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ABSTRACT

BHAV SARDANA. Electricity price forecasting using advanced machine learning
techniques. (Under the direction of DR. MACIEJ NORAS)

Electricity Price Forecasts have been a very important part of the energy industry

for a long time. Traditionally, it was used by utilities, but after the liberalization

of electricity markets around the world, they are of prime importance not only for

utilities, but also for portfolio managers, aggregators, retailers and generation com-

panies. These different players can plan the dispatch and consumption schedule of

power in accordance with price forecasts in order to maximize profit. Apart from

this, electricity prices, in general, can exhibit extreme volatility. This volatility can

be attributed to the change in electricity demand and the amount of energy gener-

ated/used from renewable sources (since the price of power generated from renewable

sources can be very low). This calls for better modeling of electricity prices. The

aim of this study is to explore various machine learning techniques like linear regres-

sion, gradient boosting, random forests, support vector machines and artificial neural

networks for forecasting electricity prices of the German market. The main focus

of this research is to explore the use of meta heuristic algorithm like particle swarm

optimization to search for the best suited feature space for each algorithm.
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CHAPTER 1: INTRODUCTION

Over the last three decades, the structure of the electricity markets have drastically

changed. In 1982, Chile started the liberalization and deregulation of the power

markets [1]. In 1990s, many other countries followed this suit. British power sector

reorganized in 1990, which included just England and Wales. In 2005, Scotland was

included in the British market. Similarly, in 1992, Nordic market was opened for

private competition. This just included Norway initially, but was joined by Sweden

later. Similar reorganization was done by the Australian and North American markets

[2]. In European power markets, this change has led to the setup of power exchanges,

through which power is traded.

Electricity is very different from other commodities. It economically not feasible

to store electricity. Hence, there is a need of constant balance between the supply

and demand in order to keep the power system stable [3]. Along with this special

property of the power system, the electricity demand is known to be dependent on the

weather conditions, human behavior (business and other daily activities), which is in-

turn dependent on the calendar variables like hour of the day, weekday or holidays.

This makes price dynamics of the power industry completely different from other

industries [4]. Policies also has an influence on the price dynamics in the electricity

markets. Because of the Paris Agreement in 2015, which sets a goal of limiting the

global increase in temperature to 2o, Germany has targeted to increase the share of

renewable sources in electricity generation. It aims to increase it to 40%-45% by the

year 2025, up from 31.7% in 2015. This can have a major impact on the price at

which electricity is traded.

Due to these reasons, electricity price forecasts are a primary part of the decision
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making process of power companies [2]. Electric utilities are the most vulnerable

to fluctuations in the power markets. This is because they cannot pass their costs

to retail customers. This was evident from the California crises in 2000-2001 [5].

Price forecast which capture the volatility of the market with reasonable accuracy

can help power generation, utility companies and even large consumers change their

bidding strategy and/or own consumption/production schedule for maximizing their

profits [4]. Also, accurate price forecasts can help utilities plan ahead, as over/under

contracting can lead to huge losses or even lead to bankruptcy. An improvement

in forecast accuracy of 1% can help a 1 GW peak load utility save up to $600,000

per year [6]. These savings can translate to millions of dollars every year for even a

medium (5 GW peak load) size utility.

The purpose of this thesis is to investigate the application of various machine learn-

ing techniques for electricity price forecasting. Different models are built and tested

on the German-Austrian markets. Models are varied by changing the input variables,

the main forecasting engine and pre-processing and post-processing techniques.

1.1 Basics of German Electricity Markets

Germany is the largest electricity consumer in Europe. There are four major elec-

tricity producers, namely RWE, E.ON, Vattenfall and ENBW, which account for

70%-85% of the total power production [7, 8]. On the transmission side, there are

four high voltage grid operators (the transmission system operators or TSOs). The

German Power Market is also connected to other European markets, with different

liquidity [9]. After the liberalization of the European power markets, there were two

main markets established in Germany - wholesale power markets and control power

markets [10]. The wholesale trade takes place at the EEX spot market and the deriva-

tives market (futures and options market). The control markets are established to

account for smaller imbalances at short notice.

In organized electricity markets, market clearing price (MCP) is determined by
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matching the demand and supply of electricity [4]. This is usually done in an auction

done once every day. The orders for buying electricity are accepted in the increased

order of prices until the demand is fulfilled. Similarly, orders for selling are accepted

in a decreasing order of prices. This means, generators which offer selling at a low

price will be the first ones to supply electricity to the grid. When the demand gets

very low, generators often negative bids, as the cost of shutting down and ramping

up a generator may be much higher than the loss from negative prices. This can also

occur when the production from renewable sources is very high [4].



CHAPTER 2: LITERATURE REVIEW

The review is divided on the basis of techniques used for electricity price forecasting.

The major CI techniques used in these papers include artificial neural networks(ANN),

support vector machines (SVM), fuzzy inference systems (FIS), meta-heuristic algo-

rithms (including evolutionary algorithms, swarm optimization, simulated annealing,

etc.), hybrid techniques. As mostly all meta-heuristic techniques are used in conjunc-

tion with one of the other techniques (for parameter optimization), they have been

covered in the each technique as a part of hybrid techniques.

2.1 Artifical Neural Networks

ANNs are the most widely used technique for electricity price forecasting. Because

of its ability to learn nonlinear relations between various features, it is used either

independently, or in combination with other techniques.

Panapakidis and Dagoumas used a feed forward neural network with various differ-

ent inputs to build multiple short term price forecasting models [11]. They proposed

six models with a different combination of input features including day of the week,

hour of the day, holidays, hourly price of electricity with different lags (including 24,

25, 47, 48, 72, 96, etc.), hourly load of previous days, previous day’s average load,

natural gas prices. In all their models, they used Levenberg-Marquardt method for

training the neural network. Singhal and Swarup also used ANN with three layers

with backward propagation method for learning. Their model performed good on

normal days, whereas poor performance was shown on unusual days [12]. Keles et.

al. proposed using clustering techniques for selecting features for an ANN forecaster.

They used k-nearest neighbours as the clustering algorithm [13]. Khosravi et. al.
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tried to quantify the uncertainty of the electricity price prediction by ANNs [14].

They used a bootstrap method, which is essentially a re-sampling technique, for esti-

mating a prediction interval (PI) for the forecasts with different confidence intervals.

According to the authors, PIs can help decision making process by explaining the

uncertainty of a given model. For Silvano et. al., ANNs did not perform as well

as SVM or econometric techniques like ARMA-GARCH [15]. Voronin and Partanen

used various techniques out of which one is neural network. Their neural network

model performs better than ARIMA, but did not perform as well (in terms of error

metrics) as the various hybrid techniques tested by the authors [16]. Anbazhagan and

Kumarappan made use of a feed forward neural network (FFNN) for classification of

electricity prices [17]. They extended this research by using input transformation

using discrete cosine transform (DCT) in [18]. Dudek and Cerjan et. al. used multi

layer perceptron (MLP) for making probabilistic price forecasts [19, 20]. Huang et.

al. also used multiple layer perceptron (MLP) as one of the many models tested in

their paper [21]. Hong and Wu called their NN a "Multi-layer Feedforward network"

(MLF). Essentially, it is a FFNN. They used preprocessing techniques including PCA

(Principle component analysis) [22]. Unsihuay-Vila et. al. used ANN to compare

with their proposed evolutionary model [23]. Kunwar and Kumar used ANN and

heuristic scheduling for demand side management [24].

Apart from the above mentioned papers using ANN in its simple form, there are

a number of papers which make use of NNs in some form or the other. Shafie-khah

et. al. and Chen et. al. proposed a radial bias function neural network (RBFNN) to

model non linear components of the price series [25, 26]. Coelho and Santos also used

RBFNN with a gaussian activation function [27]. Lin et. al. also used RBFNN. They

used a methodology similar to [28] and proposed an enhanced RBFN (ERBFN) by

using an orthogonal experimental design (OED) [29]. This showed similar advantages

to the methodology in [28]. The nonlinear component was modeled by another NN
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- adaptive wavelet neural network (AWNN) by Wu and Shahidehpour in [30, 31].

Amjady et. al. proposed a new, 2 stage neural network [32]. The first stage was

initialized using random weights. The calculated parameters and weights were fed to

the second stage NN, along with the price forecast of the next hour by the first stage.

They called this a Hybrid Neural Network (HNN). Anbazhagan and Kumarappan

proposed a simple Recurrent Neural Network (SRNN, also known as Elman network)

[33]. This was able to estimate the temporal and spacial patterns more accurately.

