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ABSTRACT 
 
 

PETER GEORGE HUBBARD. Predicting the Unloading Behavior of Monotonically and 
Laterally Loaded Slender Piles Using Finite Element Method and P-Y Curves. (Under the 

direction of DR. MIGUEL PANDO) 
 
 

 The use of p-y curves is heavily engrained into geotechnical engineering practice. 

However, even with the prevalent use of p-y curves, these are only used to model the 

loading portion and not the unloading of a load test or loading demand in the field.  A 

review of the literature shows that available software commonly used to model the problem 

of laterally loaded piles is used for loading and not unloading.  Thus, there is a knowledge 

gap in the research for the unloading phase for laterally loaded piles. This thesis presents a 

method that has been developed to model the unloading behavior of a laterally loaded and 

unloaded single pile.  A program has been developed using MATLAB that uses a 1D finite 

element model (FEM) for the pile and non-linear p-y curves to model the soil reaction in 

this soil-structure-interaction problem.  The proposed method is based on a secant stiffness 

degradation model that models the soil and structure as a single system with a degrading 

stiffness. The method has been numerically implemented and validated with experimental 

data of a lateral load test involving loading and unloading. 
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Introduction 

The objective of this study was to develop a model to predict the unloading 

behavior of laterally loaded piles using and expanding upon the p-y curve method. 

Although much research has been done to predict the behavior of piles subject to lateral 

loading during the loading phase, there is a knowledge gap on the behavior during 

unloading. This study was also to develop a computer program to implement the use of p-

y curves for predicting pile behavior. Software referred to in this thesis as NinerPile was 

developed using the finite element method to approximately solve the governing 

differential equation while modeling the soil reaction as a series of p-y curves. An 

unloading model, referred to as the secant stiffness degradation method, was developed 

and implemented to model three lateral load tests published in the Federal Highway Report 

(FHWA-HRT-04-043) titled “A Laboratory and Field Study of Composite Piles for Bridge 

Substructures” released in March of 2006 (Pando et al. 2006). NinerPile allows for the user 

to have control over the pile material properties and locations of lateral loading. Flexural 

rigidity can be modeled as a function of moment, and lateral load can be applied at any 

location of depth along the pile. These abilities make NinerPile applicable for intricate load 

test configurations and composite piles. The method proposed and developed for this thesis 

has been shown to be able to be calibrated to effectively model complex cases, such as a 

composite pile under extreme lateral loading and unloading. 

The unloading behavior of laterally loaded piles is important to assess the 

deterioration and long-term performance of many different types of infrastructure. This 

research was funded by the Energy Production Infrastructure Center (EPIC) with the 
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application of offshore monopiles at the forefront. The lateral load tests analyzed herein 

took place in fluvial environments with sandy subsoils which is consistent with an offshore 

setting where load tests are much more difficult to perform. The permanent deflection of a 

pile after a monotonic lateral load is an important thing to monitor to predict the effects of 

intense short duration lateral loads that may influence energy infrastructure’s efficiency 

and long-term performance.  

1.2 Scope of research 

The NinerPile software was developed using the equations derived in Chapter 3 of this 

thesis. First the program was developed to model the loading behavior of laterally loaded 

piles as currently available commercial software can do. This is validated and shown in 

Chapter 5 with comparisons between the famous LPILE software vs. NinerPile software 

for the lateral loading of three test piles. NinerPile was then expanded as a method was 

developed to model the lateral unloading behavior of the same piles. 

 Data from Pando et al (2006) were used in this study. Three composite piles; a 

prestressed reinforced concrete pile, a polyethylene pile and a fiber reinforced polymer pile 

were tested at the Route 351 bridge in Hamilton, Virginia. To investigate the potential for 

composite piles to be used in infrastructure in the state of Virginia, this was a necessary 

study because the previous Route 351 bridge had what was considered an unacceptable life 

span and ran into many challenges because of its repetitive loading and freeze-thaw 

conditions. Each pile published in the Federal Highway Report was used in this thesis to 

calibrate and test NinerPile.  

 Ensoft Inc.’s LPILE student version is the commercial software used for a 

comparative study in this thesis. NinerPile is only able to be verified in loading as there is 
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no commercial software that uses p-y curves to predict the unloading of laterally loaded 

piles. NinerPile was shown to have a nearly identical loading calculation to LPILE while 

in addition being able to vary the flexural rigidity and loading location. The version of 

LPILE that was used to validate is LPILE Plus Student Version 2005 which is unable to 

model a change in flexural rigidity and is only able to be loaded at the pile head. The testing 

configurations require that the piles be loaded at various locations along their length which 

is typical for laterally loaded pile tests. The LPILE results, NinerPile results and field 

experimental results are compared in this thesis.   

1.3 Organization of thesis 

 Chapter 1 provides an overview of the motivation and objectives of the research 

reported in this thesis. Chapter 2 is a literature review that focuses on p-y curves in 

geotechnical engineering practice, commercial software for predicting the loading and 

unloading behavior of laterally loaded piles, new research in the field of offshore pile 

design and the identified knowledge gaps. Chapter 3 describes the numerical methods of 

describing and solving the laterally loaded pile problem. This chapter includes a derivation 

of the governing differential equation and a derivation of the finite element method used 

to approximately solve the equation. Chapter 4 is a user manual for the NinerPile software 

developed for this thesis. It describes the process of how NinerPile functions as well as 

how a user is to interact with it. Chapter 5 is the results and verification of studies done 

using NinerPile to show its capabilities. This chapter shows the comparison between 

NinerPile and LPILE as well as comparisons of NinerPile, LPILE and experimental data 

collected in the Federal Highway research (Pando et. al, 2006). Chapter 6 reports the 
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conclusions and findings of this study and makes recommendations on future work to 

expand and improve the NinerPile software. 



5 
 

CHAPTER 2: LITERATURE REVIEW 
 
 
2.1 Introduction 

 The objective of the literature review was to learn the state of the art of p-y curves 

in geotechnical engineering practice as applied to monotonic and low-frequency cyclic 

loading. An emphasis was placed on offshore monopile design for renewable energy 

infrastructure. Formulations for p-y curves for different soil types and loading 

environments are presented, and recent developments in this area are explored. Numerical 

methods to apply p-y curves for design of pile structures has also been studied. Commercial 

software that is currently used in industry is presented. 

2.2 Loading of offshore wind turbine piles 

 The loading of offshore piles for wind turbines can be broken down into two 

categories: the operational loads and the environmental loads. The operational category 

refers to the inertial loading from the rotating turbine, while the environmental loading 

considers the wind and waves acting on the pile. The lateral loading from wind and waves 

makes up 80-90% of the overall lateral loading (Abadie, 2015). The wind loading 

contributes approximately 25% of the lateral loading for typical offshore turbine piles, 

while wave loading contributes 75% (Byrne and Houlsby, 2003). The typical dimensions 

and loading of an offshore wind turbine are shown in Figure 2.1. 
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Figure 2.1. Typical dimensions and loading on an 3.5-5 MW offshore wind turbine 

(Byrne and Houlsby, 2015) 

 

The lateral loads in Figure 2.1. vary in amplitude and frequency. A foundation must 

be designed for four limit states. The Ultimate Limit State (ULS), Accidental Limit State 

(ALS), the Serviceability Limit State (SLS), and the Fatigue Limit State (FLS) are the 

considered limit states for design (API, 2010).  Each limit state has a recommended number 

of cycles and percent of maximum load to be used for the design. As recommended by 

Houslby et al. (2010), the ULS should be considered for one cycle, and 100% of the 

maximum load.  

2.3 p-y Curves in the literature 

 Common p-y curves in the literature are discussed in this section. P-y curves are 

often categorized by the soil that they are specific to. This is a result of the method in which 

the p-y curve is derived. Reese and Cox (1974) reports that the p-y curve was originally 

conceptualized by McClelland and Focht (1956). The McClelland and Focht paper detail 
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the results of lateral load tests on 24 in. diameter pipe piles in clay. Soil reaction deflection 

and stress strain relationships were plotted, and logarithmic trends were created. Hetenyi 

(1946) derived the differential equation that governs the laterally loaded pile problem. 

Using that derivation and the trends recorded from experimental data, p-y curves began to 

appear more frequently in the literature.  

2.3.1 p-y Curves for Non-Plastic Soils 

 Table 2.1 shows the published variations of p-y curves for cohesionless soils that 

were reviewed for this thesis. P-y curves for cohesionless soil have been developed heavily 

in the last 40 years. The main driving factor has been the energy industry. Starting with 

Reese et al. (1974), the oil and gas industry funded research into engineering methods for 

designing offshore platforms. Murchison and O’Neill (1984) was work funded by the 

American Petroleum Institute (API) to simplify the Reese et al. (1974) procedure for 

computational purposes. The developed Murchison and O’Neill (1984) formulation is 

shown below: 

𝑝𝑝 = 𝐴𝐴𝑃𝑃𝑢𝑢tanh ( 𝑘𝑘𝑘𝑘
𝐴𝐴𝑃𝑃𝑢𝑢

𝑦𝑦)       (Eq. 2.1) 

Where: 

 𝑦𝑦 = pile deflection [L] 

𝐴𝐴 = 3.0 − 0.8𝑘𝑘
𝑑𝑑
≥ 0.9  [Unitless] 

𝑘𝑘 = depth stiffness factor [F/L3] 

𝑧𝑧 = depth [L] 

𝑃𝑃𝑢𝑢 = ultimate soil resistance [F/L] 
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The ultimate soil resistance is computed using geotechnical theory for two types of 

failure. The first is a wedge type failure toward the top of the pile. The second is a flow-

around type failure that occurs deeper in the subsurface. The 𝑃𝑃𝑢𝑢 is taken as the lesser of the 

two calculations below: 

 𝑃𝑃𝑢𝑢 = 𝛾𝛾′𝑧𝑧�𝐷𝐷�𝐾𝐾𝑝𝑝 − 𝐾𝐾𝑎𝑎� + 𝑧𝑧𝐾𝐾𝑝𝑝 tan(𝜙𝜙′) tan(𝛽𝛽)� 

 And 

 𝑃𝑃𝑢𝑢 = 𝛾𝛾′𝐷𝐷𝑧𝑧�𝐾𝐾𝑝𝑝3 + 2𝐾𝐾0𝐾𝐾𝑝𝑝2 tan(𝜙𝜙′) + tan(𝜙𝜙′) − 𝐾𝐾𝑎𝑎� 

Where: 

 𝛾𝛾′ = effective unit weight [F/L3] 

 𝐷𝐷 = diameter or width of the pile [L] 

 𝐾𝐾𝑎𝑎 = Rankine active earth pressure coefficient [Unitless] 

 𝐾𝐾𝑝𝑝 = Rankine passive earth pressure coefficient [Unitless] 

 𝐾𝐾0 = at-rest earth pressure coefficient [Unitless] 

 𝜙𝜙′ = effective friction angle 

 𝛽𝛽 = 45° + 𝜙𝜙′/2   

This formulation of p-y curve provides a simpler form to Reese et al. (1974) with 

undiscernible difference in results (Murchison and O’Neill, 1984). The API adopted this 

formulation for describing offshore pile behavior in dense sand. This p-y curve is used 

today for offshore infrastructure and is still published in the most recent API publications 

(API, 2011). 

 Research in offshore construction has shifted in this area in the last 20 years to 

focus on renewables. Offshore wind has been developed rapidly in the 21st century and has 

led to development in cyclic p-y curve formulations in cohesionless soils (Thieken et al. 
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2015). Wiemann et al. (2004), Lin et al. (2010), Heidari et al. (2014), Kirsch et al (2014), 

Thieken et al. (2015), Choi et al. (2015) and Liang et al. (2018) are all focused on cyclic 

loading of offshore piles with specific emphasis on the development of offshore wind 

energy.  

 

Table 2.1 p-y curves in the literature for cohesionless soil 

Author Year Specialty 

Reese et al. 1974 submerged dense sand 

Murchison and O’Neill 1984 submerged dense sand, simplified procedure 

Yan and Byrne 1992 p-y curves in sand from lab testing 

Wiemann et al. 2004 Modified stiffness for extreme loading in sand 

Rollins et al. 2006 liquefied Sand 

Lin et al. 2010 cyclic loading in sand 

Heidari et al. 2014 cyclic loading in sand 

Kirsch et al. 2014 large diameters subject to cyclic loading in sand 

Thieken et al. 2015 offshore sand applications 

Choi et al. 2015 p-y plasticity model for cyclic loading in sand 

Liang et al. 2018 cyclic loading on offshore platforms 
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2.3.2 p-y Curves for Clays 

 Formulations for p-y curves in the literature for clays that were reviewed for this 

thesis are in Table 2.2. The subjects of the studies on clays tells an interesting story about 

the direction offshore construction technologies in clay. Instrumented pile test in clay that 

were conducted for Matlock et al. (1970) exhibited a geometry that indicated sensitivity. 

The p-y curves exhibited peaks  at the maximum soil resistance and quickly dropped to the 

residual strength. Further resting by Reese et al. (1975) and Reese and Welch (1975) 

indicated that free water has a large effect on the geometry of a p-y curve in clay. Only one 

publication, (Rajashree and Sundaravadivelu, 1996), is widely accepted in industry for use 

in the cyclic loading case for clays. This is because the industry has heavily moved toward 

more complex constitutive models for modelling pile performance in clays. The complex 

mechanism of accumulated excess pore pressures with cyclic loading, sensitive behavior 

and changing OCR with depth has influenced to move away from p-y curves for use with 

foundations in clay (Andersen, 2015).  

 

Table 2.2 p-y curves in the literature for cohesive soil 

Author Year Specialty 

Matlock et al. 1970 lacustrine clay 

Reese et al. 1975 over-consolidated clay with free water 

Reese and Welch 1975 over-consolidated clay without free water 

O’Neill and Gazioglu 1984 includes pile diameter effects 

Rajashree and Sundaravadivelu 1996 cyclic loading in soft clay 
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2.3.3 p-y Curves for special cases 

 A strength of the use of p-y curves is that they can be formulated based on region 

and site-specific testing. Formulations that have been published based on field testing in 

unique locations are shown in Table 2.3. This table demonstrates the versatility but also 

the oversimplification that is often associated with p-y curves. Mokwa et al. (2000) is an 

interesting study conducted at Virginia Polytechnical Institute on combining p-y curves for 

cohesive and non-cohesive soils to achieve a sort of weighted average for soils that exhibit 

characteristics of both. The accuracy of this method falls heavily on the selection of the 

two models selected and the characteristics of the soil, therefore it is difficult to calibrate. 

This leads to its limited usefulness in industry. Reese (1997) uses the Rock Quality 

Designation (RQD) to classify a weak rock for the use of the formulation published. For 

geologic conditions like that used in the publication (Northumberland Region, CA) the 

formulation is useful. However, use of RQD is highly empirical, leaving the usefulness of 

this p-y formulation up to the discerning engineer on a case-by-case basis. Formulations 

such as the Kramer (1988) publication on p-y curves for the Western Washington region 

are innovative because it is region specific. Simpson and Brown (2003) is similar, as it 

focuses on the American Southeast. The formulation of a p-y curve cannot be relied on as 

having the same geometric properties for a specific application unless verified to be true 

by the designing engineer. This makes special case p-y curves innovative but difficult to 

apply. 
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Table 2.3 p-y curves in the literature for special cases 

Author Year Specialty 

Mokwa et al. 2000 fine grain soils with both cohesive and frictional strength 

Johnson et al. 2006 loess soil 

Reese 1997 weak rock 

Nyman 1980 strong rock, often called “vuggy limestone” 

Kramer 1988 Western Washington region 

Simpson and Brown 2003 piedmont residual soils 
 

2.3.4 p-y Curves in Commercial Software 

 The two most popular commercial software that use p-y curves for design purposes 

are Ensoft Inc. LPILE and Bridge Software Institute FB-MultiPier. The method of 

numerical analysis and p-y curve formulations that are used by these programs are 

discussed in this section.  

