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ABSTRACT

FEI HENG. Dynamic Modeling of Incomplete Event History Data. (Under the
direction of DR. YANQING SUN)

Event history analysis has important applications in many fields, such as medicine,

engineering, econometrics, actuarial science and social studies. We usually encounter

missing data problems in the modelling of event history data. One typical problem

is that the observations of event times are censored at the end of a study or by a

terminal event. Also, the covariates in the model may be subject to missingness.

In the multivariate case, sometimes the record of the types of events is missing. In

this dissertation, we investigate incomplete event history data including competing

risks data with missing failure causes and recurrent event data under nonparametric

models.

For the competing risks data, we study the Cox model with time-varying coefficients

for cause-specific hazard functions when causes of failure are subject to missingness.

The inverse probability weighted (IPW) and augmented inverse probability weighted

(AIPW) estimators are investigated. The latter is shown as a two-stage estimator

by directly utilizing the inverse probability weighted estimator and through model-

ing available auxiliary variables to improve efficiency. The proposed methods are

illustrated using the Mashi trial data for investigating the effect of randomization to

formula-feeding versus breast-feeding plus extended infant zidovudine prophylaxis on

death due to mother-to-child HIV transmission in Botswana.

In the field of recurrent events, we simultaneously explore the time-varying and
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gap-time-varying effects of covariates on intensities under generalized nonparametric

dynamic additive intensity models. The local linear kernel smooth methods are em-

ployed to estimate the mixed effects that include time-varying effects, and the effects

that may depend on past histories. Furthermore, we consider a special case where

the covariates with gap-time-varying effects may be missing. AIPW estimators are

obtained by solving the local weighted AIPW estimating equation which utilizes the

AIPW technique.
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CHAPTER 1: INTRODUCTION

Event history data is longitudinal data that records the time to the occurrence

of events of interest for a sample of individuals in specific studies. Analyses of the

time-to-event data often encounter a specific missing data problem, called censoring,

where the time to event occurrence is not observed for every subjects. Survival data

is a special case where there is a single event that may occur for each individual. We

have competing risks when the individual is at risk of different mutually exclusive

types of events. Sometimes the event of interest may occur repeatedly over time for

an individual. Examples of recurrent event data include repeated heart attacks for

coronary patients, frequent claims from auto insurance policyholders and machine

breakdowns of mechanic or electronic systems.

Other types of missing data problems are also common in the event history data,

such as missing failure causes and missing covariates. The complete-case (CC) analy-

sis, using only cases with complete information, is the most straightforward approach

to handle missing problems but may obtain biased and misleading results when the

data are not missing completely at random (MCAR) and the complete cases are not

a random sample of all cases (Little and Rubin, 2002). Weighting complete cases by

the inverse of their propensity scores(Horvitz and Thompson, 1952), known as the

inverse probability weighting method (IPW), is a commonly used method to correct

this bias under missing at random (MAR) mechanism (Rubin, 1976). The complete
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cases are enlarged to represent the missing data by the inverse probabilities. However,

the IPW method is statistically inefficient and sensitive to the correct modeling of the

propensity score. To improve the efficiency of IPW, Robins et al. (1994) developed

augmented inverse probability weighted method (AIPW) for the conditional mean

model by adding an augmented term to the original IPW estimating equation when

the data are missing at random. The AIPW method has been receiving much atten-

tion due to its attractive doubly robust property and statistically efficiency. Bang and

Robins (2005) constructed AIPW estimators in two nonlongitudinal models, missing

data model and treatment effect model, and extend their method to longitudinal

marginal structural models. Gao and Tsiatis (2005), Lu and Liang (2008), Sun et al.

(2012), and Hyun et al. (2012) derived the AIPW estimators for competing risks data

with missing causes of failure. With application to HIV vaccine efficacy trials, Sun and

Gilbert (2012) and Gilbert and Sun (2015) developed estimation approaches and hy-

pothesis testing procedures based on the AIPW technique for stratified mark-specific

proportional hazards models with missing marks.

In this dissertation, we perform a careful study of missing data problems in the

survival data and recurrent event data. In Chapter 2, we develop a two-step esti-

mation procedure for competing risks data with missing causes of failure under the

cause-specific time-varying Cox model. The IPW estimator evaluated in the first

stage, and available auxiliary covariates are utilized to form an efficient and robust

two-stage AIPW estimator. This work is motivated by the Mashi study (Thior et al.,

2006) for investigating the effect of randomization to formula-feeding (FF) versus

breastfeeding plus extended infant zidovudine prophylaxis (BF+AZT) on death due
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to mother-to-child HIV transmission in Botswana. The causes of death are missing

for 61 infants of the 111 live-born infants who died in the Mashi trial.

In Chapter 3, we propose a nonparametric dynamic intensity model for recurrent

event data which allows various link functions and models varying covariate effects.

The local linear kernel smooth methods are employed to estimate the time-varying

effects and the effects that may depend on past histories simultaneously. Additionally,

it is essential to take into consideration covariates that may be subject to missing-

ness. For example, in vaccine clinical trials, the immune-response measurements are

usually very expensive, therefore not available for all participants. In Chapter 4, we

analyze recurrent event data with missing covariates under a nonparametric dynamic

additive intensity model. We apply the aforementioned AIPW technique to deal with

missing covariate values. Based on the local linear method for full data in the sense

that covariates are not missing, we achieve consistent AIPW estimators through an

iterative algorithm.



CHAPTER 2: TIME-VARYING COX MODEL FOR CAUSE-SPECIFIC HAZARD
FUNCTIONS WITH MISSING CAUSES

2.1 Introduction

Survival analysis is a collection of statistical procedures for analyzing the time until

the occurrence of the event of interest. The time is known as survival time because

death is the event of interest in many medical studies. In a sample of individuals,

survival time is usually not observed for everyone. We term incomplete observations as

censored survival time which makes the survival analysis different from other standard

statistical models (Aalen et al., 2008).

We usually study survival times through survival function and hazard function. Let

T be the survival time. The survival function S(t) is the unconditional probability

that the event time is later than a specified time t. The hazard function λ(t) is the

instantanous rate that the event occurred at t given the individual has survived until

t:

λ(t) = lim
∆t↓0

1

∆t
P{t ≤ T ≤ t+ ∆t |T ≥ t}.

Survival analysis examples include assessing the treatment effects for new drugs,

investigating the vaccine efficacy and effectiveness against some infectious diseases,

measuring the reliability of a mechanical or electronic system, and so on. The purpose

of many survival analysis is to study the effects of covariates on the hazard function.

Let Z = (Z1, . . . , Zp)
T be the p-dimensional covariate. We shall define the conditional
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hazard function of T at t given covariate Z = z as follows:

λ(t|Z = z) = lim
∆t↓0

1

∆t
P{t ≤ T ≤ t+ ∆t |T ≥ t, Z = z}.

The most widely used semiparametric survival model to model the survival time

considering covariates is the Cox proportional hazards model proposed by Cox (1972).

It assumes the conditional hazard function consists of an unspecified baseline hazard

function λ0(t) and an exponential part:

λ(t|Z = z) = λ0(t) exp{βTz}

where β is a p-dimensional vector of covariate coefficients. The standard Cox model

does not accommodate the situations where the covariate coefficient β may change

with time. We may consider a time-varying Cox model where β possesses a functional

form:

λ(t|Z = z) = λ0(t) exp{(β(t))Tz},

where β0(t) is a p-dimensional vector of unspecified coefficient functions of t. Unless

β(t) is constant, this model represents a non-proportional hazards model. Murphy

and Sen (1991) proposed a histogram sieve estimation procedure by assuming that

the coefficient functions are step functions. In Martinussen et al. (2002), a one-step

iterative estimation procedure for the cumulative coefficient functions is developed by

using the one-step Newton-Raphson iterative algorithm based on the log-likelihood.

Cai and Sun (2003) applied a local partial likelihood estimation technique to estimate

the time-dependent coefficients β(t). Tian et al. (2005) further studied the local

constant partial likelihood estimator and constructed point-wise and simultaneous
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confidence intervals for the regression parameters.

In many contexts, competing risks are said to be present when subjects in a follow-

up study potentially experience more than one type of event of interest, and the

occurrence of one type of failure prevents the other types of failures from occurring.

For example, if we consider death as the event of interest, subjects may die from

different causes.

Let V be the cause of failure, and Z(t) a possibly time-dependent p-dimensional

covariate over the follow-up time period [0, τ ]. Let Z̄(τ) = {Z(t), 0 ≤ t ≤ τ} be

the covariate history. For a typical competing risks data set, the observable random

variables are (X, δ, δV, Z(·)), where X = min{T,C}, δ = I(T ≤ C), and C is a

censoring random variable that is assumed to be independent of T and V conditional

on Z(·). The cause V is only observable when δ = 1, whereas if T is censored, the

cause is unknown. Suppose that the conditional cause-specific hazard function for

cause V = k at time t, given the covariate history Z̄(τ), only depends on the current

value Z(t), which is defined as

λk(t|z(t)) = lim
∆t↓0

1

∆t
P
(
t ≤ T ≤ t+ ∆t, V = k |T ≥ t, Z(t) = z(t)

)
(2.1)

with t ranging over a fixed interval [0, τ ].

During an oral cholera vaccine efficacy trial in Bangladesh (Clemens et al., 1990),

four different cholera strains circulated during the trial, and it was of interest to assess

vaccine efficacy against each of these strains. Since anti-cholera antibodies induced

by the vaccine tended to wane over time, there was concern that vaccine efficacy

would wane, which was observed for the overall vaccine efficacy regardless of strain
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(Durham et al., 1998). This suggests that it is important to allow for time-variations

in the assessment of strain-specific vaccine efficacy.

Motivated by this oral cholera vaccine trial, Sun et al. (2008) proposed the following

conditional strain-specific (also cause-specific) hazard function of the Cox model with

time varying coefficients:

λk(t|z(t)) = λk0(t) exp
(
βk(t)

Tz(t)
)
, k = 1, . . . K, (2.2)

where the strain/cause variable V is a categorical variable taking K categories, λk0(t)

is an unspecified baseline function and βk(t) = (βk1(t), . . . , βkp(t)) is a p-dimensional

vector of unspecified time-dependent regression coefficients.

In the analysis of competing risks data, the cause of failure is often missing due

to various reasons. For example, the Mashi clinical trial was conducted among HIV-

infected women and their infants to compare the effect of infant feeding strategy on

two outcomes in live-born infants: HIV infection (through postnatal mother-to-child

HIV transmission) and death (Thior et al., 2006). Twelve hundred HIV positive

pregnant mothers were randomized to two feeding strategies for their nascent infants:

6 months of breastfeeding and zidovudine for the infant (BF+AZT, 588 live-born

infants) versus 12 months of formula feeding with zidovudine for the infant for the

first month of life (FF, 591 live-born infants). All mothers were instructed to wean

their infants between 5 and 6 months of age, and were supplied free formula from

5 through 12 months of age to facilitate safe weaning. Infants were tested for HIV

infection at birth, monthly until age 7 months, at age 9 months, and then every three

month through age 18 months. Of the 111 live-born infants who died in the Mashi
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trial, 28 infants died of an HIV-related cause, 22 infants died of an HIV-unrelated

cause, and the cause of death was missing for 61 infants. We consider a death to

be HIV-related if either the study clinicians deemed the death HIV-related (n = 4

deaths), or the infant had at least one positive test result from the PCR assay used to

test for HIV infection prior to death (n = 24 deaths). On the other hand, we consider

a death to be HIV-unrelated if the study clinician deemed the death unrelated to

HIV/AIDS (n = 22 deaths). The Mashi study showed that breast-feeding increased

the risk of infants acquiring HIV by 7 months of age while formula-feeding increased

the risk of death by 7 months of age, and these treatment effects both waned toward

no effect by 18 months of age. However, the effect of randomized feeding strategy

on death due to HIV infection is unknown, and it is of our interest to assess the

treatment effect on HIV-related death with HIV-unrelated death as a competing risk.

Therefore, in the cause-specific Cox model with time varying coefficients, we allow

the cause V to be missing.

In situations where only a single cause of failure is of interest, the Cox model

with time-varying regression coefficients has been studied by Zucker and Karr (1990),

Murphy and Sen (1991), Martinussen et al. (2002), Cai and Sun (2003), Tian et al.

(2005) and Sun et al. (2009b). Modifying the score function of the local linear partial

maximum likelihood estimation of Cai and Sun (2003), we propose a two-stage effi-

cient procedure to estimate the model (2.2) with missing causes. In the first stage,

an inverse probability weighted (IPW) complete-case estimator is developed. This

estimator is consistent, but not efficient. More efficient and robust estimators can be

constructed by adding a second stage that models the probability of the failure cause
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conditional on auxiliary variables, which uses the IPW estimator as a component of

the estimating equation.

The rest of this chapter is organized as follows. Notations and assumptions are first

introduced in Section 2.2.1. The two-stage augmented inverse probability weighted

estimator (AIPW) is developed based on the IPW estimator in Sections 2.2.2 to

2.2.4. The asymptotic results for both the IPW and AIPW estimators are presented

in Section 2.3. A simulation study is conducted to examine the performances of

the proposed estimators and the results are presented in Section 2.4. The proposed

methods are applied to analyze the Mashi clinical trial data in Section 2.5. Some

conclusion remarks are given in Chapter 5.

2.2 Two-stage estimation via local linear partial likelihood

2.2.1 Notations and assumptions

Let R be the missing cause indicator such as R = 1 if δ = 1 and the cause V is

observed or if δ = 0, and R = 0 otherwise. The missing cause indicator R = 0 if

the failure time is observed but the cause of failure is not available, and R = 1 if the

failure time is censored. In addition to the covariate Z(·) considered in model (2.2),

our procedures allow use of the auxiliary covariates A = (δA(r), δA(v)) to improve

efficiency, where A(r) and A(v) are the measurements at the failure time T for subjects

with observed failures, A(r) can be used to predict the probability whether V is

observed or δ = 0, and A(v) can be used to inform the distribution of V .

Let W1 = (T, Z(T ), δA(r)), W2 = (T, Z(T ), δA(v)) and W3 = (T, Z(T )). We assume

the following missing at random (MAR) (Rubin, 1976) assumptions:
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MAR I: P (R = 1|V, δA(v), δ = 1,W1) = P (R = 1|δ = 1,W1);

MAR II: P (R = 1|V, δ = 1,W2) = P (R = 1|δ = 1,W2);

MAR III: P (R = 1|V, δ = 1,W3) = P (R = 1|δ = 1,W3).

Here, MAR I assumes that given δ = 1 and the covariates measured for all subjects

W1, the probability of observing the cause of failure V is independent of V and A(v).

MAR II and MAR III assume the probability of observing V is independent of V

conditional on δ = 1 and either W2 or W3. MAR II also implies that V is independent

of R given W2: P (V = k|R = 1, δ = 1,W2) = P (V = k|δ = 1,W2). We denote

P (R = 1|δ = 1,W1) and P (V = k|δ = 1,W2) by r(W1) and ρk(W2) respectively. Let

π(Q) = P (R = 1|Q), where Q = (W1, δ). Then π(Q) = δr(W1) + (1− δ).

The observed data consist of iid replicates

Oi = {Xi, δi, Z̄i(τ), Ri, RiδiVi, δiA
(r)
i , δiA

(v)
i }, i = 1, . . . , n

of O = {X, δ, Z̄(τ), R,RδV, δA(r), δA(v)}. We define the counting processes Nik(t) =

I(Xi ≤ t, δi = 1, Vi = k), Ni(t) = I(Xi ≤ t, δi = 1) and the at-risk process Yi(t) =

I(Xi ≥ t).

Throughout the paper we assume that the baseline hazard function λk0(t) is un-

specified, positive and continuous, the coefficient functions {βkl(t)} have continuous

second derivatives in a neighborhood of t, and the covariate Z(t) is a locally bounded

predictable process.
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2.2.2 Full data local linear partial likelihood estimator

When there are no missing causes, the local linear partial likelihood method of Cai

and Sun (2003) can be used to estimate the regression coefficients model (2.2). For

cause V = k, by the Taylor expansion for u in a neighborhood of t,

βkl(u) ≈ βkl(t) + β′kl(t)(u− t), l = 1, 2, . . . , p. (2.3)

Let ξk(t) =
(
βk1(t), . . . , βkp(t), β

′
k1(t), . . . , β′kp(t)

)T
and Z̃i(u, u−t) = Zi(u)⊗(1, u−t)T,

where ⊗ is the Kronecker product. Let

S
(j)
f (u, ξ) =

1

n

n∑
i=1

Yi(u) exp
(
Z̃i(u, u− t)Tξ(t)

)(
Z̃i(u, u− t)

)⊗j
for j = 0, 1 and 2. Here a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT for a column vector a.

Following Cai and Sun (2003), the score function for ξk(t) is

Uf (t, ξk) =
n∑
i=1

∫ τ

0

Kh(u− t)
(
Z̃i(u, u− t)− Sf (u, ξk)

)
dNik(u), (2.4)

where Sf (u, ξ) = S
(1)
f (u, ξ)/S

(0)
f (u, ξ), Kh(·) = K(·/h)/h, K(·) is a symmetric ker-

nel function with support [−1, 1], and h is the bandwidth. The local linear partial

maximum likelihood estimator (mle) of βk(t) is the vector consisting of the first p

components of ξ̂f,k(t) that solves (2.4) with respect to ξk.