In this paper, they also compared the proposed technique with various other NNs

including fuzzy neural network (FNN), AWNN, and neural network with wavelet

transform (NNWT). Lin et. al. proposed a combination of probability NN (PNN)

and OED to create an enhanced probability neural network (EPNN) [28]. According

to the authors, the proposed model improves the estimation of complex interactions of

various factors which arise due to fluctuating load, temperature changes and transfer

flow. Keynia suggested using a two stage approach for modeling electricity prices

[34]. The technique is based on mutual information (MI) criterion, which selects input

features for a composite neural network (CNN). CNN is a combination of multiple NNs

with a modified data flow structure. Lahmiri proposed using generalized regression

neural network (GRNN) ensemble combined with variational mode decomposition

(VMD) [35]. The model was compared with EMD based GRNN. Gollou and Ghadimi

used WTNN, based on wavelet transform and NNs [36]. Sharma and Srinivasan

proposed a combination of coupled excitable systems and recurrent neural networks to

model intermittent peaks in electricity prices, for improving decision making in electric

markets [37]. Lago et. al. proposed using a DNN with exogenous inputs for modeling

electric prices [38]. They also suggested implementation of feature selection based

on Bayesian optimization. Also, the authors showed that modeling multiple markets

together improves the forecast accuracy. Dynamic filter weights neural networks are

used by [39]. Mandal et. al. used a unique recursive neural network (RNN) [40].
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They used similar day classification to model future prices.

2.1.1 Extreme Learning Machines

A relatively new technique in literature, which is based on a single layer feed forward

NN, is Extreme Learning Machines (ELM). This is already extensively used for elec-

tricity price forecasting. ELMs have the main advantage of faster learning and almost

1000 times faster performance than backward propagation. [26, 41, 42, 43, 44, 45]

make use of the new technique. Chen et. al. proposed using ELM, which is a single

layer feed forward network, for fast electricity price forecasting [26]. The methodology

incorporates bootstrapping to model uncertainty in the system. They used Australian

electricity market operator (AEMO) price data as a case study. Wan et. al. pro-

posed a two stage methodology for probabilistic forecasting for electricity prices [41].

In the first stage, ELM was used to obtain a point forecast. In the second stage, noise

variance was measured using maximum likelihood method. They used a bootstrap

algorithm for prediction interval estimation. The experiments were carried out with

AEMO data and compared with BPNN, persistance, and ELM + Bootstraping meth-

ods. Their methodology was at-least 100 times faster than conventional bootstraping

based NNs. Yang et. al. created a hybrid model combining wavelet transform, KELM

based on self adapting PSO and ARMA. The performance was measured using PJM,

Australian and Spanish market [42]. In [43], ELM coupled with wavelet technique

was used to create a hybrid method for forecasting electricity prices. The accuracy

was improved using ensemble methods. WT was used to analyze hidden features of

the price time series. The decomposed high and low frequency series have better sta-

tistical properties. Multiple models based on WELM were created in order to create

ensembles to improve forecast error.
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2.1.2 Hybrid Neural Networks

There are many uses of NNs as a part of a hybrid modeling system. The literature

covering these models, which are a part of a hybrid system, are discussed in the sec-

tion covering hybrid algorithms. Wang et. al. proposed a two layer decomposition

method and develop a hybrid forecast engine with fast ensemble emperical mode de-

composition (FEEMD), variable mode decomposition (VMD), backware propagation

NN (BPNN) optimized by a firefly algorithm (FA) [46]. The application of VMD

to decompose high frequency intrinsic mode functions (IMFs) generated by FEEMD

improved the forecast accuracy. The hybrid model was compared with BP, FA-BP,

FEEMD-FA-BP and VMD-FA-BP. Chaâbane combined ANN with auto-regressive

fractional integrated moving average (ARFIMA) [47]. This combination leveraged

the unique advantages of both the techniques. Xiao et. al. proposed a wavelet neu-

ral network (WNN) modified using singular spectrum analysis (SSA) coupled with

cuckoo search (CS) for optimizing the parameters of their models [48]. The proposed

CS algorithm is Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method.

Kim proposed a combination of Cuckoo search and Levenberg-Marquardt for training

an FFNN [49]. Another hybrid technique was used by [50] and [51]. They proposed

a hybrid neuro evolutionary system (HNES) based on NN, evolutionary algorithms

(EA) and a modified data flow. Maximum relevance minimum redundancy principle

was used for pre-processing the input features before feeding to the hybrid model.

Lago et. al. proposed formulation of a deep learning framework for tackling the un-

predictability of electricity prices [52]. The framework composed of 4 models - deep

NN (DNN) which is an extension of MLP, hybrid LSTM-DNN model (LSTM - Long

short term memory), a hybrid GRU-DNN model (GRU - gated recurrent unit), and

convolutional neural network (CNN). For tuning the parameters of these models, a

Parzen estimator was used [53]. Abedinia et. al. proposed a combinational neural

network based forecast engine [54]. The structure composed of cascaded NNs and
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each NN has multiple layers. A chemical reaction optimization (CRO) algorithm was

used for hyper parameter optimization. Ebrahimain et. al. proposed a WT based

ANN. WT was used as a pre-processor to decompose the input series to different

frequency components. These components are forecasted by the ANN forecaster [55].

Bento et. al. used a bat algorithm and scaled conjugate gradient descent for quicker

and better learning of an FFNN [56]. Gao et. al. use a multi-block forecast engine

composed of various combinations of different types of NNs [57]. The whole structure

is optimized by an intelligent algorithm like enhanced shark smell algorithm. Wang

et. al. used a dynamic choosing ANN (DCANN), which can dynamically chose the

inputs to the NN [58]. It is a combination of Self organizing maps (SOM) and ANN.

The parameters were optimized using a Cuckoo search algorithm. Singh et. al. pro-

posed a generalized neural network [59]. This method overcomes various limitations

of traditional ANNs. Peng et. al. made use of a combination of long-short term

memory network and a differential algorithm [60].

2.2 Support Vector Machines

Che and Wang used support vector regression (SVR) to model the non linear

component of electricity price [61]. Their proposed model used SVR in conjunction

with ARIMA, which was used to model the residual after getting a prediction from

the SVR model. Another team that uses a combination of SVM and a time-series

method is [62]. They proposed using least square SVM (LSSVM). According to the

authors, the function approximation by LSSVM is easier and less complex but also

less accurate when used large data-sets. Hence they follow a similar strategy as [61],

and used ARIMAX instead of ARIMA as the second model to overcome limitations

of LSSVM. Yan and Chowdhury also used a similar methodology and implemented

LSSVM-ARMAX hybrid model [63]. Shrivastava et. al. used SVM for estimating

a prediction interval [64]. Their model was fast and computationally less extensive.

It used SVM for estimation of the lower and upper bounds of the future prices. It
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was tuned with the help of particle swarm optimization (PSO). They extensively

compared the performance for their model to other models including quantile regres-

sion (QR), classification and regression trees (CART), bootstrapping, lower upper

bound estimation NNs (LUBE-NN). Saini et. al. also utilize the power of SVM for

function approximation [65]. They used a genetic algorithm (GA) to optimize its pa-

rameters, which are updated every 4 weeks (or 28 days). They compared this model

with linear regression and a heuristic method. Sayeghi et. al. proposed a hybrid

technique which uses LSSVM as a base forecaster [66]. They used it along with a

MIMO engine to forecast both load and price simultaneously. A quasi-oppositional

artificial bee colony (QOABC) was used to optimize the parameters of the SVM

based forecast engine. Sayeghi and Ghasemi used a feature selection based on mutual

information (MI) and WT [67]. They also developed a new technique called chaos

gravitational search algorithm (CGSA) - based on GSA and chaos theory, to optimize

the LSSVM forecaster. Another paper to make use of a hybrid methodology based

on SVM is [68]. The authors used an SVM engine as the base forecaster, combined

with self organizing maps (SOM), which cluster the input data before feeding it to

