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ABSTRACT 

 

 

AMIR Y. ALANSARI. A Comprehensive Study of Drinking Water Coagulation with Aluminum 

Sulfate. (Under the direction of DR. JAMES E. AMBURGEY) 

 

 

Coagulation is usually the first and most important step in conventional drinking water 

treatment processes. The efficiency of all downstream processes is directly dependent on the 

effectiveness of the coagulation stage. Coagulants such as aluminum sulfate (alum) have been used 

for treating drinking water for over a century now. Since the early 1900s, researchers have been 

studying coagulants in hopes of understanding the mechanisms by which they help remove 

contaminants from water. Despite the significant contributions and breakthroughs by many 

researchers, we still rely on a trial-and-error process (jar testing) to optimize coagulation. 

Accurately modeling the coagulation process has been nearly impossible because water is a 

chemically complex medium that varies spatially and temporally. There are also many competing 

and interacting factors that influence how coagulants interact with contaminants and the resulting 

overall treatment efficiency.  

This research aimed to develop an accurate computer model for coagulation with aluminum 

sulfate with practical, real-world applications. The study identified and addressed five primary 

challenges related to the study and modeling of coagulation. The five challenges were as follows: 

(1) independently control water quality parameters, (2) isolate the effects of coagulation dose and 

pH, (3) standardize the jar test procedure, (4) identify performance metrics that are scalable and 

independent of jar test mixing parameters, and (5) establish effective optimization strategies. A 

design of experiments approach was used to create 16 synthetic waters based on four water quality 

factors (dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA), alkalinity, and 
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turbidity) at two discrete levels. An extensive dataset was built by measuring the performance at 

1,632 unique combinations of water quality and coagulation conditions where all relevant 

coagulation factors – water quality, coagulation conditions, and mixing parameters – were tightly 

controlled. The measured performance metrics were settled and filtered water turbidity, DOC, 

UV254, zeta potential, and total chemical costs.  

Efforts to predict turbidity removals using simple regression models were unsuccessful. 

The regression models considered ranged from linear regression models with varying complexity 

to more advanced regression models based on machine learning such as support vector machines 

and gaussian process regression. When tested on a new water (i.e., one that was not used to train 

the model), the root-mean-square error (RMSE) of the predicted turbidity ranged between 28 – 

37%, while the R2 values ranged between 0.41 – 0.64. It was apparent that regression models could 

not model all the complex underlying non-linear behaviors of the coagulation process.  

On the other hand, a deep neural network (DNN) trained on the same dataset produced 

acceptable results. The RMSE and R2 values of the trained neural network (on the test dataset) 

were 9.6% and 0.88, respectively. The user input parameters were only DOC, SUVA, alkalinity, 

and turbidity of the raw water. More importantly, the trained neural could generate a contour plot 

(a process that requires 17 jar tests to produce experimentally) that correctly predicted the size and 

shape of the effective coagulation boundaries with acceptable accuracy. Similarly, the model 

correctly predicted the behavior of the coagulation process to changes in water quality conditions 

(e.g., an increase in SUVA). The trained neural network could also predict full-scale filtered 

turbidity removals within ±1.4% at 11 different drinking water treatment plants under cold and 

warm water conditions. It should be emphasized that these results were obtained simply by 

providing raw water quality parameters. The model was only trained to predict filtered water 
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turbidity removals using synthetic waters. It can be concluded that deep neural networks are ideally 

suited for modeling complex drinking water treatment problems such as coagulation, a task in the 

past considered to be virtually impossible.  
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PREFACE 

 

 

Coagulation is defined herein as the process of adding chemicals to destabilize 

contaminants in the water treatment process, which is a topic that has been widely studied for over 

a century. Thanks to the contributions of drinking water treatment researchers such as Langelier, 

Black, O’Melia, Amirtharajah, Edzwald, and countless others, we have a basic understanding of 

the mechanisms and factors that are involved. They developed tools that made it possible to 

monitor and optimize coagulation and published hundreds of peer-reviewed articles and multiple 

textbook chapters on the topic. Yet, coagulation is often still described as more of an art than a 

science. Coagulation exists in two discrete realms – theory and practice. Unfortunately, as water 

treatment theory was developed, it was often necessary to oversimplify this complex phenomenon 

by making assumptions to fit rudimentary models to facilitate understanding some of the 

mechanisms at play but have little to no practical, real-world applications. When it comes to 

practice, the best tool we have at our disposal is based on trial-and-error, which has largely 

remained unchanged since jar testing was first introduced more than a century ago by Langelier. 

Many questions about coagulation remain unanswered. However, interest in and research funding 

for coagulation has been low for decades. To make matters worse, many of the great coagulation 

teachers and innovators are either deceased or retired, which means there will be a lack of guidance 

for future researchers and practitioners. 

This document will review what is known about coagulation from a practical perspective 

leaving out some of the theory and adding new research results in an attempt to provide the reader 

with a clearer and more useful understanding of coagulation. The goal was to bridge the gap 

between coagulation theory and coagulation practice. In this comprehensive study, well-

established practical guidelines and theories were scrutinized, compared, and tested. This study 
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was limited to a single coagulant – aluminum sulfate (or alum). Hopefully, the same principles and 

approaches presented in the following pages can be directly applied to many other coagulants used 

to treat water.  

Although this document is being submitted as a doctoral dissertation, it does not read like 

one or follow the typical format. The document was written in the form of a comprehensive 

textbook chapter or a manual on coagulation. 
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CHAPTER 1: COAGULATION 

 

 

1.1.   Why is coagulation key to water treatment? 

Coagulation is typically the first step in most conventional surface water treatment plants 

(Figure 1.1). To a casual observer visiting a treatment facility, this step would probably be the least 

noticeable or impressive process at the entire facility. In essence, all that is occurring in this step 

is the addition of a chemical, the coagulant, at a concentration measured in parts per million in 

water undergoing treatment. However, this seemingly simple step is, in fact, the cornerstone of 

modern surface water treatment. The success of every single subsequent process after coagulation 

is directly dependent on the efficiency of this stage. Without coagulation, particles would be too 

small to settle and too stable to filter. Disinfection would be less efficient and typically lead to the 

production of higher concentrations of carcinogenic disinfection by-products.  

 
Figure 1.1. A schematic of a conventional surface water treatment plant 

 

In April of 1993, roughly 400,000 residents of Milwaukee, WI suffered from severe nausea, 

stomach cramps, and watery diarrhea for an average of 7-10 days each. The cause was determined 

to be the presence of a protozoan pathogen called Cryptosporidium parvum in the distribution 

system (Fox and Lytle 1996). Officials conducted an investigation to determine the cause of the 

outbreak and found that the treatment plant had elevated filtered turbidity levels for several days 

leading up to the outbreak (Figure 1.2a). Chlorination is practically ineffective against 



2 

    

 

Cryptosporidium; therefore, the primary barrier was filtration. Elevated filtered water turbidity 

levels increase the probability that Cryptosporidium will be able to pass through the treatment 

process. Figure 1.2b shows the direct correlation between turbidity and Cryptosporidium removals 

(LeChevallier and Norton 1992). The removal rate of filters can be improved either by increasing 

the contaminant's size where it would be too large to pass through the pores or modify the naturally 

negative surface charge on the contaminant such that it would attach to the negatively charged 

surfaces of the filter media. 

 
Figure 1.2. (a) Milwaukee filtered turbidity removals (b) Relationship between Cryptosporidium 

and turbidity removals 

 

The purpose of adding a coagulant is to increase the likelihood that a downstream 

engineered process, such as filtration, would efficiently remove a contaminant of interest. When 

done correctly, the natural negative surface charge on the Cryptosporidium would be modified and 

result in its aggregation with other particles to form floc that is large enough to settle and close 

enough to neutrally charged to overcome the electrostatic repulsion forces and attach to the 

negatively charged filter media. The incident in Milwaukee was quite simply a failure of the 
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coagulation process, which impacted filtration removals and ultimately allowed Cryptosporidium 

to pass through the treatment system and enter the distribution system at elevated concentrations.  

The importance of coagulation is not limited to the removal of chlorine-resistant pathogens 

such as Cryptosporidium. Coagulation reduces the concentration of dissolved natural organic 

matter (NOM), which is a precursor of carcinogenic disinfection by-products (DBPs) such as 

chloroform (Reckhow and Singer 1984). Coagulation has also been shown to improve the 

performance of low-pressure membrane filters by reducing membrane fouling and removing 

contaminants that are smaller than the membrane’s pores (Alansari et al. 2015; Alansari et al. 

2016). Coagulation has even been shown to effectively remove microplastics from drinking water 

(Skaf et al. 2020).   

1.2.   The Nature of Contaminants 

There are many ways to classify contaminants in water. Contaminants may be dissolved, 

particulate, suspended, colloidal, soluble, insoluble, organic, inorganic, microbial, regulated, 

unregulated, emerging, anthropogenic, point source, non-point source, or a combination of the 

above classifications. Classifications could be based on a set of operational criteria or how a given 

contaminant impacts the water quality. An example of an operational classification is when a water 

sample is filtered through a 0.45𝜇m membrane filter to determine whether a contaminant is 

dissolved or particulate. The fraction of the sample that passes through the filter is classified as 

being dissolved, while the remainder is classified as being particulate. The United States 

Environmental Protection Agency (USEPA) classifies a contaminant as any physical, chemical, 

biological, or radiological substance in water. 
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In surface water treatment, contaminants are generally referred to as particles. Particles of 

concern are typically in the range of 0.001 – 10𝜇𝑚, including physical, chemical, biological, or 

radiological substances. Figure 1.3 compares the sizes of some of these particles. A common 

classification of particles in drinking water treatment is whether particles are suspended or 

colloidal. Particles larger than 1𝜇m are typically classified as suspended, while particles smaller 

than 1𝜇m are classified as colloidal. With minimal turbulence, suspended particles eventually 

settle out of the water, whereas colloidal particles remain in suspension indefinitely. As a result, 

the removal of colloidal contaminants such as bacteria, viruses, clays, and NOM by 

sedimentation/settling is expected to be negligible. Thus, the primary barrier against such 

contaminants would be expected to be filtration. 

 
Figure 1.3. Size spectrum of common particles 
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Membrane filters can consistently produce water free of particles larger than the membrane 

pores regardless of the incoming raw water quality. Microfiltration membranes can remove 

particles as small as 0.1𝜇m while ultrafiltration membranes can remove particles as small as 

0.001𝜇m. However, the small pores require a relatively high energy input (i.e., pressure) to push 

the water through the pores, especially as the membrane filter begins to clog. On the other hand, 

the pores in a sand filter are approximately 50-75μm, which is large enough to be operated by 

gravity (i.e., static head). Compared to membrane filtration, granular media (sand) filters are 

cheaper to operate and maintain; however, the large pores also make it possible for all colloidal 

particles and many of the smaller suspended particles to pass through the filter grains and remain 

in the treated drinking water supply. Unfortunately, this includes most of the particles of concern, 

such as protozoan cysts, bacteria, viruses, and NOM. Nevertheless, the preferred filtration method 

for most surface water treatment plants in the United States has been granular media filtration. So, 

how does a filter with 75-μm holes remove 5-μm Cryptosporidium oocysts or smaller particles? 

In layman’s terms, the particles must increase in size and/or become stickier. Consequently, 

the larger particles would be more likely to settle in the sedimentation process or become too large 

and/or sticky to pass through the filter. It is possible to create larger particles by combining several 

smaller ones. This process is typically called flocculation, and the aggregate particles are called 

flocs. For this process to occur, particles must first collide with one another, and their collisions 

must subsequently result in their sticking together to form a floc. Flocculation, in the context of 

drinking water treatment, does not occur naturally. Most particles in water have a negative surface 

charge; therefore, repulsive forces exist between the negatively charged particles that repel them 

and prevent the formation of floc. The origin of the negative surface charge is of little to no 

practical significance to the application of coagulation in drinking water treatment. Still, this 
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information is generally agreed upon and available from multiple sources (Gregory 2005; Bratby 

2016; Hendricks 2016). However, it is crucial to understand how surface charge plays a role in the 

coagulation process.  

1.3.   Water Treatment Destabilization Mechanisms 

Colloidal particles remain in suspension primarily due to their small size and remain 

separated due to their negatively charged surface. In this state, the particles are referred to as being 

stable or existing in a stable suspension. Thus, coagulation aims to destabilize these particles, and 

the process is called particle destabilization. Particle destabilization can be achieved by four 

mechanisms: (1) compression of the electrical double layer; (2) adsorption and charge 

neutralization; (3) adsorption and interparticle bridging; and (4) enmeshment in a precipitate 

(Amirtharajah and Mills 1982; Letterman, Vanderbrook and Sricharoenchaikit 1982; Amirtharajah 

and Trusler 1986). Bratby (2016) summarized destabilization mechanisms as (1) a reduction of the 

effective surface charge, (2) a reduction of the zone of influence of the surface charge, and (3) a 

reduction of the number of adsorbed water molecules.  

The predominant mechanisms involved during coagulation for water treatment purposes 

(represented by the arrows in Figure 1.4) are charge neutralization of negatively charged particles 

by adsorption of positively charged metal species and sweep flocculation where particles are 

enmeshed into solid precipitates (Dennett et al. 1996; Johnson and Amirtharajah 1983; Pernitsky 

and Edzwald 2006). The dominant coagulation mechanism usually depends on the coagulant dose 

and pH during coagulation. This will be discussed in the subsequent sections.  
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Figure 1.4. Water treatment destabilization mechanisms (after Dennett et al. (1996)) 

 

Destabilization of negatively charged particles can be achieved with nearly any metal salt, 

i.e., one that contains positively charged ions (e.g., sodium chloride or magnesium sulfate). 

However, researchers more than a century ago discovered that the effectiveness of a metal 

coagulant was related to its valence (charge number). Specifically, the concentration of cations 

required to destabilize a negatively charged particle decreases by a factor of 1/z6, where z is the 

valency of the metal coagulant. In other words, the required dose of a +3 coagulant would be 

roughly 730 times lower than the dose required for a +1 coagulant. This phenomenon is known as 

the Schulze-Hardy rule. 

Figure 1.5 demonstrates the Schulze-Hardy effect with different metal coagulants; 

however, a careful examination of the results would reveal that the trend does not quite follow the 

1/z6 ratio (Smith 1920). As quoted by most drinking water treatment textbooks, this is to be 

expected as the Schulze-Hardy rule is an overly simplistic model of destabilization. The intent here 
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is simply to demonstrate that trivalent (+3 charge) salts are more effective than divalent (+2 charge) 

salts followed by monovalent (+1 charge) salts. Again, while monovalent salts can be used to 

destabilize contaminants in water, the concentrations required would approach seawater levels. 

For this reason, metal coagulants used in drinking water treatment are generally trivalent types. 

 

Figure 1.5. Effect of electrolytes on the coagulation and settling of clay 

suspensions after 1-hour of settling. From (Smith 1920) 

 

1.4.   Surface Charge Measurement 

Surface charge measurement techniques generally fall under two categories: streaming 

potential and electrophoresis. The key difference between the two phenomena is whether the liquid 

is moving relative to the particle (streaming potential) or vice versa (electrophoresis). The 

phenomena are covered in detail by Gregory (2005). 
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Most particles in water are negatively charged; however, the suspension as a whole (water 

and particles) has a net zero charge. Figure 1.6 shows a diagram of a negatively charged particle 

in solution. Negatively charged particles attract positively charged ions (counterions) to form a 

rigid layer that surrounds the particle called the Stern layer. The Stern layer is considered to be 

rigid (fixed) because counterions are adsorbed onto the surface of the negatively charged particle 

and remain with the particle as it moves relative to the fluid. However, electroneutrality (i.e., zero 

net charge) is typically not satisfied at the Stern layer; therefore, the field of attractive and repulsive 

forces extends beyond the Stern layer until electroneutrality is satisfied. As a result, another 

distinct layer of loosely bound counterions surrounds the particle. The second layer's outer-

boundary is called the diffuse layer (also known as the Gouy-Chapman diffuse layer). Ions can 

freely move between the diffuse layer and the bulk solution. This particle model, along with the 

layers, is collectively known as the electrical double layer (EDL).  

 
Figure 1.6. The electrical double layer 
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As noted above, when a particle moves relative to the fluid, the Stern layer moves with the 

particle while the diffuse layer does not, and those ions can be interchanged with those in the bulk 

solution. A separation boundary develops between the two layers, known as the shear plane. 

Measurements of a particle’s surface charge cannot be made directly; therefore, most 

quantifications of a particle’s surface charge are made approximately at the shear plane. The 

potential at the shear plane is called the zeta potential. Zeta potential is measured in units of 

millivolts (mV). Zeta potentials of particles typically found in water are shown in Table 1.1.  

Table 1.1. Zeta potential of particles in water 

Particle Type Zeta Potential [mV] 

Clays (kaolinite, montmorillonite)1 -15 to -20 

Viruses2 -15 to -53 

Bacteria2 -5 to -50 

Protozoan Cysts1,2 -7 to -40 

Algae1 -3 to -30 

Ottawa Sand at pH 7.03 -100 
1 Hendricks, 2016; 2 Polaczyk et al. 2020; 3 Truesdale et al. 1998 

 

1.4.1. Streaming Current Monitor 

A streaming current monitor (SCM) is an instrument that relies on the streaming potential 

phenomenon. One of the perks of SCM is that readings are immediately available (similar to 

placing a pH electrode in water) and are representative of the bulk solution. As a result, SCMs 

have been mostly utilized as continuous (online) monitors to monitor coagulant dosing and 

maintain optimal performance at drinking water treatment plants (Dentel, Thomas and Kingery 

1989). The signal measured by the SCM is proportional to the charge on the surface of the particles 

(i.e., zeta potential); however, the magnitude and units of the measurement are relative and 

instrument-specific.  
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While the SCM has been marketed as a coagulation control strategy, it is essential to note 

that the SCM signal can be influenced by many factors besides the surface charge of the water. 

Dentel and Kingery (1989) reported that the plant flow rate, coagulant type and strength, the 

concentration of solids, pH, conductivity, temperature, detention time, and sensor fouling are all 

relevant factors that affect the SCM readings. Therefore, a change in the SCM reading should not 

always be interpreted as a change in coagulation requirements. Manufacturers of online SCMs 

recommend optimizing coagulation conditions using a jar tester to establish a setpoint.  

1.4.2. Zeta Potential 

Electrophoresis is a phenomenon that occurs when an electric field is applied to a liquid 

containing charged particles. Particles travel towards the oppositely charged electrode at a velocity 

that is a function of their charge, the viscosity of the fluid, and the applied voltage gradient (Black 

and Hannah 1961; Riddick 1961). Operationally, this phenomenon is quantified in terms of 

electrophoretic mobility. In early coagulation studies, the process involved microscopically 

observing a particle and recording the time the particle covered a given distance under an applied 

voltage (Black and Smith 1962). Compared to streaming current, early electrophoretic 

measurement techniques had the disadvantage of being relatively lengthy and subjective as it 

required both the selection and observation of individual particles (Bratby 2016). However, 

modern advancements in light scattering measurement techniques and instrumentation have 

primarily addressed these issues.  

As noted above, electrophoretic mobility is directly related to the surface charge of the 

particle, i.e., its zeta potential. Several equations have been proposed for calculating the zeta 

potential from the experimentally determined electrophoretic mobility (Polaczyk 2010). The 
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appropriate equation depends on the thickness of the double layer, commonly referred to as the 

Debye length (𝜅−1), and the radius of the particle. Most modern instruments allow the user to 

define or select a zeta potential model for their analyses. Polaczyk et al. (2020) compared five 

different models used to calculate zeta potential from electrophoretic mobilities of fifteen different 

microorganisms under simulated surface water conditions. The microorganisms investigated and 

their recommended zeta potential models are shown in Table 1.2. Additionally, the authors 

presented a simple graphical guideline for selecting the appropriate zeta potential model (Figure 

1.7).  

Table 1.2. Recommended zeta potential models for microorganisms in water 

Microbe Class Organism Name Recommended Model 

Bacteriophages MS2 Modified Booth 

phi X174 Modified Booth 

Human Viruses HAV HM-175 Henry 

Echovirus 1 Henry 

HAdV2 Henry 

HadV40 Modified Booth 

Vegetative Bacteria F. tularensisa Helmholtz-Smoluchowski 

Y. pestisa Helmholtz-Smoluchowski 

E. faecalis Helmholtz-Smoluchowski 

S. Typhimuriuma Helmholtz-Smoluchowski 

E. colia Helmholtz-Smoluchowski 

Bacterial Endospores B. atrophaeus Helmholtz-Smoluchowski 

B. anthracis Helmholtz-Smoluchowski 

Surrogates Microspheresb O’Brien-Hunter 

Parasites C. parvum Helmholtz-Smoluchowski 

G. intestinalis Helmholtz-Smoluchowski 
a gram-negative 
b Carboxylate modified 4.5 μm Fluoresbrite™ YG, Polysciences, Inc 

 



13 

    

 

 
Figure 1.7. Zeta potential model zone chart 

 

1.5.   The Zeta Potential Paradox 

It is generally accepted that good turbidity removal can be achieved with a post-coagulation 

zeta potential between ± 5 – 10 mV (Riddick 1961; Pernitsky et al. 2011). Figure 1.8 shows a 

contour plot of the average zeta potential measurements from a series of jar tests using a synthetic 

water. The figure was constructed using a total of 102 data points ranging from 3 – 100 mg/L as 

alum-14 and pH 5.0 – 8.0, represented by the black data points. Post-coagulation zeta potential 

samples were collected at the end of a one-minute rapid mix stage. The overlaid pattern in Figure 

1.8 represents the boundary where the measured filtered turbidity removals were below 0.3 NTU 

(the current filtered turbidity standard in the United States). 

According to Figure 1.8, turbidity removals were generally achieved between pH 6.0 and 

pH 8.0 above 20 mg/L as alum-14. A close examination of the results revealed that while effective 



14 

    

 

turbidity removals generally coincided with the recommended zeta potential range, the zeta 

potential value itself was not a good predictor of turbidity removals. For example, the measured 

zeta potentials at Conditions A and B (Figure 1.8) were –2.38 (±3.44 mV) and –2.48 mV (±4.05 

mV), respectively. Based on the rule of thumb on zeta potential, both conditions would be expected 

to achieve high filtered turbidity removals; however, the actual filtered turbidity removals were 

94% at pH 6.0 at Condition A and –40% at pH 5.5 at Condition B. This suggests that there may be 

other forces involved in the coagulation process besides the simple electrostatic interactions, as 

noted by others (Johnson and Amirtharajah 1983). 

 
Figure 1.8. Contour plot of average zeta potential measurements 
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 The range of effective zeta potential values leading to good removals may depend on the 

specific coagulant dose and coagulation pH. Figure 1.9 shows the post-coagulation zeta potential 

measurements from a series of jar tests with 16 different waters. Details of the jar test procedure 

and investigated waters will be discussed in subsequent chapters. The post-coagulation zeta 

potentials were plotted as a function of the applied dose and measured post-coagulation pH. The 

color of the symbols corresponded to the selected coagulant dose range. For example, blue symbols 

correspond to conditions where the applied coagulant dose was between 15 and 30 mg/L as alum-

14, while red symbols correspond to conditions where the dose was over 30 mg/L as alum-14. The 

entire range of zeta potential measurements (n=1,632) was plotted in the top panel, whereas only 

conditions that resulted in a filtered water turbidity of ≤ 0.3 NTU were plotted in the bottom panel.  

A visual pairwise comparison of the results in the top and bottom panels would provide an 

estimate of the effective zeta potential range for a given dose and pH. For example, the zeta 

potential measurements of the low dose conditions (yellow symbols: 3 – 15 mg/L as alum-14) at 

pH 6.5 ranged from approximately -40 to 5 mV in the top panel; however, a filtered water turbidity 

below 0.3 NTU was primarily achieved with conditions that had a zeta potential of approximately 

-20 to 5 mV. Similarly, at pH 6.5, almost all the high dose conditions (red symbols) in the -20 to 

10 mV achieved a filtered water turbidity below 0.3 NTU. At pH 6.0, the effective zeta potential 

range for the high dose conditions increased to 0 to +15 mV.  

Figure 1.9 could potentially be used as a guide for selecting a zeta potential range that 

would likely result in satisfactory removals based on the applied coagulation conditions. However, 

a close examination of the results would reveal that filtered turbidity removals are not simply a 

function of the applied dose and measured zeta potential (shown in Figure 1.8), particularly in the 
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low pH and below 30 mg/L as alum-14 range. For example, approximately 85% of the cases in the 

range of -10 to 0 mV and pH 5.0 did not achieve a filtered turbidity removal below 0.3 NTU.  
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1.6.   Coagulants 

 Coagulants used in drinking water treatment can be classified as being either metal salts, 

inorganic polymers, or organic polymers. The third class of coagulants, referred to as natural 

coagulants, has recently received extensive research interest; however, full-scale applications of 

these type of coagulants is still very limited. Metal coagulants (also known as inorganic 

coagulants) have been the preferred coagulant type primarily due to their relatively low cost and 

high availability. Organic polymers are typically used as coagulant aids. Metal coagulants in 

drinking water treatment generally fall under two categories: (1) aluminum-based and (2) iron-

based. Both types of coagulants are typically available in the form of chlorides (e.g., ferric 

chloride) and sulfates (e.g., aluminum sulfate). Total chemical costs are usually the primary factor 

that dictates the selection of a suitable coagulant; however, it can sometimes depend on the type 

of water being treated and the facility's specific treatment goals (Haarhoff and Cleasby 1988; 

Crozes, White and Marshall 1995).  

Aluminum sulfate (better known as alum) is the most commonly used coagulant in the 

United States. Alum is available in both dry and liquid form; however, utilities are increasingly 

choosing the latter form since it is more convenient to use and easier to control the product's 

quality. The general chemical formula of alum is 𝐴𝑙2(𝑆𝑂4)3 ∙ n 𝐻2𝑂, where n refers to the degree 

of hydration and is in the range of 14 – 18. Unfortunately, there is no official standard unit for 

reporting alum concentrations in the field of water treatment. Liquid alum used in treatment plants 

is typically in the form of 𝐴𝑙2(𝑆𝑂4)3 ∙ 14 𝐻2𝑂 (also known as dry alum) and is typically reported 

in parts per million (ppm) units while reagent grade alum used in most research laboratories is 

typically in the form as 𝐴𝑙2(𝑆𝑂4)3 ∙ 18 𝐻2𝑂 and is typically reported as mg/L as Al.  
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Calculating the concentration of alum used would require knowledge of the chemical 

formula, percentage of that chemical, specific gravity of the coagulant, and the treatment plant’s 

flow rate. Coagulants should be supplied with an accompanying Certificate of Analysis (COA) or 

a technical data sheet that contains information regarding the chemical composition of the product. 

The stock solution concentration can usually be calculated in units of mass per volume based on 

the information provided. Alternatively, the coagulant’s Safety Data Sheet (SDS) could contain 

information regarding the chemical composition. 

An example of an SDS is shown in Figure 1.10. Equation 1 can be used to calculate the 

concentration of the alum based on the provided specific gravity and product strength:  

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [
𝑚𝑔

𝐿
 𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡] = % [𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡] 𝑥 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝑥 10,000  (1) 

  

 

Figure 1.10. Example of a SDS for liquid alum (from General Chemical) 
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In this case, the supplier specified that the product is in units of % as 𝐴𝑙2(𝑆𝑂4)3 ∙ 14 𝐻2𝑂; 

therefore, the calculated concentration will have a similar unit. Using equation 1, the concentration 

of the stock liquid alum in this example is thus: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  48.5 [% 𝑎𝑠 𝐴𝑙2(𝑆𝑂4)3 ∙ 14 𝐻2𝑂] 𝑥 1.335 𝑥 10,000  

       = 647,475 [
𝑚𝑔

𝐿
 𝑎𝑠 𝐴𝑙2(𝑆𝑂4)3 ∙ 14 𝐻2𝑂]  

 In some cases, the coagulant's strength is expressed in a different unit than what is required. 

For example, the strength of the coagulant could be reported as % 𝐴𝑙2𝑂3 while what is required is 

the equivalent concentration reported as % 𝐴𝑙2(𝑆𝑂4)3 ∙ 14 𝐻2𝑂. Equation 2 can be used to convert 

any given coagulant concentration to an equivalent concentration with a different unit provided 

that the chemical formula is known:  

𝐶𝑜𝑛𝑐. 𝑜𝑓 𝐵 [𝐵 𝑢𝑛𝑖𝑡𝑠] = 𝐶𝑜𝑛𝑐. 𝑜𝑓 𝐴 [𝐴 𝑢𝑛𝑖𝑡𝑠] 𝑥 (
𝑀𝑊  𝑜𝑓 𝐵 

𝑀𝑊  𝑜𝑓  𝐴 
)  (2) 

MW = molecular weight [g/mol] 

For example, the concentration of the liquid alum solution shown in Figure 1.10 is 

approximately 725,957 mg/L as 𝐴𝑙2(𝑆𝑂4)3 ∙ 18 𝐻2𝑂 (MW=666 g/mol). Similarly, the 

concentration of the liquid alum solution is 111,183 mg/L as 𝐴𝑙2𝑂3 (MW=102 g/mol). 

Regardless of the unit selected to represent the coagulant's concentration, what matters is 

the actual amount of the “active ingredient,” in this case aluminum, that is being added and not 

necessarily the bulk product itself. Figure 1.11 compares the proportions of aluminum, sulfate, and 

water in the three different forms of alum. It is evident that aluminum only makes up less than 

10% of the total amount of liquid alum added. If the same volume of each coagulant solution was 

added to a water sample, then the actual concentration of aluminum that was added would be 

different in each of the three samples. The total aluminum concentration would be highest in the 

water sample that was dosed with alum measured in units of mg/L as 𝐴𝑙2(𝑆𝑂4)3 ∙ 14 𝐻2𝑂 and 



21 

    

 

lowest in the water sample that was dosed with alum measured in units of mg/L as 𝐴𝑙2(𝑆𝑂4)3 ∙

18 𝐻2𝑂. To avoid confusion or error, the preferred method of reporting coagulant concentrations 

in the scientific literature has been in terms of its metal content (e.g., 1.3 mg/L as Al).  

 
Figure 1.11. Proportions of aluminum, sulfate, and water 

 

By reporting the coagulant concentration in these units, an equivalent amount of any other 

strength or type of aluminum-based coagulant could be added by a simple unit conversion. 

Equation 3 can be used to calculate the metal content of a coagulant reported in any form or unit.  