2.3.4.1 LPILE 

 LPILE is a famous computer program in civil engineering dating back to 1986. It 

uses a finite difference code to approximately solve the governing differential equation 

published by Hetenyi (1946). Reese and Meyer (1979) originally published the logic that 

is now implemented in LPILE. Figure 2.2 is borrowed from Reese and Meyer (1979) 

showing how the pile is discretized over its length.  
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Figure 2.2. Pile discretization for finite difference code (Reese and Meyer, 1979) 

 

 As shown in the figure, plus and minus two mesh nodes must be identified for the 

computation to occur at a given point. Points “t” and “m” denote this in the figure. For this 

reason, imaginary points are created at the top and bottom of the pile to allow for 

computation to occur for the entire domain. At the original release of LPILE, the 

documentation recommended further work be done in the following areas: 

• Instrumented tests on piles larger than 30 in. in diameter 

• Instrumented tests in a variety of clay deposits 

• Instrumented tests in desiccated and stiff soils 

• In-Situ methods be developed to estimate p-y parameters without full-scale testing 

• Laboratory methods be developed to estimate p-y parameters 
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Though these recommendations are old, they are paired with the initial 

development of LPILE. Revisiting original recommendations helps to put into 

perspective the usefulness and limitations of the early LPILE software, and 

investigate if these recommendations were met. 

 The development of LPILE has advanced since its initial development in 

release, however the main logic has stayed the same. In the 1980s many of the initial 

concerns of geotechnical community were addressed. The introduced the ability to 

have multiple soil layer, differing boundary conditions and distributed loading. As 

more p-y curves were published in the literature, many were added to the program. 

The Murchison and O’Neill (1984)  p-y curve, also referred to as the API p-y curve 

for sand was added in 1993 (LPILE 2018). The ability to account for cracking and a 

decrease in flexural rigidity occurred in 1993 also. Many of the improvements from 

the mid-90s to the present have been compatibility with new operating systems and 

updating the p-y curve library to keep up with the industry. The p-y curves that are 

included in LPILE (2018) are shown in table 2.4. 
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Table 2.4 LPILE p-y curves 

Name in LPILE software Reference in Literature 

Soft Clay  Matlock et al., 1970 

Stiff Clay with Free Water  Reese et al., 1975 

Modified Stiff Clay without Free Water Reese and Welch, 1975 

Sand  Reese et al., 1974 

API Sand  Murchison and O’Neill, 1984 

Liquified Sand  Rollins et al., 2006 

Weak Rock  Reese, 1997 

Strong Rock (Vuggy Limestone) Nyman, 1980 

Piedmont Residual Simpson and Brown, 2003 

Silt (cemented c-ϕ) Evans and Duncan, 1982 

Loess Johnson et al., 2006 

Elastic Subgrade LPILE, 2018 

User-input p-y curves LPILE, 2018 

API soft clay with J API, 2011 

Massive rock Liang et al., 2009 
 

All the LPILE p-y curves are for positive loading increments. For the cyclic 

loading case, LPILE computes the deflection at a node based on the principle of a 

backbone curve. A backbone curve is a trace of p versus y that follows the tops of the 

hysteretic loops. Figure 2.3 shows the backbone curve concept.  



16 
 

 

Figure 2.3. Demonstration of backbone curve concept (Abadie 2015) 

 

Figure 2.3 is not associated with LPILE, and it used here to explain the backbone 

concept. Figure 2.3 shows normalized experimental p-y relationships for cyclic tests in 

sand. The dotted red and orange lines are backbone models. LPILE uses the same concept 

for each of its cyclic p-y models. Per the technical manual (LPILE 2018) cyclic models are 

based on the degradation of the depth stiffness factor and the ultimate soil resistance. Figure 

2.4 is from the LPILE technical manual (LPILE 2018) and demonstrates a relationship 

between the initial soil modulus between cyclic and static loading. 
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Figure 2.4. Initial soil modulus adjustment for cyclic loading 

 

Each model other than the used specified input curves uses a degradation factor for either 

the depth stiffness factor of the ultimate soil resistance. For the p-y curve that this thesis 

uses for its studies, the ultimate soil resistance is degraded in the cyclic case by adjusting 

the factor A (see eq. 2.1).  

 The point of this explanation is to show that the backbone curves are adjusted in 

LPILE. This only allows for the prediction of deflection along the backbone curve. For any 

other location, such as the path during the unloading process, LPILE does not have the 

capability to predict.  
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2.3.4.2 FB-MultiPier  

 FB-MultiPier is a non-linear finite element analysis program mainly focused on the 

design of the pile foundation of bridge structures. It is developed by Bridge Software 

Institute (BSI). FB-Multipier can analyze pile groups in a variety of loading scenarios. The 

focus of this review of FB-MultiPier and its documentation is on the programs ability to 

model the lateral loading of single piles. This is a small facet of what FB-MulitPier does 

and is not an analysis of all of the program’s capabilities. FB-MultiPier models piles using 

a non-linear finite element code that discretizes the pile into 10 elements as the default. 

The soil can be modelled using the p-y curve formulations in Table 2.5. 

 

Table 2.5 FB-MultiPier p-y curves 

Name in FB-MultiPier software Reference in Literature 

Stiff clay below water table Reese et al., 1975 

Florida Limestone McVay and Niraula, 2004 

Limestone McVay and Niraula, 2004 

Sand API, 2011 

Clay API, 2011 
 

 Similarly to LPILE, the p-y curves are modified for cyclic loading by a multiplying 

factor on the ultimate soil resistance or stiffness depth factor. FB-MultiPier has fewer p-y 

options as compared to LPILE.  

The advantage of FB-MultiPier is that pile group effects can be analyzed. A pile 

cap can be defined to connect to multiple piles with user-specifier material and geometric 

properties. The boundary conditions can be specified at the pile cap-pile interface. This 
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means that the behavior of the pile cap changes the boundary conditions on the pile. For 

example, if the interface between the pile and the cap have a moment connection, and the 

pile cap rotates, the fixity of the pile head rotates as well. This allows for a complex 

interaction between the pile or pile group and the structure to be modelled. (FB-MultiPier, 

2018). 

2.5 Knowledge Gaps Identified 

As discussed in section 2.2, the ULS for the design of offshore wind turbine 

foundations is a single cycle of loading at the maximum amplitude considered for design. 

In this case, repeated cyclic parameters do not apply.  It is the opinion of the author that 

the ULS should be considered for both loading and unloading, due to the permanent 

deflections that can be observed at high lateral loading (Pando et al., 2006). The current 

literature does not provide a method for predicting the deflection throughout the unloading 

process and then the ultimate permanent displacement. This thesis introduces a method that 

has been developed to describe the behavior of a pile through the loading and unloading 

process for the case of a single load and unload cycle. Once developed, the method needs 

a program with which it can be implemented and tested. The development of NinerPile was 

undertaken to fill these knowledge gaps. 
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CHAPTER 3: SOLVING THE LATERALLY LOADED PILE PROBLEM 
 
 
3.1 Introduction 

 Laterally loaded piles can be analyzed much in the same way as transversely loaded 

beams. The pile problem consists of an externally applied shear and/or moment to the head 

of the pile and a soil reaction from the ground surface to the toe of the pile. This is a soil 

structure interaction problem. The soil reaction along the length of the pile is not constant 

and is dependent on many fundamental factors including passive pressure, active pressure, 

pure shear, plugging (in the case of a pipe pile) and other complex factors. Individual 

elements of soil reaction can be lumped in a more simplistic manner into an overall reaction 

term that can be referred to as the soil resultant which opposes the direction of pile 

deflection at a certain depth. This chapter describes the procedure for numerically 

determining the pile deflections, slope, shear, moment and soil reaction at depths along a 

laterally loaded pile. Important relationships and definitions are displayed in Table 3.1 and 

will be used in the derivation of the strong form of the differential equation used to solve 

the laterally loaded pile problem. 
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Table 3.1 Definitions and formulas for the laterally loaded pile problem 

Name of variable 
Formula or representative 

character 
Units 

Distance along the pile from the pile head 𝑥𝑥 [L] 

Deflection of the pile 𝑦𝑦 [L] 

Slope of the pile 𝜑𝜑 =
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

 [Unitless] 

Curvature 𝜅𝜅 =
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

 [Rad/L] 

Bending moment 𝑀𝑀 = 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

= 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝜅𝜅 [F-L] 

Shear force 𝑉𝑉 = 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝
𝑑𝑑3𝑦𝑦
𝑑𝑑𝑥𝑥3

 [F] 

Soil reaction 𝑝𝑝 = 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝
𝑑𝑑3𝑦𝑦
𝑑𝑑𝑥𝑥3

= 𝐸𝐸𝑠𝑠𝑦𝑦(𝑥𝑥) [F/L] 

 

3.2 Governing Differential Equation 

 The laterally loaded pile problem can be described using a differential equation 

originally derived for transversely loaded beams by Hetenyi (1946). The differential 

equation used in this thesis has been slightly modified to include terms of Young’s 

modulus, moment of inertia (second moment of area), the 4th derivative of deflection with 
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respect to length along the pile and the secant stiffness of the soil. The differential equation 

is derived as follows using Figure 3.1 as a free-body diagram. 

 

 

Figure 3.1. Free-body diagram of infinitesimal pile element 

 

The infinitesimal element shown in Figure 3.1 illustrates what forces must be considered 

to achieve an equilibrium state. By summing the moments on the element the following is 

obtained: 

∑𝑀𝑀 = (𝑀𝑀 + 𝑑𝑑𝑀𝑀) −𝑀𝑀 − 𝑉𝑉𝑑𝑑𝑥𝑥 − (𝑝𝑝𝑑𝑑𝑥𝑥) 𝑑𝑑𝑑𝑑
2

= 0   (Eq 3.1)  

Eq. 3.1 is then differentiated twice with respect to 𝑥𝑥, and quadratic terms are ignored. This 

produces: 
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𝑑𝑑2𝑀𝑀
𝑑𝑑𝑑𝑑2

− 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0        (Eq. 3.2) 

The bending moment can also be assessed by integrating the normal stresses, 𝜎𝜎(𝑧𝑧), on a 

cross-section of the pile area. Where 𝑧𝑧 is the distance from the neutral axis, and 𝐴𝐴 is the 

cross-sectional area. This is shown as: 

𝑀𝑀 = ∫ 𝜎𝜎(𝑧𝑧)𝑧𝑧 𝑑𝑑𝐴𝐴𝐴𝐴        (Eq. 3.3) 

Since it is reasonable to assume that planar cross-section remains planar during bending 

(constant rotation at a given 𝑥𝑥), we can write the displacement in the 𝑥𝑥 direction (𝑢𝑢), as a 

function of 𝑥𝑥 and 𝑦𝑦.  

𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑧𝑧       (Eq. 3.4) 

Using the definition of the pile slope from Table 3.1, we obtain: 

𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝜑𝜑𝑧𝑧       (Eq. 3.5) 

The strain in the 𝑥𝑥 direction (𝜀𝜀) can be defined as:       

𝜀𝜀(𝑧𝑧) = 𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

       (Eq 3.6) 

Substituting Eq. 3.4 into Eq. 3.6 and using the definition of curvature from Table 3.1 

produces: 

𝜀𝜀(𝑧𝑧) = 𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

𝑧𝑧 = 𝑘𝑘𝑧𝑧      (Eq. 3.7) 

Using Hooke’s law for the normal stress in the pile section creates: 

𝜎𝜎(𝑧𝑧) = 𝐸𝐸𝑝𝑝𝜀𝜀(𝑧𝑧)      (Eq 3.8) 

Substituting Eq. 3.7 into Eq. 3.8 yields: 

𝜎𝜎(𝑧𝑧) = 𝐸𝐸𝑝𝑝𝑘𝑘𝑧𝑧       (Eq 3.9) 

Now Eq. 3.9 can be substituted into Eq. 3.3: 

𝑀𝑀 = ∫ �𝐸𝐸𝑝𝑝𝑘𝑘𝑧𝑧�𝑧𝑧 𝑑𝑑𝐴𝐴𝐴𝐴       (Eq. 3.10) 
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Rearranging, using the definitions from Table 3.1 for second moment of area and curvature 

produces the expression for moment: 

𝑀𝑀 = 𝐸𝐸𝑝𝑝𝑘𝑘 ∫  𝑧𝑧2𝑑𝑑𝐴𝐴 = 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑘𝑘 = 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2𝐴𝐴    (Eq. 3.11) 

Eq. 3.11 is then substituted into Eq. 3.2 to achieve the almost completed ordinary 

differential equation: 

𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝
𝑑𝑑4𝑑𝑑
𝑑𝑑𝑑𝑑4

− 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0      (Eq. 3.12) 

The soil reaction along the pile can be expressed in a useful way by summing the forces on 

the element in Figure 3.1 in the horizontal direction: 

∑𝐹𝐹𝐻𝐻 = 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥 − 𝑑𝑑𝑉𝑉 = 0   𝑜𝑜𝑜𝑜      

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝(𝑥𝑥)       (Eq. 3.13) 

Substituting Eq. 3.13 into Eq. 3.12 produces an often-recognized version of the governing 

differential equation: 

𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝
𝑑𝑑4𝑑𝑑
𝑑𝑑𝑑𝑑4

− 𝑝𝑝(𝑥𝑥) = 0      (Eq. 3.14) 

To further prepare the governing differential equation for numerical analysis the definition 

of 𝑝𝑝(𝑥𝑥) from Table 3.1 is used, where 𝐸𝐸𝑠𝑠 is the equivalent, or secant, stiffness of the soil 

represented as a spring. 

𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝
𝑑𝑑4𝑑𝑑
𝑑𝑑𝑑𝑑4

− 𝐸𝐸𝑠𝑠𝑦𝑦(𝑥𝑥) = 0     (Eq. 3.15) 

This form of the governing differential equation is referred to as the strong form. The strong 

form will be further manipulated in section 3.3.2 for use in a numerical approach to analyze 

laterally loaded piles. It should be noted that this ODE assumes homogenous, isotropic, 

linear elastic material with the same flexural rigidity in tension and compression (Pando et 

al. 2006). 
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3.3 Using p-y curves to model the soil reaction 

 As discussed in Chapter 2, p-y curves have been used in geotechnical engineering 

practice to describe the reaction of a soil mass on a laterally loaded pile. The curves take 

on the form of a non-linear spring. Their form has been derived using a semi-empirical 

method to describe test piles’ behavior under lateral loading. The simplified method to 

describe the soil reaction is preferred over a mechanistic approach because of the 

complexity of the soil-structure interaction. For example, a theoretical section of a round 

pile is shown in Figure 3.2. If the pile is deflecting to the left, the same soil body may be 

exerting passive pressure, active pressure and simple shear at different locations on the 

same pile section.  

 

Figure 3.2. Soil reaction complexity 

 

To simplify modeling the laterally loaded pile problem and make it possible in 

practice to efficiently predict pile behavior, p-y curves were developed. Figure 3.3 shows 

a comparison of the numerical approach taken (bottom) with the reality condition (top). 

The stiffness of the springs and their non-linearity is a matter of soil type and properties, 

depth, pile cross-section and loading type.  
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Figure 3.3. Compression of p-y springs 

 

 For this thesis, the Murchison and O’Neill (1984) p-y curve is used. It is 

recommended for sandy soils and are used by the American Petroleum Institute (API) to 

model the subsurface for offshore structural design. Because the application of NinerPile 

in this thesis is to model fluvial sand deposits below the phreatic surface, the Murchison 

and O’Neil (1984) formulation was chosen. The p-y curve takes on the mathematical form 

shown in chapter 2: 
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𝑝𝑝 = 𝐴𝐴𝑃𝑃𝑢𝑢tanh (
𝑘𝑘𝑧𝑧
𝐴𝐴𝑃𝑃𝑢𝑢

𝑦𝑦) 

Where: 

 𝑦𝑦 = pile deflection [L] 

𝐴𝐴 = 3.0 − 0.8𝑘𝑘
𝑑𝑑
≥ 0.9  [Unitless] 

𝑘𝑘 = depth stiffness factor [F/L3] 

𝑧𝑧 = depth [L] 

𝑃𝑃𝑢𝑢 = ultimate soil resistance [F/L] 

The ultimate soil resistance is computed using geotechnical theory for two types of failure. 

