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ABSTRACT

PRAMESH SUBEDI. Semiparametric Additive Hazards Models with Missing Covariates.
(Under the direction of Dr. YANQING SUN)

The case-cohort study design was originally proposed by Prentice (1986). Under this de-

sign, a random sub-cohort of individuals is selected from the cohort of study. Full covariate

data are collected from all the cases in the cohort and the sub-cohort, not all the original co-

hort, saving time and money if measures such as biomarkers or genotypes are required. Thus,

certain covariates will be missing from a large number of individuals in the cohort of study.

This design has been widely used in clinical and epidemiological studies to study the effect of

covariates on failure times. The Cox proportional hazards model (Cox 1972) is a popular and

classical choice in such data due to its nice interpretation of regression coefficients and the

availability of efficient inference procedures implemented in all statistical software packages.

Few other methods allow for time varying regression coefficients. An underlying assumption

of the Cox model is the so-called proportional hazards assumption, that is, the hazard ratio

remains constant over time or covariates have log-linear effects on the risk of the event of in-

terest. However, in many real datasets, covariates may exhibit much more complicated effects

than log-linear effects; thus, the proportional hazards assumption may be violated, and the

Cox model may not be an appropriate choice. In addition, most methods do not use the data of

the non-cases that are outside of sub-cohort which results into inefficient inference. Address-

ing these issues, we have proposed an estimation procedure for the semiparametric additive

hazards model for case-cohort data, allowing the covariates of interest to be missing for cases

and for non-cases. We have considered an additive model in which effects of some covariates

are time varying while the effects of some other covariates are constants. Further, we have

assumed that the missing covariates have constant effect on failure time. We have proposed

an Augmented Inverse Probability Weighted Estimation (AIPW) procedure. It uses auxiliary

information that is correlated with missing covariates. We have established the asymptotic
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properties of the proposed AIPW estimation. Our simulation study shows that Augmented

Inverse Probability Weighted estimation is more efficient than the widely used Inverse prob-

ability Weighed (IPW) and Complete case estimation method. This result is apparent if the

sub cohort is very small. The method is applied to analyze a data from a HIV vaccine efficacy

trial.
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CHAPTER 1

1 Nonparametric and Semiparametric Models for Survival Data

1.1 Survival data

Survival analysis also known as failure time data analysis is the statistical analysis of data

where the response variable T is the time from some well-defined origin to the occurrence

of event of interest.The event of interest may occur for some individuals and may not occur

for others within the study period. When the study ends and analysis begins, the data come

as a mixture of complete and incomplete observations.So, the common statistical regression

methods will be inappropriate to analyze survival data.

There are two basic concepts that are used in the whole theory of survival analysis; sur-

vival function and hazard rate.The survival function, S(t), gives the expected proportion of

individuals for which the event has not yet happened by time t. In other words, it gives the

probability that the event of interest has not happened by time t. More formally we write

S(t) = P (T > t)

Where the random variable T denotes the survival time. Often, the survival function decreases

as time increases and approaches to zero because more and more individuals will experience

the event of interest over time. Survival function is the unconditional probability that the event

of interest has not happened by time t. On the other hand, hazard rate α(t) is defined by means

of conditional probability. Assuming T as a continuous random variable, it is considered as

the probability of experiencing the event of interest in a small time interval [t, t + dt) among

those individuals who have not experienced the event of interest by time t. More precisely, the

hazard rate is defined as

α(t) = lim
∆t↓0

1

∆t
P (t ≤ T < t+ ∆t|T ≥ t)
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and Cumulative hazard rate is defined as

A(t) =

∫ t

0

α(s)ds

The survival function may be calculated from the hazard function by

S(t) = exp
(∫ t

0

−α(s)ds
)

Let N(t) be the number of events that have occurred by time t,i.e. N(t) = I(T ≤ t) Then

N(t) is called the counting process. It jumps one unit at the time of each observed event and

is constant between events.Ni(t) is the count of the number of occurrences of the event of

interest for individual i in [0, t]. For survival data Ni(t) = 1 if the event has been observed for

individual i by time t, otherwise Ni(t) = 0. For recurrent event data Ni(t) may take the value

larger than 1.

The intensity process λ(t) is defined as the conditional probability that an event occurs in

[t, t + dt) , given all observed prior to this interval, divided by length of the interval, i.e.

λ(t)dt = P (dN(t) = 1|past)

where dN(t) denotes the number of jumps of the process in [t, t + dt). The intensity process

of the counting process Ni(t) is assumed to take the form

λi(t) = Yi(t)αi(t)

where Yi(t) = I(Ti ≥ t) is at risk indicator for individual i, i.e.Yi(t) = 1 if individual i is at

risk just before time t and Yi(t) = 0otherwise. The process N(T ) =
∑n

i=1Ni(t) counts the

total number of observed events. The aggregated counting process has the intensity process

λ(t) =
n∑
i=1

λi(t) = Y (t)α(t)

Where Y (t) =
∑n

i=1 Yi(t) is the number at risk just before time t.
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1.2 Case-cohort study design

The case cohort study design for failure time analysis was first introduced by R.L. Prentice

in 1986 although it was proposed earlier by Miettinen as case-base design. In epidemiologic

cohort studies and disease prevention trials several thousands subjects are to be followed up

for a number of years before yielding useful results, and thus can be prohibitively expensive.

For example, The Multiple Risk Factor Intervention Trial (MRFIT) , one of the coronary heart

disease prevention trials, was conducted at 22 US clinical centers from 1973 to 1982. 12866

men at the age of 35-57 were randomized and reported results after average follow up of 7

years. Much cost and effort in such studies is related to the analysis of raw materials to as-

semble covariate histories. Measurement of some of these covariates might be too expensive.

If the rate of disease occurrence is low, for example only 2% of the MRFIT mean experienced

the primary end point of coronary heart disease mortality, much of the covariate information

on disease free subjects is redundant.

The case-cohort design is a form of two-phase sampling. At phase I, certain covariates that

are available on all study subjects (e.g., treatment assignment, age, gender, and error-prone

versions of the expensive true co-variates) are collected. Such data are referred to as the first-

phase covariate data. Using some or all of these covariates measured in phase I, a random

sample is selected, and complete covariate histories (including all of the expensive covariates

not measured at the first phase) are assembled for the cases and the sub-cohort. These data

are known as the second-phase covariate data. This design is especially useful in large studies

with infrequent occurrence of the failure event, for which the assembly of covariate histories

from all cohort members may be prohibitively expensive. The case-cohort data are a biased

sample from the study population and thus applying standard methods for randomly sampled

data may result in biased estimation.
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1.3 Additive hazards models

The additive hazard model, or the additive Aalen model was introduced by Aalen(1980). It

assumes that the intensity λ(t) of the counting process N(t) conditional on the p-dimensional

covariate,

X(t) =
(
X1(t), X2(t), · · · , Xp(t)

)T
is of the form

λ(t) = Y (t)XT (t)β(t)

where

β(t) =
(
β1(t), β2(t), · · · , βp(t)

)T
is a p-dimensional regression coefficient.This is a nonparametric model because the re-

gression coefficients are fully time varying.It is useful for those data where the main interest

is risk difference rather than relative risk. The cumulative regression coefficients defined by

B(t) =

∫ t

0

β(s)ds

are easier to calculate than the regression coefficients β(t) themselves

Michal Kulich and D.Y. Lin (2000)demonstrated how to use case-cohort data to estimate the

regression parameter of the additive hazards model. Assuming that the hazard function asso-

ciated with a set of time dependent covariates Z(·) , they proposed an additive hazards model

λ(t|Z) = λ0(t) + βT0 Z(t)

where λ0 is an unspecified base line hazard function and β0is a vector valued regression pa-

rameter (Cox & Oakes, 1984, breslow & Day, 197). They have discussed about constructing

estimators for the model based on case-cohort data and have shown that the proposed estima-

tors are consistent and asymptotically normal. D.Y. Lin & Zhiliang Ying (1994) constructed a
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semiparametric estimating function for β0 which they is consistent and asymptotically normal.

Also, they presented an estimator for the cumulative baseline hazard function.

1.4 Semiparametric additive hazards models

The additive Aalen model is very flexible with all regression coefficients being time varying.

In many practical settings, however, it is of interest to investigate if the risk associated with

some of the covariates is constant with time, that is, if some of the regression coefficients do

not depend on time. This is of practical relevance in a number of settings when there is a

desire to look more closely at the time-dynamics of covariates effects, such as for example

treatment effects in medical studies. Also, when data is limited it is sometimes necessary, as

well as sensible, to limit the degrees of freedom of the considered model to avoid too much

variance, thus making a variance-bias trade-off to get more precise information. McKeague

& Sasieni (1994) considered the semiparametric additive intensity model. It assumes that the

intensity is on the form

λ(t) = Y (t)
(
XT (t)β(t) + ZT (t)γ

)
Where (X(t), Z(t)) is a (p+q)- dimensional covariate, Y (t) is the at risk indicator, β(t)

is a p-dimensional time-varying regression coefficient and γ is a q-dimensional time-invariant

coefficient. Hence the effect of some of the covariates may change with time while the effect

of others is assumed to be constant.

In some cases it may be more appropriate with models where the effect of covariates are

modeled on a multiplicative scale. The multiplicative hazards models encompass the famous

proportional hazards model, or the Cox model as it is also called. The Cox model was intro-

duced by Cox (1972) in the context of survival data, and Andersen & Gill (1982) extended

it to the counting process framework and gave elegant martingale proofs for the asymptotic

properties of the associated estimators. Others that have contributed to establishing asymp-

totic results for the model are Tsiatis (1981) and Nas (1982). The Cox model assumes that the
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intensity is of the form

λ(t) = Y (t)λ0(t)exp(XT (t)β(t))

Where

X(t) = (X1(t), X2(t), · · · , Xp(t))

is a p-dimensional bounded predictable covariate vector and Y (t) is the at risk indicator. The

parameters of the model are the p-dimensional regression parameter β and the nonparametric

baseline intensity function λ0(t) that is assumed to be locally integrable.

There is an extensive literature in the analysis of case-cohort data. Most statistical methods for

case-cohort studies are based on modifications of the full data partial likelihood score function

for the Cox proportional hazards model, which weight the contributions of cases and subco-

hort members by the inverses of true or estimated sampling probabilities.We refer to Prentice

(1986), Self and Prentice (1988), Kalbfleisch and Lawless (1988), Lin and Ying (1993), Bar-

low (1994), Chen and Lo (1999), Borgan et al. (2000), Chen (2001), Kulich and Lin (2004),

and Samuelsen, Ånested and Skrondal (2007), among others.

Sun et al. (2016) proposed an estimation procedure for the semiparametric additive hazards

models with case-cohort data. They assumed that phase two covariates,allowing it to be miss-

ing for cases as well as for non cases, have time varying effect on failure time . The proposed

method is more efficient than widely adopted inverse probability weighted complete case es-

timation method.

In this paper, we considered the general semiparametric additive hazards models of Huffer

and McKeague (1991) allowing some covariates have time varying effect on failure times and

some covariates have time invariant effect on failure time. we have used Bernoulli two-phase

sampling for the selection of subcohort and assumed that the phase two covariate, which is

missing , has time invariant effect on failure times.