𝐶𝑜𝑛𝑐. [𝑢𝑛𝑖𝑡𝑠 𝑎𝑠 𝑚𝑒𝑡𝑎𝑙] =  𝐶𝑜𝑛𝑐. [𝑢𝑛𝑖𝑡𝑠 𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡] 𝑥 (
𝑀𝑊 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑝𝑜𝑟𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑀𝑊 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
)  (3) 

 

For example, the concentration of the liquid alum from Figure 1.11 can be reported as mg/L 

as Al by using Equation 3:  

𝑚𝑔

𝐿
𝑎𝑠 𝐴𝑙 =   

647,475 [
𝑚𝑔

𝐿
𝑎𝑠 𝐴𝑙2(𝑆𝑂4)3 ∙ 14 𝐻2𝑂]  𝑥 (

27 [
𝑚𝑔

𝐿
𝑎𝑠 𝐴𝑙] 𝑥 2

594 [
𝑚𝑔

𝐿
 𝑎𝑠 𝐴𝑙2(𝑆𝑂4)3∙14 𝐻2𝑂]

) = 58,861 [
𝑚𝑔

𝐿
𝑎𝑠 𝐴𝑙]  

 

 Note that in the above example, the molecular weight of aluminum (MW = 27 g/mol) was 

multiplied by 2 since each compound of aluminum sulfate is comprised of two aluminum atoms; 

therefore, the total molecular weight of the aluminum portion is 54 g/mol. Table 1.3 provides the 

conversion factors for reporting the coagulant concentration in different units. 
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Table 1.3 Alum conversion table  

Multiply mg/L of: by To obtain: 

Al3+ 1.000 

mg/L as Al3+ 

 

Al2O3 0.530 

Al2(SO4)3 0.158 

Al2(SO4)3 ∙ 14 H2O 0.091 

Al2(SO4)3 ∙ 16 H2O 0.086 

Al2(SO4)3 ∙ 18 H2O 0.081 

AlCl3 0.202 

AlCl3 ∙ 6 H2O 0.112 

Multiply: by To obtain mg/L as: 

mg/L as Al3+ 

1.000 Al3+ 

1.888 Al2O3 

6.333 Al2(SO4)3 

11.00 Al2(SO4)3 ∙ 14 H2O 

11.67 Al2(SO4)3 ∙ 16 H2O 

12.33 Al2(SO4)3 ∙ 18 H2O 

4.939 AlCl3 

8.939 AlCl3 ∙ 6 H2O 

 

Contrary to all that was discussed in the last paragraph, the coagulant concentration 

henceforth will be reported in units of mg/L as 𝐴𝑙2(𝑆𝑂4)3 ∙ 14 𝐻2𝑂. Alum concentrations reported 

in this form are more intuitive since it is widely used in the water treatment industry. The 

abbreviation “alum-14” will be used instead of 𝐴𝑙2(𝑆𝑂4)3 ∙ 14 𝐻2𝑂 for brevity.  
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CHAPTER 2: COAGULATION REACTIONS 

 

 

2.1.   Alum Coagulation Diagram 

 In 1982, Amirtharajah and Mills performed an extensive review of the literature to 

generalize regions on the alum solubility diagram where coagulation would be effective. The 1982 

version of the coagulation diagram originally included only three distinct coagulation zones; 

however, Edwards and Amirtharajah (1985) later included a fourth zone based on the removal of 

color-causing compounds in the pH 4.0 – 5.0 range (Figure 2.1). The zones shown in Figure 2.1 

represent the operational boundaries of both coagulation mechanisms – i.e., charge neutralization 

or sweep flocculation – with respect to the alum dose and pH. 

 
Figure 2.1. Alum coagulation diagram at 25°C (Edwards and Amirtharajah, 1985) 
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In general, charge neutralization zones tend to be dominant under low alum doses and pH 

values, while sweep flocculation tends to be dominant under high alum doses and pH values. It is 

also possible for both coagulation mechanisms to occur sequentially as the pH drops with alum 

addition. Edzwald (2013) stated that charge neutralization conditions are typically restricted to 

doses below 11 mg/L as alum-14 (1 mg/L as Al) and pH 6.0 or less. The exact limits of the charge 

neutralization mechanism will vary based on factors such as water quality and temperature; 

however, a more general criterion for charge neutralization is that it tends to be predominant under 

conditions that favor the formation of soluble positively charged species (as opposed to the 

amorphous precipitate). Some researchers stated that charge neutralization is achieved by the 

adsorption of positively charged hydrolysis species onto the surface of the contaminants (e.g., 

Amirtharajah and Mills (1982) and Van Benschoten and Edzwald (1990a)) while others have 

argued that charge neutralization is preceded by the formation and adsorption of positively charged 

𝐴𝑙(𝑂𝐻)3(𝑎𝑚) (e.g., Dentel and Gossett (1988) and Dempsey (1988)). 

Amirtharajah and coworkers (1982; 1985) intended for the diagram to have practical, real-

world applications where one would be able to select optimum coagulation conditions directly 

from the diagram. In reality, the diagram simply outlines the boundaries where coagulation is 

expected to be effective and should not be interpreted as a universal roadmap that applies to all 

water qualities and temperatures. Several key limitations prevented the original alum coagulation 

diagram from being directly applicable to the real world. Besides being an oversimplification of 

the coagulation process, some of the limitations were: 1) the boundaries were based mainly on past 

studies on alum coagulation in either DI water or waters containing only clays, 2) the impact of 

natural organic matter on turbidity removals were not considered, 3) the referenced studies used 

to create the diagram employed different criteria for what constituted effective coagulation, and 4) 
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the impact of temperature on coagulation was not considered. Nevertheless, the diagram has been 

paramount in advancing coagulation theory and practice by capturing the complexities of 

coagulation in a single diagram. For this reason, the coagulation diagram has become a common 

figure in coagulation chapters since the time of its publication. The coagulation diagram will be 

deconstructed and updated incrementally in the subsequent sections to reflect the research progress 

since its publication in 1985.  

2.2.   Aluminum Hydrolysis Reactions 

When aluminum (in the form of alum) is added to water, it typically dissociates into 

different soluble aquo aluminum species called hydrolysis products. Like all chemical reactions, 

aluminum hydrolysis reactions are governed by thermodynamic equilibrium (balance) forces that 

determine what form the aluminum ions would exist and how much it would remain soluble. The 

process depends largely on the type and quantity of constituents present in water and the 

temperature of the water. Alum stock solutions generally have a very low pH, typically in the range 

of pH 2.0 – 3.0. Below pH 3.0 (at 20°C), the predominant form of the aluminum ion is 𝐴𝑙(𝐻2𝑂)6
3+. 

Each aluminum ion forms a bond (called a ligand) with six water molecules (Figure 2.2).  

 
Figure 2.2. Hydrated aluminum ion followed by initial hydrolysis reaction 

 

For brevity, many sources simply use Al3+ instead of including the water molecules in the 

chemical formula. Above pH 3.0, a hydroxyl group (OH-) replaces one of the water ligands on the 
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hydrated aluminum ions to form 𝐴𝑙(𝑂𝐻)(𝐻2𝑂)5
2+ (or simply 𝐴𝑙(𝑂𝐻)2+). As the pH increases 

further, different monomeric (one aluminum ion) and polymeric (multiple aluminum ions) 

hydrolysis products begin to form sequentially. However, it is believed that polynuclear species 

do not play a significant role under most conditions encountered in drinking water treatment with 

alum (Van Benschoten and Edzwald 1990a; Jiao et al. 2015). Above pH 6.5 (at 20°C), aluminum 

hydrolysis products predominantly exist in the form of 𝐴𝑙(𝑂𝐻)4
−. If the total amount of aluminum 

in the system exceeds the thermodynamic solubility limit at a given pH, the soluble hydrolysis 

species will precipitate (come out of solution). Under conditions typically encountered in drinking 

water treatment, the solid precipitate would primarily be in the form of amorphous aluminum 

hydroxide 𝐴𝑙(𝑂𝐻)3(𝑎𝑚) (Hayden and Rubin 1973). 

 Table 2.1 lists the sequential aluminum hydrolysis reactions and their corresponding 

equilibrium expressions. The double arrows in the chemical reactions indicate that the reactions 

can occur in either direction to maintain equilibrium. The equilibrium expressions were re-

arranged such that the concentration of each hydrolysis product can be calculated given the pH. 

Table 2.2 presents equations for calculating the equilibrium constants (Ki values) for each reaction 

as a function of temperature. Equilibrium constants provided by Nordstrom and May (1996) and 

Brown and Ekberg (2016) are fairly similar (<1% difference) except for the 𝐴𝑙(𝑂𝐻)2
1+ species 

(<6% difference). In their review of the literature, Brown and Ekberg (2016) questioned the 

reliability of the data previously provided by some of the studies on 𝐴𝑙(𝑂𝐻)2
1+. 
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Table 2.1. Sequential aluminum hydrolysis reactions 

Reaction Equilibrium Expression 

𝐴𝑙(𝑂𝐻)3(𝑎𝑚) ⇋ 𝐴𝑙
3+ + 3𝑂𝐻−  [𝐴𝑙3+] =

10𝐾𝑠𝑜

[𝑂𝐻−]3 
  

𝐴𝑙3+ + 𝐻2𝑂 ⇋ 𝐴𝑙(𝑂𝐻) 
2+ + 𝐻+  [𝐴𝑙(𝑂𝐻) 

2+] =
10𝐾11  ∙  [𝐴𝑙3+]

[𝐻+]
  

𝐴𝑙3+ + 2𝐻2𝑂 ⇋ 𝐴𝑙(𝑂𝐻)2 
1+ + 2𝐻+  [𝐴𝑙(𝑂𝐻)2

1+] =
10𝐾12  ∙  [𝐴𝑙3+]

[𝐻+]2
  

𝐴𝑙3+ + 4𝐻2𝑂 ⇋ 𝐴𝑙(𝑂𝐻)4 
1− + 4𝐻+  [𝐴𝑙(𝑂𝐻)4 

1−] =
10𝐾14  ∙  [𝐴𝑙3+]

[𝐻+]4
  

𝐻2𝑂 ⇋ 𝐻
+ + 𝑂𝐻−  [𝑂𝐻−] =

10𝐾𝑤

10−𝑝𝐻
  

Note: [𝐻+] = 10−𝑝𝐻 

 

Table 2.2. Equations for calculating equilibrium constants given temperature 

Equilibrium Constant Nordstrom and May (1996) Brown and Ekberg (2016) 

𝐾𝑠𝑜  (−7.333𝑥10−4𝑇2) + (0.4676𝑇) − 105.73𝑎  -b 

𝐾11  4.771 −
2899.05

𝑇
  4.83 −

2923

𝑇
  

𝐾12    88.5 −
9391.6

𝑇
− 27.121 ∗ log 𝑇   8.78 −

5788

𝑇
  

𝐾14  40.875 −
10908.4

𝑇
− 11.041 ∗ log 𝑇   67.2 −

12474

𝑇
− 8.47 ∗ ln 𝑇  

𝐾𝑤  (−1.896𝑥10−4𝑇2) + (0.1462𝑇) − 40.74𝑎 

T = temperature [°K] (note: °K = 273.15 + °C) 
a Equation was derived using a polynomial fit of values provided by Pernitsky and Edzwald (2006) 
b No equation provided by the authors 

 

In charge neutralization, destabilization of the negatively charged contaminants occurs by 

positively charged coagulant species. It would, therefore, be useful to determine the conditions 

under which positively charged aluminum hydrolysis species would predominate. Figure 2.3 

compares the distribution of the aluminum hydrolysis products as a function of pH at 20°C using 

the equations provided in Table 2.1 and Table 2.2. The top and bottom panels represent the 

distributions calculated using the Nordstrom and May (1996) and Brown and Ekberg (2016) 

constants, respectively. Based on the Nordstrom and May (1996) constants, the positively charged 

hydrolysis products are the dominant species between pH 5.10 and pH 6.6 would be 𝐴𝑙(𝑂𝐻)2
1+. 

On the other hand, positively charged hydrolysis products are the dominant species only between 
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pH 5.2 and 6.25 based on the Brown and Ekberg (2016) constants. The effects of temperature on 

the species distribution can be visualized using an online interactive dashboard called “Alum 

Equilibrium” (Alansari 2020b).  

 
Figure 2.3. Distribution of aluminum hydrolysis products at 20°C 

 

2.2.1. Alum Coagulation Diagram: Updating Species and Equilibrium Constants 

The first step in revising the coagulation diagram was to update the aluminum hydrolysis 

species that are in equilibrium with the amorphous precipitate and use the most recent and widely 

accepted equilibrium constants. As noted earlier, Van Benschoten and Edzwald (1990a) showed 

that 𝐴𝑙(𝑂𝐻)3(𝑎𝑚) was only in equilibrium with three soluble monomeric aluminum species: 𝐴𝑙3+, 

𝐴𝑙(𝑂𝐻)2+, and 𝐴𝑙(𝑂𝐻)4
−. Figure 2.4 shows the updated coagulation diagram using three 

monomeric aluminum species and the Nordstrom and May (1996) equilibrium constants.  
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Figure 2.4 Coagulation diagram with updated species and equilibrium constants 

 

 Updating the species and constants increased the pH of minimum solubility from 

approximately 5.90 to 6.14. Similarly, the concentration of soluble alum increased from 0.15 to 

0.17 mg/L as alum-14. It was assumed that the position of the coagulation zones was relative to 

the solubility line; therefore, the coagulation zones were moved accordingly. The dotted 

coagulation zones in Figure 2.4 represent the zones from the original diagram whereas the solid 

zones represent the updated zones. 
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2.2.2. Aluminum Solubility and Temperature 

Optimum coagulation conditions for turbidity removals typically occur under conditions 

where the formation of the amorphous aluminum hydroxide precipitate, 𝐴𝑙(𝑂𝐻)3(𝑎𝑚), are favored. 

Amirtharajah and coworkers (1982; 1985) based their coagulation diagram on three monomeric 

species (𝐴𝑙3+, 𝐴𝑙(𝑂𝐻)2+, 𝑎𝑛𝑑 𝐴𝑙(𝑂𝐻)4
1−) and one polymeric specie (𝐴𝑙8(𝑂𝐻)20

4+); however, Van 

Benschoten and Edzwald (1990a) showed that 𝐴𝑙(𝑂𝐻)3(𝑎𝑚) was only in equilibrium with three 

soluble monomeric aluminum species: 𝐴𝑙3+, 𝐴𝑙(𝑂𝐻)2+, and 𝐴𝑙(𝑂𝐻)4
−. Figure 2.5 shows the 

solubility diagram of aluminum sulfate at 25°C (left-panel) and 5°C (right-panel). The solubility 

diagrams were created using the equilibrium constants provided by Nordstrom and May (1996) in 

Table 2.2. 

 
Figure 2.5. Alum solubility diagram at 25°C (left-panel) and 5°C (right-panel) 
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The sum of the three monomeric species, at a given pH, creates the black solid line 

representing the solubility limit of aluminum. For example, at pH 7.0 and 25°C, any amount of 

alum added up to approximately 0.8 mg/L as alum-14 (the solubility limit at that condition) would 

be soluble. If 10 mg/L as alum-14 were added, then, in theory, 0.8 mg/L as alum-14 would be 

soluble, and the remaining 9.2 mg/L as alum-14 would precipitate. The solubility of the coagulant 

would also be controlled by temperature. At the same pH but at 5°C, the solubility limit of 

aluminum decreases to approximately 0.1 mg/L as alum-14, i.e., the coagulant becomes less 

soluble with decreasing temperature. The pH at which the coagulant would be the least soluble is 

called the pH of minimum solubility. The pH of minimum solubility at 25°C and 5°C is 6.27 and 

6.68, respectively; therefore, the pH of minimum solubility increases as the temperature decreases. 

The effect of temperature on the solubility of the alum can be visualized in the “Alum Equilibrium” 

dashboard (Alansari 2020b). 

Van Benschoten and Edzwald (1990a) found that the effects of temperature on the 

solubility of 𝐴𝑙(𝑂𝐻)3(𝑎𝑚) in deionized water could be accounted for by the changes in the 𝑂𝐻− 

concentration. This would imply that the concentration of 𝑂𝐻− in the water would change with 

temperature if the pH was held constant. Using pOH instead of pH would ensure that the 

concentration of 𝑂𝐻− is always the same; thus, mitigating the effects of temperature on the 

solubility or performance of alum. Using the ion product of water (pKw, Table 2.2), the pH could 

be adjusted to various temperatures by keeping pOH constant. For example, a water with a pH of 

6.5 at 25°C has an approximate pOH of 7.5, based on a pKw of 14. At 4°C, the pKw is 

approximately 14.8; therefore, the adjusted pH of the water would be 7.3 for a constant pOH value.  
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Figure 2.6 shows jar test results from Van Benschoten (1988) with alum in DI water at 4°C 

and 25°C. The coagulant dose in all cases was 13.5 mg/L as Al (~149 mg/L as alum-14). The 

general appearance of both plots was fairly similar, except, the colder temperature results were 

simply shifted by approximately 0.8 - 0.9 pH units to the right (higher pH). The dashed series 

represents the results from the experiments performed at 4°C, but the pH was adjusted to 25°C 

based on a constant pOH value. The pH at which particles first appeared and the peaks between 

25°C and 4°C results were in agreement. Thus, it could be concluded that temperature effects can 

largely be accounted for by the concentration of 𝑂𝐻− which is a function of temperature and the 

equilibrium constant (𝑝𝐾𝑤 = 𝑝𝐻 + 𝑝𝑂𝐻). 

 
Figure 2.6 Jar tests with alum in DI water at two temperatures (from Van Benschoten 

1988) 
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2.2.2.1.  Residual Dissolved Aluminum  

Elevated residual aluminum levels in the treated water can potentially cause adverse health 

effects in humans (Letterman and Driscoll 1988). Edzwald (2020) proposed that regulatory limits 

for residual aluminum should be reduced from 0.2 mg/L as Al (the current USEPA limit) to 0.05 

mg/L as Al (0.55 mg/L as alum-14) for plants using aluminum-based coagulants. Figure 2.7 shows 

the pH boundaries for the 0.05 and 0.2 mg/L as Al limits for temperatures ranging from 5 to 30°C. 

For example, at pH 7.0, a plant can expect to maintain residual aluminum levels below the new 

proposed limit as long as the water temperature is below 20°C. Operating at or near the minimum 

solubility line of aluminum (green line) would minimize residual aluminum levels in the treated 

water. Equations for calculating the upper and lower pH boundaries given temperature are 

provided in Table 2.3. Alternatively, an interactive dashboard version of Figure 2.7 was also 

developed to allow users to quickly and easily calculate the pH boundaries based on their own 

operating conditions (Alansari 2020a). 
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Figure 2.7. Dissolved aluminum boundaries with respect to pH and temperature 

 

Table 2.3. Equations for calculating dissolved aluminum pH boundaries 

Parameter Empirical Equation 

0.05 

mg/L as Al 

Lower Boundary 𝑝𝐻 = (1.65𝑥10−4 )𝑥2 − 0.0231𝑥 + 6.146 

Upper Boundary 𝑝𝐻 = (4.15𝑥10−5 )𝑥2 − 0.0514𝑥 + 8.036 

0.2 

mg/L as Al 

Lower Boundary 𝑝𝐻 = (1.35𝑥10−4 )𝑥2 − 0.0234𝑥 + 5.887 

Upper Boundary 𝑝𝐻 = (4.72𝑥10−5 )𝑥2 − 0.0515𝑥 + 8.638 

Minimum Solubility 𝑝𝐻 = (9.73𝑥10−5 )𝑥2 − 0.0314𝑥 + 6.840 
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2.2.3. Alum Coagulation Diagram: Incorporating Temperature Effects 

As discussed earlier, the alum solubility lines would move down diagonally with a 

reduction in temperature and vice versa; therefore, it is also expected that the coagulation zones 

would change or move with changing water temperatures. Figure 2.8 shows the effects of reducing 

the temperature from 25°C to 5°C on the coagulation zones using two possible scenarios. In the 

left-panel, it was assumed the location of the coagulation zones was relative to the solubility line; 

therefore, a reduction in temperature would move the zones down and to the right. In the right-

panel, it was assumed that the coagulation zones would move based on a constant pOH value as 

described by Van Benschoten and Edzwald (1990a). In the first case, a decrease in temperature 

would suggest that “effective” coagulation could theoretically be achieved at a much lower dose 

since the zones moved lower while in the second case, a decrease in temperature would simply 

move the zones to the right.  

Unfortunately, almost all the research on the effects of temperature on coagulation has been 

focused either on the solubility of the coagulant or simply on the effects of temperature on the 

overall treatment process. It is unclear at this point exactly how the coagulation zones would 

respond to temperatures changes. The more conservative approach would be to assume that the 

coagulation zones would move according to the concentration of  𝑂𝐻− as suggested by Van 

Benschoten and Edzwald (1990a) as shown in the right panel of Figure 2.8.   
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Figure 2.8. Temperature effects on coagulation diagram 

 

2.3.   Calculating the Total Charge Demand 

 In a simplistic model of charge neutralization, the total negative charge from the 

contaminants must be met by an equivalent positive charge for destabilization to occur 

successfully. The total negative charge, i.e., charge demand, depends on the nature and 

concentration of contaminants in the water. This will be discussed in more detail later. The total 

charge is usually expressed in terms of equivalents per mass or volume. For example, Al3+ has a 

charge of +3 eq/mol; therefore, dividing the charge by molar mass of aluminum (27 g/mol) yields 

an equivalents per mass of 0.111 eq/g or 111 µeq/mg of Al (Edzwald and Tobiason 1999). Using 

this approach, the total available positive charge can be estimated from the species distribution. 

Table 2.4 provides the equivalent values for the positive mononuclear hydrolysis species. 
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Table 2.4. Charge of aluminum hydrolysis species 

Species Charge [eq/mol] [µeq/mg of Al] 

𝐴𝑙3+ 3 111 

𝐴𝑙(𝑂𝐻) 
2+ 2 74 

𝐴𝑙(𝑂𝐻)2 
1+ 1 37 

  

 Figure 2.9 shows a contour plot of the total positive charge as a function of pH and alum 

dose. The data was generated using Visual MINTEQ 3.1 (a chemical equilibrium modeling 

software). The default aluminum equilibrium constants of the software were modified to match 

the Nordstrom and May (1996) constants for consistency. At the model’s conditions, the results 

showed that there was little to no positive charge above pH 7.25. Below pH 7.0, the total positive 

charge increased with decreasing pH and increasing alum dose. Suppose a water has a total 

negative charge demand of 30 µeq/L at pH 6.0. In theory, destabilization of the contaminants 

would occur with an equivalent positive charge at a dose of 10.5 mg/L as alum-14 at the same pH 

as shown by the dotted lines in Figure 2.9. The underlying assumption of this simplistic model is 

that one negative charge reacts with one positive charge and the end-result is a destabilized particle. 

In reality, the interactions are more complex and less efficient. The purpose of Figure 2.9 is simply 

to provide a visual illustration of the total charge distribution as a function of the coagulant dose 

and pH and highlight the conditions under which charge neutralization would theoretically be 

possible. 
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Figure 2.9. Contour plot of total positive charge 

 

 

 

 

 

 

1

2

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

1

10

100

C
o

a
g

u
la

n
t 
d

o
s
e

 [
m

g
/L

 a
s
 a

lu
m

-1
4
]

pH

0.1

Data Generation Using Visual Minteq 3.1

Contours: total charge [meq/L]

Open system

Temperature: 20°C

Alkalinity: 25 mg/L as CaCO3

Dose Range: 1 to 100 mg/L as alum-14

Dose Step-Size: 0.1 mg/L

pH Range: 3 - 9 

pH Step-Size: 0.1 pH units

5
10

15

30

100

200

400

 Required dose for a water 

with a total charge demand 

of 30 [meq/L] at pH 6.0



39 

    

 

2.4.   Transitioning Between Ideal and Real Water Samples 

Thus far, it was assumed that aluminum was added directly to deionized (DI) water and the 

only ligand that reacted with the aluminum was 𝑂𝐻−. In natural waters, aluminum forms 

aluminum-ligand complexes with several other ions that are typically present, such as 𝐹−, 𝑆𝑂4
2−, 

𝑃𝑂4
3−, 𝐶𝑂3

2− and the functional groups on NOM. Just like aluminum hydrolysis species, aluminum 

complexes are soluble; therefore, the solubility of the coagulant would largely depend on the type 

and concentration of ionic species present in the water. Driscoll and Letterman (1988) found that 

the presence of fluoride increased the solubility of the alum (i.e., higher residual aluminum 

concentrations) due to the formation of soluble aluminum-fluoride complexes. Similarly, Vik and 

coworkers (1985) reported that residual aluminum levels increased under suboptimal coagulation 

conditions due to aluminum complexation with NOM.  

2.4.1. Alum and Alkalinity 

Alum behaves like an acid when added to water due to the release of hydrogen ions during 

hydrolysis reactions (Figure 2.2). As a result, the water's pH after alum addition decreases 

primarily as a function of the alum dose, raw water alkalinity, and temperature. Alkalinity is a 

measure of a water’s acid neutralization (buffering) capacity. In drinking water treatment, 

alkalinity is usually reported in units of mg/L as 𝐶𝑎𝐶𝑂3. Figure 2.10 illustrates the effects of the 

sequential addition of alum on the pH of DI water with alkalinity ranging from 10 to 200 mg/L as 

𝐶𝑎𝐶𝑂3. All experiments were performed with DI water at 20±1°C. 
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Figure 2.10. Addition of alum to deionized water containing various levels of alkalinity 

 

In general, alum's capacity to depress the pH is hindered the greater the alkalinity of the 

raw water. For example, a dose of 20 mg/L as alum-14 reduced the pH to 5.65 and 7.45 with an 

alkalinity of 10 and 100 mg/L as 𝐶𝑎𝐶𝑂3, respectively. Treatment facilities that treat low alkalinity 

waters (e.g., 10 mg/L as 𝐶𝑎𝐶𝑂3) typically cannot operate at high alum doses (without adding a 

strong base with the alum) because the pH after coagulant addition can exceed the solubility 

boundary of 𝐴𝑙(𝑂𝐻)3. Figure 2.11 shows jar test settled water turbidity removals from a water 

treatment facility that treats low alkalinity water. The “alum only” line shows the water's pH when 

alum was added without any pH adjustment. Operating to the right of the alum only line would 
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require the addition of a base while operating to the left of the line would require the addition of 

an acid. The overlaid heatmap shows the region where the treatment plant typically operated – 

darker regions correspond to higher frequencies. It was evident that caustic or base addition was 

critical at this facility since the alum titration line did not pass through the greater than 70% 

removal zone by sedimentation. Therefore, any increase in alum dose has to be supplemented with 

an increase in the base (caustic) dose to remain within the removal region for this water. 

 
Figure 2.11. Low alkalinity water settled water turbidity jar test results 

 

On the other hand, high raw water alkalinity would make it difficult for plants to operate 

in zones where charge neutralization is the predominant coagulation mechanism. According to 

Figure 2.9, soluble positively charge aluminum hydrolysis species are available in sufficient 

amounts near pH 6.5. Without the means to adjust the pH, a plant treating high alkalinity water 
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would need to add very high alum concentrations to reduce the pH to the point where positively 

charged species are likely to form. This is particularly relevant to treatment plants that rely on 

surface charge measurement techniques (zeta potential or streaming current) to monitor or 

optimize coagulation.  

2.4.2. Influence of Dissolved Organics  

Figure 2.12 shows how dissolved organic carbon (DOC) can impact the total dissolved 

aluminum concentration in a low alkalinity water. The chemical equilibrium models were 

performed using Visual MINTEQ 3.1. In all cases, the concentration of aluminum in the system 

was set to 1.363 mg/L as Al (≈15 mg/L as alum-14) and the alkalinity to 25 mg/L as CaCO3. 

Alkalinity was added to the model in the form of sodium bicarbonate (𝑁𝑎𝐻𝐶𝑂3). The only possible 

solid phase in equilibrium was limited to amorphous aluminum hydroxide. Below pH 5.1 and 

above pH 8.2, the aluminum in the system in all cases was completely dissolved – which was 

consistent with the theoretical aluminum solubility diagram (Alansari 2020b). DOC was included 

in the equilibrium model based on the NICA-Donnan model parameters for humic substances 

(Milne et al. 2003).  It was assumed that the DOC comprised of 60% fulvic acids. The minimum 

dissolved aluminum concentration with alum and alkalinity alone (black line) was 0.018 mg/L as 

Al (0.2 mg/L as alum-14) and occurred at a pH of 6.14. Adding 2 mg/L as DOC to the model (red 

line) increased the dissolved aluminum concentration and pH of minimum solubility to 0.15 mg/L 

as Al (1.65 mg/L as alum-14) and 6.5, respectively. Finally, increasing the DOC to 8 mg/L (blue 

line) increased the dissolved aluminum concentration to 0.35 mg/L as Al and the pH of minimum 

solubility to 6.91. 
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Figure 2.12. Effect of complexation on total dissolved aluminum concentration 

 

2.4.3. Alum Coagulation Diagram: Including DOC 

The original coagulation diagram was based mainly on past studies on alum coagulation in 

either DI water or waters containing only clays. Figure 2.12 showed that the presence of DOC (as 

in most natural surface waters) increased the solubility of the coagulant, i.e., higher doses of alum 

would be required to produce the amorphous precipitate at a fixed pH. As a result, the coagulation 

diagram and coagulation zones would have to be updated to conform with real-world conditions 

(e.g. NOM in water). Figure 2.13 combined the coagulation diagram (from Figure 2.4) with the 

total aluminum solubility at varying levels of DOC (from Figure 2.12). The solubility curves for 

waters containing DOC were calculated using a similar approach as described in the previous 

section. 
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Figure 2.13 Coagulation diagram with waters containing DOC at 25°C 

 

 Figure 2.13 showed that a significant portion of the charge neutralization and combined 

zones occur under conditions where effective coagulation would likely not be possible with real 

waters. Figure 2.15 only shows the areas where effective coagulation would likely be possible with 

real waters. The areas where coagulation is unlikely to be effective was colored in grey. Effective 

coagulation (in terms of turbidity removal) below 2 mg/L as alum-14 would likely not be possible 

with waters containing DOC, particularly above pH 6; therefore, all conditions below 2 mg/L as 

alum-14 were excluded. Above pH 6.0 at 25°C, the primary coagulation mechanism is expected 

to be via sweep flocculation, which relies on the formation of amorphous hydroxide precipitate. 
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The presence of DOC would increase the solubility of the coagulant; thus, minimizing the 

formation of the precipitate required for sweep flocculation. As a result, only conditions that fall 

inside the solubility limits (in the presence of DOC) could be realistically considered.  

 
Figure 2.14 Zones where effective coagulation is likely possible 

 

Based on Figure 2.9, effective coagulation above 20 mg/L as alum-14 in the orange charge 

neutralization region (below pH 5.5) would likely not be possible due to the high total available 

positive charge relative to the total charge demand of most waters. On the other hand, it is unlikely 

that charge neutralization would be possible in the lower portion of green charge neutralization 

region (above pH 7.0) due to the very low total available positive charge relative to the total charge 

demand of most waters. Ultimately, the coagulation zones would need to be modified to reflect a 
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more realistic view of coagulation with real waters. The scales of the coagulation diagram were 

adjusted to only include the typical operating range of most treatment plants in Figure 2.15. 

 
Figure 2.15 Zoomed in coagulation diagram 
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2.5.   New Coagulation Diagram 

Thus far, only updates were made to the original coagulation diagram. In this section, a 

new coagulation diagram will be presented that addersses many of the shortcomings of the original 

coagulation diagram that limited its applications to the theoretical rather than real-world study of 

coagulation. Primarily, the new coagulation diagram incorporates the effects of different water 

quality parameters on the shape, size, and location of the coagulaiton boundaries. The new diagram 

will be presented incrementally beginning with an update of the coagulation zones (Figure 2.16).  