The first is a wedge type failure toward the top of the pile. The second is a flow-around 

type failure that occurs deeper in the subsurface. The 𝑃𝑃𝑢𝑢 is taken as the lesser of the two 

calculations below: 

 𝑃𝑃𝑢𝑢 = 𝛾𝛾′𝑧𝑧�𝐷𝐷�𝐾𝐾𝑝𝑝 − 𝐾𝐾𝑎𝑎� + 𝑧𝑧𝐾𝐾𝑝𝑝 tan(𝜙𝜙′) tan(𝛽𝛽)� 

 And 

 𝑃𝑃𝑢𝑢 = 𝛾𝛾′𝐷𝐷𝑧𝑧�𝐾𝐾𝑝𝑝3 + 2𝐾𝐾0𝐾𝐾𝑝𝑝2 tan(𝜙𝜙′) + tan(𝜙𝜙′) − 𝐾𝐾𝑎𝑎� 

Where: 

 𝛾𝛾′ = effective unit weight [F/L3] 

 𝐷𝐷 = diameter or width of the pile [L] 

 𝐾𝐾𝑎𝑎 = Rankine active earth pressure coefficient [Unitless] 

 𝐾𝐾𝑝𝑝 = Rankine passive earth pressure coefficient [Unitless] 

 𝐾𝐾0 = at-rest earth pressure coefficient [Unitless] 

 𝜙𝜙′ = effective friction angle 

 𝛽𝛽 = 45° + 𝜙𝜙′/2   
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Figure 3.4 shows the general geometry of the Murchison and O’Neill (1984) p-y 

curve. The curve is hyperbolic. The initial slope, 𝐸𝐸𝑝𝑝𝑑𝑑− 𝑚𝑚𝑎𝑎𝑑𝑑 is the multiplier of deflection 

from within the hyperbolic tangent in the p-y curve definition. This is equal to the depth 

stiffness factor multiplied by the depth (𝑘𝑘𝑧𝑧). After a lateral load has been applied to the 

pile, and a deflection is experienced, the soil resistance follows the path of a specific p-y 

curve. The soil can then be modelled as an equivalent linear spring that intersects the p-y 

curve at the correct deflection and soil resistance. This is referred to as the secant stiffness 

and is denoted on the figure as 𝐸𝐸𝑠𝑠. This notation is consistent with the industry standard 

Reese and Van Impe (2011). 

 

Figure 3.4. Geometry of a Murchison and O’Neill (1984) p-y curve 

3.4 Numerical analysis approach 

 The first step to creating an approximate solution to the governing differential 

equation is to discretize the pile. The pile can be modelled as a 1D line of elements that 
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connect at nodes. The soil reaction can then be calculated at the nodal points using an 

iterative procedure between an approximate solution to the governing differential equation, 

and the p-y relationship defined by the p-y curve being used. Figure 3.5 illustrates the 

discretization of a pile experiencing bending, with the trend of growing p-y curves 

describing the soil reaction vs. deflection relationship with depth. 

 

Figure 3.5. Pile discretization 
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3.4.1 P-Y curve method of analysis for soil reaction 

 The most important parameter in solving the laterally loaded pile problem is being 

able to accurately predict the soil resultant as a function of deflection with depth along the 

pile.  

3.4.2 Finite element method of analysis for pile behavior  

 The notation and derivations in this section are consistent with Hughes (2000). The 

strong form displayed in Eq. 3.15 can be used in the Galerkin finite element method to 

numerically solve for 𝑦𝑦 and its derivatives with depth along the pile. Subscript notation is 

used in this section to denote differentiation with respect to the subscript. First, the weak 

form of the governing differential equation needs to be derived.  

3.4.2.1 Derivation of the weak form of the laterally loaded pile problem 

The strong form is once again presented: 

𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝
𝑑𝑑4𝑑𝑑
𝑑𝑑𝑑𝑑4

− 𝐸𝐸𝑠𝑠𝑦𝑦(𝑥𝑥) = 0     (Eq. 3.15) 

Using more concise notation for derivation of the weak form: 

𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐸𝐸𝑠𝑠𝑦𝑦 = 0      (Eq. 3.15) 

To find an approximate solution to the laterally loaded pile problem, the approximate 

solution must satisfy the following boundary conditions: 

𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑉𝑉 𝑎𝑎𝑎𝑎𝑑𝑑 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑 = −𝑀𝑀 𝑎𝑎𝑎𝑎 𝑥𝑥 = 0   (BC 1) 

𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑 = 0 𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝐿𝐿    (BC 2) 

Consider a function 𝑦𝑦(𝑥𝑥) that satisfies these boundary conditions but is not necessarily a 

solution to Eq. 3.15. The ODE would not then be equal to 0, rather to some residual 𝑅𝑅(𝑥𝑥). 

𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝
𝑑𝑑4𝑑𝑑
𝑑𝑑𝑑𝑑4

− 𝐸𝐸𝑠𝑠𝑦𝑦(𝑥𝑥) = 𝑅𝑅(𝑥𝑥)      (Eq. 3.16) 
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The residual can be minimized by multiplying by a weighting function (𝜔𝜔) that satisfies 

all Dirichlet boundary conditions imposed on the problem and integrating over the domain 

(Ω). It can be written: 

∫ 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜔𝜔Ω + ∫ 𝐸𝐸𝑠𝑠𝑦𝑦𝜔𝜔Ω = 0     (Eq. 3.17) 

To reduce the smoothness required by the function 𝑦𝑦(𝑥𝑥), the order can be reduced by 

integrating each term containing 𝑦𝑦 by parts. This leads to: 

∫ 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑𝜔𝜔,𝑑𝑑𝑑𝑑Ω + ∫ 𝐸𝐸𝑠𝑠𝑦𝑦𝜔𝜔Ω = 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑(0)𝜔𝜔(0) − 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿)𝜔𝜔(𝐿𝐿) +

𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑(0)𝜔𝜔,𝑑𝑑(0) − 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑(𝐿𝐿)𝜔𝜔,𝑑𝑑(𝐿𝐿)    (Eq. 3.18) 

Using the boundary conditions previously defined:  

∫ 𝐸𝐸𝑝𝑝𝐼𝐼𝑝𝑝𝑦𝑦,𝑑𝑑𝑑𝑑𝜔𝜔,𝑑𝑑𝑑𝑑Ω + ∫ 𝐸𝐸𝑠𝑠𝑦𝑦𝜔𝜔Ω = 𝑉𝑉(0)𝜔𝜔(0) −𝑀𝑀(0)𝜔𝜔,𝑑𝑑(0)  (Eq. 3.19) 

Eq. 3.18 can then we rewritten using bilinear and linear operator notation. The flexural 

rigidity and secant stiffness is assumed to be included. 

𝑎𝑎�𝑦𝑦,𝑑𝑑,𝜔𝜔,𝑑𝑑� + (𝑦𝑦,𝜔𝜔) = 𝑉𝑉(0)𝜔𝜔(0) −𝑀𝑀(0)𝜔𝜔,𝑑𝑑(0)   (Eq. 3.20) 

This is the weak form of the governing differential equation. The next step is to identify 

shape functions, interpolation functions, and to write the variational form of the problem.  

3.4.2.2 Derivation of the shape functions for the laterally loaded pile problem 

The shape functions must satisfy that both the primary variable,  𝑦𝑦, and its first 

derivative, 𝑦𝑦,𝑑𝑑, be continuous and the second derivative, 𝑦𝑦,𝑑𝑑𝑑𝑑, be at least piece-wise 

continuous on the domain. Figure 3.6 shows the discretization of an example domain of 

length “z” with the eth and Nth elements labeled. The figure also shows the eth element with 

nodes e1 and e2. The degrees of freedom associated with each node are listed as well. A 

shape function is associated with each degree of freedom. The shape function must have a 
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unit value at its associated node on the order of its associated degree of freedom. For 

example, the shape function associated with 𝜃𝜃1𝑒𝑒 must have a derivative equal to 1 at node 

e1. To keep continuity down to the third derivative, which is ideal for a laterally loaded pile 

because shear is of interest with depth, a cubic is used as the shape function form for the 

primary variable. The shape function is expressed as a function of a relative 𝑥𝑥 coordinate. 

 

Figure 3.6. Discretization of the pile problem 
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To begin the derivation, a cubic polynomial is defined for the primary variable. 

𝑦𝑦𝑒𝑒 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥 + 𝛾𝛾𝑥𝑥2 + 𝛿𝛿𝑥𝑥3       

𝑦𝑦𝑒𝑒 = 𝛼𝛼 + 𝛽𝛽(𝑥𝑥 − 𝑥𝑥1𝑒𝑒) + 𝛾𝛾(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)2 + 𝛿𝛿(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)3  (Eq. 3.21) 

The length of the element can be defined as: 

ℎ𝑒𝑒 = 𝑥𝑥1𝑒𝑒 − 𝑥𝑥2𝑒𝑒       (Eq. 3.22)  

When 𝑥𝑥 = 𝑥𝑥1𝑒𝑒, 𝑦𝑦𝑒𝑒 can be written as: 

𝑦𝑦1𝑒𝑒 = 𝛼𝛼        (Eq. 3.23) 

and 

𝑦𝑦2𝑒𝑒 = 𝛼𝛼 + 𝛽𝛽ℎ𝑒𝑒 + 𝛾𝛾ℎ𝑒𝑒
2 + 𝛿𝛿ℎ𝑒𝑒

3     (Eq. 3.24) 

The derivative can also be written as: 

𝜃𝜃1𝑒𝑒 = 𝛽𝛽        (Eq. 3.25) 

and 

𝜃𝜃2𝑒𝑒 = 𝛽𝛽 + 2𝛾𝛾ℎ𝑒𝑒 + 3𝛿𝛿ℎ𝑒𝑒
2      (Eq. 3.26) 

Eqs. 3.23, 3.24, 3.25 and 3.26 can be used to describe the coefficients 𝛼𝛼,𝛽𝛽, 𝛾𝛾 and 𝛿𝛿 in terms 

of degrees of freedom. Through substitution, the following equations are reached: 

𝛼𝛼 = 𝑦𝑦1𝑒𝑒        (Eq. 3.27) 

𝛽𝛽 =  𝜃𝜃1𝑒𝑒        (Eq. 3.28) 

𝛾𝛾 = 1
ℎ𝑒𝑒2

[−3𝑦𝑦1𝑒𝑒 − 2ℎ𝑒𝑒𝜃𝜃1𝑒𝑒 + 3𝑦𝑦2𝑒𝑒 − ℎ𝑒𝑒𝜃𝜃2𝑒𝑒 ]   (Eq. 3.29) 

𝛿𝛿 = 1
ℎ𝑒𝑒3

[2𝑦𝑦1𝑒𝑒 + ℎ𝑒𝑒𝜃𝜃1𝑒𝑒 − 2𝑦𝑦2𝑒𝑒 + ℎ𝑒𝑒𝜃𝜃2𝑒𝑒]    (Eq. 3.30) 

By substituting Eq. 3.27, 3.28, 3.29 and 3.30 into Eq. 3.21, it can be written: 

𝑦𝑦𝑒𝑒 = 𝑦𝑦1𝑒𝑒 �1 −
3
ℎ𝑒𝑒2

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)2 + 2
ℎ𝑒𝑒3

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)3�  

+𝜃𝜃1𝑒𝑒 �(𝑥𝑥 − 𝑥𝑥1𝑒𝑒) − 2
ℎ𝑒𝑒

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)2 + 1
ℎ𝑒𝑒2

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)3�  
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+𝑦𝑦2𝑒𝑒 �
3
ℎ𝑒𝑒2

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)2 − 2
ℎ𝑒𝑒3

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)3�  

+𝜃𝜃2𝑒𝑒 �−
1
ℎ𝑒𝑒

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)2 + 1
ℎ𝑒𝑒2

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)3�    (Eq. 3.31)   

This is the form of the approximate solution to the laterally loaded pile problem. The 

coefficients to each degree of freedom in Eq. 3.31 are called shape functions. They can 

each be written as: 

𝑁𝑁1𝑒𝑒 = 1 − 3
ℎ𝑒𝑒2

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)2 + 2
ℎ𝑒𝑒3

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)3    (Eq. 3.32) 

𝑁𝑁2𝑒𝑒 = (𝑥𝑥 − 𝑥𝑥1𝑒𝑒) − 2
ℎ𝑒𝑒

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)2 + 1
ℎ𝑒𝑒2

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)3   (Eq. 3.33) 

𝑁𝑁3𝑒𝑒 = 3
ℎ𝑒𝑒2

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)2 − 2
ℎ𝑒𝑒3

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)3     (Eq. 3.34) 

𝑁𝑁4𝑒𝑒 = − 1
ℎ𝑒𝑒

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)2 + 1
ℎ𝑒𝑒2

(𝑥𝑥 − 𝑥𝑥1𝑒𝑒)3    (Eq. 3.35) 

The approximate solution then can be written: 

𝑦𝑦𝑒𝑒 = 𝑦𝑦1𝑒𝑒𝑁𝑁1𝑒𝑒 + 𝜃𝜃1𝑒𝑒𝑁𝑁2𝑒𝑒 + 𝑦𝑦2𝑒𝑒𝑁𝑁3𝑒𝑒 + 𝜃𝜃2𝑒𝑒𝑁𝑁4𝑒𝑒    (Eq. 3.36) 

For computational efficiency, it is convenient to map the shape functions to a master 

element. A master element allows the necessary integration of Eq. 3.20, which will be 

further developed, to be a repetitive process using the same shape functions. If the shape 

function mapping was not changed, each element would have unique functions to define 

and evaluate. The domain in the 𝑥𝑥 coordinate space will be mapped to the 𝜉𝜉 coordinate 

space. The domain of the 𝜉𝜉 space is bi-unit, spanning from -1 to1. This process is illustrated 

in Figure 3.7. 
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Figure 3.7. Mapping to master element domain 

 

The above figure shows that for the mapping to occur, 𝑥𝑥1𝑒𝑒 must become equal to -1, and 𝑥𝑥2𝑒𝑒 

must become equal to 1. The following mapping function follows this rule. 

𝑥𝑥 = �ℎ𝑒𝑒
2
� 𝜉𝜉 + �𝑥𝑥1𝑒𝑒 + ℎ𝑒𝑒

2
�      (Eq. 3.37)  

Eq. 3.37 can be rearranged as: 

𝑑𝑑−𝑑𝑑1𝑒𝑒

ℎ𝑒𝑒
= 1

2
(1 + 𝜉𝜉)       (Eq. 3.38) 

By substituting Eq. 3.38 into expressions for the shape functions, a new set of shape 

functions can be written. 