The approach of Kang, Cai and Chambless (2013) and most of the existing approaches for

the additive hazards models under the case-cohort design are based on the inverse probability

weighting of complete-case technique of Horvitz and Thompson (1952). With this approach,
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if a subject has a missing value for one covariate, then the observed values of other covariates

together with the observed failure/censoring time of the same subject are not utilized. This

leads to loss of efficiency. By adapting the idea of Robins, Rotnitzky and Zhao (1994), we

propose an augmented estimating equation on the basis of the inverse probability weighting of

complete cases to improve efficiency. It is well known that the augmented inverse probability

weighting of complete-case method is doubly robust and is more efficient than the inverse

probability weighted complete-case approach when the augmented part is correctly specified

(Tsiatis, 2006). The proposed method also utilizes auxiliary variables that have the potential to

influence the sampling probabilities and that may improve efficiency through their correlation

with the phase-two covariates.

This research is motivated by RV144, a preventive vaccine efficacy trial. RV144 random-

ized 16,394 HIV-1 negative volunteers to receive vaccine or placebo. They were followed

for 42 months for occurrence of HIV-1 infection.Vaccine recipients were distributed in the

Low,Medium, and High baseline behavioral risk scores.Three HIV-1 gp120 sequences were

included in the vaccine construct: 92TH023 in the ALVAC canarypox vector prime com-

ponent, and A244 and MN in the AIDSVAX recombinant glycoprotein 120 (gp120) boost

component. 92TH023 and A244 are subtype E HIVs, whereas MN is subtype B.

We have applied the proposed method to assess the associations of incompletely observed

immune response and behavioral risk scores with the rate of subsequent HIV-1 infection. In

RV144, the immune response biomarkers were measured at the Week 26 visit from 34 of 41

vaccine recipients who subsequently acquired HIV-1 infection (cases) and from 205 of 7010

vaccine recipients who completed follow-up HIV-1 uninfected (controls).

1.5 Methodology Description

1.5.1 Inverse probability weighting estimation

Suppose Y is some scalar outcome of interest and X is a set of additional variable and we want

to estimate µ = E(Y ). If we have a sample of full data (Yi, Xi), i = 1, 2, ...., N , the unbiased
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estimator for µ would be the sample mean of Y, i.e.

µ̂full = N−1

N∑
i=1

Yi

. Note that µ̂full is the solution of the estimating equation

N∑
i=1

(Yi − µ) = 0

Now consider the case of missing data. Let δi = 1 if Yi is observed and δi = 0 if Yi is

missing.Then the observed data of N individuals can be written as (δi, δiYi, Xi), i = 1, 2, ..., N.

We assume that missingness of Y depends only on X and not on Y, i.e. P (δ = 1|Y,X) =

P (δ = 1|X) = π(X). We say Y is missing at random. The complete case estimator, the

sample mean of the Yi for the individuals on whom Y is observed,

µ̂cc =

∑N
i=1 δiYi∑N
i=1 δi

, is not a consistent estimator for µ. We see that µ̂cc solves the estimating equation

N∑
i=1

δi(Yi − µ) = 0

The inverse probability weighted estimator is constructed by weighting the complete case

estimating equation. The inverse probability weighted complete case estimating equation for

µ is
N∑
i=1

δi
π(Xi)

(Yi − µ) = 0

which weights the contribution of each complete case i by the reciprocal of π(Xi). Solving
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this estimating equation, the IPW estimator for µ is

µ̂ipw =

[ N∑
i=1

δi
π(Xi)

]−1 N∑
i=1

δiYi
π(Xi)

1.5.2 Augmented inverse probability weighted estimator

The augmented inverse probability weighted estimating equations are formed by adding a re-

gression model to the Inverse Probability Weighted Estimating equation.The AIPW estimating

equation for µ is:

N∑
i=1

[
δi

π(Xi)
(Yi − µ)− δi − π(Xi)

π(Xi)
E(Yi − µ)|Xi

]
= 0

Using some algebra, this equation can be written as:

N∑
i=1

[
δiYi
π(Xi)

− δi − π(Xi)

π(Xi)
E(Yi|Xi)− µ

]
= 0

Solving this estimating equation, the AIPW estimator for µ is

µ̂aipw = N−1

N∑
i=1

[
δiYi
π(Xi)

− δi − π(Xi)

π(Xi)
E(Yi|Xi)

]

The IPW estimator is an inconsistent estimator if the model π(Xi) is misspecified. More-

over, inverse probability weight case estimators use data only from complete cases and dis-

regard the data from individuals for whom Yi is missing. Thus, IPW estimators are likely to

result in inefficiency. The AIPW estimator for µ is a consistent estimator if the model π(x;ψ)

for P (δ = 1|X = x) is correctly specified, or the model m(x; ξ) for E(Y |X = x) is correctly

specified. So AIPW estimators are said to be double robust.
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CHAPTER 2

2 Estimation of Semiparametric Additive Hazards Models with Missing Co-

variates

2.1 Preliminaries

Let U(·) = {U(t), 0 ≤ t ≤ τ} and V (·) = {V (t), 0 ≤ t ≤ τ} be p and q-dimensional phase-

one covariate processes, respectively, where τ < ∞ denotes the time when follow-up ends.

Suppose that Z(·) = {Z(t), 0 ≤ t ≤ τ} is a r-dimensional vector of phase-two covariates.

The phase-one covariates U(·) and V (·) are observed for all the cohort members but the phase-

two covariates Z(·) are only observed for a subset (subcohort/phase-two sample) of the study

subjects. We assume that the conditional hazard function of the failure time T given the

covariates {U(t), V (t), Z(t), 0 ≤ t ≤ τ} follows the semiparametric additive hazards model

h(t|U(t), X(t)) = αT (t)U(t) + βTV (t) + γTZ(t), (1)

where α(t) is p dimensional time-varying regression coefficients, and β and γ are q and

r− dimensional vectors of time-invariant regression coefficients, respectively. Under model

(1), the effects of the covariates X(t) = (V T (t), ZT (t))T are time-invariant while the effects

of U(t) change with time. We denote θ = (βT , γT )T as the time-invariant coefficients for

X(t).

Let C denote the censoring time of the subject. The observed right-censored failure time

can be denoted by (T̃ , δ), where T̃ = min(T,C) and δ = I(T ≤ C). We assume that the

censoring C is independent given the covariate history in the sense that the censoring does

not alter the risk of failure. This assumption is described by E{dÑ(t)|U [0, t], X[0, t], T̃ ≥

t} = E{dN∗(t)|U [0, t], X[0, t], T ≥ t}, where Ñ(t) = I(T̃ ≤ t), N∗(t) = I(T ≤ t), and

X[0, t] = {X(s), 0 ≤ s ≤ t} and Z[0, t] = {Z(s), 0 ≤ s ≤ t} are the covariate histories up

to time t. Let ξ be the indicator of whether the subject is selected into the phase-two sample
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(determined via Bernoulli sampling as stated above). A subject with ξ = 1 has fully observed

covariates U(·), V (·) and Z(·) while a subject with ξ = 0 does not have the observed values

for Z(·).

Let Ω = (T̃ , δ, U(·), V (·), S) be the fully observed part of the data, where S denotes possible

auxiliary variables that have the potential to influence the sampling probabilities and may

predict the phase-two covariates. We assume that the missingness pattern of Z(·) is non-

informative, i.e., not dependent on the unobserved values. This assumption can be expressed

as P (ξ = 1|Z(·), Ω) = P (ξ = 1|Ω), termed as the missing at random (MAR) assumption

in Rubin (1976). However, the sampling probability may depend on any of the phase-one

information, Ω.

Let (Ωi, Zi(·), ξi), i = 1, . . . , n, be independent identically distributed (iid) copies of

(Ω,Z(·), ξ), where Ωi = (T̃i, δi, Ui(·), Vi(·), Si). The observed data are {Ωi, ξiZi(·), ξi, i =

1, . . . , n}. That is, {T̃i, δi, Xi(·), Ui(·), Si} are observed for a subject with ξi = 1, and

{T̃i, δi, Ui(·), Vi(·), Si} are observed if ξi = 0, where Xi(·) = (V T
i (·), ZT

i (·))T . The sam-

pling probability, θi = P (ξi = 1|Ωi), is the conditional probability that Zi(·) is observed. In

particular, this sampling probability depends on the censoring indicator. Under the classical

case-cohort Bernoulli sampling design, θi = 1 if δi = 1 (known as a case) and θi = P (ξi =

1|Ωi, δi = 0) < 1 if δi = 0 (known as a non-case). In this paper, we study the semiparamet-

ric additive hazards regression model (1) where the covariates can be missing for the cases

as well as for the non-cases. Moreover, we assume Bernoulli two-phase sampling such that

within each level of a specified phase-one discrete stratification variable defined by δ, U(·),

and/or V (·), subjects are selected for measurement of Z(·) based on a random draw from a

Bernoulli distribution.
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2.2 Inverse probability weighted complete-case estimation

Let Ni(t) = I(T̃i ≤ t, δi = 1), Yi(t) = I(T̃i ≥ t) and λi(t) = Yi(t)h(t|Ui(t), Xi(t)).

Following Horvitz and Thompson (1952), the inverse probability weighting of the complete

cases has been commonly used in missing data problems. Suppose that the probability of

complete-case θi = P (ξi = 1|Ωi) is known. Let A(t) =
∫ t

0
α(s) ds. Modifying the estimation

equations of McKeague and Sasieni (1994) for the fully observed covariates, model (1) can be

estimated based on the following inverse probability weighted estimating equations for A(t)

and θ:

n∑
i=1

[qiYi(t)Ui(t)Wi(t) (dNi(t)− λi(t)dt)] = 0 (2)

n∑
i=1

∫ τ

0

[qiYi(t)Xi(t)Wi(t) (dNi(t)− λi(t)dt)] = 0 (3)

where qi = ξi/θi and Wi(t) is a weight process depending only on phase-one variables. The

integrals concerned here and later are the Lebesgue integrals defined at each sample point.

The integrals are random variables whose values at each sample point are the values of the

Lebesgue integrals. In practice, the sampling probability θi is unknown. Let θ̂i be an estimate

of θi, say, based on a parametric model such as logistic regression. The inverse probability

weighting of the complete case (IPW) estimators of θ and A(t) can be obtained by solving

(2) and (3) with qi replaced by q̂i = ξi/θ̂i. The estimator for α(t) can be obtained by kernel

smoothing the estimator of A(t).

Under the classical case-cohort design, the sampling probability θi is 1 for all the cases

and equals θi = P (ξi = 1|Ωi, δi = 0) for subcohort members that are not cases. Hence

qi = δi + (1− δi)ξi/θi.

Note from (2) and (3) that if a subject has a missing value for Zi(·), then the observed

failure times and the values of Ui(·) and Vi(·) from the same subject are not fully utilized ex-

cept through the sampling probability θi. Hence the inverse probability weighting of complete

cases approach is inefficient. In the following we describe an improved estimation procedure
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to remedy this potential inefficiency.

2.3 Augmented inverse probability weighted estimation

We adapt the idea of Robins, Rotnizky and Zhao (1994) and propose an augmented estima-

tion procedure for model (1) with the case-cohort/two-phase sampling data. The procedure

augments the inverse probability weighting of complete cases with auxiliary predictors of the

first and second moments of the missing values of phase-two covariates. The new procedure

utilizes the information on the conditional distribution of the missing covariates and is thus

more efficient.

