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ABSTRACT

JING CHEN. Assessments of indel annotation programs and comparative somatic
indel analysis in cancer genomes. (Under the direction of DR. JUN-TAO GUO)

Insertions and deletions (indels) represent the second largest variation type in hu-
man genomes and have been implicated in the development of cancer. Accurate
indel annotation is of paramount importance in variants analysis in both healthy and
disease genomes. Previous studies have shown that existing indel calling methods gen-
erally produce high false positives and false negatives, which limits the downstream
investigation of the roles of indels in structural and functional effects.

To assess the accuracy of indel calling programs, we carried out a comparative
analysis by evaluating 7 general indel calling programs and 4 somatic indel calling
programs, using 78 healthy healthy human genomes from the 1000 Genomes Project
and 30 cancer samples from The Cancer Genome Atlas (TCGA). We adopted a com-
prehensive and more stringent indel comparison approach, and an efficient way to
use a benchmark for improved performance comparisons for the general indel calling
programs. We found that germline indels in healthy genomes derived by combining
several indel calling tools could help remove a large number of false positive indels
from individual programs without compromising the number of true positives. The
performance comparisons of somatic indel calling programs are more complicated due
to the lack of a reliable and comprehensive benchmark.

We further performed a comparative analysis of somatic indels in two cancer types,
BRCA and LUAD. We compared somatic indels in both coding and non-coding reg-
ulatory regions such as transcription factor binding sites (TFBSs). We used an im-
proved algorithm to predict TFBSs in human genomes and analyzed their evolu-
tionary and structural roles. Our comparative results indicated that while there are

differences between LUAD and BRCA genomes, both of them show a higher deletion
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rate, coding indel rate and frame-shift indel rate. Somatic indels tend to locate in
sequences with important functions, including both coding and non-coding regions.
This study can serve as the first step in future pan-cancer analysis for identifying key

variant markers of cancer genomes.
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CHAPTER 1: Introduction

Human genome consists of coding and non-coding DNA sequences. While the
coding sequences generally encode for proteins, the non-coding sequences contain
important elements involved in regulation of gene expression, such as transcription
factor binding sites (TFBSs) [1, 2, 3]. Comparative genome analysis has revealed a
large number of variants, including genetic variants from germline cells and somatic
variants [4, 5|. In this dissertation research, we focus on the second largest variation
type, insertion and deletion (indel), in human genomes, especially the effects of so-
matic indels in human cancer genomes. We first carried out a comparative assessment
on indel calling programs, including both general indel calling programs and somatic
indel calling programs (Chapter 2). We then investigated somatic indels in two can-
cer genomes, including both the effect of coding indels on protein structures and the
overlap between non-coding indels and TFBS (Chapter 3). In Chapter 4, we analyzed
the evolution of TFBS in human genomes and their roles in protein structures.

In this chapter, we first review the variants in human genomes and the current indel
calling algorithms. We then introduce the state-of-art of genome level prediction of

TFBSs and their roles in genetic analysis.
1.1  Variants in human genomes
1.1.1  An overview of variant types and databases

The majority of the DNA sequences are consistent between two individuals and
the remaining sequences contribute to the uniqueness of the individual traits [5, 6, 7,
8]. There are three major types of variations in human genomes: single nucleotide

polymorphisms (SNPs) [9, 10, 11|, insertions and deletions (indels) |7, 8, 12| and
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structural variations (SVs) [13, 14, 15]. With the advancement of biotechnology,
genome sequencing becomes faster and cheaper, making it easier to quickly sequence
more genomes in a very short time and reveal more and novel genome variations.
In 2001, the international SNP map working group reported over 1 million SNPs in
human genomes [10]. It has been demonstrated that single nucleotide differentiation
appears in every 2,000 - 3,000 base pairs (bps) when two human genomes are compared
[10]. Mills et al. reported 415,436 unique indels from 36 human genomes in 2006 and
2 million in their updated analysis with 79 genomes in 2011 |7, 8]. The Human
Genome Structural Variation project (HGSV) identified 1,695 sites of SVs from 8
individuals in 2008 [16]. Besides these studies, the 1000 Genomes Project provided
a map of variations in human genomes from 26 populations. The consortium carried
out a comparative study among different type of variations in 2,504 human genomes
[5, 6, 17, 18]. The results revealed that the ratio of the number of these variations
is approximately 750 SNPs : 50 indels : 1 SVs [6]. At the genome level, around
250 - 300 loss of function variants could be found in each person, including frame
shift variations, early stops, etc. [6]. At the population level, significant differential
variation sites have been detected between populations [6]. For example, a missense
variant in gene SLC24A5 distinguished CEU (Utah Residents (CEPH) with Northern
and Western European Ancestry) to CHB + JPT (Han Chinese in Beijing, China +
Japanese in Tokyo, Japan) [6]. Family trio study indicated that the de novo germline
mutation rate is about 10™® per bp per generation [6].

dbSNP is the most commonly used database for SNPs and short indels from a large
number of species and is organized by the National Human Genome Research Insti-
tute (NHGRI) and the National Center for Biotechnology Information (NCBI) [19].
dbVar, which is also established by NCBI, is another variation database that includes
insertions, deletions, duplications, inversions, mobile elements, and translocation sites

[20]. Currently, dbSNP contains 1,803 million variations and dbVar contains 34.6 mil-
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lion variations [19, 20|. There are also clinical related variation databases. ClinVar
is designed to explore the relationship between genome variations and human health
[21]. The variations in this database are collected from patients and can be used in

the clinical studies [21].
1.1.2  Variants in human cancer genomes

Cancer represents a group of diseases characterized by abnormal and uncontrolled
cell growth [4]. Under normal conditions, the rates of cell growth and death are
delicately controlled to maintain the number of cells. Once the balance is broken
and the growth rate is abnormally increased, tumor will be formed. Tumors can
be benign tumors or malignant tumors, also called cancer. A benign tumor is not
invasive, meaning although there is an abnormal growth of cells, these cells will not
spread out to other parts of the body or influence other tissues. Cancer, on the other
hand, is much more dangerous. The malignant tumor may destroy normal tissues,
migrate to other parts of the body and form new tumors. The benign tumor could
evolve to the malignant tumor by several variants on certain sites of genes [4].

The cause for cancer is complicated. A large number of cancer-related studies
showed that tumorigenesis may be initiated by variations occurred in several key genes
called driver genes, at the genome level [4, 22, 23]. The inherited variations are called
germline variations and the newly developed variations are called somatic variations in
cancer genomes [4]. While the majority of cancer-related studies revealed a number of
somatic variations and their possible roles in cancer development, germline variations
have also been implicated in cancer development. Germline variations occurred in
gene TP53 may cause Li-Fraumeni syndrome, for instance [24]. The mutations in
cancer can also be divided into driver mutations and passenger mutations depending
on whether or not the selective growth advantage is affected [4]. Genes with driver
mutations are called driver genes [4]. For example, TP53 is a consensus driver gene

and the somatic variations in TP53 were found in almost 50% of cancers, including
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breast cancer, bladder cancer, ovarian cancer, lung cancer, etc., and one single amino
acid change in the p53 protein (like R175H) can lead to an uncontrolled cell growth
[24, 25, 26, 27].

The Catalogue Of Somatic Mutations In Cancer (COSMIC) is a commonly used
comprehensive database designed to analyze the effect of somatic variations in cancer
genomes [28]. Cancer gene census is an ongoing part of the COSMIC project, which
collects genes with known relationship with cancers. COSMIC contains more than 8

million variations and covers the majority of variation types [28].
1.2 Indel and indel calling method
1.2.1  Indels in human genomes

Indel is the second largest variant type in human genomes and has been implicated
in a number of diseases [12, 29, 30, 31|. Indel refers to insertion or deletion of 1 to
10,000 bp in genomes [7]. An indel with less than 50 bp is called a microindel, and
an indel with less than 1,000 bp are usually called a small indel |7, 12, 32, 33]. Some
of the large indels may also be considered as SVs since typically the length of SVs
is from 1,000 to 3,000,000 bp [15, 34]. Studies have estimated that indels contribute
to 16% to 25% of sequence polymorphisms in populations |7, 35, 36, 37|. Like other
types of variations, indels can lead to diseases, such as cancer, and alter human traits
[12, 38, 39].

The first large-scale indel analysis in the human genome only concentrated to chro-
mosome 22 with ABI resequencing data from 31 samples and reported that 13% of
the variants are indels [40|. Later, a genome-wide study identified 2,000 indels, which
represents about 20% variants in human genomes [30]. In 2006, Mills et al. published
a large-scale indel discovery pipeline and reported 415,436 indels from 36 samples [7].
Two years later, Kidd et al. reported 796,273 indels in their project, however only
around 40,000 indels are consistent with the previous indel set [16]. In 2010, the 1000

Genomes Project published their pilot analysis and reported a total of 1.48 million
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indels [6]. In an updated study, Mills et al. reported around 2 million indels from
79 samples [8]. These two indel sets have 463,377 common indels [6, 8|. The latest
analysis from the 1000 Genomes Project with 2,504 samples revealed 3.6 million of
small indels [5].

Indels in different personal genomes vary greatly. In 2007, Levy et al. carried
out an individual genome analysis and reported 823,396 indels, ranging from 1bp
to over 80,000bp in length [41]. Another study reported only 135,262 indels in an
Asian individual genome with very short length (from 1bp to 3 bp) [42]. The dif-
ferences may be due to different sequencing data types and different indel discovery
methods/algorithms [12].

A number of studies have been carried out to investigate the structural and func-
tional effects of indels. Chaux et al. identified 517,812 indels from the Ensembl
database [43]. They found that 724 indels are located in the coding regions and are
enriched in loop regions of the proteins [43]. We recently performed a study on coding
indels from the 1000 Genomes Project and also found that indels in the coding regions
prefer coil secondary structure types [32]. The number of frame-shift (F'S) indels are
less than expected, which is in agreement with the results by Mills et al. |7, 32|. It has
been reported that indels have significantly lower density in exons (including UTRs
and CDS regions) and CpG islands compared with SNPs [44]. Indel density rate is
lower than SNP in TFBSs, suggesting critical roles of indels in non-coding regions
[45].

The impact of indels on gene functions in cancer genomes has been explored in
several studies. In an analysis of non-frame shift (NFS) indels in cancer genomes,
Pagel et al. found that pathogenic indels are enriched in helix and strand regions of
proteins [46]. In addition, the functional mechanisms of somatic indels may depend
on specific cancer types [46]. One study by Yang et al. examined the distribution of

coding somatic indels in cancer genomes and found that indels tend to locate close
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to somatic SNPs within the same patient genome [47]. Non-coding somatic indels in
lung adenocarcinomas are reported to target surfactant protein genes [48]. However,
a study conducted by Nakagomi et al. showed that only 25.7% lung cancer patients

have non-coding indels in surfactant-encoding genes [49].
1.2.2  Indel calling programs

One of the key steps in studying indel variants in human genomes is the accurate
annotation of indels. Next generation sequencing technology (NGS) has been used to
produce large scale sequencing data in recent years and a number of computational
programs have been developed to call variants using a variety of algorithms. There
are several different types of genome sequencing techniques that may affect large scale
identification of indels. The sequencing techniques include traditional ABI reads, 454
reads and Illumina reads. PCR is the most commonly used experimental method for
indel validation [12, 41, 42|.

In 2010, Mullaney et al. reviewed several computational indel calling programs,
including SOAP, MAQ, BAW, Pindel, Bowtie and BFAST [12, 50, 51, 52, 53, 54,
55]. Their study showed that these tools have false negative rates ranging from 0.1
to 0.35, indicating a large number of undiscovered indels in human genomes [12].
Hasen et al. performed comparative evaluations on 7 indel calling programs (GATK
Unified Genotyper, Dindel, Pindel, SAMtools, GATK HaplotypeCaller, VarScan, and
Platypus) [53, 56, 57, 58, 59, 60, 61, 62|. They found these programs have issues with
high false negative (FN) rates as well as high false positive (FP) rates, and there
are only a small proportion of indels that can be called by all tools [56]. In 2018,
Li et al. evaluated 4 indel calling programs (Platypus, VarScan2, Scalpel, GATK
HaplotypeCaller, and GotCloud) with both simulation data and real sequencing data,
and they showed that GATK HaplotypeCaller has the best performance [61, 62, 63,
64, 65, 66].

Besides these general indel calling programs, there are also tools designed for so-
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matic variants discovery. However, a systematic evaluation on somatic indel specific
calling tools is still lacking. Current studies mainly focused on the program per-
formances on somatic SNP callings and very little attention has been paid to the

accuracy of somatic indel calling.
1.3  TFBS in human genomes

Transcription is an important biological process, in which DNA is transcribed into
RNA molecules. Transcription factors (TFs), a special class of proteins, bind to
DNA sequences, called transcription factor binding sites (TFBSs), and regulate gene
expression [67, 68]. In addition to non-coding regions, recent studies have shown that
TFBSs exist in coding regions, suggesting that these DNA sequences may have dual
functions [69, 70]. In this section, we will discuss the TFBSs in human genomes and

the corresponding evolution constrains.
1.3.1  TFBS

The expression of genes is controlled by the gene regulatory machinery including
RNA polymerases and transcription factors and their corresponding binding sites.
A cluster of TFBSs, including enhancers, promoters, silencers, etc., is called a cis-
regulatory module (CRM) |71, 72|. Identification of CRMs/TFBSs represents a cru-
cial step in genomic analysis. There are several databases of CRMs/TFBSs derived
from different methods [73, 74]. For example, the VISTA Enhancer Browser is a
commonly used data source for experimentally verified functional, tissue-specific en-
hancers in human and mice genomes [75]. Since the enhancers are experimentally
verified, this dataset can be used as a benchmark to assess enhancer prediction meth-
ods and algorithms [76]. In 2017, Fishilevich et al. developed GeneHancer with
285,000 enhancer elements by integrating four enhancer data sources [77]. Enhancer-
Atlas is another enhancer database and the updated version EnhancerAtlas 2.0 has

13,494,603 enhancers in its current release |78, 79|.
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A number of experimental approaches have been developed for identifying en-
hancers in genomes. For example, chromatin immunoprecipitation sequencing (ChIP-
seq) and the union of chromatin immunoprecipitation and whole-genome DNA mi-
croarrays (ChIP-chip) data can identify different types of TFBSs by chromatin im-
munoprecipitation [78]. Some factors that are involved in the binding process can
also provide information about the locations of binding sites in the genomes, such as
enhancer specific factors EP300 and RNA polymerase II |78, 80, 81]. DNase I hyper-
sensitivity sites are the open chromatin regions that may contain TF binding sites
[82]. Hi-C technology can help detect enhancer-promoter interactions, using histone

modification patterns to identify enhancers, FAIRE, eRNAs data, etc. [83, 84, 85, 86].
1.3.2  TFBS in genome evolutions

More experimental data have revealed the overlap between coding sequences and
regulatory regions, suggesting some DNA fragments may have dual functions [69, 70|.
They can serve as coding sequences to produce functional proteins and as TFBSs in
regulation of gene expressions [69]. However, the percentage of such DNA sequences
varies in species and by different CRMs/TFBSs annotations. Birnbaym et al. showed
that there are 7% and 6% of binding peaks located in protein coding regions in human
genomes and mice genomes respectively, based on ChIP-seq data [87]. Using DNase
I footprinting method, Stergachis et al. found that 14% of coding regions in human
genomes can bind TFs [70]. Moreover, coding enhancers not only can regulate itself,
they can also regulate nearby genes [69, 88].

