
SOLUTION OF A 1-D INVERSE PROBLEM BY THE CONVEXIFICATION
METHOD

by

Ray Gabriel Abney

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial ful�llment of the requirements
for the degree of Master of Science in

Mathematics

Charlotte

2019

Approved by:

Dr. Mikhail Klibanov

Dr. Loc Nguyen

Dr. Kevin McGo�

ii

c©2019
Ray Gabriel Abney

ALL RIGHTS RESERVED

iii

ABSTRACT

RAY GABRIEL ABNEY. Solution of a 1-D inverse problem by the convexi�cation
method. (Under the direction of DR. MIKHAIL KLIBANOV)

In this thesis, we demonstrate a method outlined by Dr. Mikhail Klibanov for

solving a 1-D coe�cient inverse problem by the convexi�cation method. Our inverse

problem in question concerns �nding buried bombs, where the dielectric constants of

the bomb and the sand in which it is buried are represented by the coe�cient function

c(x). The goal of our method is to approximate c(x). In the method demonstrated

in this thesis, we compute an orthonormal basis from the set {knek}∞n=0 consisting of

N vectors. Then we derive a series of boundary value problems from our coe�cient

inverse problem. Then we get a functional Jλ,γ(V) that we wish to minimize. Then

we �nd the unique minimizer Vmin. And �nally, having our Vmin, we use it to compute

an approximate solution capprox(x) for our coe�cient inverse problem.

iv

DEDICATION

I would like to dedicate this thesis to my mother, Patricia Abney, because she has

been the most instrumental in getting me through college, and through school in

general.

v

ACKNOWLEDGEMENTS

I would like to acknowledge my advisor, Dr. Klibanov, and the other members of

my committee, Drs. Nguyen and McGo�, for all of the help and guidance they have

given me while doing this project.

I would also like to especially acknowledge all of the (very patient) guidance of Dr.

Aleksandr Kolesov for breaking down for me all of the intricacies of our project. He

was extremely helpful.

vi

TABLE OF CONTENTS

LIST OF FIGURES vii

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: THEORY 6

CHAPTER 3: NUMERICAL EXPERIMENT 17

CHAPTER 4: RESULTS AND CONCLUSION 29

REFERENCES 35

vii

LIST OF FIGURES

FIGURE 1.1: The step function c(x) representing our buried explosive
and the sand surrounding it.

2

FIGURE 1.2: A schematic diagram illustrating how radar is supposed to
be used to �nd a buried bomb.

3

FIGURE 1.3: The many local minima one gets using Tikhonov
functionals.

4

FIGURE 3.1: The graphs of some of our orthonormal vectors ψn. 18

FIGURE 3.2: Our orthonormal vectors ψn used in a Fourier series. 19

FIGURE 3.3: The real and imaginary parts of r(x) plotted against x. 22

FIGURE 4.1: Examples of good approximations. 30

FIGURE 4.2: Examples of bad approximations. 31

FIGURE 4.3: Some members of a family of c(x)'s computed with λ = 7,
γ = 0.2, and α = 90.

34

CHAPTER 1: INTRODUCTION

The problem discussed in this thesis comes in two parts, a forward problem and an

inverse problem. Our forward problem, as quoted from [1], is as follows:

Below k > 0 is the wave number. Also, for any z ∈ C we denote z its

complex conjugate. Let c0 > 0 be a positive number. Let c(x), x ∈ R be

the function with the following properties:

c ∈ C2(R), c(x) ≥ c0, ∀x ∈ R, (1.1)

c(x) = 1, ∀x /∈ (0, 1). (1.2)

In our application c(x) is the spatially distributed dielectric constant of

the medium. Let x0 < 0 be the position of the point source. The forward

problem is:

u′′ + k2c(x)u = −δ(x− x0), x ∈ R, (1.3)

lim
x→∞

(u′ + iku) = 0, lim
x→−∞

(u′ − iku) = 0. (1.4)

The δ in equation (1.3) is a delta function. From [1], letting u0(x, k) be the solution

of the problem de�ned by equations (1.3) and (1.4) with c(x) ≡ 1, we have

u0(x, k) =
exp(−ik|x− x0|)

2ik
. (1.5)

Thus, also as quoted from [1], we have our coe�cient inverse problem:

Let [k, k] ⊂ (0,∞) be an interval of wave numbers k. Reconstruct the

function c(x), assuming that the following function g0(k) is known

g0(k) =
u(0, k)

u0(0, k)
, k ∈ [k, k]. (1.6)

2

From [2], we have that the forward problem has a unique solution; and from [1], we

have that u(x, k) 6= 0 for all x > x0 and for all k > 0; and also from [1], we have that

g0(k) 6= 0 for all k ∈ [k, k].

Figure 1.1: The step function c(x) representing our buried explosive and the dirt
surrounding it. Our bomb is in the inclusion where c(x) = 3.

Our motivation for �nding c(x) and thus solving our inverse problem is �nding

buried bombs. In our problem, c(x) is a step function that models a buried bomb.

For example, consider Figure 1.1. Sand has one dielectric constant while a bomb will

have a greater dielectric constant. The areas where c(x) = 1 represent sand while

the region where c(x) > 1 represents our bomb. And, as we can see from equation

(1.6) above, we are supposed to �nd c(x) using only the information that can be

gleaned at x = 0, which is the surface of the ground. And the information g0(k) in

equation (1.6) is supposed to be acquired using ground penetrating radar. Figure

1.2 is a schematic of how one is supposed to use ground penetrating radar to �nd

g0(k). Radar works with microwaves, and microwaves are a form of electromagnetic

radiation. If the incident electric �eld wave has only one nonzero component, this

calls for the use of the Helmholtz equation above in equation 1.3, as noted in [3, 4],

3

to model the propagation of the electric �eld through the sand.

Figure 1.2: A schematic diagram from [5] showing how one is supposed to use radar
to �nd a buried bomb.

Our problem is known as a coe�cient inverse problem, abbreviated in the literature

as CIP. While other (unsuccessful) ways to solve CIPs have been attempted, like

using least squares according to [6], one way that works is to turn the CIP into a

minimization problem that involves minimizing a strictly convex functional. We have,

according to [2], that "CIPs are both highly nonlinear and ill-posed." And the reason

that [7] gives as to why CIPs are ill-posed is that they have unstable solutions. When

using Tikhonov functionals, our CIP being nonlinear and ill-posed will, according to

[2], give us many local minima, like what we see in Figure 1.3. We are looking for a

unique minimizer of our functional. If we have many local minima, we may confuse

a local minima we have found with the global minimum we want. And with so many

local minima, there is also the possibility that even the global minimum may not

work as well as one of the local minima. This said, we want to use a strictly convex

functional because such functionals have only one minimizer, and thus we will not

have to deal with many local minima. From [1], this turning our inverse problem

into a problem where we minimize a strictly convex functional is what is known as

convexi�cation.

