
UNDERSTANDING THE BI-DIRECTIONAL RELATIONSHIP BETWEEN
ANALYTICAL PROCESSES AND INTERACTIVE VISUALIZATION SYSTEMS

by

Wenwen Dou

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computing and Information Systems

Charlotte

2012

Approved by:

Dr. William Ribarsky

Dr. Jing Yang

Dr. Robert Kosara

Dr. Heather Richter Lipford

Dr. Mark Faust



ii

c�2012
Wenwen Dou

ALL RIGHTS RESERVED



iii

ABSTRACT

WENWEN DOU. Understanding the bi-directional relationship between analytical
processes and interactive visualization systems. (Under the direction of DR.

WILLIAM RIBARSKY)

Interactive visualizations leverage the human visual and reasoning systems to in-

crease the scale of information with which we can e↵ectively work, therefore improving

our ability to explore and analyze large amounts of data. Interactive visualizations are

often designed with target domains in mind, such as analyzing unstructured textual

information, which is a main thrust in this dissertation.

Since each domain has its own existing procedures of analyzing data, a good start

to a well-designed interactive visualization system is to understand the domain ex-

perts’ workflow and analysis processes. This dissertation recasts the importance of

understanding domain users’ analysis processes and incorporating such understanding

into the design of interactive visualization systems.

To meet this aim, I first introduce considerations guiding the gathering of general

and domain-specific analysis processes in text analytics. Two interactive visualiza-

tion systems are designed by following the considerations. The first system is Parallel-

Topics, a visual analytics system supporting analysis of large collections of documents

by extracting semantically meaningful topics. Based on lessons learned from Paral-

lelTopics, this dissertation further presents a general visual text analysis framework,

I-Si, to present meaningful topical summaries and temporal patterns, with the capa-

bility to handle large-scale textual information. Both systems have been evaluated

by expert users and deemed successful in addressing domain analysis needs.
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The second contribution lies in preserving domain users’ analysis process while

using interactive visualizations. Our research suggests the preservation could serve

multiple purposes. On the one hand, it could further improve the current system. On

the other hand, users often need help in recalling and revisiting their complex and

sometimes iterative analysis process with an interactive visualization system. This

dissertation introduces multiple types of evidences available for capturing a user’s

analysis process within an interactive visualization and analyzes cost/benefit ratios

of the capturing methods. It concludes that tracking interaction sequences is the most

un-intrusive and feasible way to capture part of a user’s analysis process. To validate

this claim, a user study is presented to theoretically analyze the relationship between

interactions and problem-solving processes. The results indicate that constraining the

way a user interacts with a mathematical puzzle does have an e↵ect on the problem-

solving process. As later evidenced in an evaluative study, a fair amount of high-level

analysis can be recovered through merely analyzing interaction logs.
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CHAPTER 1: INTRODUCTION

Visual analytics is the science of analytical reasoning facilitated by visual interactive

interfaces [115]. Visual analytics integrates new computational and theory-based tools

with innovative interactive techniques and visual representations to enable human-

information discourse. There exists a tight relationship between a user’s analysis

process and the interactive visualization system designed to facilitate such a process.

On the one hand, the visualization system is designed by incorporating as much

general and domain-specific analysis processes as possible. On the other hand, when

the visualization system is in use, the individual analysis processes are carried out

through user interacting with the system and therefore reflected by the interactions

between the user and the system.

Understanding the intimate relationship between analysis processes and interac-

tive visualization systems brings profound impacts. First, the understanding could

inform future visualization system design on how to better incorporate general and

domain-specific analytical processes so that the system fits more naturally to the

user’s analysis flow. Second, the understanding could in turn advise how to extract

an individual’s analysis processes when using interactive visualization systems. The

extracted analysis process could potentially be used for multiple purposes such as

self-recall, reporting, or training. Last, the collected individual’s analysis processes
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could be analyzed and further utilized by the interactive visualization systems to

better support user’s analysis processes.

1.1 Dissertation Problem and Approach

This dissertation focuses on understanding the relationship between analytical pro-

cesses and interactive visualization systems. In particular, we examine how analytical

processes are gathered and then incorporated when designing interactive visualiza-

tion systems. We also study whether and how an individual’s analytical processes

can be recovered from examining evidences collected (such as interaction logs and

annotation) during the use of interactive visualization systems.

Interactive visualization systems advances analytical reasoning, which is central to

analysts’ task of applying human judgments to reach conclusions from a combination

of evidences and assumptions [98]. Therefore, from a design perspective, it is es-

sential for interactive visualization systems to support analytical processes in general

and within target application domains. In order to provide such support, interviewing

potential users and even observing users working in their natural work environment

is common practice before designing an interactive visualization system. Information

gathered from the interviews are then translated into design guidelines and embedded

in both visual representations and interaction techniques. The resulting interactive

visualization system can then support the analysts’ analytical flow by providing in-

sightful patterns and desired information on demand through user interaction.

It is through the interactive manipulation of a visual interface, the dialogue between

a user and a visualization could be established and maintained; It is also through
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the interactive manipulation, a user is able to explore and analyze the underlying

data within a visual interface. Therefore, a fair amount of the analysis/reasoning

is reflected in the process of interacting with the visualization system. With visual

analytics tools becoming more sophisticated and prevalent in the analysis communi-

ties, it is now apparent that not only is the final analysis product important, how

the analyst arrived at the conclusions is also essential. Since the analysis process is

often complex and iterative, there is a real need to help the analysts keep track of

their thoughts and procedures [77]. In addition, the process of reaching final con-

clusions through interacting with visualization systems bears tremendous experience

and expertise. If such expertise could be partially recovered after the analysis, the

results could potentially be used for versatile purposes, such as generating a report of

the analysis process, training novices, further improving the interactive visualization

system, etc. In fact, research has shown that merely studying the interaction logs can

provide system usage information [52] and even a peek into user’s high-level reasoning

processes [37].

To illustrate how we incorporate general and domain specific analysis processes

into an interactive visualization system, we provide several application examples,

specifically in the domain of text analytics. To showcase how we extract the analysis

process from evidences recorded when using such system, we first present a study

to evaluate the possibility of doing so on a theoretical note. We then present a

combination of applications of evaluations to demonstrate our findings.
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1.2 Dissertation contribution

This dissertation raises awareness of the bi-directional relationship between analysis

processes and interactive visualization systems. The contributions can be categorized

into two areas:

1. Design considerations for incorporating general and domain-specific analysis

processes into interactive visualization systems.

• We analyze various domains in the context of text analytics and present several

common and domain-related tasks. The resulting tasks and sub-tasks well re-

flect users’ analysis processes when making sense of large text corpora. Support

for text analysis processes are later incorporated into interactive text visualiza-

tion systems.

• The design and evaluation of novel text analytics environments - ParallelTopics

and I-Si, based on a thorough understanding of target users’ analysis processes.

ParallelTopics is a visual analytics system supporting analysis of large collec-

tions of documents by extracting semantically meaningful topics. Based on

lessons learned from ParallelTopics, this dissertation further presents a general

visual text analysis framework, I-Si, to present meaningful topical summaries

and temporal patterns, with the capability to handle large-scale textual informa-

tion. Both systems have been evaluated by expert users and deemed successful

in addressing domain analysis needs.

2. Theoretical and practical demonstration of extracting analysis process from evi-

dences recorded during analysis with interactive visualization systems. In particular,
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we focus on analyzing the interactions between user and computer since it is through

the interactive manipulation, the analysis process is supported within visualization

systems. More specifically, this contribution can be divided into two sub-categories:

a. Studying the outcome of the analysis process under di↵erent interaction con-

straints validates the importance of interaction to a user’s analysis process. Exper-

imental results have shown that constraining the way a user could interact with a

problem significantly a↵ects the outcome of the problem solving process.

b. Examining how much of a high-level analysis process can be extracted from

merely analyzing interaction logs recorded during the analysis. According to our

study, a large amount of high-level reasoning process when using an interactive visual

interface could be recovered from analyzing sequences of user interactions. Our find-

ings have sparked a lot research interest on capturing a user’s analysis process within

visualization through recording user interactions and other means.

1.3 Dissertation Outline

Chapter 2 begins by covering related work and background. The remainder of the

dissertation is organized into two areas: an investigation of how to incorporate anal-

ysis processes into interactive visualization systems during the design stage, followed

by analyzing how to in turn extract individual analysis processes from the use of

interactive visualization systems.

1.3.1 Design Considerations and Systems for Incorporating Analysis Processes

Chapter 3 introduces design considerations for incorporating analysis processes into

interactive visualization systems during the design stage. We consult the Sensemak-
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ing model [94], ethnography methods well-studied in the HCI community, as well as

several visualization task taxonomies to derive general analysis processes. We com-

bine results from our interviews with target users and findings summarized by other

researchers to present a list of domain-specific tasks in the field of text analytics.

Chapters 4 and 5 introduce examples of incorporating general and domain-specific

analytical processes into interactive visualization systems in the area of text analytics.

Chapter 4 presents ParallelTopics, a visual analytics system designed to help users to

analyze longer text documents such as scientific publications and research proposals.

In particular, we focus on the gathering of the general and domain-related analysis

processes and how we designed ParallelTopics based on the collected information.

Chapter 5 introduces a framework called I-Si, which is a pipeline for analyzing large-

scale text corpora. In addition to the interactive visualization component, the I-Si

framework also leverages parallel computing to process a large amount of textual data.

The choice of incorporating a parallel computing component into the pipeline is to

address the need for analyzing large scale textual information such as data harvested

from social and conventional media, thus to support the analysis process of identifying

consistent or bursty trends from a large amount of textual data.

1.3.2 Extracting Analysis Process from Recorded Usage of Interactive
Visualization Systems

Chapter 6 through 9 describe means to extract high-level analysis process from

evidences collected during the use of visual analytics systems.

Chapter 6 introduces an overview of the types of evidences available for recording

during a user’s analysis process within an interactive visualization system. This chap-
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ter further analyzes the benefits and drawbacks of capturing each type of evidence.

Based on our analysis, studying interaction logs has the most benefit-to-cost ratio

with respect to both end users and researchers, we then focus on the capturing of

interaction in subsequent chapters.

Chapter 7 presents a study that theoretically analyzes the relationship between

interactions and problem-solving process. In particular, we study how constraining

users interactions could a↵ect the outcome and strategies developed while solving a

mathematical puzzle. The results indicate that constraining the way a user interacts

with the puzzle does have an e↵ect on the problem-solving process.

With the theoretical support from chapter 7, chapter 8 introduces a study that

examines how much of the high-level analysis process could be derived through merely

analyzing interaction logs. The chapter describes in detail our approach of capturing

interaction sequences and analyzing such sequences. The chapter further discusses

the implications for improving capturing and analysis of interaction logs.

Finally, chapter 9 summarizes the contributions of this dissertation, describes re-

cent developments, and outlines remaining challenges for understanding the intimate

relationship between analysis processes and interactive visualization systems.



CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 Models of Visualization and Analysis Process

As the field of information visualization and visual analytics mature, many visu-

alization models have been proposed. Some models focus on providing guide to the

creation and analysis of visualization systems [20, 19, 25]. For example, Card pre-

sented a Visualization Reference Model [20] that emphasizes , among other things,

the specific mappings of data tables into visual structures, and the interactive e↵ects

of human interactions with these mappings. Chi [24] divides existing visualization

techniques into several data categories (scientific visualization, geographic InfoVis,

2D, multi-dimensional, information landscapes, trees, networks, web, and text). He

extends Card’s reference model into a Data State Reference Model [25] in order to

isolate common operational steps within each visualization type.

More recently, Munzner [83] proposed a nested model for both the visualization de-

sign and validation. The four layers of the nested model provide not only guidelines

for visualization design, but also prescriptive guidance for determining appropriate

evaluation approaches. In the nested model, the most fundamental layer that all other

layers are built upon is “Domain Problem and Data Characterization”, at which a

visualization designer must learn about the tasks and data of target users in the tar-

get domains. This step is analogous to our focus of understanding the users analysis
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process in their own domains. Each domain usually has its own vocabulary for de-

scribing its data and problems, and there is usually some existing workflow or process

of how to solve the problems. Munzner further provided guidelines and methods to

ensure that the problems of the target audience are clearly understood by visual-

ization designers. Other work has also noticed the importance of understanding the

analysis process before designing a visualization system. Wang et al. has proposed

a two-stage framework for designing visual analytics systems in organizational envi-

ronments [119]. In particular, understanding the potential users’ analysis processes is

the most essential step in the first stage, namely the “observation and design stage”.

To understand the analysis processes, visualization designers must communicate well

with domain users. Some of the challenges inherent in bridging the gaps between

designers and target users are discussed by Van Wijk [125].

2.2 Designing Visual Encoding and Interaction Techniques

Among aforementioned visualization models, the design of visual encodings has

received a great deal of attention in the foundation of information visualization lit-

erature, starting with the influential work by Mackinlay [81] and Card et al. [20]

(Chapter 1). The literature provides comprehensive guidelines on the choices of visual

encodings given data types, and further presents criteria to measure the expressive-

ness and e↵ectiveness of graphical presentations.

In contrast, the theory of interaction design for visualization is less developed.

Early work focused on the use of interactivity, such as brushing techniques to select

and highlight visualized data points [12]. Based on years of visualization design ex-
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perience, Shneiderman [105] proposed a task by data type taxonomy for information

visualization, providing a list of tasks that visualizations should support and a classi-

fication of the di↵erent data types subject to visualization. In particular, he identified

the interactive tasks of obtaining an overview of data, zooming in on items of inter-

est, filtering out uninteresting items, getting more details on demand, highlighting

relationships between items, providing an interactive history, and extracting and ex-

porting collections of data. The interactive tasks provide an important categorization

of interaction techniques.

More recently, Yi et al. [127] presented a survey that covers seven general categories

of interaction techniques widely used in the InfoVis community. The survey is a step

forward in developing a framework to design and evaluate interaction techniques. Lam

[74] extended Yi’s taxonomies and presented a descriptive framework of interaction

costs that provide understanding of how interaction can contribute to visualization

use and how designs can fall short in supporting these roles. Lam presented extensive

evidences from visualization literatures on interaction costs and further divided the

costs into seven categories. The framework suggests a need to diversify from the

traditional focus on visual encoding to cover user interactions as well.

Based on the number of models and guidelines provided regarding visual encodings

and interaction techniques, there seems to be a lack of models on designing and

evaluating interaction techniques in the literature. Our work contributes to this area

in that we present means to capture interactions between a user and a visualization

system and analyze the captured user interactions in informative manners.
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2.3 Provenance

As noted by Kindlmann [64] and Silva et al [108], the lack of reproducibility of

visualization research has the potential of hindering the advancement of visualization

as a science. They argue that in order to recreate and extend specific visualization

results, knowing the complete process of how the results are generated is just as

important as the techniques used and the final outcome. This process of recording how

a user interacts with a visualization is sometimes referred to as provenance tracking,

which is defined by Anderson et al as “the logging of information about how data

came into being and how it was processed.”

2.3.1 Data provenance

Data provenance refers to the logging of low-level interactions. It is the most preva-

lent type of provenance tracking, and is closely related to the undo/redo functions in

nearly all applications today. The primary goal of these systems are often to capture

and archive a user’s interactions for the purpose of replaying the user’s session at

a later time. In interactive visualization, one of the most notable systems in data

provenance is the GlassBox system by Greitzer [45, 29] which records low-level user’s

interactions in an analysis environment (such as copy, paste, mouse clicks, window

activation, etc). In scientific visualization, VisTrails is an open-source provenance

management system that provides infrastructure for data exploration and visualiza-

tion through workflows [11]. The stored provenance allows the users to query, interact,

and understand another session histories with the visualization tool. Jankun-Kelly et

al. further generalized how to capture the visualization states as a set of parameters
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and actions into recordable form [61] that they referred to as the P-Set Model. This

model is complete in that every user interaction with a visualization can be described

within it.

2.3.2 Information provenance

Groth and Streefkerk [47] recently coined the term “information provenance” to

distinguish systems that capture low-level user interactions from systems that record

the information discovery process in using a visualization. In their model, they focus

on recording the user’s interaction independently from the data in a way that the

same set of logged interactions can be applied to a di↵erent dataset. Additionally, a

user can attach annotations to the user’s interactions to further add semantic informa-

tion. Under Groth and Streefkerk’s definition, many recent visualization systems that

record user interactions incorporate tracking of information provenance. In GeoTime,

a user’s annotations retain semantic connections to their corresponding events as well

as the patterns displayed in a 3D representation [40]. Jeong et al. integrated tracking

functions into a financial visualization tool and recorded semantic-level interactions

that are relevant to the specific domain [63]. Heer et al. presented methods for both

capturing semantic interactions within an information visualization system as well

as the mechanism for reviewing, editing, and annotating on those interactions [52].

Similarly, in the Aruvi system developed by Shrinivasan et al., the user’s interactions

are automatically stored into a visible history tree [106]. The user can also manually

construct the state of the discovery using an interactive node-link diagram, which

provides additional detail behind the user’s interactions. Lastly, Gotz and Zhou in-
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corporated automatic tracking of information provenance in their system HARVEST

(which they referred to as insight provenance) and suggested a taxonomy of various

types of action-tiered user interactions [43].

Van Wijk has presented a model of visualization that describes the flow and re-

lationship between a user and a visualization [118]. The model presented what are

exchanged between the two parties, which sheds lights into what we can capture as

a result. More specifically, there are two connections, I and dS/dt, between the user

and the visualization. I stands for the images generated by the visualization that

are perceived by the user. And the connection dS/dt represents the changes in the

parameters of the visualization initiated by the user (through the use of a mouse,

keyboard, or other input devices) that are applied to the visualization to generate

the next sets of images I. Both of these connections can be captured directly within

the visualization during a user’s exploration process by performing visualization state

capturing and interaction logging respectively. The captured evidences provide us a

way to peek inside the blackbox - the analysis process inside a human brain.

2.3.3 Utilizing Captured Provenance

Aside from reviewing a user’s interaction history, there has been little research in

how either data or information provenance could be used. While all of the afore-

mentioned systems have noted on the benefits of capturing provenance, including

communication, evaluation, training, etc., the details of how provenance could be uti-

lized to achieve such benefits is sometimes unclear. A notable exception is the Active

Reports project at Pacific Northwest National Laboratory [91, 90] where the focus is
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not on capturing a user’s interactions, but on integrating the provenance into a live

reports such that sections of the reports are linked to the provenance and analysis

products generated by visualization systems. Similarly, Dou et al. examined the

benefits of information provenance captured in a financial visual analytical tool by

comparing the captured information provenance to the original user’s analysis pro-

cess [37]. Their results indicated that information provenance does not equate exactly

to the analysis process and the relationship between the two varied depending on the

stages of the analysis.



CHAPTER 3: INCORPORATING ANALYTICAL PROCESSES INTO
INTERACTIVE VISUALIZATION SYSTEMS

In this section, we introduce design considerations for incorporating analysis pro-

cesses into interactive visualization systems during the design stage. We first consult

the Sensemaking model [94], and several visualization task taxonomies [129, 10] to

derive general analysis processes. In order to illustrate how to interact with domain

users to study domain-specific analysis processes, we consult ethnographical methods

well-studied in the human computer interaction (HCI) community [35, 104]. We then

combine results from our interactions with target users and findings summarized by

other researchers to present a list of domain-specific tasks in the field of text analytics.

3.1 General analytical processes

Figure 1: Taxonomies of user tasks [127].

A good start to understanding general analysis process and tasks is to ground

information visualization in the larger process of sensemaking. Sensemaking is the

cyclical process in which human collect information, examine, organize, and categorize
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that information, isolate dimensions of interest, and use the results to solve problems,

make decisions, or communicate findings [20, 94, 95, 102]. Interactive visualization

enhances the sense making cycle by aiding the search for information, facilitating the

discovery of patterns, and providing means for evaluating various hypothesis. Several

high-level analysis processes and tasks could be derived from the sensemaking model,

such as information gathering, discovery of patterns/outliers, hypothesis testing and

validation, etc.

In the field of information visualization, several taxonomies have been proposed

to categorize user tasks and analysis processes. Zhou et al. introduced a visual

task taxonomy that interfaces high-level presentation intents with low-level visual

techniques [129]. In particular, they characterized visual tasks by presentation intents,

presenting a hierarchical taxonomy of lists of visual tasks with each list accomplishing

a certain intent. For example, the process of searching for information using an

interactive visualization interface may involve the tasks of categorizing information,

clustering, comparing di↵erent items, correlating, distinguishing, ranking, etc. The

tasks can then be translated into specific visual encodings and interaction techniques.