𝑁𝑁1 = 1 − 3
4

(1 + 𝜉𝜉)2 + 1
4

(1 + 𝜉𝜉)3    (Eq. 3.39) 

𝑁𝑁2 = 1
8
ℎ𝑒𝑒(1 + 𝜉𝜉)(𝜉𝜉 − 1)2       (Eq. 3.40) 

𝑁𝑁3 = 3
4

(1 + 𝜉𝜉)2 − 1
4

(1 + 𝜉𝜉)3     (Eq. 3.41) 

𝑁𝑁4 = 1
8
ℎ𝑒𝑒(𝜉𝜉 − 1)(1 + 𝜉𝜉)2      (Eq. 3.42) 

The shape functions mapped to the master element can be seen in Figure 3.8 for the case 

of a unit length element. Notice the properties that are satisfied by these shape functions in 

relation to their corresponding degree of freedom. 𝑁𝑁1 corresponds to the primary variable 
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at 𝜉𝜉 = −1. As shown, it has a unit value in the primary variable. 𝑁𝑁2 corresponds to the 

derivative of the primary variable at 𝜉𝜉 = −1. As shown, it has a unit slope at 𝜉𝜉 = −1. 

Figure 3.8. Shape functions for modeling the laterally loaded pile problem 

 

3.4.2.3 Derivation of the matrix formulation of the laterally loaded pile problem 

 So far, the approximate solution has been written in element, or local, notation. The 

approximate solution over the entire domain of the problem (the length of the pile) is the 

summation of the local approximate solution components. Since there are 4 degrees of 

freedom on each element, this can be expressed as: 

𝑦𝑦ℎ = ∑ 𝑑𝑑𝐴𝐴𝑁𝑁𝐴𝐴
4𝑛𝑛𝑒𝑒𝑒𝑒
𝐴𝐴=1        (Eq. 3.43) 
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Where 𝑎𝑎𝑒𝑒𝑒𝑒 is the number of elements in the problem, and 𝐴𝐴 is an index corresponding to 

the degree of freedom number. The weighting function discussed in section 3.3.2.1 will 

take on the same form, with the same shape functions.  

𝜔𝜔ℎ = ∑ 𝑐𝑐𝐵𝐵𝑁𝑁𝐵𝐵
4𝑛𝑛𝑒𝑒𝑒𝑒
𝐵𝐵=1        (Eq. 3.44) 

Substituting Eqs. 3.43 and 3.44 into the Eq. 3.20 and pulling out the summations, the 

problem can be written as: 

∑ ∑ 𝑑𝑑𝐴𝐴𝑐𝑐𝐵𝐵 �𝑎𝑎�𝑁𝑁𝐴𝐴 ,𝑑𝑑 ,𝑁𝑁𝐵𝐵 ,𝑑𝑑�+ (𝑁𝑁𝐴𝐴,𝑁𝑁𝐵𝐵)�4𝑛𝑛𝑒𝑒𝑒𝑒
𝐵𝐵=1

4𝑛𝑛𝑒𝑒𝑒𝑒
𝐴𝐴=1   

= ∑ 𝑐𝑐𝐵𝐵�𝑉𝑉(0)𝑁𝑁𝐵𝐵(0) −𝑀𝑀(0)𝑁𝑁𝐵𝐵 ,𝑑𝑑(0)�4𝑛𝑛𝑒𝑒𝑒𝑒
𝐵𝐵=1     (Eq. 3.45) 

For a unique solution to exist, 𝑐𝑐𝐵𝐵 must equal 1. It is arbitrary as shown in Eq. 3.45. The 

equation can be rewritten, assuming summation: 

𝑑𝑑𝐴𝐴 �𝑎𝑎�𝑁𝑁𝐴𝐴 ,𝑑𝑑 ,𝑁𝑁𝐵𝐵 ,𝑑𝑑�+ (𝑁𝑁𝐴𝐴,𝑁𝑁𝐵𝐵)� = 𝑉𝑉(0)𝑁𝑁𝐵𝐵(0) −𝑀𝑀(0)𝑁𝑁𝐵𝐵 ,𝑑𝑑(0)  (Eq. 3.46) 

The left side of the equation inside the brackets is the stiffness matrix, 𝐾𝐾. The right side is 

the force vector, 𝐹𝐹.  

𝐾𝐾𝐴𝐴𝐵𝐵 = 𝑎𝑎�𝑁𝑁𝐴𝐴 ,𝑑𝑑 ,𝑁𝑁𝐵𝐵 ,𝑑𝑑� + (𝑁𝑁𝐴𝐴,𝑁𝑁𝐵𝐵)    (Eq. 3.47) 

𝐹𝐹𝐵𝐵 = 𝑉𝑉(0)𝑁𝑁𝐵𝐵(0) −𝑀𝑀(0)𝑁𝑁𝐵𝐵 ,𝑑𝑑(0)     (Eq. 3.48) 

The above definitions allow for the problem to be written as a matrix system. 

[𝐾𝐾]{𝑑𝑑} = {𝐹𝐹}        (Eq. 3.49) 

The stiffness matrix and force vectors are formulated locally, and then assembled into the 

global formulation. The next chapter discusses the implementation of this finite element 

method in NinerPile and explains the assembly and solving process of the global set of 

matrices. 
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CHAPTER 4: NINERPILE SOFTWARE 
 
 
4.1 Introduction 

This chapter describes the software created for this thesis. The structure of the 

software, its user interaction, and execution are detailed herein. Mathematical derivations 

that go beyond the basic understanding of the program are included as appendices. The 

program, to be referred to as the code in the following chapter, has been created using 

MATLABTM programming language and interface. The code is broken down into a 

wrapper file, a driver function, and 16 additional functions used by the driver to complete 

the analysis. The program outputs 6 data files and 3 plot windows to report the results. 

Each of the functions and outputs are discussed in this chapter. The complete code for the 

final version of NinerPile reported in this thesis is included as an appendix. 

4.2 Wrapper file 

 The wrapper file is the user interface with the code. It is used in place of a graphical 

user interface (GUI) for utility and simplicity of programming. The use of a wrapper file 

gives the user greater control of input data and parameters to be used in the analysis. The 

wrapper file is the only file that needs to be explicitly opened and altered. It is also the only 

file that needs to be executed as it in turn, calls the driver to complete the analysis. The file 

name format used for the wrapper is “NinerPile_wrapper_alterable_name.m.” This 

naming format allows a user to make multiple copies of the wrapper file for different 

analyses. The wrapper file is broken down into the following sections: pile geometric and 

material properties, p-y curve inputs, load time history, mesh-specific input data, output 

parameters, units, and driver activation.  
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The pile geometric and material properties section allows for the input of Young’s 

modulus, moment of inertia about the bending axis (second moment of area), pile length, 

and pile width/diameter. Young’s modulus and moment of inertia can be input as functions 

of moment, allowing for a pile with varying material and cross-section to be analyzed. Each 

of these parameters are combined into one input EI (flexural rigidity). The EI parameter is 

stores in a data structure with other pile-specific parameters. The structure variable is 

“Pile.” Using a data structure allows for multiple values to be transferred to the driver under 

a single variable name. If the EI parameter is input as a function of moment, three 

parameters need to be identified by the user. First, the initial EI value. Second, the 

maximum or “cracking” moment that causes a drop in EI. Third, a function of moment that 

defines the EI value above the cracking moment. 

The p-y curve input section is where the soil properties in accordance with 

Murchison and O’Neill (1984) are entered to determine the shape of the hyperbolic p-y 

curves as well as a few other values needed for execution. The distance from pile head to 

soil surface, the effective friction angle, the effective unit weight, the average depth 

stiffness factor, the cyclic parameter, and the tolerance for convergence are saved in the 

data structure “PY.” Also, in this section, the unloading model is selected by the user. The 

unloading is selected by inputting either a 1 or 2 in the specified field. If a 1 is entered, the 

secant stiffness degradation model is selected. If a 2 is entered, the linear unloading model 

is selected. 

In the load time history section of the wrapper file, the user identifies the external 

loading and is saved in the data structure as “Loading.” First, a loading type is identified. 

In this field, a 1 may be entered for increasing load steps only. If a 2 is entered, incremental 
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ascending and descending load steps will be calculated by the program. Next, the user 

inputs the external shear and moment applied to the head of the pile. These values are 

entered as vectors. Using the MATLABTM language, the vector is defined using the 

following syntax “0:load increment:maximum load.” This format allows for the program 

to use the same increment specified by the user to calculate a descending load loop if so 

chosen. For this thesis, the program has been verified using only the external shear. For the 

verification examples, the applied moment has been taken as 0. Finally, the user specifies 

the loading node. This is useful if the lateral load is applied below the head of the pile. 

External loads can be applied at any node of the pile mesh. 

For the mesh-specific input data, 2 parameters are specified and saved in the data 

structure as “femesh.” First, the number of elements to be used for the calculation in the 

finite element method for modeling the pile. The second is the element bias. This parameter 

allows for the mesh to be refined at the top of the pile where loading is greater and become 

sparser towards the bottom of the pile. This parameter is active in the program, though for 

the verification examples is taken as 1 (no bias). This section identifies a strong suit of the 

program as the number of elements needed is exceptionally low. For example, often only 

10 elements are needed for an accurate computation of a pile over 10 feet long. In 

comparison, finite difference codes may use in excess of 500 elements.  

The output parameters section allows for the identification of the node and load 

steps to be used in the output plots and are saved in the data structure as “plot.” The node 

selected will then be used to create 2 plot windows. One of the windows is known as the 

progression window. In this window, displacement, slope, moment, and soil reaction are 

plotted vs. load step number (not load magnitude). In the displacement path window, the 
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displacement of the node is plotted for each load step vs. load step magnitude. The load 

steps input into the wrapper file are then used to create whole-pile plots of displacement, 

slope, soil reaction, bending moment, and shear force vs. pile depth in the same window 

for the specific steps identified. 

The next section of the wrapper file is for user reference only. In the units section, 

the user can enter force, length, and time units that correspond to all inputs in the wrapper 

file. This is to keep dimensions consistent across the program.  

The wrapper file then activates the driver, passing all the input data into the driver 

function using the 5 data structures “Pile,” “PY,” “Loading,” “femesh,” and “plot.” 

4.3 Driver function 

The driver function is the brain of the code. It takes all the user inputs outlined in 

section 4.2 and uses them to conduct calculations necessary for the pile analysis. The driver 

function is named “pilefem_driver.m.” Due to the complexity of the driver function, each 

task will not be explicitly discussed. However, the main processes of each section will be 

outlined. The driver function is broken down into the following sections: initializing inputs 

and preallocating variables, main algorithm, and output.  

4.3.1 Initializing inputs and pre-allocating variables 

In the initializing inputs and pre-allocating variables section, the main goal is to 

sort and organize the user input data into useful arrays to be used in further computations, 

as well as identify the size of variables that are yet to be determined and preallocate their 

memory. The first step in this process is determining the coordinates along the pile that 

each node will be located at. This is done using a function called “getx.m.” This function 

uses the data structures “femesh” and “Pile” to discretize the pile length in 1 dimension. 
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Using these coordinates, pile properties and p-y curve properties are extrapolated. The 

function “getEI.m” determines the nodal values of flexural rigidity using the user input 

constant values or functions. The function “getPu.m” determines the ultimate soil capacity 

at each node using the maximum of wedge failure and flow failure based on geotechnical 

theory (Meyer and Reese 1979). The function “getEunl.m” determines the linear soil 

stiffness at each node to be used for the linear unloading model. This value is equal to the 

maximum p-y curve stiffness (𝐸𝐸𝑝𝑝𝑑𝑑−𝑚𝑚𝑎𝑎𝑑𝑑).  

 The driver then sorts the external load inputs entered by the user. If the user chose 

to use the second load option, this section adds the descending load steps to both the shear 

and moment vectors. The external shear and moment values are then combined into a 2-

column matrix with the first column corresponding to the shear, and the second 

corresponding to the moment.  The variables “displacement,” “slope,”” moment,”” shear,” 

and “soil” are then defined as 0 matrices that have the same number of columns as load 

steps, and the same number of rows as there are nodes. 

4.3.2 Main algorithm 

 The main algorithm is comprised of an indexed loop that does an iteration for each 

load step, a logical test to determine if the load increment is positive or negative, and then 

either a loading or unloading convergence loop. The main algorithm chooses which loop 

to use based upon the relationship between the current load and the last, and then calculates 

the outputs for that load step. The outputs “displacement,” “slope,” “moment,” shear,” and 

“soil” are values at each node of displacement, slope, internal moment, internal shear, and 

soil reaction. With each iteration of the indexed load loop, the outputs are built into 
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matrices with each column corresponding to a load step, and each row corresponding to a 

node. 

4.3.2.1 Loading loop 

The loading loop is a “while” loop that runs until a defined convergence is reached. 

The following discussion refers to the finite element method that is coded into this program. 

The derivations of this method and further discussion about its implementation can be 

found in the appendices.  

4.3.2.1.1 Finite element matrix formulation  

 The finite element matrix formulation is comprised of 3 parts: the stiffness matrix, 

the force vector, and finally a vector containing the displacements and rotations at each 

node. Each part of this formulation is discussed in detail below.   

4.3.2.1.1.1 Stiffness matrix  

The first step of the loading logic is to determine a preliminary stiffness matrix, 

“K.” The stiffness matrix is calculated using the function “getK.m.” This function uses the 

Galerkin Finite Element Method to solve the boundary value problem outlined in chapter 

3. The definition of the element stiffness matrix for the pile problem implemented in 

NinerPile is shown below. 

𝑘𝑘𝑎𝑎𝑎𝑎𝑒𝑒 = ∫ [(𝐸𝐸𝐼𝐼𝑁𝑁𝑎𝑎′′𝑁𝑁𝑎𝑎′′(
2
ℎ𝑒𝑒

)3  + 𝐸𝐸𝑠𝑠 𝑁𝑁𝑎𝑎𝑁𝑁𝑎𝑎(ℎ𝑒𝑒
2

)]1
−1 𝑑𝑑𝜉𝜉   (Eq 3.1)  

𝑘𝑘𝑎𝑎𝑎𝑎𝑒𝑒  = Stiffness matrix value corresponding to location (a, b) in element matrix “e” 

𝜉𝜉 = The coordinate system mapping associated with the master element from -1 to 1 

 𝐸𝐸 = Young’s modulus mapped to the master element 

𝐼𝐼  = Moment of inertia mapped to the master element 

𝑁𝑁𝑎𝑎  = Shape function “a” mapped on the master element 
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ℎ𝑒𝑒  = The length of element “e” 

𝐸𝐸𝑠𝑠 = The secant stiffness as a function on the master element mapping 

Gaussian four-point quadrature is used to evaluate the integral for each combination 

of the 4 shape functions on each element. The function results in a 4x4 stiffness matrix for 

each element. All values of output parameters (i.e. displacement, slope) are unknown at 

every node. Due to this, all values of element stiffness are assembled into the global 

stiffness matrix. The global stiffness matrix created by the “getK.m” function is a 

symmetrical matrix with an upper bandwidth of 3. 

4.3.2.1.1.2 Force vector 

 Another advantage of using the finite element method to solve the laterally loaded 

pile problem is the assembly of the force vector. The force vector is simply a column vector 

with the same number of values as there are nodes. The first value in the force vector is the 

externally applied shear, and the second is the externally applied moment. Due to this 

simplicity, an external function is not used, and the global force vector is assembled 

directly in the driver.  

4.3.2.1.1.3 Solving for the displacement and rotation vector 

 After the stiffness matrix and force vector have been determined, solving for the 

displacements and rotation at the nodes is straight forward. In matrix notation, the operation 

is shown in equation 3.2. 

{𝑌𝑌} = [𝐾𝐾]−1{𝐹𝐹}     (Eq 3.2) 

{𝑌𝑌} = The displacements and rotations at each node assembled as a vector 

[𝐾𝐾]−1 = The inverse of the global stiffness matrix 

{𝐹𝐹} = The global force vector 
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This procedure is completed in the function “gety.m.” At this point, an iteration of 

the FEM has been completed to solve the pile problem. However, the secant stiffness is a 

preliminary guess during the first iteration. The results from the FEM must coincide with 

the soil secant stiffness defined by the p-y curves. 