4

Figure 1.3: Why we want to use convexi�cation rather than Tikhonov functionals.
Note all of the local maxima and minima. This �gure comes from [8].

To minimize our functional, we are after what is known as a globally convergent

method. A globally convergent method, as de�ned in [2], is one which guarantees

us that we will �nd a minimizer within a su�ciently small neighborhood of the true

minimizer without any advanced knowledge of what this neighborhood is. Indeed,

since we are trying to �nd a way to locate buried explosives, we need a way to minimize

our functional without any knowledge of a neighborhood of where our minimizer is.

Convexi�cation is a globally convergent method according to [1].

There have been other methods to solve our inverse problem with convexi�cation.

One method is the quasi-reversibility method, outlined in [2]; and another method is

the tail functions method, outlined in [5]. In this thesis, we discuss a new method

for solving our inverse problem that involves �nding the coe�cients of a truncated

5

Fourier series. This method was outlined in [9]. In brief, we �rst want to �nd an

orthonormal basis using the Gram-Schmidt process; then we want to obtain a series

of di�erential equations; then we want to �nd a minimizer for a certain functional, a

minimizer that is also a solution of one the di�erential equations we have obtained;

and �nally, having our minimizer, we want to use it to �nd c(x).

Chapter 2 of this thesis discusses more deeply the theory behind our new method

and the di�erences between our new method and past methods, Chapter 3 discusses a

numerical experiment that tests our new method, and Chapter 4 discusses the results

and conclusion of our numerical experiment.

CHAPTER 2: THEORY

The method of [9] is a general method for solving inverse problems by convexi�ca-

tion. Here, we apply the method of [9] to our inverse problem.

As outlined in [9], the �rst step in our new method is to construct an orthonormal

basis in L2(k, k) from {knek}∞n=0. In order to do this, though, we need to start o�

by �nding an orthonormal basis in L2(0, 1) from {knek}∞n=0, just like the way [9]

describes; then we abstract to having our orthonormal basis in L2(k, k).

According to [9], what we want is a basis where the �rst derivative with respect

to k for any element in our basis is not identically zero; and moreover, this �rst

derivative with respect to k should be a linear combination of a �nite number of

elements from our basis. According to [9], a basis based on trigonometric functions or

on orthonormal polynomials does not �t the bill. For a basis based on orthonormal

polynomials, the �rst element in that basis is going to be a constant c0. The �rst

derivative of c0 will obviously be identically zero. With trigonometric functions, if

for n ∈ N ∪ {0} we base our orthonormal basis on terms like cosπnk, then the �rst

term in our orthonormal basis will be a constant; and we also get constants as the

�rst term in our basis if we base our basis on terms like sin πnk and exp iπnk for

n ∈ N ∪ {0}. So [9] tells us that we want a basis that is similar to a basis based on

Laguerre functions but works for L2(0, 1) rather than L2(0,∞).

To get our basis, we �rst use the Gram-Schmidt process on {knek}∞n=0 and then

normalize what vectors we get using the L2(0, 1) norm. The vectors that result are of

the form Pm(k)ek, where Pm(k) is a polynomial of degree m. For reasons which will

later be explained in Chapter 3 of this thesis, we only need the �rst three vectors in our

orthonormal basis. These vectors get very lengthy very quickly when we express them

7

with exact coe�cients, and using such cumbersome formulae in a computer program

would be impractical. So, we will be giving them using approximate coe�cients.

Thus, our truncated orthonormal basis for L2(0, 1) is

{0.55949ek, (−1.39851 + 2.1302k)ek, (1.99714− 9.25581k + 8.15893k2)ek}.

Let us denote the mth vector in our orthonormal basis in L2(0, 1) as φm(k).

To make the orthonormal basis we have just computed suitable for L2(k, k), we have

to shift our vectors by the amount k. So, making the substitution x = (k−k)/(k−k)

and realizing we have ∫ 1

0

φm(x)φn(x)dx = δmn, (2.1)

where δmn is our Kronecker delta, we thus have

dx

dk
=

1

k − k
(2.2)

so that

1

k − k

∫ k

k

φm

(
k − k
k − k

)
φn

(
k − k
k − k

)
dk = δmn. (2.3)

Thus, what we end up with are orthonormal vectors ψm for L2(k, k) of the form

ψm(k) =
1√
k − k

φm

(
k − k
k − k

)
. (2.4)

From [1] we have

Theorem 1. We have

am,n = 〈ψ′n, ψm〉L2(k,k) =

 (k − k)−1 if n = m,

0 if n < m.
(2.5)

For an integer N > 1, letMN = (am,n)
(N−1,N−1)
(m,n)=(0,0) be an N×N matrix. Then detMN =

(k − k)N 6= 0, which means that MN is invertible.

Theorem 1, as found in [1], is an adaptation of Theorem 2.4 of [9]; and the proof

of Theorem 2.4 of [9] can be found in [9].

8

Remark. Another reason why we cannot use orthonormal polynomials or trigono-

metric functions as the bases for our basis is that, according to [1], if we do, then the

�rst column of our matrix MN will be 0's going all the way down. This will keep our

matrix from being invertible.

The next thing we want to do, according to [9], is to derive a series of three boundary

value problems from our inverse problem. We begin with β(x) = c(x)− 1, where

vxx + k2(vx)
2 − 2ikvx = −β(x). (2.6)

From [1], equation (2.6) is the result of substituting

v(x, k) =
logw(x, k)

k2
, (2.7)

where

w(x, k) =
u(x, k)

u0(x, k)
, (2.8)

into equation (1.3). So, corresponding to equations (3.1) and (3.2) of [9], we have

vxx + k2(vx)
2 − 2ikvx = −β(x), (2.9)

v(0, k) = q0(k), vx(0, k) = q1(k), (2.10)

where, using the notation of [1],

q0(k) =
log g0(k)

k2
, q1(k) =

2i(g0(k)− 1)

g0(k)k
, (2.11)

and where g0(k) is as de�ned in equation (1.6). q0 and q1 are what they are because

of equation (7)-(9) of [1]. From equations (10) and (11) of [1], we also have that

vx(1, k) = 0. (2.12)

We have that ∂kβ(x) ≡ 0. Thus, di�erentiating both sides of equation (2.9) with

9

respect to k, we get what corresponds with equations (3.3) and (3.4) of [9],

vkxx + 2k(vx)
2 + 2k2vxvxk − 2ivx − 2ikvkx = 0, (2.13)

vk(0, k) = ∂kq0(k), vkx(0, k) = ∂kq1(k), vkx(1, k) = 0. (2.14)

This is the �rst boundary value problem [9] says we should get.