2.2.3 Inverse probability weighted estimator

When there are missing causes in data, a naive method for estimating ξk(t) is to

simply ignore the missing data and use the local linear partial likelihood score equation

(2.4) to fit the complete data only. Such complete-case estimator is inefficient and
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can lead to bias. Following the idea of Horvitz and Thompson (1952), the method

of inversely weighting the probability of complete-case has been commonly used in

missing data problems. To do this, we need to estimate the probability of a complete

case, π(Qi) = δir(W1,i) + (1 − δi). Let r(W1,i, ψ) be a parametric model for r(W1,i),

where W1,i = (Ti, Zi(Ti), A
(r)
i ) and ψ is a q-dimensional vector of parameters. The

maximum likelihood estimator ψ̂ of ψ is obtained by maximizing the observed data

likelihood,
n∏
i=1

(
r(W1,i, ψ)

)Riδi(
1− r(W1,i, ψ)

)(1−Ri)δi
. (2.5)

Let

S
(j)
I (u, ξ, ψ) =

1

n

n∑
i=1

qiYi(u) exp
(
Z̃i(u, u− t)Tξ(t)

)(
Z̃i(u, u− t)

)⊗j
,

for j = 0, 1, 2, where qi = Ri/π(Qi, ψ). Denote SI(u, ξ, ψ) = S
(1)
I (u, ξ, ψ)/S

(0)
I (u, ξ, ψ).

Let ψ̂ be the mle maximizing the observed data likelihood (2.5). The inverse proba-

bility weighted (IPW) of complete-case estimating function for ξk(t) is given by

UI(t, ξk, ψ̂) =
n∑
i=1

∫ τ

0

Kh(u− t)
(
Z̃i(u, u− t)− SI(u, ξk, ψ̂)

)
q̂i dNik(u), (2.6)

where q̂i = Ri/π(Qi, ψ̂). The IPW estimator ξ̂I,k(t) of ξk is the solution of the

estimating equation UI(t, ξk, ψ̂) = 0. Then β̂I,k(t) is the first p components of ξ̂I,k(t).

The baseline function λk0(t) can be estimated by kernel smoothing λ̂I,k0(t) =∫ τ
0
Kh(u− t) dΛ̂I,k0(u), where

Λ̂I,k0(t) =
n∑
i=1

∫ T

0

1

nS
(0)
I (u, ξ̂I,k, ψ̂)

q̂i dNik(u)

is the estimator of the cumulative baseline function Λk0(t) =
∫ T

0
λk0(u) du.
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2.2.4 Augmented inverse probability weighted estimator

Studies have shown that the IPW estimator is inefficient and relies on correct

modeling of the probability r(W1,i, ψ), cf. Scharfstein et al. (1999), Gao and Tsiatis

(2005), and Lu and Liang (2008). To increase estimation efficiency, we propose the

augmented inverse probability weighted complete-case estimating function obtained

by subtracting the projection term of the simple weighted estimating function onto

the tangent space. This methodology was advocated by Robins et al. (1994) and has

been shown to be more efficient and enjoy double robustness property in a variety of

situations, cf. Gao and Tsiatis (2005), Lu and Liang (2008), and Sun et al. (2017)

among others. The proposed augmented inverse probability weighted complete-case

estimating equation utilizes available information for individuals with missing causes

through a consistent estimator of the conditional distribution of the cause, ρk(W2).

The IPW estimators λ̂I,k(t) and ξ̂I,k(t) are used in the construction of this consistent

estimator.

Let W3,i = (Ti, Zi), W2,i = (W3,i, δiA
(v)
i ) and ρk(w) = P (Vi = k|δi = 1,W2,i = w),

where w = (t, z, a). Under MAR II and MAR III, by Lemma A.1 given in the

Appendix, we have

ρk(w) =
λk(t|z)P (A

(v)
i = a|Ri = 1, δi = 1, Vi = k, Ti = t, Zi = z)∑K

l=1 λl(t|z)P (A
(v)
i = a|Ri = 1, δi = 1, Vi = l, Ti = t, Zi = z)

. (2.7)

Let h(a|k, t, z) = P (A
(v)
i = a|Ri = 1, δi = 1, Vi = k, Ti = t, Zi = z). If A

(v)
i is

independent of Vi conditional on (δi = 1, Ti, Zi), then h(a|k, t, z) does not depend

on k, and in this case ρk(w) = λk(t|z)/
∑K

l=1 λl(t|z). This relationship also holds if
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there is no such candidate auxiliary A
(v)
i available. In the situation that the auxiliary

variable A
(v)
i correlates Vi conditional on (δi = 1, Ti, Zi), ρk(w) depends on h(a|k, t, z)

as well as λk(t|z) for k = 1, . . . , K. Equation (2.7) shows how auxiliary variables can

be utilized to improve efficiency. Although nonparametric/semiparametric density

estimation methods are available, the development in the conditional density estima-

tion is limited, in particular if the dimension is high (Hall et al., 2004; Efromovich,

2010; Izbicki and Lee, 2016). Here, we posit a parametric model h(a|k, t, z, θk) for

h(a|k, t, z), where h(·) is a known function and θk is a vector of unknown parameters.

The maximum likelihood methods can be to used to obtain the estimator θ̂k of θk.

Let λ̂I,k(t|z) = λ̂I,k0(t) exp
(
{β̂I,k(t)}Tz

)
be the IPW estimator of the conditional

cause-specific hazard function. Then ρk(w) can be estimated by

ρ̂k(w) =
λ̂I,k(t|z)h(a|k, t, z, θ̂k)∑K
l=1 λ̂I,l(t|z)h(a|l, t, z, θ̂l)

. (2.8)

The augmented inverse probability weighted estimating function for ξk(t) is ob-

tained by subtracting the projection term of the simple weighted estimating function

onto the tangent space as follows:

UA(t, ξk, ψ̂, ρ̂k) =
n∑
i=1

∫ τ

0

Kh(u− t)
(
Z̃i(u, u− t)− Sf (u, ξk)

)[
q̂i dNik(u)

+ (1− q̂i)ρ̂k(W2,i) dNi(u)
]
. (2.9)

The augmented inverse probability weighted estimator (AIPW) of ξk(t) is the solution

to the estimating equation UA(t, ξk, ψ̂, ρ̂k) = 0 and is denoted by ξ̂A,k(t). The AIPW

estimator β̂A,k(t) of βk(t) is the first p components of ξ̂A,k(t).
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The baseline function λk0(t) can be estimated by λ̂A,k0(t) =
∫
Kh(u− t) dΛ̂A,k0(u),

where

Λ̂A,k0(t) =
n∑
i=1

∫ T

0

1

nS
(0)
f (u, ξ̂A,k)

[
q̂iI(Vi = k) + (1− q̂i)ρ̂k(W2,i)

]
dNi(u)

is the estimator of the cumulative baseline function of Λk0(t).

The AIPW estimator β̂A,k(t) can be considered as a two-stage estimator because

the augmentation term of its estimation equation directly utilizes the IPW estimator

(termed the first-stage estimator) through ρ̂k(w) in (2.8). The auxiliary variables

are utilized through estimation of h(a|k, t, z, θk). Even if auxiliary variables are not

available, the first-stage IPW estimator can be utilized further to improve efficiency

through ρ̂k(w) = λ̂I,k(t|z)/
∑K

l=1 λ̂I,l(t|z).

2.3 Asymptotic properties

In this section, we investigate the asymptotic properties of the IPW estimator

β̂I,k(t) and the AIPW estimator β̂A,k(t). Let Ft be the right continuous filtration

generated by the data processes {Nik(s), Yi(s), Zi(s); i = 1, . . . , n, k = 1, . . . , K, 0 ≤

s ≤ t}. It follows that Mik(t) = Nik(t) −
∫ T

0
Yi(u)λk(u|Zi(u))du, i = 1, . . . , n, k =

1, . . . , K, are multivariate orthogonal martingales with respect to Ft, cf., Aalen and

Johansen (1978). To accommodate additional information introduced due to miss-

ing data, we define the augmented filtration F∗t generated by the data processes

{Nik(s), Yi(s), Zi(s), Ri, Ai; i = 1, . . . , n, k = 1, . . . , K, 0 ≤ s ≤ t}. Let λ∗ik(t) dt =

P (Ti ∈ [t, t + dt), Vi = k|Xi ≥ t, Zi(t), Ri, Ai). Then Yi(t)λ
∗
ik(t) is the intensity of

Nik(t) with respect to F∗t , and M∗
ik(t) = Nik(t)−

∫ T

0
Yi(u)λ∗ik(u)du, i = 1, . . . , n, k =



16

1, . . . , K, are multivariate orthgonal martingales with respect to F∗t .

Additional notations are introduced in the following. Let ν0 =
∫
K2(x)dx, µ2 =∫

x2K(x)dx and P (t|Zi(t)) = Pr(Xi ≥ t|Zi(t)). Let s(j)(t, βk) = E
[
P (t|Zi(t))

exp
(
Zi(t)

Tβk(t)
)

(Zi(t))
⊗j ] for j = 0, 1, 2, and define

Σk(t) =
[
s(2)(t, βk)−

(
s(1)(t, βk)

)⊗2
/s(0)(t, βk)

]
λk0(t),

Σ∗k(t) = E
[(
Zi(t)− s(1)(t, βk)/s

(0)(t, βk)
)⊗2

Riπ
−2(Qi)Yi(t)λ

∗
ik(t)

]
.

2.3.1 Asymptotic results of the IPW estimator

The consistency and asymptotic normality of β̂I,k(t), k = 1, 2, . . . , K, are estab-

lished in the next two theorems. To avoid the problems at the boundaries t = 0 and

t = τ , we study the asymptotic properties of β̂k(t) for interior values of t ∈ [t1, t2] ⊂

(0, τ). The proofs of Theorems 2.1 and 2.2 are placed in the Appendix.

Theorem 2.1. Under Condition A given in the Appendix, if the model for r(W1,i) is

correctly specified, then β̂I,k(t)
P−→βk(t) uniformly in t ∈ [t1, t2] ⊂ (0, τ) as n→∞.

Theorem 2.2. Under Condition A given in the Appendix, if the model for r(W1,i) is

correctly specified, then

√
nh
(
β̂I,k(t)− βk(t)−

1

2
µ2h

2β′′k(t)
)
D−→N

(
0, ν0Σ−1

k (t)Σ∗k(t)Σ
−1
k (t)

)
, (2.10)

for t ∈ [t1, t2] ⊂ (0, τ) as n→∞.

Let II,k(t) be the upper left p× p matrix of

1

n

n∑
i=1

∫ τ

0

Kh(u− t)JI(u, ξ̂I,k(t), ψ̂)q̂i dNik(u),
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and Σ̃I,k(t) be the upper left p× p matrix of

n−1h
n∑
i=1

∫ τ

0

(
Kh(u− t)

)2
(
Z̃i(u, u− t)− SI(u, ξ̂I,k(t), ψ̂)

)⊗2

q̂2
i dNik(u),

where JI(u, ξ, ψ) = S
(2)
I (u, ξ, ψ)/S

(0)
I (u, ξ, ψ) − (SI(u, ξ, ψ))⊗2. Then the asymptotic

variance ν0Σ−1
k (t)Σ∗k(t)Σ

−1
k (t) of β̂I,k(t) can be consistently estimated by I−1

I,k(t)Σ̃I,k(t)

I−1
I,k(t) as n→∞.

2.3.2 Asymptotic results of the AIPW estimator

Next, we present the asymptotic properties of the AIPW estimators β̂A,k(t), k =

1, 2, . . . , K. Theorem 2.3 shows that the AIPW estimators are consistent if either

r(W1,i) or h(A
(v)
i |k, Ti, Zi) is correctly specified, a double robustness property. The-

orem 2.4 shows the asymptotic normality of β̂A,k(t), k = 1, 2, . . . , K. The proofs of

Theorems 2.3 and 2.4 are placed in the Appendix.

Theorem 2.3. Under Condition A given in the Appendix, β̂A,k(t)
P−→βk(t) uniformly

in t ∈ [t1, t2] ⊂ (0, τ) as n → ∞. This consistency holds if either r(W1,i) or

h(A
(v)
i |k, Ti, Zi) is correctly specified.

Theorem 2.4. Under Condition A given in the Appendix, if both r(W1,i) and h(A
(v)
i |k,

Ti, Zi) are correctly specified, then

√
nh
(
β̂A,k(t)− βk(t)−

1

2
µ2h

2β′′k(t)
)
D−→N

(
0, ν0Σ−1

k (t)Σ∗k(t)Σ
−1
k (t)

)
, (2.11)

for t ∈ [t1, t2] ⊂ (0, τ) as n→∞.
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Let IA,k(t) be the upper left p× p matrix of

1

n

n∑
i=1

∫ τ

0

Kh(u− t)Jf (u, ξ̂A,k(t))
[
q̂iI(Vi = k) + (1− q̂i)ρ̂k(w)

]
dNi(u),

and Σ̃A,k(t) be the upper left p× p matrix of

h

n

n∑
i=1

∫ τ

0

(
Kh(u− t)

)2
(
Z̃i(u, u− t)− Sf (u, ξ̂A,k(t))

)⊗2[
q̂iI(Vi = k) + (1− q̂i)ρ̂k(w)

]2

× dNi(u),

where Jf (u, ξ) = S
(2)
f (u, ξ)/S

(0)
f (u, ξ)−(Sf (u, ξ))

⊗2. The asymptotic variance ν0Σ−1
k (t)

Σ∗k(t)Σ
−1
k (t) of β̂A,k(t) can be consistently estimated by I−1

A,k(t)Σ̃A,k(t)I−1
A,k(t) as n →

∞.

2.4 Numerical results

We present a simulation study conducted to evaluate the performance of the pro-

posed methods. The AIPW estimator with missing causes is compared to the com-

plete data estimator (CC) where the observations with missing causes are deleted

from the analysis, and to the IPW estimator. These estimators are also compared to

the full data likelihood estimator (FULL), which analyzes the simulated full dataset

without missing causes.

We consider two failure causes with the two cause-specific hazard functions equal

to

λ1(t|Z) = 0.3(t+ 1)−1 exp(0.2Z), λ2(t|Z) = 0.1(t+ 0.1)−1/2 exp((t+ 0.1)1/2Z),

(2.12)

where Z has a uniform distribution on [0, 1]. All failure times are censored at the
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administration time τ = 2. In addition, the random-censoring time C is generated

from a uniform distribution on [0, 10] which yields about 50% censoring level. A

logistic regression model logit{r(W1, ψ)} = WT
1 ψ is considered for missing causes,

where W1 = (1, Z)T. The percentages of missing causes are approximately 30%, 40%

and 50% for ψ = (1.4,−1)T, ψ = (1,−1)T and ψ = (0.5,−1)T, which are denoted by

(r30), (r40) and (r50), respectively.

We also generate a binary auxiliary covariate A
(v)
i for the failure cause Vi from the

following models for h(a|k, t, z):

P (A
(v)
i = 1|Vi = k) =

eak

1 + eak
, k = 1, 2. (2.13)

The models allow A
(v)
i depend on Vi, but not Ti and Zi conditional on Vi, thus

h(a|k, t, z) = h(a|k). We examine the performance of AIPW estimators under four dif-

ferent levels of association between A(v) and V , by considering the settings (a1, a2) =

(1, 1), (a1, a2) = (−1, 1), (a1, a2) = (−2, 2), and (a1, a2) = (−3, 3), which result in

approximate Kendall’s tau values of 0, 0.45, 0.75 and 0.90, respectively. These four

settings are denoted by (A0), (A1), (A2), and (A3), respectively. We note that A
(v)
i

is independent of Vi under the setting (A0), and the association between A
(v)
i and Vi

increases from (A1) to (A3).

Let ĥ(a|k) be the estimator of the conditional mass function h(a|k) of A
(v)
i given

Vi = k. If follows from (2.7) that ρk(w) is estimated by

ρ̂k(w) =
λ̂I,k(t|z)ĥ(a|k)

λ̂I,1(t|z)ĥ(a|1) + λ̂I,2(t|z)ĥ(a|2)
, for k = 1, 2, (2.14)

where λ̂I,k(t|z), k = 1, 2, are the first stage IPW estimators.
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To study the performance of the proposed IPW and AIPW estimators under mis-

specifications of the models r(W1, ψ) and/or h(a|k), the simulations are conducted

by positing a misspecified constant model r0 ∈ (0, 1) for r(W1, ψ) and/or by positing

(A0) while the true setting is (A2). The estimators based on the correctly specified

models of r(W1, ψ) and h(a|k) are compared to those obtained when at least one

of the two models are misspecified. We use IPW-c to denote the IPW estimator

with the correctly specified model r(W1, ψ) for missing causes, and IPW-m for the

IPW estimator with misspecified model for missing causes. AIPW-A2-c stands for

the AIPW estimator under the setting (A2) with the correctly specified model for

r(W1, ψ), and AIPW-A2-m stands for the AIPW estimator under the setting (A2)

for the misspecified model for missing causes. AIPW-mA2-c stands for the AIPW

estimator with misspecified h(a|k) by assuming (A0) while the true setting is (A2)

but correctly specified model r(W1, ψ), while AIPW-mA2-m is the AIPW estimator

where both h(a|k) and r(W1, ψ) are misspecified.

We use the Epanechnikov kernel K(x) = 3/4(1− x2)I{|x| ≤ 1}. The bandwidth is

selected via a 5-fold cross validation procedure. Specifically, we randomly divide the

sample into 5 equally sized groups, say (G1, G2, · · · , G5). The selected bandwidth is

calculated using the formula hopt = arg minh
∑5

l=1 PEl(h), where

PEl(h) = −
K∑
k=1

∑
i∈Gl

∫ τ

0

[
(β̂

(−l)
A,k (t))TZi(t)− log

(∑
s∈Gl

Ys(t) exp
(

(β̂
(−l)
A,k (t))TZs(t)

))]

× dNik(t).