SVM, and PSO, which optimizes the parameters of the SVM forecaster. Zhang and

Tan proposed using chaotic least square SVM (CLSSVM) as a part of another hybrid

framework [69]. They combined wavelet transform, CLSSVM and exponential gen-

eralized auto-regressive conditional hetroskedastic (EGARCH) methods to make a

forecasting model. Their tests were performed on the Spanish market data as well as

locational marginal price of PJM market (Pennsylvania-New Jersey-Maryland). Yan

and Chowdhury created a multiple SVM based mid term electricity price (market

clearing price - MCP) forecasting model [63]. Accurate mid term price forecasting

is difficult as immediate past prices can not be used and hence the modeling peaks

becomes difficult. Other major problems in modeling electricity prices, apart from

relation between demand and supply, are factors like business strategy including un-
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ethical behavior by competitors. To overcome these challenges, the authors used a

multiple SVM model, which has 4 layers - input, SVM data classification, SVM price

prediction and output layer. Amjady and Keynia introduced multiple hybrid method-

ologies out of which one uses an SVM based forecaster [70]. Voronin and Partanen

used SVM as a comparison model for their proposed model [71]. Zhang et. al. also

create a hybrid model with LSSVM as the base forecaster [72]. They used WT for

decomposition of input data, LSSVM to generate forecasts of the decomposed data

and a PSO for optimizing the parameters of LSSVM. Yan and Chowdhury also use

LSSVM for MCP forecasting [73]. Sarikprueck et. al. use support vector classifi-

cation to forecast the peak days/hours in the prices and support vector regression

for estimating the value of both peak and non peak days [74]. Pinto et. al. used

an SVM based forecasting methodology for corroborate the decision making process

for biding in electricity markets [75]. Ghasemi et. al. proposed a 3 part forecast

engine [76]. First part used flexible wavelet packet transform (FWPT) to decompose

original time series into multiple frequencies. Then a conditional mutual information

(CMI) based feature selection method was employed. In the second part, a multiple

input multiple output (MIMO) based non linear LSSVM (NLSSVM) and ARIMA

forecaster was used for modeling linear and nonlinear components. Third part used

ABC based TV-SABC to optimize NLSSVM parameters during learning. ABC is

modified by upgrading the global search that uses gbest information and by selecting

time varying coefficients instead of random coefficients.

Another variation of SVM, which is used in literature is RVM - Relevance vector

machines. It is used to get a probabilistic output and uses a Bayesian formulation.

[77] and [26] used RVM. [77] used RVM with different kernels to obtain price forecast

for the next term and then combine these using multiple regression and GA opti-

mization to obtain a point forecast. [26] used it as one of the models to compare

with their proposed methodology. [78] used SVM to forecast the direction of change
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for next-day electricity prices for German and Austrian EEX price data. Informative

Vector machine - another variation of SVM was also used in one paper. [79] used

a combination of IVM and local regression for forecasting electricity prices. IVM is

another probabilistic alternative to SVM.

2.3 Fuzzy Inference Systems (FIS)

Catalao et. al. proposed a hybrid methodology, which used ANFIS as the base

forecaster [80]. They combined WT, ANFIS and PSO. PSO was used to optimize

the membership function of ANFIS, whereas WT was used to decompose input data

into low and high frequency components. Motamendi et. al. also propose a hybrid

forecasting engine based on FIS [81]. In their publication, the initial price and demand

forecasts are made by a MIMO engine, to which all available explanatory variables

are input. This generates forecasts for a target hour and a period prior to the target

hour. Then the variations in the historical demand and prices from observed value

is modeled. For this, data association mining techniques are used. The forecasts

from step 1 are tuned using info from step 2 with the help of a Fuzzy Inference

System. Pousinho et. al. used a combination of PSO and ANFIS [82]. PSO was used

to optimize the membership function of ANFIS like in [80]. In ANFIS, the neural

networks estimate fuzzy rules from the given data automatically. Catalao et. al.

proposed a wavelet neuro fuzzy (WNF) hybrid system [83]. Their methodology is

based on an ANFIS forecast model, coupled with wavelet transform to pre-process

the input series into different frequency components. The proposed technique is

computationally very quick and can be utilized in cases where speed is more important

than accuracy. Osório et. al. proposed a combination of ANFIS, evolutionary PSO

and wavelet transform (WT) without any exogenous inputs [84].
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2.4 Other models

There are various other models which are used in price forecasting literature. The

overview of these papers is given in this section.

Gaillard et. al. introduced the winning methodology of team "TOLOLO" for

load forecasting and price forecasting tracks of GEFCom2014 competition [85]. They

used 3 methods for the price forecasting. First is quantile generalized additive model

(quantGAM), second is based on combining individual forecasters including autore-

gressive (AR), threshold AR (TAR), AR with load forecast (ARX), TARX, linear

regression, random forest regressors. Third is a quantile regression model with lasso

penalty function. Serinaldi et. al. used generalized additive models [86]. Nowotarski

and Weron proposed a quantile regression based technique for modeling prediction in-

tervals for probabilistic forecasting of electricity prices [87]. They used a combination

of quantile regression and forecast averaging of various point forecasts. This provided

an interval forecast of the price. In probabilistic forecasting, combining probabilistic

forecasts does not give the correct probability for the interval [88]. Lei and Feng

proposed a grey model called PGM(1,2,a,b) enhanced with parameter optimization

for the least square method using PSO [89]. The model performed well for short term

price forecasting for different electricity markets. Haldrup et. al. suggested using

vector auto regressive (VAR) model for forecasting electricity price in markets where

power transmission undergoes occasional periods of congestion [90]. The proposed

model has long memory, which helps in more accurate price forecasts. Wu et. al.

introduced a recursive dynamic factor analysis (RDFA) algorithm to reduce the com-

plexity of new and useful functional principle component analysis technique (FPCA)

[91]. In the proposed algorithm, the principle components (PCs) and PC scores were

followed and foretasted recursively using kalman filter (KF). The proposed method

showed impressive improvements for forecasting electricity price for Australian and

New England markets. Dorini used a stochastic finite impulse response model, who’s
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parameters were estimated by a recursive least square method [92]. Mandal et. al.

proposed a hybrid technique based on WT, Firefly algorithm, fuzzy ARTMAP to fore-

cast electricity prices for ontario market [93]. Fuzzy ARTMAP (predictive adaptive

resonance theory) is better at preserving old learned concepts in memory than ANNs.

Fuzzy ARTMAP is suited for incremental learning. Dong et. al. used a combination of

EMD and ARIMA to model electricity prices [94]. According to them, this model per-

formed better than SARIMA as EMD was able to estimate the nonlinear parts of price

time series. Nowotarski et. al. proposed that a constrained least square based model

is more robust at predicting electricity prices more accurately across different markets

[95]. They suggested that ordinary least square and Bayesian model averaging based

forecast averaging schemes are not suitable for day ahead electricity price prediction.

Alvarez-Ramirez and Escarela-Parez tried to find correlation between different elec-

tricity markets [96]. They used detrended fluctuations to temporally quantify the

correlations. Jin et. al. proposed SOM Cluster Pattern Sequence-based Next Symbol

Prediction (SCPSNSP) algorithm based on pattern sequence based forecaster (PSF)

and ANN [97]. Wang and Liu introduced a novel fuzzy forecasting method based

on clustering and axiomatic fuzzy set classification [98]. In the first stage, clustering

algorithm was used to create different intervals. In second stage, a data set labeled

with fuzzy trend was generated with the help of fuzzy logic relations and trends of

past data points. This proposed method can predict the future value as well as a fuzzy

trend of the data. Karsaz et. al. proposed a methodology to predict both electric

load and prices [99]. They use a cooperative co-evolutionary (Co-Co) algorithm. In

the past, Co-Co has been used for evolution of ANN as well as solving decomposable

problems [100]. In this paper, Co-Co is used to find the relation in input and output

data and it determines the order of the system. Maciejowska and Nowotarski explored

an extension of [87] for the price forecasting track of GEFCOM2014 competition in

[101]. Echo state networks and kalman filter was used by [102]. Juárez et. al. used
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Random forests and bagging methods [103]. They made use of lagged variables as

well as calendar variables to model the Spanish electricity market data. Voronin and

Partanen used a combination of ARMA, GARCH and k-nearest neighbours [71]. Tan

et. al. and Liu et. al. used ARIMA and GARCH to model price data for PJM

market data [104, 105]. Vilar et. al. used non parametric regression with exogenous

variable and is tested on the Spanish market data [106]. Bordignon et. al. proposed

various methods for combination of price forecasting models [107].



CHAPTER 3: THESIS STATEMENT

Any forecasting methodology consists of two parts - input features and forecasting

technique. In the literature, the most commonly used features used to model elec-

tricity prices include historical load, price and load & renewable forecasts. A concept

which is very successfully used in electricity load forecasting is "Recency Effect" [108].