The next thing that we want to do, having already obtained our orthonormal basis

{ψn}N−1n=0 in the �rst step, is to represent v(x, k) as the truncated Fourier series

v(x, k) =
N−1∑
n=0

vn(x)ψn(k). (2.15)

The vn(x)'s, which are the inner products of our Fourier series, are unknown to us at

the moment. Our mission is to �nd these vn(x)'s so that we can compute equation

(2.15) to substitute into equation (2.6) to ultimately compute c(x). Substituting the

Fourier series of equation (2.15) into equation (2.13), we get the nonlinear equation

N−1∑
n=0

v′′n(x)ψ′n(k) + 2k

(
N−1∑
n=0

v′n(x)ψn(k)

)2

+ 2k2

(
N−1∑
n=0

v′n(x)ψn(k)

)(
N−1∑
n=0

v′n(x)ψ′n(k)

)

− 2i
N−1∑
n=0

v′n(x)ψn(k)− 2ik
N−1∑
n=0

v′n(x)ψ′n(k) = 0.

(2.16)

By rearranging equation (2.16), then multiplying by ψm(k), then integrating with

10

respect to k on [k, k]; we have

N−1∑
n=0

v′′n(x) 〈ψ′n(k), ψm(k)〉L2(k,k) = −

〈
2k

(
N−1∑
n=0

v′n(x)ψn(k)

)2

+ 2k2

(
N−1∑
n=0

v′n(x)ψn(k)

)

×

(
N−1∑
n=0

v′n(x)ψ′n(k)

)
− 2i

N−1∑
n=0

v′n(x)ψn(k)

− 2ik
N−1∑
n=0

v′n(x)ψ′n(k), ψm(k)

〉
L2(k,k)

= −
〈
2k(vx)

2 + 2k2vxvxk − 2ivx − 2ikvkx, ψm(k)
〉
L2(k,k)

.

(2.17)

The right-hand side of equation (2.17) de�nes the mth component of a vector we shall

denote as F (x, V ′).

Let

V (x) =


v0(x)

...

vN−1(x)

 (2.18)

be the Fourier coe�cients from equation (2.15). Consider the diagonal matrix MN of

Theorem 1. With MN , equation (2.17) simpli�es to MNV
′′(x) = F (x, V ′). Thus, we

have our second boundary value problem

V ′′ −M−1
N F (x, V ′) = 0, (2.19)

V (0) = V0, V ′(0) = V1, V ′(1) = 0. (2.20)

V0 and V1 can be derived from the boundary conditions of equations (2.14) above.

Note that our second boundary value problem is not equivalent to our �rst boundary

value problem because we are now working with a truncated Fourier series. Our

second boundary value problem is also not exact for this reason. And [1] says that

our second boundary value problem has at most one solution.

Finally, [9] says to assume that there is a vector function p ∈ C2[0, 1] such that

11

p(0) = p0 and p′(0) = p1, where p0 = V0 and p1 = V1 as in equation (2.20). We can

construct such a function by letting, as in [1], χ ∈ C2[0, 1] with

χ(x) =


1 if x ∈ [0, 1/2],

0 if x ∈ [3/4, 1],

∈ (0, 1) if x ∈ (1/2, 3/4).

(2.21)

Thus, we have the N -D function

p(x) = [V0 + xV1]χ(x) (2.22)

that meets the criteria of [9] above, with

p ∈ C2[0, 1], p(0) = V0, p′(0) = V1, p′(1) = 0. (2.23)

Letting

W (x) = V (x)− p(x), (2.24)

our second boundary value problem outlined by equations (2.19) and (2.20) turns into

our third boundary value problem

L(x, p,W) = W ′′ + p′′ −M−1
N F (x,W ′ + p′) = 0, (2.25)

W (0) = W ′(0) = W ′(1) = 0. (2.26)

In Step 3, we want to turn our last boundary value problem into a minimization

problem. Let H2
0 ([0, 1]) = {W ∈ H2([0, 1]) | W (0) = W ′(0) = W ′(1) = 0} and let

B0(R) = {W ∈ H2([0, 1]) | W (0) = W ′(0) = W ′(1) = 0, ‖W‖H2(0,1) < R}, where

R > 0. Naturally, B0(R) ⊆ H2
0 ([0, 1]). From [9], the functional we should have and

want to minimize on B0(R) is

Φλ,γ(W) = e2λ
∫ 1

0

|L(x, p,W)|2e−2λxdx+ γ ‖W‖2H2(0,1) , (2.27)

where γ ∈ (0, 1) is the regularization parameter for our functional, where the term

12

e−2λx is our Carleman weight function, and where λ > 1. (In our numerical experi-

ment, γ ∈ [0, 1) and 1 ≤ λ ≤ 8.) From [1, 9], the term e2λ is used to balance the two

terms of the right-hand side of equation (2.27).

In our discussion of the theory, we will use Φλ,γ and its gradient Φ′λ,γ with the

gradient projection method to show that Φλ,γ can be minimized. However, in our

experiment, since we do not have to start at a zero-point in H2
0 ([0, 1]), we use the

conjugate gradient method to �nd the solution to our second boundary value problem

(2.19)-(2.20). Namely, we want to �nd the minimizer of

Jλ,γ(V) = e2λ
∫ 1

0

|V ′′ −M−1
N F (x, V ′)|2e−2λxdx+ γ ‖V ‖2H2(0,1) , (2.28)

on the set B(R, V0, V1), where B(R, V0, V1) = {V ∈ H2([0, 1]) | V (0) = V0, V
′(0) =

V1, V
′(1) = 0, ‖V − p‖H2(0,1) < R}, where γ ∈ [0, 1) and 1 ≤ λ ≤ 8 as before. But

conjugate gradient method or gradient projection method, we will show that we can

solve our problem either way. If the gradient projection method can be used to solve

our problem, then so can the conjugate gradient method.

Naturally, when one takes a measurement of anything, there will be some level of

noise. Let δ ∈ (0, 1) be the level of noise in our data. Drawing our discussion from

[1], let V ∗ be the exact solution of our problem (2.19)-(2.20). Let

V ∗(0) = V ∗0 , V ∗
′
(0) = V ∗1 (2.29)

as in (2.20) with V ∗ ∈ B(R, V0, V1). Let

|V0 − V ∗0 | < δ, |V1 − V ∗1 | < δ. (2.30)

Like with equation 2.22, let

p∗(x) = [V ∗0 + xV ∗1]χ(x). (2.31)

13

Thus,

‖V − V ∗‖C2[0,1] ≤ Bδ, (2.32)

where B = B(χ) > 0 depends on χ(x).