A recent study showed that some of the SNPs that are located on eExons (exons
overlap with enhancers) may change the enhancer activity, and the corresponding
sequences encode important proteins [87]. This study also revealed that both synony-
mous and non-synonymous mutations can affect enhancer activities [87]. Stergachis
et al. compared the coding sequences that only coding proteins with those eExons

and found that eExons are more conserved [70]. The third position of the codons
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within eExons is constrained by the additional function [70]. However, Xing et al.
reanalyzed the eExons data and showed that the conservation is a result of the base
bias [89]. When G/C and A/T are separately considered, there are no significant
differences between TF-bound and TF-depleted codons, suggesting eExons are evo-
lutionary neutral [89]. Agoglia et al. performed a selection analysis on three exonic
enhancers and showed similar results to those from Xing et al. Their results also
indicated that the enhancer function may not affect protein evolution [90]. Birnbaum
et al. reported that there are no differences between the effects of synonymous and
non-synonymous SNVs, suggesting that enhancer activity does not have evolutionary

constrains [87].



CHAPTER 2: Comparative Assessments of Indel Annotations in Healthy and

Cancer Genomes with Next-generation Sequencing Data

2.1 Background

Insertion and deletion (indel) is the second-largest genetic variation type in human
genomes. On average, one healthy genome differs from the reference genome at about
566,000 sites with indel lengths ranging from 1 to 1,000 base pairs (bps) [5]. Typically,
small indels are termed for insertions/deletions of shorter than 50 bps while longer
ones are considered as structural variants (SVs) [91, 92|. Besides contributing to
genetic variations in healthy population, deleterious indels in both coding and non-
coding regions can lead to various types of diseases. For example, coding indels were
identified in breast cancer development genes, including AKT1, BRCA1 and CDHI,
and the fragile X syndrome is caused by a large insertion in 5’'UTR of the FMR1 gene
[93, 94]. Several databases with annotated indels have been developed to document
these variants, including dbSNP, dbVar, and COSMIC (the Catalogue Of Somatic
Mutation In Cancer) [19, 20, 28].

Detection of genomic variations including indels represents one of the most impor-
tant aspects in human genome analysis. Mills et al. reported 2 million unique indels
in their updated analysis of 79 genomes in 2011 [7, 8]. The indel set from the 79
genomes is commonly used as a reference for indel analysis in healthy genomes since
these indels were annotated with Sanger sequencing data, which reported a 97.2% val-
idation rate [8]. There are also studies focused on somatic indels in cancer genomes.
For example, Niu et al. analyzed 4,201 non-frame-shift indels and identified more
than 6000 mutation clusters on protein 3-dimentional (3D) structures across 19 can-

cer types [95]. Besides somatic coding indels, non-coding indels also play important
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roles in cancer genomes. Imielinski et al. found that non-coding somatic indels tend
to be enriched in lineage-defining genes in multiple cancer genomes [48].

Next-generation sequencing (NGS) technology has reduced the sequencing cost and
produced more genome sequence data. A number of programs have been developed
both germline indel and somatic indel identification from NGS data [56, 96, 97].
Current indel calling programs use different algorithms to distinguish sequence er-
rors or alignment errors from real indel variations [13]. General indel calling pro-
grams are classified into five major groups: alignment-based methods, split read
mapping methods, paired end mapping methods, haplotype based methods, and ma-
chine learning-based approaches [13, 56]. A list of indel calling programs with variant
types that can be detected and the corresponding algorithms are shown in Table 2.1
[53, 60, 98, 57, 58, 59, 62, 99, 100, 64]. Alignment-based methods, including Dindel,
GATK UG, SAMTools and Varscan, use information from the mapping step and
performed statistical approach to find indels [56]. These alignment-based programs
differ in the statistical models and processing details [59]. The indel sizes from these
alignment-based programs are constrained by the length of sequence reads. Conse-
quently the medium sized indels and large insertions are hard to detect since the
workflow relies on the initial alignments [13|. Split read mapping methods, such as
Pindel, rely on the discordant reads in the alignment step and can be used to anno-
tate medium sized indels. These methods usually do not use statistical approaches
to filter variants [53]. The haplotype-based methods, such as GATK HC and Platy-
pus, collect candidate haplotypes and identify the variants based on the realignment
results on haplotypes [56]. Paired-end read mapping method compares the real and
expected distances between paired-end reads to identify potential indels. Indel calling
tools used this method can find indel positions. However the exact indel sequences
are usually hard to annotate. They are considered more accurate for medium sized

indels but not for small indels. Machine learning methods need training data to pre-
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Table 2.1: A list of indel calling programs

Programs General/Somatic Type of variants Core algorithms Notes and references
Dindel General Indel Alignment-based  Bayesian approach [60]
GATK_HC General SNP + Indel Haplotype-based ~ Collection of candidate haplotypes [61]
GATK UG General SNP + Indel Alignment-based ~ Bayesian genotype likelihood model [57]
Pindel General Indel Split read mapping A pattern growth approach 53]
Platypus General SNP + Indel Haplotype-based  Collection of candidate haplotypes [62]
SAMTools General SNP + Indel Alignment-based  Bayesian model [59]
Varscan General SNP + Indel Alignment-based ~ Heuristic method [58]
GATK Mutect2 Somatic SNP + Indel Allele frequency ~ Reassembly of haplotypes methods [98, 101]
Strelka Somatic SNP + Indel Allele frequency ~ Bayesian approach [99]
Strelka2 Somatic SNP + Indel Allele frequency A mixture model [100]
Varscan2 Somatic SNP + Indel Heuristic methods Heuristic and statistical methods [64]

dict true indels [13, 56]. Due to these issues or constraints, paired-end read mapping
and machine learning-based methods are not included in this study.

Besides these general indel calling programs, there are tools designed for detect-
ing germline/somatic variants from cancer genomes. Almost all somatic indel calling
programs can detect single nucleotide variants, some of them can also detect SVs
[102]. Majority of these program use tumor-normal paired data to identify somatic
variants, while others can predict with only tumor samples [103]. For programs based
on the tumor-normal paired data, the general core algorithms include joint genotype
analysis, allele frequency analysis, heuristic threshold, haplotype analysis, and ma-
chine learning [103|. In this study, we selected Varscan2, GATK Mutect2, Strelka
and Strelka2 for comparative cancer indel analysis based on their good performances
reported by several groups [102, 104, 105, 106, 107, 101] (Table 2.1). In general,
performance evaluations for somatic indel identification can be done with simulation
data and/or real sequence data [104, 106]. While the simulation data can help test
different features such as variant allele fractions [106], comparison of indel annota-
tion methods with real NGS data can provide useful guidance for their application in
variant analysis in disease genomes. Even though currently there is no gold standard
for evaluating somatic indel variants from cancer genomes, several existing databases
can provide some useful information [104|. For instance, annotated indels in GATK

Resource Bundle and dbSNP can be used to check false positive and indels in COS-
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MIC can be used to evaluate positive cases, respectively [19, 28, 104, 108]. However,
caution should be taken when using these databases for evaluation purpose as both
databases contain only partial data.

Accurate annotation of indels is of paramount importance in studying genetic varia-
tions and in identifying disease associated indels [46, 109, 110]. To test the consistency
or differences among the general indel calling programs, Hasan et al. performed a
comparative analysis by using the sequences of chromosome 11 from 78 samples of
the 1000 Genomes Project and showed that 78%-89% of the benchmark indels are
not identified in a sample by any program and only a very small number of indels
are identified by all seven programs [56]. However, the results do not accurately re-
flect the performance of each program as well as the common indels predicted from
different programs. First, they compared the indels from individual genome samples
to the pooled indel dataset of 79 genomes. Rare and low frequency variants account
for a large proportion of indels and the pooled indel set includes all of them, but an
individual sample may contain only a small subset of the pooled indel set [5, 32, 111].
Figure 2.1 shows a schematic example to explain the potential pitfalls of comparing
individual samples with a pooled reference set from multiple samples. In this study we
applied a pooled-sample based method for more accurate comparative analysis since
indels from multiple samples from one program are pooled together to compare with
the pooled benchmark indels (Figure 2.1b). In addition, we expanded the comparison
with the whole genome sequences instead of only one chromosome.

Unlike SNPs, indels are more complicated in that there are two different indel types,
insertion and deletion. Moreover, for a coding indel, it can be a frame-shift (FS) or
non-frame-shift (NFS) indel. Consequently, the way to compare the indels can affect
the number of true positives and false positives. Previous studies used a position range
of 1 +5 (where i is the indel position) to determine if an indel is the same one as that

in the reference set [112]. However, this approach has several disadvantages. First,
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a. Single-sample based

Pooled benchmark . II I II . Sample 1

Sample 2

Sample 1
Caller 1 —.'.—'. #FN: 7
Caller 2 - B #FN: 7

indels called by both Caller 1 and Caller 2 : 0

Sample 2
Caller 1 .— . H— #FN: 6
Caller 2 — -1 B #FN: 6

Indels called by both Caller 1 and Caller 2 : 1

b. Pooled-sample based

Pooled benchmark Sample 1
Sample 2

Caller 1 —..—l Sample 1
Caller 1 _——.—.> H Sample 2

Caller 2 F m Sample 1
Caller 2 _.H . Sample 2

Indels called by both Caller 1 and Caller2 : 5

Figure 2.1: Comparison of different methods regarding false negative indels.

A schematic comparison between single-sample based method (a) and pooled-sample based
method (b) with a pooled reference benchmark. FN: false negative

the indel types, insertion or deletion, are not considered separately. An insertion
and a deletion at the same genome position are two different indels, not the same

indel. Secondly, for coding indels, 1 bp difference in a position may result in a totally
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different protein sequence due to an open reading frame shift. In light of these issues,
we adopted a modified approach by considering indel types (insertion or deletion) as

well as positions, which is especially important in germline indel analysis.
2.2 Methods
2.2.1  Datasets

We used the same dataset as Hasan et al., which consists of 78 samples from the
1000 Genomes Project (http://www.internationalgenome.org/) covering five super
populations (EUR, EAS, SAS, AMR, and ARF) and 26 sub-populations (three from
each sub-populations) to evaluate general indel calling programs [56]. The benchmark
is a set of about two million small indels identified by Mills et al. [8]. For somatic
indel program evaluation, we used a total of 30 tumor-normal paired data, including
10 colon cancer, 10 breast cancer, and 10 bladder cancer samples. The cancer genome
sequencing data were downloaded from TCGA with dbGap ID phs000178.v11.p8. A
total of 4,970 indels from the latest version of COSMIC (v90) were downloaded for

somatic indel evaluations [28].
2.2.2  Evaluation methods

For germline indels from healthy genomes, they are mainly genetic variants with
the type and position of the indels presumably conserved in sub-populations or super
populations. In other words, they are less random compared with somatic variants
and usually do not lead to diseases. Therefore, when evaluating germline indels from
healthy genomes, we only count the indels that are located at the same positions with
the same insertion or deletion sequences between the samples and the reference as a
positive identification. Since somatic indels from cancer genomes are less conserved
than the germline indels, we use the typical range of i &5 in positions along with the
indel types, either insertion or deletion, for comparative evaluation.

Recall, precision and F measure are calculated for performance evaluations (Equa-
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tions 2.1 2.2 2.3):

TP
=" 2.1
Recall TPLFN (2.1)
TP
Precision = ————— 2.2
recision = o5 p (2.2)

[ 2 x Recall x Precision

2.3
Recall + Precision (2.3)

Where TP represents true positive, FP represents false positive, and FN represents
false negative. As mentioned in the Background section, for germline indels, the TP,
FP and FN are identified by a pooled sample-based method (Figure 2.1b). For somatic
indel evaluation, the predicted indels are compared with the annotated indels in the
COSMIC database as potential somatic indels (the indel types are classified using the
indel labels downloaded from COSMIC). To identify potential false somatic indels, we
compared the predictions with the indel set from the GATK Resource Bundle, which

is considered as a standard germline indel set for human reference GRCh38 |28, 108].
2.3 Results
2.3.1  General indel calling programs
2.3.1.1  Overall analysis of the predicted indels

The number of true positive and false positive indels from healthy genomes by
different programs is listed in Table 2.2. SAMTools calls the largest number of indels,
with Platypus ranks the second. The number of the TP indels varies by programs.
Dindel has the highest recall (0.78) but with a low precision (0.24). Varscan, which
calls the least number of indels, has the highest precision (0.56) as well as the best
F value (0.48). GATK UG and GATK HC have the second-best F value with

relatively good recall and precision.
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Table 2.2: Performance of different general indel annotation programs

Tool TP indels FP indels Recall Precision F
Varscan 533,101 424,740 0.42 0.56 0.48
GATK UG 884,763 1,802,477 0.69 0.33 0.45
GATK HC 948,738 2,026,903 0.74 0.32 0.45
Pindel 446,622 619,846 0.35 0.42 0.38
Dindel 994,947 3,097,117 0.78 0.24 0.37
Platypus 941,046 3,403,565 0.74 0.22 0.33
SAMTools 930,860 15,083,658 0.73 0.06 0.11

Among all the programs, GATK HC calls the longest indel with 616 bps. The
length distribution is shown in Figure 2.2a (percentages) and Table 2.3 (counts) with
the benchmark as a reference. SAMTools has the largest number of short indels for
length between 1 bp and 20 bps, which is not surprising since it calls much more indels
than any other programs (Table 2.2 and Table 2.3). Pindel has the largest number of
indels longer than 50 bps (Supplementary Table 2.3 and Figure 2.2), largely because
Pindel uses an algorithm that tends to call longer indels. In terms of mid-length
indels between 20 and 50 bps, GATK HC has the largest number in each category.
Percentage-wise, Platypus, Varscan, GATK UG, SAMTools predict relatively more
short indels compared to other three programs. We also compared the programs in
terms of indel types, insertion and deletion (Figure 2.2b and Table 2.4). SAMTools
has a higher percentage of deletion types while GATK UG has more insertion types
in term of the ratio when compared with the benchmark. Dindel has the most similar
insertion/deletion ratio (56.2%/43.8%) to the benchmark (57.6%/42.4%) and it has
the highest TP rate for both insertion and deletion types (Table 2.4).