2.3.1 Estimation with known θi and knownE(Zi(t)|Ωi) andE{Zi(t)Z
T
i (t)|Ωi}

First we assume that the sampling probability θi and the conditional expectations E(Zi(t)|Ωi)

and E(Zi(t)Z
T
i (t)|Ωi) are known for those with missing values of Zi(t). Let dei,x(t) and

dei,u(t) be the conditional expectations of Yi(t)Xi(t)Wi(t){dNi(t) − λi(t)dt} and Yi(t)Ui(t)

Wi(t){dNi(t) − λi(t)dt} given Ωi, respectively. Since Ωi = (T̃i, δi, Ui(·), Vi(·), Si) are ob-

served phase-one data, the quantities dei,x(t) and dei,u(t) depend only on Ωi and (θ, α(·)).

Following the augmentation theory of Robins, Rotnizky and Zhao (1994), we propose the

following estimating equations for (α(·), θ):

Ũ1(α(t), θ) =
n∑
i=1

[
qiYi(t)Ui(t)Wi(t){dNi(t)− λi(t)dt}+ (1− qi) dei,u(t)

]
= 0 (4)

Ũ2(α(t), θ) =
n∑
i=1

∫ τ

0

[
qiYi(t)Xi(t)Wi(t){dNi(t)− λi(t)dt}+ (1− qi) dei,x(t)

]
= 0 (5)

The contribution to equation (5) from subject i with ξi = 1 is the weighted average of the ob-

served residual Yi(t)Xi(t)Wi(t){dNi(t)− λi(t)dt} and its conditional expectation dei,x(t) =

E[Yi(t)Xi(t)Wi(t){dNi(t)−λi(t)dt}|Ωi] with weights qi and 1−qi, respectively. The first part

of the contribution, qiYi(t)Xi(t)Wi(t){dNi(t) − λi(t)dt}, represents the inverse probability

weighting of complete-case. The second part, (1− qi) dei,x(t), is the augmentation to the first

13



part with the knowledge of the conditional expectations E(Zi(t)|Ωi) and E(Zi(t)Z
T
i (t)|Ωi)

for the missing covariates. The contribution from subject i with ξi = 0 only involves the

conditional expectation dei,x(t). A similar interpretation applies to equation (4).

Let

Eux(t) = n−1
∑n

i=1Wi(t)Yi(t)Ui(t){qiXT
i (t) + (1− qi)E(XT

i (t)|Ωi)},

Euu(t) = n−1
∑n

i=1Wi(t)Yi(t)Ui(t)U
T
i (t), (6)

Exx(t) = n−1
∑n

i=1Wi(t)Yi(t){qiXi(t)X
T
i (t) + (1− qi)E(Xi(t)X

T
i (t)|Ωi)},

Eun(t) = n−1
∑n

i=1

∫ t
0
Wi(s)Yi(s)Ui(s) dNi(s),

Exn(t) = n−1
∑n

i=1

∫ t
0
Wi(s)Yi(s){qiXi(s) + (1− qi)E(Xi(s)|Ωi)} dNi(s).

Note that

E{Xi(t)|Ωi} =

 Vi(t)

E(Zi(t)|Ωi)

 , (7)

E{Xi(t)X
T
i (t)|Ωi} =

 Vi(t)V
T
i (t) Vi(t)E{ZT

i (t)|Ωi}

E(Zi(t)|Ωi)V
T
i (t) E(Zi(t)Z

T
i (t)|Ωi)

 . (8)

If the sampling probability θi and the conditional expectationsE(Zi(t)|Ωi) andE(Zi(t)Z
T
i (t)|Ωi)

for the phase-two covariates are known, then Eux(t), Euu(t), Exx(t), Eun(t) and Exn(t) de-

pend only on the observed two-phase data. The estimators for θ and A(t), denoted by θ̃ and

Ã(t), are based on the estimating equations (4) and (5) and are given explicitly in the follow-

ing theorem. The proof of Theorem 1 is given at the end of this paper.

Theorem 1. Assume that the sampling probability θi and the conditional expectationsE(Zi(t)|Ωi)

and E(Zi(t)Z
T
i (t)|Ωi) for the phase-two covariates are known. The estimators of θ and A(t)
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obtained by solving (4) and (5) are respectively given by

θ̃ =

{∫ τ

0

[
Exx(t)−Exu(t)E−1

uu (t)ET
xu(t)

]
dt

}−1{
Exn(τ)−

∫ τ

0

Exu(t)E
−1
uu (t) dEun(t)

}
(9)

Ã(t) =

∫ t

0

E−1
uu (s) dEun(s)−

∫ t

0

E−1
uu (s)Eux(s) ds θ̃ (10)

If the sampling probability θi = 1 for all subjects, then qi = 1. The estimators θ̃ and Ã(t)

become the estimators of McKeague and Sasieni (1994) for the full cohort. The estimators

θ̃ and Ã(t) can be viewed as the expectation maximization (EM) estimators based on the

estimating functions of McKeague and Sasieni (1994) for the full cohort. The estimators θ̃

and Ã(t) are obtained by replacing the unobserved components Zi(t) and Zi(t)ZT
i (t) in the

estimators of McKeague and Sasieni (1994) by their conditional expectationsE(Zi(t)|Ωi) and

E(Zi(t)Z
T
i (t)|Ωi), respectively. We notice from (6), (7) and (8) that all observations on the

covariates Vi(·) and Ui(·) are utilized even for those individuals with missing values of Zi(·).

This estimation procedure utilizes all observed information including (T̃i, δi, Ui(·), Vi(·)) for

those subjects with unobserved covariates Zi(·). More efficiency can be achieved with better

predictions of Zi(·) and Zi(·)ZT
i (·).
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2.3.2 Estimation of θi, E(Zi(t)|Ωi), and E(Zi(t)Z
T
i (t)|Ωi) and the AIPW

estimator

Application of the estimators θ̃ and Ã(t) require knowledge of the sampling probabilities θi

and/or of the conditional expectations E(Zi(t)|Ωi) and E(Zi(t)Z
T
i (t)|Ωi) of the phase-two

covariates, which may be unknown in practice. However, these quantities can be readily es-

timated under the MAR assumption. Appropriate modelling of the conditional expectations

E(Zi(t)|Ωi) and E(Zi(t)Z
T
i (t)|Ωi) for the phase-two covariates can lead to improved effi-

ciency as we will see later with further discussions and in simulations. It is convenient to

estimate the terms in question with some well-established parametric methods. However, they

can also be estimated with semi- or nonparametric methods.

Assume that π(Ωi, ψ) is the working parametric model for the probability of complete-

case, θi = P (ξi = 1|Ωi), where ψ is a m-dimensional vector of parameters belonging to

a compact set Θψ. For example, with only case status the phase-one stratification variable,

one can assume the logistic model with logit(π(Ωi, ψ)) = ψT1 Ωi for those with δi = 1 and

a different logistic model with logit(π(Ωi, ψ)) = ψT2 Ωi for those with δi = 0. In this case,

ψ = (ψ1, ψ2). The parameter ψ can be estimated by the M -estimator (Huber, 1981), ψ̂,

that maximizes log
[∏n

i=1{π(Ωi, ψ)}ξi{1 − π(Ωi, ψ)}1−ξi
]
. Therefore, we can estimate θi =

π(Ωi, ψ) by θ̂i = π(Ωi, ψ̂). TheM -estimators converge even if the true model is not a member

of the assumed parametric family (van der Vaart, 1998).

We estimateE(Zi(t)|Ωi) andE{Zi(t)ZT
i (t) |Ωi}with the working models µ1(Ωi, ϕ1) and

µ2(Ωi, ϕ2), respectively, where ϕ1 and ϕ2 are k1 and k2 dimensional vectors of parameters be-

longing to the compact sets Θϕ1 and Θϕ2 , respectively. For example, one can choose µ1(·, ϕ1)

and µ2(·, ϕ2) as the first order or second order linear functions of the variables in Ωi or their

transformations. In this case, the parameters ϕ1 and ϕ2 can be estimated by the M -estimators

based on the least squares regressions of Zi(t) onΩi and Zi(t)ZT
i (t) onΩi, respectively, based

on the observations with ξi = 1 (i.e., those with observed Zi(t)). We denote the estimators of

ϕ1 and ϕ2 by ϕ̂1 and ϕ̂2, respectively.
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Let Êux(t), Êxx(t) and Êxn(t) be the counterparts of Eux(t), Exx(t) and Exn(t) defined

in (6), obtained by replacing qi with q̂i = ξi/π(Ωi, ψ̂), and by replacing E(Zi(t)|Ωi) and

E(Zi(t)Z
T
i (t)|Ωi) with µ1(Ωi, ϕ̂1) and µ2(Ωi, ϕ̂2), respectively. Replacing Eux(t), Exx(t)

and Exn(t) by Êux(t), Êxx(t) and Êxn(t), respectively, in θ̃ and Ã(t) defined in (9) and (10),

we obtain the following augmented inverse probability weighted complete-case (AIPW) esti-

mators for θ and A(t):

θ̂ =

{∫ τ

0

[
Êxx(t)−Êxu(t)E−1

uu (t)ÊT
xu(t)

]
dt

}−1{
Êxn(τ)−

∫ τ

0

Êxu(t)E
−1
uu (t) dEun(t)

}
(11)

Â(t) =

∫ t

0

E−1
uu (s) dEun(s)−

∫ t

0

E−1
uu (s)Êux(s) ds θ̂. (12)

The estimators α̂(t) for α(t) can be obtained by using the kernel smoothing for the estimator

Â(t).
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CHAPTER 3

3 Asymptotic Properties

This section investigates the asymptotic properties of the proposed estimators. Since the

weights qi and q̂i are not generally predictable, the asymptotic properties are investigated

using the empirical process theory which does not require predictability. Suppose that α0(t)

and θ0 are the true values of α(t) and θ under model (1). Let

A0(t) =
∫ t

0
α0(s) ds.

eux(t) = E{Wi(t)Yi(t)Ui(t)X
T
i (t)}, exu(t) = eTux(t)

euu(t) = E{Wi(t)Yi(t)Ui(t)U
T
i (t)}

exx(t) = E{Wi(t)Yi(t)Xi(t)X
T
i (t)}

eun(t) = E{
∫ t

0
Wi(s)Yi(s)Ui(s) dNi(s)}

exn(t) = E{
∫ t

0
Wi(s)Yi(s)Xi(s) dNi(s)}.

and A =
∫ τ

0
{exx(t)− exu(t)e−1

uu (t)eTxu(t)} dt.

The regularity conditions for the asymptotic results are stated in Condition A given in the

Appendix (which includes the assumption of Bernoulli two-phase sampling). Suppose that

π(Ωi, ψ) is the working model for P (ξi = 1|Ωi), and µ1(Ωi, ϕ1) and µ2(Ωi, ϕ2) are working

models for E(Zi(t)|Ωi) and E{Zi(t)ZT
i (t)|Ωi}, respectively. The asymptotic results of the

M -estimators are established in Theorem 5.7 and Theorem 5.2 in van der Vaart (1998). The

conditions of Theorem 5.7 and Theorem 5.21 in van der Vaart (1998) can be easily checked

when logit(π(Ωi, ψ)) = ψTΩi and ψ̂ is the maximizer of the log likelihood function under this

working model. The conditions can also be easily checked when µ1(Ωi, ϕ1) and µ2(Ωi, ϕ2)

are linear regression models and ϕ̂1 and ϕ̂2 are the ordinary least squares estimators.