 
Figure 2.16 New alum coagulation diagram with general coagulation regions 
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The new coagulation diagram is comprised of 4 primary regions: 1) charge neutralization, 

2) transition region, 3) sweep flocculation, and 3) universal sweep. These regions represent 

conditions where effective coagulation in terms of filtered turbidity removal would be possible, 

depending on the raw water quality conditions. The new boundaries were based on a series of 

carefully controlled jar tests with 16 different waters (discussed in Chapter 5). The conditions 

tested ranged from pH 5 – 8.0 and 3 to 100 mg/L as alum-14. 

 Coagulation in the lower-left region of the coagulation diagram would occur via the charge 

neutralization mechanism (shown in orange). The charge neutralization region ranges from pH 5 

to 6.5 and from 2 to 20 mg/L as alum-14. Effective coagulation in the upper-left and lower-right 

regions would likely not be possible due to either an excess of total available positive charge which 

would restabilize the contaminants or conditions that would not be suitable for the formation of 

floc. Coagulation via the sweep flocculation mechanism occurs in the upper-right region of the 

new coagulation diagram (shown in blue). A “transition” region would exist between pH 6.0 and 

6.5 and 8 to 20 mg/L as alum-14 where it would be difficult to distinguish the primary coagulation 

mechanism. It could be possible that both mechanisms are occurring simultaneously in the 

transition region. Finally, the universal sweep region represents the coagulation conditions that are 

likely to be effective with practically any water, i.e., independent of water quality.  

Figure 2.17 shows the new coagulation diagram with the effects of raw water DOC and 

alkalinity on the effective coagulation zones. In general, the DOC concentration of the raw water 

would control the location of the effective coagulation boundary while alkalinity only affects the 

slope of the boundaries as the pH increases. For example, the lower dose limit of the effective 

coagulation boundary for a low DOC and low alkalinity water would be found at approximately 8 

mg/L as alum-14. Increasing the DOC of the raw water would cause the boundary to move up and 
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to the left (i.e., higher dose and lower pH). A sharp cut-off boundary would also be observed in 

the conditions above 20 mg/L where the applied coagulant dose would rapidly transition (~0.1 – 

0.2 pH units) from being ineffective to effective due to a transition from charge neutralization to 

sweep flocculation. The pH at which the sharp boundary would be observed would depend 

primarily on the DOC and alkalinity of raw water but would range from approximately pH 6.0 

(high DOC/alkalinity) to pH 6.5 (low DOC/alkalinity). Alkalinity would generally only impact 

high pH (pH > 7.0) conditions by increasing the slope of the right-edge of the effective coagulation 

boundary; however, an effect would only be observed with a large change in raw water alkalinity. 

  
Figure 2.17 Coagulation diagram with DOC and alkalinity effects 
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 Figure 2.18 shows the final coagulation diagram which includes the combined effects of 

raw water DOC and specific ultraviolet absorbance at 254nm (SUVA). In general, SUVA impacts 

conditions in the charge neutralization region. The effective coagulation boundary would extend 

further into the charge neutralization region the higher the SUVA of the raw water. The green and 

purple boundaries represent waters low and high in DOC, respectively. The SUVA boundaries are 

meant to only show where effective coagulation conditions might be located. The stoichiometric 

nature of the charge neutralization mechanism makes it difficult to generalize the shape and 

location of an effective coagulation zone; however, in most cases the zones are expected to be 

small and disconnected due to the stoichiometric nature of the charge neutralization mechanism, 

particularly with waters low in DOC.  
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Figure 2.18 Final alum coagulation diagram 

  

Ultimately, the goal of updating the coagulation diagram was to provide a diagram with 

practical real-world applications. The addition of the water quality boundaries would make it 

possible for operators and engineers to quickly identify optimal coagulation conditions based on 

their own water quality conditions as originally intended by Amirtharajah and coworkers (1982, 

1985).  
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CHAPTER 3: COAGULATION OPTIMIZATION 

 

 

 It is often said that drinking water treatment is an art as much as it is a science (Kawamura 

1975). This notion was based on the fact that most drinking water treatment practice has been 

guided by experience and empirical knowledge rather than on a fundamental understanding of the 

underlying processes. In addition, every water is different, and every drinking water treatment 

plant is unique in its design and operation. Unfortunately, the former approach is the only viable 

option for optimizing processes such coagulation. Optimization is essentially an experimental 

process; therefore, it is essential that the experimenters (operators and engineers) plan and conduct 

these experiments strategically and effectively. Thus, it is even more critical that the experimenters 

have developed a fundamental understanding of the coagulation process and the relationships 

between the input and output parameters. The following section will mainly focus on the process 

of optimizing coagulation.  

Coagulation can be visualized as a simple process with inputs and outputs, as shown in 

Figure 3.1. Some input parameters or factors can be controlled (e.g., the coagulant dose), whereas 

most factors are uncontrollable (e.g., raw water quality parameters). The efficiency of the process 

can be quantified by measuring the response of a given variable with respect to the input factors. 

To optimize the coagulation process, operators and engineers must clearly define their objectives 

and then, through experimentation, select a combination of controllable inputs that would produce 

the best possible outcome based on their desired set of goals. 
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Figure 3.1. A simple model of the coagulation process 

 

The objective of coagulation was earlier stated as being to destabilize contaminants in 

water to be effectively removed via a downstream engineered process such as sedimentation and/or 

filtration. By this definition, the efficiency of the process could be assessed by quantifying the 

removal of the contaminant(s) of interest. Consequently, optimization would imply maximizing 

the removal of the contaminants in the overall treatment process while also considering the amount 

of treatment chemicals being used (i.e., minimizing the cost of treatment chemicals). For example, 

the input parameters of the process include the raw water quality (e.g., turbidity), coagulation 

conditions (e.g., dose, type, and pH), and plant design parameters (e.g., flow rate or the number of 

mixing stages). In most instances, coagulation conditions could be the only controllable factors. 

The output parameters or response variables include the quality of the filtered water and the total 

cost of treatment chemicals used.  

Drinking water treatment plants are designed as a series of continuous-flow reactors 

(basins) – where there is a continuous flow of water flowing into and out of the treatment facility. 

It commonly takes between 4 – 12 hours for the water to travel from the point of coagulant addition 

to the point of filtration; therefore, quantifying the performance of the coagulation stage just based 

on the removal of contaminants after filtration is impractical in full-scale treatment facilities both 
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in terms of resources and associated risks to public health. For this reason, operators must rely on 

an assortment of direct and indirect metrics for quickly assessing the efficiency of their coagulation 

stage. In 2002, Logsdon and his colleagues published a report which included a survey of 37 

drinking water treatment plants and their practices in selecting their coagulation conditions and 

measuring their performance (Figure 3.2). More than 60% of the plants reported that they used at 

least four or more different coagulation metrics to assess the performance of their coagulation 

process. The most prevalent strategy employed by the surveyed plants was the use of historical 

plant data (records) in their decision-making process. 

 
Figure 3.2. Methods used for monitoring coagulation performance (from Logsdon et al. (2002)) 

 

3.1.   Historical Data 

Modern drinking water treatment plants generate enormous amounts of data from 

daily/hourly log sheets, online instrumentation, and supervisory control and data acquisition 

(SCADA) systems. Any tool or system that facilitates access to this data is instrumental in allowing 

the staff to be more proactive in their day-to-day operations. For example, operators could use a 

spreadsheet to log and plot hourly plant data versus time which could reveal trends that may not 

be obvious when presented in a table format. However, data visualization is only one part of the 
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equation. The key is in how the information is analyzed and interpreted by the user. Historical 

records can help provide insights that can help the staff make informed decisions and minimize 

the potential risks associated with using a trial-and-error approach; however, care should always 

be taken when analyzing and interpreting historical plant data. 

3.1.1. Correlation versus Causation 

A common pitfall in analyzing data is interpreting correlations as causation. For example, 

Figure 3.3a shows a correlation between the alum dose and settled water turbidity – i.e., settled 

water turbidity generally decreased with increasing alum dose; therefore, one can conclude that 

lower settled water turbidity can be achieved by simply increasing the coagulant dose. The same 

results are plotted versus time in Figure 3.3b, and at first glance, it appears as though the initial 

conclusion was valid. However, there was also a correlation between the temperature of the raw 

water and settled water turbidity. In general, sedimentation basins perform better at warm 

temperatures; thus, it was also possible that the lower settled water turbidity over time was the 

result of the warmer temperatures (Morris and Knocke 1984). At the same time, temperature 

affects aluminum hydrolysis reactions and the solubility of the precipitate. As a result, it is difficult 

to determine with certainty whether the lower settled water turbidity values were the direct result 

of the increased coagulant dose, increased raw water temperature, or a combination of both factors 

changing simultaneously. The example shown in Figure 3.3 highlights one of the many difficulties 

associated with the study of coagulation and the optimization of this process. Many competing 

factors can impact the efficiency of the coagulation process; however, the problem remains that 

these factors also influence each other. The effects of different factors on coagulation will be 

discussed further later. 
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Figure 3.3. Plant historical data 
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3.1.2. Data Limitations 

Historical data often contains limited water quality information necessary for a full 

assessment of coagulation requirements. Ultraviolet absorbance at 254 nm (UV254) and DOC 

provide an indication of the characteristics and concentration of the natural organic matter in the 

raw water, which is often the controlling parameter of coagulation requirements (Edzwald 1993; 

Edzwald and Tobiason 1999). The treatment plant whose data were shown in Figure 3.3 did not 

continuously measure UV254 and DOC levels of the raw water, which may have contained some 

additional clues to explain the observed trend. Additionally, historical data typically lacks 

contextual factors such as the events or factors that triggered the operator to change the coagulant 

dose. 

3.1.3. Assumptions Hidden in Historical Data 

In addition to historical plant data, many treatment plants rely on quantitative and 

qualitative measurements that relate to the efficiency of the coagulation stage. Except for visual 

observations, measurements are performed either in real-time using online instrumentation or as 

grab samples using benchtop equipment. The underlying assumption is that there exists a direct or 

indirect correlation between the measured parameter and the efficiency of the coagulation process 

(e.g., removal of contaminants from water). For example, operators visually evaluating the clarity 

of their sedimentation basins are, in effect, assuming that their basins' clarity is a function of their 

selected coagulant dose and pH. Surface charge measurement techniques are based on the 

assumption that the removal of contaminants would be maximized when coagulation is performed 

at a near-neutral contaminant surface charge (e.g., ±10 mV). Similarly, the reduction of UV254 is 

expected to reduce the formation of potentially harmful disinfection by-products in the finished 

water.  



58 

    

 

3.2.   Pilot Filters 

Some treatment plants monitor the performance of their coagulation process by filtering a 

fraction of the coagulated water using a pilot-scale filter that is equipped with an online 

turbidimeter (Conley and Evers 1968). Visible floc is not expected to form due to the relatively 

short detention times (<10 minutes) after coagulant addition. The primary purpose of a pilot or lab 

filter is not to accurately predict the filtered water turbidity of the full-scale process but rather to 

simply provide a baseline from which changes in coagulation requirements can be 

captured/quantified over time. The short detention time is ideal for detecting early signs of 

deteriorating treated water quality due to suboptimal coagulation. Compared to surface charge and 

UV254 measurements, pilot-filters hypothetically offer a better approximation of the expected full-

scale results since they are based on a direct measurement of the “treatability” of the water (i.e., 

turbidity removal) rather than a correlation.  

Figure 3.4 shows results from a case study where a lab-scale filter was used to directly 

filter coagulated water and monitor the performance of the coagulation stage. In this case, one of 

the primary goals of the treatment plant was to maintain a settled water turbidity value below 1.0 

NTU in 95% of the samples measured. Operators observed that the lab-scale filter predicted the 

response of the settled water to changing water quality conditions approximately 4 – 6 hours in 

advance. 
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Figure 3.4. Bench-scale filter results 
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3.3.   The Conventional Jar Test Procedure 

Even though the measurement techniques mentioned so far help monitor coagulation, the 

consequences of using a trial-and-error approach to optimize the process at the full-scale prevent 

them from being useful as optimization tools. Experimentation and optimization of the coagulation 

process should be performed using bench- and pilot-scale systems that simulate the physical and 

chemical processes in the full-scale treatment process. Jar testing is regarded as the most reliable 

and widely used bench-scale tool to optimize coagulation conditions in drinking water treatment 

(Black et al. 1957; Hudson and Wagner 1981). The jar tester is a simple bench-scale apparatus 

with four to six identical jars or beakers equipped with overhead mixers. The jar tester was 

invented by Wilfred Langelier, who originally built the apparatus to demonstrate the effects of 

mechanical mixing on coagulation efficiency; however, he later recognized its potential use as a 

tool for investigating the effects of water quality parameters (e.g., alkalinity and pH) in the 

coagulation process (Langelier 1921; Langelier 1982). The overall design and operation of the jar 

test apparatus has largely remained the same since its invention in 1918 by Langelier (Figure 3.5).  
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Figure 3.5. Comparison between a modern jar test apparatus and 

one developed by Langelier 

 

The general approach of jar testing is usually to start with a high-intensity mixing stage to 

rapidly disperse the coagulant and/or chemicals (rapid mix), followed by a low-intensity mixing 

stage to allow the contaminants to aggregate (flocculate) and finally, a particle separation stage to 

separate the floc from water. The jar tester has gradually evolved into a tool that can be used to 

optimize coagulation and as a tool that can aid engineers in designing and optimizing drinking 

water treatment processes (Griffith and Williams 1972). Singley (1981) stated that jar tests can be 

used to perform the following tasks: (1) selection of suitable coagulant type, (2) optimization of 

coagulation dose and pH, (3) determination of order of pH adjusting chemical addition, (4) 
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optimization of mixing parameters (e.g., intensity, time, or the number of stages), and (5) selection 

and optimization of coagulant aids (Amirtharajah and O'melia 1990). 

Before the 1950s, it was a common and accepted practice to evaluate coagulation 

performance in jar tests based on a visual evaluation of floc formation. The underlying assumption 

was that a large floc or floc that formed rapidly was indicative of optimum coagulation conditions 

(Brown 1936). Langelier and Ludwig (1949) observed that low settled water turbidity – collected 

after a constant settling period – always corresponded with “high quality” floc. By the 1970s, 

settled water turbidity became the standard metric by which coagulation performance was 

evaluated in bench-scale experiments. Settled water turbidity was considered the most convenient 

and easily reproducible method of objectively quantifying coagulation efficiency (Black and 

Vilaret 1969). Jar test procedures based on settled water turbidity measurements were commonly 

referred to as conventional jar tests (TeKippe and Ham 1970).  

3.3.1. Controllable Factors in A Conventional Jar Test  

The factors involved in the coagulation process can be grouped into three categories: water 

quality parameters (e.g., raw water turbidity or alkalinity), coagulation conditions (e.g., coagulant 

type or dose), and mixing parameters (e.g., duration of rapid mix or number of flocculation stages). 

Operators and engineers are practically only able to control and optimize coagulation conditions 

and mixing parameters. In this case, it is also assumed that the sample volume and container 

dimensions are constant variables. In a conventional jar test procedure, the dependent or response 

variable would be settled water turbidity. Experimenters would be able to quantify the effect of 

any of the controllable factors (e.g., coagulant dose) on the coagulation process by measuring the 
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turbidity of the water at the end of the settling stage. Figure 3.6 shows a general model of the 

controllable factors involved in a conventional jar test procedure.  

 
Figure 3.6. Controllable factors in a conventional jar test 

 

3.3.2. The Standardization Debate 

Black and coworkers (1957) noted that “...there are about as many individual variations in 

(jar test) procedures as there are individuals carrying out the test.” Researchers have long debated 

over the need for a standardized jar test procedure. On the one hand, the jar tester was promoted 

as a tool for operators and engineers to replicate the full-scale drinking water treatment process. 

On the other hand, the lack of a standardized procedure meant that jar test results obtained using 

different procedures could not be compared directly.  

Graham (1939) stated that “jar tests will have little meaning unless stirring conditions 

match those of the plant closely.” This view has been endorsed by many researchers, engineers, 

and authorities over the years, including ones that expressed the need for a standardized jar testing 

procedure. Treatment plant operators are expected to match their jar test mixing parameters as 

close as possible to their unique treatment plants by calculating their basins’ theoretical mixing 
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intensities and detention times. It is often the case that even when full-scale treatment plant 

conditions are precisely replicated, jar test results would not match the results observed in the full-

scale process; thus, operators would have to go through a tedious trial-and-error process to tweak 

their jar test procedure until their results matched (Hudson and Wagner 1981; Teefy, Farmerie and 

Pyles 2011). Some sources refer to this process as “calibrating” the jar test procedure to an 

individual treatment plant (Budd et al. 2004).  

The commercialization of the jar tester and the publication of industry guidelines such as 

the American Water Works Association’s (AWWA) M37 manual has somewhat reduced the 

variability of the selected sample volumes and container dimensions. Settled water turbidity has 

since become the preferred industry metric for objectively quantifying coagulation efficiency; 

however, there is still some discrepancy in the selected duration of the settling stage and sampling 

protocols (e.g., depth at which the sample is collected). Several researchers also noted that floc 

characteristics and settled water turbidity were highly sensitive to jar test mixing parameters 

(Griffith and Williams 1972; Ives 1979; Bernhardt and Schell 1993); therefore, minor variations 

in the procedure could produce markedly different results.  

A key factor in the standardization of the jar test procedure is the performance metric 

selected to evaluate the efficiency coagulation in the jar test procedure. A suitable performance 

metric that facilitates the standardization of jar testing must have the following characteristics: (1) 

it should be based on a reproducible and objective measurement, (2) it should be independent of 

mixing parameters, and (3) it should be directly scalable and representative of full-scale results. 

Settled water turbidity would meet the first criterion by being a reproducible and objective 

measurement; however, it fails to meet the second and third criteria. Metrics based on dissolved 

contaminants such as natural organic matter (e.g., UV254  and DOC) would be suitable since they 
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would meet the first and second criteria; however, they cannot be used exclusively since they do 

not give any indication of the extent of turbidity removal – which is arguably the primary metric 

by which the performance of the full-scale process is evaluated. 

3.4.   Jar Test Filtration 

Some researchers recommended using membrane filters or filter papers to reproduce full-

scale granular media filtration results (e.g., Hudson and Wagner (1981) and Herman (1984)). 

Membrane/paper filters and granular media filters (such as sand) rely on different mechanisms of 

removing contaminants from water. In membrane filtration, particles are removed via size 

exclusion or sieving whereas, in granular media filtration, removal occurs via contact and 

attachment between particles and the surfaces of individual media grains. As a result, granular 

media filtration relies on media depth where water is forced to travel through a tortuous path, 

thereby increasing the likelihood of collisions between the particles and the media. The attachment 

efficiency of stable particles is expected to be low due to the same repulsive forces that keep two 

particles apart; therefore, chemical pretreatment (i.e., coagulation) is required to destabilize the 

particles and enhance their attachment efficiency. This implies that a greater burden is placed on 

the efficiency of the coagulation stage instead of floc size since the pores in a granular media 

filtration are orders of magnitude larger than most contaminants. Compared to granular media 

filtration, some drawbacks of using membrane filtration include an increased risk of floc breakage 

due to sampling and additional recurring expense of filters.  

Researchers have also explored the idea of quantifying coagulation efficiency using filtered 

water turbidity. Hannah et al. (1967) developed a bench-scale granular media filter which was used 

to measure filtered water turbidity. In their procedure, the authors collected a sample of settled 

water and poured into the filter column. Their column could be operated at either 2 or 8 gpm/ft2. 
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In general, Hannah et al. (1967) found that the results obtained from a small bench-scale granular 

media filter column were comparable to the results obtained from a pilot-scale filter. TeKippe and 

Ham (1970) used a somewhat similar approach; however, the filtration rate in their filter was set 

to 20 gpm/ft2 (approximately 10 times the recommended rate) to evaluate the strength of the floc. 

The authors reported a good correlation between settled water turbidity and filtered water turbidity. 

Brink and coworkers (1988) developed a jar test procedure based on granular media filtration 

instead of settling specifically for direct filtration plants (i.e., without a sedimentation stage) or 

plants that treated low turbidity waters where it was challenging to form settleable floc. The authors 

found that jar test filtered turbidity results were scalable and closely matched plant results. Dentel 

et al. (1988) developed a bench-scale filter apparatus that could quantify floc filterability and 

estimate filter run times and head loss. Their results were mostly in good agreement with the full-

scale process. Bernhardt and Schell (1993) developed a mixing/filtration apparatus in which the 

coagulated water could be directly filtered (i.e., without pouring), thereby minimizing the 

possibility of breaking the formed floc. Bernhardt and Schell found that filtration was a better 

metric than settled water turbidity when optimizing mixing parameters.  

Ultimately, filtration-based jar tests were historically not considered as anything more than 

a solution for plants that do not produce a settleable floc. Researchers who investigated bench-

scale filtered turbidity as a performance metric observed the close similarity between the bench-

scale and full-scale results; yet, failed to note its significant implications as a performance metric 

in the optimization of coagulation conditions and mixing parameters. 
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3.5.   Next-Generation Jar Test Procedure 

A new (next-generation) jar test procedure was developed that had three key advantages 

over conventional jar test procedures. First, the new jar test procedure uses a standardized mixing 

program. This means that operators and engineer do not need to match their jar test mixing program 

to their process or spend time calibrating their procedure to match their jar test results with the 

full-scale process. Figure 2.10 showed that alum behaves like an acid, which means that the pH 

will vary as a function of the coagulant dose and the raw water alkalinity. In the case of optimizing 

coagulation conditions, either the pH or the coagulant dose must be held constant as the other 

factor is varied across the jars. As a result, the procedure uses a single-variable optimization 

approach where all coagulation variables are controlled (fixed) to study the effects of a single 

parameter of interest (e.g., coagulant dose) on the overall process. Last, optimization is based on 

granular media filtration instead of settling. A custom-built filtration stand that houses six identical 

bench-scale filters is used to directly filter treated or settled water at the end of the experiment. 

Experiments performed by King (2017) showed that the combination of a relatively shallow media 

depth and high filtration rate ensured that sub-optimal coagulation conditions would not be falsely 

identified as optimal; therefore, the water was filtered by gravity at a rate of approximately 4.5 – 

5 gpm/ft2. A summary of the next-generation jar test procedure is provided in Appendix A; 

however, readers are strongly encouraged to refer to the videos and step-by-step guides freely 

available online (Alansari 2020d). The advantages of the next-generation jar test procedure over a 

conventional jar test procedure will be demonstrated in the subsequent sections and chapters.  
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3.5.1. Coagulation Optimization with The Next-Generation Jar Test Procedure 

 The following experimental result and discussion presented herein were intended to allow 

a comparison of results obtained from a conventional jar test procedure and results obtained from 

the next generation jar test procedure. The objective of this study was to identify zones of effective 

treatment in terms of settled and filtered water turbidity removal and to identify optimal charge 

neutralization and sweep flocculation conditions. The optimal charge neutralization and sweep 

flocculation conditions were selected for an investigation of mixing parameters in the following 

chapters.  

3.5.1.1.  Synthetic Water Preparation 

Water quality is a primary factor that influences coagulation requirements and floc 

characteristics; therefore, water quality parameters need to be tightly controlled for this 

investigation. A synthetic raw water was created by combining DI water and surrogates for natural 

turbidity, alkalinity, DOC, SUVA. This ensured that the variability in the raw water quality was 

minimized; hence, excluded as a factor in the analyses of data. Details on the preparation of the 

synthetic water can be found in Appendix B. A water that had a low turbidity, DOC and SUVA, 

and low-mid alkalinity was selected since previous studies have shown that these conditions are 

typically less than ideal for the formation of floc (Letterman, Tabatabaie and Ames Jr 1979; Brink, 

Choi, Al‐Ani and Hendricks 1988; Edzwald and Tobiason 1999; Jarvis, Jefferson and Parsons 

2006). Table 3.1 presents a summary of the synthetic water quality parameters. 
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Table 3.1. Synthetic raw water quality parameters 

Parameter Average (± SD) a 

Turbidity [NTU] 3.0 (± 0.17) 

Dissolved organic carbon [mg/L as C] 2.0 (± 0.21) 

Specific ultraviolet absorbance [L/mg-m] 2.3 (± 0.098) 

Zeta potential [mV] −26.3 (±9.77) 

Alkalinity [mg/L as CaCO3] 27.4 (± 2.5) 
a Sample size = 102 

  

3.5.1.2.  Sedimentation Versus Filtration 

A total of 17 jar tests (with 6 jars each) were performed where the investigated coagulant 

dose ranged from 3 to 100 mg/L as alum-14 while the pH ranged from 5 – 8 in 0.5 pH increments. 

Figure 3.7 shows the investigated coagulant dose and pH conditions. The X-symbols represent the 

target pH values, while the dot-symbols represent the measured pH values at the corresponding 

coagulant doses. The pH after coagulation was measured by collecting a 200 mL sample from each 

jar at the end of the rapid mix stage. In general, a difference of ±0.2 from the target pH was 

considered acceptable. Settled water turbidity samples were collected at the end of a 20-minute 

settling period. Filtered turbidity samples were collected by directly filtering the settled water 

using a set of bench-scale filters. 
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Figure 3.7. Investigated coagulation conditions (102 data points) 

 

Settled and filtered water turbidity removals were plotted on contour graphs shown in 

Figure 3.8. The average raw water turbidity was 3.0 NTU; therefore, a filtered turbidity removal 

above 90% would correspond to a turbidity below 0.3 NTU (the current turbidity standard in the 

United States for full-scale water treatment facilities). It is worth noting that the jar test filters are 

producing this turbidity with only 3-inches of filter media at a flow rate of 4 – 5 gpm/ft2, so a full-

scale facility would reasonably expect a turbidity lower than 0.3 NTU under these coagulation 

conditions. There are currently no regulatory limits for settled water turbidity; hence, an 

"optimum" can only be selected based on the relative turbidity between the jars. Some states do 

participate in optimization programs that encourage utilities to achieve a reduced settled water 
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turbidity of less than or equal to 1.0 or 2.0 NTU (depending on the average raw water turbidity) 

and a filtered water turbidity less than or equal to 0.1 NTU (Barr 2007; GLUMRB 2018). 

 
Figure 3.8. Settled (left) versus filtered (right) jar test results 

 

The zones of highest settled turbidity removals (>80%) were small relative to filtered water 

turbidity zones and appeared to be sensitive to minor changes in coagulant dose and pH. The 

optimum settled turbidity removal zone was between pH 6.5 – 7.25 and 12 – 15 mg/L as alum – 

14. The advantages of optimizing coagulation conditions based on filtration, instead of settling, 

become apparent when comparing the two plots in Figure 3.8 in terms of both size and consistency 

of optimal zones. The largest effective filtered turbidity removal zone (>90%) extended diagonally 

from approximately pH 5.5 to 7.75 between 9 – 100 mg/L as alum-14. Also, a small distinct zone 

was identified where the filtered turbidity removal exceeded 90% at a relatively low dose of 6 
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mg/L as alum-14 and pH 6.5 (whereas the settled turbidity removals showed no similar indication 

of optimal treatment).  

The charge neutralization condition was selected at a coagulant dose of 6 mg/L as alum-14 

(0.55 mg/L as Al) and a pH of 6.5.  At this condition, the coagulant exhibited a stoichiometric 

behavior in terms of turbidity removal (Shin, Spinette and O'Melia 2008).  Edzwald (2013) 

suggested that the charge neutralization mechanism is restricted to a coagulant dose below 1 mg/L 

as Al (11 mg/L as alum-14) and a pH approximately six or less.  The selected condition met the 

dose criterion; however, the selected pH was slightly higher than the proposed pH limit. According 

to Figure 13, positively charged aluminum species were present in varying proportions at the 

investigated condition; therefore, the selected charge neutralization condition was considered 

acceptable (Edzwald and Tobiason 1999). The jar test settled and filtered turbidity removals at the 

selected charge neutralization condition were 47 and 93%, respectively (indicating that the optimal 

charge neutralization conditions would likely not be identified by the conventional jar test methods 

based on sedimentation only). The sweep flocculation condition was selected at a dose of 20 mg/L 

as alum-14 (1.82 mg/L as Al) and a pH of 7.0.  The selection of the sweep flocculation condition 

was based on its central location on the filtered turbidity removal contour plot. This condition 

coincided with the sweep flocculation zone identified by Edwards and Amirtharajah (1985).  The 

jar test settled and filtered turbidity removals at the selected sweep flocculation condition were 87 

and 97%, respectively. 

The difference between optimizing coagulation conditions using settled water turbidity and 

filtered water turbidity results can be even more substantial. Figure 3.9 shows the results of the 

same experiment performed with a water with the same raw water turbidity and alkalinity but 

different levels and characteristics of dissolved organics. At pH 6.5, the settled water turbidity 
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optimum dose was approximately 55 mg/L as alum-14 (based on the >80% removal criterion), 

while the filtered water turbidity criterion (>90% removal) was achieved with roughly 50% less 

alum. Optimization based on filtered turbidity showed that even further reductions of the coagulant 

dose would be possible by operating at a lower pH (e.g., 9 mg/L as alum-14 and pH 5.0). This 

pattern of different optimum conditions was consistently observed with 14 other waters. An online 

dashboard was created to visualize and compare settled and filtered water turbidity results 

(Alansari 2021b). 

 
Figure 3.9. Settled (left) versus filtered (right) jar test results, case 2 
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3.5.1.3.  Floc Characterization 

Floc characterization was performed using a photometric dispersion analyzer (PDA2000, 

Rank Brothers Ltd.). The PDA measures the intensity of a light beam as it passes through a flowing 

suspension. The ratio of the fluctuations in beam intensity to the average of the beam intensity, 

which is related to the turbidity of the suspension, was used as an indicator of the state of 

aggregation of the suspension. This ratio is typically referred to as the flocculation index (FI). An 

increase in the FI is an indication of aggregation (flocculation), while a decrease is caused by 

disaggregation (floc break-up). An in-depth description of the instrument's theory and operation 

can be found in an article published by Gregory (2009). A description of the experimental setup is 

provided in Appendix C. Floc formation characteristics were quantified in terms of the maximum 

observed FI and floc formation times. In this study, floc formation times were defined as the time 

required for the FI to increase by 10% (t10%) and 90% (t90%) of the maximum observed FI value. 

In general, the FI has been shown to correlate with floc size directly; therefore, it could be 

reasonably assumed that a higher FI value corresponded to a larger floc size (McCurdy, Carlson 

and Gregory 2004).  

Experiments using the PDA were performed at the predetermined charge neutralization 

and sweep flocculation conditions to establish baseline values with the standardized mixing 

program (Figure 3.10). Although the filtered turbidity removals of the two coagulation conditions 

were within 4% of each other, their floc formation characteristics and settled turbidity removals 

were markedly different (as shown in Figure 3.8). Floc appeared relatively early in the first 

flocculation stage under sweep flocculation, while floc did not appear until the second stage of 

flocculation with charge neutralization. Consequently, the time for the FI to increase by 10% was 

approximately 2 minutes with sweep flocculation compared to 9 minutes with charge 
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neutralization. The FI reached a plateau by the third flocculation stage with sweep flocculation 

(≈11 minutes). Under charge neutralization, the FI trend remained linear for the duration of the 

charge neutralization experiment, which implied that the floc size was still increasing at the end of 

this experiment. The difference in the rate of formation between the two mechanisms can be 

attributed to the difference in the concentration of particles (as a result of different coagulant doses) 

and perhaps the collision-attachment efficiencies of the respective coagulation mechanisms 

(Matsui et al. 1998; Crittenden et al. 2012b).  