In [9] are listed a number of theorems, which [1] restates for our problem at hand,

concerning our functional Φλ,γ and gradient Φ′λ,γ and for our other functional Jλ,γ and

its gradient J ′λ,γ. Here, we restate without proof and almost verbatim the theorems,

propositions, and corollaries found in [1]. The proofs of our theorems can be found

in [1]. As in [1], C1 = C1(R,F,N) > 0 and C2 = C2(R,F,N, χ, V
∗) > 0 are di�erent

numbers that depend on the listed parameters.

Proposition 1. Let p(x) be de�ned by equation (2.22). Then V − p ∈ B0(R) if

V ∈ B(R, V0, V1), and W + p ∈ B(R, V0, V1) if W ∈ B0(R).

Theorem 2. The functional Jλ,γ(V) has a gradient J ′λ,γ(V) for every V ∈ B(2R, V0, V1).

Also, there exists a number λ1 = λ1(R,F,N) > 1 depending only on the listed param-

eters such that for all λ ≥ λ1 the functional Jλ,γ(V) is strictly convex on B(R, V0, V1);

that is, for all V (1), V (2) ∈ B(R, V0, V1), we have

Jλ,γ(V
(2))− Jλ,γ(V (1))− J ′λ,γ(V (1))(V (2) − V (1)) ≥ C1

∥∥V (2) − V (1)
∥∥2
H2(0,1)

. (2.33)

Corollary 1. Consider the functional

Φλ,γ(W) = Jλ,γ(W + p), ∀p ∈ B0(R). (2.34)

Then a direct analog of Theorem 2 is valid for this functional. More precisely, the

functional Φλ,γ(W) has the gradient Φ′λ,γ(W) at each point W ∈ B0(2R). Let λ1 =

λ1(R,F,N) > 1 be the number of Theorem 2. Then there exists a number λ2 =

λ2(R,F,N, χ, p
∗) ≥ λ1 depending only on the listed parameters such that for all λ ≥ λ2

the functional Φλ,γ(W) is strictly convex on the set B0(R); that is, for allW (1),W (2) ∈

14

B0(R)

Φλ,γ(W
(2))−Φλ,γ(W

(1))−Φ′λ,γ(W
(1))(W (2)−W (2)) ≥ C2

∥∥W (2) −W (1)
∥∥2
H2(0,1)

. (2.35)

Theorem 3. The gradients J ′λ,γ(V) and Φ′λ,γ(W) of both functionals Jλ,γ and Φλ,γ

are Lipschitz continuous on B(2R, V0, V1) and B0(2R), respectively. In other words,

there exists a constant D = D(R,F, λ, γ) > 0 depending only on the listed parameters

such that for all V (1), V (2) ∈ B(2R, V0, V1)

∥∥J ′λ,γ(V (1))− J ′λ,γ(V (2))
∥∥
H2(0,1)

≤ D
∥∥V (2) − V (1)

∥∥
H2(0,1)

(2.36)

and similarly for Φ′λ,γ(W).

Theorem 4. Let λ1 = λ1(R,F,N) > 1 and λ2 = λ2(R,F,N, χ, V
∗) ≥ λ1 be the

numbers of Theorem 2 and Corollary 1, respectively. Let p(x) be the function de�ned

by 2.22. Then, for any λ ≥ λ2 and for any γ ∈ (0, 1), there exists a unique minimizer

Vmin of the functional Jλ,γ(V) on the set B(R, V0, V1). In addition, for these values

of λ and γ, there exists unique minimizer Wmin of the functional Φλ,γ(W) on the set

B0(R). Furthermore, Wmin = Vmin − p and

Φ′λ,γ(Wmin,λ,γ)(Wmin,λ,γ −W) ≤ 0, ∀W ∈ B0(R), (2.37)

J ′λ,γ(Vmin,λ,γ)(Vmin,λ,γ − V) ≤ 0, ∀V ∈ B(R, V0, V1). (2.38)

Theorem 5. Assume that the exact solution V ∗ of the problem (2.19)-(2.20) ex-

ists and V ∗ ∈ B(R, V ∗0 , V
∗
1). Also, assume that (2.29) and (2.30) hold. Let W ∗ =

V ∗ − p∗ ∈ B0(R). In addition, assume that there exists the exact solution c∗(x)

of our CIP and this function satis�es the conditions (1.1) and (1.2). Suppose that

the function c∗(x) can be found from the vector function V ∗(x) from the formulae

(2.15) and (2.6) and the de�nition c(x) = β(x) + 1. Let λ1 = λ1(R,F,N) > 1 and

λ2 = λ2(R,F,N, χ, V
∗) ≥ λ1 be the numbers of Theorem 2 and Corollary 1, respec-

tively. Consider the number δ0 such that δ0 ∈ (0, e−4λ2). For any δ ∈ (0, δ0) we set

15

λ = λ(δ) = ln (δ−1/4) > λ2 and γ = γ(δ) =
√
δ. Let Vmin,λ,γ ∈ B(R, V0, V1) and

Wmin,λ,γ = Vmin,λ,γ − pmin,λ,γ ∈ B0(R) be the unique minimizers of the functionals

Jλ,γ(V) and Φλ,γ(W) on B(R, V0, V1) and B0(R), respectively. Then the following

accuracy estimates hold:

‖Wmin,λ,γ −W ∗‖H2(0,1) ≤ C2δ
1/4, (2.39)

∥∥Vmin,λ(δ),γ(δ) − V ∗∥∥H2(0,1)
≤ C2δ

1/4, (2.40)∥∥cmin,λ(δ),γ(δ) − c∗∥∥L2(0,1)
≤ C2δ

1/4, (2.41)

where the function cmin,λ(δ),γ(δ) is found from Vmin,λ(δ),γ(δ) with equations (2.15), (2.6),

and the de�nition c(x) = β(x) + 1.

Let PB0
: H2

0 (0, 1)→ B0(R) be the projection operator from H2
0 (0, 1) to B0(R). Let

W0 be our initial guess for our gradient projection method. Let ζ > 0 be a number

and de�ne a recursive sequence {Wn} with

Wn = PB0
(Wn−1 − ζΦ′λ,γ(Wn−1)). (2.42)

Thus, we have

Theorem 6. Let the conditions of Theorem 5 about the exact solutions V ∗ and c∗ hold.