The roots of recency effect can be traced from a concept in psychology, which states

that most recent events are remembered the best [108]. It states that future load

depends upon the conditions (specifically temperature in case of load) existing in the

recent past. This effect is added to the model by including the lags (value of the

previous n-hours) and moving averages (in order to capture the trend of last n-hours)

of the explanatory variable.

This concept is explored extensively for load forecasting by Wang et. al. in [109].

They used a combination of lags and moving averages of temperature to the "Vanilla"

benchmark model to improve the forecast accuracy by approx 18. The authors used

the lag and moving average of only the temperature variable, and built a different

model for lag and moving average pair used. A total of 584 models are built by

varying lags from 1-72 hrs, and moving averages from 0-7 days, each model having a

unique "day-hour" pair.
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Figure 3.1: Basic structure of any forecasting model, explaining the motivation
behind this work

In electricity price forecasting, the use of this effect is very limited. Panapakidis

and Dagoumas make use of the lag of price and load in some of the models built

in [11] but techniques for comprehensive exploration of the optimal lag and moving

average pair is missing in literature.

Also other features can have a "recency effect" on the future electricity price.

Hence, the lags and moving averages of the following variables can be used to model

electricity prices:

1. Price: The auto-regressive component of the day ahead price is an important

feature to include in the models. It accounts for the relationship of the predictor

variable with itself at a previous time.
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2. Load Forecast: Price is also affected by the load consumption of the previous

day. Including lags and moving averages of load forecast accounts for that

3. Weather variables including temperature, wind speed and radiation: Weather

is indirectly related to price. It directly affects load consumption, which in-

turn affects price. Including lags and moving averages of weather variables also

results in improved accuracy.

As we have 3 different sets of variables for which we need to select a pair, our search

space increases by the power of 3. If we use 0-96 hrs. of lags and moving averages

for these 3 variables, there can be (96 ∗ 8)3 unique combinations. This translates to

a very huge search space - approx 247 billion possible combinations. Block diagram

explaining this is shown in Figure 3.1.

To find a combination which gives the best (or near best) forecast accuracy, brute

force techniques cannot be applied. Hence, using a metaheuristic technique - Particle

Swarm Optimization - to find the optimal combination is proposed in this work.



CHAPTER 4: THEORETICAL BACKGROUND

4.1 Artificial Neural Networks

Artificial neural networks try to mimic the working of neurons in a human brain. A

neural network consists of densely connected individual elements known as neurons

[110]. Each neuron has four basic elements, a set of input, an output, a transfer

function and a bias. These neurons can be arranged with different connections to

create a highly connected network, which can learn from the input data points. All

neural networks try to achieve good performance by a dense connection of simple

computational elements [111]. Depending on the number of inputs, a neuron can be

either single-input neuron or a multiple input neuron. Figure 4.1 shows architecture

of a simple neural network with one hidden layer. In this network, the input layer is

made of five input neurons, hidden layer has three neurons and the output layer has

one neuron.

A neuron is a basic function of a neural network. It receives inputs, applies weights

to these inputs and adds a bias. This is then passed through an activation function to

get the output. While training a neural network, these weights and bias are estimated

based on the training data. Because of the activation function, neural networks work

well in capturing the non linear components. Figure 4.2 shows a basic neuron.

Neural networks can be trained using various techniques. Backward propagation

is the most widely used algorithm for training. For the purpose of this research,

conjugate gradient method is used for training.
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Figure 4.1: Architecture of neural network with 1 hidden layer, 1 input layer and 1
output layer

Figure 4.2: Basic structure of a neuron in a neural network
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4.2 Linear Regression

Regression analysis is a statistical technique used for modeling relationship between

a set of variables [112]. Linear regression tries to fit a line to a set of data points in

order to draw a relation between these variables. A multiple linear regression model

with n regressors can be defined as the following:

Y = β0 + β1X1 + β2X2 + β3X3 + ...+ βnXn + ε (4.1)

where β0, ..., βn are the parameters to be estimated, X1, ..., Xn are the known

dependent variables, ε is the error term, which is normally distributed random variable

and Y is the dependent variable, which is being modeled [108]. A multiple linear

regression model can be extended to a polynomial regression model by including the

polynomial terms of the independent variables. For example, a cubic polynomial

could be added

Y = β0 + β1X + β2X
2 + β3X

3 + ε (4.2)

This is equivalent to

Y = β0 + β1X1 + β2X2 + β3X3 + ε (4.3)

where X1 = X, X2 = X2, X3 = X3. Linear regression has an underlying assumption

that the system is well defined without any vagueness [108]. Similarly, interaction

effects between different variables can also be added [112]. For example,

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε (4.4)
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This is equivalent to

Y = β0 + β1X1 + β2X2 + β3X3 + ε (4.5)

where X3 = X1X2. Linear regression models are not limited to just quantitative

variables. Qualitative variables can be included in the model [108]. these variables

are also known as categorical or class variables and can be included by assigning 0

or 1 to the based on the category of the data. For example, day of the week can

be added as seven new independent variables, each indicating information about the

day. for Monday, all the values where the day is Monday will be 1 whereas if it is not

a Monday, it will be 0.

X1 =


1, if the day is Monday

0, otherwise
(4.6)

A point to be noted is that any regression model is linear in the parameters (the β′s)

and not in the independent variables (the X ′s) [112].
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4.3 Support Vector Machines

Support Vector Machines (SVM) were introduced by Vapnik, 1995. They are a tool

for multidimensional function estimation [113]. In support vector regression, we try

to estimate a function which has a maximum of ε deviation from the actual values of

the target variables [114]. This means, no errors larger than ε will be tolerated. In

two dimensions, we can describe support vector regression as follows: for a given set

of points, {(x1, y1), ..., (xn, yn)} ⊂ χ×R, where χ is the space of input patterns [114],

the function being estimated can be described as,

f(x) = w · x+ b (4.7)

where w ∈ χ, b ∈ R,w · x is the dot product in χ. To fit the data to a support

vector machine regressor, we try to find the smallest w such that the error between

the observed target variable and the predicted function is less than ε. This can be

written as the following optimization problem:

minimize
1

2
‖w‖2

such that

 yi − w · xi − b ≤ ε

w · xi + b− yi ≤ ε

(4.8)

This formulation for support vector machines works only if the optimization is

feasible. That is, f(x) actually exists. This is called a "Hard-Margin" SVM. This

can only be possible when the training data is linearly separable. To overcome this,

a "Soft-Margin" problem can be formulated, by adding slack variable (ξ, ξ∗) to make

the optimization problem feasible [115].
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minimize
1

2
‖w‖2 + C

∑̀
i=1

(ξi + ξ∗i )

subject to


yi − w · xi − b ≤ ε+ ξi

w · xi + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(4.9)

There is a trade-off between the flatness of function f(x) and the amount of devia-

tions larger than ε that can be accepted. This can be adjusted by changing the value

of C [114].

The above explained formulations can be extended to multiple dimensions. Also,

to capture non linear relations, a simple pre-processing to input feature space can be

performed. This is done by mapping a certain feature to a nonlinear function, usually

known as a kernel. The most commonly used kernels are linear, polynomial, radial

bias function, and sigmoid kernels. For the purpose of this work, SVM is implemented

using the scikit_learn’s svm library.

4.4 Random Forests

Random forests are essentially a combination of two techniques - Classification and

Regression Trees (CART) and bagging [116]. CART is a tree based algorithm, which

maps observations of a variable to conclusions, introduced by L. Breman in 1984.