4.3.2.1.2 Convergence using p-y curves 

 After the FEM has been used to calculate the displacements and rotation using a 

certain secant stiffness of the soil, the driver then calculates a new set of secant stiffnesses 

using the previously calculated displacements. This process is done by the function “py.m.” 

The function uses the node-specific values of ultimate soil resistance (Pu), location along 

the pile and last computed displacement. Parameters that are also used, but do not vary 

from node to node are the depth stiffness factor (k), cyclic parameter (A) and the number 

of elements in the problem. The function then iterates through every node determining the 

p-y curve specific to that location. The previous value of displacement is then used to 

output a soil resultant value (p). The displacement and soil resistance values are then used 

to determine the secant stiffness value. This new secant stiffness value is then used in the 

FEM problem to adjust the stiffness vector. This process continues until the sum of the 

square of the new displacement vector and the sum of the square of the last displacement 

vector have a difference less than the user input tolerance.  

4.3.2.2 Setup for unloading loop 

 After convergence but before the loading iterative loop is completed, the last values 

of secant stiffness, displacement and soil reaction are saved as special variables that are 

needed for the unloading logic. These values define the starting point of the unloading in 

respect to the p-y curve. The variables are aptly named “Estart,” “ystart,” and “pstart.” 
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4.3.2.3 Unloading loop 

 The unloading loop is also a “while” loop that runs until a defined convergence is 

reached. When the loop is engaged, a logical test is used to determine what unloading 

model was selected by the user. 

4.3.2.3.1 Secant stiffness degradation model 

 If the secant stiffness degradation model is selected, the first part of the unloading 

loop is that the increment of stiffness degradation is determined for each node. The last 

positive loading secant stiffness “Estart” is used to accomplish this. “Estart” is divided by 

the number of evenly spaced unloading increments previously organized in the descending 

load loop vector (see section 4.3.1). This allows for the secant stiffness values to descend 

at the same rate as the external loading. Each time the load is then reduced in the unloading 

loop, the secant stiffness is reduced by the same relative amount. The program was 

optimized by weighting the distribution of the secant stiffness to the unloading steps. The 

recommended weighting that is programmed into NinerPile is an initial stiffness drop of 2 

times the “even” increment. The increment is then reduced by 90% for each additional step. 

When the load is reduced by half of the peak, the stiffness is reduced evenly by the uniform 

stiffness increment determined in the beginning of this step. 

 This unloading method is preferred for several reasons. One reason is that it is an 

explicit method. There is no convergence. Calculation is thus very fast. The newly adjusted 

secant stiffness value that is calculated for each load step is used in the same FEM 

procedure discussed in section 4.3.2.1.1. Figure 4.1 demonstrates a graphical 

representation of this method for an unloading process with 5 increments. The secant 

stiffness begins from the value calculated in the loading loop, and then is evenly degraded 
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as the load is diminished. This process is separate for each node, meaning stiffness 

increments vary. 

Figure 4.1. Graphical demonstration of the secant stiffness degradation method 

 

4.3.2.3.2 Linear Epy-max p-y unloading model 

 Part of this study was testing a method that uses a linear model to unload from the 

maximum deflection point on a given p-y curve. If the linear model is used, a process 

similar to the loading phase is used to agree the secant stiffness from the FEM with the 

secant stiffness determined by a model in the p-y plane. The linear unloading model has 

computational challenges, and understanding these challenges is important to 

understanding the computational method implemented in NinerPile. 

The development of the hyperbolic shape in the Murichison and O’Neill (1984)  p-

y curve happens at loads relatively close to the maximum soil resistance value. This shape 

is only developed with significance in the case of a very highly loaded pile, nearing failure. 
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This geometric challenge causes no substantial deflection to be accumulated under 

moderate and low loading and unloading. Figure 4.2 demonstrates this.  

Figure 4.2. Linear unloading curves for a pile at failure 

 

The above figure shows the fully developed shape of the hyperbolic p-y curve. For 

this case, up until 7,500 lb/in of soil resistance, a linear unload curve would for all practical 

purposes trace the loading curve back to the origin.  

 Another challenge is iterative in nature and has to do with the convergence to the 

unloading curve. The p-y curves have a higher Epy-max at greater depths and with greater 

depth stiffness factors. In many instances, the slope is so high that the line nears vertical. 

In this case, a small difference in displacement yields a major difference in soil pressure.  

 Finally, due to the fact that the hyperbolic p-y curve is odd (reflects about the origin) 

using a linear unloading model requires that in actuality two lines are implemented. These 

lines must be bounded between horizontal y-axis and the maximum value of the p-y curve. 
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This is computationally challenging and can often result in erroneous values outside of the 

desired range.  

 With these difficulties in mind, a strategy was developed to converge the 

displacements calculated by the FEM with the displacements along a linear p-y unloading 

curve. First, it is checked by the program that the loading is symmetrical. Meaning that for 

each positive load step, there is an unloading step with an equal external load. The soil 

reaction calculated at the positive loading step is used as a preliminary guess for the soil 

reaction at the unloading step of equal magnitude. This guessed soil reaction value is used 

with the unloading model to calculate a guessed deflection. Both guesses are then used to 

guess a secant stiffness. From this point, the FEM discussed in section 4.3.2.1.1 is used to 

solve the pile problem initially. Much like the loading loop, the calculated deflections are 

then checked against the linear unloading model and a new secant stiffness is calculated. 

This process continues until convergence is achieved. To solve the piecewise function 

issue, the unloading curve is defined based on the point of the p-y curve used in the last 

positive loading step. This allows for the line to be defined from the point of intersection 

with the p-y curve. Therefore, the piecewise problem is avoided. This process is completed 

for each node, so each unloading curve is unique. The linear unloading curve is defined by 

the following function. 

𝑝𝑝 = 𝐸𝐸𝑝𝑝𝑑𝑑−𝑚𝑚𝑎𝑎𝑑𝑑 × 𝑦𝑦 + (−𝐸𝐸𝑝𝑝𝑑𝑑−𝑚𝑚𝑎𝑎𝑑𝑑 × 𝑦𝑦𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠)    (Eq 3.3) 

𝑝𝑝 = Soil reaction 

𝐸𝐸𝑝𝑝𝑑𝑑−𝑚𝑚𝑎𝑎𝑑𝑑 = Maximum soil stiffness 

𝑦𝑦 = Deflection at the node 

𝑦𝑦𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 = Deflection value at the intersection with the hyperbolic p-y curve 
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𝑝𝑝𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 = Soil reaction value at the intersection with the hyperbolic p-y curve 

Once convergence has been achieved for each unloading step, the piles values of 

displacement, slope, moment, shear and soil reaction are combined into a matrix storing 

the values of each load step and each node. The driver function then moves on to the output 

stage. 

4.3.3 Output of results 

In this portion of the driver function, the results determined by the program are 

output in several formats. One of the formats is graphically, and another is in tabulated raw 

data that can be post-processed by the user. The graphical output is displayed in 3 plot 

windows: whole pile plots, progression plots, and a displacement plot which is a type of 

progression plot. This program takes the single or multiple load steps identified by the user 

in the wrapper file that are desired for whole pile plots and plots displacement, slope, 

moment, shear and soil reaction vs. length along the pile in the same window for the desired 

load steps. The progression plots are produced using the function “plotprog.m.” The 

progression plots display a single, user identified node that corresponds to a depth. The 

progression plots display displacement, slope, moment and soil reaction vs. the load step 

number in the same window. The final plot window is the displacement path at a user 

specified node. The displacement path plots the pile displacement vs. the lateral load 

magnitude. This plot shows the piles displacement during loading, and its rebounding 

behavior during unloading.  

There are 6 MATLABTM data files that are created by the program: 

“coordinates.mat,” “displacement.mat,” “slope.mat,” “moment.mat,” “shear.mat” and 

“soil.mat.”  Each of the data files tabulates all of the results determined by the program in 
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matrix form. The matrices are organized so that all the columns are load steps and the rows 

are nodes. This allows for users to quickly identify the results at each node and 

corresponding load step. Once the program creates the files, it then saves them to the file 

path folder. The user can pull the saved data and enter it into another platform to perform 

additional analyses. This gives the user the power to form additional plots that the program 

may not be specified to create. Some of the plots created for this thesis were done so by 

using output data and Excel. Tables 4.1 and 4.2 tabulate the input and output variables used 

by NinerPile. 

Table 4.1 Ninerpile Inputs 

 

Table 4.2 Ninerpile Outputs 

 

Input Variable Symbol in Program 

length (in) Pile.L 
width (in) Pile.D 

flexural regidity (kip-in2) Pile.EI, Pile.mcrack and 
Pile.EIcrack 

distance from pile head to soil surface (in) PY.Depth 
effective friction angle (°) PY.phi 

effective unit weight (lb/ft3) PY.gamma 
depth stiffness factor (lb/in3) PY.k 

tolerance of convergence PY.tol 
number of elements femesh.nel 

node for lateral load to be applied Loading.node 

Output Variable Vectors Symbol in Program 

depth coordinates (in) coordinates 
displacement of pile (in) displacement 

slope of pile (rad) slope 
internal shear force (kip) shear 
internal moment (kip-in) moment 

soil reaction (lb/in) soil 
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CHAPTER 5: VERIFICATION AND VALIDATION 
 
 
5.1 Introduction 

This chapter will use field test data in the Federal Highway Report (FHWA-HRT-

04-043) published in March 2006 titled “A Laboratory and Field Study of Composite Piles 

for Bridge Substructures” authored by Pando et al. (2006). This report was compiled to 

study the applicability of using composite piles in the construction of bridge substructures 

in the state of Virginia. Specifically, the field tests located at the Route 351 bridge will be 

used in this thesis. The Route 351 bridge is located in Hampton, Virginia and underwent a 

bridge replacement project beginning in 2001. The original bridge used reinforced concrete 

piles embedded into the bottom of the Hampton River and was constructed in the early 

1940’s. The bridge experienced excessive deterioration over its lifetime, requiring a 

replacement be built. The original route 351 bridge is sown in Figure 5.1. 

 

Figure 5.1. Deterioration of the Route 351 bridge 
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 It was proposed that composite piles be evaluated for their ability to be used in 

bridge structures to mitigate the effect of deterioration due to freeze-thaw and water salinity 

over time. Piles underwent axial and lateral load tests at the bridge project site.  

The uppermost layer of soil is approximately 3 feet thick and consists of silty fine 

sand fill. Underneath the fill is loose to medium dense silty fine sand which is 39.5 feet 

thick. Beneath the sand layer is a stiff sandy clay layer that is 8.5 feet thick. Medium dense 

to dense silty and clayey sand was found beneath the clay layer to an ultimate depth of 100 

feet which was the end of the test borings. The site was evaluated at its northern and 

southern extents using 2 hollow stem auger borings, 4 cone penetrometer tests, and 1 

dilatometer probe. The results are shown in Figures 5.2 and 5.3.  

 

Figure 5.2. Route 351 bridge site northern end in-situ soil test results  
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Figure 5.3. Route 351 bridge site southern end in-situ test results 

 

 The types of piles that were tested at the Route 351 bridge site and are used 

in this thesis are a prestressed concrete pile, a composite pile composed of polyethylene 

with steel reinforcing bars and a fiber reinforced polymer tube filled with concrete and steel 

reinforcement. Repeated loading and unloading are a potential concern at the project site 

and may have played a role in the previous bridge deterioration. Modeling the loading and 

unloading behavior of the piles is important for deterioration and longevity concerns.  

The lateral load tests were performed in accordance with ASTM D3966. A 

calibrated load jack, calibrated load cells, dial gauges and LVDTs were used in the testing 
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configuration. Displacements near the pile head were monitored with increasing static load. 

Each pile was instrumented with 16 sister bar strain gauges at 6 different depths. Each 

strain gauge used a #12M Grade 420 steel bar which is also a #4 Grade 60 steel bar. Each 

steel bar was 0.9 meters (2.9 feet) long mounted with 4 foil strain gauges. An inclinometer 

casing was also installed on each test pile for better resolution of the deflected shapes. 

Deformed shapes of the piles at different lateral load magnitudes were obtained from the 

inclinometer results along the installed casings. The results are shown in Figure 5.4. The 

results are displayed in a way that is the predominant concern in this thesis. The applied 

load is plotted against the pile deflection at the original ground surface. This plot nicely 

demonstrates the unloading behavior of the piles as the load is reduced several times during 

the test. This data is used for the study of the developed NinerPile software in this section.  

Figure 5.4. Route 351 bridge lateral load test results (Pando et al. 2006) 
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These pile tests are used for the verification of the loading phase of NinerPile in 

comparison with the industry standard LPILE. Each load step was modelled using both 

software, and the results have been compared. A single positive load step for each pile is 

compared in this section for results of slope, shear, moment and soil reaction along the 

pile’s full depth as calculated by both LPILE and NinerPile. Six load steps for each pile 

type are used to compare the deflected shape results with the output of both LPILE and 

NinerPile. In addition, the lateral load vs. deflection at the ground surface for the full 

loading and unloading cycle for each pile has been modelled by NinerPile and compared 

to the experimental results. 

LPILE requires that the lateral load be modeled at the head of the pile. This requires 

that the LPILE model not consider the section above the load. This can be seen in the plots 

to follow that show the LPILE model only extending to the load location. Also, the LPILE 

version used in the thesis (LPILE Plus Student Edition 2005) does not have the capability 

to model a change in flexural rigidity as a function of internal moment. As recommended 

by Pando et al. (2006) the piles were modeled in NinerPile with varying flexural rigidity 

(EI) with internal moment. For this modeling strategy, a constant EI value is used until a 

“cracking” moment is reached, at which point the EI begins to reduce in accordance to 

some function. NinerPile and LPILE are compared directly for slope, shear, moment and 

soil reaction at a load below that needed to begin to alter the EI in NinerPile. 

5.2 Prestressed concrete pile 

5.2.1 Introduction 

The prestressed concrete pile was tested at the southern end of the site. The testing 

configuration consisted of an excavated pit for the testing equipment to be installed. The 
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dimensions are shown in Figure 5.5. The input parameters for both NinerPile and LPILE 

are displayed in Tables 5.1 and 5.2 respectively.  
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Figure 5.5 Testing and modeling configuration for the concrete pile 
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Table 5.1 NinerPile input parameters for the concrete pile 

Parameter Symbol in Program Value 

length (in) Pile.L 708 
width (in) Pile.D 24 

flexural regidity (kip-in2) Pile.EI, Pile.mcrack and 
Pile.EIcrack see Figure 5.6 

distance from pile head to soil surface (in) PY.Depth 80 
effective friction angle (°) PY.phi 35 

effective unit weight (lb/ft3) PY.gamma 66.84 
depth stiffness factor (lb/in3) PY.k 11 

tolerance of convergence PY.tol 0.01 
number of elements femesh.nel 708 

node for lateral load to be applied Loading.node 48 
 

 

 

Figure 5.6. Concrete pile flexural rigidity vs. moment for NinerPile 

 

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

0 1000 2000 3000 4000 5000 6000 7000 8000

E
I (

ki
p-

in
2 )

Bending Moment (kip-in)



60 
 

Table 5.2 NinerPile input parameters for the concrete pile 

Parameter Value 
length (in)  658 
width (in) 24 

flexural regidity (kip-in2) 1.177 x 108 
distance from pile head to soil surface (in) 28 

effective friction angle (°) 35 
effective unit weight (lb/ft3) 66.84 
depth stiffness factor (lb/in3) 11 

Soil Model API Sand (O'Neill) 
Note: Measurements are adjusted because LPILE does not model section above lateral load 

 

5.2.2 NinerPile and LPILE detailed results comparison at 31,742 lb lateral loading 

 The following plots are a comparison between results generated by both LPILE and 

NinerPile for the prestressed concrete pile. Shear, moment, slope, soil resistance and lateral 

deflection are plotted vs. depth from the head of the pile at 31,742 pounds of lateral loading. 

