a random field we need to know all its finite 

probabilistic distributions functions [31,32,35]. They could be approximately and 

experimentally calculated but the effort would be immense and unpractical. We often 

restrict the analysis to the simplest characteristics of the multidimensional 

distributions.The mean describes the coarsest properties of the random process. 

Correlation theory, also called 2nd order statistics, is based on the study of only those 

properties extracted by the first and second moments. It is important to realize that the 

mean value and the second moment do not specify the random process uniquely. 

Therefore 2nd order statistics cannot replace a complete theory of random field which 
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uses multi-dimensional distributions. However, if the random field is Gaussian all the 

finite-dimensional distribution functions are Gaussian and specified completely by the the 

first two moments. The classical assumption of Gaussianity justifies the use of second 

order techniques which are well understood and easy to work with [32, 34]. The 

realizations of homogeneous, zero-mean random field ),( prψ  are wavefields with 

infinite spatial extent (due to spatial homogeneity). Such realizations do not admit a 

regular Fourier transform (they are not absolutely integrable) or a Fourier series (they are 

not periodic). There are two basic representations associated with a homogeneous random 

field with zero mean. One of them is called the Wold-Cramer representation using the 

Fourier Stieltjes. The Fourier Stieltjes is still a Fourier expansion but more general thant 

the Fourier transform or the Fourier series [30,39,40]. Using the Fourier Stieltjes integral 

the random field is expressed as the stochastic integral (defined in the mean square sense)  

                                         )(=)( kr rk dZei ⋅∞

∞−∫ψ                                               (4.10) 

where k  represents the ``transverse'' two-dimensional, spatial wavevector. The function 

 is a complex random process with uncorrelated increments and  for 

all 

)(kZ 0=)]([ kdZE

k . This representation is founded on harmonic analysis and expresses the 

homogeneous random field )(rψ  as a superposition of sinusoidal signals (plane waves) 

of different wave-vector magnitudes and travelling directions. For any fixed plane wave 

the amplitude and relative phase angle are constant in a single realization but vary 

stochastically from one realization to the next. The Cramer integral is in principle the 

same as generalized Fourier transform. The problem is that the realizations of a 

homogeneous random field are infinite in extent but not periodic, so that Fourier series or 

the regular Fourier integral cannot be applied. Even if it were possible to Fourier 
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transform each realization p  (in real life we deal with finite size realizations that are 

Fourier transformable), a different complex Fourier spectrum  would be obtained 

for each 

)(kpF

p . Emsemble averaging all the amplitude spectra |  and phase spectra 

 would simply return a zero average amplitude and phase spectra. If the 

averaging procedure along the ensemble is instead applied to the magnitude square 

spectrum  of the realizations, a function called the Power Spectral density  

is obtained:  
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                                          (4.11) 

where  is an elementary surface area of the random field. The power spectral 

density  is always a real-valued, positive function. The term `power` is used in a 

generalized sense, indicating the expected squared value of the members of the ensemble. 

The other alternative path to describe a homogeneous random field is via the second 

order joint moment , also called the 2-point spatial autocorrelation function 

 in optics . Using the Cramer representation we can derive a spectral 

representation of :  
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Since the function  is only a function of )'( rΔR 'rΔ  (homogeneous field) and 

independent of , any contribution to the integral is zero when  leading to  r 21 kk ≠

                                                                (4.13) kkkkkk 21121 dSdUdUE )()(=)]()([ −∗ δ
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which means that two different spectral components with  and wave vectors are 

``uncorrelated''. The function  is called the power spectral density function and 

expresses the power (variance) distribution of the random field in spatial frequency 

domain, i.e. the contribution to the variance from the component  having 

frequencies in the range . Using the new definition of power spectral density  

the autocorrelation integral 

1k 2k

)(kS

)'r

)(kU

kk d+

(

)(kS

ΔR  becomes  

                                                                           (4.14) kkr rΔk deSR j )()(=)'( ′⋅+∞
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The function  and the second order joint moment )(kS )'( rΔR , form an exact Fourier 

pair, leading to  

                          )()'(
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2 rrk rk ′ΔΔ ′Δ⋅−∞

∞−∫ deRS j

π
                                (4.15) 

The power spectral density  and the 2-point autocorrelation function )(kS )'( rΔR  

contain the same information in two reciprocal domains.  provides information on 

how the power of the random field is distributed among the composing spatial 

frequencies k :  

)(kS

                                                         (4.16) kkrr dSREvariance )(=0)='(=])([= 2 ∫
∞

∞−
Δψ

It does not provide any information regarding the potentially existing statistical phase 

relations between the various spatial frequencies k . The power spectral density  is 

said to be phase blind [42,43,49]. Conversely, the autocorrelation function 

)(kS

'( r )ΔR  

measures ONLY the degree of linear dependence, called correlation, between a random 

field and itself. A zero correlation does not imply independence but full independence 

does imply uncorrelatedness. The autocorrelation function and the power spectral density 
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are represent 2nd order statistics which characterize only partially a stochastic random 

field. Higher order statistics like the 3rd or higher order cumulants and their spectra 