Here, β̂
(−l)
A,k (t) is the AIPW estimator based on the data excluding subjects in Gl. The



21

PEl(h) is a cross validation measure of the prediction error based on the minus of

the log-partial likelihood function, cf., Tian et al. (2005). To increase the stability,

this procedure is repeated 10 times. We tried a set of bandwidths from 0.1 to 0.5 and

noted that the prediction error dropped dramatically at first and then remained stable

when h ≥ 0.3 (Figure 6). Figure 7 shows the perfomance of our proposed two-stage

AIPW estimators using different bandwidths for sample size n = 1200. The bias

is not sensitive to the bandwidth selection. The standard error gets smaller when

using larger bandwidth. Moreover, the coverage probabilities, especially for large

bandwidths (h = 0.4 and h = 0.5), are slightly lower than the nominal level, which

implies the estimated standard errors underestimate the sample standard errors.

The simulation results for β̂I,k(t) and β̂A,k(t) under various correctly specified and

misspecified models, along with the CC and the FULL estimators, are reported in Fig-

ures 1 to 5. The efficiency of an estimator is examined through the relative efficiency

with respect to the FULL estimator which is the empirical standard deviation of the

FULL estimator divided by the empirical standard deviation of the corresponding

estimator over 500 simulations.

Figure 1 to 3 show the performance of estimators for sample size n = 800, 1200

and 2000. The complete-case estimator (CC) for β(t) has large biases. The biases

of the IPW estimator are small when the parametric model for r(W1, ψ) is correctly

specified but very large when it is misspecified. The biases of the AIPW estimators

are very small for all settings, even when both the parametric models are misspecified.

Furthermore, the AIPW estimators are more efficient than the IPW estimators even

when the auxiliary variable A(v) is independent of V . The 95% empirical confidence
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intervals have reasonable coverage probabilities (CP), with a small amount of un-

dercoverage for estimators, more so for the CC estimator and the IPW-m estimator.

Specifically, for the simulation with n = 800, the CP is around 94% in the early time

and lower later. To estimate time-varying coefficients, we require enough number

of failures within a small window for each time point. However, in our simulation

setting, the censoring rate is around 50% and the missing probability for each cause

is approximately 30%, which results in only about 140 failures with complete causes.

And most events occur in the early stages. For larger sample size (n = 1200 and

n = 2000), the coverage probability is closer to the nominal level (95%).

Figure 4 shows the results of the AIPW estimator under the setting (A2) of model

(2.13) when the probability of missing causes is 30%, 40% and 50%. It shows that

higher missing rate results larger standard error and thus smaller relative efficiency

of the AIPW estimator.

Figure 5 shows the performance of the AIPW estimator under four different levels of

association between the auxiliary variable A(v) and the cause V when the probability

of missing causes is 30%. It indicates that performance improves as the association

strengthens.

2.5 Analysis of the Mashi data

We apply our proposed method to the Mashi clinical trial data described in the

introduction. We include in the analysis the subset of live-born infants with complete

covariate information at delivery, which totals 1123 live-born infants out of the 1179

total live-births (95.3%) (where for twins only the first live-born infant is included).
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Of the 107 infants who died over the first 18 months of life, 28 were HIV-related

deaths, 21 were HIV-unrelated deaths, and 58 had missing death cause.

Considering the 20 covariates of the babies or their mothers, we used logistic regres-

sion and all subsets model selection (with criterion Mallows Cp) to select a model for

predicting r(W1) as in Sun et al. (2012). The selected model included the following

covariates: the infant had birth weight < 2.5 kilograms, the second randomization as-

signments of mom/baby was switched from Placebo/Placebo to Placebo/Nevirapine

during the trial due to the DSMB recommendation, log 10 plasma viral load level of

the mom at delivery, the infant had AZT toxicity, and whether the baby was hos-

pitalized with a serious adverse event. We took the binary covariate of whether the

infant received HAART (highly active ART therapy) as an auxiliary covariate A(v)

and used a logistic regression model for h(A(v)|V = k) needed for ρk(W2).

We considered the following cause-specific Cox model with time varying coefficient

λk(t) = λk0(t) exp {βk(t)z}, where z is the feeding strategy (1 for BF+AZT and 0 for

FF defined in the first section). Figure 8 shows both the IPW and AIPW estimators

and the 95% pointwise confidence bands of βk(t) for each cause with k = 1 for

HIV-related death and k = 2 for HIV-unrelated death. Figure 8 also includes the

estimation of logarithm of the hazard ratio for all-cause death using the method of

Cai and Sun (2003). The estimations are evaluated over 100 evenly distributed grid

points between 0 and 365 days. The bandwidth h = 219 days is chosen using the

5-fold cross-validation procedure. The IPW and the AIPW estimation of βk(t) are

close but more different in early and later time for the follow-up study, especially for

k = 1. The confidence bands of the IPW estimator is slightly wider as expected.
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Figure 8 supports that BF+AZT had an effect on reducing HIV-related deaths

compared to FF until about 200 days, and BF+AZT also had an effect, albeit weak,

on reducing HIV-unrelated deaths compared to FF. However, after about 300 days

the data suggest that the risk of HIV-related death may have been greater for the

BF+AZT arm compared to the FF arm, whereas this is not the case for HIV-unrelated

death. Figure 8 (c) shows BF+AZT reduces the risk of all-cause death compared to

FF before 200 days, however, it elevates the risk after 200 days. Figures 8(a) and (c)

also indicate a lack of fit of the Cox model for the first year of follow-up. The results

are consistent with the original study results that showed that infants assigned to

formula-feeding (FF) had a higher rate of all-cause mortality by age of 7 months than

those assigned to BF+AZT (Thior et al., 2006).
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Figure 1: Bias, relative efficiency and coverage probability of the IPW and AIPW
estimators for β1(t) = 0.2 and β2(t) =

√
t+ 0.1 with 30% of missing causes under

the correctly specified and misspecified models of r(W1, ψ) and h(a|k), based on 500
simulations for n = 800 and h = 0.3. The legends AIPW-A2 and AIPW-mA2 refer
to the AIPW estimators using the correctly specified (A2) and misspecified (A2),
respectively, while -c and -m indicate the estimators using the correctly specified and
misspecified model for r(W1), respectively. FULL is for the estimator based on the
full data and CC is for the estimator based on the complete data only.
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Figure 2: Bias, relative efficiency and coverage probability of the IPW and AIPW
estimators for β1(t) = 0.2 and β2(t) =

√
t+ 0.1 with 30% of missing causes under

the correctly specified and misspecified models of r(W1, ψ) and h(a|k), based on 500
simulations for n = 1200 and h = 0.3. The legends AIPW-A2 and AIPW-mA2 refer
to the AIPW estimators using the correctly specified (A2) and misspecified (A2),
respectively, while -c and -m indicate the estimators using the correctly specified and
misspecified model for r(W1), respectively. FULL is for the estimator based on the
full data and CC is for the estimator based on the complete data only.
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Figure 3: Bias, relative efficiency and coverage probability of the IPW and AIPW
estimators for β1(t) = 0.2 and β2(t) =

√
t+ 0.1 with 30% of missing causes under

the correctly specified and misspecified models of r(W1, ψ) and h(a|k), based on 500
simulations for n = 2000 and h = 0.3. The legends AIPW-A2 and AIPW-mA2 refer
to the AIPW estimators using the correctly specified (A2) and misspecified (A2),
respectively, while -c and -m indicate the estimators using the correctly specified and
misspecified model for r(W1), respectively. FULL is for the estimator based on the
full data and CC is for the estimator based on the complete data only.
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Figure 4: Bias, relative efficiency and coverage probability of the AIPW estimators
for β1(t) = 0.2 and β2(t) =

√
t+ 0.1 under the setting (A2) and when the percentages

of missing causes are 30%, 40% and 50%, denoted by AIPW-A2-r30, AIPW-A2-r40,
and AIPW-A2-r50, respectively, based on 500 simulations for n = 1200 and h = 0.3.
FULL is for the estimator based on the full data and CC is for the estimator based
on the complete data only.
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Figure 5: Bias, relative efficiency and coverage probability of the AIPW estimators
for β1(t) = 0.2 and β2(t) =

√
t+ 0.1 with 30% missing causes under the settings

(A0), (A1), (A2) and (A3), based on 500 simulations for n = 1200 and h = 0.3.
The legends AIPW-A0-r30, AIPW-A1-r30, AIPW-A2-r30 and AIPW-A3-r30 stand
for the AIPW estimators for 30% missing causes and under the settings (A0), (A1),
(A2) and (A3), respectively. FULL is for the estimator based on the full data and
CC is for the estimator based on the complete data only.
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Figure 6: The average of the prediction errors from 10 simulations with sample size
n = 1200 versus the bandwidth h. The simulation setting is (A2) and when the
percentage of missing causes is 30%.
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Figure 7: Bias, standard error and coverage probability of the AIPW estimators for
β1(t) = 0.2 and β2(t) =

√
t+ 0.1 using different bandwidths with 30% of missing

causes under the setting (A2) based on 500 simulations for n = 1200.
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Figure 8: Estimation of βk(t) with 95% pointwise confidence bands for the Mashi
randomized clinical trial: log hazard ratio (BF+AZT / FF) for (a) HIV-related death,
(b) HIV-unrelated death and (c) all-cause death.



CHAPTER 3: GENERALIZED NONPARAMETRIC DYNAMIC INTENSITY
MODELS FOR RECURRENT EVENT DATA

3.1 Introduction

The intensity-based models have been commonly used to analyze the recurrent

event data. Andersen and Gill (1982) proposed a multiplicative intensity model,

which is the extension of the Cox regression model to the recurrent event process.

This model permits proportional effects of time-dependent covariates on the inten-

sity function. Nielsen et al. (1992) introduced frailty variables into the multiplicative

intensity model for event history data where the intensities may depend on unob-

servable random variables. The book by Andersen et al. (1993) is a thorough re-

view of intensity-based models, covering both mathematical details and discussions

of practical applications. Zeng and Lin (2006) developed nonparametric estimation

procedures for a class of semiparametric transformation models which accommodates

various cases of intensity-based models. They further studied this broad class of trans-

formation intensity models with random effects for recurrent events (Zeng and Lin,

2007). Chen et al. (2013) proposed a semiparametric frailty model for overdispersed

recurrent events data with treatment switching where EM algorithm was utilized to

compute the maximum likelihood estimates.

The time since the last event, gap time, is another research interest when analyzing

the recurrent event data. Many models and statistical inference methods for these
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models have been developed. Related literature includes, but is not limit to, Gill

(1980), Gail et al. (1980), Prentice et al. (1981), Vardi (1982), Dabrowska et al.

(1994), Lawless et al. (2001), Huang (2002), Chang (2004), Strawderman (2005), and

Chang and Tzeng (2006). A comprehensive review of statistical models for recurrent

event processes is given by Cook and Lawless (2007).

In this chapter, we simultaneously explore the time-varying and gap-time-varying

effects of covariates on the intensity for recurrent event data under generalized non-

parametric dynamic intensity models. This class of models is a mixture of Poisson

and renewal-type models, but includes these models as specific cases. In the lit-

erature, Lawless and Thiagarajah (1996) modeled time trends and effects of past

events through parametric Cox-type intensity models considering both the calendar

time and gap time. Peña and Hollander (2004) represented a general and flexible

class of dynamic recurrent event models that incorporate the effects of covariates,

the impact on event counts, the influence of the backward recurrence time, as well

as latent variables. The semiparametric estimation procedures are proposed in Peña

et al. (2007) using a very general effective age process. Asymptotic properties of

these semiparametric estimators are established by Peña (2016). However, there is

still a need for developing nonparametric estimation procedures under a more general

class of nonparametric dynamic intensity models, which includes multiplicative and

additive intensity models as special cases.

Several studies, for instance Hoover et al. (1998), Cai et al. (2000), Cai and Sun

(2003) and Sun and Wu (2005), have been carried out on varying-coefficient models

for survival analysis and longitudinal studies. Scheike (2001) presented a nonpara-
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metric varying-coefficient survival model with two time-scales. A covariate-varying

additive hazards model is proposed by Yin et al. (2008) to explore the nonlinear inter-

actions between covariates. Qi et al. (2017) investigated a generalized semiparametric

varying-coefficient model for longitudinal data that can flexibly model three types of

covariate effects: time-constant effects, time-varying effects, and covariate-varying ef-

fects. They developed the estimation procedure via local linear smoothing and profile

weighted least squares estimation techniques. For recurrent event process, Li et al.

(2018) extended the aforementioned generalized semiparametric varying-coefficient

model to the mean model. In Section 3.2.2, we employ the local linear smoothing

method to estimate the mixed effects that include time-varying effects and the effects

that may depend on past histories.

Our proposed model is driven by a malaria vaccine clinical trial. Malaria is a dis-

ease caused by the protozoan parasite Plasmodium, spread by infected mosquitoes.

People at risk of malaria may experience recurrent malaria infections. In the trial,

participants were randomized to several vaccine groups to measure the vaccine effects

on preventing malaria infections. Since the protective immunity is not only induced

by the malaria vaccine but also partially developed after malaria infections, we intend

to investigate the time-varying change in vaccine efficacy and infection-induced im-

munogenicity through generalized intensity models that capture the dynamic features

of recurrent event data. This clinical trial is still on the go. The method is expected

to be applied to the Malaria vaccine clinical trial data once the trial is completed.

In this dissertation, we apply our proposed method to the Hemodialysis (HEMO)

Study where death and hospitalizations are events of interest. This study includes
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7626 hopitalizations from 1846 chronic hemodialysis patients at 15 participating clin-

ical centers. The patients were randomized between March 1995 and October 2000.

The follow-up continued until December 31, 2001, with the maximum follow-up time

of 6.64 years and the mean follow-up time of 2.63 years. Using a 2-by-2 factorial de-

sign, hemodialysis patients were randomly assigned to either standard-dose or high-

dose and to either low-flux or high-flux hemodialysis (Eknoyan et al., 2002; Greene

et al., 2000). We are interested in studying the time-varying and gap-time-varying

effects of covariates on the intensity of all-cause hospitalizations for hemodialysis

patients.

Nonparametric estimation procedure for the proposed model is developed in Section

3.2. The asymptotic properties of the proposed estimators, including the uniform

consistency and weak convergence, are established in Section 3.3. Simulation studies

are conducted and the results are discussed in Section 3.4.

3.2 Dynamic Statistical Models and Nonparametric Estimation

3.2.1 Notation and Model

In a random sample of n subjects, for subject i, the recurrent events occur at times

0 < Ti,1 < Ti,2 < · · · . Let Ni(t) =
∑∞

j=1 I(Ti,j ≤ t) be the number of events recorded

for the i-th subject by time t, where I(·) is the indicator function. Considering the

censoring time Ci which is the minimum of a random censoring time and the end

of follow-up τ , the observed ocurrence time is 0 < Ti,1 < Ti,2 < · · · < Ti,ni < Ci,

where ni is the total number of events observed for subject i. The observed counting

process can be written as N o
i (t) =

∫ T

0
Y (s)dNi(s), where Yi(t) = I(Ci ≥ t) is the
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at-risk process. let Ft be the history, a σ-algebra generated by the counting process

Ni(t) and possible covariate processes. Conditional on Ft− , the history up to time t,

the intensity function gives the instantaneous probability of an event occuring at t:

λi(t) = lim
∆t↓0

Pr(∆Ni(t) = 1|Ft−)

∆t
,

where ∆Ni(t) = Ni(t + ∆t−) − Ni(t
−) is the number of events in the interval [t, t +

∆t). When events occurring in continuous time, we assume two events cannot occur

simultaneously, therefore E(dNi(t)|Ft−) = λi(t)dt. Let Gt = Ft ∨ σ(C1, . . . , Cn), a

σ-algebra generated by Ft and censoring processes. We assume that the censoring

is assumed to be independent in the sense that E(dNi(t)|Gt−) = E(dNi(t)|Ft−) =

λi(t)dt. Let {Fot } is a σ-algebra generated by the observed data. Note that the at-risk

processes Yi(t) are predictable with respect to Fot . We assume λi(t) is Fot -predictable.

Then, we have E(dN o
i (t)|Fot−) = Yi(t)E(E(dNi(t)|Gt−)|Fot−) = Yi(t)E(λi(t)dt|Fot−) =

Yi(t)λi(t)dt.

Let {Ui,k(t), k = 1, . . . , K} be a series of Ft-predictable covariate processes which

depend on the past event history for subject i. It may relate to the number of events

observed before time t, Ni(t
−), or previous event times {Ti,j : Ti,j < t}. Then, we

propose a general class of nonparametric dynamic intensity models for recurrent event

processes:

λi(t) = g−1
{
αT(t)Xi(t) +

K∑
k=1

γTk (Ui,k(t))Wi,k(t)
}

(3.1)

for 0 ≤ t ≤ Ci, where g(·) is a known link function, α(·) is a p1-dimensional vector of

unspecified functions and γk(·) are p2,k-dimensional vectors of unspecified functions
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for k = 1, . . . , K. Xi(t) and Wi,k(t) are corresponding time-dependent covariate

processes. The class of dynamic models in Peña (2016) is included in (3.1) under

these settings: (1) the link function is a logarithm function; (2) U1,k(t) = t− Ti,Ni(t−)

and U2,k(t) = Ni(t
−); (3) α(·) = α is a vector of time-constant coefficients; and (4)

γi,2(·) takes a parametric form. Our proposed models (3.1) also contain a well-known

self-exiting process, the Hawkes process:

λi(t) = α +
∑

k:Ti,k<t

γk(t− Ti,k).