The taxonomy proposed by Zhou et al. is influential in the sense that it bridges the

high-level analysis process with low-level visualization designs. The taxonomy also

provided a preliminary categorization of presentation intents, which are elements to

describe a user’s analysis processes.

As an extension to Zhou’s work, Amar et al. introduced another taxonomy which

further bridges interaction and high-level analytic activity [10]. More specifically, the

taxonomy is comprised of ten low-level analysis tasks that largely capture people’s
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activities while employing information visualization tools for understanding data.

Drawing from large number of answers regarding di↵erent data sets from di↵erent

domains, Amar et al. deducted ten tasks shown in figure 1. If considering the set

of tasks in the taxonomy as analytic “primitives”, then a combination of some of

the tasks support examination of other high-level questions that do not clearly fit

into one category. The combinations of the analytic “primitives” also build versatile

high-level analytical processes.

3.2 Know Thy User & Know Thy Tasks

In order to develop an understanding of domain-specific analysis processes, a visu-

alization researcher must learn how to interact with domain users. Several method-

ologies of interacting with potential users have been widely studied in the HCI com-

munity. The most important step during the process of design is to identify target

users’ needs, through understanding as much as possible about the users, their work,

and the context of their work [104]. In other words, it is essential to know the users

and their tasks before producing any kind of design.

Why is identifying needs important? Much has been written about the significant

cost of fixing errors late in the software development cycle rather than early, during the

requirements activity. For example, Davis identifies insu�cient user communication,

poor specification, and insu�cient analysis as contributors to poor cost estimation

[31]. In addition, domain users won’t adopt the final product if it is not tailored to

their needs and workflow.



18

Figure 2: User proficiency profiles [27].

3.2.1 Know Thy User

One of the most essential steps in the design process is to understand who the

potential users are. It is important because researchers can’t deliver a suitable system

without knowing those problems they are trying to solve. As Hansen [48] pointed out,

in order to know the user, the system designer should try to build a profile of the

intended user: his education, experience, physical attributes, perceptual abilities,

cognitive abilities, personality and social traits, ect. User characteristics capture the

key attribute of the intended user group. Two types of user knowledge are commonly

collected, including information regarding users’ skills with the interface and the

domain. A user may be a novice, an expert, a casual, or a frequent user. This a↵ects

the ways in which visual encodings and interactions are designed. Figure 2 illustrates

user proficiency profiles based on user knowledge [34]. Given the user profiles, Hansen
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further presented ways to accommodate multiple user profiles such as providing multi-

layer, level-structured interfaces. So that novices get limited options which allows less

opportunities for error, while increased proficiency enables increased functionality.

3.2.2 Identify the Tasks

In addition to understanding the target users, designers also need to know the

domain. It is a process of analyzing and documenting how people perform their

jobs or activities. Understanding the domain involves task decomposition, the goal

of which is to find out what tasks are “atomic” and how are composite tasks put

together. Understanding the domain also involves knowing the task frequency, which

in turn determines navigation structure and invocation methods. Designers can focus

on analyzing activities, artifacts, and relationships between artifacts and activities.

Multiple methods have been developed in the HCI community to describe activities,

such as developing scenarios and user cases, flow charts and workflows, as well as

entity-relationship diagrams or object models.

In order to know the user and the tasks, there are multiple ways to interact with

target users and gather relevant data [35, 104].

• Observation and thinking out loud. Observation of participants in their natural

setting is used to understand the nature of the tasks and the context in which

they are performed. This method allows designers to watch users doing activities

of interest to the designers and encourage users to verbalize what they are

thinking. Sometimes the observation is carried out by trained observers who

record their findings and report them back to the design team, and sometimes
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the observation is carried out by or with a member from the design team.

• Participative evaluation. The designer can also sit and talk with users as they do

their activities that of interest to the designer. The method can be considered as

a relaxed version of thinking out loud in that the observer and participant can

ask each other questions so a more mutual understanding could be developed

throughout the course.

• Interviews. Interviews are good at getting stakeholders involved at an early

design stage. Interviews can be divided into structure, unstructured, and semi-

structured forms. The main di↵erence lies in how much data of interest is

predetermined by the interviewers.

• Focus groups. Focus group can be used to get at people’s desires, motivations,

values and experiences in the form of a group of individuals, usually ranging

from 3 to 10. A focus group is relatively low cost, and a quick way to learn a lot

about potential users. Focus groups are good at gaining a consensus view and

highlighting areas of conflict and disagreement. On a social level it also helps

for stakeholders to meet designers and each other, and to express their views

in public. It is not uncommon for one set of stakeholders to be unaware that

their understanding of an issue is di↵erent from another’s even though they are

in the same organization.

• Questionnaires. Questionnaires may be used for getting initial responses that

can then be analyzed to choose people to interview or to get a wider perspective
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on particular issues that have arisen elsewhere. A designer can develop a list of

specific questions that they want answers from domain users. A well-designed

questionnaire will usually include both closed questions with range of answers

and open-ended questions.

• Ethnography. This is an deeply contextual study in which a designer immerses

herself in a situation that she wants to learn about. The study usually yields

informative insights since behavior is meaningful only in context. Ethnogra-

phy has traditionally been used in the social sciences to uncover the social

organization of activities, and hence to understand work. Since 1990s it has

gained credibility in HCI design, and particularly in the design of collabora-

tive systems. A large part of most ethnographic studies is direct observations,

but interviews, questionnaires, and studying artifacts used in the activities also

feature in many ethnographic studies.The drawbacks of ethnographic methods

include small scale to keep users group manageable and highly qualitative re-

sults.

When designing an interactive visualization system, designers often use a combi-

nation of the above methods to interact with target users to gather data relevant to

both user and tasks.

3.3 Domain-specific analytical processes in visual text analytics

Visual analytics systems are usually designed for target domains, such as biology,

business intelligence, intelligent analysis, etc. Each domain usually has its own work-

flows and existing set of analysis processes. Therefore, in addition to the general
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analytical processes, it’s even more important for visualization designers to clearly

understand domain-specific analysis processes, so that the visual analytics systems

could fit right into and further facilitate domain experts’ workflow.

The field of text analytics involves information retrieval, pattern recognition, data

mining techniques, visualization, etc. The overarching goal of text analytics is to turn

text into data for analysis [41]. Under this broad field, the branch visual text analytics

has been gaining interests within the visualization community. Visual text analytics

combines text analytics and interactive visualization to help users explore and analyze

large text corpora. The benefit of coupling interactive visualization with text analytics

methods are two-fold. First, the results from the text analytics techniques are often

too complex for average users to consume. Interactive visualization could further

process the complex output and present users with intuitive visual representations

to help users interpret and examine the results from multiple perspectives. Second,

despite continuing advancement, text analytics techniques are still less than perfect.

The interactive visualization tools provide users with alternatives to compensate for

the deficiencies in these techniques such as providing details on demand to help users

understand sometimes abstract text summarization.

To summarize domain-specific analytical tasks, we surveyed papers published in the

field of visual text analytics. When analyzing email archives to portray conversational

relationships, Viegas et al. summarized two main questions that they want to help

target users answer:

• What sorts of things do I talk about with each of my email contacts? (self-recall
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and review)

• How do my email conversations with one person di↵er from those with other

people? (comparison)

The questions emerged from their experience with a previous email visualization

project, in which they discovered that users were quite fascinated by the ability to

look back at overall patterns of exchange in their archived messages.

In the domain of consumer analytics, Liu et al. presented an interactive visual text

analysis tool - TIARA - to aid users in analyzing a large collection of text. More

specifically, four high-level questions were extracted for guiding the design of the

visualization tools:

• What are the major topics in the customer feedback?

• What are the most active topics during the last few month?

• What are the key concepts mentioned in the above topics?

• How have the most active topics evolved over time?

In the world of intelligent analysis, Stasko et al. presented Jigsaw to support

examination of reports based on concepts and entities [113]. Entities include people,

locations, and time. By allowing users to see the relationships of the entities visually,

Jigsaw support investigative analysis by answering questions regarding who, when,

and where. The intelligence analysts can then synthesize such information to develop

a theory regarding threat plot and potential actions.
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In addition to summarizing a text corpus and analyzing relationships between

entities that are mentioned in the corpus, visualization researchers have also presented

tools for sentiment analysis of news articles [122], customer reviews [87], and social

media streams [49]. These visualization tools could help users assess how positive or

negative a particular posting is, through an intuitive, visual way. As online news and

social media data has been growing in an exponential rate, visual sentiment analysis

tools could provide an overview of opinions at a glance.

When examining documents at a per-sentence level. Oelke et al. have presented a

method to analyze the expressiveness of the language in document corpora [88]. The

authors first put together 141 di↵erent text features to determine readability given

a document. Through a rigorous process of filtering, the final set is comprised of 5

non-redundant and semantically meaningful features. The authors then built a tool,

VisRA, for visual readability analysis. VisRA can help users visually explore the

expressiveness at per-sentence level within a document.

From the summarized analysis tasks in the field of visual text analysis based on

previous work, we developed a good understanding of what has already been ac-

complished and how other visualization researchers have transformed the tasks into

visual representation and user interactions. Through studying related research, we

also learned about the pros and cons of several NLP methods that can be applied

to summarize and analyze large document corpora, which enables us to choose the

appropriate method for our own design.



CHAPTER 4: PARALLELTOPICS

Figure 3: Overview of ParallelTopics.Topic07 is highlighted. Top left: Document
Distribution view, top right: Temporal View, bottom left: Topic Cloud, bottom
right: Document Scatterplot. A user is hovering the mouse over Topic 07 (light blue)
in the Document Distribution view.

In this chapter, we introduce ParallelTopics, which is an interactive visual ana-

lytics system designed to help users make sense of large text corpora. To design

ParallelTopics, we first performed series of interviews and focus groups with target

users to understand their data and domain analysis tasks. We then categorized our

findings into four tasks that are rather general in the domain of text analysis. Our

e↵ort contributes additional analysis tasks to the visual text analytics area. More

specifically, we propose the tasks of allowing target users to explore relationships be-

tween documents and topics and we extend previous work to support exploration of
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emerging temporal patterns. Our proposal of marrying interactive visualization with

state-of-the-art topic models is among the first within the VAST community.

4.1 Domain Characterization

A core part of NSFs mission is to keep the United States at the leading edge of dis-

covery, both by funding research in traditional academic areas, including identifying

broader impacts, as well as funding transformative and interdisciplinary research. In

order to do the former, the program managers at NSF need to identify appropriate

reviewers and panelists to ensure the best possible peer review. In order to e↵ec-

tively perform the latter, the program managers need to identify emerging areas and

research topics for funding interdisciplinary and transformative research. In addition

to making funding decisions, program managers also need to manage their award

portfolios. While the program managers have done a great job in the past, they are

in need of new methods to help them due to the rapidly changing nature of science,

and the significant increase in the number of proposal submitted.

Through workshops and interviews, we have collected information regarding data,

tasks, and workflow of the program managers. The first common task involves iden-

tifying appropriate reviewers for newly submitted proposals, they first need to divide

these submissions into groups based on their topics. This task requires an under-

standing of the major topics covered by the submissions, and the task also involves

dividing the submissions based on their perspective topics. Another task is appro-

priate reviewers based on their expertise. Knowing research background of potential

reviewers will help to determine which area their reviews can contribute to. The third
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task the program managers often perform is to examine award portfolios, especially

from a temporal aspect. But currently the program managers are only able to look

at the temporal trend based on numerical data, such as the number of proposal sub-

mission/acceptance over the years. During the interviews, they mentioned that they

would like to follow how ideas in the research have evolved over the years.

4.2 System design based on gathered analysis tasks

We categorized the domain analysis tasks into four general questions:

• Q1: What are the major topics that capture the document collection well?

• Q2: What are the characteristics of the documents based on their topical dis-

tribution?

• Q3: What documents address multiple topics at once?

• Q4: How do the topics of interest evolve over time?

Answering a combination of these questions could help program managers solve their

routine tasks. For example, task 1 focuses on dividing new proposal submissions into

groups based on their topics. This task requires understanding the major topics of

the text corpus (Q1), and filtering sub document collections based on their charac-

teristics over topics (Q2). Task 2 is to identify appropriate reviewers for the proposal

submissions, which further involves knowing whether a submission is related to mul-

tiple topics (Q3) in order to gather the right expertise. Last, Task 3 focuses on the

temporal aspect of the award portfolios which involves discovering the topical trend

over time (Q4).
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To help users answer these questions, ParallelTopics (figure 3) first extracts a set

of semantically meaningful topics using LDA [16]. To support visual exploration of a

document collection based on the topic model, ParallelTopics employs multiple coor-

dinated views to highlight both topical and temporal features of document corpora.

The novel contribution of ParallelTopics lies in the depiction of the probabilistic dis-

tributions of documents over topics and supporting interactive identification and more

detailed examination of single-topic and multi-topic documents.

More specifically, to describe a corpus of documents, ParallelTopics first extracts a

set of semantically meaningful topics using LDA. Unlike most traditional clustering

techniques in which a document is assigned to a specific cluster, the LDA model

accounts for di↵erent topical aspects of each individual document. This permits

e↵ective full text analysis of larger documents that may contain multiple topics. To

highlight this property of the model, ParallelTopics utilizes the parallel coordinate

metaphor to present the probabilistic distribution of a document across topics. Such

representation allows the users to discover single-topic vs. multi-topic documents

and the relative importance of each topic to a document of interest. In addition,

since most text corpora are inherently temporal, ParallelTopics also depicts the topic

evolution over time. Since making sense of large text corpora may involve exploring all

of the aforementioned aspects, ParallelTopics provides rich interactions that support

the coordination among all views with each representing on aspect of the document

corpora.
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Figure 4: System architecture of ParallelTopics.

4.3 System architecture

Based on the state-of-the-art topic model, ParallelTopics employs multiple coordi-

nated views with each view addressing one of the aforementioned questions. In this

section, we describe the design of the ParallelTopics system. Figure 4 illustrates the

overall architecture of ParallelTopics. Starting from the top, document processing

and topic modeling are done o✏ine. Based on the o✏ine processing results, each

online module serves one specific visualization view in the ParallelTopics. We start

by introducing the topic model that underpins the ParallelTopics system.
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4.3.1 Topic-based text summary

Topic models have several advantages over traditional text processing techniques.

Therefore we employ a probabilistic topic model in the ParallelTopics to summarize

document collections. More specifically, we used Latent Dirichet Allocation (LDA)

[16] to first extract a set of semantically meaningful topics. LDA generates a set

of latent topics, with each topic as a multinomial distribution over keywords, and

assumes each document can be described as a probabilistic mixture of these topics

[18]. To introduce the notation, we write P (z) for the distribution over topics z in

a particular document. We assume that the text collection consists of D documents

and T topics. These notations will be used throughout the rest of chapter.

In our system, we first processed the document collection and remove stopwords

such as in IN-SPIRE [5] and [46]. We then use the Stanford Topic Modeling Toolbox

(TMT) [97] to extract a set of topics from the document collection. The extracted

topics and probabilistic document distributions serve as input to the visualizations

in ParallelTopics.

4.3.2 Interactive visual exploration of text corpora

In this section, we introduce the visual design of ParallelTopics. The system con-

sists of four coordinated overviews: a Document Distribution view that displays the

probabilistic distribution of documents across topics; a Topic Cloud that presents the

content of the extracted topics; a Temporal view that highlights the temporal evo-

lution of topics; and a Document Scatterplot that facilitates interactive selection of

single-topic vs. multi-topic documents. Each of the four views in the ParallelTopics
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system serves a distinct purpose, and they are coordinated through a rich set of user

interactions. In addition, upon selection of any documents, we provide a Detail view

that presents the text content on demand.

4.3.2.1 Topic Cloud : Revealing the major topics (Q1)

To help the users quickly grasp the gist of a document collection, we present the

topics as a tagcloud. In the Topic Cloud view, each line displays a topic, which consists

of multiple keywords. Since each topic is modeled as a multinomial distribution

over keywords, the weight of each keyword indicates its importance on the topic.

To encapsulate such information in the Topic Cloud, we align the keywords from

left to right with the most important keyword at the beginning. In addition, since

one keyword may appear in multiple topics, the size of each keyword reflects its

occurrences within all topics. An example of the Topic Cloud view is shown in figure

3 bottom left. To assist users in understanding the major topics in a document

collection, we present the topics in a sequence that semantically similar topics are

close by so that there is continuity when scanning over the topics sequentially. Since

the LDA model does not model the relationship between topics, we reorder the topics

by defining a similarity metric.

Interaction supported To design user interactions in the TagCloud view, we

consult both interaction taxonomies and our domain task characterization. We enable

users make sense of the topics by supporting high-level user interactions such as

explore, highlight, and search. For example, hovering over a particular keyword

would highlight all other occurrences in the Topic Cloud. A user may also search
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for a particular keyword of interest. In addition, the Topic Cloud view is tightly

coordinated with all other views to promptly provide information regarding a specific

topic on demand.

Figure 5: Document Characteristics: Top - Single Topic document; Middle - Bi-topic
document; Bottom - Multi-topic document.

4.3.2.2 Document distribution: depict the characteristics of the documents (Q2)

To provide an overview of documents as mixtures of topics, we highlight the dis-

tribution of each document across all extracted topics. Our representation converts



33

the documents which are in the form of probabilistic distributions to signal-like pat-

terns that signify each document. More specifically, we adopt the parallel coordinate

metaphor [59] with each axis denoting a topic and each line representing a document

in the collection (figure 3, top left view). In our use of the parallel coordinate, all

variables (topics) are uniformly spaced, and every variable shares the same value

range from 0 to 1. Therefore, when viewing the document distribution view, it is not

necessary to make sense of a document based on its value on each individual axis but

based on the pattern across all the axes as a whole. In addition, we order the topics

in a way that semantically similar topics are next to each other so that the correlation

between similar topics becomes visually salient.

Interaction supported The document distribution view provides a rich set of

interactions, such as brushing and highlighting, to allow users to filter and examine

documents of interest. Brushing a probability range on a topic allows users to select

documents that have a certain probability for that specific topic. Through synthe-

sizing the information from both Topic View and Document Distribution View on

the major topics and document characteristics, a user could e↵ectively develop an

overview of the document collection. When exploring the document distribution over

topics, one can easily discover that documents present di↵erent characteristics based

on the number of topics they have. Figure 5 illustrates documents that focus on

only one topic, two topics, and more than two topics. Di↵erent number of topics

within documents can be interpreted as distinct characteristics given a context of

the text collection. For example, in a collection of scientific publications, documents

with one topic denote publications on a specific research field. Documents with two
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or more topics are more likely to represent interdisciplinary research articles, which

often integrate two or more bodies of specialized knowledge.

4.3.2.3 Document Scatterplot: Investigating documents based on their number of
topics (Q3)

The document distribution view enables users to identify documents that focus

on a specific topic through brushing the top range on the topic. However, identi-

fying documents that are related to two or more topics in a large corpus is not as

straightforward since they are shadowed by high probability values of the single-topic

documents. To alleviate this problem, we represent all documents based on their

entropy so that single-topic and multi-topic documents are easily separable. We plot

each document based on its entropy and its maximum probability value over topics

(normalized to [0, 1]) in a scatterplot view. In this presentation, single-topic docu-

ments (with higher max value and lower entropy) are at the top left corner within

the scatterplot while bottom right corner captures documents with more number of

topics (lower max value and higher entropy).

Interaction supported The scatterplot supports user interactions such as selec-

tion and filter. Upon selection, pie glyphs are shown to describe the topical contribu-

tion to a specific document. In figure 6, each pie glyph represents a selected document,

with each color denoting a topic. As shown, documents with smaller entropy values

appear as pie glyphs as a solid circle; whereas documents with larger entropy values

appear to have multiple colors, indicating that entropy values do correspond to the

number of topics in the input documents. In summary, the Document Scatterplot

enables users to interactively identify subgroups of documents with desired number
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topics through selecting document within di↵erent regions.

Figure 6: Document Scatterplot: the position of each document in the scatterplot
correlates to its number of topics. Single-topic documents are in the top left corner
while multi-topic documents reside in the bottom right corner. Each pie glyph is
colored based on number of topics in each document.

4.3.2.4 Temporal View: presenting topic evolution over time (Q4)

Since most document collections are accumulated over time, it is helpful to present

such temporal information to assist users in understanding how topics of a corpus

evolve. Our temporal view is created as an interactive ThemeRiver [50], with each

ribbon denoting a topic (figure 7). The height of the ribbon is determined by the sum

of document distribution on this topic within a time period.
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Figure 7: Temporal view with three topics highlighted. Each topic is labeled with its
first five keywords. Topic in red: participants task study collaborative interaction;
topic in green: query tra�c queries aggregation database; topic in purple: entities
analyst entity context relationships.