(called polyspectra) can be helpful in order to achieve a more complete knowledge of a 

random field. As a reminder, only if the homogeneous random field is Gaussian (its joint 

pdfs of any order are Gaussian), 2nd order statistics are sufficient. All higher order 

moments and cumulants are derivable from the mean and autocorrelation function. The 

powerful central limit theorem (CLT) states that any stochastic physical quantity 

produced by the cumulative effect of many independent random variables will 

approximatelly have Gaussian statistics, regardless of the pdfs of the starting random 

variables (the pdf of the resulting random variable is the convolution of the pdfs of the 

summed random variables and will asymptotically tend to Gaussian shape). Invoking the 

central limit theorem automatically leads to Gaussian statistics that are entirely measured 

by 2nd order statistics (autocorrelation and spectrum). Gaussian random fields can only 

exhibit one type of statistical dependence (if any), which is linear dependence (called 

correlation) and linear dependence is evaluated by the 2-point autocorrelation function 

 . However not every physical, stochastic phenomenon is Gaussian in nature. 

Strong turbulence is an example. As mentioned above, correlation is a first order type of 

statistical dependence. Full statistical independence is much stronger than 

uncorrelatedness. Multiple random variables  are statistically independent if their 

joint density can be factorized into the product of marginal densities:  

)'( rΔR

,...,, cba

                                                            (4.17) )...()()(=,..),,(,...,, cpbpapcbap cbacba

This definition of independence is equivalent to 

 where are any absolutely )]...([)]([)]([=)....]()()([ chEbfEagEchbfagE ,...,, hfg
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integrable functions of  A Gaussian homogeneous random field will be 

composed of complex sinusoids whose amplitudes and phases are random variables that 

are uncorrelated and also independent since uncorrelatedness=independence only in the 

Gaussian case. Non-Gaussian homogeneous random fields will still have uncorrelated 

spectral components but not necessarily independent. The third order cumulant is instead 

able shine light on the presence of dependent spectral components in the random field.  

,...,, cba

(=) 13 ,rR

([= r∗ψE

4.4 BISPECTRUM 

 The Fourier transforms of the joint cumulant functions of random fields are 

multidimensional spectra called polyspectra [21]. I concentrated only on the 3rd order 

joint cumulant  which is a function of 

three independent spatial positions  if the random field is spatially non-

homogeneous. In the special case of spatial homogeneity, 

, also called the 3-point 

correlation function, since it quantifies the self-correlation of the field at three different 

spatial points [25,26,27,28,29]. For a complex-valued random field 

)]()()([=)(3
3213221 rrrr,rr,r,r ψψψκψ

∗E

321 r,r,r

)]()()),'( r"rrrr"r 1 Δ+′Δ+ΔΔ ψψ)( r,r,r 321 → RR

)(rψ  the symmetry 

property of the third-order cumulant is ),"(=),'( rrr"r ′ΔΔΔΔ RR

r"

, giving two regions of 

symmetry separated by the line rΔ Δ='

),'( r"r ΔΔ )( 21 k,kB

 (half plane symmetry) [37,49]. A real-valued 

random field has instead six regions of symmetry for the third-order cumulant. The 3-

point autocorrelation function, different from the two-point autocorrelation, is able to 

detect statistical dependence other than correlation in a random field. The Fourier 

transform of  is called the bispectrum . There are  different 

versions of the 3-point autocorrelation function depending on which entry(s) of the triple 

R 8=23
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product are complex conjugated. Different triple product versions give completely 

different bispectral functions . I chose to apply the complex conjugation only 

the first entry: . An effective way to 

undertand the meaning and interpretation of the bispectrum function  is to 

follow the steps that lead to the construction of the triple autocorrelation function 

. The random field at one spatial point r  is given by  

)( 21 k,kB

)([= r1
∗ψE

=) r1kr ei ⋅∞

∞−∫

)]()(),'( r"rrrr"r Δ+′Δ+ΔΔ ψψR

)(( 1kdU

)( 21 k,kB

),( r"r Δ′ΔR

                                                                                               (4.18) ψ

)'( rr Δ+ and )"rΔ(rThe fields at a two different shifted spatial points +  are  

                         )(( 2
r2kr2 kr dUei ′Δ⋅⋅Δ+ =)' kr ei∞

∞−∫ψ                                        (4.19) 

                        )(( 3
r"3kr kr dUei Δ⋅⋅Δ+ =)" 3kr ei∞

∞−∫ψ                                        (4.20) 

The three vector variables  all represent the same physical quantity, the spatial 

wave-vector  (spatial frequency). Giving them different names will serve us to 

comprehend the significance of the statistical dependence between different values of the 

wave-vector k . The ``unaveraged'' triple product is given by          

32 k,k

( 3k2k1kei ++−∞

∞−

1 ,k

)(=)"( 1
r"3kr2kr) krr dUUdee ii ∗Δ⋅′Δ⋅⋅

∫Δ+ψ

k

   ()( rr∗ +ψψ )3k()()' 2kr dUΔ        (4.21) 