Figure 4.3 shows a simple classification and regression tree. CART algorithm is a

growing procedure as can be seen in figure 4.3. In each iteration, based on the best

split variable and value, each node is divided into two sub-nodes until the best split is

found. This means it fits the data pretty well, although the prediction accuracy may

not be as good due to high variance [116]. To overcome these limitations, random

forests include bagging to the base CART algorithm.
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X1 ≤ t1

X2 ≤ t2

R1 R2

X1 ≤ t3

X2 ≤ t4

R4 R5

R3

Figure 4.3: Classification and Regression Tree - CART

Algorithm 1: Random Forest
Result: Random forest tree and corresponding prediction

1 Select training data with p variables;

2 B= number of trees;

3 m = number of split variables at each split;

4 nmin = minimum node size;

5 for number of trees, B do

6 Draw a sample from the training data;

7 for node size = nmin do

8 select m random variables out of selected p variables;

9 select best spit variable out of the m variables;

10 split node into 2 sub-nodes;

11 end

12 return ensemble of trees;

13 end

14 get prediction by the following:

15 Ŷ B
rf (x) = 1

B

∑B
b=1 Ŷb(x);

16 where Ŷb(x) is the prediction of bth tree;
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4.5 Gradient Boosting

In boosting, multiple weak learners are combined by an iterative process in order

to generate a strong learner. Gradient boosting machines (GBM) were introduced by

Friedman in [117]. They are essentially an optimization problem, with an objective of

finding the best additive model, which minimizes the error. It works by adding a new

decision tree to the existing model, which reduces the error between the predicted data

and actual data (a loss function). An essential part of the algorithm is a parameter

called learning rate (α, where 0 ≤ α ≥ 1). At each iteration, the added decision tree’s

weightage to the final result reduces by this factor. With more number of small steps,

the accuracy increase as compared to small number of large steps [118]. The number

of subsamples selected for each iteration also has an effect on accuracy of the GBM

model. Below is a simplified algorithm for GBMs.
Algorithm 2: Random Forest
Result: Gradient Boosting Machine

1 d = depth of the decision tree;

2 K = number of iterations;

3 α = learning rate;

4 η = subsample fraction;

5 residual ro = y;

6 f̂ = 0;

7 for k = 1, 2, ...K do

8 Draw a random sample from the training data based on η;

9 fit a decision tree f̂k of d depth to residual rk−1;

10 f̂(x)←− f̂(x) + αf̂k(x);

11 rk ←− rk−1 − αf̂k(x);

12 end
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4.6 Particle Swarm Optimization

Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart in

[119] as an evolutionary algorithm for finding near best solution to a given problem.

In PSO, a number of particles are used in a search space, to find an optimum value

of a given function or a problem. The movement of each particle in the search space

is dependent upon its own history as well as the position of the best particle (particle

with least error in the group or swarm). As the number of iterations increase, this

"swarm" of particles moves, finding for the best solution in the search space of the

function, just like a flock of birds finds food [120]. Very nominal computational

resources are required to implement PSO. The PSO algorithm is described below

based on [119].

Algorithm 3: Particle Swarm Optimization
Result: Near best solution in a given search space

1 initialize the number of particles, initial position of each particle and initial
velocities of each particle;

2 initialize number of maximum iterations;
3 while ((current iteration < max number of iterations) or
4 (gbest equals required fitness value)) do
5 for each particle do
6 calculate fitness value;
7 if current fitness value is better than particle’s best fitness, pbest then
8 pbest = current fitness value;
9 ploc = current location, xi;

10 end
11 if fitness value is better than best fitness of the population, gbest then
12 gbest = current fitness value;
13 gloc = current location, xi;
14 end
15 change velocity an position of particle based on:
16 vi = vi + rand()∗(ploc− xi) + rand()∗(gloc− xi)
17 xi = xi + vi
18 end
19 end
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4.7 Forecast Evaluation

Evaluation of any forecast is done on the basis of how a forecasted value (Ŷh)

compares with the actual observed value (Yh). In literature, then most widely used

metrics for Electricity Price forecasting is absolute error,

AEh = |Yh − Ŷh| (4.10)

As forecasts are usually made for more than a single time step ahead in the future,

mean of the absolute error is used (MAE =
∑H

h=1 AEh

H
). Absolute error metrics are

usually hard to compare across different data sets, hence some forecasters prefer to

use absolute percentage error [4],

APEh = AEh/Yh (4.11)

Another widely used metric is root mean squared error (RMSE) and noramalized

RMSE (nRMSE).

RMSET =

√√√√ 1

T

T∑
h=1

(Yh − Ŷh)2 (4.12)

nRMSET =
RMSET

Ȳh
(4.13)

Another very popular metric for forecasting, including electricity load forecasting is

mean absolute percentage error (MAPE), which is the mean of all absolute percentage

errors from 4.11. This is usually not used for electricity price forecasting as price can

drop to near zero and in some markets go negative as well, which blows up the

MAPE value (in case on 0 actual price values, MAPE becomes infinite). Hence it is

not prefered in this field [4].



CHAPTER 5: DATA DESCRIPTION

The case study is performed on the data from the German Austrian markets. As

a day ahead prediction is made, hourly spot prices are collected from the EPEX spot

market data. Correspondingly, all other data collected is hourly data where ever

available. If hourly data is not available, the frequency is changed for that data.

The spot prices are dependent upon different factors. These include load forecast,

renewables generation forecast (which includes on-shore and off-shore wind genera-

tion forecast and solar generation forecast), installed capacities (hydro, conventional

sources, biomass, pumped hydro storage, solar, wind, uranium), import balances,

price emission allowance. The weather data is also used as an input variable. The

weather variable include wind-speed at 10m, temperature, direct horizontal radiation

and diffuse horizontal radiation. As NWP data was not easily available, the actual

data is used and only (min) 24 lags are used. This corresponds to a 24 hour ahead

naive forecast of weather variables. The sources and available resolution of these

variables are shown in table 5.1.

Table 5.1: Data Sources

Data Source Resolution
Load Forecast ENTSO-E 15 min, day ahead
Commodity Prices EEX/EIA 1 day

Renewable Forecast
ENTSO-E (using data from
50 Hertz, Amprion, Tennet,
TransnetBW)

15 min – day ahead

Price EPEX-spot 1 hr, day ahead

Installed capacities 50 Hertz, Amprion, Tennet,
TransnetBW 1 hr

Emissions allowance price EEX 1 day
Weather OPSD data 1 hr
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The following is the description of the available explanatory variables:

• Load forecast variables: This is the day ahead load forecast for the different

regions of Germany. This is available from the different transmission system

operators (TSOs) mentioned in Table 5.1. The available resolution of the data

is 15 minutes. This data is combined for the different TSOs and re-sampled to

an hourly frequency to match frequency of the price data.

• Renewable forecast variables: This includes solar power forecast, wind on-

shore renewable production forecast, wind off-shore renewable production fore-

cast.

• Power generation installed capacities: Brown coal installed capacity,hard

coal installed capacity, oil installed capacity, uranium installed capacity, hy-

dro installed capacity, biomass installed capacity, wind installed capacity, solar

installed capacity, gas installed capacity, pumped storage installed capacity, sea-

sonal storage installed capacity, other sources installed capacity, import balance

capacity. All these are available as daily data. It is re-sampled to hourly data

in order to make it compatible with the other variables

• Emission allowance price: This corresponds to the carbon tax applied on

the generators in Europe.

• Weather variables: Temperature, wind-speed at 10 m, direct horizontal ra-

diation and diffuse horizontal radiation.

For having an initial look into the data, the mean, standard deviation, minimum

value, maximum value and 25%, 50% and 75% percentile data are measured for each

variable. The available data can be broadly classified into 3 categories - forecast

variables, installed capacities for conventional sources, installed capacities for non-

conventional and other sources. These statistics are presented in Table 5.2 - 5.4
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Table 5.2: Basic statistics for price and forecast variables

ELSPOT
PRICE DAY
AHEAD
(EUR/MWh)

LOAD
FORECAST
(MW)

SOLAR
RENEWABLE
FORECAST
(MW)

OFFSHORE
RENEWABLE
FORECAST
(MW)

ONSHORE
RENEWABLE
FORECAST
(MW)

SUM
RENEWABLE
FORECAST
(MW)

Mean 31.49 62344.68 3990.31 1307.54 8853.23 14151.07
Std 14.06 10789.74 6160.65 1014.27 6938.07 8904.75
Min -130.09 33950.00 0.00 4.00 215.50 657.25
25% 23.95 53378.00 0.00 426.00 3698.88 6875.50
50% 30.26 62361.00 127.75 1044.63 6795.13 12396.25
75% 38.13 71664.38 6256.31 2125.00 11809.75 19887.94
Max 163.52 85599.50 27557.50 4124.50 37299.75 47702.75

Table 5.3: Basic statistics for installed capacities - conventional sources

IMPORT
BALANCE
INSTALLED
CAPACITY
(GW)

BIOMASS
INSTALLED
CAPACITY
(GW)

URANIUM
INSTALLED
CAPACITY
(GW)

BROWN
COAL
INSTALLED
CAPACITY
(GW)

HARD
COAL
INSTALLED
CAPACITY
(GW)

OIL
INSTALLED
CAPACITY
(GW)

GAS
INSTALLED
CAPACITY
(GW)