Finally, by considering Ui,k(t) as possibly time-depend covariates, model (3.1) is a

generalized nonparametric varying-coefficients hazard model for failure times data,

where α(t) are time-varying effects and γk(u) are covariate-varying effects.

To estimate varying effects in scales of both time since a well-defined origin and

gap times for recurrent event data, we consider a special case of (3.1) in this Chapter:

λi(t) = g−1
{
αT(t)Xi(t) + I(Ni(t

−) > 0)γT(Ui(t))Wi(t)
}
, (3.2)

where Ui(t) = t − Ti,Ni(t−) is the time since the last event. There is an additional

indicator I(Ni(t
−) > 0) here since the gap time Ui(t) is only meaningful when the

subject experienced at least one event in the history. Covariates Xi(t) and Wi(t) have

time-varying and gap-time-varying effects on the occurrence of events respectively.

Figure 9 gives an illustrative example of our model (3.2) in a simulation. We plot the

following intensity using the solid curve:

λi(t) = 3− log(1 + t) + 0.2t− 0.513

1 + t− TNi(t−)

I(Ni(t
−) > 0).
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It starts at λ(0) = 3 and drops 0.513 immediately after the occurrence of the first

event. The decrease tends to zero as the gap time goes and is reseted to 0.513 when a

new event occurred. At the end, this recurrent event process is censored by a random

censoring time.

3.2.2 Local Linear Estimation

In the model (3.2), it is postulated that α(t) and γ(u) have first and second deriva-

tives α̇(t), γ̇(u), α̈(t) and γ̈(u). We locally parametrize α(t) in the neighborhood Nt0

of t0, and γ(u) in the neighborhood Nu0 of u0 by the Taylor expansion:

α(t) = α(t0) + α̇(t0)(t− t0) +O((t− t0)2)

and

γ(u) = γ(u0) + γ̇(u0)(u− u0) +O((u− u0)2).

For t ∈ Nt0 and Ui(t) ∈ Nu0 , model (3.2) then can be approximated by

λ∗i (t, ϑ
∗|t0, u0) = ϕ

{
ϑ∗T(t0, u0)X̃∗i (t|t0, u0)

}
,

where ϕ(·) = g−1(·), ϑ∗(t0, u0) = (αT(t0), γT(u0), α̇T(t0), γ̇T(u0))T and X̃∗i (t|t0, u0) =

(Xi(t)
T, I(Ni(t

−) > 0)Wi(t)
T, Xi(t)

T(t− t0), I(Ni(t
−) > 0)Wi(t)

T(Ui(t)− u0))T.

Under the independent censoring assumption, the local log-likelihood function at

t0 and u0 is:

l(ϑ∗|t0, u0) =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
[

log(λ∗i (t, ϑ
∗|t0, u0))dNi(t)

− λ∗i (t, ϑ∗|t0, u0)dt
]
,
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where Kh(·) = K1(·/h)/h and Kb(·) = K2(·/b)/b, K1(·) and K2(·) are kernel func-

tions, and h and b are bandwidth parameters. By taking the derivative of the local

log-likelihood function with respect to ϑ∗, we have the local score-type estimating

equation with the bivariate kernel, a product of two univariate kernel functions:

U(ϑ∗|t0, u0) =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
λ̇∗i (t, ϑ

∗|t0, u0)

λ∗i (t, ϑ
∗|t0, u0)

{
dNi(t)

− λ∗i (t, ϑ∗|t0, u0)dt
}
X̃∗i (t|t0, u0), (3.3)

where λ̇∗i (t, ϑ
∗|t0, u0) = ϕ̇

{
ϑ∗T(t0, u0)X̃∗i (t|t0, u0)

}
and ϕ̇(·) is the first derivative of

ϕ(·) with respect to ϑ∗. The bivariate estimator ϑ̂∗(t0, u0) can be obtained by solving

U(ϑ∗|t0, u0) = 0 through the Newton-Rapson method.

Let ϑ̂(t0, u0) be first p1 + p2 components of ϑ̂∗(t0, u0). Let α̂(t0, u0) include the

first p1 elements of ϑ̂(t0, u0) and let γ̂(t0, u0) be the vector including the elements

of ϑ̂(t0, u0) from p1 + 1 to p1 + p2. Thus, ϑ̂(t0, u0) = (α̂T(t0, u0), γ̂T(t0, u0))T. More

efficient estimators for αT(t0) and γT(u0) can be achieved by aggregating the estimated

bivariate functions α̂(t0, u0) and γ̂(t0, u0) along each direction:

α̂(t0) = n−1

n∑
i=1

α̂(t0, Ui(t0)), γ̂(u0) = n−1
u0

∑
tu0∈Vu0

γ̂(tu0 , u0), (3.4)

where Vu0 = ∪ni=1U
−1
i (u0), U−1

i (u0) = {t : Ui(t) = u0}, and nu0 = |Vu0|, the cardinal-

ity of Vu0 .
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3.2.3 Bandwidth Selection

In nonparametric estimation procedures, the bandwidth selection requires caution.

We select the optimal bandwidths via the K-fold cross validation method:

(hopt, bopt) = arg min
h,b

K∑
l=1

PEl(h, b).

The cross validation measure of the prediction error, PEl(h, b), is constructed based

on the minus of the log-partial likelihood function (Tian et al., 2005):

PEl(h, b) = −
∑
i∈Gl

∫ τ

0

Yi(t)
{

log(λ̂
(−l)
i (t))dNi(t)− λ̂(−l)

i (t)dt
}
,

where (G1, G2, · · · , GK) are K equally-divided subsamples, λ̂
(−l)
i (t) = g−1{α̂(−l)T(t)

Xi(t) + I(Ni(t
−) > 0)γ̂(−l)T(Ui(t))Wi(t)}, and α̂(−l)(·) and γ̂(−l)(·) are local linear

estimators based on the data excluding subjects in Gl. We use the Epanechnikov

kernel K(x) = 3/4(1− x2)I{|x| ≤ 1} in numerical studies.

3.3 Uniform Consistency and Weak Convergence

In this section, we focus on the large-sample properties of local linear estimators

for the parameters of the generaliazed dynamic intensity model described in Section

3.2. Let α0(·) and γ0(·) be the true parameter vector. [t1, t2] is a subinterval of (0, τ).

Let I1 = {Ijk} be a p1 × (p1 + p2) matrix with Ijk = 1 for j = 1, . . . , p1 and k = j,

and Ijk = 0 otherwise. Let I2 = {Ijk} be a p2× (p1 +p2) matrix with Ijk = 1 for j =

1, . . . , p2 and k = j + p1, and Ijk = 0 otherwise. Define X̃i(t) = (Xi(t)
T, I(Ni(t

−) >

0)Wi(t)
T)T, λ̂i(t) = ϕ

{
α̂(t)TXi(t) + I(Ni(t

−) > 0)γ̂(Ui(t))
TWi(t)

}
, and ˆ̇λi(t) =

ϕ̇
{
α̂(t)TXi(t) + I(Ni(t

−) > 0)γ̂(Ui(t))
TWi(t)

}
. Let λi,0(t, u) = ϕ

{
α0(t)TXi(t) +
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I(Ni(t
−) > 0)γ0(u)TWi(t)

}
, λ̇i,0(t, u) = ϕ̇

{
α0(t)TXi(t) + I(Ni(t

−) > 0)γ0(u)TWi(t)
}

,

and λ̈i,0(t, u) = ϕ̈
{
α0(t)TXi(t)+I(Ni(t

−) > 0)γ0(u)TWi(t)
}

. Then dMi(t) = dNi(t)−

λi,0(t, Ui(t))dt is an Ft-martingale under independent censoring assumption. Finally,

we define

D(t, u) = E

[
Yi(t)

λ̇i,0(t, u)2

λi,0(t, u)
X̃i(t)

⊗2

∣∣∣∣∣Ui(t) = u

]
fU(t, u),

where fU(t, u) is the density function of the gap time process Ui(t) at u.

The following theorems establish the uniform consistency and weak convergence of

our proposed estimators. Conditions and proofs are outlined in the Appendix.

Theorem 3.1. Under Condition B in the Appendix B, we have that:

(a) sup
t∈[t1,t2]

|α̂(t)− α0(t)| = op(1);

(b)
√
nh(α̂(t)− α0(t)− 1

2
h2µ2α̈(t))

D−→N (0,Σα(t)), for t ∈ [t1, t2],

where Σα(t) = ν0I1E{D−1(t, Ui(t))}IT1 , µ2 =
∫
u2K(u) du and ν0 =

∫
K2(u) du.

The covariance matrix Σα(t) can be consistently estimated by

Σ̂α(t) =
h

n

n∑
i=1

∫ τ

0

Kh(s− t)2Yi(s)
ˆ̇λi(s)

2

λ̂i(s)2

{
I1D̂

−1(t, Ui(s))X̃i(s)

}⊗2

dNi(s),

where

D̂(t0, u0) =
1

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
ˆ̇λi(t)

2

λ̂i(t)
X̃i(t)

⊗2dt.

Theorem 3.2. Under Condition B in the Appendix B, we have that:

(a) sup
u∈[u1,u2]

‖γ̂(u)− γ0(u)‖ = op(1);

(b)
√
nb(γ̂(u)− γ0(u)− 1

2
b2µ2γ̈(u))

D−→N (0,Σγ(u)), for u ∈ [u1, u2],
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where

Σγ(u) = ν0I2

{∫ τ

0

D−1(t, u)dt
}
IT2 .

The asymptotic covariance matrix Σγ(u) can be consistently estimated by

Σ̂γ(u) =
b

n

n∑
i=1

∫ τ

0

Kb(Ui(s)− u)2Yi(s)
ˆ̇λi(s)

2

λ̂i(s)2

{
I2D̂

−1(s, u)X̃i(s)

}⊗2

dNi(s).

3.4 A Simulation Study

We conduct simulation studies to examine the finite sample properties of our pro-

posed estimators. For subject i, the censoring time Ci = min(τ, C∗i ), where the

follow-up time τ = 4 and C∗i is from the Uniform(3, 8) distribution. We consider

time-constant covariates here for simplicity. Recurrent events are generated from the

following intensity function:

λi(t) = g−1
{
α0(t) + α1(t)Xi + γ(t− TNi(t−))I(Ni(t

−) > 0)Wi

}
(3.5)

for 0 < t < Ci, where Xi follows a Bernoulli distribution with probability of success

p = 0.5 and Wi is a uniform random variable on [0, 1]. Our generation algorithm

(Algorithm 1) for recurrent event process is based on the thinning method (Lewis

and Shedler, 1979).

Under model (3.5), we consider two different link functions, the identity link and

the logarithm link which yield additive intensity model and multiplicative intensity

model respectively:

λi(t) = α0(t) + α1(t)Xi + γ(t− TNi(t−))I(Ni(t
−) > 0)Wi. (3.6)
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λi(t) = exp{α0(t) + α1(t)Xi + γ(t− TNi(t−))I(Ni(t
−) > 0)Wi}, (3.7)

In the additive intensity model (3.6), we consider α0(t) = 4−log(1+t), α1(t) = −1+

0.2t, and γ(u) = −1/(1+u). The average number of recurrent events for each subject

is around 6.2 for Xi = 1 and around 9.7 for Xi = 0. Figure 10 summarizes biases

(Bias), empirical standard errors (SEE), average estimated standard errors (ESE) and

the 95% empirical coverage probabilities (CP) of our proposed estimators α̂0(t), α̂1(t),

and γ̂(u) under model (3.6) for n = 400, 600 and 800 based on 500 simulations. The

estimators have small biases, the average estimated standard errors are close to the

empirical standard errors, and the 95% empirical coverage probabilities are around

the nominal level.

Because the logarithm link yields a larger intensity than the identity link, we chose

α0(t) = 1 − log(1 + 0.2 log(1 + t)), α1(t) = −0.5 + 0.1t, and γ(u) = −0.3/(1 + u) in

the multiplicative intensity model (3.7). Under this setting, the average number of

recurrent events for each subject is around 4.1 for Xi = 1 and around 9.5 for Xi = 0.

Figure 11 summarizes Bias, SEE, ESE and 95% CP of α̂0(t), α̂1(t), and γ̂(u) under

model (3.7) for n = 400, 600 and 800 based on 500 simulations. These estimators

perform reasonably well, especially for large sample size.

3.5 A Data Example

We use our method to analyze the recurrent hospitalization data from the HEMO

study. By the end of follow-up, 7826 hospitalizations were observed before censored

among 1846 hemodialysis patients, and 1502 of them had experienced at least one

hospitalization. Averagely, each patient had 4.24 hospitalization events. The censor-
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ing time is defined as the earliest time of the dates of death, kidney transplantation,

transfer to nonparticipating centers and the end of the study. The covatiates in our

analysis include race (BLACK = 1 if African American, 0 if non-African Ameri-

can), sex (SEX = 1 if female, 0 if male), diabetic status (DIABET = 1 if the

patient has diabetes and 0 otherwise), serum albumin level (BALB is the mean

baseline serum albumin), score for coexisting conditions excluding diabetes (ICED 2

and ICED 3 are dummy variables indicating the Index of Coexisting Disease (ICED)

score, ICED 2 = 1 if the ICED score is two and 0 otherwise, ICED 3 = 1 if the ICED

score is three and 0 otherwise), age (AGE), duration of dialysis (DURATION), dose

of dialysis (KTV = 1 if assigned to high-dose group, 0 if assigned to standard-dose

group) and level of flux of the dialyzer membrane (FLUX = 1 if assigned to high-flux

group, 0 if assigned to low-flux group). The higher ICED scores indicate a greater

number and greater severity of coexisting disease (Eknoyan et al., 2002).

We apply the proposed method to investigate gap-time-varying effects of two treatment-

related factors, KTV and FLUX and time-varying effects of other covariates on the

risk of hospitalization. We consider the following nonparametric multiplicative inten-

sity model for each subject i:

λi(t) = exp{α0(t) + α1(t)BLACKi + α2(t)SEXi + α3(t)DIABETi + α4(t)BALBi

+ α5(t)ICED 2i + α6(t)ICED 3i + α7(t)AGEi + α8(t)DURATIONi

+ γ1(t− TNi(t−))KTVi + γ2(t− TNi(t−))FLUXi} (3.8)

for t ∈ [0, 5] (years). We select the bandwidths h = 1.6, b = 0.6 (years) via 5-fold
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cross-validation method in Section 3.3.4.

The solid curves in Figure 12 are the estimated time-varying effects of corresponding

covariates. We do not observe significant time-varying trends for these covariates

except SEX. The estimated coefficient of SEX is significantly negative. However,

the log intensity ratio of female versus male increases from −1.5 in the first 2.5 years,

then falls after peaking around zero. Figure 12 (b) indicates that black patients

had a higher risk of hospitalization than non-black patients at the early time in the

follow up. In Figure 12 (d), there is evidence showing that diabetic patients were

hospitalized more frequently than those without diabetes. More than that, we find a

slight upwards tendency in Figure 12 (g), which implies that patients with more and

severer coexistence diseases may expose to a higher risk of being hospitalized along

with the time.

According to Figure 13, there is no significant gap-time-varying effect of dose as-

signments on the intensity of hospitalization. On the other hand, the assignment to

the high-flux group is associated with a statistically significant reduction on the risk

of being hospitalized, and this reduction depends on the time since the last hospital-

ization. The trend line for the estimated effects of FLUX gives us signs that for the

patients using low-flux dialyzers, the hospitalization events happened more frequently

compared to the high-flux arm since the last hospitalization, especially for the first

seven months.
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Algorithm 1: Simulation of generating recurrent events under intensity func-

tion 3.5 on (0, Ci]

1 Generate covariates Xi and Wi;

2 Set the highest intensity λ̄ = sup0≤t≤T g
−1{α0(t) + α1(t)Xi};

3 Initialize n = 0, T0 = 0, u = 0;

4 Generate s ∼ exponential(λ̄);

/* n: the number of events, Tk: the occurrence time of the

k−th event, u: time since last event, s: the event time

generated from λ̄. */

5 while s ≤ Ci do

6 u = s− Tn;

7 Calculate λi(s) = g−1{α0(s) + α1(s)Xi + γ(u)I(u > 0)Wi};

8 Generate D ∼ uniform(0, 1);

9 if D ≤ λ(s)/λ̄ then

10 n = n+ 1;

11 Tn = s;

12 λ̄ = supTn≤t≤T ;0≤u≤T−Tn g
−1{α0(t) + α1(t)Xi + γ(u)I(u > 0)Wi};

13 end

14 Generate w ∼ exponential(λ̄);

15 s = s+ w;

16 end

17 return arrival times {Tk}k=1,2,...,n
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Figure 10: Plots of Bias, SEE, ESE and CP of α̂0(t), α̂1(t) and γ̂(u) under model
(3.6) for n = 400, 600 and 800 using bandwidths (h, b) = (0.3, 0.3) based on 500
simulations. The left panel is for α̂0(t), the middle panel is for α̂1(t), and the right
panel is for γ̂(u). The blue dotted line is for n = 400, the green dashed line is for
n = 600 and the red solid line is for n = 800.
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Figure 11: Plots of Bias, SEE, ESE and CP of α̂0(t), α̂1(t) and γ̂(u) under model
(3.7) for n = 400, 600 and 800 using bandwidths (h, b) = (0.3, 0.3) based on 500
simulations. The left panel is for α̂0(t), the middle panel is for α̂1(t), and the right
panel is for γ̂(u). The blue dotted line is for n = 400, the green dashed line is for
n = 600 and the red solid line is for n = 800.
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Figure 12: Estimation of time-varying effects of covariates on the intensity of hos-
pitalization under the dynamic multiplicative intensity model (3.8) with bandwidth
h = 1.6, b = 0.6 (years) ( : point estimate; : 95% pointwise confidence
interval).
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Figure 13: Estimation of gap-time-varying effects of dose and flux interventions on
the intensity of hospitalization under the dynamic multiplicative intensity model (3.8)
with bandwidth h = 1.6, b = 0.6 (years) ( : point estimate; : 95% pointwise
confidence interval).