Let the numbers λ1, λ2, δ, λ(δ), α(δ) be the same as in Theorem 5. Let an arbitrary

point W0 ∈ B0(R) be the starting point of the gradient projection method of equation

(2.42), and let Vn = Wn + p. Then there exists a number ξ0 = ξ0(R,F,N, χ, V
∗, δ) ∈

(0, 1) depending only on listed parameters such that for any ξ ∈ (0, ξ0) there exists a

number q = q(ξ) ∈ (0, 1) such that the following convergence estimates are valid:

∥∥Wn −Wmin,λ(δ),γ(δ)

∥∥
H2(0,1)

≤ qn
∥∥W0 −Wmin,λ(δ),γ(δ)

∥∥
H2(0,1)

, (2.43)

∥∥Vn − Vmin,λ(δ),γ(δ)∥∥H2(0,1)
≤ qn

∥∥V0 − Vmin,λ(δ),γ(δ)∥∥H2(0,1)
, (2.44)

‖Vn − V ∗‖H2(0,1) ≤ C2δ
1/4 + qn

∥∥V0 − Vmin,λ(δ),γ(δ)∥∥H2(0,1)
, (2.45)

16

‖cn − c∗‖L2(0,1) ≤ C2δ
1/4 + qn

∥∥V0 − Vmin,λ(δ),γ(δ)∥∥H2(0,1)
, (2.46)

where functions cn(x) are found from the Vn's.

There are two advantages to using the gradient projection method and the conju-

gate gradient method: First, we can begin with any W0, V0 ∈ H2
0 ([0, 1]) and end up

with Wmin ∈ B0(R) and Vmin ∈ B(R, V0, V1); and secondly, we do not have to know

the radius R in advance.

Then comes Step 4, where, having our minimizer, we use it to compute equation

(2.15) and substitute our results into equation (2.6) to have β(x) with which we

compute our c(x).

CHAPTER 3: NUMERICAL EXPERIMENT

Before we can begin discussing the details of our numerical experiment testing the

method of [9], we have to address the number of ψn's needed for our experiment

and how we determine this number. Determining how many ψn's we need is a small

numerical experiment in its own right. We can �gure out how many ψn's we need by

�rst de�ning the step function c(x) according to the rule

c(x) =

 ccoe� x ∈ [xloc − d/2, xloc + d/2],

1 elsewhere,
(3.1)

where the dielectric constant of the bomb we want to detect is ccoe� ∈ [3, 6], where

the location of the center of the bomb xloc ∈ [0.1, 0.4], and where d = 0.1 is the width

of our bomb. Then, for this c(x), we solve the forward problem by solving the 1-D

Lippmann-Schwinger equation (which, according to [1] is equivalent to the forward

problem)

u(x, k) =
exp (−ik|x− x0|)

2ik
+ k2

∫ 1

0

exp(−ik|x− ξ|)
2ik

(c(ξ)− 1)u(ξ, k)dξ, (3.2)

where x0 = −1. Having u0(x, k) as de�ned by equation (1.5), we compute w(x, k)

de�ned by equation (2.8) and then we compute v(x, k) as de�ned by equation (2.7).

We want to express equation (2.7) as the Fourier series of equation (2.15). Having

v(x, k) from equation (2.7) and all of the ψn's we could possibly need at our disposal;

we just need to �nd the vn(x)'s, which, for our purposes at this moment, we can treat

as L2([k, k]) inner products. In fact, here we are going to calculate the vn(x)'s as

vn(x) = 〈v(x, k), ψn(k)〉L2([k,k]) . (3.3)

18

Then, for a given value of N , we substitute equation (2.15) into equation (2.6); and,

having β(x), we compute capprox(x) = Re[β(x)] + 1. This short experiment is a

qualitative experiment. If capprox(x) looks enough like c(x), then we have enough ψn's

to use in our main experiment. From [1] and from our work, we have determined that

we need the �rst three or four ψn's. After the �rst four ψn's, our approximations start

getting too tall. Figure 3.1 illustrates the graphs of our �rst three ψn's and Figure

3.2 illustrates what approximations we get for c(x) with N = 1, . . . , 5.

And now we discuss our main experiment, our experiment testing the method of

[9]. Our general goal with this experiment was to see how good the method of [9]

was at solving our problem. In our experiment, we used a MATLAB script that was

a translation of a Python script written by Dr. Aleksandr Kolesov.

Figure 3.1: The graphs of ψ0, ψ1, and ψ2.

19

Figure 3.2: Our approximations of c(x) computed with N = 1, . . . , 5. The approxi-
mations with N = 3 and N = 4 very closely resemble c(x) while the approximation
with N = 5 is just a little too tall. Here, ccoe� = 3, xloc = 0.2, k = 0.5, and the
stepsize for both x and k was 0.002.

At the beginning of our script, the most fundamental variables are de�ned. First,

we say we want the �rst three orthonormal vectors ψn. We then de�ne k = 0.5 and

k = 1.5 and we have Nk = 3 values of k altogether with hk = 0.5 being the increment

between each value of k: k0 = k = 0.5 < · · · < 1.5 = k = kNk−1. We have Nx = 51

values of x from 0 to 1 in increments of hx = 0.02. And at this point we de�ne λ and

γ. Since we want to test our method with multiple values of λ and γ, we loop λ and

γ with for-loops for eight di�erent values of λ from 1 to 8 in increments of 1 and ten

di�erent values of γ with values from 0 to 0.9 in increments of 0.1.

The next thing we want to do is to calculate the values of our orthonormal vectors

ψn and their derivatives which we will de�ne here as ϕn (not to be confused with φn

of the previous chapter). This is done using the Gram-Schmidt process. And with

our discrete values of ψn(km) and ϕj(ki), with 0 ≤ i, j,m, n ≤ Nk − 1 = N − 1, we

get the square Nk ×N matrices

20

Ψ =


ψ0(k0) ψ1(k0) ψ2(k0)

ψ0(k1) ψ1(k1) ψ2(k1)

ψ0(k2) ψ1(k2) ψ2(k2)

 and Φ =


ϕ0(k0) ϕ1(k0) ϕ2(k0)

ϕ0(k1) ϕ1(k1) ϕ2(k1)

ϕ0(k2) ϕ1(k2) ϕ2(k2)

 .
And at this point we also calculate ΨT . ΨT and Φ will be used to calculate MN .

At this point in the program, we de�ne the function c(x) that we want to approx-

imate on [0, 1] according to equation (3.1). In our program, ccoe� is looped for the

values 3, 4, 5, and 6 while xloc is looped for the values 0.1, 0.2, 0.3, and 0.4. This

gives us a total of sixteen c(x)'s that we want to approximate.