Mean -5.59 5.43 9.17 15.69 11.82 0.23 4.73
Std 3.35 0.62 1.71 2.34 5.67 0.11 2.91
Min -15.85 4.33 0.00 0.00 0.00 0.00 0.00
25% -8.01 4.75 7.79 14.43 6.84 0.19 2.45
50% -5.91 5.57 9.75 15.93 11.87 0.21 4.12
75% -3.46 6.06 10.48 17.39 16.69 0.22 6.18
Max 7.35 6.25 12.08 19.91 23.34 1.41 18.07

Table 5.4: Basic statistics for Installed capacities - hydro, renewables and others

HYDRO
POWER
INSTALLED
CAPACITY
(GW)

PUMPED
STORAGE
INSTALLED
CAPACITY
(GW)

SEASONAL
STORAGE
INSTALLED
CAPACITY
(GW)

WIND
INSTALLED
CAPACITY
(GW)

SOLAR
INSTALLED
CAPACITY
(GW)

OTHERS
INSTALLED
CAPACITY
(GW)

Mean 2.36 1.06 0.17 9.48 4.24 0.28
Std 0.60 0.95 0.15 7.46 6.58 0.23
Min 0.00 0.00 0.00 0.13 0.00 -0.49
25% 1.91 0.39 0.04 3.77 0.00 0.16
50% 2.33 0.71 0.11 7.38 0.10 0.26
75% 2.85 1.44 0.26 13.29 6.65 0.39
Max 3.95 6.57 0.82 39.28 29.14 1.31
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Load forecast is one of the most important variable which affects the day ahead

prices. Figure 5.1 shows a snapshot of the load forecast, day ahead prices and the

total renewable forecast for the German-Austrian market.

������� ������� ������� ������� ������� ������� ������	 ������
 ������� ������� ������� �������

�����

�����

�����

	����


����

�������������

������� ������� ������� ������� ������� ������� ������	 ������
 ������� ������� ������� �������

"���

"��

�

��

���

���

�!�������������

������� ������� ������� ������� ������� ������� ������	 ������
 ������� ������� ������� �������

�����

�����

�����

�����

���������� �������������

Figure 5.1: Load forecast (in MW), price (Eur/MWh) and renewable forecast (MW)
for the training period

For these variables, to see the existing patterns between these three variables, a

scatter matrix is formed. This gives a comprehensive view into the relationship be-

tween the day ahead price and load forecast, renewable forecast. This view can also

give insights into the type of distribution of each variable (shown by the diagonal

axis in the scatter matrix plot, i.e. price vs price plot, load forecast vs load fore-

cast plot and renewable forecast vs renewable forecast plot. Figure 5.2 visualizes

this. "elspot_price_day_ahead" is the price variable, "load_fc" is the load fore-

cast variable and "sum_de_at_renewable_fc" is the total renewable forecast of the

German-Austrian market. It can be observed from this figure that as the load de-

mand increases, the price also increases and as the renewable production increases,

price decreases as a general trend.

To get more interesting insights into the data, box-whisker plots are drawn. Box-
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whisker plots are non-parametric and are a good way to visualized data without

making any assumptions about the distribution of the data set. Each box-whisker

plot shows the following elements:

• Minimum

• Maximum
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Figure 5.2: Pairwise scatter plot of day ahead price, load forecast and renewable
forecast

• Median or 50th percentile

• First quartile or 25th percentile
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• Third quartile or 75th percentile

• Interquartile ranage or IQR

Box plots are generated for the day ahead price variable. This is aggregated into

different groups based on month of year, hour of day and day of week in order to see

if any pattern exists between the price and these calendar variables. Figure 5.3 shows

these plots.
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Figure 5.3: Box plots of target day ahead price with calendar variables - month,
weekday and hour (elspot_price_day_ahead is the price variable)

Another way in which the correlations between different variables can be visualized

by generating a correlation matrix. The pearson correlation ratio is calculated for each

pair of variables. This is then plotted as a heatmap in figure 5.4.
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Figure 5.4: Correlation matrix of all the variables



CHAPTER 6: METHODOLOGY AND RESULTS

Short term electricity price forecasting is of prime importance for daily operations

of the power markets. Various modeling methods, including multi-agent models(for

qualitative forecasts), fundamental models (based on physical and economic rela-

tions), reduced form models (for modeling main characteristics of price instead of

accurate hourly forecast), statistical models (regression, time series techniques like

ARIMA, ARMAX, GARCH, exponential smoothing) and computational intelligence

models (ANN, SVM, etc.) are used for this purpose.

This chapter explores the statistical models and computational intelligence models

and a unique combination of these. An evolutionary algorithm is used for optimizing

the input features for the various models. The first section gives the overview of

hardware and software used for implementation of these techniques. Second section

gives the methods used for building the base models with their respective results.

Third section provides a peak into how "recency effect" affects forecast accuracy. The

fourth and final section explains the implementation of particle swarm optimization

for selection of optimal combinations of recency variables.

6.1 Hardware and Software Description

6.1.1 Hardware

The system used for implementation of all the models consisted of a 12 core Intel(R)

Core(TM) i7-6850K CPU with 46 GB RAM. The system also had 2 NVIDIA TITAN

V GPUs with CUDA Version 10.2 installed. Operating system installed on the system

was Ubuntu 18.04.4 LTS (Linux kernel 5.3).
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6.1.2 Software

Only open-source software was used for building the models. Python 3.6.9 was the

main language used with Spyder 4.1 IDE for code development. The following python

packages were used:

• numpy: a scientific computing package in python [121]. This was used for

mathematical and matrix operations. Also, this is the backbone of machine

learning library sci-kit learn.

• Pandas: A basic data analysis and manipulation tool for python [122]. It was

used for building the input data set before forecast modeling

• Sci-Kit Learn: A machine learning library with efficient tools for predictive

modeling [123]. It was used for building linear regression, random forests, sup-

port vector machine models.

• XGBoost: An optimized distributed gradient boosting library [124]. The

python API from XGBoost was used for building gradient boosting models.

• neupy: A python library for building artificial neural networks with Tensorflow

backend [125]. The conjugate gradient algorithm implementation was used for

training the ANN models built for this work.

• PySwarms: A python toolkit for implementing swarm intelligence and evolu-

tionary algorithms [126].

6.2 Base Models

6.2.1 Model Description

The investigated base models include linear regression, gradient boosting, random

forests, support vector regression, artificial neural networks using adam optimizer

for learning and artificial neural network using conjugate gradient learning. These
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models are selected from the literature. The most successfully implemented models

are used for this work.

These base models have various sets of parameters which need to be tuned. Each

parameter is selected for the current data set using a grid search to find the best set

of parameters. Given below are the models used along with the set of parameters

used for each model.

1. Linear Regression (LR): Ordinary least square method is used for parameter

estimation of the linear regression model. The model is built using Python’s

SciKit Learn package [123].

2. Gradient Boosting (GB): For building the gradient boosting model, various

parameters need to be considered. The loss function to be minimized is selected

to be least squares, the number of estimators are 100, learning rate is 0.1 and

the subsample size is chosen to be 1. For building this model, XGBoost library

is used [127].

3. Random Forest (RF): Random forest model is built using Python’s SciKit

Learn package. 100 estimators are used. Mean squared error is used to measure

the accuracy of each split (as explained in Section 4.4). Each tree is expanded

until all sub-nodes are pure or all sub-nodes have less than 2 samples.

4. Support Vector Machines: Python’s scikit learn implementation is used to

build svm model [123]. It internally uses the famous libsvm library [128]. To

capture non-linear relationships, a radial bias function kernel is used on input

data as a pre-processing step. The epsilon value,for which there is no penalty

in training loss is 0.1. The regularization parameter C is 1 and the tolerance

for stopping is 10−3.

5. Artificial Neural Network (ANN): ANN model is built with learning done

using conjugate gradient. NeuPy library in python is used for using Conjugate
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Gradient algorithm [125]. The architecture of the model was selected by hit and

trial method. Two hidden layers are used. the first hidden layer contains 100

neurons with sigmoid activation function. The second hidden layer is made up of

150 neurons with ReLU activation function. The number of epochs for training

are 250 and the loss function minimised for training is root mean squared error.