 
Figure 3.10. Baseline PDA experimental results 
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3.6.   Advanced Coagulation Optimization 

Turbidity is often regarded as the primary performance metric for optimizing coagulation 

conditions in jar tests. However, coagulation conditions for optimal turbidity removals may not 

always overlap with other treatment goals, such as the reduction precursors of disinfection by-

products. For example, Randtke (1988) stated that the optimum pH for the removal of organics is 

typically in the range of pH 5.0 – 6.0. On the other hand, the optimum pH for the removal of 

turbidity is typically reported as being in the range of pH 6.0 – 7.0 (Budd, Hess, Shorney‐Darby, 

Neemann, Spencer, Bellamy and Hargette 2004). Modern treatment plants usually have to meet 

multiple treatment goals to produce safe drinking water; thus, jar test procedures should also 

incorporate these goals in the optimization process. Figure 3.11 shows some of the typical output 

parameters that can be used to optimize coagulation conditions. However, before discussing how 

to optimize for multiple output parameters, it is important to first examine how an optimum 

coagulation based on a single parameter might be identified.  

 
Figure 3.11. Output parameters of the coagulation process 
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3.6.1. Optimizing Based on Total Chemical Costs 

From an operational point of view, an optimum coagulation condition must also consider 

the cost of treatment chemicals used and maximize the removals of the contaminants of interest. 

Thus, the process of optimizing the coagulation stage becomes a multi-parameter optimization 

problem. Experimenters can incorporate the total chemical costs in their jar tests by scaling up the 

volumes of the coagulant and pH adjusting chemicals used at each investigated coagulation 

condition. Figure 3.12 shows a contour graph of the total chemical costs to treat a million gallons 

of water as a function of the coagulant dose and coagulation pH. The costs for alum (48.5%), 

sodium hydroxide (50%), and sulfuric acid (93%) were assumed to be $319, $500, and $160 per 

dry ton, respectively. The method of scaling up the volumes of chemicals used and calculating 

their total cost is outlined in Appendix D. Although the estimated costs may vary by location and 

vendor, the fact that the chemical costs are expected to change with respect to changing coagulation 

conditions would remain the same.  
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Figure 3.12. Chemical costs of treating 1 million gallons of water 

 

3.6.2. Optimization Algorithms  

Selecting an optimum coagulation condition based on cost and the removal criterion for a 

given contaminant depends on the specific optimization goals. For example, the goal might be to 

minimize the total cost while also meeting the minimum removal requirement. Alternatively, one 

might want to identify a robust coagulation condition that is not sensitive to minor water quality 

changes while also being cost-effective. Figure 3.13 demonstrates two approaches (or algorithms) 

for selecting an optimum coagulation condition from a contour plot. The top algorithm minimizes 
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chemical costs based on a specified removal criterion, while the bottom one maximizes robustness 

with respect to chemical costs. 

 In summary, a search grid is generated from a contour plot of the parameter being 

optimized. In this example, the grid ranged from pH 4.7 to 8.2 in increments of 0.05 pH units (i.e., 

70 points in total) and ranged from 3 to 100 mg/L as alum-14 in increments of 0.5 mg/L as alum-

14 (i.e., 194 points in total). The algorithm first excluded all datapoints where the removals were 

below the specified criterion. Minimum target removals are achieved by operating within the 

optimum contour boundaries of a given metric (e.g., >97% filtered turbidity removal). The 

algorithm then sorts the filtered dataset based on total chemical costs and selects the cheapest 

condition as the optimum condition to minimize costs. Minimizing based on chemical costs 

typically yields to conditions that are near or at the boundaries of the removal zones. Minor 

changes in water quality parameters could potentially shift the selected optimum point outside the 

optimal removal boundary. To increase robustness, the robust algorithm finds all datapoints that 

would still meet the removal criterion if the pH were shifted by ±0.25 units and the dose was 

shifted by ± 3 mg/L as alum-14. The cheapest condition is then selected as the optimum robust 

condition.  
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3.6.3. Combining Multiple Optimization Criteria 

Multiple removal goals are achieved when the boundaries of different performance metrics 

overlap. For example, to optimize for both settled and filtered water turbidity, a plant would have 

to operate in the region where the optimum settled turbidity zone overlaps with the optimum 

filtered turbidity zone. If DOC were also considered, then the plant would need to operate in the 

region where the optimum DOC zone overlaps with the optimum settled turbidity zone and 

optimum filtered turbidity removal zone. The most basic optimization approach is a one-level 

optimization scenario where a single water quality parameter (e.g., settled water) is optimized. 

Figure 4.4 shows how a total of 11 different optimization scenarios can be considered using four 

performance parameters for each of the optimization algorithms discussed above. Multi-level 

optimization scenarios consider multiple parameters (up to four) simultaneously. All multi-level 

optimization scenarios included filtered turbidity removals since it was the only parameter 

currently regulated by the US Environmental Protection Agency (USEPA). 

 
Figure 3.14. Optimization scenarios 
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Figure 3.15 compares optimum removal boundaries for settled water turbidity, filtered 

water turbidity, UV254, and DOC. Settled water turbidity limits were based on the USEPA’s Area-

Wide Optimization Program (AWOP) limits, i.e., less than 1 NTU for waters with an average raw 

water turbidity below 10 NTU and less than 2 NTU for waters with an average raw water turbidity 

above 10 NTU (Barr 2007). Filtered turbidity limits were based on the USEPA’s filtered turbidity 

limit of less than 0.3 NTU (USEPA 2002). UV254 removal criteria were selected based on the 3rd 

quartiles of the measured removals. DOC removal criteria were based on the USEPA’s Stage 1 

TOC removal requirement (USEPA 1998). Edzwald and Tobiason (1999) claimed that DOC 

makes up about 90 – 99% of the TOC fraction; therefore, setting the limits based on DOC removals 

provided a more conservative goal.  

The water used in this example could generally be classified as challenging to treat due to 

the combination of a relatively high raw water alkalinity and DOC. The “alum only” line revealed 

that without any pH adjustment, the filtered turbidity target would only be achieved when the 

coagulant dose exceeded 50 mg/L as alum-14. Additionally, the settled water turbidity limit could 

not be achieved without a pH adjustment since the alum-only titration line did not cross the 

removal boundary. As a result, it was evident in this case that pH adjustment (acid addition) was 

necessary to meet both turbidity goals. The chemical costs contour plot shown in Figure 3.12 

would make it possible to select the optimal coagulation condition based on the optimization 

algorithms described above as well. The optimum conditions identified using the cost-minimizing 

algorithm are shown in Figure 3.15a, while the optimum conditions identified using the robust 

algorithm are shown in Figure 3.15b.  



83 

    

 

 
Figure 3.15. Optimum removal boundaries 
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The cost-minimizing algorithm identified five different optimum conditions (indicated by 

the star-symbols) depending on the selected optimization scenario. The optimum coagulation 

conditions were generally located between pH 6.0 and 7.0 and above 30 mg/L as alum-14. Even 

though significantly lower doses were identified for some of the parameters (e.g., 9 mg/L as alum-

14 at pH 5.5 for DOC removal), the amount of acid required to operate at the low pH conditions 

was cost-prohibitive. For example, the total chemical costs at the low dose (9 mg/L as alum-14 

and pH 5.5) and optimum DOC removal condition were approximately $93 and $50 per million 

gallons of water treated, respectively. In general, the total chemical cost increased proportionally 

the further away the coagulation condition was from the alum-only line. As a result, all the 

conditions identified in Figure 3.15a were located at or near the optimum boundaries and as close 

to the alum-only line as possible for the respective output parameters. Operating at or near 

boundaries could potentially be risky if the boundaries shift in the wrong direction with minor 

water quality changes. The goal of the second optimization algorithm was to identify optimum 

conditions that would be relatively less susceptible to minor water quality changes. In general, the 

optimum coagulation conditions identified using the robust algorithm were at a lower pH and/or 

higher dose than the conditions identified by the first algorithm (Figure 3.15b). Again, the second 

algorithm considers the total cost of the treatment chemicals; thus, the optimum conditions close 

to the alum-only line instead of being in a more central location relative to the optimum boundary.  

Table 10 shows the optimum coagulation conditions at all the considered optimization 

criteria. All the conditions identified using the cost-minimizing algorithm were cheaper compared 

to the same criteria identified using the robust algorithm. For example, the total chemical cost for 

the filtered turbidity condition increased by approximately 22% by using the robust algorithm. An 

interesting observation to note is that the most expensive conditions were always when settled 



85 

    

 

water turbidity was included as an optimization criterion. This implies that optimizing for settled 

water turbidity in a jar test would potentially lead to increased chemical costs without any 

significant benefit to the overall treatment process. 

Table 3.2. Optimum coagulation conditions 

Algorithm Optimization Criteria a pH Coagulant Dose b  Cost/Mgal [$] 

Cost 

Minimizing 

DOC 7.1 29 $ 50 

UV254 7.0 39 $ 62 

Filtered 6.5 22 $ 66 

+ DOC 6.5 22 $ 66 

+ UV254 6.5 25 $ 69 

+ UV254 + DOC 6.5 25 $ 69 

Settled 6.6 42 $ 84 

+ Filtered 6.6 42 $ 84 

+ Filtered + UV254 6.6 42 $ 84 

+ Filtered + DOC 6.6 42 $ 84 

+ Filtered + UV254 + DOC 6.6 42 $ 84 

Robust DOC 6.9 31 $ 60 

UV254 6.7 42 $ 77 

Filtered 6.8 53 $ 85 

+ DOC 6.8 53 $ 85 

+ UV254 6.8 53 $ 85 

+ UV254 + DOC 6.8 53 $ 85 

Settled 6.3 42 $ 95 

+ Filtered 6.3 42 $ 95 

+ Filtered + UV254 6.3 42 $ 95 

+ Filtered + DOC 6.3 42 $ 95 

+ Filtered + UV254 + DOC 6.3 42 $ 95 
a Optimum conditions sorted by treatment cost 
b mg/L as alum-14 

 

The method described above is suitable for selecting optimum conditions from contour 

plots; however, contour plots require a wide matrix of coagulant dose and pH conditions, an 

extensive experimental process, and special software. Operators usually have limited time and 

resources; thus, they require a rapid and efficient method of identifying optimum coagulation 

conditions. King (2017) proposed using an alternating single-variable optimization method to 

identify optimum coagulation conditions. King demonstrated that a global optimum coagulation 

condition based on filtered turbidity removal could be identified with 2 – 3 jar tests. Users are 
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encouraged to use JTWizard in conjunction with a single-variable optimization approach such as the 

one developed by King (2017). JTWizard an interactive excel-based jar testing program that guides 

and assists users in performing jar tests (Alansari 2020d). The software includes the optimization 

algorithms discussed earlier, where the “best” jars are automatically selected. 
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CHAPTER 4: JAR TEST MIXING PARAMETERS 

 

 

 Jar testing has traditionally been recommended as a tool for design engineers to determine 

appropriate mixing intensities (G-values) and detention times. Current design guidelines generally 

recommend the rapid mix stage have a short detention time (10 – 60 s) with mixing intensities (G-

values) in the range of 300 – 1000 s-1 (Baruth 2004; Hendricks 2016).  For flocculation, authorities 

generally recommend a tapered flocculation design with a minimum detention time of 20 minutes 

at maximum flow and G-values in the range of 20 – 75 s-1 (Baruth 2004; Crittenden, Trussell, 

Hand, Howe and Tchobanoglous 2012b). In a recent revision, the “10 states” standards (2018) 

recommended a minimum detention time of 30 minutes with a flow-through velocity of 0.5 to 1.5 

ft/min and agitators with peripheral velocities between 0.5 to 3.0 ft/s. Edzwald (2014) provided a 

history of mixing applications in drinking water treatment. While it is not clear how the mixing 

guidelines were developed, it can be reasonably assumed that many of the guidelines were 

primarily based on conventional jar test procedures (i.e., settling in a jar). For example, 

Amirtharajah and Mills (1982) used a conventional jar test procedure to demonstrate that intense 

rapid mixing (high G-values) was only required for effective coagulation under charge 

neutralization conditions. 

4.1.   Rapid Mix 

 The premise for rapid mixing, particularly for high-intensity rapid mixing, was based on 

the notion that the coagulation reactions are completed within 7 seconds (Letterman, Quon and 

Gemmell 1973; Amirtharajah and Mills 1982; Committee 1989). Thus, in theory, intense rapid 

mixing would ensure that the aluminum hydrolysis products are rapidly formed and available for 

absorption by all contaminants. Researchers have recently begun questioning the role and 
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significance of rapid mixing in drinking water treatment. Edzwald (2013) argued, based on the 

article published by Amirtharajah and Mills (1982), that most treatment plants operate under sweep 

flocculation conditions where intense mechanical rapid mixing (as per design guidelines) was not 

necessary. In a series of jar tests, Vadasarukkai and Gagnon (2015) found that rapid mix stage G-

values had no impact on TOC removals but a significant impact on settled water turbidity removals 

under both optimum charge neutralization and sweep flocculation mechanisms. However, the 

authors reported that the G-value requirements for effective turbidity removals were markedly 

lower than the current design guidelines. In a later publication, these authors reported that the 

observed differences in settling performance ultimately became negligible when floc was given 

enough time to settle (Vadasarukkai and Gagnon 2017). Allerdings and colleagues (2015) reported 

that there was no significant impact on turbidity removals in a full-scale facility after several 

incidents of rapid mixer equipment failures. Malinaro et al. (2019) presented similar findings from 

case studies where the rapid mixer was not operated either due to equipment failure or operator 

error.  This constitutes significant evidence that rapid mixing might not be required in some or all 

water treatment facilities. 

4.2.   Flocculation 

 Floc formation occurs when destabilized particles collide and attach. The process is 

kinetically governed where collisions between particles are thought to occur primarily by three 

mechanisms: fluid shear (mixing), differential settling (gravity), and Brownian motion (random 

motion of particles). Early theories describing the rate of collisions between the particles (collision 

frequency functions) used a simplistic approach where changes in fluid motion and short-range 

forces were ignored (Lawler 1993). In this view, fluid shear becomes the dominating collision 

mechanism for a wide range of particle sizes. As a result, many of the flocculation design 
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guidelines and practices, even to this day, are based mainly on fluid shear, i.e., mixing. In 1992, 

Han and Lawler published a noteworthy research paper in which they incorporated the effects of 

changes in fluid motion (hydrodynamic retardation) and short-range forces in particle collisions. 

In their view, collisions primarily occurred by Brownian motion instead of fluid shear, while 

minimal mechanical mixing (G≈20 s-1) was only required to keep particles in suspension. This 

model indicates that most flocculation systems in water treatment facilities could be significantly 

overdesigned. An excellent and comprehensive explanation of both theories and their governing 

equations was provided by Benjamin and Lawler (2013). Although Han and Lawler’s 1992 article 

has been cited more than 200 times, many of the citing papers were concerned with the specifics 

of their mathematical model concerning flocculation and not primarily with the practical 

implications of their conclusions. An online interactive data visualization dashboard was created 

to compare the two prevailing flocculation models (Alansari 2020c). The app plots the dominant 

regions for each collision mechanism as a function of G-value (10 – 120 s-1), temperature (5 – 40 

°C), and particle density (1 – 2.5 g/cm3).  

4.3.   The Optimization Problem  

Researchers have demonstrated that the coagulation mechanism (Letterman, Quon and 

Gemmell 1973; Amirtharajah and Mills 1982; Jarvis, Jefferson and Parsons 2005; Li et al. 2006; 

Jiao et al. 2017), rapid mix parameters (Rossini, Garrido and Galluzzo 1999; Li, Zhu, Wang, Yao 

and Tang 2006; Yu et al. 2011), and flocculation parameters (Matsui, Yuasa, Furuya and Kamei 

1998; Spicer et al. 1998; Yu, Gregory, Campos and Li 2011) can impact coagulation and 

flocculation efficiency. In addition to affecting optimum coagulation conditions (e.g., dose and 

pH), water quality has also been shown to impact optimum mixing parameters (Griffith and 

Williams 1972; Kawamura 1973). Unfortunately, the actual coagulation process is even more 



90 

    

 

complex because coagulation conditions and mixing parameters have a combined interactive effect 

(Kan, Huang and Pan 2002; Gregory and Carlson 2003). This implies that to optimize coagulation 

conditions, mixing conditions would have to be kept constant and the optimized coagulation 

conditions would only apply to the selected set of mixing parameters and vice versa (Figure 4.1). 

Therefore, it should not be surprising that many researchers considered the standardization of the 

jar test as a futile endeavor. 

 
Figure 4.1. The optimization problem 

 

4.4.   Optimizing Jar Test Mixing Parameters 

 While using filtered instead of settled water turbidity in jar testing can offer operational 

and cost advantages to water treatment facilities, the effects on rapid mix and flocculation 

parameters on floc characteristics (e.g., size and formation times) and turbidity removals under 

optimized charge neutralization and sweep flocculation conditions are a separate matter. The 

following experimental results and discussion presented herein were intended to allow a 
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determination of the degree by which mixing intensity and time impact turbidity removal 

efficiency during the conventional drinking water treatment process. The specific focus here was 

on the effects of jar test mixing parameters on floc formation (time and size) and treated water 

turbidity (settled and filtered). Figure 4.1 showed that coagulation conditions could only be 

optimized under constant mixing parameters and vice versa. As a result, the coagulation conditions 

were fixed by using the optimum charge neutralization and sweep flocculation conditions 

identified for the low-turbidity and low-organics water studied in Chapter 3. 

Rapid mix factors included the duration and the intensity of the rapid mix stage, while 

flocculation factors included the flocculation scheme (i.e., single-stage or tapered flocculation) and 

the duration and intensity of the flocculation stage. Ideally, a full-factorial experimental design (or 

similar approach), where all the mixing factors are varied, would have provided a complete picture 

of the main and interacting effects between the investigated mixing variables. However, this would 

have required over 1,400 experiments (without replications) based on the number of factors and 

their respective levels considered in this study. This was by no means practical due to time and 

resource limitations. Nevertheless, these effects could still be quantified, to an extent, by 

comparing the results to a set of baseline values using a single-variable optimization approach. In 

this case, the baseline conditions were established using the standardized mixing program from 

the next-generation jar test procedure (Figure 3.10). A total of 82 experiments were performed in 

which the effects of rapid mix and flocculation factors on turbidity removals and floc formation 

characteristics were measured (Table 4.1) 
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Table 4.1. Investigated mixing parametersa  

Experiment 
Rapid mix Flocculation 

Duration [s] G-Value [s-1] Duration [min] G-Value [s-1] 

Rapid Mix Duration 5, 15, 30, 60, 120, 300 609 50 SS: 20 

Rapid Mix Intensity 60 0b, 300, 609, 1200 50 
SS: 20, 76 

T: 76→ 47 → 20 

Flocculation Duration 60 609 20, 30, 40, 50 SS: 20 

Flocculation Intensity 60 609 50 
SS: 20, 47, 76, 120 

T: 76→ 47 → 20 

SS = single-stage flocculation; T = tapered flocculation 
a All experiments were performed under charge neutralization and sweep flocculation conditions 

* Rapid mix G-value = Flocculation G-value  

 

4.5.   Effects of Flocculation Parameters  

4.5.1. Duration of Flocculation 

The baseline experiment (Figure 3.10) showed that with the selected charge neutralization 

condition, the flocculation index was still increasing and did not reach a plateau after 20 minutes 

of flocculation. Here, a single-stage flocculation scheme was used at a G-value of 20 s-1, as this 

represented the "worst-case scenario" condition in terms of floc formation time with just enough 

mixing energy to keep the floc from settling. Experiments were performed with the flocculation 

stage duration ranging from 20 to 50 minutes in 10-minute increments (Figure 4.2). The results 

showed that it took approximately 35 minutes for the FI to reach a plateau under the selected 

charge neutralization condition and only 11 minutes with the sweep flocculation condition, which 

was the same as with the 3-stage tapered flocculation experiment. 
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Figure 4.2. PDA results of experiments at 20 s-1 and floc stage duration of 50 minutes 

 

Figure 4.3 shows a plot of the settled and filtered turbidity removals versus the duration of 

the flocculation stage at a G-value of 20 s-1. Settled water turbidity samples were collected after a 

20-minute settling period. The water was filtered immediately after settling, and samples for 

filtered water turbidity were collected 2 minutes after the start of filtration. Under both coagulation 

mechanisms, settled turbidity removals were proportional to the length of the flocculation stage up 

to 50 minutes. This supports (and is likely the basis for) current flocculator designs in water 

treatment facilities. Flocculation time, under charge neutralization, had a more pronounced effect 

on settled water turbidity removals where the removals increased from -11 to 71% as time 

increased from 20 to 50 minutes, respectively. A similar trend was observed with sweep 
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flocculation; however, the effect was relatively less pronounced where the removals only increased 

from 67 to 90% in the same time range. Under charge neutralization, the correlation between floc 

size (based on the FI data shown in Figure 4.2) and settled turbidity removals was apparent. 

However, it is unclear why settled water turbidity removals increased with flocculation time under 

sweep flocculation conditions since all samples were collected after the FI reached a plateau.  

 
Figure 4.3. Effect of flocculation stage (20 s-1) duration experiments on turbidity removals 

 

Filtered turbidity removals in Figure 4.3 appeared to be relatively independent of 

flocculation time or floc size. The removals were within 4% for each coagulation mechanism and 

showed no apparent trend over time for all the investigated conditions. Greater than 90% filtered 

turbidity removals were consistently achieved despite the settled turbidity removals ranging from 

-11 to 90%. One possible explanation could be that, even at the shortest flocculation time (20 
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min.), the floc was both properly charged and large enough to filter efficiently but perhaps not 

large enough to settle. Filtered turbidity removals of samples collected earlier in this experiment 

could have been considerably lower. As a result, these experiments were repeated, but this time 

the water was filtered directly (without settling).  

4.5.1.1.  Direct Filtration  

Samples for the direct filtration experiments were collected immediately after rapid mix, 

before and during the growth phase, and after the FI plateau for each coagulation condition. The 

results of this experiment showed that flocculation time only had an impact on filtered turbidity 

removals in the charge neutralization case (Figure 4.4). Under sweep flocculation, greater than 

95% filtered turbidity removals were achieved immediately after rapid mix (609 s-1 or 300 rpm for 

1 minute). With charge neutralization, the filtered turbidity removal immediately after the rapid 

mix stage was approximately 70%; however, the removals increased to above 90% with only 9 

minutes of mixing at 20 s-1. In these cases, floc was not visible to the naked eye until about 5 

minutes with sweep flocculation and 20 minutes with charge neutralization. These data suggest 

that while there might not be a minimum flocculation time for sweep flocculation, there might be 

a minimum amount of flocculation required for charge neutralization (circa 9 min. at a G-value of 

20 s-1) for this water. These results support the hypothesis that flocculation time or floc size was 

not a primary factor when optimizing coagulation conditions using granular media filtration 

instead of settling in a jar test since optimal filtered turbidities were achieved while floc was not 

yet visible to the naked eye provided that there was at least 9 minutes of flocculation after rapid 

mix at a G-value of 20 s-1. 



96 

    

 

 
Figure 4.4. Direct filtration turbidity removals 

 

4.5.2. Flocculation Intensity  

For subsequent experiments, a fixed flocculation stage duration of 50 minutes where floc 

size, or FI, was no longer a function of time was selected. This permitted the exclusion of time as 

a factor when measuring the effects of other mixing variables, such as flocculation intensity. When 

tapered flocculation was used as the flocculation scheme, the time of the final stage was set to 50 

minutes (60 minutes total). 

Experiments were performed where the G-value of the flocculation stage was varied from 

20 to 120 s-1. Figure 4.5 shows the floc intensity experimental results under charge neutralization 

and sweep flocculation. Generally, floc appeared earlier as the flocculation stage's mixing intensity 
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increased; however, the effect was more noticeable under charge neutralization compared to sweep 

flocculation (Table 4.2). Under charge neutralization, the t10% was 6.5 minutes at 120 s-1 compared 

to 16.5 minutes at 20 s-1, whereas under sweep flocculation, the t10% was only 1.5 minutes at 120 

s-1 compared to 2 minutes at 20 s-1.  

 

 
Figure 4.5. Flocculation stage G-value PDA experiments 
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Table 4.2. Floc formation times 
Coagulation 

Mechanism 

Flocculation   

G-Value [s-1] 

t10% 

[min] 

t90% 

[min] 

t90% - 10% 

[min] 

Charge 

Neutralization 

20 16.5 27.2 10.7 

47 10.4 21.2 10.8 

76 9.0 17.8 8.8 

120 6.5 11.1 4.6 

76→ 47 → 20 9.6 21 11.4 

Sweep Flocculation 

20 2.0 8.1 6.1 

47 1.7 5.4 3.7 

76 1.7 3.5 1.8 

120 1.5 2.6 1.1 

76→ 47 → 20 2.2 6.1 3.9 

 

Similarly, the time for the floc size to increase from 10 to 90% decreased as the flocculation 

G-value increased. It should be noted that although the t10% values were within 30 seconds for all 

the sweep flocculation experiments, the t90% values ranged from 2.6 to 8.1 minutes as the G-value 

decreased from 120 s-1 to 20 s-1, respectively. The size of the floc (max FI), to some extent, was 

also a function of the G-value. In general, the floc's maximum size decreased with increasing G-

value, likely due to the higher shear forces (Ching, Elimelech and Hering 1994).  The results also 

highlighted the benefits of tapering flocculation. With tapered flocculation, floc appeared earlier 

(as was also observed with high-intensity mixing), and the floc grew relatively larger (as was also 

observed with low-intensity mixing). These trends agreed with the findings published by several 

authors (Matsui, Yuasa, Furuya and Kamei 1998; Spicer, Pratsinis, Raper, Amal, Bushell and 

Meesters 1998; Yu, Gregory, Campos and Li 2011).  

Results of the settled and filtered water turbidity removals at the investigated flocculation 

G-values for 50 minutes were plotted in Figure 4.6. Settled turbidity removals were proportional 

to floc size (max FI) and inversely proportional to the flocculation stage's mixing intensity. Mixing 

intensity had a noticeable impact on settled water turbidity, under both sets of optimized 

coagulation conditions, with settled turbidity removals ranging from 25 to 90%. On the other hand, 
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filtered turbidity removals were relatively independent of the mixing intensity during flocculation. 

At least 95% filtered turbidity removals were achieved regardless of the applied mixing intensity.  

 
Figure 4.6. Flocculation stage intensity experiments 

 

The mixing intensity during the flocculation stage impacted both the floc size and floc 

formation time. When using settled water turbidity as a performance metric, these observed 

differences in floc characteristics appeared to have a noticeable effect on treatment efficiency. As 

a result, it may seem that Han and Lawler's proposed theory that flocculation G-value is 

insignificant was not accurate since there was a measurable performance difference. Nevertheless, 

the G-value Han and Lawler proposed (20 s-1) resulted in the largest floc size and highest settled 

water turbidity removals when using a single-stage flocculation scheme. However, it should be 

noted that even if mixing conditions in the jar test are such that the same size flocs are formed in 
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a jar as in the full-scale flocculator, sedimentation is not a process that can be directly scaled down 

from the full-scale process to a jar. When results are compared in terms of filtered water turbidity 

removals, which is a directly scalable treatment process, mixing intensity of the flocculation stage 

becomes insignificant to overall treatment efficiency (provided there is at least 20 s-1 of mechanical 

mixing), as concluded by Han and Lawler (1992).   

4.6.   Effects of Rapid Mix 

4.6.1. Intensity of Rapid Mix   

These experiments aimed to determine the effects of the rapid mix G-value on floc 

formation characteristics and turbidity removals under optimum charge neutralization (6 mg/L as 

alum-14 at pH 6.5) and sweep flocculation conditions (20 mg/L as alum-14 at pH 7.0). The 

investigated rapid mix G-values were 0, 300, 609, and 1200 s-1. The 0 s-1 condition was performed 

by setting the rapid mix G-value equal to the G-value of the subsequent flocculation stage (76 or 

20 s-1). The duration of the rapid mix stage was fixed at 60 seconds. Each set of experiments was 

performed with two separate single-stage flocculation G-values (76 and 20 s-1) and the standard 

tapered flocculation scheme (76, 47, and 20 s-1) to assess the potential interactions of rapid mix 

and flocculation G-values. The duration of the flocculation stage was fixed at 50 minutes for all 

experiments. Figure 4.7 shows a plot of the time required for the FI to increase by 10% at all the 

investigated conditions. 

For any given mixing condition, floc always appeared earlier under the sweep flocculation 

condition compared to charge neutralization. Except for one case (charge neutralization, G-

value=1200 s-1), the time required for the floc size to grow by 10% generally decreased with 

increasing rapid mix intensity. In general, the difference between the 10% growth times between 
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lowest and highest intensity experiments was small (≈2.7 minutes) in all but one case. Under 

charge neutralization, increasing the flocculation intensity from 20 to 76 s-1 or using a tapered 

flocculation scheme resulted in a considerable reduction in the time required for the floc to appear. 

Under sweep flocculation, the time for the floc size to grow by 10% was longer only when a 

relatively low rapid mix intensity was followed by low flocculation stage intensity.  

 

Figure 4.7. Time for floc to grow by 10% versus rapid mix G-value (top row) at the investigated 

flocculation conditions (bottom row) 

 

Figure 4.8 compares the maximum measured FI values in all the investigated conditions. 

Relatively larger floc was formed with the low intensity (20 s-1) single-stage flocculation and with 

the tapered flocculation scheme compared to the high intensity (76 s-1) single-stage flocculation. 

Overall, no clear trends could be discerned from the maximum FI results. In some cases, the floc 
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size decreased with increasing rapid mix intensity while in others, increasing the rapid mix 

intensity had the opposite effect.  

 
Figure 4.8 Maximum flocculation index versus rapid mix G-value (top row) at the investigated 

flocculation conditions (bottom row) 

 

Amirtharajah and Mills (1982) claimed that intense rapid mixing was only required when 

operating under charge neutralization conditions. The authors based their analyses on settled water 

turbidity removals in a conventional jar test. Figure 4.9 compares the turbidity removals of all the 

investigated rapid mix intensity conditions. Settled turbidity removals ranged from approximately 

20 – 88%, with no distinct pattern in the removals. In some cases, the settled water turbidity 

removals decreased with increasing rapid mix intensity (e.g., when flocculation=76 s-1), while in 

others, increasing the rapid mix intensity had the opposite effect (e.g., when flocculation=20 s-1). 
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The highest settled water turbidity removals were observed in only one out of six cases where the 

G-value of the rapid mix stage was highest. It was also interesting to note that the lowest settled 

turbidity removals coincided with only two out of the six instances where there was no rapid mix 

(i.e., the rapid mix G-value was set equal to the subsequent flocculation stage G-value). However, 

the removals of these two instances were only within 5% of the following data point. Also, the 

settled water turbidity removals were consistently high in all cases where tapered flocculation was 

used. This agrees with the general design recommendation for tapering the flocculation process. 