In coding regions, indels can be grouped into FS and NFS types. An NFS indel
consists of a multiple of three base pairs, introducing an insertion/deletion of one or
more amino acids while keeping the other part of the protein sequence unchanged. In
contrast, an FS indel changes the open reading frame (ORF) starting from the site

of insertion/deletion, which can produce different protein sequences from the indel
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Table 2.3: Indel length (bps) distribution from different programs

Programs  1-10 11-20  21-31  31-40  41-50  >50

Varscan 973,285 14468 1,338 168 52 55
(98.38%) (1.48%)  (0.14%)  (0.02%)  (0.01%)  (0.01%)

GATK UG 3,258954 85,365 11,972 2,145 533 604

(97.01%) (2.54%)  (0.36%)  (0.06%)  (0.02%)  (0.02%)
3,577,313 251,263 63,270 23,372 10,451 17,157

(90.73%) (6.37%) (1.61%) (0.59%) (0.27%) (0.44%)
1,015,404 56,060 19,085 9,412 7,268 26,746

GATK_ HC

Pindel (89.54%)  (4.94%) (1.68%) (0.83%) (0.64%) (2.36%)
Dindel 4975421 244,824 36877 6,746 1,839 2,442
(94.44%)  (4.65%) (0.70%)  (0.13%)  (0.04%)  (0.05%)
Platvoms 5,644,495 168,210 23,381 4,153 087 886
yP (96.62%)  (2.88%)  (0.40%)  (0.07%)  (0.02%)  (0.02%)
SAMTools 19903777 326,069 45619 7,891 1,940 1,389
(98.11%)  (1.61%) (0.23%) (0.04%) (0.01%)  (0.01%)
Benchmark  L218248 33112 8,550 3,817 2,025 4,002
(95.94%)  (2.61%) (0.67%) (0.30%)  (0.16%)  (0.32%)
Table 2.4: Indel types (deletion and insertion)
Tool Deletion* TP Deletion# Insertion* TP Insertion#
Varsean 532,457 302,541 425,384 230,560
(55.59%)  (41.23%) (44.41%)  (42.63%)
1,330,229 491,384 1,357,011 393,379
GATK_UG  1950%)  (66.97%) (50.50%)  (72.74%)
1,512,471 544,906 1,463,170 403,832
GATK_HC 5 g0y (74.26%) (49.17%)  (TA.67%)
Pindel 594,809 246,059 471,659 200,563
(55.77%)  (33.53%) (44.23%)  (37.08%)
Dindel 2299063 572,579 1,793,001 422,368
(56.18%)  (78.03%) (43.82%)  (78.10%)
Platvous 2,351,612 548,043 1,992,999 393,003
yP (54.13%)  (74.69%) (45.87%)  (72.67%)
10,467,240 550,396 5,547,278 380,464
SAMTools 5 360)  (75.01%) (34.64%)  (70.35%)
733,758 540,822
Benchmark o w70y - (42.43%)

*:Percentage— percentage of deletions/insertions of indels by each program
#:Percentage— percentage of deletions/insertions of benchmark by each program
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Table 2.5: Coding indel types (NFS and FS)

Tools FS* TP FS# NFS* TP NFS#

Varsean 645 401 468 263
(57.95%)  (37.79%)  (42.05%) (33.04%)
1,460 620 1,081 491

GATK_UG (0 46%)  (58.44%)  (42.54%) (61.68%)
2,826 703 1,840 550

GATK_HC 60 579%)  (66.26%)  (39.43%) (69.10%)

Pindel 1,099 363 826 271
(57.09%)  (34.21%)  (42.91%) (34.05%)

Dindel 10,745 743 2,183 579
(83.11%)  (70.03%)  (16.89%) (72.74%)

Platvons 190 722 1,954 596

yp (69.96%)  (68.05%)  (30.04%) (74.87%)

113,244 790 6,111 610

SAMTools g, 88%) (74.46%) (5.12%) (76.63%)
1,061 796

Benchmark 57 0y - (42.86%)

*:Percentage = percentage of F'S or NFS of indels by each program

#:Percentage = percentage of FS or NFS in benchmark by each program

position. FS indels can also lead to premature termination and the mRNA molecules
can be subjected to a surveillance pathway called non-sense-mediated mRNA decay
(NMD) [113]. The proportion of NFS and FS coding indels from each program is
shown in Figure 2.2¢ and Table 2.5. GATK UG, Pindel and Varscan show similar
FS/NFS ratios to that of the benchmark while Pindel, SAMTools, and Platypus have

a much higher percentage of F'S coding indels.
2.3.1.2  Pare-wise comparisons

To check the similarity or difference of indels predicted by two different programs,
the overlapped indels from two programs are compared with the benchmark indels.
The recall and precision values are presented in Table 2.6, showing a trade-off between
recall and precision. When a program is paired with Varscan or Pindel, it usually
achieves high precision with smaller number of FPs while having low recall at the same

time since these are the two programs that call the lowest number of total indels. The
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Figure 2.2: Comparisons of indels called by seven general indel calling tools.

(a) Indel size distribution. (b) Indel types distribution. (c¢) Coding indel types distribution.
FS: frame shift, NF'S: non-frame shift
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indels from Varscan, GATK UG and Dindel are highly similar. About 94% of indels
from Varscan are also annotated by GATK UG (898,482 out of 957,841) or Dindel
(903,756 out of 957,841).

2.3.1.3  Combination of indels from different programs

The results from individual programs have shown that there are a large number of
false positive indel predictions from the NGS data (Table 2.2). While false negatives
may represent missed opportunities, false positives can result in wrong conclusions
and are costly in real applications. We hypothesize that by selecting the consistent
indel annotations from different programs, we may be able to remove majority of the
false positives while retaining most of the true positives. The underlying idea is that
in general, unlike false positives, true indels can be identified by different prediction
algorithms. The ones that are program specific have a higher probability to be false
positives. In a previous study, Hasan et al. showed that only a very small number of
indels were called by all seven programs [56]. But as discussed in Background, that
conclusion is a result from their approach by comparing the indels from individual
samples to the pooled benchmark dataset, which may produces a large number of false
negatives. We adopted a pooled sample method for a more meaningful comparison
in this study. Figure 2.3 shows a schematic example to explain the differences by
counting the overlaps or consistent indels between the two approaches. Among the
seven indels called by both caller 1 and caller 2 with the pooled sample method, five
of them are true positive indels. However, the single sample approach only identifies
two true positives, resulting a very low TP rate from the overlapped indels (Figure
2.3).

Table 2.7 shows the averages of TP indels, FP indels, recall, precision and F values
for all possible combinations including individual programs. The results from Hasan
et al. show that only a small proportion of TP indels (1.51%) are called by all seven

programs [56]. With our pooled sample approach, we found that 476,253 indels called
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recall
\. . Varscan G%I‘é{ GA}’II‘é{ Pindel Dindel Platypus SAMTools
precision — —

Varscan - 0.40 0.41 0.30 0.41 0.39 0.36
GATK UG 0.57 - 0.65 0.33 0.66 0.64 0.60
GATK HC 0.59 0.43 - 0.34 0.72 0.68 0.65

Pindel 0.62 0.59 0.57 - 0.34 0.33 0.31

Dindel 0.58 0.41 0.38 0.56 - 0.70 0.68

Platypus 0.57 0.34 0.38 0.59 0.35 - 0.66
SAMTools 0.55 0.40 0.40 0.60 0.27 0.29 -

Table 2.7: Performance comparison of different program combinations (showing av-

erage values)

7# of Tools TP indels FP indels Recall Precision F
1 811,440 3,779,758 0.64 0.31 0.37
2 639,772 899,660 0.51 0.48 0.45
3 528,467 496,588 0.41 0.56 0.45
4 450,280 322,289 0.37 0.60 0.44
5 394,064 230,561 0.31 0.64 0.41
6 354,111 179,699 0.28 0.67 0.38
7 326,184 150,069 0.26 0.68 0.37
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by all seven programs. Among these indels, 326,184 are TP indels that can be found

in the reference set (25.6%).

a. Single-sample based

Sample 1
Pooled benchmark .IT.T_lTl_I_...._l.l_-
Sample 2
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# by Caller 1 & Caller 2 : 2 TP; 1FP

Sample 2

Caller 1 . |
Caller 2 41— i

# by Caller 1 & Caller 2 : 2 TP; 2FP

b. Pooled-sample based
Sample 1

Pooled benchmark _l...I_I_I_I_LI_I.I__I.I_
Sample 2

Sample 1

Sample 2

Caller 1 H —ll + l.

# by Caller 1 & Caller2 : 5 TP; 2 FP

Figure 2.3: Comparison of different methods regarding true indels.

A schematic comparison between single-sample based method (a) and pooled-sample based
method (b) with a pooled reference benchmark. Green represents true positives. Red
represents false positive predictions. Blue blocks are the benchmark indels.
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Figure 2.4: Overlapped indels called by GATK UG, GATK HC and Dindel.
(a) All indels; (b) Coding indels only.

Among all the possible combinations, including the individual programs, a five
tool combination of GATK UG, GATK HC, Pindel, SAMTools and Dindel has the
highest F value (0.53). Dindel has the highest recall (0.78, Table 2.2) and a combi-
nation of three tools (GATK UG, Pindel and SAMTools) has the highest precision
(0.69). On average, a combination of 2 or 3 programs has the highest average F
values (Table 2.7). Table 2.8 lists top three combinations of two and three programs
ranked by F values. As shown in Tables 2.7 and 2.8, adding more programs can
remove more false positives than true positives and a combination of three programs
seems to have a good balance of recall and precision. Figure 2.4a shows an example

of indels called by 3 programs: GATK UG, GATK HC and Dindel. There are large
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Table 2.8: Top 3 indel annotation program combinations (2 programs and 3 programs)

F rank Combination of 2 tools TP FP Recall Precision F

1 GATK UG + GATK HC 822,516 1,107,610 0.65 0.43 0.51
2 GATK_ UG + Dindel 839,132 1,226,226 0.66 0.41 0.50
3 GATK_ HC + Platypus 871,596 1,403,334 0.68 0.38 0.49

F rank Combination of 3 tools TP FP Recall Precision F

g GATK UG - GATR HC gh1 060 078,703 0.63 045  0.53

+ Dindel
GATK UG + GATK_ HC
2 & SAMTools 725,419 768,246  0.57 0.49 0.52
3 GATK_UG + GATK_HC 778,439 991,540 0.61 0.44 0.51
+ Platypus

overlaps among the TP indels either for all indels (Figure 2.4a) or for coding indels
only (Figure 2.4b), while the disagreement among the FP indels are much bigger.
Therefore, if a low number of false positives is preferred in an application, results

from more programs can be used and combined.
2.3.2  Somatic indel calling programs

Unlike general indel calling approaches, the majority of somatic indel annotations
need both normal and diseases genome samples and thus are more complicated. Dif-
ferent methods or algorithms have been developed for somatic indel identifications
(Table 2.1). In this study, we applied four somatic indel calling programs to three
types of cancers. As discussed in Background, there are no benchmark sets available
to assess the true positive or false positives for cancer genome indels. But for compar-
ison purposes between programs and cancer types, we can use the COSMIC database
with annotated somatic cancer indels and GATK Resource Bundle as potential false
positives (or germline indels) to see how much they agree or differ with each other.
Since the COSMIC indel set represents only a small portion of real cancer population
indels, a small number of indels in COSMIC does not necessarily indicate a large
number of false positives from a program. Similarly, an indel found in the germline

indel set does not necessarily mean it is a true false positive since there is a single
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Table 2.9: Performance comparison of different somatic indel annotation programs

Tools Total indels Cancer type COSMIC  Potential germline

indels indels and rate
2,186 Bladder 5 884 (0.40)
Strelka 5,521 Breast 5 2,536 (0.46)
14,174 Colon 11 5,227 (0.37)
867 Bladder 0 225 (0.26)
Strelka2 2,162 Breast 0 768 (0.36)
9,920 Colon 2 3,583 (0.36)
1,804 Bladder 2 438 (0.24)
Varscan2 3,796 Breast 4 879 (0.23)
6,286 Colon g 831 (0.13)
19,124 Bladder 10 761 (0.04)
Mutect2 44,373 Breast 16 1,708 (0.04)
30,503 Colon 31 1,071 (0.16)

cancer sample vs. pooled germline samples problem. Nevertheless, the comparative
analysis can provide some insights about these somatic indel calling programs and
the similarity or differences among different cancer types.

The number of potential true positive and false positive indels called by four pro-
grams are shown in Table 2.9. GATK Mutect2 calls the largest number of indels
independent of cancer types and it has the largest overlap with the COSMIC indels
and relatively low number of potential germline indels among the four programs.
Strelka2 has the smallest numbers of indels for bladder and breast cancer types while
Varscan?2 calls the lowest number of indels in colon cancer. In terms of cancer types,
colon cancer has more indels than the other two cancer types. The number of indels
in bladder cancer is much less than the other two types. Taken together, GATK Mu-
tect2 has a better coverage of somatic indels in all three cancer types with relatively
low number of germline indels, or potential false positives. Strelka has the second
largest number of total indels and COSMIC indels, however, the number of potential
germline indels is also high.

As for the length distribution of the somatic indels, GATK Mutect2 calls the longest

somatic indel (245 bps) in a cancer genome and identifies more longer indels (Figure
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2.5a and Table 2.10). It has 202 indels longer than 50 bps. However, no other
programs identify any indels of length 50 or more. The length distributions in terms
of cancer types also vary. Even though colon cancer has the largest number of indels,

breast cancer has more longer indels (Figure 2.5b and Table 2.10).

a
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b
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75% 80% 85% 90%  95% 100%

m1-10 m11-20 m21-30 =31 -40 m41 - 50 m> 50(bps)

Figure 2.5: Somatic indel size distribution.

(a) Program based; and (b) Cancer type based.

In healthy genomes, there are more germline deletions (57.75%) than germline
insertions (42.25%) (Table 2.11) while in cancer indel database COSMIC, the ratios
are slightly different with 34.39% of insertions and 52.00% of deletions, while others
are assigned as complex indels (13.61%) (Table 2.11) [28]. Except for GATK Mutect2
in bladder and breast cancer genomes, all other programs detect relatively low number
of insertions. It is not clear if cancer genomes have relatively fewer insertions or

the programs have difficulty in identifying somatic insertions. As for coding indels,
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Table 2.10: Somatic indel length distribution

Tools / 1-10 11-20 21-31 31-40 41-50  >50
Cancer types
12,699 219 13 6 0 0
Strelka2 07 030 (1.69%)  (0.33%) (0.05%) (0.00%) (0.00%)
Strelka 21,370 471 84 12 2 0
(97.41%)  (2.15%) (0.38%) (0.05%) (0.01%) (0.00%)
Mutect2 80,177 9514 3,295 1280 368 202
(84.54%) (10.03%) (3.47%) (1.35%) (0.39%) (0.21%)
Varscan? 11,505 313 63 5 0 0
(96.79%)  (2.63%) (0.53%) (0.04%) (0.00%) (0.00%)
Bladder 20,620 2,527 695 o1 15 31
(86.00%) (10.53%) (2.90%) (0.38%) (0.06%) (0.13%)
Breast 48,136 5692 1,823 801 206 89
(84.83%) (10.03%) (3.21%) (1.41%) (0.36%) (0.16%)
Colon 56,986 2,298 967 411 149 82
(93.58%)  (3.77%) (1.59%) (0.67%) (0.24%) (0.13%)
. 1,215,718 33,004 8505 3,795 2012 3,974
Germline

(95.95%)  (2.60%) (0.67%) (0.30%) (0.16%) (0.31%)

germline coding indels has slightly more NFS indels (51.63%) than the FS indels
(48.37%) (Table 2.12). It is not surprising that the number of FS coding indels is
smaller than expected (2 to 1 ratio if there is no selection) in healthy genomes, as F'S
indels are more deleterious than NFS indels, which are more likely to be removed from
the population during evolution. F'S indels found in healthy individuals generally are
less deleterious and their major role is to contribute to population diversity [32]|. In
COSMIC cancer indel database, F'S indel is the dominant coding indel type (81.05%).
Except for Strelka2 in balder cancer, all other programs predict more FS indels than
NFS indels in all three cancer types. It should be pointed out that the total numbers
of coding indels predicted by Varscan2 and Strelka2 are rather small (Table 2.12).
When the somatic indels called from different programs are compared, the number
of similar indels from different programs or the overlapped indels are much smaller
especially when more programs are considered (Figure 2.6 and Table 2.13). This is

quite different from the germline indels by the general indel annotation programs



Table 2.11: Somatic indel types (deletion and insertion)