6.2.2 Feature Engineering

Chapter 5 gives a comprehensive description of all the available variables. Apart

from the available variables, some new features are created. These new features

include square and cube of the load forecast variable, calendar variables like weekday,

month, hour and holiday indicators. The following are all the variables used for the

base models:

• Load forecast variables: Hourly load forecast, square of hourly load forecast,

cube of hourly load forecast

• Renewable forecast variables: Solar power forecast, wind onshore renewable

production forecast, wind off-shore renewable production forecast

• Power generation installed capacities: Brown coal installed capacity,hard

coal installed capacity, oil installed capacity, uranium installed capacity, hy-

dro installed capacity, biomass installed capacity, wind installed capacity, solar

installed capacity, gas installed capacity, pumped storage installed capacity, sea-

sonal storage installed capacity, other sources installed capacity, import balance

capacity. All these are available as daily data. It is re-sampled to hourly data

in order to feed to the base models

• Emission allowance price

• Calendar variables: Weekday indicator, month indicator, hour indicator, hol-

iday indicator for each state of Germany
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• Weather variables: Temperature, wind-speed at 10 m, direct horizontal radi-

ation and diffuse horizontal radiation. As numerical weather prediction data is

not readily available, history of the weather is used with a 24hr lag to replicate

a weather prediction. That is, previous day’s actual weather is considered to

be weather prediction for the day to be predicted.

Table 6.1: RMSE, nRMSE and MAE values for base model with weather data in-
cluded (24hr lags for weather data to represent weather forecasts)

Error/Model LR GB RF SVM ANN

RMSE 8.34 7.29 8.28 9.79 6.86

nRMSE 0.288 0.251 0.286 0.338 0.237

MAE 6.47 5.53 6.24 7.56 4.96

6.2.3 Results

Table 6.1 shows the RMSE, nRMSE and MAE values for the six base models. For

this set of features, ANN with conjugate gradient performs the best with least error

when compared to other techniques. A season-wise analysis of error is done for the

base models. The error is recorded in tables 6.2 - 6.5. It shows that except for winter,

ANN has the least error. For winter season, LR model has the least error with only

a very small improvement in nRMSE value.

Table 6.2: Error values for winter season (December, January and February)

Error/Model LR GB RF SVM ANN

RMSE 8.78 9.04 9.28 11.90 8.84

nRMSE 0.296 0.305 0.313 0.401 0.298

MAE 6.76 7.07 7.27 9.62 6.71
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Table 6.3: Error values for spring season (March, April, May)

Error/Models LR GB RF SVM ANN

RMSE 9.53 8.14 10.96 11.77 7.47

nRMSE 0.403 0.344 0.463 0.497 0.315

MAE 6.80 6.19 8.82 9.18 5.08

Table 6.4: Error values for summer season (June, July, August)

Error/Models LR GB RF SVM ANN

RMSE 8.33 5.11 5.96 6.91 4.94

nRMSE 0.304 0.187 0.218 0.253 0.181

MAE 7.28 3.95 4.38 5.59 4.08

Table 6.5: Error values for autumn season (September, October, November)

Error/Models LR GB RF SVM ANN

RMSE 6.38 6.20 5.72 7.50 5.46

nRMSE 0.181 0.176 0.162 0.213 0.155

MAE 5.01 4.92 4.48 5.84 3.99

The performance of these models is visualized in Figure 6.1 and Figure 6.2. A

snapshot (10th May 2016 to 14th May 2016) of the actual price value and forecasted

values are shown. It is observed that the ANN with conjugate gradient learning and

linear regression work well for that day as well as for the whole year. This corresponds

to the error values shown in the tables above.
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Figure 6.1: LR and ANN forecast vs actuals

6.3 Adding Recency Effect

In load forecasting, recency effect is used very effectively. Wang et. al. use a

combination of lags and moving averages of temperature to the "Vanilla" benchmark

model to improve the forecast accuracy by approx 18% [109]. The roots of recency

effect can be traced from a concept in psychology, which states that most recent

events are remembered the best [108]. In [109], the authors use the lag and moving

average of only the temperature variable, and build a different model for lag and

moving average pair used. A total of 584 models are built by varying lags from 1-72

hrs, and moving averages from 0-7 days, each model having a unique "d-h" pair.

This concept can be extended to the price forecasting realm and is not yet explored

in literature for electricity price forecasting. Panapakidis and Dagoumas make use

of the lag of price and load in some of the models built in [11] but techniques for

comprehensive exploration of the optimal lag and moving average pair is missing in

literature.

Another set of lags and moving averages can be added for the weather variables

and the load forecast variable.
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Figure 6.2: GB, RF and SVM forecast vs actuals

1. Price: The auto-regressive component of the day ahead price is an important

feature to include in the models. It accounts for the relationship of the predictor

variable with itself at a previous time.

2. Load Forecast: Price is also affected by the load consumption of the previous

day. Including lags and moving averages of load forecast accounts for that

3. Weather variables including temperature, wind speed and radiation: Weather

is indirectly related to price. It directly affects load consumption, which inturn

affects price. Including lags and moving averages of weather variables also

results in improved accuracy.

In [109], the search space obtained is a modest one as only pair of lags and moving

averages is selected for a single variable. They build a linear regression model for each

"d-h" pair by varying lags from 1-72 and moving averages from 0-7. This means 584

(73*8) linear regression models are built. This task can be done relatively quickly

with modern computers.

In our case, as we have 3 different sets of variables for which we need to select a

pair, our search space increases by the power of 3. That is, there can be (73 ∗ 8)3
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unique combinations of lag and moving average values for the 3 sets of variables.

Also, if we decide to use moving average with an hourly increment instead of daily

increment, we further increase the search space. This calls for implementation of new

techniques, other than brute force, to find the optimum or the near optimum value.

6.3.1 Effect of Recency on Electricity Price Forecasting

To see the effect of adding recency effect to EPF, lag and moving average of the 3

variables mentioned above (price, load forecast and weather variables) are added. 24

hr lag values are used for all three variables and 2 day (or 48 hr) moving averages are

added to the base models.

Table 6.6: Error with recency effect - initial look with 24hr lags and 48hr moving
averages for price, load forecast and weather variables

Error/Model LR GB RF SVM ANN

RMSE 6.83 6.74 7.23 10.01 6.88

nRMSE 0.24 0.23 0.25 0.35 0.24

MAE 5.06 4.99 5.31 7.81 4.95

There is a significant improvement in the accuracy of the base models. Table 6.6

shows the error values for each model after adding 24 hr lag and 48 hr moving average

of the mentioned variables. In this case, gradient boosting model performs the best.

Even though, linear regression shows the most improvement form the base model.

Table 6.7 shows the percentage change in the RMSE/nRMSE and MAE values. The

negative value indicates a reduction of error, while positive value shows an increase

in error.
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Table 6.7: Percentage change in error from base models after adding recency effect

Model ->

Error % Change
LR GB RF SVM ANN

RMSE/nRMSE -18.11% -7.46% -12.77% 2.14% 0.28%

MAE -21.75% -9.82% -14.87% 3.40% -0.33%

Figure 6.3 - Figure 6.7 show the comparison of the base models with recency models.

in each of the models, inclusion of recency effect is able to reduce the over forecast

that was done by the base models. The greatest reduction is seen in LR, which is

also evident from the percentage change in error. The figures also show how much

each model has improved from the base model.
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Figure 6.3: Comparison of Base LR model and LR with Recency
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Figure 6.4: Comparison of Base GB model and GB with Recency

��
�
	
����

�� �� ��

�
�	

�

��

��

��

��

��

��

��

�
	

������ ���	��� ����	�	
��

Figure 6.5: Comparison of Base RF model and RF with Recency
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Figure 6.6: Comparison of Base RF model and RF with Recency
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Figure 6.7: Comparison of Base ANN model and ANN with Recency
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6.4 Optimal Feature Selection using Particle Swarm Optimization

6.4.1 Experimental Setup

Given the huge search space to find optimal pairs of lags and moving averages of

3 variables, a brute force methodology can not be applied because of computational

limitations. To resolve this, meta-heuristic approach was followed.

Meta-heuristics are a class of procedures usually used to find a good enough so-

lution to a problem. Unlike optimization algorithms or iterative (brute force) pro-

cedures, Meta heuristic algorithms do not guarantee a global optimal solution. In-

stead, they find good solutions with nominal computational power. Some examples

of meta-heuristic algorithms include genetic algorithm, particle swarm optimization,

ant colony optimization, chemical reaction optimization, simulated annealing, etc.

Figure 6.8: Block diagram explaining the working of PSO in current setup

For this research, particle swarm optimization was selected due to its simplicity and

its ability to multi-process. Detailed explanation of the algorithm is given in Chapter
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4. The lags and MAs of the 3 variables are given as an input to the PSO algorithm.