CHAPTER 4: NONPARAMETRIC DYNAMIC ADDITIVE INTENSITY
MODELS FOR RECURRENT EVENT DATA WITH MISSING COVARIATES

In Chapter 3, we propose nonparametric estimation procedures for a broad class

of dynamic intensity models (3.2) which capture the dynamic features of recurrent

event data. Missing covariates are frequently encountered in epidemiologic and clin-

ical research. In this chapter, we investigate a specific missing covariate problem in

recurrent event data under a nonparametric dynamic additive intensity model where

the covariate with gap-time varying effects is subject to missingness. We organize

Chapter 4 as follows. In Section 4.1, we propose a weighted estimating equation in-

stead of the local score-type function and then develop the AIPW estimators. We

establish the asymptotic properties of our proposed estimators in Section 3. The

simulation studies are reported in Section 4.

4.1 Methodology

4.1.1 Notation and Model

Suppose that a subject i in a random sample may experience a sequence of ni

recurrent events at times {Ti,j : j = 1, 2, . . . , ni} in an observation window [0, Ci],

where Ti,j is the j-th recurrent event time and Ci is the censoring time. Let Ni(t) =∑∞
j=1 I(Ti,j ≤ t) be the counting process and Yi(t) = I(Ci ≥ t) the at-risk process.

Let Xi and Wi be p1-dimensional and p2-dimensional time-independent covariate pro-

cesses. We consider the situation when Xi is fully observed, whereas Wi is partially
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observed. Conditioning on Xi, Wi and a time-dependent Ft-predictable covariate

process Ui(t), the dynamic additive intensity model is given by:

λi(t) = α(t)TXi + I(Ni(t
−) > 0)γ(Ui(t))

TWi, (4.1)

where α(·) and γ(·) are p1-dimensional and p2-dimensional vectors of unspecified

functions respectively. α(t) represents the time varying effects of covariate Xi which

is fully observed. If Ui(t) = t− TNi(t−), the potentially missing covariate Wi in model

(4.1) has a gap-time-varying effect γ(Ui(t)) on the intensity.

Let Ri be the missing indicator that equals to zero if Wi is missing, and one

otherwise. {Ni(t), Yi(t), Xi,Wi, Ai, Ri} are independent and identically distributed

(iid) for subject i = 1, 2, . . . , n, where Ai denotes the auxiliary covariate that may

help to predict the missing probability and the missing covariate Wi. We assume

the censoring is independent of the counting process given the covariate history. Let

(Ωi, RiWi, Ri) be the observed data, where Ωi = (ni, Ti,1, Ti,2, . . . , Ti,ni , Ci, Xi, Ai).

That is, Wi is only observed for a subject with Ri = 1. We assume Wi is missing at

random (MAR): P (Ri = 1|Wi,Ωi) = P (Ri = 1|Ωi). Denote P (Ri = 1|Ωi) by π(Ωi).

4.1.2 Estimation Procedure

In Chapter 3, we propose a local linear partial likelihood estimation method for the

full data. Under the identity link, the local score-type estimating equation for model
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(3.2) is:

U(ϑ∗|t0, u0) =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
1

λ∗i (t, ϑ
∗|t0, u0)

{
dNi(t)

− λ∗i (t, ϑ∗|t0, u0)dt
}
X̃∗i (t|t0, u0), (4.2)

where λ∗i (t, ϑ
∗|t0, u0) = ϑ∗T(t0, u0)X̃∗i (t|t0, u0), ϑ∗(t0, u0) = (αT(t0), γT(u0), α̇T(t0),

γ̇T(u0))T and X̃∗i (t|t0, u0) = (Xi(t)
T, I(Ni(t

−) > 0)Wi(t)
T, Xi(t)

T(t − t0), I(Ni(t
−) >

0)Wi(t)
T(Ui(t)− u0))T.

In this section, we propose estimation methods for the dynamic additive intensity

model (4.1) that utilize the augmented inverse probability weighting technique to

handle missing covariates (Robins et al., 1994). Since the desired intensity is in

the denominator of (4.2), the calculation for the estimates of ϑ∗ is often not stable,

especially for a small sample. Also, it is unmanageable to apply the AIPW method.

Considering the numerical stability, we replace the inverse of the intensity in (4.2),

1/λ∗i (t, ϑ
∗|t0, u0), by a general weight function wi(t) to give a local linear weighted

estimating equation for the full data:

U(ϑ∗|t0, u0) =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)
{
dNi(t)− λ∗i (t, ϑ∗|t0, u0)dt

}
× X̃∗i (t|t0, u0). (4.3)

Based on (4.3), we propose the local AIPW estimating function for ϑ∗:

UA0(ϑ∗|t0, u0) =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)
[
qi

{
dNi(t)

− λ∗i (t, ϑ∗|t0, u0)dt
}
X̃∗i (t|t0, u0) + (1− qi)dε∗i (t|t0, u0)

]
, (4.4)
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where qi = Ri/π(Ωi) is the inverse probability weight and dε∗i (t, ϑ
∗|t0, u0) = E

[{
dNi(t)−

λ∗i (t, ϑ
∗|t0, u0)dt

}
X̃∗i (t|t0, u0)

∣∣∣Ωi

]
.

In practice, π(Ωi), E(Wi|Ωi) and E(W⊗2
i |Ωi) may be unknown. As discussed in

Sun et al. (2017), we estimate them with working models π(Ωi, ψ), µ1(Ωi, φ1) and

µ2(Ωi, φ2) and denote the M -estimators (van der Vaart, 1998) of ψ, φ1 and φ2 by

ψ̂, φ̂1 and φ̂2, respectively. To define dε̂∗i (t, ϑ
∗|t0, u0), the estimator of the expectation

term dε∗i (t|t0, u0), we introduce additional notations:

M̂11,i(t|t0, u0) =

 X⊗2
i Xiµ1(Ωi, φ̂1)TI(Ni(t

−) > 0)

µ1(Ωi, φ̂1)XT
i I(Ni(t

−) > 0) µ2(Ωi, φ̂2)I(Ni(t
−) > 0)

 ,

M̂12,i(t|t0, u0) = M̂11,i(t|t0, u0) ◦

(t− t0)1p1×p1 (Ui(t)− u0)1p1×p2

(t− t0)1p2×p1 (Ui(t)− u0)1p2×p2

 ,

M̂22,i(t|t0, u0)

=M̂11,i(t|t0, u0) ◦

 (t− t0)2
1p1×p1 (t− t0)(Ui(t)− u0)1p1×p2

(t− t0)(Ui(t)− u0)1p2×p1 (Ui(t)− u0)2
1p2×p2

 ,

where ◦ is the Hadamard product and 1m×n is an m× n all ones matrix:

1 1 1 . . . 1

1 1 1 . . . 1

...
...

...
. . .

...

1 1 1 . . . 1


m×n

.
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Then,

dε̂∗i (t, ϑ
∗|t0, u0)

= dNi(t)



Xi

µ1(Ωi, φ̂1)I(Ni(t
−) > 0)

Xi(t− t0)

µ1(Ωi, φ̂1)I(Ni(t
−) > 0)(Ui(t)− u0)



−

 M̂11,i(t|t0, u0) M̂12,i(t|t0, u0)

M̂12,i(t|t0, u0)T M̂22,i(t|t0, u0)

ϑ∗(t0, u0)dt.

Replacing qi and dε∗i (t, ϑ
∗|t0, u0) in (4.4) by q̂i = Ri/π(Ωi, ψ̂) and dε̂∗i (t, ϑ

∗|t0, u0)

respectively, we have the following estimating function for ϑ∗:

UA(ϑ∗|t0, u0) =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)
[
q̂i

{
dNi(t)

− λ∗i (t, ϑ∗|t0, u0)dt
}
X̃∗i (t|t0, u0) + (1− q̂i)dε̂∗i (t|t0, u0)

]
. (4.5)

For simplicity, we take the identity weight ωi(t) ≡ 1 and denote the solution to

UA(ϑ∗, t0, u0)|ωi(t)≡1 = 0 by ϑ̂∗A(t0, u0), the AIPW estimator for ϑ∗. Let ϑ̂A(t0, u0) =

(α̂A(t0, u0)T, γ̂A(t0, u0)T)T, where α̂A(t0, u0) and γ̂A(t0, u0) are vectors including the

first p1 elements and elements from p1 + 1 to p1 + p2 of ϑ̂A(t0, u0) respectively. Note

that more efficient AIPW estimators for αT(t0) and γT(u0) can be calculated in a

similar way as (3.4):

α̂A(t0) = n−1

n∑
i=1

α̂A(t0, Ui(t0)), γ̂A(u0) = n−1
u0

∑
tu0∈Vu0

γ̂A(tu0 , u0).
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4.2 Uniform Consistency and Weak Convergence

Let µ2 =
∫
u2K(u) du and ν0 =

∫
K2(u) du. We define

Σa(t, u) = E
[
Yi(t)wi(t)

2λi,0(t, u)X̃i(t)
⊗2
∣∣∣Ui(t) = u

]
fU(t, u),

Da(t, u) = E
[
Yi(t)wi(t)X̃i(t)

⊗2
∣∣∣Ui(t) = u

]
fU(t, u),

where fU(t, u) is the density function of Ui(t) at u.

The following theorems characterize the uniform consistency and weak convergence

of the proposed local AIPW estimators. The proofs are outlined in the Appendix.

Theorem 4.1. Under Condition C in the Appendix C, we have that:

(a) sup
t∈[t1,t2]

|α̂A(t)−α0(t)| = op(1) when π(Ωi) and/or both E{Wi|Ωi} and E{W⊗2
i |Ωi}

are correctly specified;

(b)
√
nh(α̂A(t) − α0(t) − 1

2
h2µ2α̈(t))

D−→N (0,Σa,α(t)), for t ∈ [t1, t2], when π(Ωi),

E{Wi|Ωi} and E{W⊗2
i |Ωi} are all correctly specified,

where

Σa,α(t) = ν0I1E
{
D−1
a (t, Ui(t))Σa(t, Ui(t))D

−1
a (t, Ui(t))

}
IT1 .

The covariance matrix Σa,α(t) can be consistently estimated by

Σ̂a,α(t) =
h

n

n∑
i=1

∫ τ

0

Kh(s− t)2Yi(s)wi(t)
2

{
I1D̂

−1
a (t, Ui(s))X̃i(s)

}⊗2

dNi(s),

where

D̂a(t0, u0) =
1

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)X̃i(t)
⊗2dt.
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Theorem 4.2. Under Condition C in the Appendix C, we have that:

(a) sup
u∈[u1,u2]

‖γ̂A(u)−γ0(u)‖ = op(1) when π(Ωi) and/or both E{Wi|Ωi} and E{W⊗2
i |Ωi}

are correctly specified;

(b)
√
nb(γ̂A(u)−γ0(u)− 1

2
b2µ2γ̈(u))

D−→N (0,Σa,γ(u)), for u ∈ [u1, u2], when π(Ωi),

E{Wi|Ωi} and E{W⊗2
i |Ωi} are all correctly specified,

where

Σa,γ(u) = ν0I2

{∫ τ

0

D−1
a (t, u)Σa(t, u)D−1

a (t, u)dt
}
IT2

The asymptotic covariance matrix Σa,γ(u) can be consistently estimated by

Σ̂a,γ(u) =
b

n

n∑
i=1

∫ τ

0

Kb(Ui(s)− u)2Yi(s)wi(t)
2

{
I2D̂

−1
a (s, u)X̃i(s)

}⊗2

dNi(s).

4.3 Simulation

We conduct simulation studies to examine the finite sample properties of our pro-

posed estimators. For subject i, we generate covariate Xi from the Bernoulli dis-

tribution with probability of success p = 0.5. The potentially missing covariate

Wi is generated from Uniform(0,1). In our simulation study, we consider π(Ωi) =

1

1 + exp(−a1 − a2Xi)
, where (a1, a2) are parameters leading different missing proba-

bilites. We simulate the censoring time Ci = min(τ, C∗i ) which yields 25% censoring,

where τ = 4 and C∗i is from the Uniform(3, 8) distribution. By the thinning method

(Lewis and Shedler, 1979), recurrent event times are generated from the following

additive intensity model:

λi(t) = α0(t) + α1(t)Xi + I(Ni(t
−) > 0)γ(Ui(t))Wi (4.6)
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for 0 < t < Ci, where Ui(t) = t − TNi(t−), α0(t) = 4 − log(1 + t), α1(t) = −1 + 0.2t,

and γ(u) = −1/(1 + u). The average number of recurrent events for each subject is

around 6.2 for Xi = 1 and around 9.7 for Xi = 0.

Conditional on Wi, we generate the auxiliary variable Ai = (Wi+θζi)/(1+θ), where

ζi is a random variable following the Uniform(0, 1) distribution and θ is a parameter

indicating the correlation between Ai and the missing covariate. Three different

settings for θ are considered in this study: the correlation coefficient ρ between Ai

and Wi is 0.5 for θ = 1.7321, 0.7 for θ = 1.0202, and 0.9 for θ = 0.4843, denoted by

(A1), (A2), and (A3), respectively.

In Figure 14 and Figure 15, we report the finite sample performance of our pro-

posed AIPW estimators under different levels of association between Ai and Wi. The

FULL estimator and complete case (CC) estimator are solutions of the local weighted

estimating equation U(ϑ∗|t0, u0) (4.3) and UCC(ϑ∗|t0, u0) repectively, where

UCC(ϑ∗|t0, u0) =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)Ri

×
{
dNi(t)− λ∗i (t, ϑ∗|t0, u0)dt

}
X̃∗i (t|t0, u0). (4.7)

Figure 14 summarizes biases (Bias), empirical standard errors (SEE), average es-

timated standard errors (ESE) and the 95% empirical coverage probabilities (CP) of

estimators for α0(t), α1(t), and γ(u) under model (4.6) with (a1, a2) = (0, 2.1972)

for n = 800 based on 500 simulations. This setting leads to 30% missing covariates.

The missing probabilities for Xi = 1 and Xi = 0 are 10% and 50% respectively. The

results show that the bias of FULL, CC, IPW and AIPW estimators are all small ex-
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cept for boundary points corresponding to the boundary effect of kernel method. The

AIPW estimators with ρ = 0.7 and 0.9 are more efficient than other estimators. The

AIPW estimator with small correlation coefficient, ρ = 0.5, and the IPW estimator

are less efficient than CC estimator. That is because we use the identity weight not

the optimal weight in our simulations. The 95% empirical coverage probabilities are

close to the nominal level.

Figure 15 shows the performance of our estimators in a heavier missing setting:

(a1, a2) = (−0.8473, 0.8473), which leads to 60% missingness. The missing probabili-

ties for Xi = 1 and Xi = 0 are 50% and 70% respectively. Estimators listed in Figure

15 exhibit small bias. We observe that the SEE of our proposed AIPW estimators

with ρ = 0.5, 0.7 and 0.9 are smaller than CC and IPW estimators. The 95% empiri-

cal coverage probabilities are almost all in the range of 93% and 97% showing average

estimated standard errors are close to SEE.
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Figure 14: Bias, SEE, ESE and CP of estimators for α0(t), α1(t), and γ(u) under
model (4.6) for sample size n = 800 when using the Epanechnikov kernel with h =
b = 0.3 based on 500 replications. (a1, a2) = (0, 2.1972) leads to 30% missingness of
covariate W .
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Figure 15: Bias, SEE, ESE and CP of estimators for α0(t), α1(t), and γ(u) under
model (4.6) for sample size n = 800 when using the Epanechnikov kernel with h = b =
0.3 based on 500 replications. (a1, a2) = (−0.8473, 0.8473) leads to 60% missingness
of covariate W .



CHAPTER 5: CONCLUSION AND FUTURE WORK

In Chapter 2, we developed the IPW and AIPW estimation methods for the cause-

specific hazard regression models with missing causes, where the Cox models with

time-varying coefficients are utilized to examine the cause-specific covariate effects.

The AIPW estimating equation is obtained by subtracting the projection term of the

IPW estimating equation onto the nuisance tangent space and is shown as a two-stage

estimator by directly utilizing the inverse probability weighted estimator and through

modeling available auxiliary variables to improve efficiency. Based on our asymptotic

theoretical results and numerical simulation studies, the AIPW estimators are more

efficient and robust than the IPW estimators. The proposed AIPW estimators can

utilize auxiliary information that are not included in the models to improve estimation

efficiency. We demonstrate that the performance of the AIPW estimators improve as

the association between the auxiliary variable and the cause of failure strengthens.

In addition, the AIPW estimators are more efficient than the IPW estimators even

when the auxiliary variables are not available due to the more efficient construction

of the AIPW estimating equation. The proposed estimators are very useful in the

analysis of the Mashi clinical trial to examine the treatment effects for HIV-related

and HIV-unrelated infant deaths where causes of deaths are missing for significant

number of infant deaths and the treatment effects are demonstrated to vary over time.