Taking the expectation of the product results in 3-point autocorrelation                         

         (4.22) )]3()()( 2 kkr dUdU∗ψ )([()'( 1
r"3kr2kr)3k2 krrr UdEee ii ∗Δ⋅′Δ⋅⋅+Δ+Δ+ ψψ =)]" ( k1kr ei +−∞

∞−∫[=),( r"r ER Δ′Δ

We should notice that since the random field is homogeneous, the lefthand side must be 

independent of r  . That forces the righhand side to be independent of . Only triads of r
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wave-vectors  related by the relation 321 k,k,k 0=)kkk 321 ++−(

() 2132 kkkk,k ++−δ

bers the product does

() 2121 kkk, −+δ

)(=)( kk Ud ∗−  , th

, meaning that 

, will contribute to a nonzero 3-point correlation. This leads to  321 kk=k +

[E

.213 kk=k

 Note also th

             (4.23) )(=)]()() 3323 kkk+ BdUdUd ( 21 k=k∗U

s 

and rearranging the order of the product of 

 the rand

Clearly the subscript 2,3  are arbitrary and we can re-write the 1, formula as 

  

 

three num

     (4.25) 

at if om process is real-valued 

+

    )()(=)]()()([ 3212121213 kkkk,kkkkk=k −++∗ δBdUdUUdE            (4.24)

 not change  

   )(=)]()()([ 321321 kkk=kkk +∗ BUddUdUE        k

dU en  

  )()(=)]()()([ 3212121321 kkkk,kkk=kkk −+−− δBdUdUdUE             (4.26) 

for three frequencies that sum to zero: 

0=kkkk=kkk 2121321 )(

and the bis s nonzero pectrum i

−−++++ . he Finally t  becomes the 

 

triple autocorrelation

′Δ⋅

)( 21 k,kB :  inverse Fourier of bispectrum transform 

      21
r"3kr2k

21 kkk,rrrrr"r ΔΔΔ+Δ′Δ Δ⋅∗ ddeeER ii)()'()([=),( ψψψ          (4.27) 

Integration of the bispectrum for 

krΔ+
∞

∞−∫ B(=)]"

0=0,=' r"r ΔΔ  give the marginal skewness of the 

 process homogeneous random )(rψ :  

       2121 kkk,kr"rr ddBREskewness )(=0)=0,='(=])([= 3 ∫ ∞−
ΔΔψ           (4.28) 

ulant, the bispectrum has half-symmetry in the plane 

:21 k,k )(=)( 1221 k,kk,k BB . If

∞

ere real-valued, tw

Like the third-order cum

 the random field w elve regions of 

symmetry would be available.   
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Usually, instead of working with the bispectrum  it is better its  normalized 

version 

)( 21 k,kB

)( 21 k,kb : 

                                      
)()((

),(
212

21 kkkk
kk

+PP
b                                       (4.29) 

 called the bicoherence fu

If the stochastic distribution function )(kU  describing a random process is continuous 

and differentiable, then kkk dZdU )(=)( . The funct  represents the complex-

valued amplitude of each Fourier component composing the random field: is represented 

as )()(=)( kkk θieAZ . A nonzero bispectrum function )( 21 k,kB  indicates the existence of 

a joint statistical distribution function for the phases )(k

)
|),(|

1

21 kk
=

P
B

nction. 

ion )(kZ

θ  and am udes )(kA . In 

Gaussian random ds the Fourier components are independent and both the phases and 

amplitudes are random without any interelation: the amplitudes )(kA  are Rayleigh 

distributed, and )(k

plit

 fiel

 

θ  are completely random with respect to each other [38]. In non-

Gaussian fields, the phases 1θ , 2θ , 3θ  are not com andom and are therefore 

correlated. However their correlation is not pairwise and is only properly captured by the 

taneous distribution e angles 1

pletely r

simul of the three phas θ , 2θ , 3θ . An interesting article by 

Matsubara discusse e in wide detail [47,48]. As the integral of the spectrum 

)(kS  gives the variance ][=])([ 22 ψψ EE r  of random homogeneous fields, the integral 

of the bispectrum )( 21 k,kB  decomposes the random field ``skewness'' in 

s the issu

k  space. A 

Gaussian random field has null skewness so a non-zero skewness is an indication of 

eparture from Gaussianity and tells us that the random process is non-Gaussian 

[36,37,38]. 

d
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 Fig. 4.1 Schematic chart illustrating how spectral components relate to different types of 
dom fields 

uadratic non

in  the 

ran

4.5 QUADRATIC PHASE COUPLING 

                The statistical dependence among the phases and/or amplitudes of the Fourier 

components of a random fields with nonzero bispectrum can assume different functional 

forms [47,48]. A special and particular type of dependence among random phases is the 

``quadratic phase coupling'' commonly generated by q linear systems. In the 

case of quadratic phase coupl g bispectrum 0)( ≠21 k,kB  when three Fourier 

components have wavevectors 1k , 32 kk ,  and random phase angles 321 ,, θθθ  that satisfy 

ons [35]: the following two resonant conditi

                                                  a) 2k 13 kk= +                                                         (4.30) 

                                                  b)  213 = θθθ +                                                          (4.31) 

The second equation forces a linear dependence between the three random phases, 

in randomtypically present  fields generated by nonlinear quadratic systems. 
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The bispectrum )( 21 k,kB  inspects any triad of spectral components fullfilling the two 

 b).  