Let ψ∗, ϕ∗1 and ϕ∗2 be the limits of the M -estimators ψ̂, ϕ̂1 and ϕ̂2, respectively. Let q∗i =

ξi/π(Ωi, ψ
∗) and let E∗{Zi(t)|Ωi} = µ1(Ωi, ϕ

∗
1) and E∗{Zi(t)ZT

i (t)|Ωi} = µ2(Ωi, ϕ
∗
2). Let

E∗(Xi(t)|Ωi) and E∗(Xi(t)X
T
i (t)|Ωi) correspond to E(Xi(t)|Ωi) and E(Xi(t) X

T
i (t)|Ωi)

defined in (7) and (8) with E(Zi(t)|Ωi) and E(Zi(t)Z
T
i (t)|Ωi) replaced by E∗{Zi(t)|Ωi} and
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E∗{Zi(t)ZT
i (t)|Ωi}, respectively. Replacing qi, E(Xi(t)|Ωi) and E(Xi(t)X

T
i (t)|Ωi) by q∗i ,

E∗(Xi(t)|Ωi) and E∗(Xi(t)X
T
i (t)|Ωi) in (6) to get E∗ux(t), E∗xx(t) and E∗xn(t) in place of

Eux(t), Exx(t) and Exn(t), respectively.

The following theorems show that the AIPW estimators possess the double robustness

property, wherein the AIPW estimators θ̂ and Â(t) are asymptotically unbiased if the sam-

pling probability P (ξi = 1|Ωi) and/or both the conditional expectations E(Zi(t)|Ωi) and

E(Zi(t)Z
T
i (t)|Ωi) are modeled correctly. The asymptotic weak convergence results presented

in Theorem 2 and 3 for n1/2(θ̂− θ0) and Gn(t) = n1/2(Â(t)−A0(t)) over t ∈ [0, τ ] are useful

for construction of a confidence interval for θ, and confidence bands for A(t). The asymp-

totic weak convergence result in Theorem 3 is also useful for developing hypothesis testing

procedures for α(t). The proofs of Theorem 2 and 3 are in appindix A.

Let

ηu,i =

∫ τ

0

exu(t)e
−1
uu (t)Wi(t)Yi(t)

[
Ui(t) dNi(t) (13)

−Ui(t){q∗iXT
i (t) + (1− q∗i )E∗(XT

i (t)|Ωi)} θ0 dt− Ui(t)UT
i (t)α0(t) dt

]
.

ηx,i =

∫ τ

0

Wi(t)Yi(t)
[
{q∗iXi(t) + (1− q∗i )E∗(Xi(t)|Ωi)} dNi(t)

−[q∗iXi(t)X
T
i (t) + (1− q∗i )E∗{Xi(t)X

T
i (t)|Ωi}] θ0 dt (14)

−{q∗iXi(t) + (1− q∗i )E∗(Xi(t)|Ωi)}UT
i (t)α0(t) dt

]
.
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Theorem 2. Assuming Condition A, if the sampling probability P (ξi = 1|Ωi) = π(Ωi, ψ),

and/or both the conditional expectations E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and E(Zi(t)Z
T
i (t)|Ωi) =

µ2(Ωi, ϕ2) are correctly specified, then the following assertions hold:

(a) θ̂ P−→θ0;

(b) n1/2(θ̂ − θ0)
D−→N(0,W ) as n → ∞, where W = A−1ΣA−1, Σ = E{(ηx,i − ηu,i +

εΦ,i + εΨ,i)(ηx,i − ηu,i + εΦ,i + εΨ,i)
T}, and εΦ,i and εΨ,i are given in (63) and (64);

(c) In addition, if P (ξi = 1|Ωi) = π(Ωi, ψ) is correctly specified then εΦ,i = 0; and if

E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and E(Zi(t)Z
T
i (t)|Ωi) = µ2(Ωi, ϕ2) are modelled correctly,

then εΨ,i = 0.

The matrix A can be consistently estimated by

Â =

∫ τ

0

{Êxx(t)− Êxu(t)E−1
uu (t)ÊT

xu(t)} dt,

and Σ can be consistently estimated by

Σ̂ = n−1

n∑
i=1

(η̂x,i − η̂u,i + ε̂Φ,i + ε̂Ψ,i)(η̂x,i − η̂u,i + ε̂Φ,i + ε̂Ψ,i)
T ,

where η̂u,i and η̂x,i are the empirical counterparts of ηu,i and ηx,i obtained by replacing θ0,

A0(t), q∗i , exu(t) and euu(t) with θ̂, Â(t), q̂i = ξi/π(Ωi, ψ̂), Êxu(t) and Êuu(t), respectively,

and by replacing the unknown quantitiesE∗(Zi(t)|Ωi) andE∗(Zi(t)ZT
i (t)|Ωi) inE∗(Xi(t)|Ωi)

and E∗(Xi(t)X
T
i (t)|Ωi) with µ1(Ωi, ϕ̂1) and µ2(Ωi, ϕ̂2), respectively. Similarly, ε̂Φ,i and ε̂Ψ,i

are the empirical counterparts of εΦ,i and εΨ,i given in (63) and (64).Let

ζi(t) =

∫ t

0

e−1
uu (s)Wi(s)Yi(s)

[
Ui(s) dNi(s)− Ui(s)UT

i (s) dA0(s)

−Ui(s) {q∗iXT
i (s) + (1− q∗i )E∗(XT

i (s)|Ωi)}θ0 ds
]
. (15)

Theorem 3. Assuming Condition A, if the sampling probability P (ξi = 1|Ωi) = π(Ωi, ψ),
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and/or both the conditional expectations E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and E(Zi(t)Z
T
i (t)|Ωi) =

µ2(Ωi, ϕ2) are correctly specified, then the following assertions hold:

(a) supt∈[0,τ ] |Â(t)− A0(t)| P−→0 as n→∞;

(b) The process Gn(t) = n1/2(Â(t) − A0(t)) converges weakly to a zero-mean Gaussian

process G(t) on [0, τ ] with the covariance matrix

ΣG(t) =

{
ζi(t)−

∫ t

0

e−1
uu (s)eux(s) dsA

−1(ηx,i − ηu,i) + υΦ,i(t) + υΨ,i(t)

}⊗2

,

where ηu,i and ηx,i are defined in (13) and (14), respectively, ζi(t) is defined in (15), and

the expressions for υΦ,i(t) and υΨ,i(t) are given in (76) and (77);

(c) In addition, if P (ξi = 1|Ωi) = π(Ωi, ψ) is correctly specified then υΦ,i(t) = 0 and

εΦ,i = 0; and if E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and E(Zi(t)Z
T
i (t)|Ωi) = µ2(Ωi, ϕ2) are

modelled correctly, then υΨ,i(t) = 0 and εΨ,i = 0.

Under Theorem 3, if the sampling probability P (ξi = 1|Ωi) = π(Ωi, ψ) and both the

conditional expectations E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and E(Zi(t)Z
T
i (t)|Ωi) = µ2(Ωi, ϕ2) are

correctly specified, then υΨ,i(t) = 0, υΦ,i(t) = 0, εΨ,i = 0 and εΦ,i = 0. The asymptotic

covariance matrix of Gn(t) can be estimated consistently by

Σ̂G(t) = n−1

n∑
i=1

{
ζ̂i(t)−

∫ t

0

Ê−1
uu (s)Êux(s) ds Â

−1(η̂x,i − η̂u,i) + υ̂Φ,i(t) + υ̂Ψ,i(t)

}⊗2

,(16)

where ζ̂i(t), η̂u,i and η̂x,i are the empirical counterparts of ζi(t), ηu,i and ηx,i, obtained by re-

placing q∗i with q̂i = ξi/π(Ωi, ψ̂), and by replacing E∗(Zi(t)|Ωi) and E∗(Zi(t)ZT
i (t)|Ωi) with

µ1(Ωi, ϕ̂1) and µ2(Ωi, ϕ̂2), respectively. Here υ̂Φ,i(t) and υ̂Ψ,i(t) are the empirical counter-

parts of υΦ,i(t) and υΨ,i(t), respectively.
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CHAPTER 4

4 Simulation Study

To study the finite sample properties of the proposed methods, we conducted simulation stud-

ies. Let U1 and V = (V1, V2)T be the phase-one co-variates, where U1 is a normal random

variable with µ =1 and σ = 0.2, V1 is a uniform random variable on (0,1) and V2 is a Bernoulli

random variable with P (V2 = 1) = 0.5. Let Z be a phase-two co-variate following the uniform

distribution on (0,1). The random variables U1, V1, V2 and Z are independent. We consider the

following hazard regression model for the failure time T :

h(t|X,Z) = α0(t) + α1(t)U1 + β1V1 + β2V2 + γZ, 0 ≤ t ≤ τ, (17)

where

α0(t) = (0.05 + 0.04t) , α1(t) = (0.03 + 0.05t) , β1 = 0.03 , β2 = 0.02 , γ = 0.02 and

τ = 1.5.

Let S be an auxiliary variable for the phase-two covariate Z with the relationship S =

(Z + θζ), where ζ is a uniform random variable on (0, 1) and θ is a parameter dictating

the association between Z and S. The values θ = 1.73, 0.8875, 0.3278 yield correlation

coefficients ρ = 0.50, 0.750.95 between Z and S, respectively.The AIPW estimators with

ρ = 0.50, 0.75, 0.95 are denoted by AIPW-R50, AIPW-R75, AIPW-R95, respectively.

Let C∗ follow an exponential distribution with mean equal to 10. The censoring time

is taken as C = C∗ ∧ τ , yielding about 80% censoring of the failure time. Let T be the

failure time (time to event) given by model 17 and T̃ = T ∧ C be the observed time, and

δ = I(T ≤ C).Let ξ be the indicator of whether is selected in phase-two,i.e. ξ = 1 indicates

that Z is observed and ξ = 0 indicates that Z is missing. The phase-one data for subject i

are Ωi = (δi, U1i, V1i, V2i, Si). We consider two scenarios of the two-phase sampling. The

first is the classical case-cohort design where the phase-two covariate Z is sampled for all
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cases and for a selected subset of non-cases. For the non-cases, we assume that the sam-

pling probability αi = P (ξi = 1|Ωi, δi = 0) follows a logistic regression model logit(αi) =

π0 + π1Si + π2U1i + π3V1i + π4V2i based on phase-one data. Three different sampling proba-

bilities are considered. The choices of (π0, π1, π2, π3, π4) = (−0.57,−0.5,−0.5,−0.5,−0.5),

(0.5,−0.5,−0.5,−0.5,−0.5) and (0.5, 0.36,−0.5,−0.5,−0.5) correspond to the average sam-

pling probabilities p0 = 0.10,0.25 and 0.50 for the non-cases, respectively. We use the lin-

ear model with response variable Zi and predictors Si, U1i, V1i, V2i and log(T̃i) to estimate

E(Zi|Ωi), based on the observations for which Z is not missing and with observed values

of Zi. The linear model with the response variable Z2
i and the predictors Si, U1i, V1i, V2i and

log(T̃i) is also used to estimate E(Z2
i |Ωi).

The second two-phase sampling scenario allows Zi to be missing for cases as well as for

non-cases. Let ϑi = P (ξi = 1|Ωi, δi = 1) and αi = P (ξi = 1|Ωi, δi = 0). Allowing dif-

ferentiation in the sampling probabilities for cases and non-cases, ϑi and αi are modeled with

separate logistic regression models using the predictors Si, U1i, V1i, V2i. Our simulation exper-

iment considers the average sampling probabilities p1 = 0.5 for the cases, and p0 = 0.10,0.25

and 0.50 for the non-cases. As with the first set-up, we use linear models with the predictors

Si, U1i, V1i, V2i and log(T̃i) to estimate E(Zi|Ωi, δi = 1) and E(Z2
i |Ωi, δi = 1) based on the

observations for which Z is not missing and with observed values of Zi. Similarly, linear

models with the predictors Si, U1i, V1i, V2i and log(T̃i) are used to estimate E(Zi|Ωi, δi = 0)

and E(Z2
i |Ωi, δi = 0) based on the observations that are non-cases and with observed values

of Zi.