Settled water turbidity removal results were somewhat random; however, despite this observed 

variability with the settled turbidity removals, filtered turbidity removals were between 94 and 

97% for all investigated conditions. Therefore, it could be concluded that the intensity of the rapid 

mix stage had no impact on turbidity removals when the results were compared in terms of filtered 

turbidity removals, regardless of the coagulation mechanism.  
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Figure 4.9. Effect of rapid mix G-value (top row) and flocculation conditions (bottom row) on 

water turbidity removals 

 

4.6.2. Duration of Rapid Mix 

The goal of the next set of experiments was to determine the effects of the duration of rapid 

mix on floc formation characteristics and turbidity removals. The G-value of the rapid mix stage 

was fixed at 609 s-1 – the default setting in the next-generation jar test procedure. The investigated 

rapid mix durations were 5, 15, 30, 60, 120, and 300 seconds. Experiments were performed using 

a single-stage flocculation G-value of 20 s-1 for a duration of 50 minutes. The results of the PDA 

experiments at the investigated conditions are shown in Figure 4.10. In general, the time required 

for the floc to appear was inversely proportional to the duration of the rapid mix stage – i.e., floc 

appeared earlier, the longer the duration of the rapid mix stage. 
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Figure 4.10. Effect of rapid mix duration 

 

Under charge neutralization, increasing the rapid mix duration from 5 to 120 s reduced the 

time for floc to appear by 2.8 minutes (17%-time reduction) without impacting the maximum floc 

size (Figure 4.11). On the other hand, increasing the duration to 300 s for charge neutralization 

also reduced the time for the floc to appear by approximately 11 minutes (or a 70%-time 

reduction); however, the maximum floc size was reduced by approximately 20%. Increasing the 

rapid mix duration under sweep flocculation conditions had a more pronounced effect on floc size 

and formation times. Increasing the duration from 5 to 60 s reduced the time for the floc to appear 

by approximately 3 minutes (54%-time reduction) and reduced the maximum size of the floc by 

16%, whereas increasing the duration to 120 or 300 s reduced the time by up to approximately 4 

minutes (72%-time reduction) and reduced the maximum size of the floc by more than 50%.  
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Figure 4.11. Effect of rapid mix duration on maximum flocculation index 

 

The impact of rapid mix duration on floc formation times and size, particularly under sweep 

flocculation conditions, could most likely be attributed to floc appearing during the rapid mix stage 

(Figure 4.12). The figure was constructed by incrementally offsetting the y-axis of each set of rapid 

mix duration experiments by a value of 0.5 units on the flocculation index. Floc appearing during 

the rapid mix stage was subjected to high shear forces. This ultimately resulted in a relatively lower 

max FI (floc size), as seen with the 120 s (sweep flocculation) and 300 s (charge neutralization 

and sweep flocculation) experiments. The extent to which the duration of the rapid mix stage 

impacted floc characteristics could be attributed to the strength of the floc produced under the two 

coagulation mechanisms. Floc produced under alum charge neutralization conditions is thought to 

be stronger and less susceptible to breakage than floc produced under sweep flocculation 
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conditions (Li, Zhu, Wang, Yao and Tang 2006; Yu, Gregory, Campos and Li 2011; Jiao, Fabris, 

Chow, Drikas, van Leeuwen, Wang and Xu 2017). 

 

 
Figure 4.12. Flocculation index versus time under charge neutralization and sweep 

flocculation conditions. Bars denote the duration of the rapid mix stage 

 

Figure 4.13 shows the settled water and filtered water turbidity removals at the investigated 

rapid mixing durations. Settled turbidity removals generally increased as the rapid mix stage 

duration decreased from 300 s to 30 s. A further decrease in the duration had little to no effect on 

the settled turbidity removals. Without considering the filtered turbidity removal data, it would 

appear as though rapid mix duration has, to some extent, a sizeable impact on floc formation 

characteristics and settling performance, thus suggesting an optimum rapid mix duration exists as 
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shown by Letterman and co-workers (1973). An extended rapid mix stage duration would result 

in the floc forming during periods of high-intensity mixing, ultimately leading to smaller and less 

settleable floc due to breakage. Despite these observed differences in floc formation characteristics 

and settled turbidity removals, the duration of the rapid mix stage had little to no effect on filtered 

turbidity removals (or overall treatment efficiency). The variability in the filtered turbidity 

removals was less than 4% for all investigated cases, and the removals were all greater than 90% 

with only 3 inches of filter media.  

Most drinking water treatment plants operate well below their designed capacity 

(maximum daily flow) most of the time; therefore, the theoretical detention times (tank 

volume/flow rate) in their basins would be longer than the designed detention times. Additionally, 

only 63% of the contents in an ideal continuous-flow stirred tank reactor (e.g., rapid mix basin) 

would exit the reactor in a single theoretical detention time; therefore, the average detention time 

of the reactor would be greater than the theoretical detention time (Hendricks 2016). Nevertheless, 

many treatment plants are operating without difficulties meeting filtered turbidity limits despite 

having rapid mix basins with long detention times where floc might be negatively impacted. The 

results of this experiment suggest that as long as coagulation conditions (i.e., coagulant dose and 

coagulation pH) are optimized, the floc would be filtered efficiently regardless of the size and its 

settleability. Rapid mix times longer than 2 or 5 min tended to impact sedimentation negatively, 

but rapid mix times as short as 5 s showed no negative impacts. These results suggest that rapid 

mix times should have maximum detention time instead of the minimum values currently required 

by many states. 
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Figure 4.13. Effect of rapid mix duration on settled water turbidity removals 
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4.7.   Rapid Mix Case Study 

This section presents results from a case study of a conventional surface water treatment 

plant that was forced to operate without a rapid mixer for a period of 2 weeks while they waited 

for parts to repair the drive. At the time of the study, the coagulant was dosed in the 30" raw water 

supply pipe 140 ft upstream of the plant's only rapid mixer. A base was fed immediately before 

the rapid mix basin to increase the coagulated water pH. The water exiting the rapid mix basin 

passed through a Parshall flume followed by a 140 ft horizontal-flow baffled channel before 

entering the 2-stage flocculation basin. The volume of the rapid mix basin was approximately 

5,000 gallons. The calculated theoretical detention times were 55 s, 110 s, and 144 s at the plant's 

designed capacity, average daily flow, and minimum daily flow, respectively. A model of the rapid 

mix basin is shown in Figure 4.14. 

 
Figure 4.14. Model of rapid mix basin 
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A series of computational fluid dynamics (CFD) simulations of the stages leading up to the 

flocculators were performed to estimate average G-values in the inlet pipe, the rapid mix basin 

(without the mixer), Parshall flume, and baffled channel. Additionally, a simulated tracer was 

injected into the model, using the step injection method, to estimate the actual detention time in 

the system and visualize flow paths. Aluminum sulfate was used as the tracer in the simulation. 

The concentration of the tracer at the coagulant inlet pipe was adjusted to achieve a final 

concentration of 28 mg/L at steady-state. The simulations were performed at the plant's minimum 

daily flow since it provided the least amount of energy to the system (in the form of turbulence, 

entrance/exit losses, etc.). Ultimately, the goal was to determine whether shutting off the mixer 

would negatively affect floc settleability and filterability. 

It should be noted that the case study presented here resulted from an unplanned repair and 

was not in the original scope of this research study; therefore, a comprehensive set of experiments 

to validate the accuracy of the model was not performed. Albeit this approach was a better estimate 

of the actual conditions in the plant instead of using calculated theoretical values for the jar test 

mixing parameters (Hudson Jr 1975; Teefy 1996). Figure 4.15 shows the results of the simulated 

tracer study performed at the plant's minimum daily flow. The average detention time between the 

point of coagulant addition and the outlet of the Parshall flume was found to be approximately 7.3 

minutes (i.e., 3 times longer than the calculated theoretical detention time); however, it took 

roughly 22 minutes for the average concentration of the tracer to reach a steady-state value. 
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Figure 4.15. Tracer study results 

 

A PDA experiment was performed with a raw water sample collected from the treatment 

plant using the G-values and detention times estimated from the CFD simulations. The CFD results 

showed that average G-values in the pipe, flash mixer + Parshall flume, and the baffled channel 

were approximately 20 s-1, 200 s-1, and 30 s-1, respectively. The time for the tracer's concentration 

to get to steady-state in the simulated tracer study of the baffled channel was approximately 90 

minutes. Figure 4.16 shows the results of the PDA experiment performed with alum at a dose of 

15 mg/L as alum-14 and pH 7.0 (the plant’s coagulation conditions at the time of sample 

collection). The flocculation index remained relatively unchanged in the first 5 minutes after 

coagulant addition; however, within approximately 2 minutes of adding the base to the water, floc 

started appearing.  
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Figure 4.16. PDA experiment based on CFD results (alum dose = 15 mg/L as alum-14, pH = 

7.0) 

 

Two hypotheses were considered to explain the lack of floc formation in the rapid mix 

basin during the first 5 minutes of the PDA experiment. Coagulation reactions are normally 

considered to be complete with seven seconds of coagulant addition in water treatment facilities 

(Amirtharajah and Mills 1982; Committee 1989).  The first hypothesis considered that the delayed 

floc formation was related to mixing conditions in terms of the duration and mixing intensity. The 

first hypothesis claimed that the rate of flocculation was so slow (as shown in Figure 3.10) that it 

took approximately 6 minutes for the floc to appear after coagulant addition and that the 

appearance of floc after base addition was merely a coincidence. The alternate hypothesis 
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considered that the problem was related to unfavorable coagulation conditions (at pH 6.0) in the 

pipe before the rapid mix stage. Figure 4.17 shows the optimum treatment boundary (≤0.3 NTU 

filtered turbidity) obtained from jar tests performed with the plant's raw water. The pH of the water 

with alum only (i.e., without pH adjustment) was approximately 6.0, which did not fall within the 

optimum boundary. However, adjusting the pH from 6.0 to 7.0 shifted the coagulation conditions 

from suboptimal to optimal, which subsequently resulted in floc formation.  

 
Figure 4.17. Treatment plant's filtered turbidity jar test results 

 

To test these hypotheses, two new experiments were performed where the duration of the 

20 s-1 mixing stage was extended to 60 minutes. In the first case, coagulation was performed at pH 

6.0 (i.e., sub-optimal conditions) with the pH unchanged for the 60-minute duration, while in the 
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second case, the pH was adjusted to 7.0 after 30 minutes of mixing. In both cases, the coagulant 

(15 mg/L as alum-14) was added at the start of the experiment. Another set of experiments was 

performed with similar conditions, except the G-value was increased to 200 s-1 to determine if G-

value was a factor in floc formation.  

The water's average zeta potential increased from -37.7±6.0 mV at pH 7.5 before coagulant 

addition to 14.4±6.0 mV at pH 6.0 after coagulant addition. Neither extending the mixing time to 

60 minutes nor G-value (20 or 200 s-1) resulted in floc appearing under sub-optimal coagulation 

conditions (Figure 4.18, left panel). When the water's pH was adjusted from 6.0 to 7.0, the zeta 

potential decreased from 14.4±6.0 mV to -16.8±9.8 mV. Floc appeared approximately 2 and 5 

minutes after base addition with the 200 s-1 and 20 s-1 experiments, respectively (Figure 4.18, right 

panel). Floc appeared earlier with the high G-value experiment but grew larger with the low G-

value experiment. This pattern was consistent with trends observed previously. The results 

presented in Figure 4.18 confirm the hypothesis that floc appearance in Figure 4.16 was due to a 

shift from suboptimal to optimal coagulation conditions with a change in pH.  

These results also challenge the classic coagulation theory that suggests coagulation is 

effectively over in 7-seconds (Amirtharajah and Mills 1982; Committee 1989). In this case, it was 

possible to not only form floc a full 30 minutes after the addition of the coagulant but also using 

an extremely low G-value (20 s-1) for both rapid mix and flocculation. These bench-scale results 

predicted that flocculation would theoretically occur in the full-scale process without an 

operational rapid mixer and not experience any noticeable difference in filtered water turbidity 

removals. 
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Figure 4.18. Coagulation performed at pH 6.0 (left-panel) versus pH 7.0 (right-panel) 

 

 The mixer at the treatment facility was turned off for a period of 2 weeks. Figure 4.19 

shows the coagulant dose, raw water, settled water, and finished water turbidities obtained from 

the plant’s records. Data from 10 days prior to the mixer being turned off showed that the plant’s 

settled water turbidity initially ranged between 0.2 to 0.3 NTU and later increased to approximately 

0.6 NTU as the raw water turbidity gradually increased from about 7 to 11 NTU. On the other 

hand, the finished water was consistently less than 0.1 NTU. The plant maintained an average alum 

dose of approximately 20 mg/L as alum-14 throughout the study. With the mixer off after day 10, 

the plant did not observe any noticeable difference in their settling and filtration performance. The 

plant also did not observe any impact on their filter run times (126 hours, on average). The plant 

could still maintain settled turbidity in the 0.2 to 0.3 NTU range and filtered turbidity less than 0.1 
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NTU even when the raw water turbidity spiked to 23 NTU.  The results presented here were 

consistent with the findings reported by Allerdings and coworkers (2015) and Malinaro and 

coworkers (2019). As Edzwald (2013) suggested, intense rapid mixing was not necessary in this 

case, and the hydraulic energy in the system was sufficient to mix the coagulant and form floc 

without any discernable impact on performance.  

 
Figure 4.19. Full-scale results from rapid mixer shutdown 
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4.8.   Sedimentation Versus Filtration 

It was evident from the results presented in Chapter 3 that using settled water turbidity in 

a jar as a performance metric could lead to higher alum dosages being identified as being optimal 

without any added benefit to the filtered water quality. When filtration was used as a performance 

metric, the effective treatment zones included a wider range of coagulant dosages and were less 

sensitive to pH. Additionally, effective treatment zones in the region commonly attributed to 

charge neutralization were only identifiable with filtration. Based on the results presented in this 

chapter, mixing conditions generally appeared to be significant factors when floc formation 

characteristics or settled water turbidity removals in a jar were used as metrics of performance. 

Figure 4.20 compares the settled, and filtered water turbidity removals at all the investigated 

mixing conditions. The investigated mixing parameters were different in all the experiments 

performed, but only two optimum coagulant dosages were chosen for this particular raw water. 

Depending on the selected mixing parameters, settled water turbidity removals ranged from -11 to 

80% under the charge neutralization optimum and 18 to 90% under the sweep flocculation 

optimum. In other words, using jar test settled water turbidity removals varied widely despite using 

only predetermined optimum coagulation conditions. In contrast, filtered turbidity removals were 

between 92 – 97% under the optimum charge neutralization and 94 – 98% under the optimum 

sweep flocculation conditions. While the formation rate and size of floc tended to be influenced 

by the rapid mix and flocculation parameters, the floc characteristics in jar tests seemed to impact 

settled water turbidity markedly, although not filtered water turbidity.  
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Figure 4.20. Summary of mixing experiments 

 

The importance of rapid mix could not be verified experimentally based on filtered 

turbidity removals. In fact, rapid mixing only impacted floc size in a negative manner, which 

occurred when the rapid mixing duration exceeded a threshold (e.g., 120 s). Based on the results 

presented here and by others (Edzwald 2013; Allerdings, Forster, Vasyukova and Uhl 2015; 

Malinaro, Rhoades, Pennock and Gutierrez 2019), the necessity or even utility of rapid mixing 

needs to be established in full-scale facilities.  

Flocculation conditions (intensity, duration, and scheme) appeared to be significant factors 

influencing treatment efficiency when floc formation characteristics or settled water turbidity 

removals in a jar were used as metrics of performance. However, when the results were compared 
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in terms of filtered turbidity removals, mixing conditions became insignificant factors on 

performance provided that there were at least 9 minutes of mixing time with a G-value of 20 s-1.  

Based on floc characteristics and settled turbidity removals, the advantages of tapering 

flocculation were three-fold and consistent with prior research. Relatively large floc was formed 

with relatively short mixing times; thus, resulting in higher overall energy efficiency. However, 

there were no practical advantages to using a tapered flocculation scheme instead of a single-stage 

scheme (e.g., G-value of 20 s-1) when the performance was compared based on filtered turbidity 

removals. The necessary duration of flocculation was found to be less than 10 minutes, based on 

the maximum flocculation index (or floc size) under sweep flocculation conditions in this study. 

This appeared to be significantly less than the minimum duration that is currently recommended 

by many states (20 – 30 minutes). For charge neutralization, flocculation times for maximum floc 

size were typically on the order of 30 minutes or less under the studied conditions, but filtered 

turbidity was not impacted provided there were at least 9 minutes of mixing time with a G-value 

of 20 s-1.  

It is plausible that the importance of mixing in drinking water treatment has been 

overestimated since many of the past studies based their analyses entirely on settling in jars, which 

is widely accepted to not accurately scale up to the full-scale process (Hendricks 2016). This in no 

way implies that sedimentation in the full-scale process is not necessary. Based on this 

investigation, we should begin to reevaluate current mixing design guidelines and re-emphasize 

the importance of optimizing coagulation conditions (in terms of both coagulant dose and pH 

because many water utilities currently lack the capability to adjust pH in one or both directions 

prior to coagulation). We should revisit whether rapid mixing basins with mechanical mixers 

should be required or used if already in place since it could negatively impact floc size. We might 
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also revisit regulatory flocculation requirements because current minimum flocculation times and 

G-values could drastically exceed the minimum required values identified in this study. Perhaps 

charge neutralization flocculation requirements should be separately regulated in the future. It is 

important to remember that the present findings are based on a single set of raw water quality 

parameters at one temperature using bench-scale laboratory equipment.  

Ultimately, this investigation showed that optimization based on granular media filtration 

is ideal for jar testing to identify optimal coagulation conditions since the results are independent 

of the mixing parameters used. Thus, as shown in Figure 4.21, the only relevant parameters in the 

optimization process are the coagulation conditions of the experiment. If the jar test procedure also 

fixed either the coagulant dose or pH as the other was varied, then the jar test procedure could 

genuinely be considered as a single variable optimization approach (assuming the coagulant type 

is also fixed).  

 
Figure 4.21. Controllable factors in next-generation jar test procedure 
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CHAPTER 5: WATER QUALITY IMPACTS ON COAGULATION 

  

 

5.1.   The Effects of Water Quality According to The Literature    

Most modern drinking water treatment plants continuously monitor aggregate raw quality 

parameters (such as turbidity) to proactively respond to changes in water quality parameters, which 

could potentially impact the efficiency of their coagulation stage and subsequent treatment 

processes. Researchers have demonstrated that coagulation requirements can be influenced by the 

type and concentration of particles (Langelier and Ludwig 1949; Black and Hannah 1961; Stumm 

and O'Melia 1968), type and concentration of organics (Vik, Carlson, Eikum and Gjessing 1985; 

Semmens and Staples 1986; Edzwald 1993; White et al. 1997; Shin, Spinette and O'Melia 2008), 

presence of ions (Wagner and Hudson 1982; Tseng, Segal and Edwards 2000; Davis and Edwards 

2017), and temperature (Morris and Knocke 1984; Knocke, West and Hoehn 1986; Van 

Benschoten and Edzwald 1990b).  

 Stumm and O’Melia (1968) suggested that coagulation efficiency was a function of the 

concentration of particles and the applied coagulation conditions (i.e., dose and pH). The authors 

quantified coagulation efficiency in terms of turbidity reduction in a jar test. Specifically, they 

proposed a simple model where particles are destabilized and restabilized based on the total surface 

area (concentration) of the particles in the raw water and the coagulation conditions. The 

conceptual model is illustrated in Figure 5.1. Zone 1 corresponds to conditions where the coagulant 

dose is insufficient to destabilize the contaminants; therefore, no turbidity reduction would be 

expected. Zone 2 represents the region where destabilization of the contaminants would be 

achieved via charge neutralization; hence, a reduction in turbidity is observed. The zeta potential 

of water samples collected in zone 2 would likely be close to in the range of ±10 mV; therefore, a 
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further increase in the coagulant dose would eventually reverse the charge on the particles. The 

particle restabilization zone is referred to as zone 3. Zone 4 corresponds to the sweep flocculation 

zone where destabilization is achieved by the addition of additional coagulant such that the 

contaminants/particles are enmeshed.  

 
Figure 5.1. Turbidity removal as a function of coagulant dose and particle concentration at a 

constant pH (adapted from (Stumm and O'Melia 1968)) 

  

A detailed analysis of the conceptual diagram in Figure 5.1 was provided by Crittenden et 

al. (2012a). In summary, Figure 5.1 illustrates that waters with a high concentration of particles 

would be relatively easier to treat than waters with a low concentration of particles. Comparing 

the two extremes, S1 and S4, it was evident that the coagulant dose required to reduce the turbidity 

effectively was considerably lower when the concentration of particles was highest (i.e., S4).  

Stumm and O’Melia (1968) proposed that particle collisions (i.e., flocculation) would be limited 
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and likely not to occur in a reasonable time for effective turbidity reduction. As a result, turbidity 

reduction would only be possible under sweep flocculation conditions where sufficient particles 

are added to the system by the formation of precipitate. Moderate particle concentrations (S2 and 

S3) would theoretically provide ample contact opportunities for coagulation to occur via the charge 

neutralization mechanism in zone 2. Increasing the coagulant dose further would restabilize the 

particles (zone 3) up to the point where coagulation can occur via the sweep flocculation 

mechanism (zone 4). 

 Edzwald and Van Benschoten (1990) argued that the effective coagulant dose is usually 

controlled by the concentration of DOC and not the concentration of particles (i.e., turbidity). 

Figure 5.2 compares jar test results performed by those authors using water samples collected from 

the Missouri River and Myrtle Beach. The authors selected these sources for their vastly 

contrasting water quality characteristics. The sample collected from the Missouri River was 

classified as being a moderately hard water (150 mg/L as CaCO3), high in turbidity (670 NTU), 

and relatively low in DOC (3 mg/L). The Myrtle Beach water sample was classified as being a soft 

water (< 50 mg/L as CaCO3), relatively low in turbidity (30 NTU), and high in DOC (20 mg/L). 

The authors found that even though the raw water turbidity of the Missouri River was more than 

20 times higher than Myrtle Beach, the required coagulant dose to treat the river water was 

approximately 10 times lower than the required dose for Myrtle Beach (at pH 7.0). 
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Figure 5.2. A comparison of jar tests with two water sources at (adapted from (Edzwald 

1993)) 

 

 Edzwald and Van Benschoten (1990) attributed the drastic difference between the 

coagulation requirements to the total charge demand of the two water sources. Clay particles 

typically have a cation exchange capacity (a function of the total negative charge on the surface of 

particles in water) in the range of 0.1 to 1 µeq/mg of clay, while the total charge on the functional 

groups of NOM is typically in the range of 10 to 15 µeq/mg of DOC (Thurman 1985; Edzwald 

and Van Benschoten 1990; Van Benschoten and Edzwald 1990b). This implies that the total charge 

demand from 1 mg of DOC could be between 10 to 150 times greater than the total charge demand 

from 1 mg of clay. It is worth mentioning that turbidity is a simple aggregate measurement that is 

a function of the concentration, size, and light scattering properties of colloidal particles suspended 
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in water. Both inorganic particles and organic particles can scatter light; however, it is generally 

assumed that most of the particles that contribute to turbidity are inorganic clays. 

 Shin, Spinette, and O’Melia (2008) measured the individual and combined effects of 

particles and organics on the minimum effective alum dose under carefully controlled 

experimental conditions. The authors defined the minimum effective alum dose as the point where 

an additional increase in the alum dose did not significantly improve filtered water turbidity – i.e., 

the point of diminishing returns. Filtered water turbidity was measured using a 1.2 µm glass fiber 

filter following a 60-minute settling period. Figure 5.3 compares the minimum effective alum dose 

as a function of the concentration of colloidal silica particles (Snowtex-ZL, Nissan Chemical 

Industries, Tokyo, Japan) and DOC at pH 6.0 and 7.0. 

 
Figure 5.3. Combined effects of particles and DOC at pH 6.0 and 7.0 (adapted from (Shin, 

Spinette and O'Melia 2008)) 
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The most notable observation was that the minimum effective alum dose was higher in all 

cases that included DOC compared to the cases without DOC. For example, the effective alum 

dose for the sample that contained 200 mg/L of colloidal silica and no DOC was 5 mg/L as alum 

at pH 6.0 compared to 10 mg/L as alum at pH 6.0 for the sample that only contained 2.7 mg/L of 

DOC and no particles. Increasing the particle concentration from 0 to 100 mg/L increased the 

required dose by approximately 20 – 35%. On the other hand, increasing the DOC from 0 to 3 

mg/L (for a fixed particle concentration) increased the required coagulant dose by approximately 

65 – 80%. The results presented by Shin, Spinette, and O’Melia (2008) confirmed the conclusions 

of Edzwald and Van Benschoten (1990) – i.e., the coagulant demand or minimum effective dose 

is primarily controlled by the DOC concentration. Moreover, Shin, Spinette, and O’Melia (2008) 

showed that the effect of increasing the concentration of particles and DOC on coagulation 

requirements was also dependent on the coagulation pH (Figure 5.3). In general, the impact on 

coagulation requirements due to increasing particle and DOC concentrations was lower at pH 6.0 

than pH 7.0. Increasing the pH from 6.0 to 7.0 has a combined effect of reducing the total available 

positive charge on the aluminum hydrolysis species (Figure 2.9) and increasing the negative charge 

on the contaminants (Shin, Spinette and O'Melia 2008). 

Besides the concentration of organics, the type of organics present in the raw water also 

impacts the effective coagulation conditions (Sillanpää, Matilainen and Lahtinen 2015).  The type 

of organics refers to the relative fractions of the NOM present (e.g., humic acids, fulvic acids, etc.). 

Further classifications of these compounds can be made depending on the fractionation techniques 

used (Thurman 1985).  A significant fraction of the NOM compounds are aromatic or have 

conjugated double bonds, which absorb light in the UV wavelength region. With regards to 

drinking water treatment, aggregate parameters such as UV254, DOC, and SUVA are generally 
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sufficient for estimating the type of organics present and their relative impact on coagulation 

requirements. Absorbance measurements at 254 nm are proportional to the amount of DOC present 

in the water (Singer et al. 1981; Edzwald, Becker and Wattier 1985; Edzwald and Kaminski 2009). 

SUVA is a parameter that is obtained by normalizing the UV254 measurement by the amount of 

DOC present. The parameter (SUVA) was first introduced, at least for drinking water applications, 

by Edzwald and Van Benschoten (1990). The authors reported that the SUVA provides 

information on whether a given water sample is low or high in aquatic humic compounds. White 

and coworkers (1997) investigated the influence of SUVA on the alum dose required to remove 

DOC for 25 waters in the US and found that, in general, the higher the SUVA of the raw water, 

the lower the coagulant dose requirement would be to remove DOC. Edzwald and Tobiason (1999) 

provided a table that generalizes NOM composition and expected coagulation performance as a 

function of SUVA (Table 5.1).   

Table 5.1. Guidelines on nature of NOM and expected DOC removals 

SUVA  

[L/mg-m] 

Composition Coagulation DOC Removals 

> 4 

Mostly aquatic Humics, 

High Hydrophobicity, High 

MW 

NOM controls,  

Good DOC Removals 
>50% for alum 

2 - 4 

Mixture of Aquatic Humics 

and Other NOM, Mixture of 

Hydrophobic and 

Hydrophilic NOM, Mixture 

of MWs 

NOM Influences, 

DOC Removals Should 

be Fair to Good 

25-50% for alum 

< 2 

Mostly Non-Humics 

Low Hydrophobicity. Low 

MW 

NOM Has Little 

Influence 

Poor DOC Removals 

< 25% for alum 

Adapted from Edzwald and Tobiason (1999) 
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5.2.   Revisiting Water Quality and Coagulation 

To date, most coagulation studies focused on the effects of only one or two parameters 

changing at a time. In the real world, all coagulation factors (variables) interact with one another 

at all times. When researchers try to measure the effects of a single factor on the coagulation 

process, they measure that factor's effects plus its interactions with all of the other factors. For 

example, Shin and coworkers (2008) did not observe any impact on the minimum effective dose 

when they increased the concentration of colloidal silica from 100 to 200 mg/L at the highest DOC 

concentration at pH 6.0 (Figure 5.3). On the other hand, they observed an impact on the effective 

dose for the same change in particle concentration at a lower DOC concentration or higher pH. It 

is possible that the effects of increasing turbidity on the minimum effective coagulant dose is, in 

this case, a function of the initial turbidity, DOC concentration, and coagulation pH. Generally, 

the more factors that are included or considered (e.g., SUVA, alkalinity, or temperature), the more 

complex the problem becomes. The contributions from the past researchers were undoubtedly 

critical to advance the body of knowledge on coagulation; however, there is a general lack of 

understanding of how the factors interact with each other and how their interactions impact the 

coagulation process. More importantly, how the interacting factors impact different treatment 

goals (e.g., turbidity removal versus DOC removal) has not been established. 

5.3.   Interactions Between Coagulation Parameters 

Figure 5.4 presents a simplified conceptual visualization of the interactions between the 

factors involved in the coagulation process. The purpose of the diagram was to merely emphasize 

that all the factors are either directly or indirectly connected to one another. For simplicity, the 

factors were connected using a basic line; however, it is important to note that not all connections 

are bidirectional – e.g., mixing factors are highly unlikely to influence the water temperature. It is 
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helpful to imagine that the relative position of a factor in the two-dimensional space of Figure 5.4 

as being its value or magnitude. A factor moving in space (i.e., its value changing) can influence 

other factors' position due to their connections (i.e., interactions). Moving factors would likely 

alter the balance (i.e., equilibrium) of the system – i.e., influence the performance of the overall 

process.  

 
Figure 5.4. Conceptual diagram of interacting coagulation factors 

 

5.4.   Isolating the Effects of Water Quality Parameters 

The effects of water quality parameters of interest on coagulation efficiency can be 

quantified if controlled. For this reason, most studies on the chemistry and mechanisms of 

coagulation were performed using synthetic or model waters where the water quality parameters 

could be controlled. Appendix B presented a novel procedure for creating synthetic waters based 

on a target DOC concentration, SUVA, turbidity, and alkalinity. A typical design of experiments 

(DOE) approach is to perform all possible combinations of each factor at a set of discrete levels 



131 

    

 

and measure the response of the process using a suitable performance metric. For example, the 

effects of turbidity and temperature (factors) at three levels (e.g., low, mid, and high) on the 

coagulation process can be quantified using filtered water turbidity removals. In this case, a total 

of 9 experiments would be required to perform the experiments at all the possible combinations of 

the factors at their respective levels. This design is called a full factorial experimental design. The 

core principles of all DOE methods are based on designing statistically sound experiments 

(Czitrom 1999; Montgomery 2017).  Table 5.2 shows a total of 16 unique waters that were 

generated using a full factorial experiment design to study the effects of DOC, SUVA, turbidity, 

and alkalinity on coagulation performance. Each factor included two levels (low and high).  