The NinerPile results are all in close agreement with the LPILE results as well as the 

experimental data, which serves as verification of the NinerPile code.  
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Figure 5.7. NinerPile vs. LPILE shear verification at 31,742 lb. lateral loading 
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Figure 5.8. NinerPile vs. LPILE moment verification at 31,742 lb. lateral loading 
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Figure 5.9. NinerPile vs. LPILE slope verification at 31,742 lb. lateral loading 
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Figure 5.10. NinerPile vs. LPILE soil resistance verification at 31,742 lb. lateral loading  
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Figure 5.11. NinerPile vs. LPILE lateral deflection verification at 31,742 lb. lateral 
loading 
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5.2.3 Test results, NinerPile and LPILE deflection comparison at various loads 

For each load step that a full set of deflection data was published in Pando et al. 

(2006) NinerPile and LPILE were used to model the deflections. The results are presented 

in this section. 

5.2.3.1 Deflection plots for various positive load steps 

 The following deflection plots are a comparison between results generated by 

LPILE, NinerPile and experimental data for the prestressed concrete pile. Lateral deflection 

is plotted vs. depth from the head of the pile at the following lateral loads: 11,510 lbs., 

21,873 lbs., 31,742 lbs., 41,161 lbs., 51,254 lbs. and 61,887 lbs. The NinerPile results are 

in close agreement with both LPILE results and experimental data. 
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Figure 5.12. Concrete pile lateral deflection at 11,510 lb. lateral loading 
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Figure 5.13. Concrete pile lateral deflection at 21,873 lb. lateral loading 
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Figure 5.14. Concrete pile lateral deflection at 31,742 lb. lateral loading 
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Figure 5.15. Concrete pile lateral deflection at 41,161 lb. lateral loading 
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Figure 5.16. Concrete pile lateral deflection at 51,254 lb. lateral loading 
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Figure 5.17. Concrete pile lateral deflection at 61,887 lb. lateral loading 
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5.2.3.2 Slope at pile head vs. positive load step 

 Both the LPILE and NinerPile models predicted the experimental slope at the pile 

head well. Since NinerPile considers the change in flexural rigidity with internal moment, 

the slope is more closely predicted at higher loads with NinerPile. Figure 5.18 displays this 

data.  

 

Figure 5.18. Slope at pile head vs. lateral load for concrete pile 
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for a short period of time. It is the opinion of the author that when the unloading path of 

the pile head becomes linear it should be interpolated to the deflection axis for a sustained 

deflection prediction. Figure 5.19 is drawn until the unloading path achieves the discussed 

shape.  

 

 

Figure 5.19. NinerPile prediction and experimental data for the concrete pile deflection 
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Figure 5.20. Spaghetti plot of NinerPile output for concrete pile 

 

5.3 Polyethylene Composite (Plastic) pile  

5.3.1 Introduction 

The plastic pile was tested in the center of the site. The dimensions are shown in 

Figure 5.21. The input parameters for both NinerPile and LPILE are displayed in Tables 

5.3 and 5.4 respectively. According to Pando et al (2006) the plastic pile had a constant EI 

over the range of moments experienced during testing. The EI is plotted vs. moment for 

consistency in Figure 5.22. 
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Figure 5.21. Testing and modeling configuration for the plastic pile 
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Table 5.3. NinerPile input parameters for the plastic pile 

Parameter Symbol in Program Value 

length (in) Pile.L 720 
width (in) Pile.D 24 

flexural regidity (kip-in2) Pile.EI, Pile.mcrack and 
Pile.EIcrack see Figure 5.22 

distance from pile head to soil surface (in) PY.Depth 76 
effective friction angle (°) PY.phi 33 

effective unit weight (lb/ft3) PY.gamma 66.84 
depth stiffness factor (lb/in3) PY.k 14 

tolerance of convergence PY.tol 0.01 
number of elements femesh.nel 720 

node for lateral load to be applied Loading.node 48 
 

 

Figure 5.22. Plastic pile flexural rigidity vs. moment for NinerPile 
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Table 5.4. NinerPile input parameters for the plastic pile 

Parameter Value 
length (in)  668 
width (in) 24 

flexural regidity (kip-in2) 2.50 x 107 
distance from pile head to soil surface 

(in) 24 
effective friction angle (°) 33 

effective unit weight (lb/ft3) 66.84 
depth stiffness factor (lb/in3) 14 

Soil Model API Sand (O'Neill) 
Note: Measurements are adjusted because LPILE does not model section above lateral load 

 

5.3.2 NinerPile and LPILE detailed results comparison at 31,494 lb lateral loading 

 The following plots are a comparison between results generated by both LPILE and 

NinerPile for the plastic pile. Shear, moment, slope, soil resistance and lateral deflection 

are plotted vs. depth from the head of the pile at 31,494 pounds of lateral loading. The 

NinerPile results are all in close agreement with the LPILE results as well as the 

experimental data, which serves as verification of the NinerPile code. 
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Figure 5.23. NinerPile vs. LPILE shear verification at 31,494 lb. lateral loading 
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Figure 5.24. NinerPile vs. LPILE moment verification at 31,494 lb. lateral loading 
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Figure 5.25. NinerPile vs. LPILE slope verification at 31,494 lb. lateral loading 

0

100

200

300

400

500

600

700

800
-0.02 -0.015 -0.01 -0.005 0 0.005

D
is

ta
nc

e 
fr

om
 h

ea
d 

of
 p

ile
 (i

n)

Slope (radians)

Calculated with LPILE

Calculated with NinerPile



82 
 

 

Figure 5.26. NinerPile vs. LPILE soil resistance verification at 31,494 lb. lateral loading  
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Figure 5.27. NinerPile vs. LPILE lateral deflection verification at 31,494 lb. lateral 
loading 
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5.3.3 Test results, NinerPile and LPILE deflection comparison at various loads 

For each load step that a full set of deflection data was published in Pando et al. 

(2006) NinerPile and LPILE were used to model the deflections. The results are presented 

in this section. 

5.3.3.1 Deflection plots for various positive load steps 

 The following deflection plots are a comparison between results generated by 

LPILE, NinerPile and experimental data for the plastic pile. Lateral deflection is plotted 

vs. depth from the head of the pile at the following lateral loads: 10,813 lbs., 23,020 lbs., 

31,494 lbs., 41,161 lbs., 51,884 lbs. and 61,887 lbs. The NinerPile results are in close 

agreement with both LPILE results and experimental data. 
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Figure 5.28. Plastic pile lateral deflection at 10,813 lb. lateral loading 
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Figure 5.29. Plastic pile lateral deflection at 23,020 lb. lateral loading 
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Figure 5.30. Plastic pile lateral deflection at 31,494 lb. lateral loading 
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Figure 5.31. Plastic pile lateral deflection at 41,161 lb. lateral loading 
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Figure 5.32. Plastic pile lateral deflection at 51,884 lb. lateral loading 
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Figure 5.33. Plastic pile lateral deflection at 61,887 lb. lateral loading 
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5.3.3.2 Slope at pile head vs. positive load step 

Both the LPILE and NinerPile models predicted the experimental slope at the pile 

head well. The comparison is shown in Figure 5.34. 

 

Figure 5.34. Slope at pile head vs. lateral load for plastic pile 
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Figure 5.35. NinerPile prediction and experimental data for the plastic pile deflection 

 

5.3.3.4 Spaghetti output plot from NinerPile 

 The below plot is the output from NinerPile displaying the displacement, slope, soil 

reaction, bending moment and shear force with depth along the pile for each step of the 

analysis. 
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Figure 5.36. Spaghetti plot of NinerPile output for plastic pile 

 

5.4 Fiber reinforced polymer pile  

5.4.1 Introduction 

The FRP pile was tested at the northern end of the site. The testing configuration 

consisted of an excavated pit for the testing equipment to be installed. The dimensions are 

shown in Figure 5.37. The input parameters for both NinerPile and LPILE are displayed in 

Tables 5.4 and 5.5 respectively.  
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Figure 5.37. Testing and modeling configuration for the FRP pile 
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Table 5.5. NinerPile input parameters for the FRP pile 

Parameter Symbol in Program Value 

length (in) Pile.L 720 
width (in) Pile.D 24 

flexural regidity (kip-in2) Pile.EI, Pile.mcrack and 
Pile.EIcrack 

see Figure 
5.38 

distance from pile head to soil surface (in) PY.Depth 86 
effective friction angle (°) PY.phi 35 

effective unit weight (lb/ft3) PY.gamma 66.84 
depth stiffness factor (lb/in3) PY.k 40 

tolerance of convergence PY.tol 0.01 
number of elements femesh.nel 720 

node for lateral load to be applied Loading.node 31 
 

 

Figure 5.38. FRP pile flexural rigidity vs. moment for NinerPile 
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Table 5.6. NinerPile input parameters for the FRP pile 

Parameter Value 
length (in)  688 
width (in) 24 

flexural regidity (kip-in2) 6.50 x 107 
distance from pile head to soil surface 

(in) 54 
effective friction angle (°) 35 

effective unit weight (lb/ft3) 66.84 
depth stiffness factor (lb/in3) 40 

Soil Model API Sand (O'Neill) 
Note: Measurements are adjusted because LPILE does not model section above lateral load 

 

5.4.2 NinerPile and LPILE detailed results comparison at 32,551 lb lateral loading 

 The following plots are a comparison between results generated by both LPILE and 

NinerPile for the fiber reinforced polymer pile. Shear, moment, slope, soil resistance and 

lateral deflection are plotted vs. depth from the head of the pile at 32,551 pounds of lateral 

loading. The NinerPile results are all in close agreement with the LPILE results as well as 

the experimental data, which serves as verification of the NinerPile code. 
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Figure 5.39. NinerPile vs. LPILE shear verification at 32,551 lb. lateral loading 
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Figure 5.40. NinerPile vs. LPILE moment verification at 32,551 lb. lateral loading 
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Figure 5.41. NinerPile vs. LPILE slope verification at 32,551 lb. lateral loading 
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Figure 5.42. NinerPile vs. LPILE soil resistance at 32,551 lb. lateral loading  
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Figure 5.43. NinerPile vs. LPILE lateral deflection verification at 32,551 lb. lateral 
loading 
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5.4.3 Test results, NinerPile and LPILE deflection comparison at various loads 

For each load step that a full set of deflection data was published in Pando et al. 

(2006) NinerPile and LPILE were used to model the deflections. The results are presented 

in this section. 

5.4.3.1 Deflection plots for various positive load steps 

 The following deflection plots are a comparison between results generated by 

LPILE, NinerPile and experimental data for the fiber reinforced polymer pile. Lateral 

deflection is plotted vs. depth from the head of the pile at the following lateral loads: 11,600 

lbs., 21,581 lbs., 32,551 lbs., 41,835 lbs., 51,726 lbs. and 60,808 lbs. The NinerPile results 

are in close agreement with both LPILE results and experimental data. 
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Figure 5.44. FRP pile lateral deflection at 11,600 lb. lateral loading 
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Figure 5.45. FRP pile lateral deflection at 21,581 lb. lateral loading 
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Figure 5.46. FRP pile lateral deflection at 32,551 lb. lateral loading 
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Figure 5.47. FRP pile lateral deflection at 41,835 lb. lateral loading 
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Figure 5.48. FRP pile lateral deflection at 51,726 lb. lateral loading 
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Figure 5.49. FRP pile lateral deflection at 60,808 lb. lateral loading 
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5.4.3.2 Slope at pile head vs. positive load step 

Both the LPILE and NinerPile models predicted the experimental slope at the pile 

head well. Since NinerPile considers the change in flexural rigidity with internal moment, 

the slope is more closely predicted at higher loads with NinerPile. Figure 5.50 displays this 

data. 

 

 

Figure 5.50. Slope at pile head vs. lateral load for FRP pile 
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used. This combination produced an unloading loop that most represents the experimental 

data. 

 

Figure 5.51. NinerPile prediction and experimental data for the FRP pile deflection 

 

5.4.3.4 Spaghetti output plot from NinerPile 
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Figure 5.52. Spaghetti plot of NinerPile output for FRP pile 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 
 
 
6.1 Summary 

This thesis reports the work undertaken to develop the program NinerPile. NinerPile’s 

purpose was to address the knowledge gap of modeling the behavior of laterally loaded 

piles subject to loading and unloading. The main objectives of this study are as follows: 

• Derive the numerical methods necessary to implement a solution to the laterally 

loaded pile problem using computer code. 

• Evaluate the state of the art of p-y curves and implement them to model soil 

behavior in NinerPile. 

• Validate NinerPile’s capability to model loading behavior with the commercially 

available software LPILE. 

• Extend the current abilities of commercially available software by developing a 

method for modeling the unloading behavior of a laterally loaded pile. 

• Use NinerPile to model 3 lateral load tests that were conducted by the Federal 

Highway Association (Pando et al. 2006). 

• Make recommendations on how to improve the unloading model developed and 

expand the NinerPile software. 

The following are findings and accomplishments of this thesis:  

• NinerPile has been developed and is able to match the capability of commercially 

available software in modeling the loading phase.  

• The secant stiffness degradation model has been created and proposed and has been 

shown that it is able to capture the beginning of the unloading behavior of laterally 

loaded piles. Using secant stiffness has been shown as a possible route to model 
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the stiffness behavior of piles subject to lateral loading and unloading by 

incrementing the secant stiffness step size.  

• A path forward has been clearly defined to effectively model the permanent pile 

deflection sustained after lateral loading and unloading. 

6.2 Conclusions 

The method of modeling the unloading behavior of laterally loaded piles developed 

for this thesis is an explicit method. As the secant stiffness is degraded its value becomes 

fixed. This means that there is no iterating between the finite element code and the p-y 

curve formulation as is done for loading. Therefore, the method cannot be described by a 

so-called unloading p-y curve. Instead, the method can be implemented, and the results can 

be plotted in the p-y plane for visualization. Note that this visualization is an output of the 

method, not a defining input. If the results of the concrete verification are plotted to create 

equivalent p-y curves, the shapes shown in Figure 6.1. are created for various depths. 

Figure 6.1. Secant stiffness degradation model equivalent p-y curves 
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Figure 6.1 is from the prestressed concrete pile validation used in chapter 5. As 

shown, the equivalent p-y curves do not extend to the displacement axis, demonstrating a 

limitation of this method.  

A method has been developed to begin to model the behavior of unloading phase of 

laterally loaded piles. The method has shown the ability of be applied to different pile 

types that exhibit completely different unloading behavior.  

6.3 Recommendations for future work 

The following are recommendations for future work in this area of study: 

• Adding more loading phase p-y formulations to NinerPile. 

• Explore modeling soil reaction using plasticity theory. 

• Investigation of the actual distribution of soil reaction versus depth for the 

completely unloaded case. It may be non-zero as the numerical methods imply. 

• A method to extend the unloading model to zero lateral load using an interpolative 

method is suggested, as the method developed for this thesis has been shown to 

predict lateral deflection down to about half of the positive loading value. 

• A reloading parameter be programmed into NinerPile that allows a non-linear 

increase in secant stiffness to capture the unloading and reloading shown in the 

Federal Highway Report (Pando et al. 2006) lateral load test data. 

• A graphic user interface (GUI) is recommended to be developed for easier user 

interaction with NinerPile. 

 



115 
 

REFERENCES 
 
 
Abadie, C. (2015). "Cyclic Lateral Loading of Monopile Foundations in Cohesionless 

Soils." Doctoral dissertation, University of Oxford, England. 
 
Andersen, K. H. (2015). “Frontiers in Offshore Geotechnics III.” Cyclic soil parameters 

for offshore foundation design, Taylor & Francis Group, London, 3–88. 
 
API (2000). American Petroleum Institute. Recommended Practice for Planning, Design 

and Constructing Fixed Offshore Platform, API Recommended Practice 2A-WSD 
(RP2A-WSD) 21st edition, Dallas, TX. 