The order of the topics (from top to bottom) is the same as in both the Document

Distribution view and the Topic Cloud. We assign the topic colors by interpolating a

color spectrum using the normalized distance (Equation 1) among all adjacent topics.

As a result, a more similar pair of topics is assigned with colors that are more alike.

Overall, the temporal view provides a visual summary of how topics of the document

collection evolve over time. The view added richness to ParallelTopics by revealing

temporal information hidden in a document collection.

4.3.2.5 View coordination through user interaction

Since making sense of a large text corpus may involve the utilization of all four

views, coordination among all views is carefully crafted within the ParallelTopics. On



37

the topic level, hovering over a topic in any view that involves topic representation

would highlight the same topic in other views. For example, if a user hovers the

mouse over an axis in the Document Distribution view, the same topic would be

highlighted in both Topic Cloud view and Temporal view (Figure 3). Thus the user

could quickly synthesize information regarding keywords, document distribution, and

temporal trend of the particular topic. In addition, the views are also coordinated

by colors, with each topic being the same color in all views. On the document level,

selection of any set of documents in the Document Scatterplot would be immediately

reflected in the Document Distribution view, and vice versa. When a user selects a

few documents with two prominent topics (mid-range) in the scatterplot, seeing the

distributions of these documents help the user understand their topical combinations.

4.3.2.6 Details on Demand

In ParallelTopics, upon selection of any documents, we provide details of the actual

text content of the documents of interest. Since any topic models are far from perfect,

the function of the detail view is two-fold: first, it provides context for users to develop

a deep understanding of a topic and its associated keywords. Second, the detail view

helps users to validate the patterns shown in the visualization.

4.4 Case Study

To evaluate the e�cacy of our system in answering the four intended questions, we

applied ParallelTopics to exploring and analyzing a text corpus, namely the scientific

proposals awarded by the National Science Foundation. We invited a former pro-

gram manager to use the ParallelTopics system to explore the proposals to evaluate
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whether the system could assist her in decision-making and award portfolios manage-

ment. In this section, we first describe the data we collected. We then present how

ParallelTopics could assist the expert user in solving her domain tasks, which was

introduced at the beginning of the chapter.

4.4.1 Data Collection and Preparation

To examine whether ParallelTopics could assist program managers in making fund-

ing decisions and managing award portfolios, we first collected the awarded proposals

from 2000 to 2010 under the IIS (Information & Intelligent Systems) division, which

is part of the CISE (Computer & Information Science & Engineering) directorate.

The collection consists of nearly 4,000 awards, with structured data on the Award

Number, Directorate, Division, Program, Program Manager, Principal Investigator,

and Award Date; as well as abstract of the proposals, which is in the form of un-

structured text. We processed all collected abstracts with each abstract constituting

a single document in the corpus. We removed a list of standard stopwords. This gave

us a vocabulary of 334,447 words. We then extracted 30 topics from the corpus using

the LDA model.

4.4.2 Expert Evaluation

Since program managers at NSF are extremely busy, we invited a former NSF

program manager for our expert evaluation. The participant has two years of experi-

ence working as a program manager at NSF. At the beginning of the evaluation, we

spent 30 minutes demonstrating the system design and functionality of each visual-

ization. Then we asked the participant to perform the following three tasks using the
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ParallelTopics system.

Figure 8: Exploration scenario. Top: Selection of documents on the topic “robotics”.
Bottom: Pie glyphs in the Document Scatterplot show the number of topics for each
selected document respectively.

1. Task1: To group 200 newly submitted proposals based on topics :

Starting with the Topic Cloud, the participant quickly scanned the extracted

topics to gain an overview of the newly submitted proposals. Since the partici-

pant was responsible for proposals in the areas of robotics and computer vision,
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she quickly focused her attention on these two topics. Upon selection of the

proposals that focus on the topic regarding robotics (figure 8), the participant

quickly glanced over the titles in the detail view to validate their relevancy.

While the participant was making sure that each selected proposal is relevant,

she also noticed that the positions of the proposals are scattered in the Doc-

ument Scatterplot. Since the proposals in the lower right positions are more

likely to contain two or more topics, the participant was interested in knowing

what other topics these proposals relate to. Through further filtering the pro-

posals that appear to be more interdisciplinary in the Document Scatterplot,

the participant found that they are related to other fields such as neuroscience

and social communication.

2. Task2: To identify appropriate reviewers : For the purpose of identify-

ing reviewers, the participant first wanted to roughly divide the proposals into

groups. Based on the initial exploration, the participant concluded that there

are roughly two groups of proposals: one group that focuses on the core of

robotics area, and the other that utilized a body of knowledge from other fields

such as neuroscience and social communication. To identify reviewers for the

two groups of proposals, the participant would like to find PIs from previously

awarded proposals. Through examining the historic data, the program man-

ager located the topic regarding robotics in the Document Distribution view.

She then brushed the top range of the axis to select proposals pertinent to the

topic. Finally, the participant turned to the detail view to look for PIs that
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Figure 9: Exploring the temporal aspect. Although the total number of proposal
grew continuously over the years, the awarded proposals regarding topic “robotics”
remained steady (light blue). In contrast, more proposals related to “using interfaces
to help people with impairement” were awarded over the years (green).

were previously awarded in the robotics area. For interdisciplinary proposals

in group2, the participant went through similar processes to identify additional

experts from other related fields (e.g. neuroscience) to serve on the review panel

to ensure the best possible peer review.

3. Analyzing temporal trend of award portfolio: On a portfolio level, the

former program manager was interested in seeing the temporal trend of the

areas she is in charge with over years. Through exploring the Temporal View,
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the participant discovered that the trend of awarded proposals in the field of

robotics is steady, although the overall number of proposal awarded grew during

year 2006 and 2009. Unlike the steady trend of robotics, the number of awarded

proposals on the topic of using technology to help people with disability grew

over the years (Figure 9). The former program manager commented that this

view is valuable to her since it enabled her to see funding trends regarding

di↵erent topics that are otherwise hard to discover.

4.5 Summary

In this chapter, we first presented a list of domain-specific analysis questions gath-

ered from target users regarding analyzing large collections of research proposals. Our

list of questions contributes to the domain analysis of text analytics. Based on the

gathered analysis tasks, we present a novel visual analytics system, ParallelTopics,

to enable target users to interactively explore large text corpora. To enable users

to grab the gist of the text corpora, the ParallelTopics system utilizes a probabilis-

tic topic model to summarize the textual information. However, the state-of-the-art

probabilistic model is only a start, the visualization components in ParallelTopics are

tailored to the analysis processes of examining large collections of textual informa-

tion. Therefore additional processing steps were taken to help users answer questions

regarding temporal topical trend, topic similarity, and relationship between topics

and documents. Because the information gathered regarding the analysis process

was properly transformed into the design of the interface, the ParallelTopics is highly

valued by our expert users.



CHAPTER 5: ARCHITECTURE FOR LARGE-SCALE TEXT ANALYTICS

Domain Challenges: During expert evaluations, ParallelTopics is considered help-

ful in supporting analysis of collections of texts. However, in retrospective analysis

of our work with ParallelTopics, we found that one of the biggest issue preventing

the system to be useful for a broader audience is its scalability. As the amount of

textual information available keeps increasing over the years, without a more scal-

able approach to deal with large text corpora, we cannot provide a good solution to

domain tasks in text analytics. Since the amount of information exceeds the cur-

rent processing power of a single computer, without parallelized computation, we

can’t summarize a large text corpus into meaningful topics, let alone support further

exploration based on the topical results.

Therefore, we present a general visual analytics architecture to e↵ectively analyze

unstructured data on a large scale. Pipelined based on a high-performance cluster

configuration, MPI processing, and interactive visual analytics interfaces, our ar-

chitecture, I-Si, closely integrates data-driven analytical methods and user-centered

visual analytics. It creates a coherent analysis environment for summarizing large

text corpora, identifying temporal patterns on a topical level, and key indicators of

emerging events. Such an environment can support monitoring, analyzing the latent

information extracted from the text corpora. We have currently applied the I-Si ar-
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chitecture to collect data from social media, analyze the data on a large scale and

uncover the latent social phenomena. To demonstrate the e�cacy and applicability

of I-Si, we describe several use cases in multiple domains that were evaluated by ex-

perts. The use cases demonstrate that I-Si can benefit a range of users by constructing

meaningful event structures and identifying precursors to critical events within a rich,

evolving set of topics. To showcase that I-Si architecture work on a wide range of text

collections other then scientific proposals or publications, we apply the architecture

to more fragmented textual information such as data collected from social media.

5.1 The “Big Data” Problem

We are moving toward a ubiquitous social era, in which mobile communications,

social technologies and sensor-based services connect people, the Internet and the

society into one immensely interconnected community. With the rapid growth of

such ubiquitous communication infrastructures, we are living in a world where nearly

everyone is connected in real time. Our society as a whole is being greatly influ-

enced by such intimate connections, a↵ecting every aspect of people’s social behav-

iors. Moreover, the evolution towards such interconnected, real-time social discourse

has changed the way people organize and respond to social events (e.g., happenings,

protests or campaigns), enabling people to form, share, discuss, and react to social

activities instantaneously.

As a result of all this personalized, digital communication, massive amount of data,

including both textual and multimedia data, are collected in real-time regarding who

we are, where we are, and what we are talking about. Particularly, the emergence
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of microblogging has yielded an overwhelming amount of such data, ranging from

status updates on Twitter and Facebook, to extended comments on Google+, all

often accompanied by images and more and more by video. As one example of the

explosive growth, Twitter rose from about 6 million visitors per month in January

2009 to over 37 million per month as of November 2011[110]. Based on multiple

estimates, on an average day, users globally submit 140 million “tweets” on Twitter;

and for each month, users share about 30 billion pieces of content on Facebook.

These massive, large scale social media datasets bear extremely rich information

that, if revealed, can lead to a profound impact on depicting patterns for emerging

social events (and their underlying topics). This can contribute in new, important

ways to the understanding of social phenomena. The need to assess the related social

phenomena in a systematic way has increased for both citizens and government (e.g.

emergency responders and law enforcement). Analyzing this rich social media data

gives them the ability to understand and even predict people’s interests, and to further

depict the shifts and turns of social activity at the individual, group and global level.

For example, analysis of social media could give government valuable information

on how to e↵ectively transmit problematic situations (natural disasters or chaotic

scenes). Citizens or citizen groups could learn about the development, history, and

spread of ideas of social movements (e.g., Occupy Wall Street).

5.1.1 Major Challenges and Opportunities

Despite continual e↵orts, analyzing such large-scale, loosely structured, and less-

contextual social media data to support analytical reasoning remains extremely chal-
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lenging. There is a scarcity of methods to extract the latent semantic information in

the massive text corpora. Specifically, the challenges are two-fold:

5.1.1.1 Motivating Challenges I: Depicting Latent Social Activities

At an individual level, as streams of diverse information constantly arrive to users,

it is di�cult for them to keep up with, let alone harvest important and interesting

messages. In addition, a user might want to identify useful content outside of her

selected focus, or to discover trendy topics that other people have been discussing

on social media. This task involves not only a meaningful summary of vast informa-

tion streams, but also the support for interactive exploration of content according to

individual interests.

At an organizational level, analyzing social media data streams allows institutions

to grasp up-to-date topical trends and identify critical events that may require ap-

propriate action. For instance, a commercial organization might be interested in re-

viewing consumer responses to products or the company’s general image. Analyzing

relevant information from social media may be a better way to gather honest opinions

from possible customers than conducting targeted surveys on a sample population.

Similarly, campaign strategists might be interested in knowing people’s general opin-

ions towards di↵erent parties and politicians. Social media is a perfect place for

collecting such data since large groups of users voice a rich set of attitudes over time

and respond to events through Facebook or Twitter.

In addition to the above examples, valuable information extracted from the noisy

social media data could inform other entities such as emergency responders and police
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departments about future events that are being organized or current events as they

unfold.

5.1.1.2 Motivating Challenges II: Establish Meaningful Social Event Structures

Nowadays people don’t need to be powerful to launch a successful media campaign

thanks to social media. A 27-year old art gallery owner started a national movement

“Bank Transfer Day” against big banks though one Facebook post [73]. The move-

ment led more than 1 million customers (estimated) to transfer their cash out of big

banks to credit unions. An ongoing national campaign “Occupy Wall Street” used

social media abundantly to spread nationwide [8].

People are amazed by the scale of such movements, but little is known regarding

how they were initiated and organized. Through analyzing information related to

the occupy movement in social media, for example, one can construct a timeline or

even an event structure to investigate the progression of the movement and answer

questions such as who were the initial organizers, who joined the campaign at what

time, when exactly did the movement start, what ideas and issues developed, and

which events might have led to this massive national campaign.

5.1.2 Introducing I-Si Architecture

In response to these challenges, we have developed a general visual analytics ar-

chitecture to support topical-level investigative analysis of social media data. Our

architecture, I-Si, is centered on the combination of data-driven topic modeling ap-

proaches with human-centered visual analytics techniques; topic modeling is enhanced

by interactive visual interfaces, providing results that can be explored, filtered, and
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Figure 10: An overview of I-Si architecture. There are 4 major components in the I-Si
architecture: Distributed Data Storage and Pre-Processing (Section 5.3.1), Parallel
Data Analytics Cluster (Section 5.3.2) ; Visual Data Transformation; Interactive
Visual Interface (Section 5.3.3).

managed by users. I-Si creates a coherent analysis environment for identifying event

structures, geographical distributions, and key indicators of emerging events. In other

words, I-Si can help analysts identify and follow social phenomena as they emerge,

evolve, and mature.

On the high-level, as shown in Figure 10, the data analytics capability of I-Si comes

from leveraging High-Performance clusters to apply automated topic modeling to so-

cial media data such as large collections of tweets. The visual analytics component of

I-Si shares similarity to previously developed topic-based text methods [36, 38, 124],

creating an investigative visual analytics environment [120] that not only provide a

summary of “what happened” in terms of meaningful topics, but also allow infer-

ences of causal relationships between a critical event and the e↵ect of the event. In

particular, our architecture could represent the progression of social events through

underlying latent common themes over time, which allows users to discover the overall

trend as well as the rise and fall of individual social activities.

We have currently applied the I-Si architecture to collections of unstructured social
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media data (e.g., Twitter data), analyzing the data on a large scale and uncovering

the latent social phenomena (who-when-where-what-why). The results bring forth

meaningful semantic information that is otherwise hidden in the large aggregation of

noisy tweets. The results contain topics summarized based on the tweets; dynamic

patterns of topics, and emerging events.

We have reached out to multiple user communities, as detailed in Section 5.5.

During this outreach, I-Si has been demonstrated to and evaluated by multiple users,

including political campaign strategists and law enforcement people. Feedback from

these experts suggested that our I-Si architecture contributes to the social media

analysis in the follows aspects:

• Analyzing social media data on event/topical level instead of keyword level.

The cohesive themes from the otherwise noisy social media data are nicely

summarized and presented to users. The purpose is to analyze and ultimately

predict social activities/behaviors.

• Ability to handle large amounts of data. Studies have seldom focused on ana-

lyzing social media data on a large scale. We have utilized parallel computing

methods to handle billions of microblog messages at once.

• Straightforward identification of critical events and even precursors to the events

via temporal and geospatial visualization. In addition, through providing inter-

active exploration capabilities, the I-Si architecture enables users to perform

investigative analysis regarding certain events/topics and answer who-what-

where-when-why questions.
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5.2 Background

There is a wide range of research on social media analysis, especially on Twitter

data because of the public nature of tweets.

5.2.1 Analysis of space and time in Social Media

A large portion of the published research about Twitter has focused on questions

related to Twitter’s spatial and temporal properties with little or no semantic analysis

on the textual content of tweets. For example, Java et al. [62] studied the topological

and geographical properties of Twitter through constructing a social network based

on users and their “friendship” information without considering the content of tweets.

More recently, MacEachren et al. [80] has developed SensePlace2 - a geovisual ana-

lytics system that supports situational awareness for crisis events using Twitter data.

SensePlace2 focused on extracting explicit and implicit geographic information for

tweets, and combining geospatial with temporal information to promote understand-

ing of situations evolving in space and time.

5.2.2 Topical Analysis of Textual Content in Social Media

Other work has presented analysis of the textual content of tweets using probabilis-

tic topic models. Ramage et al. maps the content of the Twitter feed into dimensions

using Labeled LDA [96], with the four dimensions corresponding roughly to substance,

style, status, and social characteristics of posts (4S). One limitation of the work comes

from the authors manually assigning the predetermined labels (4S) to learned topics

without leaving room for users to explore and attach other meanings to the topics.

Ritter et al. have applied LDA and other unsupervised approaches for the purpose
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of modeling conversations within Twitter streams, as the sequential dialogue reflects

the shape of communication in the online platform. More recently, Sizov proposed

a framework, GeoFolk [111], which combines textual content with spatial knowledge

(e.g. geotags) to construct better algorithms for content management, retrieval, and

sharing.

5.2.2.1 The Use of Topic Models

Lots of aforementioned content analysis was performed using Latent Dirichlet Allo-

cation (LDA) or extended version of LDA, which is introduced by Blei et al. in 2003

[16]. The aim of LDA is to discover the hidden thematic structure in large archives

of documents. Since the debut of the first topic model, a number of variations have

been developed to extend the capabilities of LDA. One distinct advantage of topic

models over previous vector space models such as tf-idf and latent semantic analysis

is that each topic is individually interpretable, providing a probability distribution

over words that pick out a coherent cluster of correlated terms [15]. The LDA model

postulates a latent structure consisting of a set of topics; each document is produced

by choosing distribution over topics; and then generating each word at random from a

topic chosen by this distribution. The extracted topics capture meaningful structure

in the otherwise unstructured data.

5.2.3 Visual Analysis of Social Media Data

Most of the aforementioned [62, 96, 111] work only focuses on data-driven tech-

niques with a limited scale. Therefore, their objective and approach di↵ers from our

approach of combining both topic-level analysis and human-centered visual analytics
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methods. In the realm of interactive visualization, aside from SenseSpace2 [80], re-

searchers have presented systems to track on-going social events and to support the

use of social media as supplemental information sources for journalists [36, 33].

Dork et al. introduced Topic Streams, a web-based inter-active visualization system

to follow and explore conversations on Twitter about large-scale events [36]. Topic

Streams provides coordinated views which support visualizing topics over time, par-

ticipants’ activities, and popularity of event photos. The authors also provides several

design goals such as summarizing the conversation, providing flexible time windows,

etc, which are quite informative for future design. In addition, Diakopoulos et al.

[33] presented a visual analytics tool, Vox Civitas, to help journalists extract news

value from social media content around broadcast events such as televised debates

and speeches. The visualization component of the I-Si architecture di↵ers from Topic

Streams and Vox Civitas in defining topics. Dork et al. treated each of the most

frequent words as a topic in their visualization while Diakopoulos extracted keywords

from each time window; we extract topics using LDA to pick out stronger and more

cohesive themes from the entire social media corpus.

5.3 I-Si: Scalable Architecture for Topical Analysis of Social Media Data

In this section, we present our architecture and its implementation. Pipelined

based on Hadoop servers, a high-performance cluster configuration, MPI processing,

and visual analytics interfaces, our architecture closely integrates data-driven ana-

lytical methods and user-centered visual analytics. It creates a coherent analysis

environment for identifying event structures, geographical distributions, and key in-
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dicators of emerging events. The core components of our architecture include Data

Collection, Data Cleaning, Topic Modeling, and finally Interactive Visual Analytics

Interfaces. As shown in the overview pipeline (Figure 10), the benefit of our compo-

nentized modules is that the structure can incorporate more e�cient and advanced

analysis components to enrich the analytic capability of the architecture.

5.3.1 Distributed Data Storage and Pre-Processing Environment

Figure 11: Map-Reduce Process for Data Cleaning

As shown in Figure 10, our architecture aims at incorporating multiple sources of

social media data such as Twitter updates, editorial news, and blogs. The hetero-

geneous and streaming nature of these data sources poses a significant challenge in

data management schema and data cleaning.

Given the scale of data that our architecture focuses on, standard SQL data crawler

and management schema are not optimized to handle the I/O of di↵erent kinds of

social media data. Specifically, considering the intrinsically fragmented and loosely

structured nature of tweets, our architecture requires a powerful distributed database
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processing approach to achieve su�cient data access and e↵ective data processing.