  Example: A ran eld 

resonant conditions a) and

dom fi ψ is the sum of three harmo dom process: 

3
3

2
2

1
1= φφφ

nic ran

ψ iii eAeAeA ++  , where )(= nnn θφ +⋅rk  is the total phase of each harmonic. 

The coefficients 321 ,, AAA  are constants while the phases 321 ,, θθθ  are pairwise 

ably over the ensem le but constant in 

 of 

uncorrelated random variables changing unpredicat b

random field. The bispectrum ψ  is equal to  every single realization of the 

=])()()([=)( )321(
32211

θθθδδδ −+−−− ieAAAEB kkkkkkk,k        321

                   =3321

                               ]=                                         (4.32) 

Its value is nonzero when 3k

])()()([= )321(
3221

θθθδδδ −+−−− ieAAEAAA kkkkkk  

[)( )321(
321

θθθδ −+−− ieEAAA 123 kkk

 and  which happens when 0][ )321( ≠−+ θθθieE0=12 kk −−

the random variable constantany=321 θθθ −+ . Quadratic nonlinear systems create a 

quadratic phase coupling with 0=321 θθθ −+ .  

To further clarify the concept of quad  Figure 4. shows the norm  

bispectrum fo

ratic phase coupling alized

r two one-dimensional complex harmonics with random phases in fixed 

relation.Their wave vectors are )0,50()0,(= 1 =xk1k   and )0,30()0,(= 22 =xkk  

respectively. 

The two peaks of magnitude 1 indicate the perfect quadratic phase coupling between the 

two harmonics. Either one of the two peaks is redundant: both peaks suggest that there is 

f magnitude 30 rad/m 

and the other 50 rad/m or vice versa.   

phase coupling between two  one dimensional wavevector, one o
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Fig. 4.2 Normalized bispectrum for a set of two harmonic in quadratic 
 phase coupling 

 

 

 

Fig. 4.3 Zero normalized bispectrum for uncoupled harmonics  
 

 
 
 
 
 
 

 

In the case of no phase coupling the normalized bispectrum would be zero everywhere: 
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4.6 LI  
SYSTEMS 

A 2-dimensional linear space invariant (LSI) system 

NEAR FILTERING OF RANDOM FIELDS BY SPACE-INVARIANT  

 
}{⋅T

 on som

 is a mathematical linear 

operator that describes the action of a physical system e input -dimensional 

signal to generate an output signal:  

                                                                                            (4.33) 

where 

n

)(=)}({ rr YXT

X  is the input signal, Y  the output signal and  the Cartesian position 

vector[25,39,46]. LSI system  like any linear system  fully characterized by its 

stem when driven by a 

Dirac im

),(= yxr

, can bes,

)r

0

impulse response function , which the the output of the sy(h

pulse =)(=)( δδ rrX  loca tes 0rted at the spatial coordina 0 = :  

                                           )(=)}({ 0 rr hδT                                                  (4.34) 

fact that a spatial translation of the input impulse ),( yx

The spatial invariance property (also called isoplanatism) of LSI systems derives from the 

δ  to any arbitrary location 

(  will have the system generate a response function that is functionally 

0r=r  

R∈∀ yx, )

identical (hence the invariance) to the response to the δ  input excitation located at the 

origin 0 0=r , just translated:  

                                        )(=){ 0rrr}(
0r −hδT                                              (4.35) 

When the input to the system is not a δ  function but an arbitrary signal, the output of the 

system is obtained by the convolution integral:  

                =)()(=)( rr hXY ⊗                 

                                              (4.36) 000000 rrrrrrrr dXhdhX )()(=)()(= −− ∫∫
∞

∞−

∞

∞−
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4.6.1 FILTERING THE AUTOCORRELATION FUNCTION 

Whenever a random field )(rinψ  is applied as the input to a linear space-invariant 

system  with complex-valued impulse response , the system produces a random 

process 

}{⋅T

out

)(rh

)(rψ  as the output:  

                                  )(=)}({ rr outin ψψT                                                       (4.37) 