Table 5.2. Investigated waters 

Water 
DOC 

[mg/L as C] 

SUVA 

[L/mg-m] 

Turbidity 

[NTU] 

Alkalinity 

[mg/L as CaCO3] 

Water 1 2  2 3 25 

Water 2 2 2 3 140 

Water 3 2 2 30 25 

Water 4 2 2 30 140 

Water 5 8 2 3 25 

Water 6 8 2 3 140 

Water 7 8 2 30 25 

Water 8 8 2 30 140 

Water 9 2 5 3 25 

Water 10 2 5 3 140 

Water 11 2 5 30 25 

Water 12 2 5 30 140 

Water 13 8 5 3 25 

Water 14 8 5 3 140 

Water 15 8 5 30 25 

Water 16 8 5 30 140 

 

 Each water was treated with 12 – 18 dosage levels of alum at seven different pH levels 

(represented by the red dots in Figure 5.5). The coagulant dose ranged from 3 to 100 mg/L as alum-

14 (12 – 18 levels), while the pH ranged from 5 – 8 in increments of 0.5 pH units. Datapoints can 
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be considered as nodes containing input and output data. In this case, input data included the 

coagulant dose, target pH, temperature, raw water quality parameters (DOC, SUVA, UV254, 

alkalinity, turbidity, zeta potential, and pH), type and volume of pH adjusting chemical (acid or 

base), the pH of the water with coagulant only, and the pH of the water with the pH adjusting 

chemical only. Output data or response variables included the actual/measured pH of coagulation, 

pH at the end of the experiment, coagulated water quality parameters (UV254, DOC, SUVA, zeta 

potential, and settled and filtered water turbidity), and total cost of chemicals.  

 
Figure 5.5. Investigated coagulation conditions superimposed on the coagulation diagram 

(source: Amirtharajah and Mills (1982)) 

 

 In total, 272 jar tests (17 per raw water) were performed using the next-generation jar test 

procedure described in Appendix A. As discussed earlier, the advantages of the next-generation 

jar test procedure were three-fold. First, optimization in the next-generation procedure was based 
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on granular media filtration instead of settling. Filtration was found to be only dependent on the 

destabilization efficiency of the coagulation process (Figure 4.21) and relatively independent of 

the floc size and applied mixing parameters that heavily influence sedimentation removals. 

Additionally, jar test filtered turbidity results were found to be directly scalable to the full-scale 

process. Second, the next-generation procedure used a standardized mixing program and does not 

need to be calibrated to one specific full-scale facility. This was only possible because optimization 

was based on filtration, which did not depend on the applied jar test mixing parameters (Figure 

4.20). Third, the next-generation jar test procedure uses a single-variable optimization approach 

where either the coagulant dose or the pH is fixed as the other is varied across the jars. Titrations 

were performed before each experiment to determine the amount of acid or base required to 

achieve a target pH at a given coagulant dose.  

5.5.   Visualizing the Effects of Water Quality Parameters 

The effects of water quality parameters on coagulation efficiency were visualized using 

contour plots of the measured response variables (e.g., filtered turbidity removal). In total, 128 

contour plots were generated. For discussion purposes, waters were grouped into low and high 

pairs for each water quality parameter. For example, to compare the effects of increasing raw water 

SUVA on coagulation efficiency, waters 1 – 8 (Table 5.2) were placed in the low SUVA group 

while waters 9 – 16 were placed in the high SUVA group. A similar approach to the one shown in 

Figure 3.13 was used to extract data from each water’s contour plot and compile it into either a 

“low” or “high” dataset. The dataset from each group was analyzed, and all datapoints that did not 

meet the filtered turbidity criterion (≤0.3 NTU, or at least 90% removal) were rejected; thus, each 

water group consisted of only coagulation conditions that met the removal criterion. Figure 5.6 

shows a scatter plot of the effective coagulation conditions of waters with a low SUVA (2 L/mg-



134 

    

 

m). Every point on the plot represents a coagulation condition where the filtered turbidity criterion 

was achieved. Semi-transparent symbols were used such that when multiple symbols overlapped, 

they appeared relatively opaque. As a result, darker symbols denote common regions where the 

applied coagulation conditions were effective at reducing the filtered turbidity to ≤0.3 NTU with 

multiple waters.  

 
Figure 5.6. Scatter plot of effective filtered turbidity removals for low SUVA waters (8 waters) 

 

Multivariate kernel density (KD) plots were used to create heatmaps to represent regions 

where effective coagulation conditions were concentrated. KD plots are estimates of the 

underlying probability density function of a given dataset. In other words, KD plots describe the 
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relative likelihood or probability that a continuous variable would take on a given value. In this 

case, a KD plot of all the combined effective coagulation conditions for a group of waters would 

highlight regions where an effective coagulation condition is likely to be found.  

5.6.   Combined Boundary of Effective Coagulation 

Figure 5.7 shows two-dimensional (2D) and three-dimensional (3D) density plots for all 

the 16 waters combined. As a reminder, the filtered turbidity cut-off used here was only done for 

discussion purposes and to simplify the presentation of the results. Blank (white) regions on the 

KD plots should not be interpreted as regions of ineffective coagulation. Similarly, darker regions 

do not necessarily imply better coagulation. Rather, darker colors represent the probability that a 

given coagulation condition (coagulant dose and pH) will be effective for any of the 16 waters. All 

coagulation conditions on the density scale produced a filtered turbidity below 0.3 NTU (just not 

for every water). Readers are encouraged to refer to the online interactive data visualization app 

that was created for the purpose of comparing the raw data, i.e., all contour levels for all the 

conditions investigated (Alansari 2021a). 
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Figure 5.7. Combined filtered turbidity kernel density plot (16 waters) 
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The highest density region was found between 30 and 100 mg/L as alum-14 and between 

pH 6.0 and pH 7.0 (dark orange – maroon region) – which coincided with region mainly attributed 

to the sweep flocculation coagulation mechanism. The occurrence of overlapping coagulation 

conditions in this region implied that the coagulant dose and pH were relatively independent of 

water quality parameters or stoichiometry with negatively charged contaminants. Low density 

(beige – light orange) and separated regions in the low pH and dose range (pH<6.5 and <20 mg/L 

as alum-14) were attributed to the charge neutralization mechanism. The low density and 

separation of these zones were likely due to the stoichiometric nature of the charge neutralization 

mechanism with respect to water quality. As a result, finding effective coagulation conditions 

would be relatively more difficult and likely very dependent on exact water quality in these low-

density regions compared to high-density regions. The most notable feature on the 3D density plot 

was the rapid change in density at approximately pH 6.0 and a coagulant dose above 20 mg/L as 

alum-14. This effect could be attributed to a shift in the coagulation mechanism from charge 

neutralization (pH<6.0) to sweep flocculation (pH>6.0). 

 The features observed in the combined, filtered turbidity removal KD plot (Figure 5.7) 

resulted from the main and interaction effects of water quality parameters on coagulation. By 

combining the waters into groups where one of the four parameters is controlled, the main effects 

of increasing the controlled water quality parameter on coagulation conditions can be visualized 

(e.g., waters low in turbidity versus water high in turbidity). Interaction effects can be visualized 

by controlling multiple water quality parameters simultaneously (e.g., increasing both turbidity 

and alkalinity one at a time versus simultaneously). Visualizing interactions is best done using the 

online interactive data visualization app (Alansari 2021a). 

 



138 

    

 

5.7.   Effects of SUVA 

 To visualize the effects of SUVA on coagulation conditions, waters were grouped into low 

SUVA (2.0 L/mg-m) and high SUVA (5.0 L/mg-m) categories. Figure 5.8 shows the effects of 

increasing the raw water's SUVA on the filtered turbidity removal KD plots. The extension of the 

removal boundaries into the charge neutralization zone (lower-left quadrant) was clearly an effect 

of high SUVA (right-panel) due to the absence of coagulation conditions in the low SUVA group 

(left-panel). On the other hand, SUVA did not appear to substantially affect the coagulation 

conditions in the sweep flocculation zone since the size and shape of the high-density region 

remained the same. These results suggested that SUVA was primarily an essential factor (in terms 

of filtered turbidity removal) when the predominant mechanism was charge neutralization.  

 
Figure 5.8. Effects of SUVA on effective coagulation conditions 
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5.8.   Effects of Turbidity 

 Waters were grouped into low turbidity (3 NTU) and high turbidity (30 NTU) categories 

to study the effects of increasing raw water turbidity on effective coagulation conditions (Figure 

5.9). In general, the results showed that increasing raw water turbidity had minor or negligible 

effects on coagulation conditions in the sweep flocculation zone (>30 mg/L as alum-14). The 

nearly identical high-density boundaries in Figure 5.8 and Figure 5.9 indicated that neither factor 

had a significant effect on coagulation conditions in this region.  

 
Figure 5.9. Effects of turbidity on effective coagulation conditions 

  

The most notable feature was the absence of the low-density boundaries in the charge 

neutralization zone (lower-left quadrant) of the high turbidity KD plot (right-panel). The 

occurrence of coagulation conditions in the charge neutralization zone was found to be a feature 

of waters high in SUVA (Figure 5.8). The combined effects of high SUVA and turbidity could 
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have negatively impacted destabilization efficiency, which contributed to the absence of the low-

density boundary. However, a close examination of each water’s contour plot revealed that the 

absence of low-density boundaries in the charge neutralization zone was simply an artifact of the 

selected filtered turbidity criterion – i.e., the contour plots of the low and high turbidity waters 

were very similar. Figure 5.10 compares the effects of increasing raw water turbidity on filtered 

turbidity results in a pair of similar waters (waters 13 and 15 in Table 5.2). The orange contours 

represent the boundaries of the 0.3 NTU filtered turbidity criterion. In the high raw water turbidity 

case (right-panel), the 0.3 NTU contour did not extend into the charge neutralization zone – which 

was consistent with the results observed in the KD plot of Figure 5.9. Conversely, the low and 

high turbidity results were very similar compared to the 0.4 NTU contours; therefore, it can be 

reasonably argued that particles were destabilized (hence, the turbidity reduction), despite not 

meeting the filtered turbidity criterion. It is also worth mentioning that the filtered turbidity results 

were acquired using a column with only 3-inches of filter media at a loading rate of 4.5-5 gpm/ft2. 
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Figure 5.10. Comparing turbidity effects on a pair of similar high SUVA waters 

 

5.9.   Effects of Alkalinity 

 Figure 5.11 shows the effects of increasing the raw water alkalinity from 25 to 140 mg/L 

as CaCO3 on the effective coagulation conditions. The combined KD plot (Figure 5.7) showed a 

characteristic vertical boundary at pH 6.0, where the density increased rapidly. A second vertical 

boundary at pH 6.5 below 20 mg/L as alum-14 was observed in the low alkalinity KD plot (left-

panel); however, the density increase with increasing pH was not as drastic as the boundary at pH 

6.0. Increasing raw water alkalinity primarily impacted conditions above 20 mg/L as alum-14 and 

pH 7.0 (top-right quadrant), which had the effect of narrowing and concentrating the high-density 

regions to pH 6.0 – 7.0. Examining the individual contour plots of the high alkalinity waters 
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revealed that the right right-edge of the removal boundary shifted to the left (lower pH) with 

increasing alkalinity.  

 
Figure 5.11. Effects of alkalinity on effective coagulation conditions 

 

5.10.   Effects of DOC 

Waters were grouped into low DOC (2 mg/L) and high DOC (8 mg/L) categories to study 

the effects of increasing raw water DOC on effective coagulation conditions. Figure 5.12 compares 

the KD plots of the low and high DOC groups. The results showed that effective coagulation 

boundaries were highly dependent on the DOC concentration. Increasing raw water DOC generally 

had the effect of shifting the boundaries up (i.e., higher dose) and to the left (i.e., lower pH) from 

the green line in the left panel to the blue line in the right panel. High-density boundaries (dark 

orange – maroon) were generally broad with the low DOC group (left-panel) whereas the high-
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density boundaries with the high DOC group was narrow and concentrated between pH 6.0 – 6.5 

and above 20 mg/L as alum-14. The most notable feature was the extent of negative impact on 

coagulation conditions above pH 6.5 and below 30 mg/L as alum-14 represented by the grey boxes 

in each panel. Similarly, low-density boundaries in the charge neutralization zone (lower-left 

quadrant) shifted up (higher dose) with increasing raw water DOC.  

 
Figure 5.12. Effects of DOC on effective coagulation conditions 

 

5.11.   Interactions Between Water Quality Parameters 

In the previous section, each water quality parameter was individually varied, and its main 

effects on the effective coagulation boundaries (≤0.3 NTU) were visualized (e.g., Figure 5.8). The 

interaction effects of multiple water quality parameters on coagulation conditions can be visualized 

by simultaneously controlling each parameter. The simplest form of an interaction is a two-way 
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interaction in which two out of four water quality parameters are controlled (e.g., DOC-alkalinity, 

SUVA-turbidity, etc.). Based on the number of water quality parameters investigated, a total of six 

unique combinations of any two controlled water quality parameters was possible. Each water 

quality parameter had two levels (low and high); therefore, considering all possible combinations 

of parameters and their levels results in 24 unique conditions. Three-way interactions can be 

thought of as two-way interactions that are varied across a third variable—for example, the effects 

of increasing raw water turbidity on waters low in DOC and alkalinity. There were 32 unique 

conditions possible that included three-way interactions. Unfortunately, there was no practical way 

of including and discussing all two-way and three-way interaction conditions; however, it is 

possible to visualize all cases using the interactive online data visualization app (Alansari 2021a).  

Results from varying a single factor at a time showed that DOC and alkalinity were the 

only water quality parameters that had a sizeable impact on the sweep flocculation zone; therefore, 

the discussions here were limited to interactions involving both DOC and alkalinity. Two-way 

interaction effects of DOC and alkalinity were visualized using filtered turbidity removal KD plots. 

The groups included: (1) waters low in DOC and alkalinity, (2) water low in DOC and high in 

alkalinity, (3) waters high in DOC and low in alkalinity, and (4) water high in DOC and alkalinity. 

Each group included four waters with similar DOC and alkalinity levels (but varying SUVA and 

raw water turbidity). The results were plotted in a two-by-two grid where the rows represented 

DOC levels, and the columns represented alkalinity levels (Figure 5.13). In general, the location 

and size of the boundaries was found to be primarily determined by the concentration of DOC. 

Increasing the raw water DOC concentration shifted the boundary of effective coagulation 

conditions to higher doses and lower pH levels, regardless of the raw water alkalinity. A similar 

trend was observed when comparing interactions involving DOC/SUVA and DOC/turbidity 
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(Appendix E). High alkalinity generally caused the high-density boundaries to shift towards a 

lower pH and the low-density boundaries to extend further into the lower-left quadrant. At the 

same time, high alkalinity reduced the size of the high-density boundaries that were above 30 mg/L 

as alum-14, particularly with waters high in DOC.  

 Unfortunately, there was no practical method of visualizing three and four levels of 

interactions as this would have required 48 different plots. Readers are encouraged to refer to the 

online interactive data visualization app that was created to compare the raw data, i.e., all contour 

levels for all the conditions investigated (Alansari 2021a).  

In summary, coagulation efficiency is directly dependent on water quality parameters. 

Edzwald and Benschoten (1990) concluded that NOM (not turbidity) controlled coagulation 

demand. The results showed that the “center of mass” of the effective coagulation boundaries was 

largely dictated by the concentration of the raw water DOC. SUVA determined the extent to which 

effective coagulation conditions extended into the charge neutralization zone. High alkalinity 

generally affected coagulation conditions in the sweep flocculation zone. Finally, turbidity 

generally had minimal impact on coagulation conditions at the studied levels. Some of the trends 

could be explained by the interactions between the water quality parameters; however, it was not 

possible to completely isolate all the effects of water quality parameters. 
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5.12.   The Universal Coagulation Boundary 

Combined jar test results (Figure 5.7) showed a significant overlap of coagulation 

conditions between 30 – 100 mg/L as alum-14 and pH 6.0 – 7.0. The high density of overlapping 

coagulation conditions suggested that water quality parameters had little impact on coagulation 

efficiency. Thus, this range could be regarded as a “universal” boundary for effective coagulation. 

It is also possible that waters with characteristics in the range of those investigated here (shown in 

Table 5.2) would find an effective coagulation condition in the red – maroon region. The green 

boundary shown in Figure 5.14 represents the high-density boundary that was extracted from the 

combined KD plot.  

 
Figure 5.14. Universal coagulation boundary 
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Van Benschoten and Edzwald (1990a) found that the effects of temperature on the 

solubility of 𝐴𝑙(𝑂𝐻)3(𝑠) precipitate in deionized water could be accounted for by the changes in 

the OH- concentration. All experiments were performed at approximately 20°C. Using the ion 

product of water (pKw, Table 2.3), the pH could be adjusted to various temperatures by keeping 

pOH constant. For example, a water with a pH of 6.5 at 20°C has an approximate pOH of 7.7, 

based on a pKw of 14.2. At 5°C, the pKw is 14.7; therefore, the adjusted pH of the water would be 

7.0 with a constant pOH. As a result, the universal boundary for effective coagulation could be 

temperature shifted using the approach described above. The major assumptions were that the 

boundaries would follow the equilibrium of the hydrolysis reactions, and the performance of the 

filters would not be significantly impacted by temperature. The red and blue boundaries were 

temperature adjusted to 30°C and 5°C, respectively. In theory, a treatment plant could operate in 

the gray boundary (the overlap between 30°C, 20°C, and 5°C) all year without needing to adjust 

their coagulation conditions, assuming their water quality parameters fall within the range of 

parameters investigated in this study. Hypothetically, while it could be possible to achieve good 

removals in the universal coagulation boundary with waters similar to those investigated here, the 

total chemical costs can be 10 – 20 times higher than what can be achieved with an optimized 

coagulation condition. The universal boundary could serve as an emergency protocol for operators 

to ensure effective treatment with rapidly changing water quality and deteriorating performance. 

The universal boundary could also serve as a starting point for operators to optimize their 

coagulation conditions via jar tests. 
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CHAPTER 6: MODELING COAGULATION 

 

 

Modeling the coagulation process has historically been nearly impossible because water is 

a chemically complex medium that varies spatially and temporally. There are also many competing 

and interacting factors that influence the overall efficiency of the process. Moreover, the 

relationships between the process variables are complex and non-linear. The use of synthetic 

waters addressed some of these challenges by controlling the contents of the water and minimizing 

any spatial or temporal variability between experiments. Using a strategic and novel (next-

generation) jar test procedure and a design of experiments approach, the main and interaction 

effects of water quality parameters on coagulation efficiency can be captured and visualized. The 

contour and KD plots provided a qualitative measure of the effects of water quality parameters on 

coagulation and shed some light on their interactions. A rough estimate of the response of the 

coagulation process to water quality changes can be made based on a qualitative analysis of the 

plots in the previous section. For instance, if the DOC concentration of the raw water doubled, 

then the minimum effective coagulant dose is expected to increase. On the other hand, a 

quantitative model of coagulation would theoretically allow operators and engineers to accurately 

predict the response of the coagulation process at their conditions and visualize operational 

boundaries. 

6.1.   Basics Modeling Approaches 

Predictive models in the field of drinking water treatment are usually empirical in nature – 

i.e., they are based on experimental data and one’s understanding of the relationships between the 

experimental parameters. They generally assume that a linear relationship exists between the 

process variables (inputs and outputs); thus, they are obtained by fitting a linear equation to the 
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data using an iterative process (i.e., linear regression). The basic form of a linear regression 

equation is shown in Equation 4:  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 (4) 

 

where: 

 

y = dependent variable 

β0 = intercept 

βn = coefficient 

xn = independent variable 

 

  To account for curvature, quadratic (𝛽𝑛𝑥𝑛
2) and cubic (𝛽𝑛𝑥𝑛

3) terms can be added to the 

expression above. Similarly, interactions are included by computing the products of the 

independent variables. For example, the product of 𝑥1 and 𝑥2 describes the two-way interactions 

between the variables (𝛽12𝑥1𝑥2).  

Several studies have been published that used linear regression techniques to model 

coagulation (Bazer-Bachi et al. 1990; van Leeuwen et al. 1999; Trinh and Kang 2011; Zainal-

Abideen et al. 2012). For example, van Leeuwen and coworkers conducted jar tests to determine 

the optimal alum dose using over 30 different water samples (van Leeuwen, Chow, Bursill and 

Drikas 1999). The authors did not control coagulation pH in their jar tests. A linear regression 

model was generated that calculated the alum dose from raw water turbidity, alkalinity, UV254, and 

raw water pH. The authors reported that the model predictions were within ± 10 mg/L of the actual 

doses determined from jar tests. Most of the studies referenced above produced regression models 

with a very high coefficient of determination values (R2>0.9). It is worth mentioning that most of 

the studies validated the accuracy of their model based on the same data (water) and experimental 

method that was used to fit the models. 
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To fit a model to a dataset, the values of the coefficients (βn) in Equation 4 are adjusted 

such that the error between the actual and the predicted values are as small as possible. In the field 

of data analytics and modeling, fitting an equation to a dataset is referred to as model training, 

while the data being modeled is called the training data. Standard model performance metrics 

include the mean square error (MSE), root mean square error (RMSE), and mean absolute error 

(MAE). The most widely used performance metric is the RMSE (Géron 2019). RMSE measures 

the standard deviation of the residuals (difference between predicted and actual values) and has 

the same unit as the actual value – in this case, the RMSE would be “%” since filtered turbidity 

removal was expressed as a percentage. The true test of a model is its ability to make predictions 

on new data accurately. The error between the actual values of the new data and the model 

predictions is called the generalization error. If the generalization error was high while its training 

error was low, then the model is said to be overfitting the training data. Conversely, a generalized 

model should perform well on the training data as well as new data. Common strategies to 

minimize overfitting include (1) using simple models (e.g., a linear model instead of high-degree 

polynomials) and (2) using a validation dataset to check the performance of the model during 

training (Géron 2019).  

 Figure 6.1 shows a parallel coordinate plot of the filtered turbidity removals obtained from 

the extended jar test study with 16 waters (1,632 datapoints). Parallel coordinate plots are useful 

for visualization multivariate or high-dimensional datasets to determine the relationships between 

the variables. In this case, all process variables were carefully controlled (i.e., coagulation 

conditions, mixing parameters, and water quality parameters). Mixing parameters were not a factor 

since the jar test procedure employed a standardized mixing program. As a result, the jar test 

filtered turbidity removals were assumed to be only a function of the four water quality parameters 
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(i.e., DOC, SUVA, alkalinity, and turbidity) and the applied coagulation conditions (i.e., coagulant 

dose and coagulation pH). The purpose of Figure 6.1 was simply to highlight the complexity of 

coagulation process. Even when water quality and coagulation factors are controlled, it was still 

not possible to identify any discernable patterns in the removals. A model of the coagulation 

process should theoretically capture all the trends and complexities observed in Figure 6.1.  

 

 
Figure 6.1. Parallel coordinate plot of all filtered turbidity removal data 
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6.2.   Modeling Coagulation Using Basic Regression Models 

Regression models were trained using Python 3.7 and scikit-learn 0.24.0, an open-source 

library of data analytics tools and machine learning algorithms (Pedregosa et al. 2011). The jar test 

filtered turbidity dataset set was split into two separate sets: a training set that contained 15 waters 

used to train the model and a test set that contained 1 water to evaluate the model. Multiple 

regression models were trained, and their performance was validated using the test dataset. The 

performance metrics used were RMSE and R2. Regression models included linear regression, 

decision trees, and gaussian process regression. Each model’s hyperparameters (model training 

parameters) were tuned to minimize the RMSE. Descriptions of the regression models are 

available in the scikit-learn 0.24.0 online documentation. Results of the regression models were 

summarized in Table 6.1.  

Table 6.1. Summary of regression model results 

Model Type No. of Coefficients RMSE(a) [%] R2(b) 

Linear regression 7 37 0.43 

+ 2-way interactions 22 32 0.44 

+ 2nd° polynomials 27 29 0.54 

+ 3rd° polynomials 77 32 0.46 

+ 3-way interactions 42 33 0.41 

+ 2nd° polynomials 47 30 0.51 

+ 3rd° polynomials 77 32 0.46 

Decision trees - 31 0.51 

Gaussian process regression - 28 0.64 
a Root mean square error of test dataset (lower is better). 
b Coefficient of determination between predicted and actual values from test dataset 

 

The performance of the investigated regression models was generally very poor. The 

RMSE values ranged between 28 – 37%, while the R2 values ranged between 0.41 – 0.64 for the 

test dataset. Figure 6.2 shows a scatter plot of the predicted removals versus the actual jar test 

removals. The top panel shows the best performing linear regression (based on RMSE and R2), 
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while the bottom panel shows the results obtained from the gaussian process regression model. All 

the predicted data points from a perfectly accurate regression model would fall on the solid 

diagonal line – i.e., the predicted values are all equal to the actual values. Datapoints below the 

diagonal line indicate that the model underestimated the removal, while datapoints above the line 

indicate that the model overestimated the removals.  

 
Figure 6.2. Performance of the trained regression models 

 

Figure 6.3 compares the predicted and actual values of the test dataset using the linear 

regression model with two-way interactions and 2nd degree polynomials and the gaussian process 

regression model. The performance of the models was evaluated by comparing the actual contour 

plot (left panel) to the predicted contour plots of the filtered turbidity removals. It was apparent 

that the model performed poorly since the contour plots of the predicted results looked nothing 
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like the actual contour plot, even when ignoring the possibility of overfitting and using complex 

models such as 3-way interactions with third-degree polynomials and 77 trainable coefficients. It 

can be concluded that the investigated regression models were too simple to model the underlying 

coagulation processes; therefore, they were underfitting the training data, which resulted in 

significant prediction errors. 

 
Figure 6.3. Comparison of jar test results and regression model predictions  

 

The proper implementation of regression models requires some inferences regarding the 

relationships between the factors and the response variable. For example, the KD plots from the 

previous section showed that an increase in DOC generally increased the effective coagulant dose; 

however, that was only applicable to conditions where the coagulant dose was low. Similarly, the 

impact of increasing DOC on turbidity removals was typically worse with high alkalinity waters 

compared to low alkalinity waters. Although the combined effects of changing multiple water 
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quality parameters can be visualized, the underlying coagulation mechanisms are not well 

understood and not linearly related. The removal of a contaminant depends on the interactions 

between water quality parameters and coagulation conditions and the predominant coagulation 

mechanism – i.e., charge neutralization or sweep flocculation. 

6.3.   Artificial Neural Networks  

In recent years, models based on artificial neural networks (ANNs) have gained 

considerable attention from the drinking water treatment research community (Li et al. 2021). 

ANNs fall under the machine learning subfield of artificial intelligence (AI). Mathematical and 

statistical models such as linear regression, support vector machines, etc., also fall under the 

machine learning subfield. A basic neural network is comprised of an input layer, a hidden layer, 

and an output layer. Each layer contains an array of interconnected units called neurons (modeled 

after biological neurons) that perform simple mathematical operations. An in-depth description of 

machine learning algorithms and neural networks can be found in the textbook written by Géron 

(2019). In summary, ANNs are trained to model a process by adjusting the weights and biases of 

the neurons iteratively to minimize the prediction error (Figure 6.4). ANNs are ideal for modeling 

problems where the underlying process is too complex for the traditional model and not well 

understood. 
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Figure 6.4. The basic process of training a neural network 

 

Most ANN applications in drinking water treatment have been in control systems to 

automate the selection of an “optimal” coagulant dose at a given treatment facility (Gagnon, 

Grandjean and Thibault 1997; Baxter, Stanley and Zhang 1999; Fabris et al. 2013). The models 

are trained using a plant's historical data to make predictions on new data accordingly. 

Unfortunately, this approach produces site-specific models (cannot be used at a different facility). 

In principle, one can argue that what is being modeled is the water treatment plant staff/operators' 

behavior as they respond to changes in the process instead of the coagulation process itself. 

Historical data usually contains some variability; however, it is much harder to distinguish and 
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model the combined effects of the interacting coagulation factors from this type of data since 

multiple factors are varying simultaneously. 

On the other hand, Maier, Morgan, and Chow (2004) used ANNs to model coagulation 

from jar test results instead of plant historical data. The authors reported that their model performed 

well with their test dataset; however, they could not scale their model to full-scale processes. They 

attributed this not to the modeling technique but rather to jar test results (which were used to 

develop the model) not directly scaling to the full-scale process. ANNs can model practically any 

complex process; however, their relevance and practical application depend on the type and quality 

of data that is used to train the neural network.  

With the right data, models can be generated that essentially “understand” the underlying 

coagulation mechanisms and how each factor and its relationship to other factors impact 

coagulation efficiency. Furthermore, these models would not be limited to a specific location, 

process, water type, or output parameter. 

6.4.   Modeling Coagulation Using Deep Neural Networks 

Modeling filtered turbidity removals using neural networks was performed using the Keras 

open-source artificial neural network library for Python 3.7 (Chollet 2018). Figure 6.5 shows the 

fully connected neural network trained to predict removals based on coagulation conditions and 

water quality parameters. This type of ANN architecture is considered to be a deep neural network 

(DNN) is part of the deep learning subcategory of machine learning. DNNs have multiple layers 

between the input and output layers and are ideal for modeling very complex non-linear 

relationships. In this case, there were two hidden layers, with each layer containing 28 

neurons/units. For training and evaluating the network, the dataset was split into three sets: (1) a 



159 

    

 

training dataset (14 waters), (2) a validation dataset (1 water), and (3) a testing dataset (1 water). 

The validation dataset was used to evaluate the model's performance during the training and tuning 

stages to prevent overfitting and minimize the generalization error (Géron 2019). 

 
Figure 6.5. Filtered turbidity removal neural network 

 

 Figure 6.6 is a scatter plot of the removals predicted using the trained neural network versus 

the actual jar test results. The plot also included the predictions from the linear regression model 

for comparison purposes. The RMSE and R2 values of the trained neural network (on the test 

dataset) were 9.6% and 0.88, respectively. The performance of the trained neutral network was 

substantially better than the performance of the linear model. 

Figure 6.7 compares the jar test results and the trained neural network predictions. The 

predicted contour plot was nearly identical to the contour plot obtained from the jar test results. In 
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particular, the model correctly predicted the position of the vertical boundary (at pH 6.0), where 

coagulation rapidly transitions from being ineffective to effective. The model also correctly 

predicted the small boundary of effective coagulation below 10 mg/L as alum-14. The model 

slightly underestimated the removal in the range between pH 6.0 and 6.5 and 10 – 30 mg/L as 

alum-14 and slightly overestimated the removal in high pH (>7.5) and high dose region (>30 mg/L 

as alum-14). 

 
Figure 6.6 Performance of the trained deep neural network 
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Figure 6.7. Comparison of jar test results and neural network model predictions 

 

More importantly, the model responded to changes in raw water quality parameters in a 

predictable manner. Figure 6.8 shows the response of the neural network to an increase in the raw 

water SUVA. A qualitative analysis of the effects of increasing the SUVA on effective coagulation 

conditions (Figure 5.8) showed that SUVA had the effect of extending the lower boundaries further 

into the lower-left quadrant of the contour plot. In this case, the model produced a similar effect 

when the raw water SUVA was increased by a factor of 2. Similarly, jar test results showed that 

SUVA did not have any noticeable impact on the removal boundaries in the sweep coagulation 

region (high dose and pH), which the model predicted a similar response here as well. In general, 

the model also correctly predicted the response to changes in raw water DOC, alkalinity, and 

turbidity.  
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Figure 6.8. Response of the neural network to an increase in SUVA 
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6.5.   Predicting Real-World Removals 

The trained neural network's performance was evaluated by comparing the predicted and 

actual filtered turbidity removals at several full-scale drinking water treatment plants. Water 

quality data from 9 different utilities located in North Carolina (NC) were obtained using the NC 

Drinking Water Watch online database and the state’s regulatory agency. Only treatment plants 

that used aluminum-based coagulants and reported UV254 data were considered. The complied 

dataset included raw and filtered water turbidity, alkalinity, TOC/DOC, UV254, water temperature, 

coagulant dose, and pH (Table 6.2). It should be noted that this was a rudimentary evaluation of 

the model’s performance. The assumption here was that if the model accurately predicted the 

filtered turbidity removal at the plant’s conditions, it was probable that the predicted contour plot 

was also accurate. To properly evaluate the neural network's performance, 17 jar tests would have 

to be performed with each water to generate the contour plots. 