Having our c(x), we solve the forward problem by solving the Lippmann-Schwinger

equation (3.2). We solve the Lippmann-Schwinger equation for u at x = 0 and at

the aforementioned points k0, ..., kNk−1. After we have our u, we then calculate g0(k)

de�ned by equation (1.6); and having g0(k), we then calculate q0(k) as de�ned in the

boundary conditions (2.11). We would like to have vexact(x, k) as de�ned by equation

(2.7) so that we can make a comparison between the vexact we wish to emulate and

the vapprox we will have. This said, we also solve the Lippmann-Schwinger equation

at the points k0, ..., kNk−1 for all Nx points x ∈ [0, 1].

The numerical experiment of [1] (which is almost just like the experiment done in

this thesis) used noise; that is, δ = 0.05 in the numerical experiment of [1]. However,

in our experiment, δ = 0; which means that we did not use noise. However, if we

had, then this is the point where we would have factored noise into our experiment.

Namely, as [1] has it, we would have had

g0,δ(km) = g0(km)(1.0 + δσ(km)), (3.4)

where

σ = σr(km) + iσi(km), (3.5)

21

where σr and σi are random numbers between−1.0 and 1.0 and where 0 ≤ m ≤ Nk−1.

For us to use the conjugate gradient method, we need an initial guess. But, before

we can compute our initial guess, we need to estimate xloc. This is where our location

estimator comes in. Before we describe how our program's location estimator works,

we need to talk a little bit about the theory behind our location estimator. Drawing

our discussion from [1], we let v(x, k) be as in equation (2.7). Letting s(x, k) =

vk(x, k), let

v(x, k) = −
∫ k

k

s(x, τ)dτ + v(x, k), (3.6)

where the tail function v(x, k) is unknown. Now we substitute equation (3.6) into

equation (2.13) and we get an integro-di�erential equation with respect to s(x, k).

From

logw(x, k) = −1

4
ln c(x)−ik

(∫ x

x0

√
c(ξ)dξ − x+ x0

)
−ln (2k)−iπ

2
+log (1 + ŵ(x, k)),

(3.7)

where w(x, k) is as in equation (2.8) and where

ŵ(x, k) ≡ O

(
1

k

)
, k →∞, (3.8)

and from

log (1 + ŵ(x, k)) =
∞∑
n=1

(−1)n−1
(ŵ(x, k))n

n
; (3.9)

we have that

v(x, k) =
r(x)

k
+O

(
ln (2k)

k2

)
, k →∞. (3.10)

If we assume that k � 1 is su�ciently large, and if we get rid of the termO(ln (2k)/k2),

and if we substitute v(x, k) = r(x)/k into our integro-di�erential equation with re-

spect to s(x, k) we get from substituting equation (3.6) into equation (2.13), letting

k = k; we end up with r′′(x) = 0, whose solution for x ∈ (0, 1) gives us an approximate

solution of the tail function.

22

Figure 3.3: Re[r(x)] and Im[r(x)] plotted against x. Here, ccoe� = 6, xloc = 0.4,
α = 90, and xest = 0.42.

So, to estimate the location of xloc, we need to solve the boundary value problem

r′′ = 0, x ∈ (0, 1), (3.11)

r(0) = q0(k), r′(0) = q1(k) r′(1) = 0, (3.12)

where q0 and q1 are de�ned by the boundary conditions (2.11). This ordinary dif-

ferential equation outlined by (3.11) and (3.12) is solved using the quasi reversibility

method that is outlined in [2]. What we do is that we minimize the functional

Iα(r) =
1

2
‖r′′‖2L2(0,1) +

1

2
α ‖r‖2L2(0,1) , (3.13)

where α is our regularization parameter for our location estimator. In our experiment,

α is looped for eleven di�erent values from 0 to 100 in increments of 10. The reason

why we need α to be so great is to keep the �rst term of equation (3.13) from

dominating. Once we have the complex-valued r(x) that minimizes (3.13), we �nd

23

the x ∈ (0, 1) where Im[r(x)] has its minimum value and we call it xest. Figure 3.3 is

a graph of Re[r(x)] and Im[r(x)] against x.

If xest ≤ 0.1, we use

v(0, k) =
log g0(k)

k2

calculated with g0(k) from equation (1.6) to compute our boundary conditions to

compute our initial guess. Thus, we calculate

v(0, k) = q0(k), vx(0, k) = q1(k), v(1, k) = v(0, k) + hxvx(0, k). (3.14)

And thus we de�ne the initial guess v0(x, k) for v(x, k) according to the rule

v0(x, k) =

 v(0, k) if x = 0,

v(1, k) if 0.02 ≤ x ≤ 1,
(3.15)

or equivalently

v0(x, k) =

 q0(k) if x = 0,

q0(k) + hxq1(k) if 0.02 ≤ x ≤ 1.
(3.16)

On the other hand, if xest > 0.1, we, as [1] puts it, propagate g0(k) from x = 0 to

xtar = xest − 0.1, thus having gprop(k). Having xtar, we �rst calculate u0(0, k), then

we have D2(k) = u0(0, k), then we have D1(k) = u0(0, k)(g0(k) − 1), then we have

uprop(xtar, k) = D1(k) exp (ikxtar) +D2(k) exp (−ikxtar), and �nally we have

gprop(k) =
uprop(xtar, k)

u0(xtar, k)
; (3.17)

and we calculate gprop(k) for k = k0, ..., kNk−1. Having gprop(k), we compute our

boundary conditions (3.14), treating gprop(k) like g0(k). And, having our boundary

conditions, we compute an initial guess the same way just like in the case where

xloc ≤ 0.1. In either case, in this program, the initial guess v0(x, k) is an Nk × Nx

matrix with k-values going down and x-values going across.

Then we compute MN = ΨTΦ, whose inverse M−1
N will be used to calculate J ′λ,γ.

24

Then we compute the initial value of Vn(x), which would be V0(x), by having

V0(x) = ΨTv0(x, k). (3.18)

And then we compute the Carleman weight function exp(−2λx), which is part of our

functional Jλ,γ(V) and our gradient J ′λ,γ(V).

Now comes the main part of our program, the conjugate gradient method. Here, we

use the nonlinear conjugate gradient method. Since the nonlinear conjugate gradient

method is so widely known, we will not be getting into the �ner details of how it

works; instead, we will discuss what things are speci�c to our use of the conjugate

gradient method. The chief thing we would like to discuss is the gradient J ′λ,γ(V),

namely how to compute it. Similarly to what was done in [10], we use Kronecker

deltas (a method outlined in [11]) to make a formula for J ′λ,γ(V). Since V (x) has

both real and imaginary parts, we can decompose it as

V (x) = Q(x) + iP (x), (3.19)

where Q(x) = Re[V (x)] and P (x) = Im[V (x)]; and, naturally,

Q(x) =


q0(x)

...

qN−1(x)

 and P (x) =


p0(x)

...

pN−1(x)

 .
Our conjugate cogradient operator (de�ned in [11]) is

∂

∂V
=

1

2


∂
∂q0

+ i ∂
∂p0

...