Cancer Tools 7# of Deletion # of Insertion

Types Deletions Percentage Insertions Percentage
Strelka 1,417 64.73% 772 35.27%
Bladder Strelka2 614 70.49% 257 29.51%
Varscan2 1,128 62.53% 676 37.47%
Mutect2 7,784 40.03% 11,662 59.97%
Strelka 3,186 57.57% 2,348 42.43%
Breast Strelka2 1,413 65.24% 753 34.76%
Varscan2 2,227 58.67% 1,569 41.33%
Mutect2 16,273 35.40% 29,701 64.60%
Strelka 9,280 65.28% 4,936 34.72%
Colon Strelka2 6,973 70.22% 2,957 29.78%
Varscan2 5,058 80.46% 1,228 19.54%
Mutect2 20,022 63.74% 11,390 36.26%
Germline indels 731,665 57.75% 535,343 42.25%
COSMIC indels 3,104 52.00% 1,709 34.39%

Table 2.12: Somatic coding indel types (F'S and NFS)

Cancer Tools # of FS FS # of NFS NFS

Types indels Percentage indels Percentage

Strelka 135 53.78% 116 46.22%

Bladder Strelka?2 6 20.69% 23 79.31%

Varscan?2 66 63.46% 38 36.54%

Mutect2 4,292 63.25% 2,494 36.75%

Strelka 142 62.28% 86 37.72%

Broeast Strelka?2 4 80.00% 1 20.00%

Varscan2 60 71.11% 30 28.89%

Mutect?2 7,651 71.11% 3,109 28.89%

Strelka 303 78.29% 84 21.71%

Colon Strelka2 37 88.10% 5 11.90%

Varscan2 202 82.79% 42 17.21%

Mutect2 3,218 65.17% 1,720 34.83%

Germline indels 697 48.37% 744 51.63%

COSMIC indels 2,515 81.05% 288 18.95%
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Table 2.13: Performance on different number of somatic program combinations (The
data shown are average values)

Cancer . COSMIC Potential germline
types # of Tools  Total indels indels indels and rate
1 5,995 4 577 (0.24)
2 285 1 64 (0.22)
Bladder 3 02 1 20 (0.24)
4 22 0 6 (0.27)
1 13,963 6 1,463 (0.27)
2 616 1 185 (0.25)
Breast 3 181 I 47 (0.19)
4 36 0 5 (0.14)
1 15,221 13 6,666 (0.26)
2 3,142 3 948 (0.23)
Colon 3 1,051 2 300 (0.18)
1 161 1 14 (0.09)

especially the comparison criteria are not as stringent as those used for germline
indel comparisons (Table 2.7), in which there are a large number of indels called by
all the programs, especially for the true positive indels. Table 2.13 and Figure 2.6
show that when all four programs are used, there are only 22, 36, 161 indels in the
bladder, breast, and colon cancel samples respectively. These results suggest that
the agreement among different programs is low and it might not be practical to use
multiple programs in order to remove false positives in cancer samples as we showed
in the germline indel cases since it also dramatically decrease the total number of

indels as well as true positives.
2.4  Discussions

Accurate annotation of indels in both healthy and cancer genomes is important for
downstream analysis in biological and medical applications. A number of programs
have been developed for identifying indels from both healthy genomes for germline
indels as well as cancer genomes for somatic indels with NGS data. Comparative
analysis and evaluation can provide useful information about each program’s perfor-

mance. The best available benchmark for large-scale germline indels so far is the
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Varscan2 Mutect?2

Varscan?2 Mutect2

Varscan2 Mutect?2

Strelka ) Strelka?

Figure 2.6: Overlapped indel annotations of different cancer types

(a) Bladder cancer; (b) Breast cancer; and (c) Colon cancer

pooled sample indels [8]. One previous comparative study applied this pooled bench-
mark set and evaluated seven general indel calling programs using chromosome 11 of
78 samples. However, the comparison was carried out between a single sample and
the pooled benchmark, which is problematic as shown in Figures 2.1 and 2.3. It may

also explain why the study finds little overlap of indels when the results from all seven
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tools are combined [56]. In this study we carried out an improved approach to assess
the general indel calling programs using the whole genome NGS sequences instead
of using one chromosome sequences. More importantly, we adopted a pooled sample
vs. a pooled benchmark comparison, which provides more accurate assessment of
programs’ performances. The new method greatly reduced the number of false nega-
tive cases by correctly recognizing the true positives (Figures 2.1 and 2.3). Last but
not the least, we adopted a stringent indel comparison approach by considering the
exact indel position as well as the indel types, which was not considered in previous
studies. It should be noted that even though we applied a pooled sample approach,
the comparison is not error free since the samples and the genomes in the benchmark
set are different. There are some sample specific indels in both the test set and the
benchmark set. Nevertheless, our approach makes the best use of the reference set
and provides a more accurate performance evaluations.

These general indel calling programs employ different prediction algorithms and
predict different number of indels with different length and type distributions (Tables
2.3, 2.4). There is a tradeoff between the number of true positives and false positives.
Some of them recognize a large number of true positive indels but at the same time
output more false positive indels. We found that combing indels predicted from
several different programs can achieve a good balance of TPs and FPs by removing
a large number of false positives while keeping most of the true positives. The idea
behind this is that if an indel is a true one, most programs are expected to find it
no matter what algorithm is used. On the other hand, if an indel is a false one, it
probably will only be predicted by one or a small number of programs. Our results
show it is indeed the case and the best TP /FP balance is achieved with two or three
different programs (Tables 2.7 and 2.8).

In addition to germline indels, we also carried out program comparisons of so-

matic indel predictions using 30 cancer samples of three different types. Evaluating
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somatic indels is even more challenging because there is no benchmark that can be
used for a systematic comparison and cancer indels are more random in terms of indel
positions. Nevertheless, by using a common sample sets, we can evaluate the simi-
larity /differences of indels from different somatic indel calling programs and among
different cancer types. To get a sense of the potential number of true positive or false
positive somatic indels, we compared the predicted indels with the cancer indels in
COSMIC database (as potential true positives) and the germline indel set (as poten-
tial false positive somatic indels). While each program produced different number
of indels with various ratios of indel types (Table 2.9, 2.10 and 2.11 ), there is a
clear trend among different cancer types in general. Bladder cancer has the lowest
number of predicted somatic indels and colon cancer has the largest number of pre-
dicted somatic indels (Tables 2.9 and 2.11). Secondly, unlike the germline indels, the
number of indels predicted by all programs is very small (Table 2.13), suggesting a
low agreement among the programs even though the input sequences are the same.
Thirdly, the programs identify a small number of insertions. This trend has also
been reported by other case studies. For example, 2,233 deletions and 544 insertions
were identified from 21 breast cancer genomes by a modified Pindel program, and
680 deletions and 303 insertions were found from a skin cancer genome by Pindel,
BWA and GROUPER |[114, 115]. In COSMIC database, there are also less insertions
compared with deletions (Table 2.11). On the other hand, Sathya et al. identified
SNP and indel patterns from lung cancer genomes and found more insertions than
deletions in both healthy genomes and lung cancer genomes using GATK UG [116].
Whether the difference in the ratio of insertion and deletion in the cancer genome is
caused by the characteristics of the cancer genome or by the algorithms used by the

somatic variants calling programs remains to be further studied.



CHAPTER 3: Comparative Somatic Indel Analysis in Cancer Genomes

3.1  Background

Several studies have been carried out to investigate indels in different cancer types.
A recent pan-cancer analysis indicated that renal cell carcinoma has the highest num-
ber of indels and the highest proportion of indels among 19 cancer types [117]. The
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium reported that col-
orectal adenocarcinoma has a larger number of somatic indels among diverse cancer
types [118|. Similar to indel annotation in heathy genomes, different methods and al-
gorithms may lead to different somatic indel annotations. In Chapter 2, we performed
a comparative evaluation analysis on four somatic indel calling programs (Strelka,
Strelka2, Varscan2 and GATK Mutect2) and three cancer types (colon cancer, breast
cancer, and bladder cancer) [64, 98, 99, 100]. We found that the performances from
these calling programs vary greatly.

Investigations of somatic coding indels in cancers have been carried out at both
domain and protein level. Pagel et al. mapped somatic non-frame shift (NFS) indels
from COSMIC onto protein structures and found pathogenic variants tend to be
enriched in helix and strand regions [46]. Niu et al. developed a tool to identify 3D
variants clusters on protein structures that can be used in variant-drug interaction
analysis in cancer genomes [95]. They identified mutation-mutation and mutation-
drug clusters from more than 4,400 samples across 19 cancer types. More than 6,000
clusters were identified at 3D structure level, including both intra-molecular and inter-
molecular clusters. Among the 553,496 somatic variants, only 0.76% of them are indels
[95]. Yang et al. identified about 100 significantly mutated protein domains from

7,260 samples across 21 cancer types. However, all of the 237,716 somatic variants
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are SNPs [119]. Similar domain-centric study performed by Peterson et al. also only
focused on SNPs [120].

Variants in non-coding regions can also cause diseases [121, 122, 123, 124, 125, 126|.
Sakthikumar et al. investigated non-coding variants in Glioblastoma (GBM) genomes
and found that the GBM somatic variants are enriched in non-coding regions of 78
GBM key genes, suggesting the essential role of non-coding somatic variants in cancer
[127]. Imielinski et al. studied somatic non-coding indels in 79 lung cancer genomes
and found that these indels are enriched in surfactant protein genes [48|. However,
Nakagomi et al. analyzed 113 lung cancer genomes and reported that only 29 of them
have non-coding indels in surfactant protein genes [49].

Currently, majority of the small variants analyses in cancer genomes focused on
SNPs. Although some of them also include indels, the number of the indels is rather
small [95, 119, 120]. Here we focused on both coding and non-coding somatic indels
in cancer genomes. The goal of this study is to compare features of indels in different
cancer types as well as indels called by different programs. As discussed earlier, indels
predicted from different programs vary due to different prediction algorithms. In this
study, we applied Strelka and Varscan2 to call somatic indels as previous studies
demonstrated that these two programs perform well for somatic variants calling [99,
64, 103, 104]. We selected two cancer types, invasive breast carcinoma (BRCA) and
lung adenocarcinoma (LUAD). Several cancer-related studies showed that BRCA
has the largest sample size and is one of the most analyzed cancer types, and the
proportion of indels in breast cancer ranked second among 19 cancer types [117, 120].
A recent report showed that LUAD has high numbers of exonic somatic variants in
several studies [119, 120].

We identified a total of 184,106 somatic indels. Only 9% of these indels are in
both BRCA and LUAD cancer types. The somatic indels in BRCA and LUAD

have different proportion of indel types, including deletion/insertion, coding/non-
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coding and FS/NFS. The somatic coding indels are more likely to be enriched in the
important regions of the proteins than those in the healthy genomes. About 30% of

the somatic indels in SMGs’ non-coding regions overlap with annotated TFBSs.
3.2 Methods
3.2.1  NGS data source and indel calling

We downloaded 436 BRCA and 564 LUAD whole genome sequencing data of
TCGA-BRCA and TCGA-LUAD projects from TCGA data portal with dbGaP Study
Accession: phs000178.v11.p8 [128, 129]. Both tumor and normal blood/tissue se-
quencing data were used to call somatic indels. Strelka was used to call somatic
indels from all 1,000 samples. For program comparison, Varscan2 was employed to
call somatic indels from 564 LUAD genomes [99, 64]. The human genome reference
GRCh38.p13 was used in variants calling. The indel set from the GATK Resource
bundle with 1,267,008 germline indels was used as the reference of germline indel
annotations in healthy human genomes [108]. In previous studies, a position ¢ + 5
has been used to determine whether two indels are the same, without concerning the
indel types (insertion or deletion) [56]. In this study, to distinguish germline indels
and somatic indels, we used a more stringent approach by considering the indel types
and insertion/deletion sequences in addition to the indel positions. Two indels are
considered the same only if both have the same position, indel type and sequences.
For cancer type wise and program wise comparison, we used the position 7 £ 5 and
also the indel type to define same indels.

A total of 127 significantly mutated genes (SMGs) across 12 major cancer types
identified by Kandoth et al. were used to map both coding and non-coding indels
[130]. Since these 127 SMGs contain 125 protein coding genes, 1 IncRNA gene and 1

miRNA gene, only 125 protein coding genes are used in this study.
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3.2.2  Protein structural analysis

To locate the positions of coding somatic indels, we downloaded all protein coding
gene annotations from Ensembl [131]. If a gene has multiple transcripts, the longest
transcript is used for mapping. Each transcript was searched against PDB using Blast
for known protein structures [132, 133|. If a protein has known structure(s) in PDB,
we assigned secondary structure types of the proteins using DSSP, as described in
our previous studies. H (a-helix), G (310-helix) and I (7-helix) states are grouped as
helix conformation; E (extended strand) and B (residue in isolated -bridge) states are
grouped as strand conformation and all the remaining states are loop conformation
[134]. For proteins without known structures, we searched for highly homologous
proteins in PDB with at least 50% coverage and 80% sequence identity. Then the
secondary structure types of the template protein were copied to the target protein. If
no homologous structures were found in PDB, RaptorX, a highly accurate secondary
structure prediction program, was applied to predict secondary structure types with
default settings. RaptorX uses conditional neural fields method to predict secondary
structure types and achieves 84% accuracy [135|. The structural analysis of the indels
from healthy genomes were performed based on 769,743 short coding indels annotated

by GATK Resource bundle [108].
3.2.3  Non-coding indel analysis

To study the overlap between indels and TFBS, we used the TFBS set predicted
by dePCRM2, a recently developed program for genome scale TFBS prediction with
a sensitivity of more than 97% [136]. Using dePCRM2, a total of 25,297,119 non-
overlapping TFBSs were predicted with a p-value cutoff at 5x107%. The non-coding
regions of the SMGs are defined as UTR regions, introns and 100 kb intergenic

flanking regions, and the coordinates are downloaded from Ensembl [127, 131].
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3.3  Results

3.3.1  Comparison of somatic indels between cancer types and programs

Using Strelka, there are 109,856 and 91,159 somatic indels identified from 436
BRCA samples and 564 LUAD samples, respectively. The number of common indels
between BRCA and LUAD is 16,909 (Table 3.1). Varscan2 identified 55,345 somatic
indels from LUAD samples, much less than the number from Strelka, and 25,278 indels
are called by both programs (Table 3.2). As shown in Chapter 2, due to the prediction
algorithms, the calling results from these programs may contain germline indels. To
filter out these indels from downstream analyses, we compared these predicted somatic
indels with the germline indel set from GATK Resource bundle. We found 16.74%
and 19.64% of indels in BRCA and LUAD respectively are the same as the germline
indels from healthy genomes (Table 3.1). Only 8.14% of the indels from Varscan2 are
germline indels (Table 3.2). All the downstream somatic analyses are based on the
indels after removing the germline ones from each case.

Similar to the coding germline indels in healthy genome, there are more deletions
than insertions in both BRCA and LUAD. The percentages of deletions in both cancer
types are slightly higher than those of GATK germline indel set. The common indels
in BRCA and LUAD have a different trend with a slightly higher insertion rate (Table
3.1). As for different programs, Varscan2 called more deletions than Strelka (64.19%
vs. 61.80%), and the indels identified by both programs also have a higher deletion
rate (66.00%) than that for the germline indels (57.75%).