If  is the autocorrelation of the input random field )( rΔinR )(rinψ , the autocorrelation of 

the output random field is given by  

                     =)]()([=)( rrrr Δ+Δ ∗
outoutout ER ψψ

                                =ΛrΛβ ddRhh in ββ )()()( Λ−+Δ∫
∞

∞−

                                                                                   (4.38) )()()(= rrr Δ⊗Δ−⊗Δ ∗
inRhh

The process is equivalent to the passage of the autocorrelation function  through 

two LSI systems cascaded in series. It is helpful to understand the effect of filtering the 

autocorrelation function in the spectral domain 

)( rΔinR

k , where the autocorrelation becomes the 

input power spectral density and the relation between output and input power spectral 

densities is  

                                                                                (4.39) )(|)(=|)( 2 kkk inout SHS

Next we describe the filtering process of the 3-point autocorrelation function 

 by a generic LSI filter [35,41]. The relation between input 

and output triple autocorrelations is  

)]"()'()([ rrrrr Δ+Δ+∗ ψψψE

                       (4.40) ),()()()(==),( r"rrrrr"r Δ′Δ⊗Δ−⊗Δ⊗ΔΔ′Δ ∗
inout RhhhR
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which in the spectral domain is equivalent to the following input-output bispectra 

equation:  

                                        (4.41) ),()()()(=),( 21212121 kkkkkkkk inout BHHHB +∗

where  

                            (4.42) |),(||)(||)(||)(|=|),(| 21212121 kkkkkkkk inout BHHHB +∗

 

                                     (4.43) ),()()()(=),( 21212121 kkkkkkkk inout BHHHB ∠+∠∠∠∠ ∗

A LSI system low-pass filters an input wavefield via its transfer function  thereby 

increasing the wavefield spatial autocorrelation 

)(kH

)( rΔR

(outS

|=)k

. As long as the bandwidth of 

wavefield  the output spectral density  will be a scaled version of 

the input spectral density  as long as  over  (ideal pass-

band filter).  

systemin kk Δ≤Δ )k

constant)(kinS H (| inkΔ

As long as  for triads of wave-vectors  the 

output bispectrum function  will be a scaled version of the input bispectrum 

 no matter  

0),( 21 ≠kkinB

(| kH

systemkkk=kkk 2132 Δ≤+,,1

),( 21 kkoutB

|,) |,)(| 2kH),( 21 kkinB 1 |)( 21 kk| +H .  

4.6.2 FREE SPACE PROPAGATION AS A LINEAR FILTER 

                All the physically realizable electromagnetic wavefields must be solutions to 

the general wave equation (WE). This dissertation discusses scalar, monochromatic 

wavefields with high directionality, i.e. low spatial divergence. These particular fields are 

called paraxial wavefields (or beams) and have the general form  

                                    )()(=)( 0zjkexpA rrψ                                                 (4.44) 
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where 
0

0
2|==|
λ
π

0kk  , 0λ  the wavelength and  is the so called slowly varying 

envelope. A paraxial wavefield is analogous to a plane wave (perfect directionality) 

modulated by the complex amplitude  to give it a finite cross-section and finite 

energy[25]. The mathematically acceptable amplitudes  must be solutions of the 

parabolic paraxial wave equation (PWE)  

)(rA

)(rA

)(rA

                                     0=)()( 0
2

z
AjkAT ∂
∂

+∇
rr                                             (4.45) 

Instead of solving the paraxial wave equation,  it is possible to study the phenomenon of 

paraxial wave propagation in free space using the theory of LSI systems and formulate 

the process of free space propagation as a filtering operation [51]. In the LSI framework 

an input wavefield )(rψ  (and all its statistical measures) is filtered by the ``free space'' 

LSI system by means of its free-space impulse response  

                            ]
2

[)()()( 00
0 z

jkexpzjkexp
z

jh
2rr

λ
≈                                      (4.46) 

which is the paraxial approximation to a spherical wave. The output wavefield )(routψ  of 

the free-space system is obtained via the convolution integral  

     ]
2

[)()()()()(=)( 00
0 z

jkexpzjkexp
z

jh ininout

2rrrrr
λ

ψψψ ⊗≈⊗                   (4.47) 

The Fourier transform of  is the free-space transfer function   )(rh )( TkH

                          ])
2

([][=)(
0

0 z
k

jexpzjkexpH
2
T

T
kk −                                        (4.48) 

which is a function of the transverse wavevector )(= yxkT yx kk +  and  ( 

). The transfer function , being a function of  

|=|0 0kk

Tk)(==0 yxzkzk T yxzz kkkk +++ )( TkH ,
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is a reminder that the input-output relation of any LSI system can be specified in terms of 

complex sinusoids of frequencies  in the frequency domain, rather than using the 

convolutional approach with . The 2-dimensional input wavefield 

Tk

)(rh )( Tkinψ  at 

distance  can be written as a superposition (spectrum) of plane waves of the form  0=z

                     )]([=)0)=,( rkk TT (k= ⋅jexpAzA E T                                     (4.49) 

travelling in different  directions with complex amplitudes . Plane waves are 

eigenfunctions of the ``free-space propagation'' system: propagation through a distance 

Tk A

z  

is equivalent to multiplication of each plane wave in the input field )(rψ  by system 

transfer function  which represent the eigenvalues as a function of :  )( TkH Tk

                                                                      (4.50) 0)=,(),( zAA TTT kk (H k

0k

=)z

|TkFor paraxial plane waves with |   

             ])
2

([][]T r⋅[ jk=),(
0

0 z
k

jexpzjkexpexpAzA
2
T

T
kk −                             (4.51) 