∂
∂qN−1

+ i ∂
∂pN−1

 =
1

2

[
∂

∂Q
+ i

∂

∂P

]
. (3.20)

25

Thus,

J ′λ,γ(V) =
∂

∂V
Jλ,γ(V)

=
1

2


∂
∂q0
Jλ,γ(V) + i ∂

∂p0
Jλ,γ(V)

...

∂
∂qN−1

Jλ,γ(V) + i ∂
∂pN−1

Jλ,γ(V)


=

1

2

[
∂

∂Q
Jλ,γ(V) + i

∂

∂P
Jλ,γ(V)

]
,

(3.21)

where

∂

∂Q
Jλ,γ(V) = e2λ

∂

∂Q

∫ 1

0

|V ′′(x)−M−1
N F (x, V ′)|2e−2λxdx+ γ

∂

∂Q
‖V ‖2H2([0,1]) (3.22)

and

∂

∂P
Jλ,γ(V) = e2λ

∂

∂P

∫ 1

0

|V ′′(x)−M−1
N F (x, V ′)|2e−2λxdx+ γ

∂

∂P
‖V ‖2H2([0,1]) (3.23)

Our gradient is a complex, vector-valued function of x ∈ [0, 1]; and, in the MATLAB

script, it is an N ×Nx matrix.

We will not derive all of the terms of equations (3.22) and (3.23) because it would

be long and super�uous to do so. However, we will derive only the second terms

of (3.22) and (3.23) just to give the reader an idea of how the conjugate cogradient

26

operator is used to derive J ′λ,γ(V). We have that

‖V ‖2H2([0,1]) = 〈V, V 〉H2([0,1])

=
N−1∑
n=0

∫ 1

0

∂xxvn(x)∂xxvn(x) + ∂xvn(x)∂xvn(x) + vn(x)vn(x)dx

=
N−1∑
n=0

∫ 1

0

(q′′n(x) + ip′′n(x))(q′′n(x)− ip′′n(x)) + (q′n(x) + ip′n(x))(q′n(x)− ip′n(x))

+ (qn(x) + ipn(x))(qn(x)− ipn(x))dx

=
N−1∑
n=0

∫ 1

0

q′′n(x)2 + p′′n(x)2 + q′n(x)2 + p′n(x)2 + qn(x)2 + pn(x)2dx.

(3.24)

Thus, each component of ∂
∂Q
‖V ‖2H2([0,1]) is

∂

∂qn
‖V ‖2H2([0,1]) (xm) =

∫ 1

0

∂

∂qn
[q′′n(x)2] +

∂

∂qn
[q′n(x)2] +

∂

∂qn
[qn(x)2]dx

= 2

∫ 1

0

q′′n(x)
∂

∂qn
q′′n(x) + q′n(x)

∂

∂qn
q′n(x) + qn(x)

∂

∂qn
qn(x)dx

≈ 2hx

Nx−1∑
j=2

[
q′′n,j

δm,j+1 − 2δm,j + δm,j−1
h2x

+ q′n,j
δm,j+1 − δm,j−1

2hx
+ qn,jδm,j

]
= 2hx

(
q′′n,m+1 − 2q′′n,m + q′′n,m−1

h2x
−
q′n,m+1 − q′n,m−1

2hx
+ qn,m

)
,

(3.25)

where

∂

∂qn
q′′n(x) =

δm,j+1 − 2δm,j + δm,j−1
h2x

,
∂

∂qn
q′n(x) =

δm,j+1 − δm,j−1
2hx

,
∂

∂qn
qn(x) = δm,j,

(3.26)

where we have the �nite di�erences

q′′n,j =
qn,j+1 − 2qn,j + qn,j−1

h2x
, q′n,j =

qn,j+1 − qn,j−1
2hx

, qn,j = qn(xj), (3.27)

27

and where 1 ≤ m ≤ Nx. Similarly,

∂

∂pn
‖V ‖2H2([0,1]) (xm) = 2hx

(
p′′n,m+1 − 2p′′n,m + p′′n,m−1

h2x
−
p′n,m+1 − p′n,m−1

2hx
+ pn,m

)
.

(3.28)

Having J ′λ,γ(V), we can use the conjugate gradient method. In our experiment, we

have four conditions for when to terminate the conjugate gradient method. The �rst

is when the step size goes below a certain minimum, which is 10−19 in our program.

then second condition is when
∥∥J ′λ,γ(V)

∥∥, the matrix 2-norm of J ′λ,γ(V), dips below a

certain minimum, which we have set to be 0.001 in our program. The third condition

is when our program has gone through the maximum amount of iterations, which is

20,000 in this program. And �nally, the fourth condition is when the gradient J ′λ,γ(V)

stops changing, which we determine to be the case whenever the step size is less than

or equal to 10−15 and when Jλ,γ(Vn+1)− Jλ,γ(Vn) ≤ 10−20.

In our program, we start o� with an initial step size of 10−5; and for every one

thousand iterations, we multiply the step size by 10. We do not use an exact line

search to compute the step size. Instead, if both Wolfe conditions are not satis�ed on

a given iteration, the step size is divided by 10 and we go right back to the beginning

of the iteration and start all over.

Once the conjugate gradient method computes for us a Vmin(x), we then compute

vapprox(x, k) = ΨVmin(x). (3.29)

Note that Ψ and ΨT are inverses. Having our vapprox(x, k), and letting k = k0 = 0.5,

we substitute it into equation (2.6) and compute β(x). (Instead of just letting k =

k0 = 0.5, we could loop k and have it cycle through k0, ..., kNk−1. However, this is

going to give us more graphs than we can comfortably study.) Now, our program will

produce graphs that have some extra humps that we want to get rid of. First, we

take the real part of β(x) and we put β(x) = 0 for all x ∈ [0, 1] with Re[β(x)] < 0.

Then we �nd the xmax where Re[β(x)] has a maximum. Having our truncation factor

28

ρ = 0.8, we put β(x) = 0 for all of those x ∈ [0, 1] for which Re[β(x)] < ρRe[β(xmax)].

(Again, to limit the number of approximations we have to sort through, we will only

consider approximations with ρ = 0.8.)

Having our β(x), we then compute c(x) = Re[β(x)] + 1. Now, if we plot c(x) at

this point, regardless of how we de�ne xloc in our program, the approximation seems

to always center itself at x = 0.1. To �x this, we simply translate our approximation

of c(x) to the right by xtar if xest > 0.1.