3.3.2  Somatic coding indels in BRCA and LUAD genomes

Compared with the germline indels from healthy genomes (0.11%), the proportion
of coding somatic indels is very high in BRCA (5.94%) and much higher in LUAD
(10.79%) with Strelka (Table 3.3). Varscan2 also showed 8.96% of the indels in LUAD

are coding indels and the common indels between the two programs have even higher



Table 3.1: Somatic indels in BRCA and LUAD with Strelka

Overlap with

. . Deletions Insertions
germline indels

Cancer types Total indels

18,392 54,034 37,430
BRCA 109,856 (16.74%) (50.08%)  (40.92%)
17,900 45,273 27,986
LUAD 91,159 (19.64%) (61.80%)  (38.20%)
BRCA N 16.909 4,085 6,972 5,852
LUAD ’ (24.16%) (54.37%)  (45.63%)
Germline 1,267,008 - 731,665 535,343

(57.75%)  (42.25%)

Table 3.2: Somatic indels in LUAD using different programs

Overlap with

.. Deletions Insertions
germline indels

Programs Total indels

17,900 45,273 27,986
Strelka 91,159 (19.64%) (61.80%)  (38.20%)
4,499 32,574 18,172
Varscan2 59,245 (8.14%) (64.19%)  (35.81%)
Strelka N 05 978 1,890 15,435 7,953
Varscan2 ’ (7.48%) (66.00%) (34.00%)

731,665 535,343

Germline 1,267,008 - (57.75%)  (42.25%)
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coding rate (14.73%) (Table 3.4). In terms of the deletion/insertion ratio in coding
regions, LUAD has more deletion types (around 70%) no matter which program is
used for indel identification when compared with that in the germline indels from
healthy genomes (Tables 3.3 and 3.4). Around 57.95% of somatic coding indels from
BRCA samples are deletions. The common coding indels between BRCA and LUAD
have more insertions than deletions (54.08% vs 45.92%) (Table 3.3).

Coding indels can also be divided into F'S and NFS indels according to the indel
length. If the length of an indel is a multiple of three (NFS), then it only changes
the amino acid(s) of the mutated positions, while keeping other parts of the sequence
unchanged. Indels with other lengths change the open reading frame and cause a
frame shift at the indel site (F'S), which are prone to be more deleterious [43, 32, 137].
In theory, the number of FS indels is expected to be twice of NFS indels. Our analysis
of the healthy genomes from the 1000 Genomes Project showed that the number of
germline FS indels (3,775) is similar to NFS indels (3,662) [32]. The indels from
GATK Resource bundle are also similar (697 F'S vs. 744 NFS) (Tables 3.3 and 3.4).
These results indicate that healthy genomes tend to have less deleterious coding
indels. However, for somatic indels in cancer genomes, the number of FS indels is
three to four times more than that of NFS indels, especially for the LUAD cancer
type, over 80% of the indels are FS indels (Tables 3.3 and 3.4). The coding somatic
indels that exist in both BRCA and LUAD genomes have relatively lower ratio of F'S
indels (60.67%).

We found that 7,756 genes have somatic indels in the CDS regions. In BRCA
genomes, 3,979 genes have somatic coding indels predicted by Strelka. For LUAD
genomes, Strelka and Varscan2 identified 5,513 and 3,438 genes with coding somatic
indels respectively. There are 5,951 genes with somatic coding indels in LUAD after
pooling the indels together from the two programs. Between BRCA and LUAD,

2,174 common genes have somatic indels in the CDS regions. Among all these genes,
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Table 3.3: Somatic coding indel types in BRCA and LUAD

Cancer types Total indels Deletions Insertions FS
5,432 3,148 2,284 4,049
BRCA (5.94%)  (57.95%)  (42.05%)  (74.54%)
7,904 5,584 2,320 6,467
LUAD (10.79%)  (70.65%)  (29.35%)  (31.82%)
BRCA N 956 439 517 580
LUAD (7.45%) (45.92%) (54.08%)  (60.67%)
. 1,441 896 545 697
Germline

(0.11%) (62.18%)  (37.82%)  (48.37%)

Table 3.4: Somatic coding indel types in LUAD with different programs

Programs Total indels Deletions Insertions FS
Strelka 7,904 5,584 2,320 6,467
(10.79%) (70.65%) (29.35%)  (81.82%)
Varscan?2 4,548 3,210 1,338 3,749
(8.96%) (70.58%) (29.42%)  (82.43%)
Strelka N 3,445 2,551 894 2,964
Varscan2 (14.73%) (74.05%) (25.95%)  (86.04%)
. 1,441 896 545 697
Germline

(0.11%) (62.18%)  (37.82%)  (48.37%)

MAP3KI1 has the most somatic coding indels in BRCA (45 by Strelka), and TP53
has the most somatic coding indels in LUAD (37 by Strelka and 31 by Varscan2).
Both genes are in the list of 125 protein coding SMGs [130].

Previously, we found that both FS and NFS germline coding indels in healthy
human genomes tend to locate in terminal regions of the transcripts [32]. There are
more NFS somatic coding indels at the terminal regions in both BRCA and LUAD,
while F'S somatic coding indels are nearly evenly distributed, except for a small peak
at around 70% transcript position in BRCA (Figure 3.1).

Since NFS somatic coding indels only affect a part of the protein while keeping the
remaining sequence unchanged, we compared the distribution of secondary structure
types of these indels with those in the healthy genomes. A total of 181 proteins
with NFS somatic mutations in BRCA were found to have known or homologous

structures in PDB. For LUAD, the number of such protein is 106 (Strelka) and 51
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Figure 3.1: Positions of coding indels on proteins.

(a) Somatic coding indels from BRCA by Strelka. (b) Somatic coding indels from LUAD
by Strelka. (c¢) Somatic coding indels from LUAD by Varscan2.

(Varscan2). For the proteins without known structures, we used RaptorX to pre-

dict the secondary structure types for each amino aide, as described in Methods.

The distributions between two cancer types are different with a p-value of 0.003.
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When compared with the general protein secondary structure type distribution (back-
ground), we found that somatic coding NFS indels in cancer genomes have more
loop structures (57.38%, 59.24% and 59.28% for BRCA /Strelka, LUAD /Strelka and
LUAD /Varscan2, respectively) with low strand types (10.59%, 9.96% and 10.38% for
BRCA /Strelka, LUAD /Strelka and LUAD /Varscan2, respectively) [138]. When com-
pared with the distribution of secondary structure types of NSF' germline indels from
healthy genomes, these somatic indels have more in helix and strand, fewer in the
loop types, as shown in Figure 3.2. These distributions are significantly different with
p-values of chi-square tests less than 2.2x107!6. The result indicated that the NFS
somatic indels in BRCA and LUAD genomes tend to be in core secondary structure
types, helix and strand, when compared with those of germline NFS indels.

mBRCA mLUAD m GATK Resource bundle Background
0.8

0.7 1
0.6 1
0.5 1
0.4 -
0.3 1
0.2 1

0.1 1

Helix Strand Loop

Figure 3.2: Distribution of secondary structure types of somatic NFS indels and
germline NFS indels.



44
Table 3.5: Somatic non-coding indels in BRCA and LUAD

Cancer types Total indels Indels in Indels in Indels overlapping

5UTR  3'UTR with TFBS

320 1574 16,680

BRCA 91,464 (0.35%)  (1.72%) (18.25%)
335 974 20,730

LUAD 73,259 (0.46%)  (1.33%) (28.30%)
BRCA N 12.894 103 442 4,193

LUAD ) (0.80%)  (3.45%) (32.70%)

. 882 12,680 178,218

Germline — 126T.008 ) o7ty (1.00%) (14.07%)

3.3.3  Non-coding exon somatic indels in BRCA and LUAD genomes

For non-coding somatic indels in BRCA, we found that there are 320 and 1,574
indels in the 5’'UTR and 3’UTR regions respectively. For somatic indels in LUAD by
Strelka, there are 335 and 974 indels in the 5’'UTR and 3’UTR regions respectively,
while the numbers are 356 in 5’UTR and 1,257 in 3’UTR by Varscan2 (Tables 3.5
and 3.6). These results show that there are more somatic indels in 3’'UTR regions
than in 5’UTR regions and Varscan2 predicts more non-coding indels especially in the
3’UTR regions even though it calls fewer total somatic indels (Table 3.2). For germline
indels in healthy genomes, 0.07% and 1% of them are in the 5’UTR and 3’'UTR re-
spectively. In BRCA and LUAD genomes, the indels are enriched in both 5’UTR
(0.35%, 0.46% and 0.70% for BRCA /Strelka, LUAD/Strelka and LUAD/Varscan2,
respectively) and 3'UTR (1.72%, 1.33% and 2.48% for BRAC/Strelka, LUAD /Strelka
and LUAD /Varscan2, respectively) (Tables 3.5 and 3.6). Compared with the germline
indels, somatic non-coding exon indels in cancer genomes are also enriched in the pre-
dicted TFBS sequences (18.25%, 28.30% and 23.78% for BRCA /Strelka, LUAD /Strelka
and LUAD /Varscan2, respectively) (Tables 3.5 and 3.6).
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Table 3.6: Somatic non-coding indels in LUAD by Strelka and Varscan2

Indels in Indels in Indels overlapping

Programs Total indels 5'UTR 3'UTR with TFBS

335 974 20,730

Strelka 73,259 (0.46%)  (1.33%) (28.30%)
356 1,257 12,066

Varscan?2 50,746 (0.70%) (2.48%) (23.78%)
Strelka N 53 388 202 613 6,717

Varscan2 ’ (0.86%) (2.62%) (28.72%)
. 882 12,680 178,218

Germline 1,267,008 (0.07%)  (1.00%) (14.07%)

Table 3.7: Somatic indels in SMGs of BRCA and LUAD

Indels in Coding Indels Non-coding
Cancer Total Indels in indels in SMGs’ indels
. SMGs’ .
types indels SMGs CDS overlap non-coding overlap
with TFBS region with TFBS
1,141 349 172 2,005 593
BRCA  OLA6L o050y (30.50%)  (49.28%) (2.19%) (29.58%)
757 267 132 1,390 423
LUAD 73259 o30r)  (35.21%)  (49.44%) (1.90%) (30.43%)
BRCA N 12.824 197 28 17 431 146
LUAD ' (1.54%)  (14.21%) (60.71%) (3.36%) (33.87%)
. 4,820 11 5 15,287 2,518
Germline 1267008 5oy (023%)  (45.45%) (1.21%) (16.47%)
3.3.4  Somatic indels on SMGs

After mapping all the somatic indels to the annotated 125 SMGs, we found that
somatic indels in cancer genomes are enriched in SMGs, when compared with the
germline indels from healthy genomes (Tables 3.7 and 3.8). In addition, somatic
indels are more enriched in SMG’s coding regions in both cancer genomes. In healthy
genomes, there are only 0.23% SMG indels in coding regions, but in cancer genomes,
30.59% and 35.27% of SMG somatic indels are in the coding regions in BRCA and
LUSAD respectively (Table 3.7). The common indels identified by both Varscan2

and Strelka showed that 44.6% of the SMG indels are in the coding regions (Table

Among the 125 SMGs, 70 of them have BRCA somatic indels in CDS regions while
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Table 3.8: Somatic indels in LUAD SMGs with different programs

Indels i Coding Indels Non-coding
Total Indelsin oaor o0 indels in SMGs’ indels
Programs SMGs’ .
indels SMGs CDS overlap non-coding overlap
with TFBS region with TFBS
757 267 132 1,390 423
1 2 ’
Strelka 73259 () 03%)  (35.21%)  (49.44%) (1.90%) (30.43%)
660 180 90 1,128 299
Varscan2 50746 g0y (07.01%)  (50.00%) (2.22%) (26.51%)
Strelka N 93.388 361 161 80 502 167
Varscan2 ’ (1.54%)  (44.60%)  (49.69%) (2.15%) (33.27%)
. 4,820 11 5) 15,287 2,518
Germline 1,267,008 ooy (023%)  (45.45%) (1.21%) (16.47%)

Table 3.9: The number of SMGs with somatic indels in BRCA and LUAD

Cancer # of SMGs # Of.. SMG? # Of: SMG? Both CDS. and
1 s with indels in with indels in non-coding
types with indels . . . .
CDS regions non-coding regions regions

BRCA 118 70 125 70

LUAD 114 71 125 71
BRCA N

LUAD 74 14 106 12
Germline 119 9 125 9

in LUAD, there are 71 SMGs and 53 SMGs (50 overlapped SMGs) have somatic
coding indels by Strelka and Varscan2 respectively (Tables 3.9 and 3.10). When the
SMGs with somatic coding indels were compared between BRAC and LUAD, only 14
SMGs appear in both cancer types, suggesting different mutation/variant patterns in
different cancer types while there are some commonality between cancer types. These
somatic indels have higher F'S rate than all coding somatic indels and much higher
than the rates in germline indels (Tables 3.3, 3.4, 3.11, and 3.12), suggesting these
SMGs contain more deleterious variations in cancer genomes.

For the 125 annotated SMGs, we collect the UTR regions, introns and 100-kbp
flanking intergenic regions as the non-coding regions of SMGs (see Methods). All
SMGs have somatic indels in non-coding regions by Strelka and three SMGs do not
have somatic indels by Varscan2 (Tables 3.9 and 3.10). Interestingly, all SMGs also

have germline indels in non-coding regions, but only 9 SMGs have germline indels
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Table 3.10: The number of SMGs with somatic indels in LUAD with different pro-
grams

# of SMGs # Of: SMG? # of: SMG§ Both CDS. and
Programs 1 s with indels in with indels in non-coding

with indels . . . .

CDS regions non-coding regions regions
Strelka 114 71 125 71

Varscan2 110 53 122 53
Strelka N
Varscan? 92 50 111 46
Germline 119 9 125 9

Table 3.11: Distribution of somatic indels from BRCA and LUAD in SMGs

Indels in Coding Indels Non-coding
Cancer Indels in indels in SMGs’ indels
SMGs’ .
types SMGs CDS overlap non-coding overlap
with TFBS region with TFBS
1,141 349 172 2,005 593
BRCA (Del: 59.86%; (Del: 63.61%; (Del: 68.60%; (Del: 56.06%; (Del: 53.87%;
Ins: 40.14%)  Ins: 36.39%) Ins: 31.40%) Ins: 43.94%) Ins: 46.13%)
(FS: 82.81%;
NFS: 17.19%)
757 267 132 1,390 423
LUAD  (Del: 62.62%; (Del: 73.41%; (Del: 80.30%; (Del: 58.35%; (Del: 61.36%;
Ins: 37.38%) Ins: 26.59%) Ins: 19.70%) Ins: 41.65%) Ins: 38.64%)
(FS: 82.77%;
NFS: 17.23%)
BRCA N 197 28 17 431 146
LUAD (Del: 57.36%; (Del: 53.57%; (Del: 64.71%; (Del: 54.06%; (Del: 53.28%;
Ins: 42.41%)  Ins: 46.43%) Ins: 36.29%) Ins: 45.94%) Ins: 46.72%)
(FS: 82.14%;
NFS: 17.86%)
4,820 11 ) 15,287 2,518
Germline (Del: 56.24%; (Del: 54.55%; (Del: 20.00%; (Del: 56.34%; (Del: 55.95%;

Ins: 43.76%)

Ins: 45.45%)
(FS: 27.27%;
NFS: 72.73%)

Ins: 80.00%)

Ins: 43.66%)