Tables 1 ,2 and 3 present our simulation results for n = 600, 750, 1000, and for the average

sampling probabilities p1 = 1.0and0.5 for the cases, and p0 = 0.1, 0.25and0.50 for the non-

cases. The weight function Wi(t) = 1 is used in the simulations. Each entry of Table 1 to

Table 3 is based on 1000 simulation runs. Table 1 summarizes the bias (Bias), the empirical

standard error (SSE), the average of the estimated standard error (ESE), and the empirical

coverage probability (CP) of 95% confidence intervals of the AIPW estimator for θ. Table 1

shows that the AIPW estimator for θ performs well under two-phase sampling with the com-

23



binations of the average sampling probabilities p1 = 1.0 and p0 = 0.1, 0.25 and 0.50. The

biases are small for the sample sizes n = 600, 750 and 1000. The averages of the estimated

standard errors are very close to the empirical standard errors and the coverage probabilities

are very close to the 0.95 nominal level, indicating appropriateness of the proposed estimator

for the variance of θ̂.

Table 1: Bias, empirical standard error (SSE), average of the estimated standard error (ESE)
and empirical coverage probabiity (CP) of 95% confidence intervals for the AIPW estimator
of θ under model (17) with ρ = 0.50 and about 80% censoring percentage based on 1000 sim-
ulations, where p1 is the sampling probability for the cases and p0 is the sampling probability
for the non-cases.

Size Select. P. β1 β2 γ
n p1 p0 Bias SSE ESE CP Bias SSE ESE CP Bias SSE ESE CP

600 1.0 0.10 -0.0034 0.0568 0.0633 0.958 -0.0032 0.0340 0.0372 0.962 -0.0069 0.1185 0.1654 0.955
1.0 0.25 -0.0005 0.0568 0.0545 0.948 -0.0001 0.0317 0.0314 0.952 -0.0041 0.0763 0.0746 0.951
1.0 0.50 -0.0003 0.0529 0.0540 0.949 -0.0013 0.0315 0.0311 0.953 -0.0013 0.0601 0.0598 0.951
0.5 0.10 -0.0013 0.0615 0.0610 0.950 -0.0013 0.0334 0.0346 0.948 -0.0051 0.1223 0.1456 0.951
0.5 0.25 -0.0012 0.0535 0.0546 0.958 -0.0019 0.0318 0.0315 0.948 -0.0018 0.0854 0.0904 0.950
0.5 0.50 0.0010 0.0532 0.0542 0.945 -0.0008 0.0322 0.0313 0.945 -0.0017 0.0749 0.0793 0.963

750 1.0 0.10 -0.0051 0.0486 0.0512 0.943 -0.0021 0.0292 0.0293 0.957 -0.0022 0.0921 0.1122 0.941
1.0 0.25 -0.0007 0.0494 0.0486 0.951 -0.0015 0.0290 0.0280 0.954 0.0018 0.0659 0.0656 0.944
1.0 0.50 -0.0009 0.0484 0.0483 0.951 -0.0019 0.0275 0.0278 0.946 0.0002 0.0534 0.0531 0.956
0.5 0.10 0.0007 0.0496 0.0509 0.953 -0.0012 0.0284 0.0296 0.947 -0.0030 0.0997 0.1162 0.947
0.5 0.25 -0.0015 0.0485 0.0486 0.960 0.0001 0.0281 0.0281 0.951 0.0008 0.0757 0.0784 0.945
0.5 0.50 0.0003 0.0469 0.0483 0.949 -0.0011 0.0279 0.0279 0.947 -0.0040 0.0664 0.0690 0.948

1000 1.0 0.10 -0.0069 0.0420 0.0430 0.950 -0.0018 0.0237 0.0248 0.945 0.0012 0.0767 0.0854 0.943
1.0 0. 25 -0.0004 0.0425 0.0419 0.951 -0.0004 0.0240 0.0242 0.949 -0.0001 0.0538 0.0557 0.946
1.0 0.50 0.0001 0.0403 0.0417 0.942 -0.0010 0.0242 0.0241 0.954 -0.0015 0.0455 0.0460 0.950
0.5 0.10 -0.0001 0.0443 0.0430 0.952 -0.0013 0.0245 0.0249 0.961 0.0011 0.0816 0.0917 0.954
0.5 0. 25 -0.0008 0.0414 0.0420 0.945 -0.0009 0.0237 0.0242 0.945 -0.0005 0.0662 0.0663 0.945
0.5 0.50 -0.0021 0.0410 0.0418 0.951 0.0002 0.0247 0.0241 0.950 -0.0052 0.0560 0.0586 0.951
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We also compare the performance of the proposed AIPW estimator with the IPW estimator

described in Section 2.3 and the complete-case (CC) estimator obtained by deleting subjects

with missing values of Zi. We present the estimation results for the full cohort where all the

values of Zi are fully observed, which is denoted by Full.

Table 2 compares the bias of these estimators for estimating θ. It shows that the biases of

both the IPW and AIPW estimators for θ are very small at a level comparable to the Full

estimator,as if all the values of the covariate Zi were observed. The complete-case estimator

(CC) yields larger biases.

Table 2: Comparison of Bias for the AIPW,IPW, CC and Full estimators of θ under model
(17) with ρ = 0.50 and about 80% censoring percentage based on 1000 simulations, where p1

is the sampling probability for the cases and p0 is the sampling probability for the non-cases.
Size Select. P. Bias(β1) Bias(β2) Bias(γ)

n p1 p0 Full AIPW IPW CC Full AIPW IPW CC Full AIPW IPW CC
600 1.0 0.10 -0.0008 -0.0034 -0.0160 -0.2192 -0.0014 -0.0032 -0.0108 -0.1923 -0.0014 -0.0069 -0.0166 -0.1951

1.0 0.25 -0.0002 -0.0005 -0.0027 -0.1546 0.0006 -0.0001 -0.0015 -0.1467 -0.0001 -0.0041 -0.0063 -0.1485
1.0 0.50 -0.0001 -0.0003 -0.0013 -0.0790 -0.0010 -0.0013 -0.0016 -0.0752 0.0000 -0.0013 -0.0013 -0.0297
0.5 0.10 -0.0002 -0.0013 -0.0072 -0.1092 0.0006 -0.0013 -0.0064 -0.0946 -0.0001 -0.0051 -0.0125 -0.2298
0.5 0.25 -0.0008 -0.0012 -0.0032 -0.0558 -0.0014 -0.0019 -0.0035 -0.0466 -0.0014 -0.0018 -0.0047 -0.1500
0.5 0.50 0.0010 0.0010 0.0000 0.0001 -0.0007 -0.0008 -0.0009 -0.0008 -0.0005 -0.0017 -0.0017 -0.0001

750 1.0 0.10 -0.0038 -0.0051 -0.0137 -0.2107 -0.0009 -0.0021 -0.0078 -0.1914 -0.0002 0.0022 -0.0089 -0.1963
1.0 0.25 -0.0001 -0.0007 -0.0034 -0.1594 -0.0012 -0.0015 -0.0022 -0.1487 0.0027 0.0018 -0.0001 -0.1378
1.0 0.50 -0.0008 -0.0009 -0.0014 -0.0782 -0.0020 0.0019 0.0014 -0.0692 0.0001 0.0002 0.0004 0.0324
0.5 0.10 0.0011 0.0007 -0.0068 -0.1117 -0.0002 -0.0012 -0.0059 -0.0928 -0.0021 -0.0030 -0.0094 -0.2343
0.5 0.25 -0.0012 -0.0015 -0.0022 -0.0533 -0.0005 0.0000 -0.0014 -0.0467 0.0019 0.0008 -0.0016 -0.1448
0.5 0.50 0.0004 0.0003 0.0013 0.0002 -0.0010 -0.0011 -0.0011 -0.0027 -0.0020 -0.0040 -0.0044 -0.0060

1000 1.0 0.10 0.0001 -0.0009 -0.0051 -0.1986 -0.0012 -0.0018 -0.0054 -0.1896 0.0020 0.0012 -0.0032 -0.1845
1.0 0.25 0.0005 0.0002 -0.0023 -0.1602 -0.0001 -0.0004 -0.0016 -0.1477 -0.0002 -0.0009 -0.0009 -0.1434
1.0 0.50 0.0001 0.0001 0.0001 -0.0771 -0.0010 -0.0010 -0.0013 -0.0749 0.0009 0.0015 0.0017 0.0343
0.5 0.10 0.0006 -0.0001 -0.0065 -0.1184 -0.0005 -0.0013 -0.0054 -0.0980 0.0023 0.0011 -0.0049 -0.2357
0.5 0.25 -0.0003 -0.0008 -0.0016 -0.0451 -0.0005 -0.0009 -0.0018 -0.0467 0.0005 -0.0005 -0.0010 -0.1458
0.5 0.50 -0.0021 -0.0021 -0.0015 -0.0017 0.0002 0.0002 0.0005 0.0016 -0.0033 -0.0052 -0.0053 -0.0034
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Table 3: Relative efficiency (REE) of the AIPW, IPW, CC estimators compared to the Full
estimator for θ under model (17) with ρ = 0.50 and about 80% censoring percentage based
on 1000 simulations, where p1 is the sampling probability for the cases and p0 is the sampling
probability for the non-cases.

Size Select. P. REE(β1) REE(β2) REE(γ)

n p1 p0 AIPW IPW CC AIPW IPW CC AIPW IPW CC
600 1.0 0.10 0.9348 0.5869 0.2169 0.9201 0.6287 0.2265 0.4551 0.4642 0.2289

1.0 0. 25 0.9957 0.8662 0,3418 0.9876 0.8904 0.3374 0.7266 0.7028 0.3429
1.0 0.50 0.9969 0.9598 0.5564 0.9979 0.9714 0.5679 0.9058 0.9014 0.5624
0.5 0.10 0.9202 0.6133 0.2120 0.9382 0.6713 0.2048 0.4536 0.4454 0.2159
0.5 0. 25 0.9923 0.8241 0.3689 0.9858 0.8735 0.3975 0.6315 0.6158 0.3874
0.5 0.50 0.9973 0.9225 0.6887 0.9925 0.9468 0.6936 0.7229 0.7174 0.6904

750 1.0 0.10 0.9721 0.6332 0.2216 0.9635 0.6954 0.2238 0.5278 0.4942 0.2250
1.0 0.25 0.9886 0.8888 0.3451 0.9951 0.9113 0.3538 0.7110 0.6959 0.3269
1.0 0.50 0.9982 0.9761 0.5689 0.9972 0.99862 0.5527 0.9107 0.9108 0.5721
0.5 0.10 0.9557 0.6355 0.2101 0.9499 0.6924 0.2046 0.4769 0.4509 0.2174
0.5 0.25 0.9910 0.8299 0.3819 0.9938 0.8956 0.3777 0.6287 0.6092 0.3800
0.5 0.50 0.9961 0.9436 0.6835 0.9971 0.9453 0.7070 0.7197 0.7194 0.6919

1000 1.0 0.10 0.9652 0.6884 0.2219 0.9817 0.7525 0.2206 0.5558 0.5301 0.2335
1.0 0.25 0.9948 0.8901 0.3450 0.9924 0.9256 0.3469 0.7722 0.7502 0.3529
1.0 0.50 0.9966 0.9761 0.5567 0.9988 0.9815 0.5479 0.9174 0.9099 0.5714
0.5 0.10 0.9753 0.6754 0.2224 0.9613 0.7174 0.2187 0.4947 0.4592 0.2222
0.5 0.25 0.9927 0.8854 0.3792 0.9919 0.8881 0.3744 0.6345 0.6241 0.3747
0.5 0.50 0.9999 0.9364 0.7159 0.9984 0.9651 0.7242 0.7276 0.7187 0.7140

Table 3 compares the relative efficiency (REE) of the AIPW, IPW and CC estimators rel-

ative to the Full estimators, where REE for each of the estimators is defined as SSE of the

Full estimator divided by SSE of the corresponding estimator. It shows that the relative ef-

ficiency of the AIPW-R50 estimator for θ is larger than the relative efficiency of the IPW

estimator, which is in turn larger than that of the complete-case estimator, in each case. The

efficiency of the AIPW estimator gains the most over the IPW estimator when the sampling

probability for the non-cases is small, e.g., p0 = 0.1. This is because the AIPW estimator can

more efficiently utilize information on the failure time and other fully observable covariates

for individuals with missing covaiate(s).