 
API (2011). American Petroleum Institute. Recommended Practice for Planning, Design 

and Constructing Fixed Offshore Platform, API Recommended Practice 
2GEO/ISO 19901-4, Geotechnical and Foundation Design Considerations, 1st 
Edition. 

 
Arroyo, M., & Abadias, D. (2015). Alternative p-y curve formulations for offshore wind 

turbines in clays. Third International Symposium on Frontiers in Offshore 
Geotechnics (pp. 693-699). Leiden: CRC Press. doi:10.1201/b18442-105  

 
Byrne, B. W. and Houlsby, G. T. (2003), “Foundations for offshore wind turbines”, 

Philosophical Transactions of the Royal Society of London A: Mathematical, 
Physical and Engineering Sciences 361(1813), 2909–2930. 

 
Byrne, B. W. and Houlsby, G. T. (2015), ‘Helical piles: an innovative foundation design 

option for offshore wind turbines’, Philosophical Transactions of the Royal 
Society A: Mathematical, Physical and Engineering Sciences 373(20140081). 

 
Choi, J. I., Kim, M. M., and Brandenberg, S. J. (2015). “Cyclic p-y Plasticity Model 

Applied to Pile Foundations in Sand.” Journal of Geotechnical and 
Geoenvironmental Engineering, 141(5). 

 
DNV (2005). Det Norske Veritas. Guidelines on Design and Operation of Wave Energy 

Converters, Marine Energy Challenge, Carbon trust. 
 
Duncan, J. M., and Chang, C. Y. (1970). "Nonlinear Analysis of Stress and Strain in Soils", 

Journal of the Soil Mechanics and Foundations Division, ASCE, 96(SM5), 1629-
1653. 

 
EMEC (2009). European Marine Energy Center Limited. Guidelines for Design Basis of 

Marine Energy Conversion Systems, London, UK. 
 
“FB-MultiPier.” (2018). program documentation, Bridge Software Institute. 



116 
 

Gazioglu, S. M., and O'Neill, M. W. Evaluation of p-y Relationships in Cohesive Soils. 
Proc., Analysis and Design of Pile Foundations, ASCE National Convention, San 
Francisco, Calif., 1984, pp. 192-213. 

 
Hanssen, S. B. (2015). “Small strain overlay to the API p-y curves for sand.” Third 

International Symposium on Frontiers in Offshore Geotechnics (pp. 557-562). 
Leiden: CRC Press. doi:10.1201/b18442-71  

 
Hetenyi, M. (1946) Beams on Elastic Foundations. University of Michigan Press, Ann 

Arbor. 
 
Heidari, M., Naggar, H. E., Jahanandish, M., and Ghahramani, A. (2014). “Generalized 

cyclic p–y curve modeling for analysis of laterally loaded piles.” Soil Dynamics 
and Earthquake Engineering, 63, 138–149. 

 
Hughes, T. J. R. (2000). The finite element method: linear static and dynamic finite element 

analysis. Dover Publications, Mineola, NY. 
 
Johnson, R.M., Parsons, R. L., Dapp S., And Brown D. (2006). Soil Characterization And 

P-Y Curve Development for Loess. Report. Kansas Department of Transportation. 
Topeka, Kansas.  

 
Kirsch, F., Richter, T., Coronel, M. (2014). “Geotechnische Aspekte bei der 

Gründungsbemessung von Offshore-Windenergieanlagen auf Monopfählen mit 
sehr großen Durchmessern”. Stahlbau Spezial 2014 – Erneuerbare Energien, pp. 
61-67 (in German). 

 
Kramer, S. L. (1988). “Development of P-Y Curves for Analysis of Laterally Loaded Piles 

in Western Washington” (Tech. No. WA-RD 153.1) Seattle, WA: Washington State 
Department of Transportation.  

 
Le blanc, C. (2009). "Design of Offshore Wind Turbine Support Structures." Doctoral 

dissertation, Aalborg University, Denmark. 
 
Liang, F., Chen, H., and Jia, Y. (2018). “Quasi-static p - y hysteresis loop for cyclic lateral 

response of pile foundations in offshore platforms.” Ocean Engineering, 148, 62–
74. 

 
Lin, S.-S., Lai, C.-H., Chen, C.-H., and Ueng, T.-S. (2010). “Derivation of Cyclic p-y 

Curves From Instrumented Dynamic Lateral Load Tests.” Journal of Mechanics, 
26(02), 123–133. 

 
Little, R. L., and Briaud, J. L. (1988). "Full Scale Cyclic Lateral Load Tests on Six Single 

Piles in Sand." Miscellaneous Paper GL-88-27, Geotechnical Div. Texas A&M 
Univ., College Station, Tex. 

 



117 
 

Long, J., and Vanneste, G. (1994). "Effects of Cyclic Lateral Loads on Piles in Sand." J. 
Geotechnical Engineering, 120(1), 225-244. 

 
“LPILE.” (n.d.). Ensoft Inc, <https://www.ensoftinc.com/products/lpile/> (Oct. 18, 2018). 
 
Matlock, H. (1970). Correlation for Design of Laterally Loaded Piles in Soft Clay. Offshore 

Technology Conference. doi:10.4043/1204-MS  
 
McClelland, B., and Focht, J. A. (1956). “Soil Modulus for Laterally Loaded 

Piles.” Journal of the Soil Mechanics and Foundations Division, 82(4), 1–22. 
 
McVay, M. C., and Niraula, L. (2004). “Development of P-Y Curves for Large Diameter 

Piles/Drilled Shafts in Limestone for FBPIER. Development of P-Y Curves for 
Large Diameter Piles/Drilled Shafts in Limestone for FBPIER”, rep. 

 
Meyer, J. R. (1984). “Analysis and design of pile foundations.” Proceedings of a 

symposium sponsored by the ASCE Geotechnical Engineering Division, San 
Francisco, California, October 1-5, 1984. 

 
Mokwa, R. L., Duncan, J. M., and Helmers, M. J. (2000). “Development of p-y Curves 

for Partly Saturated Silts and Clays.” New Technological and Design 
Developments in Deep Foundations. 

 
Murchison, J. M., and O'Neill, M. W. (1984). “Analysis and Design of Pile 

Foundations.” Evaluation of p-y Relationships in Cohesionless Soils, San 
Francisco, CA, 174–191. 

 
Nyman, K.J. (1980) “Fields load tests of instrumented drilled shafts in coral limestone”. 

MS Thesis, University of Texas, Austin. 
 
Peng, J. R., Clarke, B. G., and Rouinia, M. (2006). "A Device to Cyclic Lateral Loaded 

Model Piles." Geotechnical Testing Journal (GTJ), ASTM, 29(4), 1-7. 
 
Rajashree, S., & Sundaravadivelu, R. (1996). Degradation model for one-way cyclic lateral 

load on piles in soft clay. Computers and Geotechnics, 19(4), 289-300. 
 
Randolph, M., and Gourvenec, S. (2011). "Offshore Geotechnical Engineering", Spon 

Press, Abingdon. 

Reese, L. C. "Analysis of Laterally Loaded Piles in Weak Rock," Journal of Geotechnical 
and Geoenvironmental Engineering, ASCE, Vol. 123, No. 11, November 1997, 
pp. 1010-1017. 

Reese, L. C., Cox, W.R., and Koop, F. D. (1974). "Analysis of Laterally Loaded Piles in 
Sand." Offshore Technology Conference, Paper OTC 2080, Houston, TX, 473-483. 



118 
 

Reese, L. C., Cox, W.R., and Koop, F. D. (1975). "Field Testing and Analysis of Laterally 
Loaded Piles in Stiff Clay." Proceedings, Offshore Technology Conference, Paper 
2312, May, 1975, Vol. II, pp. 672-690. 

Reese, L. C., and Meyer, B. J. (1979). “Analysis of Single Piles Under Lateral Loading” 
(Tech. Research Report 244-1) Austin, TX: Center for Highway Research, The 
University of Texas at Austin.  

 
Reese, L. C., and Impe, W. V. (2011). Single piles and pile groups under lateral loading. 

CRC Press/Balkema, Leiden. 
 
Reese, L. C., and Wang, S.-T. (2018). “LPILE.” program documentation, Ensoft Inc. 
 
Reese, L. C., and Welch, R. C. (1975).  "Lateral Loading of Deep Foundations in Stiff 

Clay." Journal of the Geotechnical Engineering Division, Proceedings, American 
Society of Civil Engineers, Paper No. 11456, Vol. 101, No. GT7, February, 1975, 
pp. 633-649. 

 
Rollins, K. M., Hales, L. J., Ashford, S. A., and Camp, I. W. M. (2005). “P-Y Curves for 

Large Diameter Shafts in Liquefied Sand from Blast Liquefaction Tests.” Seismic 
Performance and Simulation of Pile Foundations in Liquefied and Laterally 
Spreading Ground. 

 
Schneider, J. A., and Senders, M. (2010). "Foundation Design: A Comparison of Oil and 

Gas Platforms with Offshore Wind Turbines " Marine Technology Society Journal 
44( l ), 32-5l. 

 
Simpson, M., and Brown, D. A. (2003). “Development of P-Y Curves for Piedmont 

Residual Soils”. Highway Research Center, Auburn University. rep. 
 
Thieken, K., Achmus, M., & Lemke, K. (2015). Evaluation of a new p-y approach for piles 

in sand with arbitrary dimensions . In Third International Symposium on Frontiers 
in Offshore Geotechnics (pp. 741-746). Leiden: CRC Press. doi:10.1201/b18442-
102  

 
Wiemann J. Bemessungsverfahren (2007) “für horizontal belastete Pfähle, 

Untersuchungen zur Anwendbarkeit der p–y Methode.” Doctoral dissertation, 
University of Duisburg-Essen, Germany. 

 
Yan, L., and Byrne, P. M. (1992). “Lateral pile response to monotonic pile head 

loading.” Canadian Geotechnical Journal, 29, 955–970. 
 
Yang, M., Luo, R., and Li, W. (2017). “Numerical study on accumulated deformation of 

laterally loaded monopiles used by offshore wind turbine.” Bulletin of Engineering 
Geology and the Environment, 77(3), 911–921. 



119 
 

APPENDIX I: NINERPILE WRAPPER FILE 
 
 
% wrapper file for input deck  
% this is the file that the user modifies. 
clc; clear all; close all; 
%Pile Geometric and Material Properties 
Pile.EI = @(x);     % Flexural Rigidity (kip-in^2) 
Pile.L =;                 % Length of the Pile (in) 
Pile.D=;                    % Dimension parallel to bending axis (in) 
Pile.mcrack=;           %Cracking moment 
Pile.EIcrack=@(m); 
%function that relates EI (kip-in^2) to moment (kip-in) 
%P-Y Curve Inputs 
PY.Depth=;        %Distance from pile head to soil surface (in);  
PY.phi=;           %Effective friction angle (degrees) 
PY.gamma=;        %Effective unit weight (lb/ft^3) 
PY.k=;            %Average depth stiffness factor (lb/in^3) 
PY.tol=;    %tolerance of p-y iteration convergence 
PY.UnlModel=1; %1 is secant stiffness degradation model, 2 is linear with the slope of 
E_pymax 
% Load Time History 
%%% Enter Load Steps Here 
%%%% Make sure that Shear and Moment have the same number of inputs! 
Loading.type=1; %keep as 1 for explicit loading inputs; 
Loading.stepsize=2000; 
Loading.Shear =[... %% Pounds %%  
0 
; 
   ]; 
Loading.Moment=[... %% inch-pounds %% the format is minval:step:maxval 
    zeros(length(Loading.Shear),1) 
    ]; 
%%%Specify the node at which loading should be applied (1 if at top of pile) 
Loading.node=; 
%mesh-specific input data 
femesh.nel = ;       % no. of elements (recommended 1 per inch) 
femesh.bias =;       % bias of the elements 
%output parameters 
plot.nd=; %node number of progression plot 
%specify load step for displacement, moment, slope and soil reaction plots 
plot.step=; 
%Units 
units.force = 'lb';   
units.length = 'in';  
units.time = 's';    
driver=; %This line if for prototyping, leave as 1 for normal use 
%pass the above user input data to the driver function which does the rest. 
if driver==2 
pilefem_driver_proto(Pile,femesh,PY,Loading,plot);   
else 
pilefem_driver_multistep(Pile,femesh,PY,Loading,plot); 
en

mailto:Pile.EIcrack=@(m)
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APPENDIX II: NINERPILE DRIVER FUNCTION 
 
 
function pilefem_driver_multistep(Pile,femesh,PY,Loading,plot) 
%% the main driver function for the one-dimensional finite element code. 
% Pile = a structure array that contains Pile geometry data 
% femesh = a structure array that contains mesh-related data for the Pile 
% units = a structure array holding the units used 
% xc = x coordinates of the nodes 
% EIc, is flexureal regidity  
%% Initializing inputs and preallocating variables 
femesh.nen=2; 
nnp = femesh.nel+1;   % Total number of nodes 
neq = 2*(nnp);        % No. of equations, size of K 
[xc,he] = getx(femesh.nen,femesh.nel,nnp,femesh.bias,Pile.L); % Determines coordinates of 
nodes 
EIc = getEI(xc,Pile.EI); %Determines young's modulus at nodes 
EIc=EIc*1000; %convert to pounds 
EIo=EIc; 
A=getA(xc,PY.Depth,Pile.D,femesh.nel); 
Pu=getPu(xc,PY.phi,PY.gamma,Pile.D,PY.Depth); %Determines ultimate soil capacity at nodes 
Es=ones(femesh.nel+1,1)*2000; % Initializes the initial secant stiffness for the p-y 
curves 
Eslast=zeros(femesh.nel+1,1); 
F=zeros(neq); % initializes F vector 
yn=ones(neq/2); 
Eunl=getEunl(xc,PY.k,Pu,femesh.nel); 
adj=1; 
iter=0; 
Fmax=0; 
count=0; 
%%% Sorting load inputs 
if size(Loading.Shear,2)>1 % If the vector is entered with the wrong dimensions 
    Loading.Shear=transpose(Loading.Shear); % fix the dimensions 
end 
Pileload(:,1)=Loading.Shear; % initialize variable to be used 
Pileload(:,2)=Loading.Moment;   % initialize variable to be used 
s=size(Pileload); %s is used for indexing  
% preallocation of output variables 
displacement=zeros(femesh.nel+1,s(1)); % displacement is preallocated for the size of 
nodes x loading steps 
slope=zeros(femesh.nel+1,s(1)-1); % slope is preallocated for the size of nodes x (load 
steps - 1) 
moment=zeros(femesh.nel+1,s(1)-1);%"" 
shear=zeros(femesh.nel+1,s(1)-1);%"" 
soil=zeros(femesh.nel+1,s(1)-1);%"" 
%% Begin Main Algorithm 
for jj=2:s(1) %% Overall Loop for Load History 
count=0; % count can be used for counting iterations for debugging 
dif=1; % initializing dif, which is used for convergence 
tol=double(PY.tol); % initializing tol from the tolerance in the wrapper 
  