Ins: 43.05%)
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Table 3.12: Distribution of somatic indels in SMGs from LUAD with different pro-

grams
. Coding Indels Non-coding
Indels in  1ndels in indels in SMGs’ indels
Programs SMGs’ .
SMGs CDS overlap non-coding overlap
with TFBS region with TFBS
757 267 132 1,390 423
Strelka  (Del: 62.62%; (Del: 73.41%; (Del: 80.30%; (Del: 58.35%; (Del: 61.36%;
Ins: 37.38%) Ins: 26.59%) Ins: 19.70%) Ins: 41.65%) Ins: 38.64%)
(FS: 82.77%;
NFS: 17.23%)
660 180 90 1,128 299
Varscan2 (Del: 66.67%; (Del: 75.56%; (Del: 78.89%; (Del: 62.94%; (Del: 61.38%;
Ins: 33.33%) Ins: 24.44%) Ins: 21.11%) Ins: 37.06%) Ins: 38.62%)
(FS: 87.78%:
NFS: 12.22%)
Strelka N 361 161 80 502 167
Varscan? (Del: 67.59%; (Del: 75.78%; (Del: 78.75%; (Del: 63.15%; (Del: 63.75%;
Ins: 32.41%) Ins: 24.22%) Ins: 21.25%) Ins: 36.85%) Ins: 36.25%)
(FS: 86.34%;
NFS: 13.66%)
4,820 11 ) 15,287 2,518
Germline (Del: 56.24%; (Del: 54.55%; (Del: 20.00%; (Del: 56.34%; (Del: 55.95%;

Ins: 43.76%)

Ins: 45.45%)
(FS: 27.27%;
NFS: 72.73%)

Ins: 80.00%)

Ins: 43.66%)

Ins: 43.05%)
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in coding regions (Tables 3.9 and 3.10). Among all these SMGs, ATM has the most
number of BRCA non-coding indels (45 by Strelka) and EPHB6 has the most num-
ber of LUAD non-coding indels (36 by Strelka and 40 by Varscan2). When both
cancer types are considered, AJUBA has the most somatic indels in its non-coding
regions (15 by Strelka). We also checked the overlap between these non-coding so-
matic indels and the predicted TFBS sequences. There are 29.58%, 30.43% and
26.51% somatic non-coding indels on SMGs from BRCA /Strelka, LUAD/Strelka
and LUAD /Varscan2 overlap with TFBS, higher than that in the germline indels
in healthy genomes (16.47%) (Tables 3.7 and 3.8). Those non-coding indels that ap-
pear in both BRCA and LUAD have an even higher percentage to overlap with TFBS
sequences (33.87%). These results indicate that somatic indels in BRCA and LUAD
genomes are enriched in TFBSs. In Chapter 4, we found that there are 2.8% predicted
TFBS in coding regions. So we checked the overlap between coding indels on SMGs
and TFBS sequences. There are 49.28%, 49.44% and 50.00% somatic coding indels on
SMGs from BRCA /Strelka, LUAD/Strelka and LUAD /Varscan2 overlap with TFBS,
slightly higher than that in the germline indels in healthy genomes (45.45%) (Tables
3.7 and 3.8). The importance of TFBSs in the regulation of gene expression suggests
that these indels may disrupt the normal functions of transcriptional machinery in

the cancer development or as results of the disease.
3.4 Discussion

With the development of biotechnology, especially the invention of the NGS tech-
nology, a large number of genomes have been sequenced with a variety of cancer
types. Somatic variations in cancer genomes have been one of the main focuses in
cancer studies, including variants in both coding and non-coding regions [4]. How-
ever, most of the cancer genome studies focused on SNPs [95, 120, 127]. In this study,
we analyzed the somatic indels in both BRCA and LUAD genomes.

The somatic indels from different cancer types vary greatly. There are only 16,909
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indels in both cancer types, which account for 15.39% of BRCA and 18.55% of LUAD
somatic indels respectively. Different somatic indel annotation programs also produce
different results for the same genome. A total of 25,278 somatic indels are predicted
by both Strelka and Varscan2 in LUAD genomes, representing 27.73% and 45.67%
of indels from Strelka and Varscan2 respectively. Among these indels, many of them
are germline indels and are removed for feature analyses.

The percentage of deletions in LUAD genomes is higher than that in BRCA
genomes (Tables 3.1 and 3.2). Somatic indels that exist in both BRCA and LUAD
genomes may represent common cancer disease features. The indels called by both
prediction programs may have higher confidence to be true indels as discussed in
Chapter 2. Compared with germline indels in healthy genomes, somatic indels in
cancer genomes have higher proportion in CDS regions. Coding somatic indels also
have higher rate of F'S types, especially in SMGs (Tables, 3.3, 3.4, 3.11 and 3.12). This
phenomenon is not surprising since F'S indels are prone to be deleterious [43, 32, 137|.
The results of protein secondary structure analysis show that somatic indels are en-
riched in helix and strand but depleted in loop, when compared with germline indels.
Somatic indels in cancer genomes may affect the core structural elements, which in
turn change protein structures and functions, leading to disease development.

As reported by Kandoth et al., the top 3 most frequently mutated genes in BRCA
are TP53, GATA3 and MLL3, and the top 3 most frequently mutated genes in LUAD
are TP53, MLL3 and TSHZ3 [130]. In our study, we focus on the somatic indels on
these SMGs and find that TP53, ATM203 and TSHZ2 are the top 3 genes with
most indel variations in BRCA. For LUAD, the top 3 genes are TP53, STK11 and
NAV3 revealed by Strelka and TP53, EPHB6 and ATM203 predicted by Varscan2.
Additional work can help explain if these differences are caused by variation types or
algorithms for somatic indel prediction.

Last but not the least, non-coding somatic indels may also play important roles in
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cancer development. Somatic indels in BRCA and LUAD are enriched in both 5’UTR
and 3’'UTR, as well TFBS sequences, suggesting changes in regulatory regions are a

big part of the cancer disease mechanisms.



CHAPTER 4: Evolution of Exonic Enhancers in the Human Genome

4.1  Background

Eukaryotic genomes contain largely two types of functional sequences: coding-
sequences (CDSs) that encode proteins or RNAs, and cis-regulatory sequences or
modules (CRMs) such as promoters and enhancers that control the expression of
target CDSs [139, 140, 141]. Usually CRMs are located in the intergenic regions or in
the introns of genes [142, 143, 144], therefore they do not overlap with CDSs as well
as b’-untranslated regions (5-UTRs) and 3’-UTRs at the start and end of the first
exons and last exons, respectively. However, it has long been known that in some
cases CDSs, 5’-UTRs and 3’-UTRs can also function as CRMs, particularly enhancers
for different genes |69, 88, 145, 146, 147, 148, 149]. Since mutations of such codonic
enhancers (cEHs) and UTR enhancers (uEHs) can result in diseases by altering their
enhancer activities [69, 87, 150, 151, 152, it is important to understand the prevalence
and evolution of exonic enhancers (eEHs) in the human genome |69, 153]. More
recently, it was reported that at least 15% of codons in the human genome were
hypersensitive to DNase I treatment in 81 human cell types and thus were likely in
dual-use for defining both specific amino acid sequences for protein functions and
specific transcription factors (TFs) binding sites (TFBSs) for gene transcriptional
regulation [70]. These so-called duons were found to be more conserved than non-
duon codons at fourfold degenerate sites, and thus thought to be under additional
selection constraints owing to the dual-use [70]. It was also reported that mutations
in these duons could lead to diseases by altering the activities of relevant cEHs [154].
However, a recent reanalysis of the duons showed that the so-called duons were in

fact not more conserved than non-duon codons when the biased usage of A/T and
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C/G at the third position of the 21 synonymous codon sets was taken into account
[89]. As most of synonymous sites in duons were evolutionarily neutral, these authors
cast doubt on any role of the duons in transcriptional regulation [89]. A similar
conclusion was drawn based on an analysis of three known cEHs [90]. Therefore,
although there is no doubt about the existence of cEHs and uEHs, their prevalence
and how they evolve are under hot debate [89, 90]. On the other hand, it has been
shown that DNase I hypersensitive sites (DHSs) are not a reliable predictor of TFBSs
due to their low resolution and high false positives [155, 156, 157, 158]. It is highly
likely that a considerable proportion of duons predicted solely based on DNase I
hypersensitivity signals [70] may not contain any TFBSs, or only some part of it
harbors TFBSs. Therefore, the evolutionary neutrality of the duons observed by
Xing and He [89] might be due to the inaccuracy of the predicted duons used in their
analysis. To clarify these contradictory results, sufficient experimentally identified
eEHs are needed, however, such a dataset is still lacking. Thus, a set of predicted
CRMs with high accuracy might be the solution.

A recently developed dePCRM2 was used to predict de novo CRMs and constituent
TFBSs, using a large amount of integrated TEF ChIP-seq datasets. dePCRM2 di-
vides the TF binding peaks sequences into two sets: CRM candidates (CRMCs) and
non-CRMs. Each CRMC is evaluates by its TFBSs element(s) [136]. We applied
dePCRM2 to predict CRMC with 6,092 TF ChIP-seq datasets consisting 779 types
of TFs from 2,631 divers cell /tissue types. we found 1,404,973 CRMCs with a total
of 1,359,824,275bp (56.84%), while the non-CRMs have 1,032,664,424bp (43.16%).
The CRMCs and non-CRMs represent 44.03 and 33.44% of the human genome se-
quence respectively. Validation on experimentally determined CRM function-related
sequence elements such as VISTA enhancers and ClinVar variants indicates that our
predicted CRMCs are highly accurate, with an estimated false positive rate (FPR)
of 0.045% and false negative rate (FNR) of 1.27%. FPR and FNR for predicted
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CRMs decrease rapidly with the decrease of p-values. For instance, at a highly strin-
gent p-value cutoff of 5x107%, we predicted 428,628 CRMs and 38,507,543 constituent
TFBSs, covering 31.81% and 12.88% of the genome, respectively. As expected, the
majority of these predicted CRMs (94.42%) and constituent TFBSs (93.65%) sites
are located in non-exonic sequences (NESs). Surprisingly, the remaining 5.58% of
the CRMs and 6.35% of TFBSs sites overlap exons (CDSs or UTRs). The predicted
CRMs in NESs tend to be under either stronger purifying selection or stronger pos-
itive selection than the non-CRMs. Thus, it is interesting to see how the predicted
TFBSs in exons evolve compared to their counterparts in non-CRMs. These puta-
tive exonic TFBSs (eTFBSs) also provide us an opportunity to re-examine the duon

hypothesis and associated fundamental questions for possible dual-use of codons and

UTRs.
4.2  Methods
4.2.1 Datasets

The non-CRMs as well as CRMs and constituent TFBSs predicted at p-value <
5x107% in the human genome were downloaded from the original paper (in submis-
sion). The human genome assembly version GRCh38.p13 was used as the reference
genome. Annotations (CDSs, 5-UTRs and 3’-UTRs) of genes and verified transcripts
were downloaded from the Ensembl Release 100 (https://useast.ensembl.org/index.html).
For each gene, the longest annotated transcript (agreed by different databases and
supported by mRNA data) was selected for coding region assignments. Coordinates
of proteins with known structures were download from the Protein Data Bank (PDB)
[133]. The ChIA-PET dataset in the K562 cell line was downloaded from the GEO
database with the access number GSE33664. TF ChIP-seq datasets were downloaded

from the Cistrome database [159].
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4.2.2  Assignment of secondary structure types

For proteins with known structures in PDB, we assigned secondary structure types
of amino acid sequences using the DSSP program [134] as described previously in
Chapter 3. For proteins without known structures, we assigned secondary structure
types of residues as follows. We first generated a non-redundant protein sequence set
(less than 30% sequence identity) for all annotated proteins in the human genome
using CD-HIT [160]. If a protein in the dataset has a highly homologous protein with
known structure in PDB with at least 50% coverage and 80% sequence identity, the
secondary structure types of the template protein were copied to the target protein. If
no homologous structures were found in PDB, RaptorX, a highly accurate secondary
structure prediction program, was applied to predict secondary structure types with

default settings [161].
4.2.3  Assignment of conservation scores

The GERP(Genomic Evolutionary Rate Profiling)[162] and phyloP [163] scores of
each nucleotide site in the human genome were downloaded from the UCSC Genome

Browser database [164].
4.2.4  Analysis of chromatin interactions

We identified eTFBSs that overlap with any TF ChIP-seq binding peak within
500 bp region centering on its summit, collected in the K562 cells that were used in
our CRM and TFBS prediction (in submission), with an assumption that they are
active in the cells, while the remaining e TFBSs that do not overlap any TF ChIP-seq
binding beaks in the cells are inactive. We calculated significant interactions between
two loci using ChiaSig (Paulden, et al. 2014) with the ChIA-PET reads from the
K562 cells. We then counted the number of the putative active eTFBSs in close
proximity to promoters that are at least 5,000 bp away from the eTFBSs to exclude

the promoter of its own gene. As a control, we performed the same analysis on the
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putative inactive e TFBSs.
4.2.5  Statistical analysis

We used Kolmogorov-Smirnov test, Mann-Whitney U test and x? test to evaluate
statistical significant levels of hypothesis tests as indicated in the text and figure

legends.
4.3  Results
4.3.1 eTFBSs distribution in CDSs and UTRs

To analyze the evolution of eEHs, we used the 428,628 CRMs containing 38,507,543
putative TFBSs predicted at a stringent p-value cutoff 5x107% to minimize FPR, and
focused on the TFBSs in the CRMs. After merging overlapping TFBSs, we ended up
with 25,297,119 non-overlapping TFBSs with a total length of 397,703,041bp, cover-
ing 12.88 % of the genome (3,088,269,832bp). Of these TFBS sites, 372,677,171bp
(93.71%), 11,121,887bp (2.80%), 3,618,277bp (0.91%) and 10,244,058bp (2.58%) are
located in annotated NESs (nTFBSs), CDSs (¢TFBSs), 5-UTRs (5-uTFBSs) and
3-UTRs (3'-uTFBSs) (Figure 4.1a), respectively. If a site is annotated in both CDS
and UTR of different transcripts, we consider it as a CDS site. If a site is anno-
tated in both a 5-UTR and a 3-UTR of different transcripts, we group them as
others with a total number of 41,648bp (0.01%) (Figure 4.1a). To make sure these
24,984,222bp predicted eTFBS sites are transcribed as exons in protein-coding genes,
we mapped them to the 19,694 experimentally verified mRNA transcripts in human
tissues, and found that 20,291,510bp (81.22%) could be mapped to one of the 19,060
mRNA transcripts. Specifically, 11,102,033pb (54.71%), 1,514,454bp (7.46%) and
7,675,023bp(37.82%) were mapped to verified CDSs, 5-UTRs and 3’-UTRs of 18,971,
12,903 and 13,237 genes, respectively (Figure 4.1b). Our subsequent analyses focus
on these eTFBSs in verified exons in the mRNAs, which comprise 33.85%, 48.78%
and 32.48% of the total length of annotated CDSs (32,797,669bp, average length
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1,729bp), 5’-UTRs (3,104,596bp, average length 241bp) and 3-UTRs (23,630,714bp,
average length 1,785bp), respectively (Figure 4.1c). Thus, CDSs and 3-UTRs have
similar eTFBS densities that are lower than that in 5-UTRs. The 19,060 transcribed
genes containing at least one eTFBS harbor an average of 56 potentially overlap-
ping eTFBSs, forming eEHs (Figure 4.1d). As shown in Figure 4.1e, ¢cTFBSs and
3’-uTFBSs tend to be clustered at the 5’-end and 3’-end of CDSs and 3’-UTRs, while
5-uTFBSs are evenly located along most part of 5’-UTRs but tend to avoid the 5-end

and 3’-end.
4.3.2  C/G contents at degenerate sites in ¢TFBSs, 5’-uTFBSs and nTFBSs

The key evidence supporting the duon hypothesis was the observation that fourfold
degenerate sites in duons were more conserved than those in non-duon codons [70].
However, a reanalysis of the original DHSs data found that the duons actually evolved
similarly to non-duon codons when the conservation levels or substitution rates of A/T
and C/G were compared separately, using either phyloP [163] conservation scores
or substitute rates derived from the most recent common ancestor of humans and
gorilla compared with chimpanzee [89]. Thus, the authors augured that the earlier
conclusions |70] were incorrectly drawn due to the higher C/G frequencies at the
fourfold degenerate sites in duons than those in non-duon CDSs, and that C/G at
the fourfold degenerate sites tend to be more conserved than A/T [89]. This result
casts doubts on the validity of the duon hypothesis [89]. Therefore, it is interesting to
see how our predicted ¢cTFBSs and uTFBSs evolve compared with the counterparts
in non-CRMs.