After experimenting with several nuance NoSQL structures (e.g. Cassandra [1], Mon-

goDB [4]), we adopted the MapReduce framework [32]. MapReduce is a framework

for processing large datasets in a highly distributed fashion using a large number of

computers, collectively referred to as a cluster (if all nodes use the same hardware)

or a grid (if the nodes use di↵erent hardware). We have adopted a recent open source

implementation of MapReduce, which is Hadoop, to establish our data analysis in-

frastructure. Hadoop parallelizes data processing across many nodes (computers) in

a compute cluster, speeding up computations and hiding I/O latency through in-

creased concurrency. Hadoop is especially well-suited to large data processing tasks

(like searching and indexing) because it can leverage its distributed file system to

cheaply and reliably replicate chunks of data to nodes in the cluster, making data

available locally on the machine that is processing it. We utilizes Hadoop’s native im-

plementation in Java, and extended using our own shell and python script to conform

to a data process pipeline. HBase, an open-source realization built on the Hadoop

File System (HDFS), is used in this platform to store the collected social media data.

Besides providing a stable data management platform, we also utilized Hadoop to

achieve a robust parallel data crawling and cleaning system. As shown in Figure

10, the crawling system is interfaced with the Internet through multiple independent

crawlers. Each of the crawlers constantly collects social media data from various

public domains and dumps it into HBase. Specifically, our crawler taps into Twitter’s

public API to collect tweets. It acquires such information on the “Garden-hose” level,

which constantly delivers 10% of Twitter messages with a “statistically significant
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sample” of all tweets [6].

Concurrently, such textual data is being cleaned, parsed, and prepared for topic

modeling through multiple Mapreduce jobs that perform these analytics tasks in the

back-ground. During these tasks, noise symbols and stopwords are removed. Basic

statistical analysis, such as word count, is also performed over the data, preparing for

the topic modeling procedure.

The implementation of both the data cleaning and basic statistical tasks contain

two stages (i.e. map and reduce stages), detailed in figure 11. In the map stage,

data is distributed into working nodes for intermediate computation; the output of

the map stage follows the < key, value > pair format. After merging all the values

with identical keys into an array, the merged intermediate results are collected for

further computation in reduce(s). The final output of the reduce(s) has the same

< key, value > pair format as map’s. Extracted data is then stored into HDFS

data repository and is distributed across multiple nodes within our Hadoop cluster

to guarantee reliability.

5.3.2 Parallel Topic Modeling using High-Performance Computing Cluster

In order to have a comprehensive understanding about the latent social media data,

one needs to extract and correlate information from massive amounts of data. With

new tweets reaching a billion every five days, performing such analysis is beyond

the scope of computing power of any single-node configuration, either it would be

impossible to process the data (i.e. memory issues) or it would take too long to

obtain analysis results. This suggests yet another significant scalability challenge in
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social media analysis.

To alleviate such scalability issues, our architecture incorporates the use of a high-

performance cluster to strengthen the analytical capability over the social media data.

In particular, once the data has been cleaned and stored in HDFS, it is then ready to

be processed by parallel computing clusters for topical-level analysis. Such a process

has its most notable performance bottleneck at the learning and inference stages [84].

In order to reduce the time to complete this stage, we extend on Google’s PLDA

MPI implementation [3]. The algorithm is a general implementation of LDA with

parallelization implemented into key portions of the algorithm. Such process utilizes

Gibbs Sampling, a Monte Carlo approach, to compute the result towards a conversion

point as the number of iterations increase.

During this process, we use Portable Batch System (PBS) to schedule the jobs and

the Message Passing Interface (MPI) is used to make parallel use of the cluster nodes.

As shown in Figure 10., each node of our cluster has 12 cores and a total of 36GB of

memory, with a fast Gigabit Ethernet to communicate results. Our cluster converts

the input data (e.g. tweets) into output data (topic-based probabilistic information),

using LDA to create a probabilistic model that uses the documents, the words, and

their utterances to build the topic model.

The benefit of using such infrastructure is two-fold:

• We can now process the social media on a scale that a single node computer

wouldn’t be able to handle. Such infrastructure and its parallelized algorithm

granted us to capability to peek into the topics that are embedded in the large
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unstructured text corpus. For example, we have tested the I-Si architecture to

investigate topics from 17,651,186 tweets, roughly around 1.8Gb data over the

course of 5 weeks.

• This setup reduces the processing time for data between 150mb to 300mb, pro-

viding our architecture the iterative capability to searching most interpretable

topic modeling results. This would be important for certain critical response

situations such as presented in Scenario I and III (see section 5.1 and 5.3).

5.3.3 Visual Data Transformation and Interactive Visual Interfaces

To support the analysis needs from di↵erent user communities, we designed a coor-

dinated multiple-view interface to create an interactive visual analytics environment.

Each view is designed via transforming the output from topic models to showcase one

distinct aspect of the underlying social media data.

As shown in Figure 10, the I-Si interface is designed to support understanding of

spatial and temporal patterns of social activities, identification of event structures,

and topical trends through analysis of the growing social media database. A key

goal for these interfaces is to permit users to interactively explore, characterize, and

compare the space-time aspects associated with topics in tweets. The default interface

includes a topic cloud view, temporal and geospatial views, and detailed text view.

Tight coupling between these views via interactive techniques permits this interface

to e↵ectively visualize highly dynamic and fragmented social media data. The four

primary display views are dynamically coordinated. Each view is introduced be-low

and their coordination is further discussed.



58

1. Topic Cloud: revealing major topics: We present the topics as a tagcloud

for quick overview/summary of the social media corpus. In the topic cloud,

each line displays a topic, which consists of multiple keywords. The order of the

keywords within a topic indicates their importance to the topic. In addition,

since one keyword may appear in multiple topics, the size of each keyword

reflects its number of occurrences within all topics.

2. Temporal View: presenting topic evolution: The temporal view is created

as an interactive ThemeRiver [50], with each ribbon representing a topic. The

length of the time frame in the themeriver can be changed by users based on

their investigative needs. After the time frame has been chosen, the tweets

are divided into corresponding time units based on their time stamps; then the

height of each ribbon is calculated by summing the number of tweets in each

time unit.

3. Geospatial View: displaying geographical distributions: We utilize

Google Map [2] to provide users with interactive geospatial analysis (see Figure

10). By placing the tweets with geo-tagging (i.e. GPS location associated with

tweets) onto the scalable map, detailed geographic relationships and patterns

immediately become apparent. In addition, we extended Google Map to e↵ec-

tively display the topical distributions of the social media data. The geospatial

view incorporates a client-side clustering algorithm to overlay large amounts of

geo-coordinated tweets over the map, creating a density Heatmap [112] to show

the tweet clusters.
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4. View coordination and interactions: Since investigative analysis of social

activities may involve the utilization of all views, coordination among the views

is supported. On the topic level, hovering over a ribbon in the temporal view

would highlight the corresponding topic in the topic cloud so that users could

quickly synthesize information regarding topic content and temporal trend. On

the temporal level, filtering tweets that were posted within a certain time period

is supported. A user could further filter tweets by geospatial area and topics.

For instance, clicking on an intersection of a topic ribbon and a time frame in

the temporal view would lead to the selection of tweets that are highly related to

the topic and posted during the time period. These selections support detailed

examination of topical trends and events.

5.4 Case Study

To demonstrate the e�cacy and applications of I-Si, we describe three scenarios

based on analysis of social media data. In these scenarios, the I-Si architecture sup-

ported summarizing a large amount of social media information and interactive explo-

ration of the generated topical trends. More specifically, the scenarios demonstrated

that the interactive analysis could distill meaningful and otherwise hidden informa-

tion from noisy social media data, such as revealing critical events and pre-cursors of

such events.

5.4.1 Scenario I: Depict Meaningful Event Structures

The Occupy movement is an ongoing series of demonstrations and is known for

using social media to attract more protesters. The Occupy movement is long-lasting
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and widely spread; people in almost every major city within the U.S. and around the

world have joined it and created other related protests such as Occupy Seattle, Occupy

London, etc. The challenge in understanding such a movement lies in distilling the

main topics and trends from a movement with massive participation and a wide

range of goals such as more and better jobs, more equal distribution of income, bank

reform, and a reduction of the influence of corporations on politics [101]. Given

the prominent use of social media in organizing the Occupy movement, it should be

possible to summarize and analyze how the movement unfolded through analysis of

these media.

5.4.1.1 Data collection and preparation

Since we want to focus on the Occupy movement in this scenario, we further filtered

for all tweets with hashtag #occupy from our tweet collection. A hashtag is a Twitter

convention used to simplify search and indexing. Users include specially designed

terms starting with # into the body of each post. The resulting dataset includes

more than 100,000 tweets starting from Aug 19 to Nov 01. Our architecture then

automatically removed stopwords and performed topic modeling. Such automated

process enables us to experiment with di↵erent numbers of topics, and results in the

choice of 15 topics for interpretability.

5.4.1.2 Investigating the Occupy movement

Exploring the unfolding of Occupy movement. Our analysis environment

enables users to explore and follow the evolution of the movement. As the user,

a campaign strategist, inspected topics in the temporal view, she noticed that this
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Figure 12: Di↵erence forces joined the Occupy Wall Street movement. Highlighted
portion of the yellow topic -marine joined to movement to protect the protesters from
the police. Highlighted portion of the purple topic - union workers voted to support
the OWS movement.

movement had been evolving gradually over the course of two months. This trend had

been exemplified by two significant forces joining the Occupy movement. Specifically,

as shown in figure 12 (yellow topic), marines joined the Occupy Wall Street (OWS)

movement to protect the protestors from the police on Oct 1. The user reached this

conclusion by selecting tweets related to the topic of interests within the burst of topic

volume for this event (see Figure 12). She noticed that people were shouting out on

twitter about this event:“...the marines coming to protect protesters” and “marine -

2nd time fought for my country time 1st time I’ve know my enemy”.

A similar pattern was also seen for another topic, which suddenly gains momentum

as the NYC transit union workers joining OWS (shown in figure 12, purple topic).

People sounded excited on twitter about the event: “200 000 transport workers union

votes support!!!”, “new york transit workers union voted unanimously support #oc-

cupywallstreet. 38 000 active march oct. 5”. More interestingly, based on reading the

last tweet, the user suspected there might be an organized march on Oct 5. Indeed,
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Figure 13: Precursor to the Occupy movement. People started to organize and ad-
vertise the event way before the o�cial beginning date - Sep 17.

another big increase in volume of the same topic occurred on Oct 5, and the tweets

were related to the march though the Financial District of Wall Street, which was

joined by thousands of union workers.

Identifying pre-cursor to the Occupy movement. In addition to identifying

meaningful events based on the sudden topical volume change in the themeriver,

our analysis environment also enables users to construct a comprehensive story by

looking at the overall movement. As shown in figure 13, the overall volume of tweets

with “#occupy” became significant around Sep 17, 2011, which is the protestors’ self-

proclaimed start date of the movement. However, our temporal view clearly indicated

relevant tweets were posted well before Sep 17, dating all the way back to Aug 19,

2011 (highlighted region in figure 13).

This unique pattern could suggest a pre-cursor to the Occupy movement, and
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motivated the user to look further into the details of the tweets. With our coordinated

views, she was able to directly click on each time frame to inspect tweets one time

step at a time. Upon reading the tweets, the user immediately realized that the

OWS was a well-organized event. Specifically, organizers had been using Twitter

to advertise the upcoming event and to raise media attention as early as Sep 11,

with tweets stating: “trainings! medic! legal support! communication training.

facilitator trainer #occupywallstreet #sept17”. As the actual event (Sep 17th) drew

near, the organizers were giving more specific instructions, as they posted on the 14th

:“bringing tent sleeping bag food water to new york this weekend!” And even on the

early morning of the 17th, protestors were provided maps of how to get to Zuccotti

Park: “hashtags user-friendly time-table map uploaded”. At this point, it became

obvious that the initial protest was orchestrated by a group of organizers.

To seek the possible origin of the movement, the user kept retracing the tweets

published earlier than the 14th and noticed that there were other hashtags that fre-

quently co-occur with #occupywallstreet during the first few days of the movement.

These hashtags include: #usdayofrage, #yeswecamp, #nyccamp, etc. At this point,

the user could carry the investigation further by looking into tweets with these hash-

tags around that time. Such observation was validated by recent Wikipedia’s updates

on Occupy movement where the U.S. Day of Rage (#usdayofrage) was considered the

governing body of the OWS group [9].

In summary, the I-Si framework supports the analysis of social media data regard-

ing the Occupy movement. The backend topic modeling plus frontend interactive

visualization supports investigative analysis of the otherwise unorganized and noisy



64

information, and enables the answering of questions such as how did the movement

evolve, which forces joined the movement at which time, are there any precursors to

the Sep 17th protest, etc. As detailed in Section 5.5.2, the implication of this finding

can be significant to public safety personnel in that, if they are able to acquire the

key indicators hours/days before the protest, they can develop a better oversight and

management strategy.

5.4.2 Scenario II: Establishing Investigative analysis

Figure 14: Topical burst indicates NASA launching GRAIL mission to explore the
moon.

We use this scenario to demonstrate the scalability of our architecture, demon-

strating that the I-Si interactive analysis environment allows users the capability to

tap into relevant data on a large scale. Over 12 million tweets were examined over
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the course of three weeks, with 30 topics extracted for interpretability. Unlike the

previous scenario, these tweets were not filtered by hashtag. Thus exploration of the

dataset will permit it to tell the user what it is about.

In this scenario, a summer research intern began by examining this tweet collection

to discover interesting events he might have missed during the past few weeks. Upon

highlighting di↵erent ribbons in the ThemeRiver (When) view, he notes that the cyan

ribbon (see Figure 14) exhibits a unique temporal pattern. A closer examination of

the time-line reveals a volume burst around Sep 10, suggesting more tweets were

related to this topic within that time period.

The student then associates this timeline view with the topic cloud view (What),

and finds that the topic refers to science and NASA. This becomes very interesting to

the student, who happens to be an enthusiast in astrophysics. Quickly he references

the tweets with their geospatial location on the map (Where) view. He observes that

the mention of such event is mostly centered in Orlando, FL, where one of NASA’s

launching sites is located. Further browsing through the actual tweets suggests that

people (Who) across the country are excited about this event. At this point, the

student has linked all these investigative hints together and checked into the news

database to find media coverage. He then correctly concludes that the event is the

NASA GRAIL launch on Sep 10 to study the moon from crust to core.

The investigation in this scenario included all four of the W’s and ended in the

correct hypothesis of how a single space event could stir discussion and may inspire

people toward scientific activities. It uncovers the cause (an event) of a certain volume

burst in large-scale social media data and also makes clear the trend and pattern of
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social phenomena.

5.4.3 Scenario III: Identifying Epidemic Spread

In this scenario, we demonstrate how I-Si can support investigation of the spread

of an epidemic and pinpoint when the epidemic happened by analyzing microblog

messages.

5.4.3.1 Data source and data preparation

In contrast with the other two scenarios, the dataset in this case is provided by

the VAST Challenge 2011 committee [7]. The dataset contains more than a million

microblog messages collected within a major metropolitan area, over the course of

a month. While synthetic, this dataset can be a great benchmark for its careful

integration of the epidemic theme, the investigation of which requires robust analysis

capability since the epidemic is buried in a mass of irrelevant microblog data. This

VAST challenge is also a great evaluation of our I-Si environment, since it permits

comparing the patterns observed from the visualization interface with the ground

truth that comes with the dataset.

Relying on the robust text analytics capability in I-Si, we were able to e↵ectively

perform topic modeling over this textual corpus, with a vocabulary of 13,284 unique

terms. 10 topics were extracted and visualized from the corpus after several experi-

ments of topical interpretability.

5.4.3.2 Characterizing Epidemic Spread

As shown in Figure 15, the temporal patterns of the ten extracted topics are pre-

sented in our ThemeRiver view over the course of a month. Each time unit in the
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Figure 15: Identifying the start of an epidemic spread. The orange topic captures
flu-like symptoms. The topic bursts into being on day 1. The yellow topic shows on
the next day, the symptoms have evolved to more severe ones such as pneumonia and
diarrhea.

figure denotes 4 hours, which is adjustable to support inspection of di↵erent temporal

granularities. Upon exploration of the temporal view, one can easily discover that

multiple topics share a repetitive characteristic, such as the repeating mentions of TV

shows every night (un-highlighted topic in red).

What really attracted the users’ attention, however, is the sudden disappearance

of the repetitive patterns during the last 3 days. Instead emerging topics in that time

frame were about flu-like symptoms, such as “cold, headache, fatigue, sweats, etc.”

(see orange topic in Figure 15) and “pneumonia, diarrhea, cough, etc.” (see yellow

topic in Figure 15). These two topics signify exactly when the out-break has begun.

Moreover, our temporal view clearly suggested a progression of the illness from cold

and headache to more serious symptoms, such as pneumonia, diarrhea and di�cult

breathing, since the orange topic stream appeared before the yellow topic stream. The

results conform to the ground truth provided by the challenge committee. Finally,

with the ability to pinpoint when the epidemic has begun, one can further conclude

that the disease did not seem to be contained based on the volume of the yellow
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topic in the last day. Therefore, if the microblogs were collected and analyzed as the

epidemic unfolded, the results could inform emergency responders to take actions to

prevent the disease from spreading.

In summary, the I-Si architecture supports processing and analysis of the microblog

messages. Through interactive exploration of the visualization results, a user could

successfully identify latent information regarding the outbreak and depict temporal

patterns of the epidemic spread.

5.5 Preliminary User Feedback

Compared to typical visual analytics evaluations, we recognize the challenges in

conducting thorough evaluation of the I-Si architecture. This evaluation process,

to bring it to completeness, may require experts from multiple research domains to

collaboratively examine the e�ciency and e↵ectiveness of the scalable architecture.

We believe that any findings from such evaluation would be of tremendous value; yet,

conducting it can be a longitudinal process that needs more strategic consideration

and explanation that beyond the scope of this chapter.

Instead of focusing on evaluating the architecture as a whole, we seek users’ un-

derstanding about the analysis environments that our architecture enables. In this

section, we report user feedback based on several preliminary user evaluations with

our investigative visual analysis interfaces. These evaluations were conducted to as-

sess the e↵ectiveness and e�ciency of such an interface in supporting understanding

latent social phenomena such as the three case studies shown above.

In particular, we report our interactions with three groups of experts in political



69

campaign planning (CP) (5 experts), finance (4 analysts) and emergency response

(3 lead experts). While the evaluations were conducted informally, these outreach

activities granted us a su�cient amount of time to introduce our architecture and its

visual interfaces as well to gather their feedback. First we presented our system by

demonstrating the investigative scenarios described in the previous section. Then the

experts were given some time to ask questions regarding the system and the interface.

Finally, we concluded the evaluation by asking them to give feedback and comments.

Given privacy concerns, we are removing all these experts’ a�liations. However, they

all agreed to have their comments published in this section.

5.5.1 Monitor and Analyze Social Phenomena

One of the benefits that all these experts see in the I-Si architecture is its capability

in helping to depict latent social phenomena that are otherwise hidden in the data.

Especially to CP strategists, who are responsible for analyzing hundreds of political

blogs and news on a daily basis, the capability to identify and summarize the latent

topics from their data is of great value. One of the experts mentioned that, “this tool

is very exciting in that it could give me a way to e↵ectively assess what people are

talking about with regard to political events.” He further commented that this would

provide a great baseline analysis for their strategic planning work, “where [their] line

of business is about finding the right people and talking about the right things”.

While the analysis environment was well received, one of the CP experts pointed

out that trust issues and uncertainty might a↵ect analysis outcomes. Given the

accuracy needed in the CP’s work, they were interested in learning how they can



70

e↵ectively validate the outcomes of the overall analysis architecture. The validations

and quantification of analysis outcomes is certainly a crucial future direction as we

continue enriching our architecture. Of course, it would be possible to validate a

particular topical outcome by merely reading enough of the blog entries organized

around that topic, but it would be good to have the visualizations of the automated

results show this at once or with limited probing of details. Otherwise the approach

is not scalable.

5.5.2 Potentially be Proactive to Key Event Indicators

As mentioned in scenario I (section 5.1), the I-Si architecture helped depict key

event indicators for the Occupy movement. This capability is highly appreciated by

emergency responders; and our results demonstrated great potential in facilitating

their duties. The ER experts we interviewed were very excited to see the system

in action. One of them indicated that the potential of having I-Si in their working

environment could not only help them “follow up with what they knew”, but also

raise their awareness on “what they didn’t expect”. One usage case they pictured

to use our system is for proactive measures for political events. They would like to

utilize our tool to deploy their manpower in more targeted directions.

Due to the “limited resources (financially and personal-wise)”, an ER manager

mentioned that, “we can’t respond to every small indicator that the system provided

us.” This requires our architecture to be able to perform more comprehensive event

structuring, producing more a hierarchy with key indicators. His comment is well re-

ceived, and we are working extensively on researching a quantifiable event structuring
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metric for ascertaining where attention is needed and resources should be deployed.