The function  shows how each 2-dimensional plane wave in the plane  has 

gained in the plane 

),( zTkA 0=z

zz =  new phase term that is nonlinear with spatial frequency vector  a

k :  

                                                                                                     (4.52) 2
Tk∝kΦ )(

This k  squared dependent phase term is the cause of  new phase relations between plane 

waves at the plane z . This dephasing causes the field to spatially spread [44,51].   Note 

that the free-space transfer function  has modulus unity up to a certain cut-off 

spatial frequency 

)( TkH

k : only plane waves with spatial frequency 
λ
π2|<Tk  will be passed 
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unattenuated. Waves with 
λ
π2

≥|k| T  are called evanescent plane waves and decay 

quickly (the faster the higher ) in the  direction so they don't participate in paraxial 

propagation:  for 

|| k z

0=)( TkH
λ
π2|≥Tk  . The phenomenon of paraxial free-space 

propagation is analogous to a spatially dispersive low-pass filter passing having a finite 

spatial bandwidth 
λ
π2<TkΔ .     The creation of partially spatially coherent wavefields 

with nonzero bispectral characteristics is one the objective of this work. Free-space 

propagation, being equivalent to a LSI system, will propagate the bispectrum of the input 

field without alteration. Any information encoded in the bispectrum (as long as the 

bispectrum support is within 
λ
π2<TkΔ ) is passed unaltered and can be recovered. 

Besides the remarkable property of being insensitive to additive Gaussian noise 

(regardless of its mean, variance and power spectrum), the bispectrum offers an extra 

useful degree of freedom for encoding information.    

4.7 GENERATION OF A PARTIALLY COHERENT WAVEFIELD WITH 
BISPECTRAL PROPERTIES 
 

The starting point for the generation of a partially coherent wavefield is an input 

wavefield with Gaussian amplitude and delta-correlated wavefront ),( yxζ (delta spatial 

two-point autocorrelation function) with standard deviation rσ . 

),( yxζThe wavefront  is then filtered with a Gaussian function  to create a 

partially correlated wavefront [45,46,54]. The wavefield has then an autocorrelation 

function equal to  

),( yxf
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                         )]}
4

([1
4

{=),( 2

22

2

2

ff

r expexpR
σ

ξη
πσ
σξη Δ+Δ

−−−                    (4.53) 

If of the standard deviations fσ  and rσ  are such that 1
4 2

2

f

r

πσ
σ  the autocorrelation 

function  assumes a Gaussian form:  
 

                          ]
2

)([),(
22

coh

expR
A

ξηξη Δ+Δ
−≈ΔΔ                                   (4.54) 

where 2

4
2 8

=
r

f
coh σ

πσ
A  is the correlation length. Following this method we created a field 

that represents a single realization of a partially spatially coherent wavefield with 

circular, Gaussian shape correlation function and finite coherence area. 

      The angular spectrum of this partially coherent input wavefield was designed 

so that certain spectral components with spatial wave vectors of magnitude nn k=|| k  

residing on three rings of radii ||1 1k=k , || 22 k=k , || 33 k=k  in the k-plane were 

statistically related via quadratic phase coupling.   

 The statistical dependence occurs isotropically in the phase spectrum along each 

radial direction: for any radial direction at angle α the spatial wave vectors  and  on 

the first ring and second ring respectively have random phases whose sum is always 

equal to the random phase of the spatial wave vector  on the third ring along the same 

line:  

1k 2k

3k

213 θθθ +=

3k

 and the sum of the x-components of  and  sum up to the x-

component of . The same is true for the y-components. 

1k 2k

In the analytical case the three rings are supposed to have infinitely small 

thickness, i.e. two-dimensional delta rings of the form )(
2

1
nkk

k
−δ

π
. 
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 In the numerical simulation the three wave vector rings were given a finite 

thickness of two, two and three pixels respectively. The finite thickness was required in 

order to trace continuous rings without missing pixels. For example, in the phase 

spectrum, for the radial line making an angle α with the horizontal axis, the two pixels 

composing the first ring are labeled K00 and K01, the pixels composing the second ring 

K10, K11 while those forming the third ring K20, K21, K22. Quadratic phase coupling 

was prescribed by setting the random phase value at pixel K20 equal to the phase of pixel 

K00 plus the phase at pixel K10.  The following Figure shows how the phase values at 

different pixels are related: 

 

 

 

 

 

 

 

 

Fig. 4.4 Phase spectrum of the angular spectrum: pixels lying on the three rings along an 
arbitrary radial line 

 

In the continuous case there are infinite possible radial directions in the angular spectrum 

on which to examine correlations among spectral components. In the discrete case the 

phase spectrum is subdivided into a finite number of angular sectors (1024) of width Δө. 
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For every sector Δө there are three sets of pixels: (K00, K10, K20), (K01, K11, 

K22) and (K00, K11, K21). The coordinates of each pixel represent the wave vectors 

components. The wave vectors in each set have phases related via quadratic phase 

coupling and show a nonzero bicoherence (normalized bispectrum). 