To this end, we first compared the usage of the degenerate third codon positions of
21 synonymous codon sets in the cTFBSs with those in the non-CRMs (see Materials
and Methods). As shown in Figure 4.2a, C/G are more preferred at the degenerate
third positions in the cTFBSs than those in non-CRM CDSs (P < 2.2x1071%, x? test)

for all the synonymous codon sets, which is in agreement with the earlier finding that
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Figure 4.1: Properties of the predicted TFBSs located in annotated exons in the

human genome.

a. Distribution of predicted TFBSs in non-exonic sequences (NESs), coding sequences
(CDSs), 5'-UTRs, 3’-UTRs and in sequences in both 5-UTR and 3’-UTR annotations (oth-
ers). b. Distribution of TFBSs in CDSs, 5’-UTRs and 3’-UTRs in experimentally verified
exons. c¢. Percentage of the length of experimentally verified CDSs, 5’-UTRs and 3’-UTRs
that are predicted as exonic TFBSs (eTFBSs). d. Number of transcribed genes containing
different numbers of predicted eTFBSs. e. Distribution of the predicted eTFBSs along the
CDSs, 5-UTRs and 3-UTRs of genes from the 5-end to the 3’-end as indicated by the
horizontal arrow.

C/G was more preferred at the degenerate third positions of the synonymous codon
sets in the duons than those in non-duon CDSs [89]. Furthermore, although the hu-
man genome is A/T-rich (59% A/T vs. 41% C/G) [165], there are more C/G than
A/T in the ¢TFBSs for all the synonymous sets, except for Asn (AA*), Ile(AT*),
Ser(TC*) and Thr(AC*), while this is true only for Gln (CA*), Leu(CT* and TT*)
and Val (GT*) in non-CRM CDSs (Figure 4.2b). Overall, degenerate third positions

in ¢TFBSs have higher C/G contents than those in non-CRM CDSs (Figure 4.2¢).
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Figure 4.2: Biased distribution of A/T and C/G in predicted TFBSs.

a. Preferences of A/T and C/G in the third positions of the 21 synonymous codon sets
in the predicted codonic TFBSs (¢TFBSs) relative to the those in non-CRM CDSs. b.
Elevation of C/G contents in the third positions of the codons in ¢TFBSs and non-CRM
CDSs. The dotted vertical line indicates the neutral expectation (59%) of A/T contents in
the genome. c¢. A/T and C/G contents in the predicted TFBSs in CDS (the third codon
position), 5-UTRs, 3’-UTRs, and NESs in comparison with the those in their counterparts
in non-CRMs. The dotted horizontal line indicates the neutral expectation (41%) of C/G
contents in the genome. P-values for the difference of frequencies of A/T and C/G between
TFBSs and those in their counterparts in non-CRM CDSs were computed using x? test,
and P < 2.2x10716 for all the comparisons.
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Interestingly, 5’-uTFBSs and nTFBSs also have higher C/G contents than respective
counterparts in non-CRM 5-UTRs and non-CRM NESs, but the opposite is true for
3-uTFBSs (Figure 4.2¢). Furthermore, C/G contents in the degenerate third codon
positions, 5'-UTRs, 3’-UTRs are higher than the neutral expectation (41%), regard-
less of their location in TFBSs or in non-CRMs (Figure 4.2¢). It has been observed
that C/G contents at fourfold degenerate sites are consistently elevated above the
neutral expectation [166], this is particularly true for the sites in the ¢cTFBSs. Inter-
estingly, C/G contents in nTFBSs are also higher than the neutral expectation (41%)

and those in non-CRM NESs, which are close the neutral expectation (Figure 4.2c).
4.3.3  Evolutionary constraints of ¢TFBSs

Since GERP [167] and phyloP [163] scores of nucleotide sites in the human genome
are widely used to quantify their conservation levels, we compared the GERP and
phyloP scores of A/T and C/G at the non-degenerate sites at the first and second
codon positions and degenerate sites at the third positions of the 21 synonymous
codon sets in the cTFBSs with those in the non-CRM CDSs. A large positive conser-
vation score (GERP or phyloP ) suggests a higher possibility of purifying selection;
on the other hand, a small negative conservation score of a site may be a result of
positive selection. A conservation score close to zero indicates that the site is likely
under neutral selection. As previously described, a site with a conservation score of
more than 1 is considered under purifying selection, while a score of less than 1 is
considered under positive selection. The remaining sites are under neutral selection.
The proportion of a set of nucleotide sites is considered to be under positive selection,
selectively neutral or under purifying selection, as the size of the area of the conserva-
tion scores under the curve of the density distribution for three blocks (minimum, -1),
[-1, 1] and (1, maximum), respectively. Evolutionary constraints on non-degenerate
sites at the first and second codon positions reflect the selection pressure from the

requirement of amino acids encoded by the sites for protein structure and functions
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and other functions of CDSs, if any; while the evolutionary constraints on degenerate
sites at the third codon positions indicate the selection pressure on the sites required
for their functions other than protein-coding.

As expected, most (>60%) of non-degenerate sites at both the first and second
codon positions are under purifying selection (Figures 4.3a - 4.3d). However, either
A/T or C/G at both positions in the cTFBSs tend to have higher proportions of sites
under purifying selection (68.24% vs. 61.05% for A/T and 71.00% vs. 65.97% for
C/G at the first codon position sites, and 79.05% vs. 72.46% for A/T and 72.45% vs.
65.32% for C/G at the second codon position sites, measured by the GERP scores)
than those in the non-CRM CDSs (p < 2.2x107!6, KS-test). In general, a small
portion (<15%) of these non-degenerate sites are under positive selection; but either
A/T or C/G at both codon positions in the ¢cTFBSs tend to have lower proportions
of sites under positive selection (14.22% vs. 15.44% for A/T and 9.39% vs. 9.68%
for C/G at the first codon position sites, and 8.47% vs. 9.54% for A/T and 9.67%
vs. 10.78% for C/G at the second codon position sites) than the non-CRM CDSs
(p < 2.2x10716, KS-test). Interestingly, although in general an intermediate portion
(around 20%) of these non-degenerate sites are selectively neutral or nearly so, either
A/T or C/G at both codon positions in the non-CRM CDSs tend to have higher
proportions of sites to be selectively neutral or nearly so (17.54% vs. 23.51% for A/T
and 19.61% vs. 24.35% for C/G at the first codon position, and 12.49% vs. 17.99% for
A/T and 17.88% vs. 23.90% for C/G at the second codon position) than those in the
c¢TFBSs (p < 2.2x1071% KS-test), as indicated by the much larger peaks around score
0 in their density graphs than those of both A/T and C/G in the both positions in the
cTFBSs (Figures 4.3a and 4.3c). These results indicate that the non-degenerate sites
at the first and second codon positions in ¢TFBSs are more likely to be conserved
than those in the non-CRM CDSs that contain a higher proportion of selectively

neutral sites, suggesting that at least a small portion (5-7%) of non-degenerate sites
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are in dual-use. By contrast, only about a third of the degenerate sites at the third
codon positions are under purifying selection, but A/T in the ¢cTFBSs have a lower
proportion (19.01% vs. 21.91%), while C/G in the ¢TFBSs have a higher proportion
(33.84% vs. 32.24%), of sites under purifying selection, than those in the non-CRM
CDSs (Figures 4.3¢ - 4.3f) (p < 2.2x10716, KS-test). Compared to non-degenerate
sites at the first and second codon positions (<15%, Figures 4.3a - 4.3d), a much
higher proportion (>25%) of degenerate sites at the third codon positions are under
positive selection (Figures 4.3e - 4.3f). However, both A/T and C/G at the third
codon positions in the ¢cTFBSs have higher proportions (41.12% vs. 32.47% for A/T
and 29.45% vs. 27.24% for C/G) of sites under positive selection than those in the
non-CRM CDSs (Figures 4.3e - 4.3f) (p < 2.2x107'6, KS-test). Furthermore, more
than a third of the degenerate sites at the third positions are selectively neutral or
nearly so (Figures 4.3e - 4.3f), however, both A/T and C/G in the ¢TFBSs have a
lower proportion of neutrality (39.88% vs. 45.62% for A/T and 36.7% vs. 40.52%
for C/G) than the non-CRM CDSs(p < 2.2x107'¢, KS-test). These results suggest
that the A/T at the degenerate sites in the ¢TFBSs evolve faster than those in
non-CRM CDSs, while C/C at the degenerate sites in the ¢TFBSs evolve either
faster or slower than those in non-TFBS CDSs. This conclusion therefore is in sharp
contrast to either of the earlier two observations that the degenerate sites in duons
are more conserved than those in non-duons (19), or that both A/T and C/G at the
degenerate sites in the duons are similarly or slightly more conserved compared with
those in non-duon CDSs(21), indicating that our predicted ¢cTFBSs are distinct from
the earlier predicted duons based on DHSs. Taken together, our results indicate that
non-degenerate sites at the first and second positions of codons in the cTFBSs are
more likely to be conserved than those in non-CRM CDSs, while the degenerate sites
at the third codon positions in ¢TFBSs are more likely to be under either positive

selection or purifying selection than those in non-CRM CDSs.
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Figure 4.3: Comparison of GERP scores in the predicted ¢cTFBSs and those in non-
CRM CDSs.

Distributions of GERP scores of A/T and C/G at sites in the first (a), second (c¢) and
third (e) positions of the synonymous codons in the predicted cTFBSs and non-CRM CDSs.
Proportions of A/T and C/G at sites that are under positive selection (GERP scores in
(minimum, -1)), purifying selection (GERP scores in (1, maximum)), or evolutionarily neu-
tral (GERP scores in [-1, 1]), at the first (b), second (d) and third (f) positions in the
synonymous codons in the predicted ¢TFBSs and non-CRM CDSs. GERP scores of A/T
and C/G at sites in the third positions (e and f) are also compared with those in NESs.
P-values were computed using Kolmogorov-Smirnov test for the density.

In addition, we reason that if the degenerate sites in non-CRM CDSs are selectively

neutral, then they should evolve similarly to sites in non-CRM NESs; and if the only
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function of degenerate sites in the ¢cTFBSs is for TF binding, then they should evolve
similarly to n'TFBSs. As shown in Figures 4.3e and 4.3f, both A/T and C/G at
the degenerate sites in non-CRM CDSs are more likely to be under either positive
selection (32.47% vs. 22.08% for A/T and 27.24% vs. 23.14% for C/G) or purifying
selection (21.91% vs. 5.24% for A/T and 32.24% vs. 2.74% for C/G), and less
likely to be evolutionally neutral, than those in non-CRM NESs, suggesting that
many degenerate sites in non-CRM CDSs may have some biological functions other
than TF binding. On the other hand, both A/T and C/G at the degenerate sites
in ¢TFBSs are more likely to be under purifying selection (19.01% vs. 17.28% for
A/T and 33.84% vs. 13.36% for C/G), a small portion of A/T are more likely under
strongly positive selection (GERP score < -6.5), than those in the nTFBSs (Figure
4.3e and 4.3f), suggesting that a small portion of A/T (around 2%) and up to 20%
C/G at these degenerate sites might be in dual-use. The same results are obtained

when the phyloP scores were used for these analyses (Figure 4.4a - 4.4f).
4.3.4  Evolutionary constraints of uTFBSs

As we indicated earlier, 1,514,454bp (7.46%) and 7,675,023bp(37.82%) of our pre-
dicted eTFBS sites were mapped to verified 5-UTRs and 3’-UTRs, respectively (Fig-
ure 4.1b). To see how these putative 5-uTFBS and 3’-uTFBS sites evolve, we com-
pared the GERP scores of their A/T and G/C with those in non-CRM UTRs. As
shown in Figures 4.5a - 4.5d, only about 25% of both A/T and C/G in both 5-
uTFBSs and 3’-uTFBSs are selectively neutral, and they are much more likely to be
under either purifying selection (22.69% vs. 6.38% for A/T and 29.49% vs. 5.68% for
C/G in 5-UTRs; and 25.96% vs. 7.22% for A/T and 21.70% vs. 3.70% for C/G in
3-UTRs) or positive selection (56.78% vs. 29.67% for A/T and 42.43% vs. 26.89%
for C/G in 5-UTRs; and 50.24% vs. 28.07% for A/T and 52.11% vs. 27.45% for
C/G in 3-UTRs) than those in respective non-CRM UTRs. Therefore, both A/T
and C/G in uTFBSs evolve similar to those in the nTFBSs. However, Both A/T
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Figure 4.4: Comparison of phyloP scores in the predicted ¢cTFBSs and those in non-

CRM CDSs.

Distributions of phyloP scores of A/T and C/G at sites in the first (a), second (c) and
third (e) positions of the synonymous codons in the predicted cTFBSs and non-CRM CDSs.
Proportions of A/T and C/G at sites that are under positive selection (phyloP scores in
(minimum, -1)), purifying selection (phyloP scores in (1, maximum)), or evolutionarily neu-
tral (phyloP scores in [-1, 1]), at the first (b), second (d) and third (f) positions in the
synonymous codons in the predicted ¢cTFBSs and non-CRM CDSs. phyloP scores of A/T
and C/G at sites in the third positions (e and f) are also compared with those in NESs.
P-values were computed using Kolmogrov-Smirnov test for the density.

and C/G in uTFBSs tend to be more likely to be under purifying selection (22.69%

VS.

17.28% for A/T and 29.49% vs. 13.36% for C/G in 5-UTRs; and 25.96% vs.
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17.28% for A/T and 21.70% vs. 13.36% for C/G in 3’-UTRs) than those in n'TFBSs
(Figure 4.5a - 4.5d), suggesting that at least a portion of uTFBSs are in dual-use.
Interestingly, both A/T and C/G in both non-CRM 5-UTR and non-CRM 3-UTR
sites are more likely to be under either purifying selection (6.38% vs. 5.24% for A/T
and 5.68% vs. 2.74% for C/G in 5-UTRs; and 7.22% vs. 5.24% for A/T and 3.70%
vs. 2.74% for C/G in 3’-UTRs) or positive selection (29.67% vs. 22.08% for A/T and
26.89% vs. 23.14% for C/G in 5’-UTRs; and 28.07% vs. 22.08% for A/T and 27.45%
vs. 23.14% for C/G in 3-UTRs), than those in non-CRM NESs (Figures 4.5a - 4.5d),
suggesting that non-CRM UTR sites might have biological functions other than TF
binding, such as coding for ribosome entry sites in 5’-UTRs [168| and biding sites for
RNA-binding protein (RBPs) in 3-UTRs [169]. The similar evolutionary behaviors of
uTFBSs to that of n'TFBSs strongly suggest that uTFBSs might function as TFBSs.