5.5.3 Follow the Influence of Social Events

Based on our interaction with marketing experts, one of their strongly emerging

interests is utilizing the social media data to depict marketing impacts that are gen-

erated by certain social events. They see our architecture could potentially help them

to follow their customer base, and understand their interests. As summarized by one

of the experts, “this system ties the marketing loop back to us...It could help us to

find a targeted audience and pursue that market with customized approaches”.

While we demonstrated our data connection between structured data (e.g. GPS

locations) and unstructured text, the further fusion of heterogeneous data is another

important aspect for which these experts would like to have further evaluation. In

particular, they are interested in learning how we could e↵ectively associate infor-

mation from di↵erent text corpora. This should certainly be doable at the topic

level.

5.6 Limitations of the I-Si Framework

There are limitations to this research that need to be addressed. The current an-

alytics capability of our architecture is limited because this research was conducted

within the specific Natural Language Processing area of topic modeling. We at-

tempted to mitigate this limitation by componentizing our architecture, which opens

up opportunities to incorporate other text analytics methods such as sentiment analy-

sis and named entity recognition. Nevertheless, di↵erent characteristics, other natural

language processing algorithms, and their scalability constraints could engender dif-
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ferent analytical environments.

In addition, we undertook this architectural research to depict information of so-

cial media data from an analysis perspective. Our data management schema, which

resides in HADOOP clusters, is still preliminary. We are in the process of deter-

mining more comprehensive data collecting and integration schema to handle the

ever-growing complexity and scale of social media data. An important benefit of in-

tegrating an optimization process into our architecture is the potential for improved

e�ciency of the infra-structure, allowing informed resource management, avoiding

replicated work.

The presented architecture illuminates the strong role that a combined approach

of data-driven modeling algorithms and user-center visual analytics plays in revealing

the latent phenomena within complex social media. It is our hope that by identifying

these system limitations, the research fields of visual analytics, parallel computing and

databases might be brought together, providing scalable solutions for social media

analysts and new techniques for revolutionizing the analysis environments.

5.7 Future Work and Conclusion

In the future, we would like to enrich each component within the I-Si architecture.

For the cluster computing, we would like to optimize LDA parallel processing algo-

rithm and further improve its scalability and e�ciency. As for the data analytics

stage, we would like to add in techniques such as sentiment analysis and named en-

tity recognition to automatically extract more information other than semantic topics

from social media data.
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In this chapter, we presented a visual analytics architecture, I-Si, to e↵ectively

analyze unstructured social media data on a large scale. I-Si integrates data driven

analytics methods such as topic modeling with human-centered visual analytics, via

an interactive visual interface. We demonstrate multiple investigative visual analysis

environments that I-Si is able to provide for monitoring, analyzing, and potentially

enabling response to latent topical information extracted from social media. The

I-Si architecture empowers users to summarize massive amount of unstructured in-

formation and further enables users to explore to answer questions regarding topics

and temporal patterns. Thus the architecture supports domain users to perform

their analysis tasks without being limited by the data scale through providing solid

back-end data processing capability.



CHAPTER 6: EXTRACTING INDIVIDUAL’S ANALYTICAL PROCESSES

As the previous chapters have described, understanding target users’ analysis pro-

cesses is essential to a well-designed visual analytics system. Visual analytics systems

facilitate domain users’ analysis processes through interactive, visual means. After a

system has been designed, there is always potential room for improvement. And the

improvement could come from incorporating an individual user’s own analysis process

into the existing system. In addition, the extracted analysis processes could further

be used for the purpose of self-recall, reporting, knowledge sharing, etc. But how do

we capture an individual’s analysis process while using an visual analytics system?

To answer the question, we turn to van Wijk’s operation of visualization model [118]

and examine how a user interacts with a visualization. Based on the model, we

propose that there are in fact two separate modes of capturing: internal and external

capturing to the visualization. Internal capturing within the visualization includes

methods such as screen capturing and interaction logging; whereas capturing external

to the visualization includes the use of eye trackers, video camcorders, or advanced

machineries such as EEG (Electroencephalography) and fMRI (functional Magnetic

Resonance Imaging) . These two modes together represent all possible methods of

capturing that are available today, but choosing the appropriate methods will depend

on the goal and context in which the visualization is used.
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Figure 16: A model of visualization proposed by van Wijk.

The van Wijk operational model (Figure 16), although simple, distinctively depicts

the flow and relationship between the user and the visualization. Specifically, there

are two connections, I and dS/dt, between the user and the visualization. I stands

for the images generated by the visualization that are perceived by the user. And

the connection dS/dt represents the changes in the parameters of the visualization

initiated by the user (through the use of a mouse, keyboard, or other input devices)

that are applied to the visualization to generate the next sets of images I. Both of

these connections can be captured directly within the visualization during the user’s

analysis process by performing screen captures and interaction logging respectively.

We refer to these two methods collectively as “internal capturing” (Figure 17(A)).

In real life, however, solving a complex task is not restricted to only using a visu-

alization. The user could jot down discoveries on a piece of paper, or watch the news

on the web to gather up-to-date information [78]. In order to fully capture a user’s

analysis process in solving a task, the user’s activities outside of the visualization need

to be captured and collected as well. We further categorize the capturing of these

activities into two groups: externalization and observation. In externalization, the
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Figure 17: A model for capturing user’s analysis process based on van Wijk’s model of
visualization. The yellow boxes (A) and (B) represent internal and external capturing
methods respectively.

results that are explicitly externalized from the user of the reasoning process are col-

lected and stored. These include the notes taken by the user during an investigation,

or dictations taken using a voice recorder. In observation, information around the

user is captured through the use of additional hardware and machinery. For example,

eye trackers can track the user’s focus, and a video camcorder can record the user’s

activities in an environment. In addition, advanced technologies such as EEG and

fMRI can be used to monitor the user’s neural activities. Together, externalization

and observation are referred to as “external capturing” (Figure 17(B)).
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6.1 Internal Capturing

As shown in van Wijk’s operational model of visualization, the relationship between

a visualization and its user can be succinctly summarized with two variables, I and

dS/dt. These two variables are the input and output of a user’s process in using a

visualization, and in many cases can be thought to be directly related. As the model

demonstrates, I, or an image, is generated by a visualization given a visualization

state S. In using a visualization, a user’s interactions can be thought of as the means

to modifying the visualization state (dS/dt) to create the images that would lead to

the user solving a specific problem. Therefore, it is not di�cult to see in this model

that by capturing the three variables, I, S, and dS/dt, the system can later faithfully

reconstruct a user’s session in using a visualization.

In practice, however, I and S can be thought to contain the same information

depending on whether or not replaying the user’s session involves running the visu-

alization. In fact, Jankun-Kelly et al. have proposed a formal model for capturing S

accurately [61], and Bavoli et al. have shown that the captured visualization states S

can be used to generated large numbers of I e�ciently [11]. The main advantage of

storing a series of visualization states S over storing a series of images I is that storing

the visualization states often requires less disk space than images. However, in cases

where the visualization itself could take considerable amount of time to generate I,

storing I could still be more e�cient.

Capturing and storing the user’s interactions as dS/dt, on the other hand, can be

very di↵erent depending on the purpose of the capturing. If the purpose of capturing is
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to faithfully reconstruct a user’s session with a visualization, dS/dt can be captured as

“events” generated by most operating systems (e.g., MouseClick event or a Keystroke

event). Typically, visualizations that gather data provenance would record dS/dt in

this fashion (see section 2.3.1). The advantage of storing a series of dS/dt is to further

reduce the disk space requirement over storing individual visualization states S since

consecutive visualization states often contain duplicate and redundant information.

However, if the purpose of capturing is to reconstruct a user’s analysis processes,

storing dS/dt as low-level events is inadequate. As Hilbert and Redmiles noted, such

events do not carry enough information on their own to allow their significance to be

properly interpreted [55]. Most visualization systems that capture information prove-

nance (see section 2.3.2) therefore capture the user’s interactions at a higher level that

include additional contextual information. In some systems, the additional contextual

information are semantically related to the specific data or application [37, 106, 99];

whereas some projects categorize the user interactions according to structures that

are relevant to the domain or task [43, 72, 52]. In either case, it is clear that storing

only low-level user interaction is not enough for gathering information provenance,

and subsequently not su�cient for reconstructing a user’s analysis process.

6.2 External Capturing

As mentioned before, in most real-life analysis tasks conducted using visualization

systems, not all of the analytical activities actually take place within a visualization.

Since these activities are not directly part of the interaction between a user and a

visualization system, van Wijk’s model is no longer su�cient in describing these ac-
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tivities in relation to the use of a visualization. However, in order to fully understand

an analyst’s analysis process, it is still very important to consider these activities as

they have immediate a↵ects on how a user utilizes the visualization.

We propose that these activities that are external to the visualization can be cate-

gorized into two types: externalization and observation. Externalization denotes the

methods to capture the artifacts users actively externalize during an analysis process.

Examples of externalization include recording user’s think-aloud and saving the notes

a user jots down, both of which intimately reflect the analysis process at a semantic

level. Research in visualization has often relied on externalization mechanisms to

understand the behaviors of the user. In particular, the think-aloud protocol is fre-

quently used in evaluations and has been found to be e↵ective in reflecting the user’s

analysis process [28, 37].

On the other hand, observation represents methods that monitor a user using a

visualization during an analysis without requiring the user to actively externalize his

thoughts. Besides human observers taking notes of what happens during the analysis,

devices like eye tracker, video camcorder, EEG (Electroencephalography) and fMRI

(functional Magnetic Resonance Imaging) could also be used to record information

about user’s eye movement, physical motions, neural activities, etc. As noted sepa-

rately by Huang [28] and Convertino et al. [56], eye-tracking data o↵ers additional

insights into typical strategies used for accomplishing given tasks within a visualiza-

tion environment. Although other devices like EEG and fMRI have seldom been used

in experiments related to visualization systems, they are e↵ective for studying brain

functions during experimental tasks [23].
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Relying solely on external capturing methods has been shown to be e↵ective in dis-

covering a user’s (qualitative) mental model when interacting with visualizations for

analysis tasks. In an experiment by Trafton et al. [116], video camcorders recorded

both the physical environment in which the experiments took place, as well as how

the participants interacted with the various computers in the environment (observa-

tion). At the same time, the participants were requested to provide think-alouds of

their thoughts and take notes of their incremental discoveries (externalization). By

combining and manually analyzing these recordings, Trafton et al. demonstrated that

they were able to identify how the participants formed mental models of the analysis

task and applied the models to solve problems.

6.3 Internal Vs. External Capturing

Figure 17 illustrates van Wijk’s operational model of visualization after integrat-

ing both the internal and external capturing mechanisms. According to this model,

the four capturing methods are distinguishable and independent from each other.

However, in practice, the lines between the methods are sometimes blurry depending

on the implementation of the visualization or the physical environment where the

analysis takes place. As visual analytic systems become more mature, some analy-

sis that has traditionally been performed outside of a visualization can now be done

directly within the visualization. A prime example of this is the inclusion of anno-

tation techniques [47, 54, 40] or “shoeboxes” [126, 106, 121, 91]) in visual analytical

tools. Traditionally, such annotations are written on a piece of paper that would have

to be collected externally, but in many recent visual analytics systems, annotations
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have become a part of the visualization that can be captured internally within the

visualization.

Practically, one distinguishing factor that separates internal and external capturing

can be described based on how intrusive they are to the analyst. Internal capturing

methods can be implemented directly within the visualization, and are mostly trans-

parent to the user. External capturing methods, on the other hand, often require

physical devices or mechanisms that would alter the physical analysis environment

and potentially change the analysis process. Certain eye trackers require the user to

wear additional hardware [39] that could be cumbersome. Requiring analysts to per-

form think-alouds during their analysis could be an annoyance to other analysts [85],

just as the use of EEG or fMRI are most likely unfeasible due to the monetary cost

of the machinery and the cost of time in the setup process prior to use. Even more

importantly, in most cases involving external capturing, the fact that the analysts

are externalizing their thoughts (e.g., via think-alouds), or are reminded of potential

observers (e.g., in the case of being recorded on video) could change their behavior

significantly. As noted by Shapiro, performing the think-alouds protocol may slow

down a participant’s task performance and even alter the process of interest [103].

Similarly, the use of observational tools could solicit an e↵ect known as social facil-

itation and inhibition in which the participant would either over perform or under

perform depending on their confidence in performing the task [13, 128].
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6.4 Summary

Based on the analysis of the cost and benefit of both internal and external capturing

methods, internal capturing seems to be the winner because of its un-intrusiveness

and a↵ordability. Therefore, the rest of the dissertation will focus on how to capture

the interaction steps and visualization state during the use of a visual analytics tool.

Since visualization states could be easily recovered given interaction steps, we will be

mainly evaluating capturing user interactions with a visual analytics system.

First, from a theoretical perspective, studying the outcome of the analysis process

under di↵erent interaction constraints validates the importance of interaction to a

user’s analysis process (chapter 7). Experimental results have shown that constraining

the way a user could interact with a problem significantly a↵ects the outcome of the

problem solving process. Interaction connects users and the visual representations to

enable human-information discourse, and at the same time interaction dictates the

analysis process.

Then from a practical viewpoint, we conducted user studies to capture and analyze

sequences of interactions conducted by a user with an interactive visual interface. This

may provide insight into the user’s reasoning process. The result of our experiment

suggests that at least 60% of the high-level reasoning process can be recovered from

merely analyzing the interaction logs. The recovered reasoning process could be

documented and potentially be used for recall, reporting, knowledge sharing, and

training (chapter 8).



CHAPTER 7: EVALUATING THE EFFECT OF INTERACTION
CONSTRAINTS ON PROBLEM-SOLVING PROCESS

Given the goal of extracting a user’s analysis process from user interactions, we first

need to understand the relationship between the high-level analysis process and user

interactions. In other words, we want to evaluate the e↵ect of user interactions on

the analysis process. If the process changes under di↵erent constraints enforced upon

user interaction, then there is indeed an intimate relationship between the two. To

meet this aim, we designed an experiment to study the outcome of analysis process

under various interaction constrains.

Interaction and manual manipulation have been shown in the cognitive science

literature to play a critical role in problem solving. Given di↵erent types of interac-

tions or constraints on interactions, a problem can appear to have di↵erent degrees of

di�culty. While this relationship between interaction and problem solving has been

well studied in cognitive science literatures, the visual analytics community has yet to

exploit this understanding for analytical problem solving. In this chapter, we hypoth-

esize that constraints on interactions and constraints encoded in visual representations

can lead to strategies of varying e↵ectiveness during problem solving. To test our hy-

pothesis, we conducted a user study in which participants were given di↵erent levels

of interaction constraints when solving a simple math game called Number Scrabble.

Number Scrabble is known to have an optimal visual problem isomorph, and the goal
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of this study is to learn if and how the participants could derive the isomorph and

to analyze the strategies that the participants utilize in solving the problem. Our

results indicate that constraints on interactions do a↵ect problem solving, and that

while the optimal visual isomorph is di�cult to derive, certain interaction constraints

can lead to a higher chance of deriving the isomorph.

7.1 The number scrabble problem

The original Number Scrabble [109] is a game played by two people with nine

cards: ace through nine. The cards are placed in a row, face up. The players draw

alternately, one at a time, selecting any one of the unselected cards. The objective of

the game is for a player to get three cards which add up to 15 before his opponent

does. If all nine cards have been drawn without either player having a combination

that adds up to 15, the game is a draw.

The main reason we chose to use the Number Scrabble game is that there is a

known visual isomorph of the problem called the “magic square” (figure 18). Since

the magic square visually represents all possible combinations of three numbers that

can be added up to 15 in a succinct manner, it can significantly help a player to

perform well at the game. In other words, once this visual isomorph is identified, the

Number Scrabble problem is turned into a much simpler tic-tac-toe game, which is

played by two players who take turns marking the spaces in a 3*3 grid. The number

scrabble game represents a large number of well-defined problems that show how

visual isomorphs can make evident what was previously true but obscure [109].
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Figure 18: 3x3 magic square

7.2 Isomorphs and diagrammatic reasoning

Simon defined problem isomorphs as problems whose solutions and moves can be

placed in one-to-one relation with the solutions and moves of the given problem [109].

The key to isomorphism is that even when two representations contain the same in-

formation, they can still provide very di↵erent sets of operations for accessing and

inferring about that information, which can make a given problem easier or harder

to solve [76]. In our example, the magic square and number scrabble are isomorphs

of the same problem in that they both contain all the information needed to play

the game. However, in number scrabble, the operations provided to the player to

access important information about the game—such as whether your cards contain

a winning combination—are mathematical. In the magic square case, that informa-

tion is contained in a visual operation: seeing whether the cards form a line across

the magic square grid. Since the brain processes such visual operations faster than

mathematical ones, the visual isomorph is more e�cient in this case.

The idea that visual representations make certain operations more e�cient to per-

form is at the core of the theory of diagrammatic reasoning [26, 76]. However, ef-

ficiency is not the only measure of interest in visualization; our goal is to make
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information not just accessible, but understandable. The distinction between these

goals is highlighted by Carroll et al. [21], who had participants solve a design problem

presented as one of two isomorphs: a spatial arrangement problem and a temporal

scheduling problem. The spatial isomorph was easier and faster for participants to

solve and led to fewer failures to understand the problem. That is, in the temporal

case there were several participants whose solutions did not follow the requirements

of the task. Interestingly, when participants in both cases were provided a simple

graphical representation (a grid) in which to work on their solution, the temporal

case was as easy to solve as the spatial one, but participants in the temporal case re-

mained more likely to fail to understand the problem requirements. The authors took

this to mean that appropriate graphical representations can make problems easier to

solve, but not necessarily easier to understand.

Another way to interpret this is that there is more to designing a visual isomorph

than making information more e�cient to access. Much of the power of visual rep-

resentations comes from how they set constraints on interpretation and reasoning.

Constraints inherent in visual isomorphs can encode constraints on the information

they represent, leading to a more direct preservation of information structure [89].

As Stenning and Oberlander [114] argue, these constraints inherent to visual repre-

sentations help to meaningfully restrict the number and kinds of inferences that can

be made about a problem, focusing processing power on only valid cases. In this way,

visual isomorphs can not only make operations more e�cient, but can also model the

constraints of a problem directly. This can a↵ect the di�culty of solving a problem

by reducing the cognitive load of remembering rules [71] or by encouraging di↵erent
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types of strategies [51].

7.3 Interaction and problem solving

While visual representations can aid problem solving significantly on their own,

they gain even more power to model a problem when interaction is introduced. In-

teraction is increasingly seen as central to the process of reasoning with visualiza-

tion [79, 93, 117]. Lending weight to the intuition that interaction improves reason-

ing, Hundhausen et. al [57] found that interacting with an algorithm visualization

produces better understanding than viewing an equivalent animation.

We use the term “interaction” in the broad sense defined by Yi et al.: “the di-

alogue between the user and the system as the user explores the data set to un-

cover insights” [127]. In this sense, the relationship between interaction and problem

solving has been the subject of much research by cognitive scientists in the field of

distributed cognition [58]. In particular, David Kirsh has extensively argued that

projection and interaction with external representations are fundamental to human

reasoning [65, 66, 67, 68, 69]. Kirsh points to the pervasive use of external repre-

sentations and interaction with the world in everyday problem solving, and identifies

several functions performed by interaction in the reasoning process [66]. Of these,

most relevant to our work is reformulation, or the ability to restate ideas. Kirsh

sees reformulation as a process that is frequently too complex to perform entirely in

memory, and so is often managed with external tools. Since reformulation is closely

related to identifying di↵erent problem isomorphs, we argue that this process can also

be made easier through certain types of interaction.
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7.4 Hypotheses

Our research objective is to investigate the question of how constraints on interac-

tion a↵ect problem solving through the derivation of visual isomorphs. We propose

that in developing a strategy for playing a game like Number Scrabble, participants

will tend to derive an isomorph for the problem that is easier for them to use than

the representation in the original game, and that the availability of di↵erent levels

of interaction while strategizing will lead to di↵erent types of isomorphs. If this is

the case, it can help to clarify the relationship between interaction with visual repre-

sentations and reasoning. To what extent does the nature of a visual representation,

and the type of interactions a user is allowed to perform upon it, a↵ect the kind of

strategy that user develops for solving a problem?