 This means that three bicoherence values were calculated for each angular sector Δө, 

one for the wave vectors in set (K00, K10, K20), and two for values for the other two 

sets.  

Quadratic phase coupling and consequent nonzero bispectral characteristics were 

inscribed on a partially coherent input wavefield with Gaussian autocorrelation function 

and far field Gaussian irradiance (Gauss-Schell model). 

The chart below explains the steps followed in the process of creation of phase 

correlation/bispectrum in the angular spectrum of the input wavefield: 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Process of creation of nonzero bispectrum in the input wavefield 
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4.8 PARAXIAL PROPAGATION METHOD FOR PARTIALLY COHERENT 
WAVEFIELDS 
 
 The approach used to numerically simulate the paraxial propagation of partially 

coherent wavefields is based on Fourier methods [52,53,54]. 

 Multiple (600) different wavefield realizations were generated following the method 

described above. Each field realization was then propagated into the far-field at a distance 

λ

22Dz >> , where  is the nominal diameter of the wavefield aperture (width of the 

Gaussian amplitude) and 

D

λ  the radiation wavelength. 

4.9 RETRIEVAL OF BISPECTRUM AFTER PROPAGATION 

After propagation in the far field, the bispectral properties of the partially 

coherent wavefield were extracted and compared to the bispectral properties before 

propagation. 

The angular spectrum of each partially coherent wavefield realization was first 

calculated. The triple product was computed among those spectral components that were 

set in the input wavefield to be in quadratic phase coupling. 

Those spectral components are the ones lying on the three rings and in phase coupling 

with those components along the same radial direction on the other rings. 

The procedure is repeated for the 600 propagated wavefield realizations and the 

ensemble average of all the triple products was carried out to determine the bicoherence 

properties of the propagated field. 

Numerical simulations support the analytical prediction that the bispectrum is 

invariant upon free space propagation: quadratic phase coupling (nonzero bispectrum) 

was a priori imposed on the input partially coherent wavefield before propagation. 



 58

We knew beforehand which spectral components were in fixed phase correlation (since 

we intentionally designed those spectral components to be so in the input field). We 

simply returned to those spectral components in the angular spectrum of the propagated 

wavefield and checked if the phase correlation was preserved. All the quadratic phase 

correlations predetermined in the input field were found to be intact and recovered.   

 
4.10 SIMULATIONS AND NUMERICAL RESULTS 

Input Wavefield: 
 
The parameters of the partially spatial coherent input wavefield were:  

• Wavelength: 632.9 nm; 

• Diameter: 4 cm; 

• Spatial correlation length: 5 mm.  

 

 

 

 

 
 
 
 
 
 
 

Fig. 4.6 Cropped autocorrelation function 
 
 
The following figures show the angular phase spectrum of the input partially coherent 

wavefield.  Figure 4.6 shows a phase spectrum with no bispectral dependencies among 

wave vectors: 
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Fig. 4.7 Angular phase spectrum of the input wavefield 

Figure 4.7 shows the phase spectrum after quadratic phase correlations have been 

established among spectral components lying on three rings in k-space. The third ring is 

clearly evident: 

 

 

 

 

 

 

 

 

Fig. 4.8 Angular phase spectrum with phase correlations 

The three rings in the phase spectrum over which phase correlations exist are isolated in 

the next figure for clarification purposes: 



 60

 

 

 

 

 

 

 

Fig 4.9 Three correlated rings in the phase spectrum 

Propagated Wavefield: 

The input partially coherent wavefield was propagated in free space over a distance of 

1000m. The simulated propagation of the field with bispectral properties shows a quasi-

Gaussian irradiance function with a transverse spread (≈ 5 cm) very close to the 

analytically expected one. The simulation of the free space propagation process was 

accomplished using Fourier transform methods well described in [46,53,54]. 

 

 

 

 

 

 

Fig 4.10 Irradiance for the partially coherent field after a 1km propagation distance  

In order to quantify the bispectral properties of such wavefield the ensemble 

average of the triple product over 600 field realization was calculated for 1024 angular 
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sectors along the radial direction.  The next figure shows the bicoherence value for the 

three spectral components with wave vector magnitudes K00, K10, K20. The horizontal 

axis represents the angular position Δө for each radial direction: 

 
Bicoherence for K00, K 10, K20 

 

 

 

 

 

 

 

Fig. 4.11 Bicoherence values for 3 spectral components with wave vectors K00, K10, 
K20 for angles that are multiples of dө. 