Similar results were seen using the phyloP scores (Figures 4.6a - 4.6d).
4.3.5  Location of ¢cTFBSs on protein structures

One of the puzzles for the dual-use of CDSs is how the two irrelevant functions of
a DNA sequence can be possibly co-evolved. To address this, we mapped the amino
acids encoded by the ¢TFBSs to known 3D structures of proteins in PDB (Materi-
als and Methods). To reduce the biased distribution of structures to some protein
families, we generated a 30% identity non-redundant protein set (MATERIALS AND
METHODS) whose CDSs contain a total of 7,266,384 bp ¢TFBS sites. Amino acids
encoded by 544,490bp (7.49%) out of the 7,266,384 bp ¢TEFBS sites could be mapped
to 1,761 known protein structures. These mapped amino acids are enriched in loops
(48.73%) compared with the proportion of length of loops in host proteins (46.65%,
p < 2.2x107'%) as well as in all proteins with known structures(40) (47.10%, p <
2.2x1071%) (Figure 4.7a). On the other hand, these mapped amino acids are under-
presented in helices (33.53%) and strands (17.74%) compared with the proportions of

the lengths of helices and strands in the host proteins (34.31% and 19.04%, respec-
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Figure 4.5: Comparison of GERP scores of the predicted uTFBSs, non-CRM UTRs,
nTFBSs and non-CRM NESs.

Distributions of GERP scores of A/T and C/G sites in 5-uTFBSs (a), 3'-uTFBSs (b) and
their counterparts in non-CRMs, in comparison with those in nTFBSs and non-CRM NESs.
Proportions of the sites that are under positive selection (GERP scores in (minimum, -1)),
purifying selection (GERP scores in (1, maximum)), or selectively neutral (GERP scores in
[-1, 1]), in 5-UTRs (c) and 3’-UTRs (d) and their counterparts in non-CRMs, in comparison
with those in nTFBSs and non-CRM NESs. P-values were computed using Kolmogorov-
Smirnov test for the density

tively, p < 2.2x1071%) as well as in all proteins with known structures [138] (34.21%
and 18.69%, respectively, p < 2.2x10716) (Figure 4.7a). For the amino acids encoded
by the remaining 6,721,894bp (92.51%) c¢TFBSs sites, which could not be mapped
to any known protein structures, we predicted their secondary structure types using
RaptorX [161]. A similar pattern was found, in which the amino acids encoded by
these ¢cTFBSs are enriched in loops but depleted in helices and strands (Figure 4.7b).
Specifically, 60.79%, 30.01%, and 9.20% of the peptides encoded by c¢TFBSs were

predicted to adopt loops, helices and strands, respectively, while these proportions
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Figure 4.6: Comparison of phyloP scores of the predicted uTFBSs, non-CRM UTRs,
nTFBSs and non-CRM NESs.

Distributions of phyloP scores of A/T and C/G sites in 5-uTFBSs (a), 3'-uTFBSs (b) and
their counterparts in non-CRMs, in comparison with those in nTFBSs and non-CRM NESs.
Proportions of the sites that are under positive selection (phyloP scores in (minimum, -
1)), purifying selection (phyloP scores in (1, maximum)), or selectively neutral (phyloP
scores in [-1, 1]), in 5-UTRs (c¢) and 3’-UTRs (d) and their counterparts in non-CRMs,
in comparison with those in nTFBSs and non-CRM NESs. P-values were computed using
Kolmogrov-Smirnov test for the density

are 57.30%, 31.92%, and 10.78% (p < 2.2x107'%), respectively, for the host proteins;
and 58.20%, 31.44%, and 10.36% (p < 2.2x10719), respectively, for all the proteins
with predicted secondary structures (Figure 4.7b). It has been shown that loops are
generally less conserved than helices and strands|[138], and we see the same results for
both known (Figures 4.8a and 4.8b) or predicted (Figures 4.8c and 4.8d) secondary
structure types. Since the folding of a core protein is mainly determined by its helix
and strand structures, changes in amino acids in the loops are less likely to alter the

overall structure and function of the protein. In this regard, it is not surprising that

the predicted cTFBSs tend to encode amino acids in loops where purifying selection
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are weaker (Figures 4.3a - 4.3d), and therefore they can adopt for specific TF binding

without compromising the overall structures of proteins.
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Figure 4.7: Preference of secondary structure types of amino acids encoded by the
c¢TFBSs.

a. Proportions of cTFBS-encoded amino acids mapped to known loops, helices, and strands
in comparison with those in the host proteins and in all known protein structures. b.
Proportions of cTFBS-encoded amino acids mapped to predicted loops, helices, and strands
in comparison with those in the host proteins and in all predicted secondary structures. c.
Enrichment of putative active e TFBSs for close physical proximity with distal promoters in
the K562 cells comparison with putative inactive e TFBSs. P-values were computed using
x? test for the proportion plots.
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Figure 4.8: Comparison of conservation scores of secondary structure types of amino
acids encoded by the ¢TFBSs.

Distributions of GERP (a) and phyloP (b) scores of cTFBSs encoding amino acids mapped
to known loops, helices, and strands in comparison with those in the host proteins and in
all known protein structures. Distributions of GERP (c) and phyloP (d) scores of ¢cTFBSs
encoding amino acids mapped to predicted loops, helices, and strands in comparison with
those in the host proteins and in all predicted secondary structures. P-values were computed
using Kolmogorov-Smirnov test

4.3.6 eTFBSs on chromatin structures

Using chromatin conformation capture techniques[170| such as HiC[171], it is now
well established that the linear genomic DNA is folded into highly conserved topo-
logically associating domains (TADs) in the nucleus, where enhancers interact with
promoters via looping over long distances for transcriptional regulation [172, 173|.
Therefore, we hypothesize that eTFBSs must be in close physical proximity to the
promoters of target genes in TADs to carry out their transcriptional regulatory func-

tions, although they may be linearly far away. To test this hypothesis, we used a
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paired-end tag sequencing (ChIA-PED) dataset generated in K562 cells using an an-
tibody against hypomethylated Pol IT at Ser2 [174]. ChIA-PED is a variant of HiC,
which combines ChIP-seq with HiC to identify DNA loci that are physically close to
sequences bound by the antibody-targeted protein [174]. Pol II hypomethylated at
Ser2 stalls at promoters in the preinitiation complex [175], thus the resulting ChIA-
PED data are enriched for reads from loci in close physical proximity to promoters.
As an eTFBS tends to be close to the promoter of its own gene, we only consider a pro-
moter that is at least 5,000pb away from an eTFBS. Of the predicted non-redundant
1,047,183 ¢TFBSs, 129,518 5 -uTFBSs and 733,089 3'-uTFBSs, 606,067, 112,981 and
389,627, respectively, overlap with at least one of the TF ChIP-seq binding peak in
K562 cells (Materials and Methods), which are presumably active in the cells; while
the remaining ¢TFBSs, 5-uTFBSs and 3’-uTFBSs are presumably inactive in the
cells. As shown in Figure 4.7c, these putative active ¢cTFBSs (77,190 out of 606,067,
12.74%), 5’-uTFBSs (24,601 out of 112,981, 21.77%) and 3’-uTFBSs (45,513 out of
389,627, 11.68%) are all highly enriched for close physical proximity to distal pro-
moters compared with putative inactive ¢cTFBSs (22,572 out of 441,116, 5.12%, p
< 2.2x1071%), 5-uTFBSs (556 out of 16,537, 3.36%, p < 2.2x10716) and 3-uTFBSs
(11,247 out of 343,471, 3.27%, p < 2.2x1071%). These results unequivocally demon-
strate that the predicted active eTFBSs indeed tend to be in close physical proximity

to distal promoters, consistent with their possible roles as TFBSs in CRMs.
4.4  DISCUSSION

It has long been known that in addition to encoding amino acids, CDSs can also
code for other information, including splicing enhancers [176], overlapping ORFs [177],
lincRNA [178] and transcriptional enhancers [69, 88, 145, 146, 147, 148, 149]. Tt
has been estimated that up to 25% of codons in the human genome may code for
such overlapping functions based on selection constraints on the degenerate sites in

synonymous codons [179]. Although there are numerous experimentally verified cases
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for each of these dual-uses of codons, it is under hot debate what selection constraints
these codons have undertaken in the course of evolution [70, 176, 180, 181], how
prevalent they are in the human genome |70, 182|, and how it is possible for a sequence
to evolve for two unrelated functions. For instance, Stergachis and colleagues showed
that duons predicted using DHSs [70] are under strong purifying selection and up
to 15% codons are in dual-use, while others [89, 90| conclude that they are largely
selectively neutral. The discrepancies may result from different methods employed
[70, 89, 176] and/or different datasets used |70, 90, 176, 182|. The lack of a large
high quality positive and negative datasets for cEHs has hampered clarifying these
contradictions and addressing related issues of the dual-use of exons. Our recent
prediction of large sets of CRMs and non-CRMs from 77.5% of the human genome
provides us an opportunity to address these issues.

Using the TFBSs in the CRMs that are located in experimentally verified exons,
we found that non-degenerate sites at both the first and second codon positions in
the ¢TFBSs are more likely to be under purifying selection and less likely to be
evolutionarily neutral (Figures 4.3a - 4.3d, 4.4 a - 4.4d) than those in non-CRM
CDSs. Moreover, A/T at degenerate sites at the third codon positions are more
likely be to under strong positive selection, while C/G are more likely to be under
either purifying selection or positive selection than those in non-CRM CDSs (Figures
4.3e and 4.3f, 4.4e and 4.4f). Thus, ¢cTFBSs in general are under more evolutionary
constraints (either positive selection or purifying selection) than non-CRM CDSs. In
this sense, ¢ TFBSs evolve similarly to nTFBSs, although the former tend to be under
stronger purifying selection than the latter (Figures 4.3 and 4.4), suggesting that
at least some non-degenerate sites as well degenerate sites are in dual-use. For the
degenerate sites, the dual-use might be for TFBSs and other non-amino acid-coding
functions such as splicing enhancers [181]. This conclusion therefore is different from

two earlier contradictory ones by Stergachis et al. [70] and Xing and He [89] using
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the same set of duons derived from DHSs. We (in submission) and others have shown
that enhancers predicted based solely on DHSs have high FPRs [155, 156, 157, 158].
Therefore, it is highly likely that a high FPR of the predicted duons might account
for the discrepancy |70, 89]. In addition, both 5’-uTFBSs and 3’-uTFBSs also evolve
very similarly to n'TFBSs in that they all are more likely to be under either positive
selection or purifying selection than their counterparts in non-CRMs (Figures 4.5a
- 4.5d, 4.6a - 4.6d), although uTFBSs are more likely to be under strong purifying
selection than nTFBSs (Figures 4.5a and 4.5b, 4.6a and 4.6b), suggesting that at
least some uTFBSs might be in dual-use.

The observation that C/G contents in degenerate third codon positions, 5-UTRs,
3-UTRs and nTFBSs are higher than neutral expectation (41%) suggests that G/C-
biased gene conversion (GCBC) [183, 184] rate at these sites might be higher than
expected. This might be related to the functions of these sites that are more often
to be nucleosome-free than expected. It is well documented that nucleosome-free
state is related to a high mutation rate and more GCBC events, and thus higher
C/G contents [183, 184]. Interestingly, C/G contents in degenerate sites in ¢TFBSs,
5-uTFBSs and nTFBSs are even higher than those in their counterparts in non-
CRMs, which is consistent with their roles as TFBSs that might be even more often
nucleosome-free than their counterparts in non-CRMs. In contrast, 3’-uTFBS sites
have lower C/G contents than non-CRM 3’-UTR sites, suggesting that these non-
CRM 3’-UTR sites that tend to be located in the middle of 3’-UTRs (Figure 4.1e)
might be more likely constrained for encoding higher C/G-rich binding sites of RBPs
[185, 186, 187] and miRNA response elements [188|, or they are more likely to be
nucleosome-free for unknown reasons.

The paradox concerning the dual-use of exons is how a DNA sequence could evolve
two unrelated functions such as TF binding and encoding amino acids as well as UTR

functions, because, for instance, the amino acid coding requires the DNA sequence to
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specify amino acids that plays a role in the protein’s function and at the same time,
the TF binding demands it to adopt an interface that is specifically bound by a TF.
Our findings might provide an answer to the puzzle. For ¢cTFBSs, as a considerable
proportion of even non-degenerate sites at the first and second codon positions in
non-CRM CDSs are selectively neutral or nearly so (Figures 4.3a - 4.3d, 4.4 a - 4.4d),
hence, they are potentially allowed to evolve into ¢ TFBSs without detrimental effects.
Interestingly, the proportion of selectively neutral non-degenerate sites is smaller in
c¢TFBSs than that in non-CRM CDSs (Figures 4.3a - 4.3d, 4.4 a - 4.4d), suggesting
that the number of such neutral sites is limited in a protein as expected, and once
they become ¢TFBSs, they are under purifying selection. This might explain why
non-degenerate sites in ¢TFBSs tend to be more conserved than those in non-CRM
CDSs (Figures 4.3a - 4.3d, 4.4 a - 4.4d).

Moreover, amino acids encoded by ¢TFBSs tend to be located in structurally and
functional less critical loops, and avoid structurally and functional more important
helices and strands (Figures 4.7a and 4.7b), reducing detrimental effects of evolving
codons into ¢cTFBS sites. The preferential location of cTFBSs at 5’-ends and 3’-ends of
CDSs (Figure 4.1e) suggests that ¢cTFBSs tend to encode at N-termini and C-termini
of proteins. These termini probably have less crucial functions. Therefore, it seems
that while dual-use of some cTFBSs is possible, nature attempts to avoid it. The
strongly purifying selection on the non-degenerate sites and either strong purifying
selection or strong positive selection on the degenerate sites in ¢ TFBSs might suggest
a scenario of how a CDS evolves into a ¢TFBS: nature chooses a codon whose non-
degenerate sites match critical positions in a desired TFBS, and the non-degenerate
site either mutates to the desired nucleotide or remain the same if it matches the
desired site. For 5-uTFBSs, they tend to be located at the middle and avoid the
two ends of 5-UTRs (Figure 4.1e), where 5-UTR function-related sequences are

encoded, such as transcription start sites (T'SSs), ribosome entry sites and upstream
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open-reading frames [168, 189|. For 3-uTFBSs, they tend to be located at the two
ends and avoid the middle of 3'-UTRs (Figure 4.1e), where 3’-UTR function-related
sequences might be coded, such as polyadenylation sites, miRNA response elements
and RBP binding sites [169]. Therefore, as in the case of cTFBSs, it seems that while
dual-use of some UTRs is possible, nature attempts to avoid it.

We found that ¢TFBSs, 5-uTFBSs and 3’-uTFBSs comprise 33.85%, 48.78% and
32.48% of the total length of annotated CDSs, 5-UTRs, and 3’-UTRs, respectively
(Figure 4.1¢). And when the entire CRMs overlapping exons are considered, about
80% of the total length of exons are covered by predicted CRMs. Therefore, e TFBSs
and eEHs might be more prevalent than originally thought. Then the question is,
when only 4.1% of the human genome code for exons [190] and the remaining 95.9%
are NESs that can be potentially used to encode enhancers, why are exons exploited
to encode TFBSs in enhancers? Our finding that all active cTFBSs, 5’-uTFBSs and
3’-uTFBSs tend to be in close physical proximity to distal promoters in TADs may
provide an explanation. When chromatins are folded into conserved 3D structures
[191], so that transcriptionally related genes, promoters, and enhancers are brought
in close physical proximity in compartments such as TADs [172, 173, 192, it is highly
likely that there is no NESs in close proximity to a promoter to function as its enhancer
duo to space constraints [193]. In such a scenario, a few nucleotides in a CDS or UTR
in proximity to a promoter, which codes for less important amino acids such as those
in some loops, or a less critical part of the UTR, may well likely be opted for ¢ TFBSs.
In this regard, it seems that dual-use of some exons is unavoidable, and nature chooses
less critical exons for eTFBSs, thereby avoiding the dilemma of evolving a sequence

for two unrelated functions.
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