Figure 1 presents the comparison of the estimators for the nonparametric component

A1(t) =
∫ t

0
α1(s) ds for n = 600 and with average sampling probabilities p1 = 0.5 for the

cases and p0 = 0.1 for the non-cases. Figure 1(a) plots the biases of the estimators for A1(t)
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for 0 < t ≤ 1.5 for each of the estimators, AIPW-R50, AIPW-R75, AIPW-R95, IPW, CC and

Full. Figure 1(b) plots the relative efficiencies of these estimators. The coverage probabilities

of the 95% pointwise confidence intervals for A1(t) for each t using the AIPW estimators are

given in Figure 1(c).The coverage probability of the IPW estimator is not presented because

the estimation of its standard error is much more complicated due to lack of orthogonality,

that is, one has to take into consideration the estimation variance for the sampling probability

models.

Figure 1(a) shows that the estimation biases of both the IPW and AIPW-R50, AIPW-R75,

AIPW-R95 estimator for A1(t) are very small, comparable to the estimator as if all the values

of the covariate Zi were observed.The bias of the complete case estimation of A1(t) is much

larger.Figure 1b shows that the relative efficiency of AIPW-R50, AIPW-R75 and AIPW-R95

is significantly greater than that of IPW estimation and complete case estimation.The rela-

tive efficiency of AIPW-R50 is slightly smaller than that of AIPW-R75 and AIPW-R95. Fig

1c shows that the point wise coverage probability for A1(t) for AIPW-R50, AIPW-R75 and

AIPW-R95 estimators are very close to the 0.95 nominal level.

The simulation results on relative efficiency, for n = 600 with p1 = 0.5 and p0 = 0.1, for es-

timating γ is 0.4536 for AIPW-R50, 0.4454 for IPW and 0.2159 for complete case estimator.

The relative efficiencies for estimating β1andβ2 are 0.9202 and 0.9382 for AIPW, 0.6133 and

0.6713 for IPW estimator, respectively.The relative efficiency of estimating A1(t) for AIPW

is close to 0.99 and is less than 0.80 for IPW. It shows that the advantage of using AIPW

estimator over the IPW estimator is greater for estimating the effects of those covariates that

are fully observed and less for the covariates with missing values.
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Figure 1: Comparision of the AIPW-R50, AIPW-R75, AIPW-R95, IPW, CC and Full estima-
tors for the cumulative coefficient A1(t) under model ( 17) based on 1000 simulations with
n = 600 and with sampling probabilities 0.5 for the cases and 0.10 for the non cases: (a) the
plots of the biases of the estimates: (b) the plots of the relative efficiencies of the estimators:
(c) the coverage probabilities of the 95% pointwise confidence intervals for A1(t)for each t
using the AIPW estimators
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CHAPTER 5

5 Data Application

The RV144 was a preventive HIV vaccine efficacy trial randomized 16,394 HIV-1 negative

volunteers to receive vaccine (n = 8198) and placebo ( n= 8196) and monitered them for 42

months for occurrence of the primary study endpoint of HIV-1 infection. We apply the pro-

posed AIPW estimation procedure to the vaccine group,which included 5035 men and 3163

women. They were assigned to received four vaccinations at weeks 0, 4, 12 and 24. Blood

samples were collected from all participants at the week 26 visit for potentially measuring

biomarkers of immune response to the vaccine. Participants were monitored for 42 months

after the week 26 visit for occurrence of the primary endpoint of HIV-1 infection, with 43

observed HIV-1 infections among the 8198 vaccine recipients.

The tested vaccine contained three specific HIV-1 gp120 sequences−92TH023 in the ALVAC

canarypox vector prime component administered at week 0, 4, 12, 24 and A244 and MN in the

AIDSVAX protein boost component administered at week 12 and 24. The 92TH023 and A244

sequences are CRF01 AE HIV-1s whereas the MN sequence is a subtype B HIV-1. Since the

CRF01 AE vaccine-insert sequences were genetically much closer to the population of HIV-1

sequences that trial participants were exposed to than MN, we expect they were more likely

to have induced protective immune responses. Moreover, the A244 vaccine-insert sequence is

of special interest because various analyses have supported that it may have the best induced

protective V2 antibodies (e.g., Alam et al., 2013).

Accordingly, our analysis focuses on the A244 vaccine-insert sequence and on post Week 26

HIV-1 infection endpoints of vaccine recipients. The observed failure time T̃i is the time from

week 26 visit to the HIV-1 infection diagnosis (the failure time) or the time to right censoring

(study dropout, administrative censoring at 42 months, etc.).

Many papers (e.g., Haynes et al., 2012; Yates et al., 2014; Zolla-Pazner et al., 2014) re-
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ported analyses supporting that vaccine recipients with higher week 26 levels of antibodies

binding to the V1V2 portion of the HIV-1 envelope protein had a significantly lower rate of

HIV-1 infection over the subsequent 36 months. This observation was made for antibodies

measured to each of several specific V1V2 sequences, including the A244 vaccine-insert se-

quence. In general, vaccines induce immune responses to the vaccine-insert sequences but

not necessarily to sequences not inside the vaccine construct, suchthat vaccines tend to con-

fer greater efficacy to prevent infection or disease with sequences matching the vaccine-insert

sequences than with sequences mismatching the vaccine-insert sequences. Therefore, it is of

interest to refine the analysis of the association of V1V2 antibodies with HIV-1 infection to

account for the genetic type of the HIV-1 infection defined in terms of the V1V2 sequence. In

particular, the theory is that if A244-induced V1V2 antibodies are a cause of vaccine efficacy,

then we would expect to see that the association of V1V2 antibodies with HIV-1 infection

would be stronger against infection with V1V2 sequences close to the A244 sequence than

against infection with V1V2 sequences far from the A244 sequence.

Our analysis studies the same week 26 biomarker measuring level of IgG antibodies to the

V1V2 portion of A244 that was previously studied by Yang et al. (2016); we label this week

26 biomarker IgG-A244V1V2. This biomarker wasmeasured for 34 of 41 HIV-1 infected

vaccine recipients with HIV-1 V1V2 sequence data and for a random sample of 205 vaccine

recipient controls. The observed biomarker was standardized to have mean 0 and variance 1

for the analysis.

Let Ri denote the biomarker IgG-A244V1V2 for subject i. The amount of exposure to HIV-1

includes the phase-one covariate baseline behavirol risk score in the model with three lev-

els(low, medium and high). We code this risk score by two dummy indicator variables U1 and

U2 , where U1 = 1 if subject i is in the Low group and U2 = 1 if subject i is in the Medium

group. The biomarker Riis the phase-two covariate, which can be missing for both case and

non-case subjects.
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We consider the following semiparametric additive hazards regression model

h(t|X,Z) = α0(t) + α1(t)U1 + α2(t)U2 + γZ, 0 ≤ t ≤ 3.5, (18)

where X = (1, U1, U2)T and Z = Ri. Let ξi be the indicator that Ri is observed in phase-two

sampling. In this data ,Ri is measured in 79% (34 out of 43) and 2.5% (205 of 8155)of the non-

cases. The phase -two variable,Ri, has mean (µ)= 9.2462 and standard deviation(s)=1.5991.We

have standardized this covariate. The correlation between the covariates vaccine number and

the biomarker A244V 1V 2 is 0.8538. So,We consider num vacc as the auxiliary variable de-

noted by S. Two logistic regression models are used to model the sampling probabilities for

the cases and for the non-cases separately. The estimated sampling probabilities ϑ̂i for the

cases are given by logit(ϑ̂i) = −5.6680 + 1.9357Si − 0.1430U1i + 2.3336U2i with respec-

tive standard errors 2.4488, 0.6597, 1.1213, 1.9943. The estimated sampling probabilities α̂i

for the non-cases are given by logit(α̂i) = −6.3159 + 0.7283Si − 0.2012U1i − 0.1117U2i

with standard errors 0.7129, 0.1784, 0.1737, 0.1895. The weights qi are estimated by q̂i =

δiξi/ϑ̂i + (1− δi)ξi/α̂i.

Let Qi = (1, Si, U1i, U2i, log(T̃i)). The linear models with the predictors Qi are used

to estimate E(Zi|Ωi, δi = 1) and E(Z2
i |Ωi, δi = 1) based on the observations that are

cases and with observed Zi’s. The term E(Zi|Ωi, δi = 1) is estimated by η̂TQi where

η̂ = (−9.2865, 2.4023,−0.85600,−0.5167, 0.2414)T with respective standard errors 1.1776,

0.2992, 0.2781, 0.2686, 0.2437, and E(Z2
i |Ωi, δi = 1) is estimated by ν̂TQi where ν̂ =

(33.0345,−8.1843, 0.6707, 0.1602,−0.2040)T with respective standard errors 1.1516, 0.2926,

0.2720, 0.2626, 0.2384. Similarly, the linear models with the predictors Qi are used to

estimate E(Zi|Ωi, δi = 0) and E(Z2
i |Ωi, δi = 0) based on the observations that are non-

cases and with observed Zi’s. The term E(Zi|Ωi, δi = 0) is estimated by ϕ̂TQi where

ϕ̂ = (−7.3815, 2.5245, 0.0358,−0.0281,−2.0291)T with respective standard errors 1.97486,

0.10066, 0.08417, 0.09056, 1.58167, and E(V 2
i |Ωi, δi = 0) is estimated by κ̂TQi where κ̂ =

(42.2632,−10.7899, 0.1296,−0.1157, 0.8496)T with respective stand errors 7.4488, 0.3797,

0.3175, 0.3416, 5.9658.
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Our method with Wi(t) = 1 gives the estimated effect of the immune response γ̂ =

−0.0001819378 with standard error of 0.0001653135, yielding p-value 0.2711 for testing γ =

0, confirming that the immune response does not have significant effect on the hazard of

HIV-1 infection. The estimates of the cumulative coefficients A0(t) =
∫ t

0
α0(s) ds, A1(t) =∫ t

0
α1(s) ds and A2(t) =

∫ t
0
α2(s) ds are plotted in Figure 2 along with their 95% pointwise

confidence bands. Figure 2(b) and 2(c) indicate that estimated cumulative coefficients are

decreasing.
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Figure 2: The AIPW estimation of the cumulative coefficients under model (18) using vaccine
number as auxiliary variable: ( a ) the plot of Â0(t) for the cumulative baseline function with
95% pointwise confidence bands; ( b ) the plot of Â1(t) for the cumulative effect of risk score
of low group with 95% pointwise confidence bands; ( c) the plot of Â2(t) for the cumulative
effect of risk score of medium group with 95% pointwise confidence bands

33



References

Aalen, O.O. (1980). A model for nonparametric regression analysis of counting processes.