 
 

The unit bicoherence is also calculated for the other two sets of spectral components 

lying along a radial direction. Figure shows how for each angle dө the set of three 

spectral components are fully correlated (maximum bicoherence): 
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Bicoherence for K01, K 11, K22 

 

 

 

 

 

 

 

Fig. 4.12 Bicoherence values for 3 spectral components with wave vectors K01, K11, 
K22 for angles that are multiples of dө 

 
 

Bicoherence for K00, K 11, K21 

 

 

 

 

 

 

 

Fig. 4.13 Bicoherence Values for 3 spectral components with wave vectors K00, K11, 
K21 for angles that are multiples of dө 

 

The free space propagation process does not erase the quadratic phase correlations still 

visible in the propagated angular phase spectrum: 
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Fig. 4.14 Angular phase spectrum after propagation 

 

4.11 PROPOSED EXPERIMENTAL METHOD FOR GENERATING BISPECTRAL 
WAVEFIELDS 
 

Spatial Filtering is a Fourier optics technique used to modulate the amplitude and 

phase of a wavefield for various applications (pattern recognition, image processing, 

holography, microscopy, etc…) 

A spatial filtering set up can be used for creating a partially coherent wavefield with a 

bispectral signature from a fully coherent input field with no bispectral properties [30]. A 

transmission phase/amplitude spatial light modulator (SLM) is placed at the focal plane 

of a 4-F system formed by two positive lenses with focal length F. 

 The 4-F system allows manipulation of both the amplitude and phase of the input 

angular spectrum. Hence the phase spectrum can be modified: the SLM would generate 

an angular spectrum modulation mask with prescribed quasi-random amplitude and 

phase.  The phase modulation will not be completely random: it will contain quadratic 
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phase coupling relations for those spectral components lying on three properly spaced 

concentric rings. This approach will result in an output wavefield with bispectral features. 

 

 

 

 

 

 

 

 

 

Fig. 4.15 Spatial filtering set-up for bispectral wavefield generation



 

CHAPTER 5: CONCLUSIONS 

 
There are many areas of research that are interested in developing electromagnetic 

wavefields with customizable properties tailored to specific applications. Phase, 

amplitude and polarization are the three degrees of freedom that can be controlled to 

achieve wavefields with desired characteristics. 

This dissertation focused on wavefields with nontrivial phase structure.  Optical 

vortex beams are an example of fully spatially coherent paraxial wavefields with 

helicoidal wavefronts. This type of beams has received wide attention due to their 

resilience during propagation in turbid media. Since vortex beams are becoming 

important for many applications, the development of new and improved vortex beam 

generation methods is becoming important as well. 

The first contribution of this dissertation consists in the novel and successful use 

of a 37 actuator segmented deformable mirror for the generation of optical vortex beams 

with topological charge from 1 to 10. The segmented deformable mirror offers a valid 

alternative to other methods for creating vortices with arbitrary integer of fractional 

charge.  The deformable mirror technology is advancing at a rapid pace. New DM 

systems with 313 segments are now available. Update rates of 30 kHz are possible with 

FPGA interface hardware, and the use of dielectric coatings will extend the use of 
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segmented DMs to high power and pulsed applications where other methods are 

not suitable. 

The deformable mirror has the advantage of being dynamic and polarization 

independent. The use of rectangular segments instead of hexagonal ones along the jump 

discontinuity of the mirror is a feasible upgrade that will significantly improve the 

quality of the generated optical vortices.   

In conjunction with the work on the deformable mirror an optical vortex mode 

purity comparison between the mirror and multi-step diffractive phase plates with 16 

and 32 discrete steps was carried out both analytically and in simulation. The 

comparison was carried out in order to validate the use of the DM for vortex beam 

applications. The SPP was used as a performance benchmark. 

Computer simulations show the intensity and phase of the vortices generated 

with the two methods (DM and SPP). The deformable mirror, by being reconfigurable, 

can generate optical vortices with higher mode purity, while the static phase plate mode 

efficiency declines due to the fixed number of phase steps. The mode purity comparison 

evaluates the performance of the deformable mirror for applications requiring high 

charge optical vortices. These results support the adoption of the DM as a versatile 

device in vortex beam applications. 

The third contribution of this research work presents and validates the 

possibility of creating phase structured wavefields that are not fully spatially coherent 

like the optical vortex beams generated with the DM but partially spatially coherent 

beams with nonzero bispectral characteristics. These wavefields show an inherent 

statistical phase structure due to a nonzero bispectrum.  
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The bispectrum has always been used as a statistical measure to characterize 

received data or to identify the nonlinear properties of the system that processed the 

data. 

The approach I used explicitly engraved a bispectral signature in the input 

wavefield before propagation. Numerical simulations showed that the engraved 

bispectral properties are invariant upon propagation in free space. The performed 

simulations assumed that the bispectral content was written and retrieved directly in the 

electric wavefield. This is possible only in applications where it is feasible to deal with 

the electric field directly (microwave or radio regime). 

In the optical regime the electric field oscillates too fast, but the same bispectral 

information encoding approach can still be used by recording multiple realizations of 

the instantaneous irradiance. 

Partially spatially coherent wavefields have been shown to be very robust in 

several propagation scenarios (propagation through atmospheric turbulence). 

The design of partially spatial coherent wavefields with nonzero bispectrum can 

lead to new wavefields with better propagation characteristics. A simple 4-F spatial 

filtering system can be used to experimentally create fields with bispectral signature.  

Under this new light the bispectrum is no longer just a statistical analysis to 

characterize information and channel properties, but becomes a new degree of freedom 

for encoding information in a wavefield. 
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