In Chapter 3, we construct local score-type estimating equation (3.3) for a general
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class of nonparametric dynamic intensity models given in (3.2) for recurrent events.

Our estimators are calculated by solving (3.3) by Newton-Raphson method. We derive

asymptotic results and explore the finite sample behaviors of proposed estimators. In

a special case where covariates Xi and Wi share common vectors, the identifiability

problem may exist (Scheike, 2001). In this case, our method only works when the first

occurence of recurrent event in data is relatively evenly distributed in the domain of

time due to the existence of an additional indicator function I(Ni(t
−) > 0). Another

challenge of our estimation procedure is computational instability. As we discussed

in Chapter 4, a local weighted estimating equation is an alternative of the local score-

type estimating equation (3.3) with a cost of efficiency.

In Chapter 4, we investigate a specific missing covariate problem under a non-

parametric dynamic additive intensity model (4.1) where the covariate with gap-time

varying effect may be missing. We propose a local weight estimating equation for

the fully observed data (4.3) and then develop the local AIPW estimating equation

(4.5) by applying the AIPW technique for missing data. In our simulation study, we

show that the AIPW estimators are consistent and more efficient than IPW and CC

estimators especially when there is a strong correlation between the missing covari-

ate and auxiliary covariates. To improve the efficiency of our proposed estimators, a

weight selection method is desired. One simple approach is that we utilize an iterative

algorithm that updates the weight function at each step. In details, we use the unit

weight function as our initial weight function to get an estimator call it θ̂
(1)
A by the

estimation procedure in Section 4.1.2. After updating the weight by the inverse of the

AIPW estimator for intensity λ̂
(1)
A (t) = θ̂

(1)
A (t, Ui(t))

T{q̂iX̃i(t) + (1− q̂i)Ê(X̃i(t))}, we
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get the AIPW estimator θ̂
(2)
A in the second step. We repeat the above steps iteratively

until satisfying certain criteria and denote the AIPW estimator in the final step by

θ̂A.

In next projects, we will develop hypothesis testing procedures for time-varying and

gap-time-varying parameters including βk(t) in Chapter 2, α(t) and γ(u) in Chapter 3

and 4. For example, in Chapter 3, we may have interest in testing the hypotheses: H0 :

γ(u) = 0, for u ∈ [u1, u2], versus Ha : γ(u) 6= 0, for some u ∈ [u1, u2]. For covariates

with time-constant effects, we can consider the following generalized semiparametric

dynamic intensity model:

λi(t) = g−1
{
αT(t)Xi(t) + βZi(t) + I(Ni(t

−) > 0)γT(t− TNi(t−))Wi(t)
}
.
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APPENDIX A: PROOFS OF THE THEOREMS IN CHAPTER 2

Let H = diag[Ip, hIp]. For k = 1, . . . , K and j = 0, 1, 2, we define the following

notations:

S(j)(t, βk) =
1

n

n∑
i=1

Yi(t) exp
(
Zi(t)

Tβk(t)
)
Zi(t)

⊗j,

S
∗(j)
I (t, βk, ψ) =

1

n

n∑
i=1

qiYi(t) exp
(
Zi(t)

Tβk(t)
)
Zi(t)

⊗j.

Let s(j)(t, βk) = ES(j)(t, βk) and s
∗(j)
I (t, βk, ψ) = ES

∗(j)
I (t, βk, ψ). s(j)(t, βk) =

s
∗(j)
I (t, βk, ψ) if the model r(W1,i, ψ) is correctly specified.

Condition A.

(A.1) For k = 1, . . . , K, βk(t) has componentwise second derivatives on [0, τ ]. The

sample path of the covariate process Zi(t) is left continuous and of bounded

variation, and satisfies the moment condition E[||Zi(t)||4 exp(2M ||Zi(t)||)] <∞,

where M is a constant such that (t, βk(t)) ∈ [0, τ ] × [−M,M ]p for all t and

||A|| = maxk,l |akl| for a matrix A = (akl).

(A.2) The kernel function K(·) is bounded and symmetric with bounded support

[−1, 1]. The bandwidth h satisfies nh2 →∞ and nh5 is bounded as n→∞.

(A.3) The function π(Qi, ψ) is twice differentiable with respect to ψ on the compact

set Θψ, π
′
(Qi, ψ) = ∂π(Qi, ψ)/∂ψ is uniformly bounded, and there is an ε > 0

such that π(Qi, ψ) ≥ ε for all i.

(A.4) s(j)(t, βk) and s
∗(j)
I (t, βk, ψ) are componentwise continuous on t ∈ [0, τ ], βk ∈

[−M,M ]p, ψ ∈ Θψ for j = 0, 1, 2. supt∈[0,τ ],βk∈[−M,M ]p ||S(j)(t, βk)−s(j)(t, βk)|| =
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Op(n
−1/2), and supt∈[0,τ ],βk∈[−M,M ]p,ψ∈Θψ ||S

∗(j)
I (t, βk, ψ)− s∗(j)I (t, βk, ψ)|| =

Op(n
−1/2).

(A.5) The matrix Σk(t) is positive definite for all t ∈ [0, τ ].

Lemma A.1. Let W2,i = (Ti, Zi, A
(v)
i ), W3,i = (Ti, Zi), w3 = (t, z) and ρk(w) =

P (Vi = k|δi = 1,W2,i = w) where w = (t, z, a). Under MAR II and MAR III, we

have

ρk(w) =
λk(t|z)P (A

(v)
i = a|Ri = 1, δi = 1, Vi = k,W3,i = w3)∑K

l=1 λl(t|z)P (A
(v)
i = a|Ri = 1, δi = 1, Vi = l,W3,i = w3)

.

Proof of Lemma A.1.

By the definition of ρk(w),

ρk(w)

1− ρk(w)
=

P (Vi = k|δi = 1, Ti = t, Zi = z, A
(v)
i = a)

1− P (Vi = k|δi = 1, Ti = t, Zi = z, A
(v)
i = a)

=
P (Vi = k, δi = 1, Ti = t, Zi = z, A

(v)
i = a)∑

l 6=k P (Vi = l, δi = 1, Ti = t, Zi = z, A
(v)
i = a)

=
λk(t|z)P (A

(v)
i = a|δi = 1, Vi = k,W3,i = w3)∑

l 6=k λl(t|z)P (A
(v)
i = a|δi = 1, Vi = l,W3,i = w3)

,

where the last equation is obtained since the censoring time Ci is independent of Ti

and Vi conditional on Zi.

Hence,

ρk(w) =
λk(t|z)P (A

(v)
i = a|δi = 1, Vi = k,W3,i = w3)∑K

l=1 λl(t|z)P (A
(v)
i = a|δi = 1, Vi = l,W3,i = w3)

. (A.1)
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Note that

P (A
(v)
i = a|Ri = 1, δi = 1, Vi = k,W3,i = w3)

=
P (A

(v)
i = a,Ri = 1|δi = 1, Vi = k,W3,i = w3)

P (Ri = 1|δi = 1, Vi = k,W3,i = w3)

=
P (Ri = 1|δi = 1, Vi = k,W2,i = w)P (A

(v)
i = a|δi = 1, Vi = k,W3,i = w3)

P (Ri = 1|δi = 1, Vi = k,W3,i = w3)
,

P (Ri = 1|δi = 1, Vi = k,W2,i = w) = P (Ri = 1|δi = 1,W2,i = w) under MAR II, and

P (Ri = 1|δi = 1, Vi = k,W3,i = w3) = P (Ri = 1|δi = 1,W3,i = w3) under MAR III.

We have

P (A
(v)
i = a|δi = 1, Vi = k,W3,i = w3)

=
P (Ri = 1|δi = 1,W3,i = w3)P (A

(v)
i = a|Ri = 1, δi = 1, , Vi = k,W3,i = w3)

P (Ri = 1|δi = 1,W2,i = w)
.

(A.2)

By (A.1) and (A.2),

ρk(w) =
λk(t|z)P (A

(v)
i = a|δi = 1, Vi = k,W3,i = w3)∑K

l=1 λl(t|z)P (A
(v)
i = a|δi = 1, Vi = l,W3,i = w3)

=
λk(t|z)P (A

(v)
i = a|Ri = 1, δi = 1, Vi = k,W3,i = w3)∑K

l=1 λl(t|z)P (A
(v)
i = a|Ri = 1, δi = 1, Vi = l,W3,i = w3)

.

Proof of Theorem 2.1.

Let ψ0 be the true value of ψ such that r(W1,i) = r(W1,i, ψ0) under the correctly

specified model for r(W1,i). Because the estimator ψ̂ of ψ0 is an M-estimator, by

Theorems 5.2 and 5.7 in van der Vaart (1998), we have ψ̂ − ψ0 = Op(n
−1/2).

Let qi0 = Ri/π(Qi, ψ0) and Di =
−Ri

(π(Qi, ψ0))2

(
∂π(Qi, ψ0)

∂ψ

)T

. By the Taylor
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expansion,

q̂i − qi0 = Di(ψ̂ − ψ0) + op(n
−1/2). (A.3)

Note that

n−1H−1
(
UI(t, ξk, ψ̂)− UI(t, ξk, ψ0)

)
= n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− SI(u, ξk, ψ0)

)
(q̂i − qi0) dNik(u)

− n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
SI(u, ξk, ψ̂)− SI(u, ξk, ψ0)

)
qi0 dNik(u)

− n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
SI(u, ξk, ψ̂)− SI(u, ξk, ψ0)

)
(q̂i − qi0) dNik(u).

(A.4)

Under Condition A, by the definition of the martingale and (A.3), we obtain

n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− SI(u, ξk, ψ0)

)
(q̂i − qi0) dNik(u)

= n−1

n∑
i=1

[∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− SI(u, ξk, ψ0)

)
Di dNik(u)

]
(ψ̂ − ψ0)

+ op(n
−1/2)

= n−1

n∑
i=1

[∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− SI(u, ξk, ψ0)

)
Di dMik(u)

]
(ψ̂ − ψ0)

+ n−1

n∑
i=1

[∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− SI(u, ξk, ψ0)

)
Di Yi(u)λk(u|Zi(u))du

]

× (ψ̂ − ψ0) + op(n
−1/2)

= Op(n
−1/2).
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Similarly, let

S
(j)
D (u, ξk, ψ0) = n−1

n∑
i=1

Yi(u) exp
(
Z̃i(u, u− t)Tξ(t)

)(
Z̃i(u, u− t)

)⊗j
Di

for j = 0, 1, we obtain

n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
SI(u, ξk, ψ̂)− SI(u, ξk, ψ0)

)
qi0 dNik(u)

= n−1

n∑
i=1

[∫ τ

0

Kh(u− t)H−1

(
1

S
(0)
I (u, ξk, ψ0)

S
(1)
D (u, ξk, ψ0)

− S
(1)
I (u, ξk, ψ0)

(S
(0)
I (u, ξk, ψ0))2

S
(0)
D (u, ξk, ψ0)

)
qi0 dNik(u)

]
(ψ̂ − ψ0) + op(n

−1/2)

= Op(n
−1/2).

Since the order of the third term in (A.4) is less than other terms, it follows that

n−1H−1
(
UI(t, ξk, ψ̂)− UI(t, ξk, ψ0)

)
= Op(n

−1/2).

Let ξ̃k(t) be the running parameter in UI(t, ξk, ψ̂) and ξk(t) = (βT
k (t), (β

′

k(t))
T)T be

the true parameter vector. Let θ = H(ξ̃k(t)− ξk(t)) and θ̂ = H(ξ̂I,k(t)− ξk(t)).
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Under Condition A, by a Taylor expansion and the Glivenko-Cantelli theorem,

n−1H−1
(
UI(t, ξk(t) +H−1θ, ψ̂)− UI(t, ξk(t), ψ0)

)
= n−1H−1

(
UI(t, ξk(t) +H−1θ, ψ0)− UI(t, ξk(t), ψ0)

)
+ op(1)

= − n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
SI(u, ξk(t) +H−1θ, ψ0)− SI(u, ξk(t), ψ0)

)
qi0 dNik(u)

+ op(1)

= −
∫ τ

0

Kh(u− t)
(
s(2)(u, βk(u))− s(1)(u, βk(u))⊗2

s(0)(u, βk(u))

)
⊗

 1 u−t
h

u−t
h

(
u−t
h

)2

 θλk0(u)du

+ op(1)

= − Σk(t)⊗

1 0

0 µ2

 θ + op(1)

uniformly in t ∈ [t1, t2] and θ ∈ N0, a neighborhood of 02p, as n→∞ and nh2 →∞,

where 02p is a 2p×1 vector of zeros. The right side of the equation has a unique root at

θ = 02p. By the Glivenko-Cantelli theorem again, we have n−1H−1UI(t, ξk(t), ψ0)
P−→02p.

It follows from Lemma 2 of Sun et al. (2012) that β̂I,k(t)
P−→βk(t) uniformly in

t ∈ [t1, t2].

Proof of Theorem 2.2.

First, since ξ̂I,k(t) is the root of UI(t, ξk, ψ̂), by a Taylor expansion, we note that

n1/2h1/2H
(
ξ̂I,k(t)− ξk(t)

)
=−

(
n−1H−1U

′

I(t, ξ
∗
k(t), ψ̂)H−1

)−1

n−1/2h1/2H−1UI(t, ξk(t), ψ̂), (A.5)

where ξ∗k(t) is on the line segment between ξ̂I,k(t) and ξk(t). By the uniform consis-
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tency of ξ̂I,k(t) on t ∈ [t1, t2] and the Glivenko-Cantelli theorem, we have

−n−1H−1U
′

I(t, ξ
∗
k(t), ψ̂)H−1 P−→Σk(t)⊗

1 0

0 µ2

 (A.6)

uniformly in t ∈ [t1, t2] as n→∞ and nh2 →∞.

From the proof of Therorem 1, we know

n−1/2h1/2H−1
(
UI(t, ξk, ψ̂)− UI(t, ξk, ψ0)

)
= Op(h

1/2).

Note that

n−1/2h1/2H−1UI(t, ξk, ψ0) = n1/2h1/2An(t, ξk, ψ0) + n1/2h1/2Bn(t, ξk, ψ0),

where

An(t, ξk, ψ0) = n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− SI(u, ξk, ψ0)

)
qi0 dMik(u)

and

Bn(t, ξk, ψ0) = n−1

n∑
i=1

∫ τ

0

Kh(u−t)H−1
(
Z̃i(u, u−t)−SI(u, ξk, ψ0)

)
qi0 λk(u|Zi(u))du

Under Condition A, by the definition of martingale, we have

n1/2h1/2An(t, ξk, ψ0) = n1/2h1/2Wn(t, βk, ψ0) + h1/2

∫ τ

0

Kh(u− t)δn(du) + op(h
1/2),

(A.7)

where

Wn(t, βk, ψ0) = n−1

n∑
i=1

∫ τ

0

Kh(u− t)
(
Zi(u)− s

∗(1)
I (u, βk, ψ0)

s
∗(0)
I (u, βk, ψ0)

)
⊗

 1

u−t
h

 qi0 dM
∗
ik(u)



79

and

δn(t) = n−1/2

n∑
i=1

∫ τ

0

(
Zi(u)− s

∗(1)
I (u, βk, ψ0)

s
∗(0)
I (u, βk, ψ0)

)
⊗

 1

u−t
h

 qi0

(
λ∗ik(u)−λk(u|Zi(u))

)
du.

Note that the expectation of each term in the summand of δn(t) is zero. By Lemma

1 of Sun and Wu (2005), δn(t), 0 ≤ t ≤ τ , converges weakly to a mean-zero Gaussian

process. Therefore, the second term in (A.7) converges to zero in probability.

Let W̃n(t, βk, ψ0) and B̃n(t, ξk, ψ0) be the first p components of Wn(t, βk, ψ0) and

Bn(t, ξk, ψ0), respectively. Following the same arguments in the proof of theorem 2

of Cai and Sun (2003), we have

n1/2h1/2W̃n(t, βk, ψ0)
D−→N(0, ν0Σ∗k(t)) (A.8)

and

B̃n(t, ξk, ψ0) =
1

2
µ2h

2Σk(t)β
′′
k(t) + op(h

2). (A.9)

Combining (A.5)-(A.9), we conclude that

√
nh
(
β̂I,k(t)− βk(t)−

1

2
µ2h

2β′′k(t)
)
D−→N

(
0, ν0Σ−1

k (t)Σ∗k(t)Σ
−1
k (t)

)
.

Proof of Theorem 2.3.

Let θk0 be the true value of θk. If h(A
(v)
i |k, Ti, Zi) is correctly specified, then

h(A
(v)
i |k, Ti, Zi) = h(A

(v)
i |k, Ti, Zi, θk0). Let

ρk(W2,i) =
λk(Ti|Zi)h(A

(v)
i |k, Ti, Zi, θk0)∑K

l=1 λl(Ti|Zi)h(A
(v)
i |l, Ti, Zi, θl0)

.
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Since ρ̂k(W2,i)− ρk(W2,i) = Op(n
−1/2h−1/2) and (A.3), we have

n−1H−1UA(t, ξk, ψ̂, ρ̂k)

= n−1H−1UA(t, ξk, ψ0, ρk)

+ n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− Sf (u, ξk)

)
(q̂i − qi0)

×
(
dNik(u)− ρk(W2,i)dNi(u)

)
+ n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− Sf (u, ξk)

)
(1− qi0)

×
(
ρ̂k(W2,i)− ρk(W2,i)

)
dNi(u)

− n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− Sf (u, ξk)

)
(q̂i − qi0)

×
(
ρ̂k(W2,i)− ρk(W2,i)

)
dNi(u)

P−→ n−1H−1UA(t, ξk, ψ0, ρk)

uniformly in t ∈ [t1, t2] if either r(W1,i) or h(A
(v)
i |k, Ti, Zi) is correctly specified.