Finally, having a complete approximation of c(x), our program gives the approx-

imation a �lename bearing all of the approximation's important information. This

�lename will say which c(x) was supposed to be approximated, which values of λ, γ,

and α were used, and how many iterations of the conjugate gradient method it took

to compute the approximation. This allows us to determine which values of λ, γ, and

α give the best results.

CHAPTER 4: RESULTS AND CONCLUSION

Looping through eight values of λ, ten values of γ, and eleven values of α for

each of the sixteen c(x)'s we wanted to approximate; our program gave us 14,080

approximations, 880 approximations for each c(x). (If we had also looped for k as

we suggested in the previous chapter, then we would have had to sort through 42,240

approximations; and we would have had even more approximations if we would have

also looped for the truncation factor ρ!) Having all of our many graphs, our duty was

to sort through them all, separating the good approximations from the bad ones.

After spending a few weeks sorting through them all, we (initially) classi�ed 4,607

graphs as being good and the other 9,473 as being bad. Judging good approximations

from bad ones was a bit subjective. An approximation was classi�ed as being a good

approximation of a function c(x) if the approximation looked enough like the c(x);

and bad approximations were ones that were too far to the left or right of where they

needed to be, or were too tall, or otherwise did not bear the resemblance to c(x) they

should have borne. Figure 4.1 gives examples of good approximations and Figure 4.2

gives examples of bad approximations. While all sorts of values of λ and γ were found

among the 4,607 good graphs, the minimum value for α among the good graphs was

40; which means that all graphs with α ≤ 30 were classi�ed as being bad.

30

(a) This is a good because it almost totally �lls up the space under cexact(x).

(b) Even though this one is a little tall and slightly o�-center, it is still a good

graph for being where it is supposed to be and for being roughly the same height

as cexact(x).

Figure 4.1: Some examples of good approximations.

31

(a) This is a bad approximation for being too wide and not looking enough like the

cexact(x) it is supposed to be approximating.

(b) This approximation is too far to the left to be a good approximation.

Figure 4.2: Some examples of bad approximations.

32

What we wanted was a combination of λ, γ, and α that gives us good approxima-

tions for all sixteen of our c(x)'s. Since for the c(x) with ccoe� = 6 and xloc = 0.4 there

were no good graphs with α ≤ 70, we decided to look for our perfect combination

among the good results with α ≥ 80. Since there were 2,829 approximations classi�ed

as good with α ≥ 80, we needed to write a MATLAB script that could search through

the �lenames of all of these graphs and �nd us a combination of λ, γ, and α that

gives us good approximations for all sixteen of our c(x)'s.

Unfortunately, searching through these 2,829 approximations, our program did not

�nd any combinations that gave good approximations for all sixteen c(x)'s. So we

wrote another MATLAB program that searches the �lenames of these 2,829 approxi-

mations, determines which combinations were used to compute these approximations,

and then gives the number of approximations made by each combination. Using this

program, we found sixteen combinations that were able to approximate well �fteen

c(x)'s and �fty combinations that did a good job approximating fourteen c(x)'s, which

amounted to sixty-six combinations. Thus, with the hope of �nding a combination

that gives us good approximations for all sixteen c(x)'s, we looked among the 116

graphs classi�ed as being bad computed by these sixty-six combinations to see if we

could �nd some graphs that were either looked acceptable or had been mistakenly

classi�ed as bad. This said, there were fourteen combinations we thought gave decent

results. They are listed in Table 4.1.

33

Table 4.1: Our good combinations of λ, γ, and α. With any of these combinations,
we can obtain good approximations.

λ γ α

2 0 90

2 0.8 80

4 0.1 90

4 0.2 90

5 0 90

7 0.1 90

7 0.2 90

7 0.3 90

7 0.4 90

7 0.6 80

8 0.2 90

8 0.3 90

8 0.4 90

8 0.5 90

Thus, from Table 4.1, we can conclude that our program, and thus our method,

gives mostly good results when 7 ≤ λ ≤ 8, when 0.2 ≤ γ ≤ 0.4, and when α ≈ 90.

We say that α ≈ 90 rather than α = 90 because our program cycled through values of

α in increments of 10. To �nd a more precise value of α, we would have to change our

program so that it cycles through values of α ∈ [80, 100] in increments of 1. Figure

4.3, as an example, illustrates some members of a family of c(x)'s computed with

λ = 7, γ = 0.2, and α = 90.

34

Figure 4.3: Some members of a family of c(x)'s computed with λ = 7, γ = 0.2, and
α = 90.

35

REFERENCES

[1] M. V. Klibanov, A. E. Kolesov, A. Sullivan, and L. Nguyen, �A new version of the
convexici�cation method for a 1-d coe�cient inverse problem with experimental
data,� 2018.

[2] M. V. Klibanov, L. H. Nguyen, A. Sullivan, and L. Nguyen, �A globally con-
vergent numerical method for a 1-d inverse medium problem with experimental
data,� 2016.

[3] M. V. Klibanov and A. E. Kolesov, �Convexi�cation of a 3-d coe�cient inverse
scattering problem,� Computers and Mathematics with Applications, 2018.

[4] M. V. Klibanov, D. L. Nguyen, and L. H. Nguyen, �A coe�cient inverse problem
with a single measurement of phaseless scattering data,� 2017.

[5] M. V. Klibanov, A. E. Kolesov, L. Nguyen, and A. Sullivan, �Globally strictly
convex cost functional for a 1-d inverse medium scattering problem with experi-
mental data,� 2017.

[6] A. B. Bakushinskii, M. V. Klibanov, and N. A. Koshev, �Carleman weight func-
tions for a globally convergent numerical method for ill-posed cauchy problems
for some quasilinear pdes,� 2016.

[7] L. Beilina and M. V. Klibanov, Approximate global convergence and adaptivity
for coe�cient Inverse problems. Springer, 2012.

[8] J. A. Scales, M. L. Smith, and T. L. Fischer, �Global optimization methods for
multidimensional inverse problems,� Journal of Computational Physics, vol. 103,
no. 2, pp. 258�268, 1991.

[9] M. V. Klibanov, �Convexi�cation of a restricted dirichlet-to-neumann map,�
Journal of Inverse and Ill-Posed Problems, 2017.

[10] A. V. Kuzhuget and M. V. Klibanov, �Global convergence for a 1-d inverse
problem with application to imaging of land mines,� Journal of Computational
Physics, vol. 89, no. 1, pp. 125�157, 2010.

[11] L. Sorber, M. V. Barel, and L. D. Lathauwer, �Unconstrained optimization of
real functions in complex variables,� SIAM Journal on Optimization, vol. 22,
no. 3, pp. 879�898, 2012.