We therefore designed a study based on the aforementioned Number Scrabble game

due to its known optimal visual isomorph, the magic square. In our study, we de-

veloped 5 di↵erent interaction conditions, ranging from free-form to very restrictive,

and studied how strategizing under these conditions a↵ects problem solving and the

development of isomorphs. In particular, we propose three interrelated hypotheses

concerning interaction, problem solving, and isomorphs:

1. Interactions and Problem Solving: We hypothesize that di↵erent types

of interactions will a↵ect the participants’ performance in playing the Number

Scrabble game. Specifically, we hypothesize that more constrained interactions

can encode more information, and will therefore lead to better problem-solving.

2. Interactions and Isomorphs: We hypothesize that the di↵erent constraints



89

on interaction will a↵ect the isomorphs generated by the participants. With

higher constraints on interaction, a participant will be more likely to derive the

optimal visual isomorph (the magic square).

3. Isomorphs and Problem Solving: We hypothesize that not all isomorphs

developed by participants will be visual, but that visual isomorphs will be more

e↵ective for playing the Number Scrabble game.

7.5 Experiment Design

The main factor of interaction constraint had five levels (no interaction, pen and

paper, single set of cards, multiple sets of cards, and boundary). Details of each

constraint and design rationale will be discussed in section 7.5.3. We used a between-

subjects design with repeated measures. Each subject is randomly assigned to one

of the five interaction constraint conditions which determines what interactions are

available to them during their strategy session. Qualitative measures in our exper-

iment are the types of isomorphs our subject derived during their strategy session.

Quantitative measures involved response time and scores on Number Scrabble games

played against a computer, using the game interface shown in Figure 19. The com-

puter was programmed to play the game optimally so that it never loses. While our

subjects played the game against the computer, we recorded number of games tied

or lost and the time it took them to figure out the next move for response time. We

alternate who makes the first move between the subjects and the computer for every

game played.



90

Figure 19: Number scrabble game interface

7.5.1 Participants

We recruited a total number of 117 participants (86 Male, 31 Female) from intro-

duction to computer science courses at our university. Participants’ age ranged from

18 to 40 with median of 25. Students were primarily undergraduates, and 80% were

in computing-related majors.

7.5.2 Task

The experiment begins with investigators introducing the Number Scrabble game

to the subjects based on a training script. The investigators were asked to play the

game with the participants until they fully grasped the rules. Next, the participants

fill out a demographic form on age, gender and experience with mathematical courses

through a web interface. The rest of the experiment can be divided into four major

sessions: pre-test, strategizing, externalizing isomorph, and post-test.

1. Pre-test: During the pre-test session, the participants were asked to play the

Number Scrabble game six times against the computer. To make sure that our

participants do not start developing strategies during the pre-test, we enforced

a maximum time limit of 18 minutes to finish all six pre-test games. Failing to

meet the time limit resulted in a participant’s data being dropped from analysis.
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2. Strategizing: During the strategizing session, the subjects were given 20 min-

utes and allowed to interact with the materials we provided under di↵erent

constraints and are told to look for a strategy that can help them play the

game better.

3. Externalizing isomorphs: At the end of the strategizing session, all partici-

pants were given 2-3 minutes to make a “cheat sheet” out of the strategy they

developed so that they can refer to it during the post-test session when they

play Number Scrabble again. This cheat sheet was a single sheet of paper onto

which participants were told they could write anything they felt would help

them play the game. (In the case of the pen and paper condition, this was a

separate sheet from those they wrote on during the strategizing session.) This

gave us a record of the isomorph used by participants in forming a strategy and

reduced the cognitive load on participants during the post-test. We only gave

them a very short amount of time to make their “cheat sheet” so that they

could not continue elaborating on it after the end of the strategizing session.

4. Post-test: During the post-test session, participants were asked to play the

Number Scrabble game six more times against the computer while consulting

their “cheat sheet.” To be consistent with the pre-test and also to make sure

that the participants do not refine their isomorphs during the post-test, 18

minutes was set as the upper limit for playing all six games. As in the pre-test,

failing to meet the time limit resulted in a participant’s data being dropped

from analysis.
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After the post-test session, participants were asked to fill out a questionnaire re-

garding how they arrived at their strategy and their experience during the strategiz-

ing session. The investigators collected all the participants’ “cheat sheets” for further

analysis of the isomorphs they derived during the experiment. In addition, the strate-

gizing sessions were video recorded, which allows us to examine how the interaction

constraints a↵ected our participants’ behavior during the process of searching for an

isomorph.

7.5.3 Interaction constraints

We went through multiple rounds of a refining process to design the interaction

constraint conditions used in our study. Our goal was to design constraints that

ranged from placing no limit on the interaction to restricting the interaction a great

deal.

• Constraint #1 (no interaction): The participants were asked to think about the

problem in their head during the strategizing session to develop a strategy to

help them play the game better. The participants were not allowed to interact

with any materials.

• Constraint #2 (pen and paper): The participants were provided with pen and

paper to work out their strategy for the Number Scrabble problem.

• Constraint #3 (multiple sets of cards): The participants assigned to this con-

straint were provided with multiple sets of cards, with each set consisting of

the numbers one through nine. Each card is square in shape and made from
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paper with the numbers printed on them. Within the strategizing session, the

participants were encouraged to organize the cards freely.

• Constraint #4 (single set of cards): The participants were further limited to

interact with only one set of cards labeled with the numbers one through nine.

• Constraint #5 (boundary): This is the most restrictive case. Participants were

presented with nine cards and a square space only large enough to fit the cards

in a grid, and were told to confine their interactions to that space. Figure 20

shows this condition.

Our conditions are designed so that “no interaction” serves as a control group, and

“pen and paper” represents no limit on user interaction. Then, based on both the

original description of the Number Scrabble problem and the optimal visual isomorph,

we derived the other three interaction constraints from “multiple sets of cards” to

“boundary” by adding more constraints on interaction each time, all of which encode

some information about the optimal visual isomorph of the problem.

Figure 20: Cards and Boundary
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7.6 Results

When analyzing the experimental data, we were concerned with the impact of

outliers due to random responses. Therefore, we trimmed out the data of four partic-

ipants whose response times were unusually fast during the pre-test. In addition, 11

of our participants reached the 18-minute time limit during either pre- or post-test,

thus their data are automatically dropped since their missing data made it impossible

to fairly compare pre-test and post-test scores. As a result, we have valid data from

100 participants with 20 subjects under each interaction constraint.

7.6.1 Isomorph vs. Interaction constraint

Based on the strategies recorded on their cheat sheets, our participants developed

a wide range of problem isomorphs during the experiment. Some of these are visual

while the others are either mathematical or purely descriptive. We classified these

isomorphs into five di↵erent categories:

1. Magic square (Visual): The magic square isomorph.

2. Partial magic square (Visual): Same layout as the magic square isomorph

with di↵erent ordering or numbers.

3. Other visual isomorph: Visual isomorph but numbers are not organized in

a 3*3 matrix manner.

4. Permuted isomorph: All possible combinations of 3 numbers adding to 15.

5. Incomplete isomorph: Strategies that do not involve all 9 numbers.
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Note that categories 1–3 are visual isomorphs of the Number Scrabble problem

while 4 and 5 are not. In addition, examples of di↵erent types of isomorphs are

shown in figure 7.6.1.

The distribution of di↵erent isomorphs developed by our subjects within each in-

teraction constraint is shown in Figure 22. This distribution supports our hypothesis

in the sense that as the interactions become increasingly constrained (from pen and

paper to boundary), more participants developed visual isomorphs of the number

scrabble problem. More importantly, nine out of 20 subjects under the most re-

strictive constraint (boundary) discovered the optimal visual isomorph (the magic

square) while another six subjects developed partial magic square isomorphs. In con-

trast, only one out of 20 participants in either the no interaction condition or the pen

and paper condition discovered any visual solution. A Pearson’s chi-square test of

independence finds a highly significant interaction between interaction constraint and

isomorph, �2(16, N = 100) = 116.9, p < .001. Since 15 cells have an expected count

of less than five, we performed a Fisher’s exact test which also yielded a probability

of p < .001.

7.6.2 The e↵ect of interaction constraints on Response Time and Score

Results regarding time and score were analyzed statistically using an analysis of

variance (ANOVA) followed by Tukey’s HSD (Honestly Significant Di↵erence) test for

pairwise comparisons. The factor in our experiment was interaction constraint (five

levels) and the dependent variables were di↵erence in response time and improved

score.
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(a) Partial magic square examples

(b) Other visual isomorph examples

(c) Premuted isomorph examples

Figure 21: Isomorph examples
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Figure 22: Distribution of isomorphs developed under five di↵erent interaction con-
straints. The gaps divide visual isomorphs (1,2 and 3) from non-visual isomorphs (4
and 5).
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Di↵erence in response time is derived from the time it took to decide which card

to choose next at each move during a game. Response time per game is defined

as the average time it took the participants to choose the next card during each

game, T =
P

ResponseT ime/n, with n being the number of cards chosen following

the opponent’s move during a specific game. Since both the pre-test and post-test

sessions comprise six games, di↵erence in response time is thus defined as IT =

P6
i=1 T (i, posttest)�

P6
i=1 T (i, pretest). In a similar vein, improved score is derived

from whether the subjects tied or lost to the computer during each game, with tying

counted as 1 point and losing as 0 points. Thus improved score is defined as IS =

P6
i=1 S(i, posttest)�

P6
i=1 S(i, pretest).

7.6.2.1 Response time

We expected participants to choose the next card faster during the post-test as

the interaction constraints increased, since we hypothesized that they would be more

likely to derive a better visual isomorph similar to the “magic square”. However, we

did not observe a significant main e↵ect of di↵erence in response time (F (4, 95) =

1.54, p = 0.097). Figure 23 (top) shows the di↵erence in response time under dif-

ferent interaction constraints. However, interesting yet surprising findings emerged

once we considered response time during pre-test and post-test separately. Figure 23

(bottom) shows the mean response time during both pre- and post-tests under the

five interaction constraints. It should be noted that participants in the no interaction

condition had an unusually slow average response time in the pre-test, which makes

comparisons between that condition and the others problematic. In general, however,
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we found that most of our participants spent more time deciding which card to choose

next during the post-test, and participants under the most confined constraints took

the longest time, which ran counter to our expectations. We discuss possible reasons

for this in Section 7.7.4.

7.6.2.2 Score

If we consider mean scores on the pre-test and the post-test separately (Figure 24

(bottom)), it is clear that in general our participants scored higher after the strategiz-

ing session under all five interaction constraints (F (1, 1190) = 57.7, ⌘2p = 0.046, p <

.001). More importantly, the subjects in the more constrained interaction groups tend

to score higher than those in the less restrictive interaction groups.

For improved score (Figure 24 (top)), we observed a significant main e↵ect of

interaction constraint type (F (4, 95) = 6.5, ⌘2p = 0.215, p < .001). Post-hoc tests

showed that the improved scores are significantly di↵erent between numerous pairs of

interaction constraints. To elaborate, the improved score for participants assigned to

interaction constraint #5 (boundary) is significantly larger than that for participants

assigned to interaction constraint #1 (no interaction), p = .001, constraint #2 (pen

and paper) with p < .01, and constraint #4 (one set of cards) with p < .01. Although

the result of other pairwise comparisons were not significant, we can see a clear trend

(Figure 24 (top)) that as the interaction constraints become more restrictive, the

improvement of score increases except in the case of constraint #4. We further

analyze this unexpected “dip” in the discussion section.
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7.6.3 The e↵ect of isomorph on improvement of score

Overall, the main e↵ect of types of derived isomorph is significant (F (4, 95) =

8.495, ⌘2p = 0.263, p < .001) on improved score (figure 25). Post-hoc tests showed

that the improved scores for participants who derived the magic square isomorph

is significantly higher than for participants who derived partial magic squares at

p < .05, and significantly higher than those of all other participants at p < .01. The

result supports our hypothesis that the optimal solution does lead to much better

performance in terms of accuracy. Although the other pairs are not significantly

di↵erent on mean improved score, we can see a trend that as the isomorphs are

further from the optimal magic square, the mean improved score decreases. We

further performed a linear contrast between visual isomorphs (1, 2, 3) and non-visual

isomorphs (4, 5) on improved score. The result shows that the mean improved score

for participants using visual isomorphs is significantly larger than for those using

non-visual isomorphs (t(95) = 3.822, p < .001).

7.7 Discussion

We start our discussion by addressing the key questions based on our hypotheses:

7.7.1 Do more confined interaction constraints yield a better chance of deriving a
visual isomorph?

Yes, based on figure 22 and the chi-square analysis (section 7.6.1), we observe that

as the interaction constraints are increasingly restricted, larger number of visual iso-

morphs are developed. In addition, the strictest interaction constraints led to the

highest number of the optimal visual isomorphs discovered. Nine out of 20 partici-
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pants under constraint #5(boundary) discovered the magic square isomorph during

the strategizing session and seven participants out of the remaining 11 discovered

a partial magic square isomorph. Based on further analysis of feedback about the

interaction constraints, most participants under this condition found constraint #5

very helpful in their discovery of the visual isomorphs. Many of them left comments

such as, “It helped me visualize the problem and make competitive moves.” Similarly,

most subjects under interaction constraints #3 (multiple sets of cards) and #4 (one

set of cards) felt that being able to manipulate the cards freely was helpful. Thus

both statistics and user feedbacks support the hypothesis that interaction constraints

significantly a↵ect the types of isomorphs users are able to derive by altering the way

participants approach the same problem. In other words, the manipulation of the

isomorphs could be embodied in the interaction.

7.7.2 Does a more advanced visual isomorph outperform a non-visual isomorph in
terms of score?

Yes. We consider an isomorph as more advanced if it is more similar to the optimal

visual isomorph (the magic square). Thus our results summarized in Section 7.6.3

confirm that visual isomorphs lead a greater increase in score compared to non-visual

isomorphs. What’s more, within the group of visual isomorphs, the optimal visual

isomorph outperforms the other two significantly.

7.7.3 Does more confined interaction constraint always yield larger improvements
on score?

The short answer is: not always. As seen in Figure 24, the general trend shows

that as the interaction constraints become more restricted, the improved score tends
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to rise, with the exception of constraint #4 (one set of cards). The low improved

score in this condition can be explained by considering Figure 22, which shows that

none of the participants under this condition derived a magic square (red) or partial

magic square (orange) isomorph. Without more e�cient visual isomorphs, it made

sense that the subjects did not do much better in their post-test compared to the

pre-test. However, when we designed the five interaction constraints, we considered

one set of cards as a highly restrictive constraint, thus we expected better scores and

more derivation of the optimal isomorph. Based on the comments they left, many

participants in this condition felt limited by only being able to interact with one set

of cards and wished they were given paper to write down combinations of numbers

they found to o✏oad the burden of having to memorize them. After the experiment,

when we present the magic square isomorph to participants, most in this condition

thought they were close to discovering the optimal isomorph at some point during the

experiment. But without the extra boundary to further constrain their interaction,

it was hard for them to find the bridge between one set of cards and the magic

square. This finding highlights the fact that more restrictive interaction constraints

are not necessarily helpful unless they meaningfully encode information about the

problem. The single set of cards constrained interaction, but without the boundary

this constraint did not by itself tell participants anything about the nature of the

problem.
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7.7.4 Why is di↵erence in response time not a good measure?

Unexpectedly, we did not observe a significant result of isomorph type in terms

of both post-test response time and di↵erence in response time. In fact, response

times in the post-test were generally longer than in the pre-test, and participants

who discovered the optimal isomorph tend to take an especially long time responding

during the post-test. We contacted them afterwards about why they made decisions

more slowly during the post-test and found out that instead of playing defensively

using the magic square, they spent more time thinking about how to beat the com-

puter. Thus we can infer that the bar this particular group of participants set was

higher than just “not to lose.” Overall, it may have been the case that participants

in the post-test took a longer time because they were consulting their cheat sheets or

otherwise thinking harder about their strategy, as we encouraged them to do in the

strategizing session.

Another reason we did not observe a significant result of di↵erent types of isomorphs

on di↵erence in response time is that the search time for each of the visual isomorphs

our subjects derived to decide the next card might vary drastically. For example,

searching through a partial magic square should yield a faster decision than searching

through a 9x9 matrix, while searching through a 9x9 matrix leads to a faster decision

than going through all possible combinations of three numbers adding to 15. Overall,

since there are many other factors involved in the di↵erence in response time (such as

search time and self-expectation of performance), we did not observe a strong causal

relationship between types of isomorph and di↵erence in response time.
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7.8 A note on the variety of visual isomorphs

In section 7.6.1, we roughly categorized all the isomorphs our subjects developed

during the study into five categories including three visual and two non-visual iso-

morph types. In this section we mainly focus on the visual isomorphs discovered

by the participants. It is interesting to see that eight participants across interaction

constraint #3 (multiple set of cards) and #5 (boundary) developed a partial magic

square isomorph, and that 11 participants discovered other forms of visual isomorph

across interaction constraints #1, 2, 3 and 4. Within the partial magic square iso-

morph, there are many variations. Figure 7.6.1(a) illustrates a few of them, and

we can see that the variations are mainly caused by ordering. There are even more

variations under the “Other visual isomorph” category. One type of variation was a

decision tree, such as the examples in Figure7.6.1(b); additionally, a few participants

built a 9x9 matrix (Figure 26). To see how this isomorph can be used in playing the

Number Scrabble game, refer to Appendix A).

In Figure 22 we can see a strong contrast between the types of visual isomorphs

the participants came up with. Most participants under interaction constraint #5

(boundary) developed magic square-like visual isomorphs during the strategizing ses-

sion, while there are a relatively larger number of participants under both constraints

#3 and #4 who discovered more creative visual isomorphs (such as di↵erent forms of

decision trees and node-link diagrams). Thus, there seems to be a trade o↵ between

interaction constraint and the creativity of the resulting visual isomorph.
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7.9 Summary

In this chapter, we demonstrated that constraining user interactions indeed a↵ects

problem-solving through exploring the relationship between interaction constraints,

visual isomorphs, and problem-solving performance. With better isomorphs yielding

higher performance, our results demonstrate that we can improve the e↵ectiveness of

problem solving activities by embodying information in user interaction.

The demonstration of the intimate relationship between user interaction constraints

on problem solving has led us closer to our ultimate goal, which is to extract a user’s

high-level thinking process. Next we will evaluate whether such thinking process is

reflected in the user interactions in a visual analytics environment.
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Figure 23: (top) Di↵erence in mean response time; (bottom) mean response time(pre
vs. post test)
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Figure 24: (top) Mean improved score; (bottom) mean score (pre vs. post test)
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Figure 25: Mean improved score vs. Isomorph
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Figure 26: A matrix-like visual isomorph



CHAPTER 8: CONNECTING LOW-LEVEL USER INTERACTIONS WITH
HIGH-LEVEL ANALYTICAL PROCESS

In this chapter we analyze whether we can extract user’s analysis processes through

analyzing interaction logs in the setting of financial visualization. We demonstrate

that we were able to identify several of the strategies, methods, and findings of an

analysis process using a financial visual analytical tool through the examination of an

analyst’s interaction log. In our study, we recorded the interactions and think-alouds

of 10 financial analysts in a fraud detection task. By examining their interaction

logs, we are able to quantitatively show that 60% of strategies, 60% of methods, and

79% of findings could be recovered through the use of two visual analytic log analysis

tools.

8.1 Problem statement

In the short number of years since the establishment of the visual analytics research

agenda, visual analytical tools have already made an impact in the intelligence and

analysis communities. However, until recently, most of the research in visual analytics

has focused on the techniques and methods for refining these tools, with the emphasis

on empowering the analysts to make discoveries faster and more accurately. While

this emphasis is relevant and necessary, we propose that it is not always the end

product that matters. Instead, we argue that the process in which an analyst takes

to arrive at the conclusion is just as important as the discoveries themselves. By
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understanding how an analyst performs a successful investigation, we will finally be

able to start bridging the gap between the art of analysis and the science of analytics.

Unfortunately, understanding an analyst’s reasoning process is not a trivial task,

especially since most researchers rarely have access to analysts performing analytical

tasks using classified or highly confidential material. While there has been a recent

increase of activity in the visual analytics community to help analysts document and

communicate their reasoning process during an investigation, there is still no clear

method for capturing the reasoning processes with minimal cognitive e↵ort from the

analyst. This raises the question we look to address in this chapter: how much can an

analyst’s strategy, methods, and findings using a visual analytical tool be recovered?

It is our hypothesis that when interacting with a well-designed visual analytical

tool, a large amount of an analyst’s reasoning process is embedded within his inter-

actions with the tool itself. Therefore, through careful examination of the analyst’s

interaction logs, we propose that we should be able to retrieve a great deal of the

analyst’s reasoning process. To validate our hypothesis, we designed a study to quan-

titatively measure if an analyst’s strategies, methods, and findings can be recovered

through human examination of his interaction logs. Our study consists of four stages:

user observation, transcribing, coding, and grading. In the user observation stage,

we invited 10 financial analysts to use a financial visual analytical tool called Wire-

Vis [22] to identify potentially fraudulent wire transactions within a synthetic dataset

in think-aloud sessions. The analysts’ interactions were logged into file and at the

same time their think-alouds captured on video and audio. This information was

transcribed by the authors later into files that collectively were considered to be rep-
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resentative of the analysts’ reasoning processes and used as the “ground truth” for

the study.