Let ξ̃k(t) be the running parameter in UA(t, ξk, ψ̂) and ξk(t) = (βT
k (t), (β

′

k(t))
T)T be

the true parameter vector. Let θ = H(ξ̃k(t)− ξk(t)) and θ̂ = H(ξ̂A,k(t)− ξk(t)).
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Under Condition A, by a Taylor expansion and Glivenko-Cantelli theorem,

n−1H−1
(
UA(t, ξk(t) +H−1θ, ψ0, ρk)− UA(t, ξk(t), ψ0, ρk)

)
= − n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Sf (u, ξk(t) +H−1θ)− Sf (u, ξk(t))

)
dNik(u)

+ n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Sf (u, ξk(t) +H−1θ)− Sf (u, ξk(t))

)
(1− qi0)

×
(
dNik(u)− ρk(W2,i)dNi(u)

)

= −
∫ τ

0

Kh(u− t)
(
s(2)(u, βk(u))− s(1)(u, βk(u))⊗2

s(0)(u, βk(u))

)
⊗

 1 u−t
h

u−t
h

(
u−t
h

)2

 θλk0(u)du

+ op(1)

= − Σk(t)⊗

1 0

0 µ2

 θ + op(1)

uniformly in t ∈ [t1, t2] and θ ∈ N0, a neighborhood of 02p, if either r(W1,i) or

h(A
(v)
i |k, Ti, Zi) is correctly specified. The right side of the equation has a unique

root at θ = 02p. By the Glivenko-Cantelli theorem again, we have

n−1H−1UA(t, ξk(t), ψ0, ρk)
P−→02p.

It follows from Lemma 2 of Sun et al. (2012) that β̂A,k(t)
P−→βk(t) uniformly in

t ∈ [t1, t2].

Proof of Theorem 2.4.

First, since ξ̂A,k(t) is the root of UA(t, ξk, ψ̂, ρ̂k), by a Taylor expansion, we note
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that

n1/2h1/2H
(
ξ̂A,k(t)− ξk(t)

)
=−

(
n−1H−1U

′

A(t, ξ∗k(t), ψ̂, ρ̂k)H
−1
)−1

n−1/2h1/2H−1UA(t, ξk(t), ψ̂, ρ̂k),

where ξ∗k(t) is on the line segment between ξ̂A,k(t) and ξk(t). By the uniform consis-

tency of ξ̂A,k(t) on t ∈ [t1, t2] and the Glivenko-Cantelli theorem, we have

−n−1H−1U
′

A(t, ξ∗k(t), ψ̂, ρ̂k)H
−1 P−→Σk(t)⊗

1 0

0 µ2


uniformly in t ∈ [t1, t2] as n→∞ and nh2 →∞.

Following the same arguments as in the proof of Theorem 1,

n−1/2h1/2H−1UA(t, ξk, ψ̂, ρ̂k) = n−1/2h1/2H−1UA(t, ξk, ψ0, ρk) +Op(h
1/2).

By the definition of a martingale, we have

n−1/2h1/2H−1UA(t, ξk, ψ0, ρk)

=n1/2h1/2An(t, ξk, ψ0) + n1/2h1/2Cn(t, ξk, ψ0) + n1/2h1/2Bn(t, ξk),
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where

An(t, ξk, ψ0)

=n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− Sf (u, ξk)

)
qi0 dMik(u),

Cn(t, ξk, ψ0)

=n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− Sf (u, ξk)

)
(1− qi0)

× E(dMik(u)|δi = 1,W2,i),

Bn(t, ξk)

=n−1

n∑
i=1

∫ τ

0

Kh(u− t)H−1
(
Z̃i(u, u− t)− Sf (u, ξk)

)
λk(u|Zi(u))du.

Similar to the proof of Theorem 2,

n1/2h1/2An(t, ξk, ψ0) = n1/2h1/2Wn(t, βk, ψ0) + op(1),

where

Wn(t, βk, ψ0) = n−1

n∑
i=1

∫ τ

0

Kh(u− t)
(
Zi(u)− s(1)(u, βk)

s(0)(u, βk)

)
⊗

 1

u−t
h

 qi0 dM
∗
ik(u)

Let W̃n(t, βk, ψ0), C̃n(t, βk, ψ0, ρk) and B̃n(t, βk) be the first p components of

Wn(t, βk, ψ0), Cn(t, ξk, ψ0) and Bn(t, ξk), respectively. Following the same arguments

as in the proof of theorem 2 of Cai and Sun (2003), we have

n1/2h1/2W̃n(t, βk, ψ0)
D−→N(0, ν0Σ∗k(t))

and

B̃n(t, ξk) =
1

2
µ2h

2Σk(t)β
′′
k(t) + op(h

2).
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Also note that n1/2h1/2C̃n(t, βk, ψ0) = op(1). Therefore,

√
nh
(
β̂A,k(t)− βk(t)−

1

2
µ2h

2β′′k(t)
)
D−→N

(
0, ν0Σ−1

k (t)Σ∗k(t)Σ
−1
k (t)

)
.
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APPENDIX B: PROOFS OF THE THEOREMS IN CHAPTER 3

Let p = p1 + p2, H = diag[Ip, hIp1 , bIp2 ] and 0d be a d × 1 vector of zeros.

Let ϑ∗0(t, u) = (αT
0 (t), γT0 (u), α̇T

0 (t), γ̇T0 (u))T and ϑ0(t, u) = (αT
0 (t), γT0 (u))T where

α0(·), γ0(·), α̇0(·), γ̇0(·) are true values of α(·), γ(·) and their first derivatives.

Condition B.

(B.1) The inverse function of the link function ϕ(·) = g−1(·) is twice differentiable;

(B.2) The processes Xi(t), Wi(t), Ui(t) and λi(t), 0 ≤ t ≤ τ , are bounded and their

total variations are bounded by a constant;

(B.3) The kernel function K(·) is symmetric with compact support on [−1, 1] and

Lipschitz continuous; Bandwidths h � b; h→ 0; nh2 →∞ and nh5 is bounded;

(B.4) α0(t) and γ0(u) are twice differentiable on t ∈ [0, τ ] and a compact support U

respectively; D−1(t, u) is positive definite for all (t, u) ∈ [0, τ ]× U ;

(B.5) (Condition (C.6) in Yin et al. (2008)) The conditional density of (Xi(t),Wi(t))

given Ui(t) = u0 is twice continuously differentiable with respect to u0. fU(t, u0)

is twice continuously differentiable with respect to u0 and satisfies

inf
t∈[0,τ ],u0∈U

fU(t, u0) > 0.

Lemma B.1. Under Condition B, we have that

Hϑ̂∗(t, u)
P−→(ϑ0(t, u)T,0p)

T

uniformly in t ∈ [t1, t2], u ∈ [u1, u2] as n→∞.
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Proof of Lemma B.1.

Let η(t, u) = H(ϑ∗(t, u)−ϑ∗0(t, u)). To prove Hϑ∗0(t, u)
P−→(ϑ0(t, u)T,0p)

T is equiva-

lent to showing η̂(t, u) = H(ϑ̂∗(t, u)−ϑ∗0(t, u))
P−→02p. In the following, for simplicity,

we denote η(t0, u0), η̂(t0, u0) and ϑ∗0(t0, u0) as η, η̂ and ϑ∗0 respectively. Let λ∗i (t, θ) =

ϕ
{
θTX̃∗i (t|t0, u0)

}
, λ̇∗i (t, θ) = ϕ̇

{
θTX̃∗i (t|t0, u0)

}
, and λ̈∗i (t, θ) = ϕ̈

{
θTX̃∗i (t|t0, u0)

}
where θ is an arbitrary 2p-dimentional column vector. Then, by equation (3.3), η̂ is

the solution of Uη(η|t0, u0) = 0, where

Uη(η|t0, u0) =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
λ̇∗i (t,H

−1η + ϑ∗0)

λ∗i (t,H
−1η + ϑ∗0)

×
{
dNi(t)− λ∗i (t,H−1η + ϑ∗0)dt

}
X̃∗i (t|t0, u0).

First, we consider

n−1H−1(Uη(η|t0, u0)− Uη(02p|t0, u0))

=n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
λ̇∗i (t,H

−1η + ϑ∗0)

λ∗i (t,H
−1η + ϑ∗0)

×
{
dNi(t)− λ∗i (t,H−1η + ϑ∗0)dt

}
H−1X̃∗i (t|t0, u0)

− n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
λ̇∗i (t, ϑ

∗
0)

λ∗i (t, ϑ
∗
0)

×
{
dNi(t)− λ∗i (t, ϑ∗0)dt

}
H−1X̃∗i (t|t0, u0).

Let D22(t0, u0) = D(t0, u0) ◦ diag(µ21p1×p1 , µ21p2×p2), where ◦ is the Hadamard
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product, 1m×n is a m× n all ones matrix:

1 1 1 . . . 1

1 1 1 . . . 1

...
...

...
. . .

...

1 1 1 . . . 1


m×n

.

Under Condition B, by the Taylor expansion and the Lemma A.1 in Yin et al.

(2008), we have

n−1H−1(Uη(η|t0, u0)− Uη(02p|t0, u0))

=n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)

[{
λ̈∗i (t, ϑ

∗
0)

λ∗i (t, ϑ
∗
0)
− λ̇∗i (t, ϑ

∗
0)2

λ∗i (t, ϑ
∗
0)2

}
dNi(t)

− λ̈∗i (t, ϑ∗0)dt

]
{H−1X̃∗i (t|t0, u0)}⊗2η + op(η)

=− diag(D(t0, u0), D22(t0, u0))η + op(η)

uniformly in t0 ∈ [t1, t2], u0 ∈ [u1, u2] and η ∈ N0, a neighborhood of 02p. Further-

more,

n−1H−1Uη(02p|t0, u0)

=n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))
H−1X̃∗i (t|t0, u0)dMi(t) + op(1).

By applying Lemma 1 of Zhang et al. (2013), n−1H−1Uη(02p|t0, u0)
P−→02p. By Lemma

2 of Sun et al. (2012), we conclude that η̂(t, u)
P−→02p, thusHϑ̂∗(t, u)

P−→(ϑ0(t, u)T,0p)
T

uniformly in t ∈ [t1, t2], u ∈ [u1, u2] as n→∞.
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Lemma B.2. Under Condition B, we have

√
nhb{ϑ̂(t0, u0)− ϑ0(t0, u0)− 1

2
h2µ2D

−1(t0, u0)bα(t0, u0)

− 1

2
b2µ2D

−1(t0, u0)bγ(t0, u0)} = D−1(t0, u0)
√
nhbAn(t0, u0) + op(1)

uniformly in t0 ∈ [t1, t2] and u0 ∈ [u1, u2] as nh6 = Op(1), where

bα(t0, u0) =E

{
Yi(t0)

λ̇i,0(t0, u0)2

λi,0(t0, u0)
X̃i(t0)XT

i (t0)

∣∣∣∣∣Ui(t0) = u0

}
fU(t0, u0)α̈(t0),

bγ(t0, u0) =E

{
Yi(t0)

λ̇i,0(t0, u0)2

λi,0(t0, u0)
X̃i(t0)WT

i (t0)I(Ni(t
−) > 0)

∣∣∣∣∣Ui(t0) = u0

}

× fU(t0, u0)γ̈(u0),

An(t0, u0) =n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))
X̃i(t)dMi(t).

Proof of Lemma B.2.

Because U(ϑ̂∗|t0, u0) = 0, we have

ϑ̂∗(t0, u0)− ϑ0(t0, u0) = −

{
∂U(ϑ∗0|t0, u0)

∂ϑ∗

}−1

U(ϑ∗0|t0, u0) + op(1).

We consider the first p components of ϑ∗. Since

∂U(ϑ∗0|t0, u0)

∂ϑ∗
P−→− diag(D(t0, u0), D22(t0, u0)),

it yields

ϑ̂(t0, u0)− ϑ0(t0, u0) = D−1(t0, u0)U1(ϑ∗0|t0, u0) + op(1),
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where

U1(ϑ∗0|t0, u0)

=n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
λ̇∗i (t, ϑ

∗
0)

λ∗i (t, ϑ
∗
0)

{
dNi(t)− λ∗i (t, ϑ∗0)dt

}
X̃i(t).

By the Taylor expansion, we have

U1(ϑ∗0|t0, u0) = An(t0, u0) + Bn(t0, u0) + Cn(t0, u0) + op(h
2 + b2),

where

Bn(t0, u0)

=− 1

2n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)

[{
λ̈i,0(t, Ui(t))

λi,0(t, Ui(t))
− λ̇i,0(t, Ui(t))

2

λi,0(t, Ui(t))2

}

× dNi(t)− λ̈∗i (t, ϑ∗0)dt

]
α̈(t0)TXi(t)(t− t0)2X̃i(t),

Cn(t0, u0)

=− 1

2n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)

[{
λ̈i,0(t, Ui(t))

λi,0(t, Ui(t))
− λ̇i,0(t, Ui(t))

2

λi,0(t, Ui(t))2

}

× dNi(t)− λ̈∗i (t, ϑ∗0)dt

]
γ̈(u0)TWi(t)I(Ni(t

−) > 0)(Ui(t)− u0)2X̃i(t).

Following the arguments in Lemma A.1 in Yin et al. (2008), we conclude that

1

h2
Bn(t0, u0)

P−→1

2
µ2bα(t0, u0)

and

1

b2
Cn(t0, u0)

P−→1

2
µ2bγ(t0, u0).

Therefore, Lemma B.2 holds.
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Proof of Theorem 3.1.

(a) By Lemma B.1, α̂(t, u)
P−→α0(t) uniformly in t ∈ [t1, t2], u ∈ [u1, u2] as n→∞.

Then,

sup
t∈[t1,t2]

|α̂(t)
P−→α0(t)|

= sup
t∈[t1,t2]

|n−1

n∑
i=1

{α̂(t, Ui(t))− α0(t)}

≤ sup
t∈[t1,t2],u∈[u1,u2]

|α̂(t, u)− α0(t)|

=op(1).

(b) Under Condition B, by Lemma B.2, we have

√
nh{α̂(t0, u0)− α0(t0)− 1

2
h2µ2α̈0(t0)}

=I1D
−1(t0, u0)

√
h

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))
X̃i(t)dMi(t)

+ op(1).

Then, by Lemma A.1 in Yin et al. (2008), we obtain

√
nh{α̂(t0)− α0(t0)− 1

2
h2µ2α̈(t0)}

=

√
h

n

n∑
i=1

∫ τ

0

Kh(t− t0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))

× I1

{
1

n

n∑
j=1

Kb(Ui(t)− Uj(t0))D−1(t0, Uj(t0))

}
X̃i(t)dMi(t) + op(1)

=
√
nhA(α)

n (t0) + op(1),
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where

A(α)
n (t0) =

1

n

n∑
i=1

∫ τ

0

Kh(t− t0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))
I1D

−1(t0, Ui(t))X̃i(t)dMi(t).

√
nhA

(α)
n (t0) is a sum of local square integrable martingales, and

nh〈A(α)
n ,A(α)

n 〉(t0)

=
h

n

n∑
i=1

∫ τ

0

Kh(t− t0)2Yi(t)
λ̇i,0(t, Ui(t))

2

λi,0(t, Ui(t))

{
I1D

−1(t0, Ui(t))X̃i(t)

}⊗2

dt

P−→Σα(t0),

where Σα(t0) = ν0I1E{D−1(t0, Ui(t0))}IT1 .

Moreover, for any ε > 0,

nh〈A(α)
n,ε ,A

(α)
n,ε 〉(t0)

=
h

n

n∑
i=1

∫ τ

0

Kh(t− t0)2Yi(t)
λ̇i,0(t, Ui(t))

2

λi,0(t, Ui(t))
Xi,j(t, t0)⊗2

× I

(√
h

n

∣∣∣∣∣Kh(t− t0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))
Xi,j(t, t0)

∣∣∣∣∣ > ε

)
dt

P−→0,

where Xi,j(t, t0) is the jth component of I1D
−1(t0, Ui(t))X̃i(t). By Theorem 5.1.1 in

Flemming (1991), we conclude that as n→∞,

√
nh(α̂(t)− α0(t)− 1

2
h2µ2α̈(t))

D−→N (0,Σα(t)) , fort ∈ [t1, t2].

Proof of Theorem 3.2.



92

(a) Following the proof of Theorem 3.1 (a), we can apply Lemma B.1 to prove the

consistency of γ̂(u0) similarly.

(b) Under Condition B, by Lemma B.2, we have

√
nb{γ̂(t0, u0)− γ0(u0)− 1

2
b2µ2γ̈0(u0)}

=I2D
−1(t0, u0)

√
b

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))
X̃i(t)dMi(t)

+ op(1).

Then, by Lemma A.1 in Yin et al. (2008), we obtain

√
nb{γ̂(u0)− γ0(u0)− 1

2
b2µ2γ̈(u0)}

=

√
b

n

n∑
i=1

∫ τ

0

Kb(Ui(t)− u0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))

× I2

{
n−1
u0

∑
tu0∈Vu0

Kh(t− tu0)D−1(tu0 , u0)

}
X̃i(t)dMi(t) + op(1)

=
√
nbA(γ)

n (u0) + op(1),

if nu0 � n, where

A(γ)
n (u0) =

1

n

n∑
i=1

∫ τ

0

Kb(Ui(t)− u0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))
I2D

−1(t, u0)X̃i(t)dMi(t).