Lecture Notes in Statistics-2: Mathematical Statistics and Probability Theory, 1–25. Springer

Verlag, New York.

Barlow, W.E. (1994). Robust variance estimation for the case-cohort design. Biometrics 50,

1064–1072.

Borgan, Ø., Langholz, B., Samuelsen, S.O., Goldstein, L. and Pogoda, J. (2000). Exposure

stratified case-cohort designs. Lifetime Data Analysis 6, 39–58.

Breslow, N. E. and Lumley, T. (2013). Semiparametric models and two-phase samples: Ap-

plications to Cox regression. Banerjee, M., Bunea, F., Huang, J., Koltchinskii, V., and

Maathuis, M. H., eds., From Probability to Statistics and Back: High-Dimensional Mod-

els and Processes – A Festschrift in Honor of Jon A. Wellner, (Beachwood, Ohio, USA:

Institute of Mathematical Statistics) 9, 65–77.

Breslow, N., Lumley, T., Ballantyne, C., Chambless, L. and Kulich, M. (2009a). Improved

Horvitz-Thompson estimation of model parameters from two-phase stratified samples:

Applications in epidemiology. Statistics in Biosciences 1, 32–49.

Breslow, N., Lumley, T., Ballantyne, C., Chambless, L. and Kulich, M. (2009b). Using the

whole cohort in the analysis of case-cohort data. American Journal of Epidemiology 169,

1398–1405.

Breslow, N. and Wellner, J. (2007). Weighted likelihood for semiparametric models and two-

phase stratified samples, with application to Cox regression. Scandinavian Journal of

Statistics 34, 86–102.

Chen, K. (2001). Generalized case-cohort sampling. Journal of the Royal Statistical Society,

Ser. B 63, 791–809.

34



Chen, K. and Lo, S.H. (1999). Case-cohort and case-control analysis with Cox’s model.

Biometrika 86, 755–764.

Cheng, S.C., Wei, L.J. and Ying , Z. (1995). Analysis of transformation models with censored

data. Biometrika 82, 835–845.

Flynn, N. M., Forthal, D. N., Harro, C. D., Judson, F. N., Mayer, K. H., Para, M. F., and

the rgp120 HIV Vaccine Study Group. (2005). Placebo-controlled trial of a recombinant

glycoprotein 120 vaccine to prevent HIV infection. Journal of Infectious Diseases 191,

654–665.

Gao, G. and Tsiatis, A. A. (2005). Semiparametric estimators for the regression coefficients in

the linear transformation competing risks model with missing cause of failure. Biometrika

92, 875–891.

Gilbert PB, Peterson ML, Follmann D, Hudgens MG, Francis DP, Gurwith M, Heyward WL,

Jobes DV, Popovic V, Self SG, Sinangil F, Burke D, Berman PW. (2005) Correlation be-

tween immunologic responses to a recombinant glycoprotein 120 vaccine and incidence

of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. Journal of Infectious Dis-

eases. 191, 666–677.

Gottschalk, P. and Dunn, J. (2005). The five-parameter logistic: a characterization and com-

parison with the four-parameter logistic. Analytical Biochemistry 343, 54–65.

Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement

from a finite universe. Journal of the American Statistical Association 47, 663–685.

Huber, P. J. (1981). Robust Statistics. Wiley, New York.

Huffer, F.W. and McKeague, I.W. (1991). Weighted least squares estimation for Aalen’s addi-

tive risk model. Journal of the American Statistical Association 86, 114–129.

Jin, Z., Lin, D.Y., Wei, L.J. and Ying , Z. (2003). Rank-based inference for the accelerated

35



failure time model. Biometrika 90, 341–353.

Kalbfleisch, J.D. and Lawless, J.F. (1988). Likelihood analysis of multi-state models for dis-

ease incidence and mortality. Statistics in Medicine 7, 149–160.

Kang, S., Cai, J. and Chambless, L. (2013). Marginal additive hazards model for case-cohort

studies with multiple disease outcomes: an application to the Atherosclerosis Risk in

Communities (ARIC) study. Biostatistics 14, 28–41.

Kong, L. and Cai, J. (2009). Case-cohort analysis with accelerated failure time model. Bio-

metrics 65, 135–142.

Kulich, M. and Lin, D.Y. (2000). Additive hazard regressions for case-cohort studies. Biometrika

87, 73–87.

Kulich, M. and Lin, D.Y. (2004). Improving the efficiency of relative-risk estimation in case-

cohort studies. Journal of the American Statistical Association 99, 832–844.

Li, Z., Gilbert, P.B., Nan, B. (2008). Weighted likelihood method for grouped survival data in

case-cohort studies with application to HIV vaccine trials. Biometrics 64, 1247–1255.

Lin, D. Y. and Ying, Z. (1993). Cox regression with incomplete covariate measurements.

Journal of the American Statistical Association 88, 1341–1349.

Lin, D. Y. and Ying, Z. (1994). Semiparametric analysis of the additive risk model. Biometrika

81, 61–71.

Lin, D. Y. and Ying, Z. (2001). Semiparametric and nonparametric regression analysis of

longitudinal data (with discussion). Journal of the American Statistical Association 96,

103–113.

McKeague, I.W. and Sasieni, P.D. (1994). A partly parametric additive risk model. Biometrika

81, 501–514.

36



Murphy, S. A., Rossini, A. J., and van der Vaart, A. W. (1997). Maximum Likelihood Estima-

tion in the Proportional Odds Model. Journal of the American Statistical Association 92,

968–976.

Nan, B. and Wellner, J. A. (2013). A general semiparametric Z-estimation approach for case-

cohort studies. Statistica Sinica 23, 1155-1180.

Plotkin, S.A. and Gilbert, P.B. (2012). Nomenclature for immune correlates of protection after

vaccination. Clin Infect Dis 54, 1615–1617.

PrÆstgaard, J. and Wellner, J. A. (1993). Exchangeably weighted bootstraps of the general

empirical process. Annals of Probability 21, 2053–2086.

Prentice, R.L. (1986). A Case-cohort design for epidemiologic cohort studies and disease

prevention trials. Biometrika 73, 1–11.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581–592.

Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994). Estimation of regression coefficients when

some regressors are not always observed. Journal of the American Statistical Association

89, 846–866.

Saegusa, T. and Wellner, J. A. (2013) Weighted likelihood estimation under two-phase sam-

pling. �Annals of Statistics 41, 269–295.
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Appendix A: Proof of the Theorems

First we present Lemma 1 and Lemma 2, which are the key results for proving Theorem 2 and

Theorem 3. The proofs of two lemmas are given just before the proofs of the theorems.

Lemma 1. Let Ri(t), t ∈ [0, τ ], i = 1, . . . , n, be q-dimensional iid processes whose sam-

ple paths are of bounded variation. Assume that (E{‖V [Ri; s, t]‖2})1/2 ≤ C(t − s)α, for

s, t ∈ [0, τ ], where α > 0 and C > 0 are constants, and ‖ · ‖ is the Euclidean norm. Then

n−1
∑n

i=1Ri(t)
P−→ER1(t), uniformly in t ∈ [0, τ ] and R(t) = n−1/2

∑n
i=1(Ri(t)− ER1(t))

converges weakly to a mean-zero Gaussian processR0(t), t ∈ [0, τ ], with continuous paths.

The asymptotic results for theM -estimators are established in Theorem 5.7 and Theorem 5.21

in van der Vaart (1998). Under Condition A, the limits of the M -estimators ψ̂, and ϕ̂1 and ϕ̂2

exist with ψ̂ P−→ψ∗, ϕ̂1
P−→ϕ∗1 and ϕ̂2

P−→ϕ∗2 as n→∞, and the following expressions hold

n1/2(ψ̂ − ψ∗) = n−1/2

n∑
i=1

ψi + op(1) (19)

n1/2(ϕ̂1 − ϕ∗1) = n−1/2

n∑
i=1

φ1,i + op(1) (20)

n1/2(ϕ̂2 − ϕ∗2) = n−1/2

n∑
i=1

φ2,i + op(1), (21)

where (ψi, φ1,i, φ2,i) are mean zero independent identically distributed (iid) random vectors. In

addition, if P (ξi = 1|Ωi) = π(Ωi, ψ) is correctly specified, then ψ∗ = ψ0, where ψ0 is the true

value of ψ if π(Ωi, ψ) is the correct model for P (ξi = 1|Ωi). If bothE(Zi(t)|Ωi) = µ1(Ωi, ϕ1)

and E{Zi(t)ZT
i (t)|Ωi} = µ2(Ωi, ϕ2) are modelled correctly, then ϕ∗1 = ϕ10 and ϕ∗2 = ϕ20,

where ϕ10 and ϕ20 are the true values of ϕ1 and ϕ2 when µ1(Ωi, ϕ1) and µ2(Ωi, ϕ2) are the

correct models for E(Zi(t)|Ωi) and E(Zi(t)Z
T
i (t)|Ωi), respectively.

Let q∗i = ξi/π(Ωi, ψ
∗) and letE∗{Zi(t)|Ωi} = µ1(Ωi, ϕ

∗
1) andE∗{Zi(t)ZT

i (t)|Ωi} = µ2(Ωi, ϕ
∗
2).

LetE∗(Xi(t)|Ωi) andE∗(Xi(t)X
T
i (t)|Ωi) correspond toE(Xi(t)|Ωi) andE(Xi(t)X

T
i (t)|Ωi)

defined in (7) and (8) with E(Zi(t)|Ωi) replaced by E∗{Zi(t)|Ωi} and E(Zi(t)Z
T
i (t)|Ωi)
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replaced by E∗{Zi(t)ZT
i (t)|Ωi}, respectively. Define E∗ux(t), E∗xx(t) and E∗xn(t) similar to

Eux(t), Exx(t) and Exn(t) given in (6) with qi, E(Xi(t)|Ωi) and E(Xi(t)X
T
i (t)|Ωi) replaced

by q∗i , E∗(Xi(t)|Ωi) and E∗(Xi(t)X
T
i (t)|Ωi), respectively.

In addition, we define

E∗uz(t) = n−1
∑n

i=1Wi(t)Yi(t)Ui(t){q∗iZT
i (t) + (1− q∗i )E∗(ZT

i (t)|Ωi)}

E∗zz(t) = n−1
∑n

i=1Wi(t)Yi(t){q∗iZi(t)ZT
i (t) + (1− q∗i )E∗(Zi(t)ZT

i (t)|Ωi)}

E∗vz(t) = n−1
∑n

i=1Wi(t)Yi(t)Vi(t){q∗iZT
i (t) + (1− q∗i )E∗(ZT

i (t)|Ωi)}

E∗zn(t) = n−1
∑n

i=1

∫ t
0
Wi(s)Yi(s){q∗iZi(s) + (1− q∗i )E(Zi(s)|Ωi)} dNi(s)

Evu(t) = n−1
∑n

i=1Wi(t)Yi(t)Vi(t)U
T
i (t)

Euu(t) = n−1
∑n

i=1Wi(t)Yi(t)Ui(t)U
T
i (t)

Eun(t) = n−1
∑n

i=1

∫ t
0
Wi(s)Yi(s)Ui(s) dNi(s).