Table 6.2. Data acquired from local drinking water treatment plants 

Plant 

No. 
Condition 

Turbidity 

[NTU] 

Alkalinity 

[mg/L as CaCO3] 

DOC 

[mg/L as C] 

SUVA 

[L/mg-m] 

Temp. 

[°C] 

Dose 

[ppm] 
pH 

1 Warm  9.0 29 3.0 0.6 29 40 6.6 

Cold 14 24 4.0 3.0 11 40 6.6 

2 Warm  6.5 18 1.5 0.3 26 39 6.6 

Cold 9.2 20 1.8 0.8 10 31 6.9 

3 Warm 1.9 20 6.5 4 32 154 6.0 

Cold 5.5 16 6.9 4.2 17 111 6.0 

4 Warm  4.4 188 8.1 4.2 25 122 7.6 

Cold 9.2 20 6.7 4.2 17 37 7.6 

5 Warm  5.9 32 6.0 5 27 40 6.9 

Cold 2.1 34 6.1 4.2 17 46 6.2 

6 Warm  4.0 27 6.1 5.4 28 66 6.1 

Cold 41 26 7.1 5.4 14 60 6.3 

7 Warm  25 17 1.7 5.1 26 24 6.6 

Cold 32 16 2.9 4.8 13 38 6.8 

8 Warm  260 6 6.8 2.2 26 39 6.6 

Cold 3.0 11 0.5 3.4 10 18 6.8 

9 Warm  1.8 17 1.7 7.6 25 10 7 

Cold 1.3 13 0.5 9.6 5 10 7.3 
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The neural network was trained using data acquired from jar tests performed at 20±2°C; 

therefore, to account for temperature effects, the predictions were pH-shifted based on the 

assumption that the removal boundaries would shift with the solubility limit of the coagulant (Van 

Benschoten and Edzwald 1990b). As a result, the performance of the model was evaluated under 

cold weather and warm weather conditions at each utility. Water temperatures in the warm weather 

cases ranged from 23 – 32°C, whereas the cold weather temperatures ranged from 5 – 17°C. 

Additionally, data were split based on whether the neural network would have to interpolate or 

extrapolate to make predictions with respect to the range of the water quality parameters that were 

used to train the model. In general, it was assumed that the model would have to extrapolate with 

waters that contained more than three parameters that were considerably outside of the range of 

the neural network training dataset.  

Table 6.3 compares the predicted and actual filtered turbidity removals at the investigated 

conditions. The model interpolated in 13 of the 18 total cases, whereas the model extrapolated in 

the remaining cases. Examples of the contour plots generated under interpolation and extrapolation 

conditions are shown in Appendix F. The results showed that in the cases where the model made 

predictions by interpolation, the error between the predicted and actual filtered turbidity removals 

ranged between -1.1 and 1.4%. The prediction error was higher in most cases with cold weather 

conditions compared to warm weather conditions. On the other hand, the prediction error was 

relatively high (-2.9 – 99%) in most extrapolation cases. This was expected since the waters fell 

entirely outside the range of parameters the model was trained on; however, one of the critical 

features of DNNs is that they can adapt to new data. This means that the neural network can be 

trained on new data as it becomes available and improve its general applicability to more waters. 
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Table 6.3. Summary of actual and predicted filtered turbidity removals 

[1] Water Source Condition 
Actual 

Removal [%] 

Predicted 

Removal [%] 
Error [%] 

In
te

rp
o

la
ti

o
n

 

Plant 1 Warm Weather 99.4 99.6 -0.2 

Cold Weather 99.8 98.4 1.4 

Plant 2 Warm Weather 99.4 99.5 -0.1 

Cold Weather 99.7 99.2 0.5 

Plant 4 Cold Weather 98.4 99.5 -1.1 

Plant 3 Warm Weather 98.6 99 -0.4 

 Cold Weather 99.6 98.9 0.7 

Plant 5 Warm Weather 99.2 99.2 0.0 

Cold Weather 94.8 94.3 0.5 

Plant 6 Warm Weather 98.3 98 0.3 

Cold Weather 99.8 99.1 0.7 

Plant 7 Warm Weather 99.9 99 0.9 

Cold Weather 99.9 98.5 1.4 

E
x

tr
a

p
o

la
ti

o
n

 Plant 8 Warm Weather 99.9 0.87 99.1 

Cold Weather 96 82.7 13.9 

Plant 4 Warm Weather 96.4 99.2 -2.9 

Plant 9 Warm Weather 87.8 86.3 1.7 

Cold Weather 93.8 77.8 17.1 
[1] The network interpolates when the water quality parameters fall within the trained model parameters and 

extrapolates when the water quality parameters fall outside the trained model parameters. 

 

Based on these preliminary analyses, it seemed that the DNNs were capable of modeling 

the complex underlying process to make relatively accurate predictions – in this case, turbidity 

removals in a full-scale process – as long as the raw water quality parameters are within the range 

of the parameters used in the training set. The same DNNs can be trained to predict DOC removals 

in the same way they were trained to predict turbidity removals. The ultimate goal of modeling 

coagulation was not to replace jar tests but to eliminate the need for trial-and-error testing and 

reduce the probability of overfeeding the coagulant. AI models can help operators and consultants 

optimize coagulation conditions at water treatment facilities by allowing them to visualize their 

coagulation operational boundaries, identify global optimums, and make informed decisions based 
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on a set of desired performance criteria. This would lead to improved system performance, lower 

overall operating costs, and higher quality water. 
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

 

 

This research aimed to develop an accurate computer model for coagulation with aluminum 

sulfate with practical, real-world applications. This meant bridging the gap between coagulation 

theory and coagulation practice. In this study, well-established practical guidelines and theories 

were scrutinized, compared, and tested to guide the reader to a new level of understanding 

coagulation and ultimately accurately modeling it. 

7.1.   Standardizing the Jar Test Procedure 

A jar test procedure was developed that used: (1) a standardized mixing program that did 

not need to be calibrated to any drinking water treatment process, (2) a single-variable 

optimization approach, and (3) granular media filtration instead of settling for optimizing 

coagulation conditions. The single-variable optimization approach was critical for studying 

the effects of coagulation factors on the efficiency of coagulation. Ultimately, the results 

showed that filtered turbidity was a superior performance metric to settled water turbidity, 

which is used in conventional jar testing. 

o The key findings were as follows:  

1. Filtered water turbidity was only a function of the applied coagulant dose and 

coagulation pH and was largely unaffected by the jar test mixing parameters. 

However, settled water turbidity was a function of floc size and the jar test mixing 

parameters  
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2. The results of the filtered water turbidity were directly scalable from the jar test to 

the full-scale, while settled water turbidity results did not scale or agree with the 

full-scale results 

3. Optimal coagulation boundaries based on filtered water turbidity were relatively 

broader, occurred at a significantly lower dose (by a factor of 1.1 – 2.5), and were 

less sensitive to minor changes in pH. Optimal coagulation boundaries based on 

settled water turbidity were smaller, separated, occurred at relatively higher doses, 

and were more sensitive to minor pH changes 

4. The possibility of overfeeding the coagulant is reduced considerably by using 

filtered water turbidity 

 

7.2.   Creating Synthetic Waters 

A new method was developed to create synthetic waters based on a target raw water 

dissolved organic carbon (DOC) concentration, specific ultraviolet absorbance (SUVA), 

turbidity, and alkalinity using relatively low-cost and readily available materials.  

o The use of synthetic waters had two main advantages: 

1. Water quality parameters can be tightly controlled, which permitted their exclusion 

as a factor when studying the effects of other factors such as coagulation conditions 

(i.e., dose and pH) and mixing parameters 

2. Each water quality parameter could be independently controlled to quantify their 

individual effects on the coagulation efficiency 
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7.3.   Advanced Coagulation Optimization 

Advanced data analysis and visualization techniques were utilized to visualize and capture 

the main and interaction effects of multiple coagulation parameters on the efficiency of 

coagulation. Contour plots were used to visualize the effective coagulation boundaries as 

a function of the applied coagulant dose and coagulated pH. The effects of SUVA, DOC, 

alkalinity, and turbidity were isolated and visualized utilizing bivariate kernel density 

estimation and heatmaps. A multi-parameter optimization approach was developed to 

identify a total of 22 possible optimum coagulation conditions for a single water.  

o Two search algorithms were developed that used different optimization strategies: 

1. An algorithm that minimized the total chemical cost 

2. An algorithm that prioritizes the robustness of the selected condition 

7.4.   Charge Neutralization Versus Sweep Flocculation 

An operational distinction for charge neutralization and sweep flocculation was 

established. Charge neutralization conditions generally occurred below both 20 mg/L as 

alum-14 and pH 6.5. Results showed that a common vertical boundary existed where the 

coagulation mechanism rapidly transitioned between charge neutralization and sweep 

flocculation.  

o The key findings were as follows: 

1. The pH at which the boundary occurred was primarily a function of the raw water’s 

DOC and alkalinity. At the investigated low DOC and low alkalinity levels, the 

boundary occurred at pH 6.5 and shifted to pH 6.0 when either the DOC or the 

alkalinity levels increased. 
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2. A contour plot of the total available positive charge as a function of coagulant dose 

and pH showed that positively charged aluminum species were theoretically present 

in varying proportions up to pH 7.25 at 20° C. 

3. The importance of producing particles or floc with a near-neutral zeta potential was 

found to be overstated. Turbidity removals ≤0.3 NTU were achieved in the zeta 

potential range of -40 to 20 mV 

7.5.   The Importance of Mixing 

Using the standardized jar test procedure and a synthetic water to control all relevant 

factors, the effects of mixing parameters on the coagulation process were studied. In 

general, destabilization was proven to be simply a function of the applied coagulation 

conditions and largely independent of the applied mixing intensity and time. A minimum 

G-value of 20 s-1 was sufficient to produce filterable floc provided that there were at least 

9 minutes of mixing.  

o The specific findings concerning rapid mix were as follows:  

1. Rapid mixing had no discernable positive impact on coagulation in jar tests or the 

full-scale processes studied 

2. Prolonged rapid mixing (longer than 1 minute) could have a negative impact on 

floc size since flocculation could occur during the rapid mix stage 

3. The theory that coagulation reactions were over in 7 seconds was refuted 

 

o The specific findings concerning flocculation were as follows: 
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1. Flocculation time, intensity, and scheme (i.e., tapered or single-stage) did not have 

any discernible effect on jar test filtered turbidity removals 

2. A minimum mixing time of 1 minute was required under sweep flocculation, while 

a minimum mixing time of 9 minutes was required for charge neutralization  

3. There were no observed advantages to using a tapered flocculation scheme instead 

of a single-stage scheme (e.g., G-value of 20 s-1) when the jar test performance was 

compared based on filtered turbidity removals 

7.6.   The Effects of Water Quality Parameters 

Consistent with prior research, the range of effective coagulation conditions was controlled 

by natural organic matter. 

o The key findings were as follows:  

1. The raw water DOC concentration largely dictated the location, size, and shape of 

the effective coagulation boundaries.  

2. SUVA determined the extent to which effective coagulation conditions extended 

into the charge neutralization region.  

3. High alkalinity generally affected coagulation conditions in the sweep flocculation 

zone. 

4. Turbidity had minimal impact on coagulation conditions at the studied levels, 

particularly in the sweep flocculation region.  

5. A universal effective coagulation zone was identified that was generally 

independent of water quality parameters under the tested conditions. A universal 

effective alum dose of approximately 31 mg/L as alum-14 at pH 6.7 would 
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theoretically work with any water within the tested range of water quality 

parameters between the temperatures of 5 and 30°C.  

7.7.   Modeling coagulation 

o Simple regression models are not capable of modeling all the complex underlying non-

linear behaviors of the coagulation process 

1. The regression models considered ranged from linear regression models to 

advanced regression models based on machine learning techniques such as gaussian 

process regression 

2. When tested on new data (i.e., data that was not used in model training), the RMSE 

ranged between 28 – 37%, while the R2 values ranged between 0.41 – 0.64.  

o Deep neural networks were capable of learning the underlying patterns of the coagulation 

process and modeling its response to changing conditions 

1. The trained deep neural network consisted of 2 hidden layers, with each layer being 

made up of 28 neurons/units 

2. The RMSE and R2 values of the trained neural network (on the test dataset) were 

9.6% and 0.88, respectively 

3. The trained neural network model was able to generate a contour plot with 

reasonable accuracy simply based on the DOC, SUVA, alkalinity, and turbidity of 

the raw water 

4. The trained neural network predicted full-scale filtered turbidity removals within 

±1.4% at 11 different facilities under cold and warm water conditions 
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7.8.   Future Work and Recommendations 

Deep neural networks appear to be ideal for solving many of the complex problems that 

have baffled engineers and scientists for over a century. The neural network in this study was 

trained on only 16 synthetic waters; yet, proved to be capable of predicting full-scale turbidity 

removals with acceptable accuracy. The model input parameters were only raw water turbidity, 

alkalinity, DOC, SUVA, and temperature. At this stage, the model predictions should be 

considered qualitative, where they could be used to identify effective coagulation boundaries and 

predict the response to changing water quality conditions. The current neural network could 

potentially eliminate the need for “trial-and-error” optimization for water treatment facilities, and 

jar tests would only be needed to validate the predictions. 

Neural networks “learn” by example. The training data dictates their prediction accuracy 

and conditions under which they can be applied. There is no reason a deep neural network provided 

with a suitable and extensive dataset could not be trained to model coagulation with any water and 

any coagulant type accurately. There practically are no limitations on what a deep network could 

model. Modeling drinking water coagulation is no longer an impossible feat. The same neural 

network can be trained to predict DOC removals, type and volume of pH adjusting chemicals 

required, total chemical costs, disinfection by-products formation, and much more. This endeavor 

would require a renewed interest (and investment) in coagulation research and a collective effort 

from the research community, regulators, consulting engineers, and industry. The recent 

advancements in the field of CFD coupled with models based on AI like deep neural networks 

could make it possible for drinking water treatment processes to be designed and modeled 

computationally in the near future, much in the same way that has been done for several decades 

in wastewater treatment.  



174 

    

 

REFERENCES 

 

 

Alansari, A. (2020a). "+3Sense." from https://www.amiralansari.com/3sense. 

Alansari, A. (2020b). "Alum Equilibrium." from https://www.amiralansari.com/solubility. 

Alansari, A. (2020c). "Flocculation Modeling App." 2020, from 

https://www.amiralansari.com/flocculation. 

Alansari, A. (2020d). "Jar Test Procedure." 2020, from https://www.amiralansari.com/jartest. 

Alansari, A. (2021a). "Coagulation Revisted." 2021, from http://coagulation.amiralansari.com. 

Alansari, A. (2021b). "PMetrics." from https://www.amiralansari.com/pmetrics.d 

Alansari, A., M. Selbes, T. Karanfil and J. Amburgey (2015). "Optimization of coagulation 

pretreatment conditions in a ceramic membrane system." Journal‐American Water Works 

Association 107(12): E693-E701. 

Alansari, A., M. Selbes, T. Karanfil and J. Amburgey (2016). "Removal of Disinfection By‐

product Precursors Using Hybrid Coagulation–Ceramic Membrane Systems." Journal‐American 

Water Works Association 108(10): E513-E522. 

Allerdings, D., G. Forster, E. Vasyukova and W. Uhl (2015). "The practical influence of rapid 

mixing on coagulation in a full-scale water treatment plant." Water Sci Technol 71(4): 566-571. 

Amirtharajah, A. and K. M. Mills (1982). "Rapid‐mix design for mechanisms of alum 

coagulation." Journal‐American Water Works Association 74(4): 210-216. 

Amirtharajah, A. and C. R. O'melia (1990). Coagulation processes: destabilization, mixing, and 

flocculation. Water Quality and Treatment: A Handbook of Community Water Supplies. New 

York, NY, McGraw-Hill: 1990. 

Amirtharajah, A. and S. L. Trusler (1986). "Destabilization of particles by turbulent rapid mixing." 

Journal of Environmental Engineering 112(6): 1085-1108. 

https://www.amiralansari.com/3sense
https://www.amiralansari.com/solubility
https://www.amiralansari.com/flocculation
https://www.amiralansari.com/jartest
http://coagulation.amiralansari.com/
https://www.amiralansari.com/pmetrics


175 

    

 

Barr, P. (2007). "Treatment Optimization-Providing More Effective Multiple-barrier Protection." 

Journal - American Water Works Association 99(12): 40-43. 

Baruth, E. E. (2004). Water treatment plant design, ASCE. 

Baxter, C. W., S. J. Stanley and Q. Zhang (1999). "Development of a full-scale artificial neural 

network model for the removal of natural organic matter by enhanced coagulation." Journal of 

Water Supply: Research and Technology—AQUA 48(4): 129-136. 

Bazer-Bachi, A., E. Puech-Coste, R. Ben Aim and J. Probst (1990). "Modélisation mathématique 

du taux de coagulant dans une station de traitement d'eau." Revue des sciences de l'eau/Journal of 

Water Science 3(4): 377-397. 

Benjamin, M. M. and D. F. Lawler (2013). Water quality engineering: Physical/chemical treatment 

processes, John Wiley & Sons. 

Bernhardt, H. and H. Schell (1993). "Effects of Energy Input during Orthokinetic Aggregation on 

the Filterability of Generated Flocs." Water Science and Technology 27(10): 35-65. 

Black, A. and S. Hannah (1961). "Electrophoretic studies of turbidity removal by coagulation with 

aluminum sulfate." Journal ‐ American Water Works Association 53(4): 438-452. 

Black, A. P., A. M. Buswell, F. A. Eidsness and A. L. Black (1957). "Review of the Jar Test." 

Journal (American Water Works Association) 49(11): 1414-1424. 

Black, A. P. and A. L. Smith (1962). "Determination of the Mobility of Colloidal Particles by 

Microelectrophoresis." Journal (American Water Works Association) 54(8): 926-934. 

Black, A. P. and M. R. Vilaret (1969). "Effect of particle size on turbidity removal." Journal 

AWWA 61(4): 209-214. 

Bratby, J. (2016). Coagulation and flocculation in water and wastewater treatment, IWA 

publishing. 

Brink, D. R., S. I. Choi, M. Al‐Ani and D. W. Hendricks (1988). "Bench‐Scale Evaluation of 

Coagulants for Low Turbidity Water." Journal‐American Water Works Association 80(4): 199-

165. 



176 

    

 

Brown, P. L. and C. Ekberg (2016). Hydrolysis of metal ions, John Wiley & Sons. 

Budd, G. C., A. F. Hess, H. Shorney‐Darby, J. J. Neemann, C. M. Spencer, J. D. Bellamy and P. 

H. Hargette (2004). "Coagulation applications for new treatment goals." Journal‐American Water 

Works Association 96(2): 102-113. 

Ching, H.-W., M. Elimelech and J. G. Hering (1994). "Dynamics of coagulation of clay particles 

with aluminum sulfate." Journal of Environmental Engineering 120(1): 169-189. 

Chollet, F. (2018). "Keras: The python deep learning library." Astrophysics Source Code Library: 

ascl: 1806.1022. 

Committee, A. C. (1989). "Committee report: Coagulation as an integrated water treatment 

process." Journal‐American Water Works Association 81(10): 72-78. 

Conley, W. R. and R. H. Evers (1968). "Coagulation control." Journal‐American Water Works 

Association 60(2): 165-174. 

Crittenden, J. C., R. R. Trussell, D. W. Hand, K. J. Howe and G. Tchobanoglous (2012a). 

Coagulation and Flocculation. MWH's water treatment: principles and design, John Wiley & Sons. 

Crittenden, J. C., R. R. Trussell, D. W. Hand, K. J. Howe and G. Tchobanoglous (2012b). MWH's 

water treatment: principles and design, John Wiley & Sons. 

Crozes, G., P. White and M. Marshall (1995). "Enhanced coagulation: its effect on NOM removal 

and chemical costs." Journal - American Water Works Association 87(1): 78-89. 

Czitrom, V. (1999). "One-Factor-at-a-Time versus Designed Experiments." The American 

Statistician 53(2): 126-131. 

Davis, C. C. and M. Edwards (2017). "Role of Calcium in the Coagulation of NOM with Ferric 

Chloride." Environmental Science & Technology 51(20): 11652-11659. 

Dempsey, B. A., H. Sheu, T. T. Ahmed and J. Mentink (1985). "Polyaluminum Chloride and Alum 

Coagulation of Clay‐Fulvic Acid Suspensions." Journal‐American Water Works Association 

77(3): 74-80. 



177 

    

 

Dentel, S. K. and K. M. Kingery (1989). "Using streaming current detectors in water treatment." 

Journal‐American Water Works Association 81(3): 85-94. 

Dentel, S. K., J. J. Resta, P. V. Shetty and T. A. Bober (1988). "Selecting Coagulant, Filtration, 

and Sludge‐Conditioning Aids." Journal‐American Water Works Association 80(1): 72-84. 

Dentel, S. K., A. V. Thomas and K. M. Kingery (1989). "Evaluation of the streaming current 

detector—II. Continuous flow tests." Water Research 23(4): 423-430. 

Driscoll, C. T. and R. D. Letterman (1988). "Chemistry and Fate of Al(III) in Treated Drinking 

Water." Journal of Environmental Engineering 114(1): 21-37. 

Edwards, G. A. and A. Amirtharajah (1985). "Removing color caused by humic acids." Journal‐

American Water Works Association 77(3): 50-57. 

Edzwald, J. (1993). "Coagulation in drinking water treatment: particles, organics and coagulants." 

Water Science Technology 27(11): 21-35. 

Edzwald, J. and G. S. Kaminski (2009). "A practical method for water plants to select coagulant 

dosing." Journal of the New England Water Works Association 123: 15-31. 

Edzwald, J. K. (2013). "Coagulant mixing revisited: theory and practice." Journal of Water Supply: 

Research and Technology-Aqua 62(2): 67-77. 

Edzwald, J. K. (2014). "Coagulation and Mixing: History and Present Versus Sustainable 

Practice." Journal of the New England Water Works Association 128(4): 301. 

Edzwald, J. K. (2020). "Aluminum in Drinking Water: Occurrence, Effects, and Control." Journal‐

American Water Works Association 112(5): 34-41. 

Edzwald, J. K., W. C. Becker and K. L. Wattier (1985). "Surrogate parameters for monitoring 

organic matter and THM precursors." Journal‐American Water Works Association 77(4): 122-

132. 

Edzwald, J. K. and J. E. Tobiason (1999). "Enhanced coagulation: US requirements and a broader 

view." Water Science and Technology 40(9): 63-70. 



178 

    

 

Edzwald, J. K. and J. E. Van Benschoten (1990). Aluminum coagulation of natural organic matter. 

Chemical water and wastewater treatment, Springer: 341-359. 

Fabris, R., C. Chow, R. Dexter, J. Colton, J. Knoblauch and M. Drikas (2013). "Feed-forward 

coagulant control using online UV/Vis monitoring." Water Science and Technology: Water Supply 

13(2): 420-426. 

Fox, K. R. and D. A. Lytle (1996). "Milwaukee's crypto outbreak: investigation and 

recommendations." Journal - American Water Works Association 88(9): 87-94. 

Gagnon, C., B. P. A. Grandjean and J. Thibault (1997). "Modelling of coagulant dosage in a water 

treatment plant." Artificial Intelligence in Engineering 11(4): 401-404. 

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: 

Concepts, tools, and techniques to build intelligent systems, O'Reilly Media. 

GLUMRB (2018). Recommended Standards for Water Works. St. Paul, MN, Minnesota’s 

Bookstore Communications Media Division. 

Graham, B. W. (1939). "Factors in Coagulation." Journal - American Water Works Association 

31(1): 67-73. 

Gregory, D. and K. Carlson (2003). "Relationship of pH and floc formation kinetics to granular 

media filtration performance." Environmental science technology 37(7): 1398-1403. 

Gregory, J. (2005). Particles in water: properties and processes, CRC Press. 

Gregory, J. (2009). "Monitoring particle aggregation processes." Adv Colloid Interface Sci 147-

148: 109-123. 

Griffith, J. D. and R. G. Williams (1972). "Application of Jar-Test Analysis at Phoenix, Ariz." 

Journal of American Water Works Association: 825-830. 

Haarhoff, J. and J. L. Cleasby (1988). "Comparing Aluminum and Iron Coagulants for In‐line 

Filtration of Cold Water." Journal‐American Water Works Association 80(4): 168-175. 

Han, M. and D. F. Lawler (1992). "The (relative) insignificance of G in flocculation." Journal‐

American Water Works Association 84(10): 79-91. 



179 

    

 

Hannah, S., J. Cohen and G. Robeck (1967). "Control Techniques for Coagulation‐Filtration." 

Journal ‐ American Water Works Association 59(9): 1149-1163. 

Hayden, P. L. and A. J. Rubin (1973). Studies on the Hydrolysis and Precipitation of Aluminum 

(III), Ohio State University. Water Resources Center. 

Hendricks, D. (2016). Fundamentals of water treatment unit processes: physical, chemical, and 

biological, Crc Press. 

Herman, L. D. (1984). "Coagulation Program Selection." Opflow 10(3): 6-7. 

Hudson, H. E. and E. G. Wagner (1981). "Conduct and uses of jar tests." Journal - American Water 

Works Association 73(4): 218-223. 

Hudson Jr, H. (1975). "Residence times in pretreatment." Journal‐American Water Works 

Association 67(1): 45-52. 

Ives, K. (1979). A NEW CONCEPT OF FILTERABILITY. 

Jarvis, P., B. Jefferson and S. A. Parsons (2005). "How the natural organic matter to coagulant 

ratio impacts on floc structural properties." Environmental science technology 39(22): 8919-8924. 

Jarvis, P., B. Jefferson and S. A. Parsons (2006). "Floc structural characteristics using conventional 

coagulation for a high doc, low alkalinity surface water source." Water Res 40(14): 2727-2737. 

Jenny, R. M., O. D. Simmons, M. Shatalov and J. J. Ducoste (2014). "Modeling a continuous flow 

ultraviolet Light Emitting Diode reactor using computational fluid dynamics." Chemical 

Engineering Science 116: 524-535. 

Jiao, R., R. Fabris, C. W. K. Chow, M. Drikas, J. van Leeuwen, D. Wang and Z. Xu (2017). 

"Influence of coagulation mechanisms and floc formation on filterability." J Environ Sci (China) 

57: 338-345. 

Jiao, R., H. Xu, W. Xu, X. Yang and D. Wang (2015). "Influence of coagulation mechanisms on 

the residual aluminum--the roles of coagulant species and MW of organic matter." J Hazard Mater 

290: 16-25. 



180 

    

 

Johnson, P. N. and A. Amirtharajah (1983). "Ferric chloride and alum as single and dual 

coagulants." Journal‐American Water Works Association 75(5): 232-239. 

Jones, S. E. and J. T. Lennon (2015). "A test of the subsidy–stability hypothesis: the effects of 

terrestrial carbon in aquatic ecosystems." Ecology 96(6): 1550-1560. 

Kan, C., C. Huang and J. R. Pan (2002). "Time requirement for rapid-mixing in coagulation." 

Colloids Surfaces A: Physicochemical Engineering Aspects 203(1-3): 1-9. 

Kawamura, S. (1973). "Coagulation considerations." Journal‐American Water Works Association: 

417-423. 

Kawamura, S. (1975). "Design and Operation of High-Rate Filters-Part 1." Journal (American 

Water Works Association) 67(10): 535-544. 

King, C. (2017). The Utilization of Granular Media Filtration and Rapid Flocculation in a Modified 

Jar Test Procedure for Drinking Water Treatment. J. Amburgey, J. Bowen and O. Keen, ProQuest 

Dissertations Publishing. 

Knocke, W. R., S. West and R. C. Hoehn (1986). "Effects of Low Temperature on the Removal of 

Trihalomethane Precursors by Coagulation." Journal - American Water Works Association 78(4): 

189-195. 

Langelier, W. F. (1921). "Coagulation of water with alum by prolonged agitation." Engineering 

news record 86(22): 924-928. 

Langelier, W. F. (1982). "Teaching, Research, and Consultation in Water Purification and Sewage 

Treatment, University of California at Berkeley, 1916-1955" an oral history conducted 1970 by 

Malca Chal. M. Chall. Berkeley, University of California. 

Langelier, W. F. and H. F. Ludwig (1949). "Mechanism of flocculation in the clarification of turbid 

waters." Journal ‐ American Water Works Association 41(2): 163-181. 

Lawler, D. F. (1993). "Physical aspects of flocculation: from microscale to macroscale." Water 

Science and Technology 27(10): 165-180. 



181 

    

 

LeChevallier, M. W. and W. D. Norton (1992). "Examining Relationships Between Particle 

Counts and Giardia, Cryptosporidium, and Turbidity." Journal (American Water Works 

Association) 84(12): 54-60. 

Lennon, J. T., S. K. Hamilton, M. E. Muscarella, A. S. Grandy, K. Wickings and S. E. Jones 

(2013). "A source of terrestrial organic carbon to investigate the browning of aquatic ecosystems." 

PLoS One 8(10): e75771. 

Letterman, R. D. and C. T. Driscoll (1988). "Survey of Residual Aluminum in Filtered Water." 

Journal - American Water Works Association 80(4): 154-158. 

Letterman, R. D., J. Quon and R. S. Gemmell (1973). "Influence of rapid‐mix parameters on 

flocculation." Journal‐American Water Works Association 65(11): 716-722. 

Letterman, R. D., M. Tabatabaie and R. S. Ames Jr (1979). "The effect of the bicarbonate ion 

concentration on flocculation with aluminum sulfate." Journal‐American Water Works 

Association 71(8): 467-472. 

Letterman, R. D., S. Vanderbrook and P. Sricharoenchaikit (1982). "Electrophoretic mobility 

measurements in coagulation with aluminum salts." Journal‐American Water Works Association 

74(1): 44-51. 

Li, L., S. Rong, R. Wang and S. Yu (2021). "Recent advances in artificial intelligence and machine 

learning for nonlinear relationship analysis and process control in drinking water treatment: A 

review." Chemical Engineering Journal 405: 126673. 

Li, T., Z. Zhu, D. Wang, C. Yao and H. Tang (2006). "Characterization of floc size, strength and 

structure under various coagulation mechanisms." Powder Technology 168(2): 104-110. 

Logsdon, G., A. Hess, M. Chipps and A. Rachwal (2002). Filter maintenance and operations 

guidance manual, American Water Works Association Research Foundation. 

Mahmoud, H. (2012). Disinfection of Low UV Transmittance Fluids: Fundamentals and 

Applications. Doctor of Philosophy, The University of Western Ontario. 

Maier, H. (2004). "Use of artificial neural networks for predicting optimal alum doses and treated 

water quality parameters." Environmental Modelling & Software 19(5): 485-494. 