√
nbA

(γ)
n (u0) is a sum of local square integrable martingales, and

nb〈A(γ)
n ,A(γ)

n 〉(u0)

=
b

n

n∑
i=1

∫ τ

0

Kb(Ui(t)− u0)2Yi(t)
λ̇i,0(t, Ui(t))

2

λi,0(t, Ui(t))

{
I2D

−1(t, u0)X̃i(t)

}⊗2

dt

P−→Σγ(u0),
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where

Σγ(u0) = ν0I2

{∫ τ

0

D−1(t, u0)dt
}
IT2 .

Moreover, for any ε > 0,

nb〈A(γ)
n,ε ,A

(γ)
n,ε〉(u0)

=
b

n

n∑
i=1

∫ τ

0

Kb(Ui(t)− u0)2Yi(t)
λ̇i,0(t, Ui(t))

2

λi,0(t, Ui(t))
Xi,j(t, u0)⊗2

× I

(√
b

n

∣∣∣∣∣Kb(Ui(t)− u0)Yi(t)
λ̇i,0(t, Ui(t))

λi,0(t, Ui(t))
Xi,j(t, u0)

∣∣∣∣∣ > ε

)
dt

P−→0,

where Xi,j(t, u0) is the jth component of I2D
−1(t, u0)X̃i(t). By Theorem 5.1.1 in

Flemming 1991, we conclude that as n→∞,

√
nb(γ̂(u)− γ0(u)− 1

2
b2µ2γ̈0(u))

D−→N (0,Σγ(u)) , foru ∈ [u1, u2].
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APPENDIX C: PROOFS OF THE THEOREMS IN CHAPTER 4

Condition C.

(C.1) Conditions (B.2)-(B.5) in Appendix B;

(C.2) (Condition (A.7) in Sun et al. (2017)) The function π(Ωi, ψ) is twice differen-

tiable with respect to ψ on the compact set Θψ, π
′
(Ωi, ψ) = ∂π(Ωi, ψ)/∂ψ is

uniformly bounded, and there is an ε > 0 such that π(Ωi, ψ) ≥ ε for all i;

(C.3) (Condition (A.8) in Sun et al. (2017)) The functions µ1(Ωi, φ1) and µ2(Ωi, φ2)

are twice differentiable with respect to φ1 and φ2 on the compact sets Θφ1 and

Θφ2 , repectively.

Lemma C.1. Under Condition C, if π(Ωi) and/or both E{Wi|Ωi} and E{W⊗2
i |Ωi}

are correctly specified, we have that

Hϑ̂∗A(t, u)
P−→(ϑ0(t, u)T,0p)

T

uniformly in t ∈ [t1, t2], u ∈ [u1, u2] as n→∞.

Proof of Lemma C.1.

Let ψ0, φ10 and φ20 be the true values of ψ, φ1 and φ2 such that π(Ωi) = π(Ωi, ψ0),

E(Wi|Ωi) = µ1(Ωi, φ10) and E(W⊗2
i |Ωi) = µ2(Ωi, φ20) under the correctly specified

models for π(Ωi), E(Wi|Ωi) and E(W⊗2
i |Ωi), respectively.
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We define

M11,i0(t|t0, u0) =

 X⊗2
i Xiµ1(Ωi, φ10)TI(Ni(t

−) > 0)

µ1(Ωi, φ10)XT
i I(Ni(t

−) > 0) µ2(Ωi, φ20)I(Ni(t
−) > 0)

 ,

M12,i0(t|t0, u0) = M11,i0(t|t0, u0) ◦

(t− t0)1p1×p1 (Ui(t)− u0)1p1×p2

(t− t0)1p2×p1 (Ui(t)− u0)1p2×p2

 ,

M22,i0(t|t0, u0)

=M11,i0(t|t0, u0) ◦

 (t− t0)2
1p1×p1 (t− t0)(Ui(t)− u0)1p1×p2

(t− t0)(Ui(t)− u0)1p2×p1 (Ui(t)− u0)2
1p2×p2

 .

Let qi0 = Ri/π(Ωi, ψ0) and

dε∗i0(t, ϑ∗|t0, u0)

= dNi(t)



Xi

µ1(Ωi, φ10)I(Ni(t
−) > 0)

Xi(t− t0)

µ1(Ωi, φ10)I(Ni(t
−) > 0)(Ui(t)− u0)



−

M11,i0(t|t0, u0) M12,i0(t|t0, u0)

M12,i0(t|t0, u0)T M22,i0(t|t0, u0)

ϑ∗(t0, u0)dt.

Since ψ̂, φ̂1, and φ̂2 are M -estimators, by Theorems 5.2 and 5.7 in van der Vaart
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(1998), we have

n−1H−1UA(ϑ∗, ψ̂, φ̂1, φ̂2|t0, u0)

= n−1H−1UA(ϑ∗, ψ0, φ10, φ20|t0, u0)

+ n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)(q̂i − qi0)

×
[{
dNi(t)− λ∗i (t, ϑ∗|t0, u0)dt

}
X̃∗i (t|t0, u0)− dε∗i0(t, ϑ∗|t0, u0)

]
+ n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)(1− qi0)

×
{
dε̂∗i (t, ϑ

∗|t0, u0)− dε∗i0(t, ϑ∗|t0, u0)
}

− n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)(q̂i − qi0)

×
{
dε̂∗i (t, ϑ

∗|t0, u0)− dε∗i0(t, ϑ∗|t0, u0)
}

= n−1H−1UA(ϑ∗, ψ0, φ10, φ20|t0, u0) + op(1) (C.1)

uniformly in t0 ∈ [t1, t2], u0 ∈ [u1, u2] if π(Ωi) and/or both E{Wi|Ωi} and E{W⊗2
i |Ωi}

are correctly specified.

Let η(t, u) = H(ϑ∗(t, u) − ϑ∗0(t, u)) and η̂A(t, u) = H(ϑ̂∗A(t, u) − ϑ∗0(t, u)). For

simplicity, we denote η(t0, u0), η̂A(t0, u0) and ϑ∗0(t0, u0) by η, η̂A and ϑ∗0 respec-

tively. Let λ∗i (t, θ) = ϕ
{
θTX̃∗i (t|t0, u0)

}
, λ̇∗i (t, θ) = ϕ̇

{
θTX̃∗i (t|t0, u0)

}
, and λ̈∗i (t, θ) =

ϕ̈
{
θTX̃∗i (t|t0, u0)

}
where θ is an arbitrary 2p-dimentional column vector. Then, η̂A

is the solution of UA(H−1η + ϑ∗0, ψ̂, φ̂1, φ̂2|t0, u0) = 0.

Let Da,22(t0, u0) = Da(t0, u0)◦diag(µ21p1×p1 , µ21p2×p2). Under Condition C, by the
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Taylor expansion and the Lemma A.1 in Yin et al. (2008), we have

n−1H−1
{
UA(H−1η + ϑ∗0, ψ0, φ10, φ20|t0, u0)− UA(ϑ∗0, ψ0, φ10, φ20|t0, u0)

}
=− n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)
[
qi0(H−1X̃∗i (t|t0, u0))⊗2

+ (1− qi0)E
{

(H−1X̃∗i (t|t0, u0))⊗2
∣∣∣Ωi

}]
ηdt

=− diag(Da(t0, u0), Da,22(t0, u0))η + op(η) (C.2)

uniformly in t0 ∈ [t1, t2], u0 ∈ [u1, u2] and η ∈ N0, a neighborhood of 02p. Further-

more, by applying Lemma 1 of Zhang et al. (2013), we have

n−1H−1UA(ϑ∗0, ψ0, φ10, φ20|t0, u0)

=n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)H
−1X̃∗i (t|t0, u0)dMi(t) + op(1)

=op(1) (C.3)

From (C.1)-(C.3), by Lemma 2 of Sun et al. (2012), we conclude that

Hϑ̂∗A(t, u)
P−→(ϑ0(t, u)T,0p)

T

uniformly in t ∈ [t1, t2], u ∈ [u1, u2] as n → ∞ if π(Ωi) and/or both E{Wi|Ωi} and

E{W⊗2
i |Ωi} are correctly specified.

Lemma C.2. Under Condition C, if π(Ωi), E{Wi|Ωi} and E{W⊗2
i |Ωi} are all cor-



98

rectly specified, we have

√
nhb{ϑ̂A(t0, u0)− ϑ0(t0, u0)− 1

2
h2µ2D

−1
a (t0, u0)ba,α(t0, u0)

− 1

2
b2µ2D

−1
a (t0, u0)ba,γ(t0, u0)} = D−1

a (t0, u0)
√
nhbAa,n(t0, u0) + op(1)

uniformly in t0 ∈ [t1, t2] and u0 ∈ [u1, u2] as nh6 = Op(1), where

ba,α(t0, u0) =E

{
Yi(t0)wi(t)X̃i(t0)XT

i (t0)

∣∣∣∣∣Ui(t0) = u0

}
fU(t0, u0)α̈(t0),

ba,γ(t0, u0) =E

{
Yi(t0)wi(t)X̃i(t0)WT

i (t0)I(Ni(t
−) > 0)

∣∣∣∣∣Ui(t0) = u0

}

× fU(t0, u0)γ̈(u0),

Aa,n(t0, u0) =n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)X̃i(t)dMi(t).

Proof of Lemma C.2.

If π(Ωi), E{Wi|Ωi} and E{W⊗2
i |Ωi} are all correctly specified, we have

ϑ̂A(t0, u0)− ϑ0(t0, u0) = D−1
a (t0, u0)UA,1(ϑ∗0, ψ0, φ10, φ20|t0, u0) + op(1),

where

UA,1(ϑ∗0, ψ0, φ10, φ20|t0, u0)

=n−1

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)
[
qi0
(
dNi(t)− λ∗i (t, ϑ∗0)dt

)
X̃i(t)

+ (1− qi0)E
{(
dNi(t)− λ∗i (t, ϑ∗0)dt

)
X̃i(t)

∣∣Ωi

}]
.
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By the Taylor expansion, we have

UA,1(ϑ∗0|t0, u0)

=Aa,n(t0, u0) + Ba,n(t0, u0) + Ca,n(t0, u0) + δa,n(t0, u0) + op(h
2 + b2),

where

Ba,n(t0, u0)

=− 1

2n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)α̈(t0)TXi(t)(t− t0)2X̃i(t),

Ca,n(t0, u0)

=− 1

2n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)γ̈(u0)TWi(t)I(Ni(t
−) > 0)

× (Ui(t)− u0)2X̃i(t),

δa,n(t0, u0)

=− 1

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)(1− qi0)
[(
dNi(t)− λ∗i (t, ϑ∗0)dt

)
X̃i(t)

− E
{(
dNi(t)− λ∗i (t, ϑ∗0)dt

)
X̃i(t)

∣∣Ωi

}]
.

√
nhb δa,n(t0, u0) = op(1). Again, following the arguments in Lemma A.1 in Yin

et al. (2008), we have that

1

h2
Ba,n(t0, u0)

P−→1

2
µ2ba,α(t0, u0)

and

1

b2
Ca,n(t0, u0)

P−→1

2
µ2ba,γ(t0, u0).

Therefore, Lemma C.2 holds.
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Proof of Theorem 4.1.

(a) By Lemma C.1, α̂A(t, u)
P−→α0(t) uniformly in t ∈ [t1, t2], u ∈ [u1, u2] as n→∞

if π(Ωi) and/or both E{Wi|Ωi} and E{W⊗2
i |Ωi} are correctly specified. Then,

sup
t∈[t1,t2]

|α̂A(t)
P−→α0(t)|

= sup
t∈[t1,t2]

|n−1

n∑
i=1

{α̂A(t, Ui(t))− α0(t)}

≤ sup
t∈[t1,t2],u∈[u1,u2]

|α̂A(t, u)− α0(t)|

=op(1).

(b) Under Condition C, by Lemma C.2, we have

√
nh{α̂A(t0, u0)− α0(t0)− 1

2
h2µ2α̈0(t0)}

=I1D
−1
a (t0, u0)

√
h

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)X̃i(t)dMi(t) + op(1).

Then, by Lemma A.1 in Yin et al. (2008), we obtain

√
nh{α̂A(t0)− α0(t0)− 1

2
h2µ2α̈(t0)}

=

√
h

n

n∑
i=1

∫ τ

0

Kh(t− t0)Yi(t)wi(t)I1

{
1

n

n∑
j=1

Kb(Ui(t)− Uj(t0))D−1
a (t0, Uj(t0))

}

× X̃i(t)dMi(t) + op(1)

=
√
nhA(α)

a,n(t0) + op(1),

where

A(α)
a,n(t0) =

1

n

n∑
i=1

∫ τ

0

Kh(t− t0)Yi(t)wi(t)I1D
−1
a (t0, Ui(t))X̃i(t)dMi(t).
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√
nhA

(α)
a,n(t0) is a sum of local square integrable martingales, and

nh〈A(α)
a,n,A

(α)
a,n〉(t0)

=
h

n

n∑
i=1

∫ τ

0

Kh(t− t0)2Yi(t)wi(t)
2λi,0(t, Ui(t))

{
I1D

−1
a (t0, Ui(t))X̃i(t)

}⊗2

dt

P−→ν0I1E
{
D−1
a (t0, Ui(t0))Σa(t0, Ui(t0))D−1

a (t0, Ui(t0))
}
IT1 ,

where

Σa(t, u) = E
[
Yi(t)wi(t)

2λi,0(t, u)X̃i(t)
⊗2
∣∣∣Ui(t) = u

]
fU(t, u).

Moreover, for any ε > 0,

nh〈A(α)
a,n,ε,A

(α)
a,n,ε〉(t0)

=
h

n

n∑
i=1

∫ τ

0

Kh(t− t0)2Yi(t)wi(t)
2λi,0(t, Ui(t))Xi,j(t, t0)⊗2

× I

(√
h

n

∣∣∣∣∣Kh(t− t0)Yi(t)wi(t)
2λi,0(t, Ui(t))Xi,j(t, t0)

∣∣∣∣∣ > ε

)
dt

P−→0,

where Xi,j(t, t0) is the jth component of I1D
−1
a (t0, Ui(t))X̃i(t). By Theorem 5.1.1 in

Flemming (1991), we conclude that as n→∞,

√
nh(α̂A(t)− α0(t)− 1

2
h2µ2α̈(t))

D−→N (0,Σa,α(t)) , for t ∈ [t1, t2],

where

Σa,α(t) = ν0I1E
{
D−1
a (t, Ui(t))Σa(t, Ui(t))D

−1
a (t, Ui(t))

}
IT1 .

Proof of Theorem 4.2.
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(a) Following the proof of Theorem 4.1 (a), we can apply Lemma C.1 to prove the

consistency of γ̂A(u0) similarly.

(b) Under Condition C, by Lemma C.2, we have

√
nb{γ̂A(t0, u0)− γ0(u0)− 1

2
b2µ2γ̈0(u0)}

=I2D
−1
a (t0, u0)

√
b

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Yi(t)wi(t)X̃i(t)dMi(t) + op(1).

Then, by Lemma A.1 in Yin et al. (2008), we obtain

√
nb{γ̂A(u0)− γ0(u0)− 1

2
b2µ2γ̈(u0)}

=

√
b

n

n∑
i=1

∫ τ

0

Kb(Ui(t)− u0)Yi(t)wi(t)I2

{
n−1
u0

∑
tu0∈Vu0

Kh(t− tu0)D−1
a (tu0 , u0)

}

× X̃i(t)dMi(t) + op(1)

=
√
nbA(γ)

a,n(u0) + op(1),

if nu0 � n, where

A(γ)
a,n(u0) =

1

n

n∑
i=1

∫ τ

0

Kb(Ui(t)− u0)Yi(t)wi(t)I2D
−1
a (t, u0)X̃i(t)dMi(t).

√
nbA

(γ)
a,n(u0) is a sum of local square integrable martingales, and

nb〈A(γ)
a,n,A

(γ)
a,n〉(u0)

=
b

n

n∑
i=1

∫ τ

0

Kb(Ui(t)− u0)2Yi(t)wi(t)
2λi,0(t, Ui(t))

{
I2D

−1
a (t, u0)X̃i(t)

}⊗2

dt

P−→ν0I2

{∫ τ

0

D−1
a (t, u0)Σa(t, u0)D−1

a (t, u0)dt
}
IT2 .
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Moreover, for any ε > 0,

nb〈A(γ)
a,n,ε,A

(γ)
a,n,ε〉(u0)

=
b

n

n∑
i=1

∫ τ

0

Kb(Ui(t)− u0)2Yi(t)wi(t)
2λi,0(t, Ui(t))Xi,j(t, u0)⊗2

× I

(√
b

n

∣∣∣∣∣Kb(Ui(t)− u0)Yi(t)wi(t)
2λi,0(t, Ui(t))Xi,j(t, u0)

∣∣∣∣∣ > ε

)
dt

P−→0,

where Xi,j(t, u0) is the jth component of I2D
−1
a (t, u0)X̃i(t). By Theorem 5.1.1 in

Flemming 1991, we conclude that as n→∞,

√
nb(γ̂(u)− γ0(u)− 1

2
b2µ2γ̈0(u))

D−→N (0,Σa,γ(u)) , foru ∈ [u1, u2].

where

Σa,γ(u) = ν0I2

{∫ τ

0

D−1
a (t, u)Σa(t, u)D−1

a (t, u)dt
}
IT2