Four coders who are students familiar with the WireVis tool examined each ana-

lyst’s interaction log using two log analysis tools (Operation and Strategic Analysis

tools) that we developed [63]. Through visual inspection and analysis of each an-

alyst’s interaction log, the four coders were asked to annotate what they believed

the analysts’ strategies, methods, and findings were. We then compared the coders’

inferences with the ground truth, and the result became the basis of our claim on the

types and amount of an analyst’s reasoning process that were recoverable through

the examination of interaction logs.

The result of our study has been most encouraging. Aside from a few specific,

low-level types of findings, the four coders (who are not trained in financial fraud

detection) were able to correctly retrieve 60% of the analysts’ strategies, 60% of the

methods, and 79% of the findings. This result indicates that some of an analyst’s

strategies, methods, and findings in using a visual analytical tool are indeed recover-

able through human examination of an interaction log. It is relevant to note that the

extracted reasoning process is solely based on the analyst’s activities within a visual

analytical tool and does not include the overall intelligence analysis that often involves

multiple tasks and tools such as searching through websites, phone discussions, the

use of additional software, etc. However, our findings represent an important aspect of

the intelligence analysis, and provide an example for visual analytics as a community

to uncover a new path towards better understanding and capturing of an analyst’s

reasoning processes.
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8.2 Related Work

We roughly categorize the current research in visualization and visual analytics for

capturing the reasoning process of an analyst into two groups: capturing the user’s

interactions and interactive construction of the reasoning process using a visual tool.

8.2.1 Capturing User Interactions

Capturing user interactions for the purpose of understanding the user’s behavior

is very common both in academics and industry. Commercially, there are many o↵-

the-shelf applications that range from capturing a user’s desktop activities such as

usability software to interactions on a website (which is a common feature in most

web servers).

In the field of visualization, one of the most notable systems for capturing and

analyzing user activities is the GlassBox system by Greitzer at the Pacific Northwest

National Laboratory [45]. The primary goal of the GlassBox is to capture, archive,

and retrieve user interactions [29]. However, it has also been shown to be an e↵ective

tool for capturing specific types of interactions for the purpose of intelligence analy-

sis [30]. While GlassBox and most usability software are e↵ective tools for capturing

user activities, they focus primarily on low level events (such as copy, paste, a mouse

click, window activation, etc), whereas the events captured in our system are at a

higher level that corresponds directly to the data (such as what transaction the user

clicked on). For more information on the di↵erences in these two approaches, see the

work by Jeong et al. [63] or work by Heer et al. [53].

More recently, Jankun-Kelly et al. [60] proposed a comprehensive model for cap-



114

turing user interactions within a visualization tool. Their work is unique in that they

focus on capturing the e↵ects of the interactions on the parameters of a visualization.

Although it is unclear how this framework supports higher level event capturing,

the direction is interesting and could lead to a more uniform way of capturing user

interactions.

The systems and approaches above are all proven to be innovative and e↵ective.

However, their objectives di↵er from our goal in that none of these systems fully

addressed our question of how much reasoning process can be recovered through the

examination of interaction logs. It is with this question in mind that we expand

on this area of research to capturing user interactions and look to extract reasoning

processes embedded in them.

8.2.2 Interactive Construction of the Reasoning Process

An alternative approach to retrieving reasoning through interactions is for the an-

alyst to create a representation of the reasoning process (usually in the form of a

node-link diagram) while solving a complex task. There are a few recent systems in

this domain, most notably the Aruvi framework by Shrinivasan and van Wijk [107],

which contains three main views, data view, navigation view, and knowledge view.

Data view is the visual analytical tool itself, navigation view is a panel for visually

tracking the user’s history, and lastly the knowledge view allows the user to interac-

tively record his reasoning process through the creation of a node-link diagram.

Similar to the Aruvi framework, the Scalable Reasoning System (SRS) by Pike et

al. [92] allows its users to record their reasoning processes through the creation of
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node-link diagrams. However, unlike the Aruvi framework, the SRS focuses on the

collaborative aspects of organizing the reasoning processes among multiple users and

sharing their results across the web.

Most recently, Heer et al. [53] created a tool for visualizing users’ histories within

the commercial visualization tool Tableau [82]. Although the emphasis of this work

is not on constructing or visualizing the reasoning process, the functionalities within

the tool that allows for a user to edit and modify his interaction history could be used

towards communicating his reasoning process e↵ectively.

While there has not been a formal comparison between interactively constructing

the reasoning process as mentioned above and our method of analyzing interaction

logs, we hypothesize that the cognitive load of having to perform analytical tasks

while maintaining and updating a representation of the reasoning process could be

tiring [44]. We believe that the systems mentioned above will have better represen-

tations of the user’s reasoning process. However, we argue that a transparent, post-

analysis approach o↵ers an alternative that can achieve comparable results without

the e↵orts from the analysts. Most likely the best solution is somewhere in between,

and we look forward to analyzing the pros and cons of the two approaches.

8.3 WireVis Interactions

We conducted our study with a particular visual analytical tool for investigating

financial fraud called WireVis that logged all user interactions. We also developed

two additional tools for visualizing user interactions within WireVis to help us explore

the analyst’s activities and reasoning process [63]. We first describe all of these tools
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Figure 27: Overview of WireVis. It consists of four views including a heatmap view
(top left), a time-series view (bottom left), a search by example view (top right), and
a keyword relation view (bottom right).

before presenting the details of the user study in the next section.

WireVis is a hierarchical, interactive visual analytical tool with multiple coordi-

nated views [22]. This visual analytical tool was developed jointly with wire analysts

at Bank of America for discovering suspicious wire transactions. It is currently in-

stalled at Bank of America’s wire monitoring group, WireWatch, for beta testing.

Although it has not been o�cially deployed, WireVis has already shown capabilities

in revealing aspects of wire activities that analysts were not previously capable of

analyzing. Through a multiview approach, WireVis depicts the relationships among

accounts, time and transaction keywords within wire transactions (see Figure 27).
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8.3.1 Synthetic Data with Embedded Threat Scenarios

To preserve the privacy of Bank of America and their individual account holders,

we created a synthetic dataset for the purpose of this study. Although none of the

transactions in the dataset are real, we captured as many characteristics and statistics

from real financial transactions as we could and modeled the synthetic data as closely

to the real one as possible. The approach we took is loosely based on the methods

described by Whiting et al. in developing the 2006 VAST contest [13].

For the purpose of the user experiment, it is important that the dataset is simple

enough that users are able to look for suspicious transactions within the time frame

of a study, but is complex enough that interesting and complicated patterns can be

found. The synthetic dataset therefore contains 300 financial transactions involving

approximately 180 accounts. Twenty-nine keywords are used to characterize these

transactions, with some of them representing geographical locales (such as Mexico,

Canada), and some representing goods and services (such as Minerals, Electronics, In-

surance, Transportation, etc.) Each record of a transaction consists of the transferred

amount, the sender and receivers names, date, and one or more keywords relating to

the transaction. Four di↵erent types of known threat scenarios were identified. Two

cases of each of the four types were created and embedded into the synthetic dataset

based on the approach proposed by Whiting et al. [14]:

Incompatible Keywords in a Transaction: Transactions with two or more keywords

that do not belong together. For example, a transaction containing the keywords “car

parts” and “baby food”.
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Accounts with Dual Roles: An account that has had transactions of di↵erent incom-

patible keywords is questionable. For example, an account that transacts on “gems”

at one time and “pharmaceuticals” at another.

Keywords with Large Amounts: Transactions of certain keywords are expected to

have corresponding dollar amounts. For example, a transactions from a local store

on “arts and crafts” should not be in the millions.

Change in Amounts Over Time: An account with an established temporal and

amounts pattern receiving a large sum outside of its norm should be examined further.

For example, an account with a steady deposit of paychecks of fixed amounts on

regular intervals receiving a transaction of a large amount.

8.3.2 Operation Analysis Tool

Our operation analysis tool is designed to support the analysis of a participant’s

operational interactions in relation to his annotations (Figure 28). The tool is im-

plemented in openGL, and is fully zoomable and pannable and supports selections

of interaction elements for detailed inspection. The x-axis of the main view repre-

sents time, with a striped background indicating the length of a fixed time duration

(defaulted to 60 seconds per strip). The y-axis is divided into 5 sections, with each

section supporting one aspect of the participant’s investigation process. Figure 28

(A)-(E) show the 5 perspectives, which are the participant’s annotations (A), the

participant’s interactions with the three views in WireVis (B), the depths of a par-

ticipant’s investigation (C), the areas of the participant’s investigation (D), and the

time range of the investigation (E). The sliders in (F) allow the user to scale time,
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Figure 28: Overview of the Operation Analysis Tool. (A) shows the potential area
for adding annotations. (B) shows the participant’s interactions with the three views
in WireVis (the three rows from top row to bottom correspond to heatmap, time-
series, and search by example views respectively). (C) represents the depths of a
participant’s investigation. (D) shows the areas of the participant’s investigation,
and (E) the time range. Sliders in (F) control the time scale, while checkboxes in
(G) change various visualization parameters. (H) shows the detail information of a
participant’s selected interaction element.

while checkboxes in (G) control various visualization parameters. The detail view in

(H) depicts detailed information of a specific user-interaction element.

Annotation View The results of our participants’ think-aloud during the ex-

periment are recorded into separate files. These annotations to the participant’s

investigation are shown in this view. As can be seen, our participants often exhibit

a hierarchical structure in their reasoning process, with the highest level of reasoning

depicting strategies they employ such as “seek all keywords related to the keyword

food” The lower levels depict specific operations to execute those strategies, ranging

from “search for keywords other than food relating to account 154” to “identify the
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Figure 29: Strategy Analysis Tool. The left view shows transactions grouped by
time, middle view shows grouping by keywords, and the right view shows grouping
by accounts. The patterns in the account view indicate that the primary strategy
employed by this participant was to examine two specific accounts (located on the
top of the Account View).

receiver of a transaction (account 64) of account 154.” The hierarchical nature of

the participants’ reasoning are represented in the annotation view, with the higher

level annotations shown above the lower ones as interactive floating text boxes [7].

The time range of each annotation is drawn as nested boxes using di↵erent colors.

The user can select any particular annotation, and its corresponding time range is

highlighted across all the other views (Figure 28).

WireVis Interaction View WireVis uses multiple coordinated views to visualize

di↵erent relationships within the data. In the WireVis Interaction view, we look to

display the participant’s usage pattern of the WireVis tool. The three rows in this

view correspond to the three main interactive views in WireVis: Heatmap, Strings and

Beads, and Search by Example. In each view, we can choose two di↵erent attributes of

the participant’s selection. In Figure 28 (B), the two attributes are keywords (shown

as red dots) and accounts (shown as green dots). On first glance, it is easy to see
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which views in WireVis the participant interacts with over time. On closer inspection,

the distribution of the red (keywords) and green dots (account) also reveal high-

level patterns in the investigation. Scattered red dots could indicate an exploration

of keywords, whereas concentrated green dots (e.g., if the green dots are aligned

horizontally) could reveal the participant’s interest in a specific account. When both

red and green dots appear together and are connected by a line, it denotes that the

participant is investigating the relationship between the two (such as a cell in the

Heatmap view in WireVis).

Depth View On top of visualizing a participant’s direct interactions with Wire-

Vis, it is also important to see some semantic information regarding the participant’s

investigation process. In this view, we visualize the “depth” of a participant’s inves-

tigation by displaying the number of visible transactions in WireVis. For example,

when the participant is looking at the overview in WireVis, our Depth view will be

completely filled, indicating that all transactions are visible. As the participant zooms

in to investigate specific keywords or accounts, the Depth view will show a drop in

visible transactions (Figure 28 (C)).

The Depth view also indicates when a participant requests detailed information

for a specific account or transaction (such as double-clicking on a bead in the Strings

and Beads view). These interactions show up as a vertical line, which is easily dis-

tinguishable from a participant’s operations for zooming in or focusing on a specific

area in the data.

Areas View While the Depth view shows the number of visible transactions in

WireVis, it is also relevant to indicate interactions that highlight areas that the user
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has shown interests. These interactions are commonly used in WireVis through the

“mousingover” operation. As the participant mouses-over keywords, accounts, or

transactions in WireVis, the system displays information about the highlighted data

without requiring the user to change the zoom level or focus. Using the mouse-over

operation in WireVis is common, and often indicates an exploration process in which

the participant is looking for suspicious areas for further investigation. In the Areas

view, a high variation in a short amount of time could indicate such an exploration

process, while a more leveled section suggests that the participant is investigating

specific activities (Figure 28 (D)).

Time Range View Time is an important aspect in discovering financial fraud, and

WireVis provides views to explore the temporal dimension. In the Time Range view,

we look to capture the participant’s time-based investigation. The y-axis of the Time

Range view denotes the dates represented in the data from more recent to least. A

fully colored section indicates that the participant’s investigation spans the entire time

range, whereas a change would denote that the participant has zoomed in to a specific

time period (Figure 28) (E). The dots in the Time Range view indicate selections of

transactions of a specific date. In WireVis, this is done by either mousingover or

double-clicking on a bead in the Strings and Beads view. A high concentration of the

appearance of these dots often suggests that the participant has found some specific

transactions and is looking to find out the details of these transactions.
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8.3.3 Strategy Analysis Tool

As opposed to operation, strategy is a long term plan of action designed to achieve

a particular goal. As shown in the Annotation view of the operation analysis tool (sec-

tion 8.3.2), most of our participants exhibit both strategic and operational reasoning

when investigating fraud. So besides addressing the question “what do the partici-

pants actually do” using our operation analysis approach, we also look to investigate

the high level strategies that the participants employ while approaching the tasks.

Through the use of our strategy analysis tool, we can identify each participant’s areas

of interest as well as comparing di↵erent participants’ strategies.

We adopt treemap as the basis of our strategy analysis tool. The treemap vi-

sualization allows us to investigate similarities between our participants’ strategies

without considering the flow or speed in which our participants execute their strate-

gies. Our participants had varied preconceived knowledge about the keywords and

their meanings, and therefore approached the investigation tasks di↵erently. Many

of them identified the same embedded fraud scenarios, but none of them shared the

same path in discovering these activities. Using our modified treemap visualization,

we can identify the participants’ strategies without regard to the paths they have

chosen.

The initial layout of the strategy analysis tool shows three di↵erent treemap views

classifying the transaction data based on three attributes: time, keywords, and ac-

counts (Figure 29). The three views are coordinated such that highlighting a trans-

action in one view also highlights the same transaction in the other two views. We
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choose transactions to represent the lowest level of the treemaps because they rep-

resent the lowest granularity of the data. A colored circle is displayed on each cell,

and the size depicts the amount of time the participant’s investigation has included

that transaction. When comparing two participants or two groups of participants,

the color of the circle indicates which of the two participants spent more time on the

transaction (Figure 6).

Timeline View Transactions in this view are classified based by their date. Each

grouping contains transactions of the same month. As shown in Figure 3, the trans-

actions in our synthetic data set span a 13 month period. Note that the participant

depicted in this view did not perform his investigation based on the transaction dates

as the circles appear fairly evenly through all 13 months.

Keyword View This view applies two di↵erent classification criteria. On the top

level, transactions are grouped based on keywords (shown as yellow cells in Figure

29). Each cell is then further subdivided by individual accounts (shown as green

cells).

Since a transaction often contains multiple keywords, the same transaction could

appear in more than one keyword cells. Similarly, every transaction contains two

accounts, a sender and a receiver, so a transaction will always appear at least twice,

once for each account. Due to these two reasons, the total number of transaction cells

in this view are greater than those in the Time view. However, we find this layout

more intuitive for understanding a user’s strategy involving keywords. For example,

in Figure 3, it is easy to see that the participant focused on a few specific keywords,

but even more specifically on a few accounts relating to those keywords.
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Account View The Account View orders the transactions based on their corre-

sponding sending accounts. As shown in Figure 29, this view makes clear that this

participant’s strategy in discovering financial fraud using WireVis is almost entirely

based on the detailed investigation of one or two accounts. Time and keywords appear

to be secondary considerations during his investigation.

8.4 Evaluation

We conducted a user study to determine how much of an analyst’s reasoning process

can be recovered using just the captured user interactions. We evaluated this recovery

in a quantitative fashion by comparing the process that was inferred by a set of coders

against the ground truth determined from videos of the exploration process.

Four stages are designed as user observation, transcribing, coding, and grading.

The comprehensive information of each stage is provided in the following subsections.

8.4.1 User Observation

In order to understand the user’s reasoning process through his interactions, we first

conducted a qualitative, observational study of users analyzing data with WireVis.

We recruited 10 financial analysts with an average of 9.9 years (and a median of 8

years) of financial analysis experience who all worked in large financial firms in our

area. All of the participants were either currently working as a financial analyst or

had professional financial analyst experience. Eight of the users were professionally

trained to analyze data for the purpose of fraud detection. Of the 10 analysts, six

analysts were male and four were female.

To preserve the privacy of Bank of America and their individual account holders,
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we created a synthetic dataset for the purpose of this study. Although none of the

transactions in the dataset are real, we captured as many characteristics and statistics

from real financial transactions as we could and modeled the synthetic data as closely

to the real one as possible. The dataset was designed to be simple enough that users

were able to look for suspicious transactions within the time frame of a study. This

dataset contained 300 financial transactions, with 29 keywords. Some keywords were

the names of countries, such as Mexico, and others were goods or services, such as

Software or Raw Minerals. We also developed four threat scenarios and injected

a total of nine cases we deemed suspicious into the dataset. The threat scenarios

included transactions in which keywords should not appear together, accounts with

dual roles, keywords with unusually high transaction amounts, and accounts with

suspicious transactional patterns appearing over time. More details of the synthetic

dataset and sample threat scenarios can be found in [63].

At the beginning of the study session, each participant was asked to fill out a

demographic form and was then trained on the use of WireVis for approximately 10

minutes. The participant was also provided a one-page overview of the functionality of

WireVis and encouraged to ask questions. Following the training, the user was asked

to spend 20 minutes using WireVis to look through the dataset to find suspicious

activities. We asked the participant to think-aloud to reveal his strategies. We

specifically encouraged the participant to describe the steps he was taking, as well as

the information used to locate the suspicious activities. Once the user drilled down

to a specific transaction, he was asked to write it down on a Discovery Sheet for the

purpose of recording and reporting his findings. Once the user documented a specific
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transaction, he was encouraged to continue looking for others until the time limit was

reached. After the exploration process, a post-session interview was conducted for

the participant to describe his strategies and additional findings.

Several methods were used to capture each participant’s session as thoroughly as

possible. Commercial usability software was used to capture the screen. A separate

microphone was used to record the user’s audio during the session. Lastly, functions

built into the WireVis system captured the user’s interaction with the tool itself as

information relevant only to the WireVis system. Instead of recording every mouse

movement or keystroke, WireVis captures events that generate a visual change in

the system. For example, a mouse movement that results in highlighting a keyword

in the Heatmap view will generate a time-stamped event noting that the user has

highlighted a specific keyword.

8.4.2 Transcribing

The video and the think-aloud of each participant were used to create a detailed

textual timeline of what each participant did during their session, along with the

participant’s self-reported reasoning and thinking process. While the created textual

timeline is an interpretation and might not perfectly reflect the (internal) reasoning

process of the participant, it was created based on the facts recovered from video

and audio with conscious e↵orts in minimizing human bias. We therefore consider

the resulting transcript to represent the “ground truth” of what each participant did

during their analysis with WireVis.

During the transcribing stage, di↵erent strategies, methods, and findings in in-
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vestigating fraudulent activities were identified to serve the grading process later.

Specifically, we identified the following in the transcript:

• A “Finding” represents a decision that an analyst made after a discovery.

• “Strategy” is used to describe the means that the analyst employed in order to

arrive at the finding.

• Also, the link between “finding” and “strategy” is captured by ”method” which

focuses on what steps the analyst adopted to implement the strategy for dis-

covering the finding.

In a typical investigation, an analyst’s strategy might be to search for a specific

suspicious keyword combination based on his domain knowledge. For example, the

analyst might determine accounts and transactions involving both the keywords Mex-

ico and Pharmaceutical to be potentially suspicious. Using this strategy, the methods

employed by this analyst could then be comprised of a series of actions such as high-

lighting or filtering those keywords, and drilling down to specific accounts and trans-

actions. At the end of the investigation, the analyst would record his findings based

on the encountered account numbers and transaction IDs along with their decision

about whether the particular finding is suspicious or not.