182 

    

 

Malinaro, A., J. Rhoades, W. Pennock and F. Gutierrez (2019). "Take a Mixed Approach to 

Mixing." Journal - American Water Works Association 111(5): 72-74. 

Matsui, Y., A. Yuasa, Y. Furuya and T. Kamei (1998). "Dynamic analysis of coagulation with 

alum and PACl." Journal‐American Water Works Association 90(10): 96-106. 

McCurdy, K., K. Carlson and D. Gregory (2004). "Floc morphology and cyclic shearing recovery: 

comparison of alum and polyaluminum chloride coagulants." Water Res 38(2): 486-494. 

Milne, C. J., D. G. Kinniburgh, W. H. van Riemsdijk and E. Tipping (2003). "Generic NICA-

Donnan model parameters for metal-ion binding by humic substances." Environ Sci Technol 

37(5): 958-971. 

Montgomery, D. C. (2017). Design and analysis of experiments. Hoboken, NJ, John Wiley & Sons, 

Inc. 

Morris, J. K. and W. R. Knocke (1984). "Temperature Effects on the Use of Metal‐Ion Coagulants 

for Water Treatment." Journal‐American Water Works Association 76(3): 74-79. 

Nordstrom, D. K. and H. M. May (1996). "Aqueous equilibrium data for mononuclear aluminum 

species." The environmental chemistry of aluminum 2: 39-80. 

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 

Prettenhofer, R. Weiss and V. Dubourg (2011). "Scikit-learn: Machine learning in Python." the 

Journal of machine Learning research 12: 2825-2830. 

Pernitsky, D. J., R. E. Cantwell, E. Murphy, N. Paradis, J. Boutilier and G. Bache (2011). "Use 

Zeta Potential to Improve Direct Filtration Operation." Opflow 37(2): 20-23. 

Polaczyk, A. L. (2010). Micro- to macroscale modeling of drinking water treatment and 

distribution. 3439271 Ph.D., The University of North Carolina at Charlotte. 

Polaczyk, A. L., J. E. Amburgey, A. Alansari, J. C. Poler, M. Propato, V. R. J. C. Hill, S. A. 

Physicochemical and E. Aspects (2020). "Calculation and uncertainty of zeta potentials of 

microorganisms in a 1: 1 electrolyte with a conductivity similar to surface water."  586: 124097. 

Randtke, S. J. (1988). "Organic Contaminant Removal by Coagulation and Related Process 

Combinations."  80(5): 40-56. 



183 

    

 

Reckhow, D. A. and P. C. Singer (1984). "The Removal of Organic Halide Precursors by 

Preozonation and Alum Coagulation." Journal - American Water Works Association 76(4): 151-

157. 

Riddick, T. M. (1961). "Zeta potential and its application to difficult waters." Journal ‐ American 

Water Works Association 53(8): 1007-1030. 

Robidoux, M., P. del Giorgio and A. Derry (2015). "Effects of humic stress on the zooplankton 

from clear and DOC-rich lakes." Freshwater Biology 60(7): 1263-1278. 

Rossini, M., J. G. Garrido and M. Galluzzo (1999). "Optimization of the coagulation–flocculation 

treatment: influence of rapid mix parameters." Water Research 33(8): 1817-1826. 

Semmens, M. J. and A. Staples (1986). "The nature of organics removed during treatment of 

Mississippi River water." Journal‐American Water Works Association 78(2): 76-81. 

Shin, J. Y., R. F. Spinette and C. R. O'Melia (2008). "Stoichiometry of coagulation revisited." 

Environ Sci Technol 42(7): 2582-2589. 

Sillanpää, M., A. Matilainen and T. Lahtinen (2015). Chapter 2 - Characterization of NOM. 

Natural Organic Matter in Water. M. Sillanpää, Butterworth-Heinemann: 17-53. 

Singer, P. C., J. J. B. III, G. M. Palen and A. E. Scrivner (1981). "Trihalomethane formation in 

North Carolina drinking waters." Journal AWWA 73(8): 392-401. 

Singley, J. (1981). Coagulation Control Using Jar Tests. Proc. 1981 AWWA Ann. Conf., St. Louis. 

Skaf, D. W., V. L. Punzi, J. T. Rolle and K. A. Kleinberg (2020). "Removal of micron-sized 

microplastic particles from simulated drinking water via alum coagulation." Chemical Engineering 

Journal 386: 123807. 

Smith, O. M. (1920). "The Removal of Clay and Silica from Water." Journal - American Water 

Works Association 7(3): 302-314. 

Spicer, P. T., S. E. Pratsinis, J. Raper, R. Amal, G. Bushell and G. Meesters (1998). "Effect of 

shear schedule on particle size, density, and structure during flocculation in stirred tanks." Powder 

Technology 97(1): 26-34. 



184 

    

 

Stumm, W. and C. R. O'Melia (1968). "Stoichiometry of coagulation." Journal‐American Water 

Works Association 60(5): 514-539. 

Teefy, S. (1996). Tracer studies in water treatment facilities: a protocol and case studies, American 

Water Works Association. 

Teefy, S., J. Farmerie and E. Pyles (2011). Operational control of coagulation and filtration 

processes. AWWA manual ; M37. Denver, American Water Works Association. 

TeKippe, R. J. and R. K. Ham (1970). "Coagulation testing: a comparison of techniques—Part 1." 

Journal‐American Water Works Association 62(9): 594-602. 

Thurman, E. M. (1985). Organic geochemistry of natural waters. Dordrecht ; Boston 

Hingham, MA, USA, M. Nijhoff ; 

Distributors for the U.S. and Canada, Kluwer Academic. 

Trinh, T. K. and L. S. Kang (2011). "Response surface methodological approach to optimize the 

coagulation–flocculation process in drinking water treatment." Chemical Engineering Research 

and Design 89(7): 1126-1135. 

Tseng, T., B. D. Segal and M. Edwards (2000). "Increasing alkalinity to reduce turbidity." Journal‐

American Water Works Association 92(6): 44-54. 

USEPA (1998). "Stage 1 Disinfectants and Disinfection Byproducts Rule. Final Rule." Fed. Reg. 

63(241): 69389. 

USEPA (2002). "National primary drinking water regulations: Long Term 1 Enhanced Surface 

Water Treatment Rule. Final rule." Fed Regist 67(9): 1811-1844. 

Vadasarukkai, Y. S. and G. A. Gagnon (2015). "Application of low-mixing energy input for the 

coagulation process." Water Res 84: 333-341. 

Vadasarukkai, Y. S. and G. A. Gagnon (2017). "Influence of the Mixing Energy Consumption 

Affecting Coagulation and Floc Aggregation." Environ Sci Technol 51(6): 3480-3489. 

Van Benschoten, J. E. (1988). Speciation and fate of aluminum in water treatment, ProQuest 

Dissertations Publishing. 



185 

    

 

Van Benschoten, J. E. and J. K. Edzwald (1990a). "Chemical aspects of coagulation using 

aluminum salts—I. Hydrolytic reactions of alum and polyaluminum chloride." Water Research 

24(12): 1519-1526. 

Van Benschoten, J. E. and J. K. Edzwald (1990b). "Chemical aspects of coagulation using 

aluminum salts—II. Coagulation of fulvic acid using alum and polyaluminum chloride." Water 

Research 24(12): 1527-1535. 

van Leeuwen, J., C. W. K. Chow, D. Bursill and M. Drikas (1999). "Empirical mathematical 

models and artificial neural networks for the determination of alum doses for treatment of southern 

Australian surface waters." Journal of Water Supply: Research and Technology—AQUA 48(3): 

115-127. 

Vik, E. A., D. A. Carlson, A. S. Eikum and E. T. Gjessing (1985). "Removing aquatic humus from 

Norwegian lakes." Journal‐American Water Works Association 77(3): 58-66. 

Wagner, E. G. and H. E. Hudson (1982). "Low-dosage high-rate direct filtration." Journal - 

American Water Works Association 74(5): 256-261. 

White, M. C., J. D. Thompson, G. W. Harrington and P. C. Singer (1997). "Evaluating criteria for 

enhanced coagulation compliance." Journal‐American Water Works Association 89(5): 64-77. 

Yonkin, M. C., C. A. Cotton, W. D. Simcoe and L. Sealey (2005). Validation of the city of Albany, 

New York's UV facility the devil is in the details. 2005 Water Quality Technology Conference, 

WQTC 2005, November 6, 2005 - November 10, 2005, Quebec City, QC, Canada, American 

Water Works Association. 

Yu, W.-z., J. Gregory, L. Campos and G. Li (2011). "The role of mixing conditions on floc growth, 

breakage and re-growth." Chemical Engineering Journal 171(2): 425-430. 

Zainal-Abideen, M., A. Aris, F. Yusof, Z. Abdul-Majid, A. Selamat and S. I. Omar (2012). 

"Optimizing the coagulation process in a drinking water treatment plant -- comparison between 

traditional and statistical experimental design jar tests." Water Sci Technol 65(3): 496-503. 

 

 

 



186 

    

 

APPENDIX A: NEXT-GENERATION JAR TEST PROCEDURE 

 

 

The jar test apparatus used during experimentation was a six-jar programmable jar tester 

(Phipps & Bird, Richmond, VA, model PB-900™). All experiments were performed at room 

temperature (20°C ±1.5°C). The standard mixing program consisted of a rapid mix stage followed 

by three-stage tapered flocculation. The jar tester was programmed to execute the following 

mixing program: rapid mix at 300 rpm (~600 s-1) for 1 minute; stage 1 flocculation at 70 rpm (~70 

s-1) for 5 minutes; stage 2 flocculation at 50 rpm (~46 s-1) for 5 minutes; and stage 3 flocculation 

at 30 rpm (~24 s-1) for 10 minutes.  

Each jar was filled with 2.2 L of raw water using a graduated cylinder. A volume of 10 mL 

was wasted from each jar at the start of the experiment to flush out any potential remnant particles 

from the sample lines. Jar tests always began with a titration stage in which the volumes of the pH 

adjusting chemicals (0.1N HCl or 0.1N NaOH) required to hold the pH constant at a given 

coagulant dose were determined. Titrations were performed on a 200 mL sample collected from 

each jar using a graduated cylinder. During the titration stage, the jars were continuously mixed at 

100 rpm to prevent the particles from settling. A pH meter (Accumet® AR15, Thermo Fisher 

Scientific, Waltham, Mass.) equipped with a glass-body electrode (Accumet® 13-620-223A, 

Thermo Fisher Scientific, Waltham, Mass.) was used for pH measurements. The electrode was 

standardized daily with pH 4.0, 7.0, and 10.0 buffer solutions. The following steps outline the 

titration process:  

1. Measure and record the pH of the raw water 

2. Add the corresponding volume of coagulant and record the pH 

3. Incrementally add acid/base until the target pH is achieved 

4. Record the volume of pH adjusting chemical used 
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Stock solutions of aluminum sulfate (alum) were prepared by dissolving aluminum sulfate 

octadecahydrate powder (≥98% aluminum sulfate, Sigma-Aldrich Co. LLC, St. Louis, Mo.) in DI 

water. The target concentration of the stock alum solution was 10 g/L (811 mg/L as Al). After 

completing the titration stage, the combined volume of the coagulant and pH adjusting chemical 

was wasted from their corresponding jars to ensure that the final volume of water in all the jars 

remained constant. The pH adjusting chemical determined from the titration step was added 

immediately before starting the mixing program (jar test). The pH of the water after adding the 

acid/base was measured to record the pH before coagulation. The coagulant was simultaneously 

dosed into the jars at the start of the rapid mix stage using syringes mounted above the jars. The 

pH after coagulation was measured by collecting a 200 mL sample from each jar at the end of the 

rapid mix stage. In general, a difference of ±0.2 from the target pH was considered acceptable in 

this study. Coagulated water zeta potential samples were collected at the end of the rapid mix stage 

and analyzed immediately. It should be noted that zeta potential sample run times were generally 

between 3 – 5 minutes; therefore, the last sample was processed approximately 20 minutes after 

collection. 

Settled water turbidity samples were collected after a 20-minute settling period at the end 

of the mixing program. Approximately 10 mL of water was wasted from each jar to flush out any 

remnant particles from the sample lines before collecting settled water turbidity samples. Filtration 

was performed using a novel filtration apparatus designed and built by the authors. The filter stand 

consisted of six identical filters constructed using clear 2" diameter schedule 40 PVC pipe (Figure 

C1). Each filter was filled with 3-inches of crushed recycled glass (VitroClean VF25, Trivitro 

Corp., Seattle, WA) filter media. The effective size (ES), uniformity coefficient (UC), and porosity 

of the filter media were 0.45 mm, 1.45, and 0.48, respectively.  
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Figure C1. Filter column 

 

The total volume of water in each filter column was approximately 250 mL. Prior to each 

jar test, each column was backwashed (40 – 50% bed expansion) for approximately 1 minute and 

filled with DI water. Care was taken to ensure that the filter column and lines were filled entirely 

with water as preliminary experiments showed that air bubbles negatively impacted the hydraulics 

and could potentially break-up the floc during filtration. The water filtered by gravity at a rate of 

approximately 4.5 – 5 gpm/ft2. Detailed construction plans for the filter columns and the filter 

stand can be found online (Alansari 2020d). Filtered turbidity, UV254, and DOC samples were 

collected 2 minutes after the start of filtration to account for the dead volume in the filter (Figure 

C2). UV254 and DOC samples were processed and analyzed immediately. The final pH of the water 
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and temperature were measured and recorded at the end of the experiment to determine whether 

the measured parameters drifted over the course of the experiment.  

 

 
Figure C2. Average (n=12) filtration rate and filtered water turbidity of the filter columns 

(Note = red bands represent the standard deviation about the mean)  
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APPENDIX B: CREATING SYNTHETIC WATERS 

 

 

Synthetic waters are created by combining deionized (DI) water and surrogates for natural 

turbidity, alkalinity, dissolved organic carbon (DOC), and specific ultraviolet absorbance at 254nm 

(SUVA). Organics were added by combining varying proportions of instant coffee and 

SuperHume® to achieve desired DOC and SUVA levels. SuperHume® (Eco Lawn and Garden 

SuperHume®, Burnsville, MN) is a commercial liquid soil additive that contains 17% humic acid, 

13% fulvic acid, and 4% humics obtained from Leonardite shale. The use of instant coffee and 

SuperHume® as surrogates for organics has been reported previously in the literature (Yonkin et 

al. 2005; Mahmoud 2012; Lennon et al. 2013; Jenny et al. 2014; Jones and Lennon 2015; 

Robidoux, del Giorgio and Derry 2015).  

Solutions of instant coffee were freshly prepared for each synthetic water batch by 

dissolving instant coffee (Maxwell House, Kraft-Heinze) in ultrapure water to achieve a final 

concentration of 8 g/L. The SuperHume® had to be filtered through a coffee filter followed by an 

8-𝜇m and a 3-𝜇m poly-carbonate membrane (TSTP02500, MilliporeSigma, Burlington, MA) to 

remove large clumps of sediment and improve its consistency. Stock solutions of SuperHume® 

were prepared by diluting the filtrate using ultrapure water to achieve a final concentration of 2% 

SuperHume® by volume. Instant coffee and SuperHume® have a SUVA of approximately 1.8 and 

9.0 L/mg-m, respectively. Standard curves and empirical equations were developed for the instant 

coffee and SuperHume® solutions to determine the volumes needed for a desired DOC 

concentration and SUVA (Figure B1). By varying the proportions of each surrogate solution, the 

SUVA of the synthetic water can be adjusted to any valve in the range of 1.8 and 9.0 L/mg-m 

(Figure B2).  
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Figure B1. Properties of organic surrogates 
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Figure B2. Surrogate organics SUVA measurements 

 

The procedure for calculating the volumes of SuperHume® and instant coffee that would 

be required to achieve a target DOC and SUVA given a batch volume is outlined below: 

Steps for Calculating the Volumes of SuperHume® and Instant coffee 
 

Calculating volume of SuperHume® required 

𝑆𝐻 [𝑚𝐿] = 2.43𝑥10−4 ∗ 𝐵𝑉 ∗ (𝐷𝑂𝐶 ∗ 𝑆𝑈𝑉𝐴 − 2.2𝐷𝑂𝐶 +  2.13) (B.1) 

where: SH = volume of 2% SuperHume® required (mL) 

BV = volume of batch (mL) 

DOC = desired DOC concentration of final solution (mg/L as C) 

SUVA = desired SUVA of final solution (L/mg-m)  

 

Calculating volume of instant coffee required 

𝑀𝐻 [𝑚𝐿] = −5.51𝑥10−5 ∗ 𝐵𝑉 ∗ (𝐷𝑂𝐶 ∙ 𝑆𝑈𝑉𝐴 − 8.8 ∗ 𝐷𝑂𝐶 − 1.9255)  (B.2) 

where: MH = volume of instant coffee solution (8 g/L) required (mL) 

 

Example Calculation 

Batch Volume = 27 [L]; Desired DOC = 5 [mg/L]; Desired SUVA = 2.0 [L/mg-m] 

 

Step1: Required volume of 2% SuperHume® (equation C.1) 

𝑆𝐻 = −2.43𝑥10−4 𝑥 27,000 [𝑚𝐿] 𝑥 ((5 [
𝑚𝑔

𝐿
] 𝑥2 [

𝐿

𝑚𝑔∙𝑚
]) − (2.2 ∗ 5 [

𝑚𝑔

𝐿
]) + 2.13)  

𝑆𝐻 = 7.41 [𝑚𝐿]  
Step 2: Required volume of 8g/L solution of instant Coffee (equation C.2) 

𝑀𝐻 = −5.51𝑥10−5𝑥27,000 [𝑚𝐿]𝑥 ((5 [
𝑚𝑔

𝐿
] 𝑥2 [

𝐿

𝑚𝑔∙𝑚
]) − (8.8𝑥5 [

𝑚𝑔

𝐿
]) − 1.9255)  

𝑀𝐻 = 53.5 [𝑚𝑙]  
 

Required volumes of SuperHume® and instant coffee are 7.41 [mL] and 53.5 [mL], respectively. 
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The source of natural turbidity or particles in the synthetic water was primarily from kaolin 

(K7375, MilliporeSigma, St. Louis, Mo). Both instant coffee and SuperHume® contributed to 

some turbidity as well; therefore, the amount of kaolin required depended on the amount of 

organics added to the synthetic water. Stock suspensions of kaolin were prepared using DI water 

to achieve a final concentration of 5 g/L. The procedure for calculating the required volume of 

kaolin is outlined below:  

Steps for Calculating the Volume of Kaolin 
 

1) Calculate concentrations of instant coffee and SuperHume® added 

 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡 𝐶𝑜𝑓𝑓𝑒𝑒 [
𝑚𝑔

𝐿
] =

𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑑𝑑𝑒𝑑 [𝑚𝐿]∗ 𝑆𝑡𝑜𝑐𝑘 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [
𝑚𝑔

𝐿
]

𝐵𝑎𝑡𝑐ℎ 𝑉𝑜𝑙𝑢𝑚𝑒 [𝑚𝐿]
  (B.3) 

 

 𝑆𝑢𝑝𝑒𝑟𝐻𝑢𝑚𝑒®[%] =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑑𝑑𝑒𝑑 [𝑚𝐿]∗ 𝑆𝑡𝑜𝑐𝑘 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [

𝑚𝑔

𝐿
]

𝐵𝑎𝑡𝑐ℎ 𝑉𝑜𝑙𝑢𝑚𝑒 [𝑚𝐿]
  (B.4) 

 

2) Calculate turbidity from organics 

 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐𝑠 𝑇𝑢𝑟𝑏. [𝑁𝑇𝑈]  = 0.024 ∗ 𝐼𝑛𝑠𝑡𝑎𝑛𝑡 𝐶𝑜𝑓𝑓𝑒𝑒 [
𝑚𝑔

𝐿
] + 66.54 ∗

𝑆𝑢𝑝𝑒𝑟𝐻𝑢𝑚𝑒®[%] + 0.19573  
(B.5) 

 

3) Calculate turbidity from kaolin 

 

𝐾𝑎𝑜𝑙𝑖𝑛 𝑇𝑢𝑟𝑏. [𝑁𝑇𝑈] = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑇𝑢𝑟𝑏 [𝑁𝑇𝑈] − 𝑂𝑟𝑔𝑎𝑛𝑖𝑐𝑠 𝑇𝑢𝑟𝑏 [𝑁𝑇𝑈]  (B.6) 

 

4) Required concentration of kaolin 

 

𝐾𝑎𝑜𝑙𝑖𝑛 [
𝑚𝑔

𝐿
] = −0.0056 ∗ 𝐾𝑎𝑜𝑙𝑖𝑛 𝑇𝑢𝑟𝑏2 + 0.857 ∗ 𝐾𝑎𝑜𝑙𝑖𝑛 𝑇𝑢𝑟𝑏 + 0.0114  (B.7) 

 

5) Required volume of kaolin in jar 

 

𝐾𝑎𝑜𝑙𝑖𝑛 [𝑚𝐿] =
𝑘𝑎𝑜𝑙𝑖𝑛[

𝑚𝑔

𝐿
]∗𝐽𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 [𝑚𝐿]

𝑠𝑡𝑜𝑐𝑘 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [
𝑚𝑔

𝐿
]

  (B.8) 

 

Example Calculation 

Batch Volume = 27 [L]; Desired Turbidity = 3 [NTU]; Volume of SH added = 7.41 [mL]; 

Volume of instant coffee added = 53.5 [mL]; Jar Volume = 2.2 [L] 

 

Step 1: Calculate concentrations of instant coffee and SuperHume® added (equation C.3) 

 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡 𝐶𝑜𝑓𝑓𝑒𝑒 [
𝑚𝑔

𝐿
] =

53.5 [𝑚𝐿] 𝑥 8,000 [
𝑚𝑔

𝐿
]

27,000 [𝑚𝐿]
 =  15.85 [

𝑚𝑔

𝐿
]  
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𝑆𝑢𝑝𝑒𝑟𝐻𝑢𝑚𝑒® =
7.41 [𝑚𝐿] 𝑥 2[%]

27,000 [𝑚𝑙]
= 5.489 𝑥 10−4 [%]  

 

Step 2: Calculate turbidity from organics (equation C.4) 

 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐𝑠 𝑇𝑢𝑟𝑏 [𝑁𝑇𝑈] = (0.024𝑥15.85 [
𝑚𝑔

𝐿
]) + (66.54𝑥5.489𝑥10−4[%]) + 0.19573 =

0.6126 [𝑁𝑇𝑈]   
 

Step 3: Calculate turbidity from kaolin (equation B.3) 

 

𝐾𝑎𝑜𝑙𝑖𝑛 𝑇𝑢𝑟𝑏 [𝑁𝑇𝑈] = 3 [𝑁𝑇𝑈] − 0.6126 [𝑁𝑇𝑈] = 2.387 [𝑁𝑇𝑈]  
 

Step 4: Calculate required concentration of kaolin (equation B.4) 

 

𝐾𝑎𝑜𝑙𝑖𝑛 [
𝑚𝑔

𝐿
] = (−0.0056𝑥2.387[𝑁𝑇𝑈]2) + (0.857𝑥2.387[𝑁𝑇𝑈]) + 0.0114 = 2.025 [

𝑚𝑔

𝐿
]  

 

Step 5: Required volume of kaolin in each jar (equation B.5) 

 

𝐾𝑎𝑜𝑙𝑖𝑛 [𝑚𝐿] =
2.025 [

𝑚𝑔

𝐿
]𝑥 2,200 [𝑚𝐿]

5,000 [
𝑚𝑔

𝐿
]

= 0.891 [𝑚𝐿]  

 

Required volume of 5g/L solution of kaolin in each jar = 0.891 [mL] 

 

  Stock solution of sodium bicarbonate (15 g/L in DI water) were used to add alkalinity to 

the synthetic water (S233-3, Thermo Fisher Scientific, Waltham, Mass.). It should be noted that 

the empirical equations obtained from the standard curves have an accuracy of ±20%, primarily 

due to the variability in the stock solutions. A correction factor had to applied to the equations for 

every new batch of stock solution to account for this variability. Fresh batches of water were 

prepared on the day of each experiment in a 7-gallon high-density polyethylene (HDPE) container. 

The water was then allowed to equilibrate for at least 3 hours before experimentation. All 

ingredients, except for kaolin, were added directly to the container and mixed thoroughly. Kaolin 

was added directly to each jar to minimize turbidity variations between the jars.  
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APPENDIX C: FLOC CHARACTERIZATION EXPERIMENT 

 

 

Water was continuously cycled through the photometric dispersion analyzer at a rate of 30 

mL/min via peristaltic pump (Masterflex, Cole Parmer, Vernon Hills, IL) placed downstream of 

the instrument (Figure D1). An overhead mixer (Power Control-Visc IKA Eurostar, Staufen, 

Germany) equipped with a 2" (51 mm) diameter propeller (Lightnin A100, SPX Flow, Charlotte, 

NC) mixed the water in a 2 L jar (B-KER2, Phipps and Bird, Richmond, VA). The impeller was 

placed at a depth of 10 cm (measured from the bottom of the jar).  

 
Figure D1.  Photometric dispersion analyzer setup 

 

Due to the normal fluctuations (noise) of the flocculation index signal, a 

minimum/maximum cannot merely be based on absolute values; therefore, OriginPro's built-in 

Rise Time tool was used to extract the maximum FI and formation times objectively. The algorithm 
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used a histogram method to identify the low and high states of the signal, followed by a linear 

search to calculate the time intervals at which the t10% and t90% values occurred. A screenshot of 

the application of this tool is shown in Figure D2. Settled and filtered water turbidity were collected 

and measured at the end of the mixing program. 

 
Figure D2. OriginPro 2019 Rise Time Tool 
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APPENDIX D: CHEMICAL COST CALCULATIONS 

 

 

Table F1. Average treatment chemical costs in the US 

Chemical Grade $/dry ton 

Aluminum Sulfate 48.5% $ 319 

Sodium Hydroxide 50% $ 500 

Sulfuric Acid 93% $ 160 

 

 

Scaling up alum costs 

 

𝐶𝑜𝑠𝑡 [
$

𝑀𝑔𝑎𝑙
] = A𝑙𝑢𝑚 𝐷𝑜𝑠𝑒 [

𝑚𝑔

𝐿
]  𝑥 3,785,000 [

𝐿

𝑀𝑔𝑎𝑙
]  𝑥 𝐶𝑜𝑠𝑡 [

$

𝑑𝑟𝑦 𝑡𝑜𝑛
] 𝑥 1.1023 𝑥10−9 [

𝑑𝑟𝑦 𝑡𝑜𝑛

𝑚𝑔
]  

 

Scaling up sulfuric acid costs 

 

 𝐴𝑐𝑖𝑑 𝐶𝑜𝑠𝑡 [
$

𝑀𝑔𝑎𝑙
]

=

(

 
 

(
𝑉𝑜𝑙.  𝑜𝑓 𝑎𝑐𝑖𝑑 𝑎𝑑𝑑𝑒𝑑 [𝐿] 𝑥 𝑆𝑡𝑜𝑐𝑘 𝑐𝑜𝑛𝑐.  [𝑀]

𝐽𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 [𝐿]
)  𝑥 (

𝑛 𝑜𝑓 𝑎𝑐𝑖𝑑

𝑛 𝑜𝑓 𝐻2𝑆𝑂4
)   

 𝑥 𝑀𝑊𝐻2𝑆𝑂4  [
𝑔

𝑚𝑜𝑙
] 𝑥 1000 [

𝑚𝑔

𝑔
]  𝑥 3,785,000 [

𝐿

𝑀𝑔𝑎𝑙
]  𝑥 𝐶𝑜𝑠𝑡 [

$

𝑑𝑟𝑦 𝑡𝑜𝑛
] 𝑥 1.1023 𝑥10−9 [

𝑑𝑟𝑦 𝑡𝑜𝑛

𝑚𝑔
]
)

 
  

   

 

Scaling up sodium hydroxide costs 

 

𝐵𝑎𝑠𝑒 𝐶𝑜𝑠𝑡 [
$

𝑀𝑔𝑎𝑙
]

=

(

 
 
(
𝑉𝑜𝑙.  𝑜𝑓 𝑏𝑎𝑠𝑒 𝑎𝑑𝑑𝑒𝑑 [𝐿] 𝑥 𝑆𝑡𝑜𝑐𝑘 𝑐𝑜𝑛𝑐.  [𝑀]

𝐽𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 [𝐿]
)  𝑥 (

𝑛 𝑜𝑓 𝑏𝑎𝑠𝑒

𝑛 𝑜𝑓 𝐻2𝑆𝑂4
)  𝑥 𝑀𝑊𝑁𝑎𝑂𝐻  [

𝑔

𝑚𝑜𝑙
] 

𝑥 1000 [
𝑚𝑔

𝑔
]  𝑥 3,785,000 [

𝐿

𝑀𝑔𝑎𝑙
]  𝑥 𝐶𝑜𝑠𝑡 [

$

𝑑𝑟𝑦 𝑡𝑜𝑛
] 𝑥 1.1023 𝑥10−9 [

𝑑𝑟𝑦 𝑡𝑜𝑛

𝑚𝑔
]  
)

 
 

 

 

  

Example Calculation 

 

Alum dose = 10 mg/L; HCl volume = 5.4 mL; HCl concentration = 0.1 M 

 

Step 1: Calculate cost of alum 

 

𝐴𝑙𝑢𝑚 𝐶𝑜𝑠𝑡 = 10 [
𝑚𝑔

𝐿
]  𝑥 3,785,00 [

𝐿

𝑀𝑔𝑎
]  𝑥 319 [

$

𝑑𝑟𝑦 𝑡𝑜𝑛
]  𝑥 1.1023 𝑥 10−9 [

𝑑𝑟𝑦 𝑡𝑜𝑛

𝑚𝑔
] = 13.3 [

$

𝑀𝑔𝑎𝑙
]  

 

Step 2: Calculate cost of sulfuric acid 
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𝐴𝑐𝑖𝑑 𝐶𝑜𝑠𝑡

= (
0.054 [𝐿] 𝑥 0.1 [𝑀]

2 [𝐿]
)  𝑥 (

1

2
)  𝑥 98 [

𝑔

𝑚𝑜𝑙
]  𝑥 1000 [

𝑚𝑔

𝑔
]  𝑥 3,785,00 [

𝐿

𝑀𝑔𝑎
]  𝑥 319 [

$

𝑑𝑟𝑦 𝑡𝑜𝑛
]  𝑥 1.1023 𝑥 10−9

= 8.83 [
$

𝑀𝑔𝑎𝑙
] 

 

Step 3: Total Cost 

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 13.3 [
$

𝑀𝑔𝑎𝑙
] + 8.83 [

$

𝑀𝑔𝑎𝑙
] = 22.1 [

$

𝑀𝑔𝑎𝑙
] 
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APPENDIX E: TWO-WAY INTERACTIONS OF WATER QUALITY PARAMETERS 

  

 
Figure E1. Combined effects of DOC and SUVA on effective coagulation conditions 
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Figure E2. Combined effects of DOC and turbidity on effective coagulation conditions 
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APPENDIX F: PLANT DATA 

 

 
Figure F1. Predicted filtered turbidity removals for Plant 6 (interpolation) 
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Figure F2. Predicted filtered turbidity removals for Plant 8 (extrapolation) 

 

 

 

 

 

 