The initial positions of these are chosen at random. These estimators (which the PSO

algorithm will try to find the best position for) are used to call a custom function,

which runs the base models (individually), by adding these estimator values as lags

and moving averages to the model. This function returns the RMSE of the model,

which is being minimized. The PSO updates the value of the estimators on each

iteration and multiple models are built in each iteration (known as particles). The

algorithm returns the best position and cost for that position of estimators. Figure

6.8 gives an overview of this method.

6.4.2 Results

Table 6.8: Error for 2016 with optimized features using PSO

Error/Models LR GB RF SVM ANN

RMSE 5.39 6.47 6.99 9.49 6.14

nRMSE 0.186 0.223 0.241 0.327 0.211

MAE 3.75 4.86 5.17 7.48 4.46

Table 6.9: Percentage change in error between base models and recency with PSO
models

Model\

Error % Change
LR GB RF SVM ANN

RMSE/nRMSE -35.35% -11.27% -15.64% -3.16% -10.81%

MAE -41.97% -12.19% -17.17% -1.03% -10.16%

Table 6.8 gives the error obtained after selecting the best combination of lags

and moving averages for the variables mentioned above. On comparison with Table

6.1, it can be seen that the linear regression model gives the best improvement in
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performance. It shows more than 35% improvement from the base model. The other

models also improve but with a relatively less percentage. GB shows approx. 12%

improvement, RF shows 16% improvement, SVM shows the least - 3% improvement

and ANN improves by 10% for the year 2016. Percentage change in error is given in

Table 6.9. Note that these changes are from the base models.

The lag and moving average values selected by the PSO algorithm in each case is

shown in Table 6.10.

Table 6.10: Lag and Moving average values selected by PSO.

Model
Lag Moving Average

Price
Load

Forecast
Weather Price

Load

Forecast
Weather

LR 64 49 66 25 23 40

GB 24 62 48 32 89 35

RF 24 44 47 26 20 27

SVM 52 63 46 24 65 95

ANN 24 49 48 25 26 40

6.4.3 Analysis of Results

Each model shows some improvement in error when compared to the base models.

Given below are some observations from the improved models.

• Linear Regression: The model shows the most improvement in overall error.

The model built with PSO shows to reduce the over forecasts that were done

by the base linear regression model. Though, sometimes, the model seems to

under forecast the troughs as well. This is evident from Figure 6.9.



51

�� ��
�
	
����

���� ��

����

�

��

��

��

��

��

��
�

�

�
��	
 �	����� �����
��
� �����
��
�����

Figure 6.9: Comparison of Base LR model and LR with Recency

• Gradient Boosting: This model looks to capture the smaller crests and

troughs better when compared to its base model. Figure 6.10 shows the com-

parison of the 3 models.
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Figure 6.10: Comparison of Base GB model and GB with Recency

• Random Forest: This has the second best improvement when compared with

the base model. Random forest captures the shape of the curve in a pretty good

way, even though it fails to capture the "trend" in the price variable as can be
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seen in Figure 6.11.
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Figure 6.11: Comparison of Base RF model and RF with Recency

• Support Vector Machines: This shows the least improvement.
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Figure 6.12: Comparison of Base RF model and RF with Recency

• Artificial Neural Networks: ANN also shows some improvement and is al-

most similar to the performance of linear regression except it does not under
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forecast the troughs. Figure 6.13 shows this.
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Figure 6.13: Comparison of Base ANN model and ANN with Recency



CHAPTER 7: CONCLUSIONS

7.1 Discussions

Electricity price forecasts are a fundamental part of the decision making process of

energy companies. Utility companies are, in particular, vulnerable to the volatility

of electricity prices as they cannot pass these down to the retail customers. Accu-

rate forecasts can help companies make decisions which may lead to avoiding huge

losses, and possibly even save them from bankruptcy. Good forecasts also help them

maximize their profits as they can adjust their strategies and consumption/production

profile according to the forecasts. In this thesis, advanced machine learning techniques

including gradient boosting, random forests, support vector machines and artificial

neural networks are explored. The focus is on selection of appropriate features from

a huge search space, which cannot be solved using brute force method. To overcome

this, a meta-heuristic algorithm - particle swarm optimization is employed for this

task.

Use of PSO for selection of optimal features, shows a significant improvement in

forecast accuracy, especially for linear regression model. It can be noted that linear

regression improves the best because it is a statistical technique. It does not have any

hyper parameters that have to be tuned with a change in the set of input features.

This is not the case with other machine learning techniques. For example, gradient

boosting has various parameters like learning rate, number of estimators, subsample

size etc. which would need to be changed if the set of input features change. If these

would also be included as the estimators of PSO, the already huge search space would

increase and PSO would require more iteration, and hence more time to come to a

near optimal solution. In the literature, there is a lot of work which build "hybrid
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models" by using a meta heuristic algorithm to tune the hyper parameters.

The PSO algorithm is a great work around for a computationally infeasible problem.

It also has multiprocessing capabilities, because of which, multiple models can be

built in parallel, to leverage the computation resources available. This can reduce the

search time by a huge amount of time.

7.2 Future Work

As mentioned in the conclusions, the improvement of the machine learning models

is comparatively less than improvement in the linear regression model, work can be

done on improvement of the performance of these techniques. One possible reason

for sub-optimal performance improvement in case of techniques other than linear

regression can be un-optimized hyperparameters of these models. Along with the

feature selection by PSO, hyper parameter tuning can be done for each particle in

PSO algorithm. This can be possible by running a grid search for the parameters.

But this can lead to an exponential increase in the search space. To overcome this,

hyper parameter tuning can aso be done using some metaheuristic technique.

Another extension to this research can be exploration of other meta heuristic tech-

niques. Some example of meta heuristic techniques that can be tried are genetic

algorithm, firefly algorithm, ant colony optimization, cuckoo search algorithm etc.

The effect of proposed methodology can be tested in other domains. For example,

similar lag and moving average combination selection can be done for wind and solar

power forecasting.
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APPENDIX A: PSEUDO CODE FOR BASE MODELS

This appendix consists of pseudo code for base models.
Algorithm 4: Base Models
Result: Electricity Price Forecast

1 Read input data - price and other explanatory variables;

2 Add holidays of different regions of Germany;

3 Add calendar variables - hour of day, week of year, month of year;

4 Add square and cube of load forecast and price variables;

5 Split Y(price) and X(other independent variables);

6 Split Y and X into train (year 2015) and test (year 2016) set;

7 Train models based on methodology in Chapter 4;

8 Predict values for test set based on trained model;

9 Obtain error metrics as described in Section 4.7
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APPENDIX B: PSEUDO CODE FOR RECENCY MODELS

This appendix consists of pseudo code for recency models.
Algorithm 5: Recency Models
Result: Electricity Price Forecast

1 Read input data - price and other explanatory variables;

2 Add holidays of different regions of Germany;

3 Add calendar variables - hour of day, week of year, month of year;

4 Add square and cube of load forecast and price variables;

5 Add 24 hr. lag and 48 hr. moving average for price, load forecast and weather;

6 Split Y(price) and X(other independent variables);

7 Split Y and X into train (year 2015) and test (year 2016) set;

8 Train models based on methodology in Chapter 4;

9 Predict values for test set based on trained model;

10 Obtain error metrics as described in Section 4.7
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APPENDIX C: PSEUDO CODE FOR SELECTION OF OPTIMAL

COMBINATION FOR RECENCY USING PSO

This appendix consists of pseudo code for optimal combination selection using PSO.
Algorithm 6: Optimal Selection of lag and moving average combinations
Result: Best combination of lags and moving averages for given variables

1 Read input data - price and other explanatory variables;

2 Add holidays of different regions of Germany;

3 Add calendar variables - hour of day, week of year, month of year;

4 Add square and cube of load forecast and price variables;

5 Initialize the parameters and estimators for PSO as in Algorithm 3;

6 while current iteration < max number of iterations do

7 for each particle do

8 Add lags and moving averages of price, load forecast and weather

variables based on PSO estimators;

9 Split Y(price) and X(other independent variables);

10 Split Y and X into train (year 2015) and test (year 2016) set;

11 Train models based on methodology in Chapter 4;

12 Predict values for test set based on trained model;

13 Obtain and return error metrics as described in Section 4.7;

14 Update position of estimators according to Algorithm 3;

15 end

16 end
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