%% Unloading logical test 
if Pileload(jj,1)<=Pileload(jj-1,1) % if the load step is less than... 
    % the last, we need to use the unloading algorithm  
    sr=0.92; 
    if PY.UnlModel==1 
    if iter==0 
    numinc=Fmax/Loading.stepsize; 
    Einc=(Estart./(numinc))%*2; 
    Eincsave=(Estart./(numinc)); 
   %elseif iter < (numinc/3) 
      % Einc=Einc.*sr; 
        %sr=sr-.05; 
    else 
        Einc=Eincsave; 
    end 
    for ii=1:femesh.nel+1 
        if iter==0 
    Es(ii)=Estart(ii); 
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    Eslast(ii)=Es(ii); 
        else 
    Es(ii)=Eslast(ii)-Einc(ii); 
    Eslast(ii)=Es(ii); 
        end 
    end 
    iter=iter+1; 
    else 
    plast=soil(:,jj-adj); 
    adj=adj+2; 
    ydguess=guessyd(pstart,plast,Eunl,ystart,femesh.nel); 
    Es=guessEs(plast, ydguess,femesh.nel); 
    end 
%% Begin unloading loop     
while dif>tol % loop for convergence of soil reaction with p-y curves 
K = getK(femesh.nel,neq,EIc,he,Es); % forming the stiffness matrix.. 
% based on the last secant stiffness calculated in the loop 
F(Loading.node*2-1)=Pileload(jj,1); % forming the force vector from applied loads 
F(Loading.node*2)=Pileload(jj,2);% forming the force vector from applied loads 
y=gety(K,F); % solving for the displacements and rotations 
y=y(:,1); % trimming the y matrix into a vector 
yd=y(1:2:end,1); % isolating the displacements from the y vector 
% calculating the py-described soil reaction from the calculated y vector 
if PY.UnlModel==2 
[pc]  = pyunllin(Pu,femesh.nel,yd,ystart,pstart,Eunl); 
Es=pc./yd; 
else 
pc=Es.*yd;     
end 
if PY.UnlModel==1 
    dif=0; 
else 
dum1=sum(yd.^2); 
dum2=sum(yn.^2); 
dif=abs(dum1-dum2); 
end 
yn=yd; 
reiter=0; 
Elast=Es; 
end %end unload loop 
%% Loading and reloading logical test 
else     
count=count+1;     
if Pileload(jj,1)<Fmax  
    
    for ii=1:femesh.nel+1 
    Es(ii)=Elast(ii)+Einc(ii)*(reiter+1); 
    end 
    reiter=reiter+1;  
%% Begin unloading loop     
while dif>tol % loop for convergence of soil reaction with p-y curves 
K = getK(femesh.nel,neq,EIc,he,Es); % forming the stiffness matrix.. 
% based on the last secant stiffness calculated in the loop 
F(Loading.node*2-1)=Pileload(jj,1); % forming the force vector from applied loads 
F(Loading.node*2)=Pileload(jj,2);% forming the force vector from applied loads 
y=gety(K,F); % solving for the displacements and rotations 
y=y(:,1); % trimming the y matrix into a vector 
yd=y(1:2:end,1); % isolating the displacements from the y vector 
% calculating the py-described soil reaction from the calculated y vector 
pc=Es.*yd;     
if PY.UnlModel==1 
    dif=0; 
else 
dum1=sum(yd.^2); 
dum2=sum(yn.^2); 
dif=abs(dum1-dum2); 
end 
yn=yd; 
end %end unload loop 
end                 
iter=0; 
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%% Begin loading loop 
while dif>tol % beginning of increased loading loop 
K = getK(femesh.nel,neq,EIc,he,Es); % forming the stiffness matrix.. 
% based on the last secant stiffness calculated in the loop 
F(Loading.node*2-1)=Pileload(jj,1); % forming the force vector from applied loads 
F(Loading.node*2)=Pileload(jj,2); % forming the force vector from applied loads 
y=gety(K,F); % solving for the displacements and rotations 
y=y(:,1); % trimming the y matrix into a vector 
yd=y(1:2:end,1); % removing the displacements from the y vector 
pc  = py(Pu,PY.k,A,femesh.nel,xc,yd,Pile.D,PY.Depth);% calculating the py-described... 
% soil reaction from the calculated y vector 
for qq=1:length(pc) %indexing for all values in pc vector 
    if xc(qq)<PY.Depth %if the node is located above the ground 
        pc(qq)=0; %there is no soil reaction 
    end % end if statement 
end % end for statement 
Esn=pc./yd; % calculating the new secant stiffness value for use in 
%stiffness calculations 
Es=Esn; %set the secant stiffness to the new value 
dum1=sum(yd.^2); %defining the first of two dummy variables used for convergence 
dum2=sum(yn.^2); %defining the second of two dummy variables used for convergence 
dif=abs(dum1-dum2);% calculating the absolute difference between dummies 
yn=yd; %setting yn as the last values of the displacements for convergence purposes 
ystart=yd; %setting ystart to the last calculated value of displacement.. 
%this will be used to determine the unloading line 
pstart=pc;%setting pstart to the last calculated value of soil resistance.. 
%this will be used to determine the unloading line 
Estart=Es;%setting Estart to the last calculated value of secant stiffness 
Fmax=Pileload(jj,1); 
count=count+1; 
if count==100 
    disp('The soil maximum capacity my be exceeded') 
    break 
end 
iter=0; 
end % end of while loop 
end% end unload logical test if statement 
theta=y(2:2:end,1); % organizing rotation values 
mc=getm(theta,EIc, xc); % organizing moment values 
mc=mc./1000; % changing moment units 
for ii=1:length(mc) 
    if mc(ii)>Pile.mcrack 
        EIold=EIc(ii); 
        EIc(ii)=getEIcrack(mc(ii),Pile.EIcrack); 
        EIc(ii)=EIc(ii)*1000; 
        if EIc(ii)>EIold 
            EIc(ii)=EIold; 
        end 
    end 
end 
vc=getv(mc,xc); %calculating shear in pile 
ptest=ismember(jj-1,plot.step);  
%if ptest==1 
%plotpile( yd, theta, pc, mc, vc, xc,jj ); 
%end 
if s(1)==1 
    break 
end % end of if statement for single load case 
  
displacement(:,jj)=yd; 
slope(:,jj)=theta; 
moment(:,jj)=mc; 
shear(:,jj)=vc; 
soil(:,jj)=pc;     
end % end of load history loop 
%% Output 
for xx=2:s(1) 
 plotpile(displacement(:,xx),slope(:,xx),soil(:,xx), moment(:,xx),shear(:,xx),xc, xx) 
end 
%%%%% save output data as columns of .mat files %%% 
filename='coordinates.mat'; 
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save(filename,'xc') 
filename='displacement.mat'; 
save(filename,'displacement') 
filename='slope.mat'; 
save(filename,'slope') 
filename='moment.mat'; 
save(filename,'moment')  
filename='shear.mat'; 
save(filename,'shear')  
filename='soil.mat'; 
save(filename,'soil') 
plotprog(displacement,slope,moment,soil,plot.nd,Pileload) 
end% end of driver funciton
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APPENDIX III: NINERPILE STIFFNESS MATRIX FUNCTION 
 
 
function K = getK(nel,neq,EIc,he,Es) 
% getK calculates the element stiffness matrix components and assembles 
% them to form the global stiffness matrix K 
% nel = no. of elements 
% nen = no. of element nodes 
% n = no. of equations/unknowns 
% Ec = nodal values of Young's modulus 
% Ic = nodal values of second moment of area 
% he = vector of element lengths 
% nint = no. of integration points  
K    = zeros(neq,neq); 
k    = zeros(4,4); 
for ii=2:nel+1 
 %%%%%%%%%%%%%%%%%%%%%%%%% k(1,1) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
    fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))...  %Interpolation of EI 
        .*(3/2.*z)...                                    %(N1'') 
        .*(3/2.*z)...                                    %(N1'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(1-3/4.*(1+z).^2+1/4.*(1+z).^3)...                %(N1) 
        .*(1-3/4.*(1+z).^2+1/4.*(1+z).^3)...                %(N1) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 
        .*(he(ii-1)/2));                                %(he/2) 
    dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(1,1)=dummy1+dummy2+dummy3+dummy4;       %element stiffness matrix placement 
 %%%%%%%%%%%%%%%%%%%% k(1,2) and k(2,1) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))... %Interpolation of EI 
        .*(3/2.*z)...                                    %(N1'') 
        .*(1/4.*he(ii-1).*(3.*z-1))...                     %(N2'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(1-3/4.*(1+z).^2+1/4.*(1+z).^3)...                %(N1) 
        .*(1/8.*he(ii-1).*(1+z).*(1-z).^2)...               %(N2) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 
        .*(he(ii-1)/2));                                 %(he/2) 
    dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(1,2)=dummy1+dummy2+dummy3+dummy4; 
    k(2,1)=k(1,2);                        %element stiffness matrix placement 
     %%%%%%%%%%%%%%%%%%%% k(1,3) and k(3,1) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))... %Interpolation of EI 
        .*(3/2.*z)...                                    %(N1'') 
        .*(-3/2.*z)...                                   %(N3'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(1-3/4.*(1+z).^2+1/4.*(1+z).^3)...                %(N1) 
        .*(3/4.*(1+z).^2-1/4.*(1+z).^3)...                  %(N3) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 
        .*(he(ii-1)/2));                                 %(he/2) 
    dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(1,3)=dummy1+dummy2+dummy3+dummy4; 
    k(3,1)=k(1,3); 
        %%%%%%%%%%%%%%%%%%%% k(1,4) and k(4,1) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))... %Interpolation of EI 
        .*(3/2.*z)...                                    %(N1'') 
        .*(1/4.*(3.*z+1).*he(ii-1))...                     %(N4'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(1-3/4.*(1+z).^2+1/4.*(1+z).^3)...                %(N1) 
        .*(1/8.*he(ii-1).*(1+z).^2.*(z-1))...               %(N4) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 
        .*(he(ii-1)/2));                                 %(he/2) 
   dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
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    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(1,4)=dummy1+dummy2+dummy3+dummy4; 
    k(4,1)=k(1,4); 
        %%%%%%%%%%%%%%%%%%%%%%%%%% k(2,2) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))... %Interpolation of EI 
        .*(1/4.*he(ii-1).*(3.*z-1))...                     %(N2'') 
        .*(1/4.*he(ii-1).*(3.*z-1))...                     %(N2'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(1/8.*he(ii-1).*(1+z).*(1-z).^2)...               %(N2) 
        .*(1/8.*he(ii-1).*(1+z).*(1-z).^2)...               %(N2) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 
        .*(he(ii-1)/2));                                 %(he/2) 
   dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(2,2)=dummy1+dummy2+dummy3+dummy4; 
       %%%%%%%%%%%%%%%%%%%%%%%%%%% k(2,3) and k(3,2) %%%%%%%%%%%%%%%%%%%%%%%% 
    fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))... %Interpolation of EI 
        .*(1/4.*he(ii-1).*(3.*z-1))...                     %(N2'') 
        .*(-3/2.*z)...                                   %(N3'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(1/8.*he(ii-1).*(1+z).*(1-z).^2)...               %(N2) 
        .*(3/4.*(1+z).^2-1/4.*(1+z).^3)...                  %(N3) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 
        .*(he(ii-1)/2));                                 %(he/2) 
   dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(2,3)=dummy1+dummy2+dummy3+dummy4; 
    k(3,2)=k(2,3); 
         %%%%%%%%%%%%%%%%%%%%%%%%%%% k(2,4) and k(4,2) %%%%%%%%%%%%%%%%%%%%%%%% 
    fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))... %Interpolation of EI 
        .*(1/4.*he(ii-1).*(3.*z-1))...                     %(N2'') 
        .*(1/4.*(3.*z+1).*he(ii-1))...                     %(N4'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(1/8.*he(ii-1).*(1+z).*(1-z).^2)...               %(N2) 
        .*(1/8.*he(ii-1).*(1+z).^2.*(z-1))...               %(N4) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 
        .*(he(ii-1)/2));                                 %(he/2) 
   dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(2,4)=dummy1+dummy2+dummy3+dummy4; 
    k(4,2)=k(2,4); 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k(3,3) %%%%%%%%%%%%%%%%%%%%%%%% 
    fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))... %Interpolation of EI 
        .*(-3/2.*z)...                                   %(N3'') 
        .*(-3/2.*z)...                                   %(N3'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(3/4.*(1+z).^2-1/4.*(1+z).^3)...                  %(N3) 
        .*(3/4.*(1+z).^2-1/4.*(1+z).^3)...                  %(N3) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 
        .*(he(ii-1)/2));                                 %(he/2) 
   dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(3,3)=dummy1+dummy2+dummy3+dummy4; 
        %%%%%%%%%%%%%%%%%%%%%% k(3,4) and k(4,3) %%%%%%%%%%%%%%%%% 
    fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))... %Interpolation of EI 
        .*(-3/2.*z)...                                   %(N3'') 
        .*(1/4.*(3.*z+1).*he(ii-1))...                     %(N4'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(3/4.*(1+z).^2-1/4.*(1+z).^3)...                  %(N3) 
        .*(1/8.*he(ii-1).*(1+z).^2.*(z-1))...               %(N4) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 



126 
 

        .*(he(ii-1)/2));                                 %(he/2) 
   dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(3,4)=dummy1+dummy2+dummy3+dummy4; 
    k(4,3)=k(3,4);    
      %%%%%%%%%%%%%%%%%%%%%%%%%%%% k(4,4)%%%%%%%%%%%%%%%%%%%%%%%%% 
    fun=@(z)((EIc(ii-1).*((1-z)/2)+EIc(ii).*((1+z)/2))... %Interpolation of EI 
        .*(1/4.*(3.*z+1).*he(ii-1))...                     %(N4'') 
        .*(1/4.*(3.*z+1).*he(ii-1))...                     %(N4'') 
        .*(2/he(ii-1)).^3 ...                            %(2/he).^3 
        +(1/8.*he(ii-1).*(1+z).^2.*(z-1))...               %(N4) 
        .*(1/8.*he(ii-1).*(1+z).^2.*(z-1))...               %(N4) 
        .*((Es(ii-1).*((1-z)/2)+Es(ii).*((1+z)/2)))...    %Interpolation of Es 
        .*(he(ii-1)/2));                                 %(he/2) 
    dummy1=(0.652145)*fun(-0.339981); %gaussian 4 point quadrature 
    dummy2=(0.652145)*fun(0.339981); 
    dummy3=(0.347855)*fun(-0.861136); 
    dummy4=(0.347855)*fun(0.861136); 
    k(4,4)=dummy1+dummy2+dummy3+dummy4; 
  
    
   K((ii-1)*2-1:(ii-1)*2+2,(ii-1)*2-1:(ii-1)*2+2)=K((ii-1)*2-1:(ii-1)*2+2,(ii-1)*2-1:(ii-
1)*2+2)+k; 
    
end 
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APPENDIX IV: NINERPILE ULTIMATE SOIL RESULTANT FUNCTION 
 
 
function [Pu] = getPu(xc,phi,gamma,D,depth) 
%This function computes the ultimate soil capacity at each node 
gamma=gamma/1728; %conversion from lb/ft^3 to lb/in^3 
Kp=(tand(45+phi/2)^2); 
Ka=(tand(45-phi/2)^2); 
Ko=(1-sind(phi)); 
Pu=zeros(length(xc),1); 
for ii=1:length(xc) 
    pu1=gamma*(xc(ii)-depth)*(D*(Kp-Ka)+xc(ii)*Kp*tand(phi)*tand(45+phi/2)); 
    pu2=gamma*D*(xc(ii)-depth)*(Kp^3+2*Ko*Kp^2*tand(phi)+tand(phi)-Ka); 
    if pu1<pu2 
        Pu(ii)=pu1; 
    else 
        Pu(ii)=pu2; 
    end 
    if xc(ii)<=depth 
        Pu(ii)=0; 
    end 
end 
end
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APPENDIX V: NINERPILE POSITIVE LOAD STEP P-Y CURVE FUNCTION 
 
 

function [ pc ] = py( Pu,k,A,nel,xc,yc,d,zstart) 
%This function is the definition of the py curve 
pc=zeros(nel+1,1); 
for ii=1:nel+1 
    if Pu(ii)==0 
        pc(ii)=0; 
    else 
pc(ii)=A(ii)*Pu(ii)*tanh((k*(xc(ii)-zstart)/(A(ii)*Pu(ii)))*yc(ii)); 
    end 
end 
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