8.4.3 Coding of the interaction logs through visual examination

We asked several people familiar with WireVis to view each participants’ interac-

tions and determine their reasoning. Specifically, we recruited four “coders” from our

university, all of whom were familiar with WireVis (three male, one female). They
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then used the two interaction log analysis tools (Operation and Strategic Analysis

tools) to view participant interactions, and created an outline of what occurred.

We first gave all coders comprehensive training on how to use the Operation Anal-

ysis Tool and Strategic Analysis Tool to examine the interaction logs of each analyst’s

investigations. We also provided a guideline of hierarchical coding procedures, asking

coders to, in free-text format, provide hierarchical annotations within the visual an-

alytical tools. The hierarchies are reflected as di↵erent levels of decision points and

strategies extracted by the coders. We asked coders to identify and label findings,

strategies, and methods for each analyst. In addition, coders were encouraged to

annotate on the transitions if they could discover relationships between each decision

point such as one strategy leads to multiple findings or one finding transforms to a

new strategy.

All findings from the coders were recorded as annotations and linked to corre-

sponding interaction events and time range. Each coder went through the 10 ana-

lysts’interaction logs one by one using the visual analytical tools, spending an average

of 13.15 minutes reconstructing each analyst’s reasoning process. Thus, at the end of

the coding phase, we collected 10 sets of annotations from each coder, resulting in 40

sets of annotations overall.

8.4.4 Grading

We then compared the annotations the coders produced to the “ground truth” to

determine how much of the reasoning process was able to be reconstructed by the

coders. The comparisons are graded according to a set of pre-determined criteria by
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one of the researchers, which we describe below.

The categories we used in the grading were in accordance with both transcrib-

ing and coding: finding, strategy and method. Generally speaking, “strategy” and

“finding” do not necessarily have a one-to-one mapping relationship since some strate-

gies may lead to multiple or null findings. But one “finding” always comes with a

“method” in the sense that a method is always needed to make a decision.

For each finding, strategy, and method, we graded according to the following cri-

teria: “Correctly Identified”, “Incorrectly Identified”, “False Detections” and “Never

Identified”. This combination was chosen because the four measurements covered all

possible scenarios and yet were explicitly distinguishable. “Incorrectly Identified” in-

dicated that a coder noticed some meaningful interactions but incorrectly interpreted

them, while “False Detections” captured the scenarios in which a coder thought that

certain action took place but in fact there was none. “Never Identified” involved

actions that took place, but were not noticed or annotated by the coders.

Figure 30 illustrates the overall criteria used for grading. We determined that a

“finding” was correct as long as the coders correctly identified there was a decision

made during the analyst’s investigation. But we did not ask them to determine what

the outcome of that decision was (whether the certain transaction is suspicious, not

suspicious or inconclusive). Additionally, if only a part of the coder’s annotation was

correct, for example if he determined a “strategy” was looking for five incompatible

keywords but only identified four keywords correctly, we graded that annotation as

“Incorrectly Identified”. This purpose for such a strict grading criteria is to minimize

potential bias in the grading process.
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Figure 30: Grading results of participant 1. A participant’s analysis process is sep-
arated into findings, strategies, and methods. This figure shows the results of four
coders’ annotations and how they match the participant’s analysis according to the
four grading criteria: correctly identified, incorrectly identified, false detections, and
never identified.

8.5 Results

Both the quantitative and the observational results we obtained from grading are

rich and informative. In this section, we first demonstrate quantitatively the amount

of reasoning that can be extracted from analyzing interaction logs. We then describe

some of the trends and limitations of the coding process using our interaction log

analysis tools.

8.5.1 How much reasoning can we infer?

Figure 31 shows the average accuracy of each coder’s reconstructed reasoning pro-

cesses of all participants. The results are separated into three categories as described

in section 8.4.2: findings, strategies and methods. The results indicate that it is in-

deed possible to infer reasoning from user interaction logs. In fact, on average, 79%
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of the findings made during the original investigation process could be recovered by

analyzing the captured user interactions. Similarly, 60% of the methods and 60%

of the strategies could be extracted as well with reasonable deviation between the

coders.

An interesting observation is that all coders performed better in extracting find-

ings than strategies or methods. We will discuss a possible explanation for this

phenomenon in section 8.6.

8.5.1.1 Across Participants

A di↵erent perspective from which to examine the results is to look for variations

in accuracy across the 10 participants. Figure 32 shows the average accuracy of

the coders in recovering the reasoning processes behind the 10 participants. This

Figure 31: The average accuracy of the four coders correctly identifying “findings”,
“strategies” and “methods” of all ten participants.
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Figure 32: The average accuracy of correctly identifying “findings”, “strategies”, and
“methods” based on the 10 participants.

result indicates that there is a noticeable di↵erence between accuracies in extracting

reasoning processes for di↵erent participants. This finding leads to the conclusion

that there are some analysis processes that are more di�cult to follow than others.

Although there is no definitive answer to why this is, our own investigation suggests

that there are two plausible contributors. The first is the di↵erence in experience in

financial fraud detection between our participants and our coders. Since our coders

have no training in fraud detection, it is natural that some of the strategies and

methods in investigative processes are lost to them.

Another cause of this variation is manifested in the acute drop in the accuracy

when extracting “methods” from P2 and P4’s analysis as shown in Figure 32. As
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Figure 33: The time-series view in WireVis showing spikes that indicate sudden
increases in the amounts or frequencies of wire transactions.

the figure suggests, the coders were ba✏ed by the methods of these two participants.

Upon investigation in the video of the participant’s analysis process, we discovered

that participants 2 and 4 focused their analysis on the irregularities in the time-series

view in WireVis. Specifically, they closely examined “spikes” in the view (Figure 33)

which indicate sudden increases in amounts or frequencies of wire transactions. Our

coders had no way of seeing these visual patterns, so they were not able to identify

the methods behind the participants’ analyses.

8.5.1.2 Considering False Detections

Since the purpose of this study is to figure out how much of the reasoning process

can be extracted from interaction logs, we have reported the accuracy based purely on

the number of “correctly identified” elements. However, it is relevant to make note of

the number of times that our coders made detections that turn out to be inaccurate.

Under our grading scheme, the number of annotations made by a coder often exceeds

the number of elements in the transcription due to the false detections. For example,

the grading result of participant 1 in Figure 30 shows that the number of “findings”
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Figure 34: The accuracy of the coder’s annotations in matching up to the ‘findings”,
“strategies”, and “methods” of the analyses. The semi-transparent areas indicate the
decrease in accuracy compared to Figure 31. The di↵erence between the two figures
is that Figure 31 indicates the amount of reasoning that can be recovered, where as
this figure shows how accurate the coders’ annotations are.

in the ground truth is 6, however, coder 3 made a total of 8 annotations. He correctly

identified 4 of the 6 elements, missed on identifying 2 of the 6 elements, and falsely

detected 2 times when there were no corresponding elements in the ground truth.

With the “false detections” in mind, we re-examine the accuracy of the coders based

not on how much of the reasoning process can be recovered, but on the accuracy of

their annotations. Figure 34 shows the result of the coders’ accuracies that include

the coders’ false detections. Not surprisingly, the accuracy of the coders all decrease

slightly. The accuracy in extracting findings drop by 3% from 79% to 76%, strategies

by 5% from 60% to 55%, and finally methods by 2% from 60% to 58%.
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Figure 35: The accuracy of the coders in recovering ”findings” of the participants
and the amount of time spent.

8.5.2 Amount of time spent by coders

One important aspect in extracting reasoning process is the amount of time neces-

sary for analyzing the interaction logs. In this section, we discuss the e↵ect of time

spent by a coder in analyzing an individual interaction log, as well as the learning

e↵ect that the coders exhibit after gaining proficiency in extracting the participants’

reasoning processes.

8.5.2.1 Capturing time spent by a coder

Built into our Operation and Strategy Analysis tools is the ability to track the

amount of time that a coder spends using the tools. The coders were made aware

of this feature and were told not to take breaks during an analysis. Since the coders
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directly annotated their discoveries into the Operation Analysis tool, the system was

able to record the amount of time spent by each coder when analyzing an interaction

log.

Furthermore, the system tracked when the coder started and stopped the annota-

tions. The purpose of this feature was to separate the time spent in analyzing the

interaction log from the time spent in annotating. On average, the coders spend

23.9 minutes analyzing one interaction log, of which 10.75 minutes were spent on

annotation and the remaining 13.15 minutes on investigation.

8.5.2.2 Time spent vs accuracy

We examine the relationship between the time spent by a coder and accuracy.

Overall, there is no correlation between the two. Figure 35 plots the relationship

between the coders’ time spent in analysis (not including time spent for annotation)

and their accuracies in extracting “findings”. With the exception of the two outliers

in the far right, it appears that the coders are consistently successful when spending

anywhere from 5 to 15 minutes. This suggests that spending more time in the analysis

does not always yield better results. The two outliers represent the analysis of coders

2 and 4 in their first investigation (participant 1). As we will show in the following

section, all coders become more proficient in their analysis as they gain experience.

8.5.2.3 Increase in accuracy

As shown in Figure 32, the accuracy of the coders increase as they gain experi-

ence in investigating interaction logs as all four coders began with examining par-

ticipant 1’s interactions and end with participant 10’s. Based on analyses using
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Pearson’s correlation coe�cient, we find that the number of participants a coder has

examined is positively correlated to the coder’s accuracy. This correlation is statis-

tically significant when extracting “findings” (r(40) = .37, p < .05) and “methods”

(r(40) = .52, p < .01). Only in extracting “strategies” is the correlation weaker

(r(40) = .21, p = .182(preferred)). While the sample size is relatively small, these

statistics nonetheless imply a subtle but potentially important discovery: with more

experience in analyzing interaction logs, a coder could become more proficient in

extracting an analyst’s reasoning process.

8.6 Discussion

The study described in this paper is complex and intricate. On top of involving

real financial analysts, the transcription process, the coding, and the grading were

all performed with great care and consideration. Although many of the nuances

encountered during the study do not a↵ect the results and therefore have not been

described in this paper, there are some findings that might be of interest to the

community. First of all, during our informal debriefing of the coders, the coders

discussed the strategies that they employed in analyzing the analysts’ interaction logs.

It turned out that our coders often began their investigation by looking for “gaps”

in the timeline of the operational view (Figure 28), which are the byproducts of the

analysts taking time to write down their findings in the Discovery Sheet (section 8.4).

Based on the gaps, the coders looked for the analysts’ findings, and then worked

backwards to discover the strategies and methods used to derive the findings.

While this strategy may seem specific to this study and non-generalizable, we
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argue that in a real life scenario, analysts either directly make annotations in the

visualization to make note of a finding, or they write down their finding on a piece of

paper for future reference. Either way, there will exist a visible marker that suggests a

relevant discovery by the analyst. Therefore, while we did not anticipate this strategy

by the coders, we find their quick adoption of this method to identify the analysts’

findings to be e↵ective and relevant.

A second interesting trend pointed out by our coders concerns the usefulness of

our visual tools for depicting the operational and strategic aspects of the analysis

(section 8.3). According to the coders during the debriefing, all of them used the

Operational Analysis tool first to gain an understanding of the overall impression

of an analyst’s interactions. However, the Strategic Analysis tool is often utilized

to examine a specific sequence of interactions when the interactions appear random

and jumbled. By presenting the results of the interactions from three perspectives

(accounts, keywords, and time) in the Strategic tool, the coder could often identify

the focus and intent behind the series of interactions. This finding not only validates

our design of the tools, but also reconfirms the importance of visualizing both the

strategic and operational aspects of an analysis process. In fact, most of the coders

began their investigation by identifying the “findings” through looking for gaps in

the interactions, followed by looking for “strategies” through examining the overall

visual patterns in both the Strategic and Operational Analysis tools without focusing

on individual user interactions. Finally, “methods” were extracted through the use

of the Operational Analysis tool where specific interactions were examined in detail.

One last relevant aspect of our study is the measurement of “incorrectly identified”
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elements in the grading process. In all of our results shown in section 8.5, we do

not take into account elements that have been graded as “incorrectly identified.” As

mentioned in section 8.4.4, any annotation by a coder that does not perfectly match

the transcription is considered to be incorrectly identified. This includes scenarios in

which a coder identifies the analyst’s strategy to be examining 4 keywords when in

fact the analyst was examining 5, or when a coder determines that the finding of the

analyst is a transaction between accounts A and B instead of accounts A and C. If we

were to give half a point to these incorrectly identified elements, the overall accuracy

of extracting strategies increases drastically from 60% to 71%, methods from 60% to

73%, and findings from 79% to 82%.

8.7 Summary

The path to perfectly capture an analysts reasoning process is still elusive. However,

in this chapter, we have demonstrated that it is indeed possible to extract a great deal

of the reasoning process through the visual examination of the analysts interactions

with a financial visual analytical tool. Our results indicate that with careful design

in capturing user interactions and the use of both operational and strategic tools to

visually analyze an analysts interaction logs, we can understand some of the strategies,

methods, and findings of an expert’s analytical process.



CHAPTER 9: CONCLUSION

This dissertation identifies a bi-directional relationship between a user’s analysis

process and an interactive visualization system. Most of the current research fall into

only one direction in this loop, which is to incorporate the analysis process into the

interactive visualization. This dissertation recasts the importance of doing so, as well

as proposing considerations on how to incorporate the analysis process e↵ectively. As

noted in later chapters, extracting part and eventually most of the analysis process

while using an interactive visualization is a promising research direction and started

gaining attention recently [86].

9.1 Review of Dissertation Contributions

The first problem addressed by this dissertation is how to incorporate target users’

analysis processes into the design of interactive visualization systems, specifically in

the domain of text analytics. In order to develop an understanding of the general

analysis processes, we consult the Sensemaking model [94] and several visualization

tasks taxonomies in Information Visualization. In order to study how to interact

with domain users to develop an understanding of the domain analysis processes, we

refer to ethnographical methods well-studied in the HCI community. Several general

and domain-specific tasks are presented through our own interactions with domain

experts and through surveying literature in the domain of (visual) text analysis.
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We then developed an interactive visualization system, ParallelTopics, which in-

corporates a subset of the tasks to facilitate the analysis of text corpora. Specifically,

ParallelTopics help users answer questions regarding a text corpus such as: What

are the major topics? What topic is each document in the corpus about? Which

document addresses two or more topics at once? How do the topics evolve over time?

ParallelTopics leverages state-of-the-art topic models and performs further process-

ing to visually represent both topical and temporal patterns. ParallelTopics has been

evaluated by domain users and was considered great help to analyzing topical and

temporal trends in documents such as scientific publications.

Through the development and user evaluation of ParallelTopics, we discovered a

more pressing need from domain user to summarize and explore textual information

on a large-scale. Therefore we presented a general framework, I-Si, for handling large-

scale textual corpora. I-Si takes advantage of parallel computing methods to speed

up the processing of large-scale text collection and supports interactive visual explo-

ration and analysis. I-Si has been applied to analyze large text corpora such as tweet

collections. Through analyzing the tweet collections, we were able to understand the

evolvement of a large-scale, spontaneously organized movements such as the Occupy

Wall Street, and were able to further identify early indicators preceding the actual

event.

Having demonstrated the relationship from analysis process to an interactive vi-

sualization through theories and examples, the second problem this thesis addresses

is how to extract some of the analysis process from evidences recorded during the

use of interactive visualization systems. Grounded in the operational model of visu-
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alization [118], chapter 6 analyzes various types of evidences that are available for

tracking a users’s analysis process during the use of an interactive visualization sys-

tem. The chapter further analyzes the advantages and shortcomings of capturing

each kind of evidence. The chapter concludes that capturing user interactions within

a visualization system is the best method in terms of cost/benefit ratio.

To theoretically demonstrate the e↵ect of user interactions on analysis process or

problem-solving process in general, chapter 7 presents an experiment, which studies

the e↵ect of constraining interactions on solving a mathematical puzzle. In this

experiment, 5 di↵erent constraints were enforced so that participants were only able

to interact with the problem under one of these constraints. The results have shown

that constraints on interactions do a↵ect problem solving, and that certain interaction

constraint can lead to a higher chance of developing the best strategy.

Lastly, following the theoretical analysis, chapter 8 further studies how much anal-

ysis process can actually be recovered through analyzing user interactions within an

visual analytics system. The analysis processes recovered by non-domain experts were

compared against ground truth gathered from the domain experts. Our results show

that more than 60% of high-level strategies, and 79% of findings could be recovered

through analyzing interaction logs.

Taken together, the design considerations, interaction visualization systems, and

user experiments described in this thesis demonstrate e↵ect ways to incorporate target

users’ analysis processes into the design of an interactive visualization system, and

that a large part of the analysis processes can in turn be captured through analyzing

interaction logs while using the visualization system.
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9.2 Limitations and Future Work

There is a great deal of future work that can be done to further the two research

problems centered by this thesis. Theories and principles can be developed to guide

how to gather and incorporate users’ analysis processes into the design of interactive

visualizations for multiple domains. In turn, by helping initiate research into prove-

nance tracking through user interaction, this thesis opens the door to new lines of

inquiry; we hope it serves as a prelude to a continuing stream of research.

9.2.1 Moving from Requirement to Design

Some visualization models [83, 25, 20] have focused on the importance of gathering

requirements through interacting with domain users for visualization design. But few

have detailed the steps of transforming needs and requirements to the first design.

Although researchers have proposed methods to select appropriate visual encodings

given data types [105, 81], there is still a lack of general guidelines on how to transform

task requirements into visual encodings and interaction design. Recently, Wang et

al. [119] proposed a framework in which task requirements are transformed first into

“actionable knowledge” items, and then these items are implemented into a visual

analytics system. The design framework is proposed in the context of organizational

environments. We hope to see similar guidelines in other domains and ultimately

general guidelines for the field of visual analytics.

9.2.2 Extending Current Research on Visual Text Analytics

One exemplar domain chapter 3, 4, and 5 focused on is visual text analysis. Visual

text analysis refers to the area of using visualization to facilitate the analysis of tex-
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tual information, often large-scale and unstructured. Visual text analytics systems

often leverage natural language processing techniques such as named entity recogni-

tion [17], sentiment analysis [42], latent semantic analysis [75], topic models [15, 14],

etc.to present di↵erent characteristics of a large document corpus. Although visual

sentiment analysis [100, 49, 70] and visualization of entities [123, 113] have been ad-

vanced to aid analysis of opinions and relationship between entities (including people,

organization, location, and time), few interactive visualization system has utilized a

combination of theses techniques to discover and even predict meaningful “events”

hidden in the text corpora. Detecting events within text streams especially in the

context of social media would be extremely informative to multiple stakeholders, in-

cluding emergency responders who want to track spontaneously organized gatherings,

corporations to provide customized services or advertisement to potential customers,

etc. With the recently development of topic models [15, 14], the detection of events

is made possible on a topical level as opposed to pre-determined keywords. Therefore

the resulting events are more comprehensive and semantically meaningful. In the

future, we plan to focus on the temporal event detection especially in the realm of

social media.

9.2.3 Extracting Analysis Process

Chapter 6 analyzed di↵erent types of evidences available to recover a user’s analy-

sis process while using an interactive visualization system. Given time and resource

constraint throughout my thesis work, we only focused on the interactions logs. But

we believe that to get a more comprehensive understanding of the high-level analysis
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process, interaction logs alone is not enough to capture the complex process. More

semantic-level evidence such as annotations should be considered in the future. In

addition, how much analysis process can be recovered is dependent upon how a visu-

alization system is designed. In particular, factors such as how much interactivity is

supported by a visualization system, information change caused by interactions, and

the semantics of user interactions a↵ect the amount of information one can capture

within an interactive visualization system. Therefore, to extract analysis process in

a systematic manner, a framework is needed to to not only inform what and how to

capture for extracting analysis process, but also inform the design of an interactive

visualization system from the recovery perspective.

9.3 Closing Remarks

Interactive visualization integrates new computational and theory-based tools with

innovative interactive techniques and visual representations to enable human-information

discourse. It is through the interactive manipulation of a visual interface, the dia-

logue between a user and a visualization could be established and maintained, it is

also through the interactive manipulation, a user is able to explore and analyze the

underlying data within a visual interface. Therefore, deepening the understanding

of how interaction and visual representations could facilitate the human-information

discourse yields significant impact on designing future interactive visualization sys-

tems and improving the design of existing ones. This dissertation hopes to push us

closers towards systems that better incorporate and reflect high-level human reason-

ing process.
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