Let Êvz(t), Êzz(t), Êuz(t) and Êzn(t) be the counterparts of E∗vz(t), E∗zz(t), E∗uz(t) and

E∗zn(t), obtained by replacing q∗i with q̂i = ξi/π(Ωi, ψ̂), and by replacing E∗(Zi(t)|Ωi)

and E∗(Zi(t)Z
T
i (t)|Ωi) with µ1(Ωi, ϕ̂1) and µ2(Ωi, ϕ̂2), respectively. Because Ui(t) and

Vi(t) are observable, we let Êuu(t) = E∗uu(t) = Euu(t), Êvu(t) = E∗vu(t) = Evu(t) and

Êun(t) = E∗un(t) = Eun(t).

Let

e∗ux(t) = E[Wi(t)Yi(t)ui(t){q∗iXT
i (t) + (1− q∗i )E∗(XT

i (t)|Ωi)}],

e∗xx(t) = E[Wi(t)Yi(t){q∗iXi(t)X
T
i (t) + (1− q∗i )E∗(Xi(t)X

T
i (t)|Ωi)}],

e∗xn(t) = E[

∫ t

0

Wi(s)Yi(s){q∗iXi(s) + (1− q∗i )E∗(XT
i (s)|Ωi)} dNi(s)].

If P (ξi = 1|Ωi) = π(Ωi, ψ), and/or both E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and E(Zi(t)Z
T
i (t)|Ωi)

= µ2(Ωi, ϕ2) are modelled correctly, then under MAR, e∗ux(t) = eux(t), e∗xx(t) = exx(t),

and e∗xn(t) = exn(t). Under Conditions (A.1), (A.2), (A.4) and (A.7), by the properties of

functions with bounded variation (cf. Folland (1999)), the processes, say Ri(t), within each
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sum of E∗uz(t), E∗zz(t), E∗vz(t), E∗zn(t), Evu(t), Euu(t), Eun(t) have bounded variations, and

(E{‖V [Ri; s, t]‖2})1/2 ≤ C(t − s)α, for s, t ∈ [0, τ ], where α > 0 and C > 0 are con-

stants. It follows by Lemma 1 that if P (ξi = 1|Ωi) = π(Ωi, ψ), and/or both E(Zi(t)|Ωi) =

µ1(Ωi, ϕ1) andE(Zi(t)Z
T
i (t)|Ωi) = µ2(Ωi, ϕ2) are modelled correctly, thenEuu(t)

P−→euu(t),

Eun(t)
P−→eun(t), E∗ux(t)

P−→eux(t), E∗xx(t)
P−→exx(t), and E∗xn(t)

P−→exn(t), uniformly in t ∈

[0, τ ], and n1/2{Euu(t)−euu(t)}, n1/2{E∗ux(t)−eux(t)}, n1/2{E∗xx(t)−exx(t)} and n1/2{E∗xn(t)−

exn(t)} converge weakly to zero-mean Gaussian processes on [0, τ ], respectively. By the

first order expansions of Êux(t), Êxx(t) and Êxn(t) around ψ∗, ϕ∗1 and ϕ∗2, we also have

Êux(t)
P−→eux(t), Êxx(t)

P−→exx(t), and Êxn(t)
P−→exn(t) uniformly in t ∈ [0, τ ] as n→∞.

Let π′(Ωi, ψ) be them dimensional column vector for the derivative of π(Ωi, ψ) with respect to

ψ. Let µ′1(Ωi, ϕ1) be the rk1 dimensional column vector consisting the derivative of µ1(Ωi, ϕ1)

with respect to ϕ1, the elements from (j − 1)k1 + 1 to jk1 are the derivatives of the jth

component of µ1(Ωi, ϕ1) with respect to ϕ1 for j = 1, . . . , r. Here Ir is the r × r identity

matrix and ⊗ is the Kronecker product of matrices. Let µ′2(Ωi, ϕ2) be the rk2 × r matrix

consisting the derivative of µ2(Ωi, ϕ2) with respect to ϕ2, the elements on the lth column with

rows from (j − 1)k2 + 1 to jk2 are the derivatives of the (j, l)th element of µ2(Ωi, ϕ2) with

respect to ϕ2 for j, l = 1, . . . , r.

By the matrix expressions for E(Xi(t)|Ωi) and E(Xi(t)X
T
i (t)|Ωi) defined in 7 and 8 and

by (19)-(21), the following lemma implies that each of the terms
√
n{Êxn(t) − E∗xn(t)},

√
n{Êxu(t) − E∗xu(t)} and

√
n{Êxx(t) − E∗xx(t)} can be approximated by the sum of iid

random processes.
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Lemma 2. Suppose that Condition A holds.

(a) n1/2{Êuz(t)− E∗uz(t)} = guz,π(t)Φ̂1,n + guz,µ1(t)Ψ̂n + op(1);

(b) n1/2{Êvz(t)− E∗vz(t)} = gvz,π(t)Φ̂1,n + gvz,µ1(t)Ψ̂n + op(1);

(c) n1/2{Êzz(t)− E∗zz(t)} = gzz,π(t)Φ̂2,n + gzz,µ2(t)Ψ̂n + op(1);

(d) n1/2{Êzn(t)− E∗zn(t)}T = gzn,π(t)Φ̂1,n + gzn,µ1(t)Ψ̂n + op(1),

where Ir is the r × r identity matrix and ⊗ is the Kronecker product of matrices, Φ̂1,n =

n1/2Ir ⊗ (ϕ̂1 − ϕ∗1), Φ̂2,n = n1/2Ir ⊗ (ϕ̂2 − ϕ∗2), Ψ̂n = n1/2Ir ⊗ (ψ̂ − ψ∗), and

guz,π(t) = E{(1− q∗i )Wi(t)Yi(t)Ui(t)(µ
′
1(Ωi, ϕ

∗
1))T}

guz,µ1(t) = −E{ξiWi(t)Yi(t)[Ui(t){Zi(t)− µ1(Ωi, ϕ
∗
1)}T ]⊗ (π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗)}

gvz,π(t) = E{(1− q∗i )Wi(t)Yi(t)Vi(t)(µ
′
1(Ωi, ϕ

∗
1))T}

gvz,µ1(t) = −E{ξiWi(t)Yi(t)[Vi(t){Zi(t)− µ1(Ωi, ϕ
∗
1)}T ]⊗ (π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗)}

gzz,π(t) = E{(1− q∗i )Wi(t)Yi(t)(µ
′
2(Ωi, ϕ

∗
2))T}

gzz,µ2(t) = −E{ξiWi(t)Yi(t){Zi(t)ZT
i (t)− µ2(Ωi, ϕ

∗
2)} ⊗ (π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗)}

gzn,π(t) = E{
∫ t

0
(1− q∗i )Wi(s)Yi(s)(µ

′
1(Ωi, ϕ

∗
1))T dNi(s)}

gzn,µ1(t) = −E{
∫ t

0
ξiWi(s)Yi(s){Zi(t)− µ1(Ωi, ϕ

∗
1)}T ⊗ (π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗) dNi(s)}.

Further, if P (ξi = 1|Ωi) = π(Ωi, ψ) is correctly specified, then guz,π(t) = 0, gvz,π(t) = 0,

gzz,π(t) = 0, gzn,π(t) = 0; If E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and E(Zi(t)Z
T
i (t)|Ωi) = µ2(Ωi, ϕ2)

are both modelled correctly, then guz,µ1(t) = 0, gvz,µ1(t) = 0, gzz,µ2(t) = 0, gzn,µ1(t) = 0. To

help readers follow-up with the notations, we note that the covariates U(·), V (·) and Z(·) are

p, q and r dimensional vectors, respectively, and the parameters ψ, ϕ1 and ϕ2 are m, k1 and

k2 dimensional vectors, respectively. The dimensions of the matrices defined in Lemma 2 are

as follows: guz,π(t) is an p by rk1 matrix, gvz,π(t) is an q by rk1 matrix, gzz,π(t) is an r by rk2

matrix, gzn,π(t) is an 1 by rk1 matrix, Ir⊗ (ϕ̂1−ϕ∗1) is an rk1 by r matrix, and Ir⊗ (ϕ̂2−ϕ∗2)

is an rk2 by r matrix. Also, guz,µ1(t) is an p by rm matrix, gvz,µ1(t) is an q by rm matrix,
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gzz,µ2(t) is an r by rm matrix, gzn,µ1(t) is an 1 by rm matrix, and Ir ⊗ (ψ̂ − ψ∗) is an rm by

r matrix.
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Proof of Lemma 1.

We prove the lemma for q = 1 since the vector processes converge (in probability or weakly)

if each component processes converge (in probability or weakly). Consider the processes

{Ri(t), t ∈ [0, τ ]}, i = 1, . . . , n, as a random sample from a probability distribution P

on a measurable space (X ,A). Let F be the class of coordinate projections ft : X −→

R, where ft(Ri) = Ri(t), for t ∈ [0, τ ]. The Lr(P)-norm of ft is given by ‖ft‖P,r =

(P|ft|r)1/r = (E|ft(Ri)|r)1/r. By the Jordan Decomposition (cf. Folland (1999)), Ri(t) −

Ri(0) = R+
i (t) − R−i (t), where R+

i (t) = V +[Ri; 0, t] = sup{
∑n

i=1[Ri(tk) − Ri(tk−1)]+ :

Γ is a partition of [0, t]} and R−i (t) = V −[Ri; 0, t] = sup{
∑n

i=1[Ri(tk) − Ri(tk−1)]− :

Γ is a partition of [0, t]} correspond to the positive variation and the negative variation of

Ri(·) on [0, t], respectively. Here x+ = max{x, 0} and x− = −min{x, 0}. Further, the total

variation ofRi(·) on [0, t] is V [Ri; 0, t] = R+
i (t)+R−i (t). The condition (E{‖V [Ri; s, t]‖2})1/2 ≤

C(t− s)α implies that (E{(R±i (t)−R±i (s))2})1/2 ≤ C(t− s)α for s < t.

Let 0 = t0 < t1 < · · · < tK = τ be a partition of [0, τ ] such that max1≤j≤K(tj − tj−1) < ε.

Then for any ft ∈ F , there is a bracket [lj, uj] such that lj ≤ ft ≤ uj , where lj =

R+
i (tj−1) − R−i (tj) and uj = R+

i (tj) − R−i (tj−1) with t ∈ [tj−1, tj]. The L2(P) bracket

size of [lj, uj] is ‖uj − lj‖P,2 ≤ ‖R+
i (tj) − R+

i (tj−1)‖P,2 + ‖R−i (tj) − R−i (tj−1)‖P,2 ≤

2C(tj − tj−1)α ≤ 2Cεα. Hence, the bracketing number N[ ](ε
α,F , L2(P)) ≤ κ(1/ε) for every

ε > 0 for some constant κ. Thus, N[ ](ε,F , L2(P)) ≤ κ(1/ε)1/α for every ε > 0. So the brack-

eting integral J[ ](1,F , L2(P)) =
∫ 1

0

√
logN[ ](ε,F , L2(P)) dε ≤

∫ 1

0

√
log{κ(1/ε)1/α} dε =∫∞

0

√
log κ+ u/α exp(−u) du < ∞. By Glivenko-Cantelli Theorem and Donsker Theorem

(Theorem 19.4 and Theorem 19.5 of van der Vaart; 1998), n−1
∑n

i=1Ri(t)
P−→ER1(t), uni-

formly in t ∈ [0, τ ] and the empirical process {n−1/2
∑n

i=1 Ri(t), t ∈ [0, τ ]} converges weakly

to a mean-zero Gaussian process which can be constructed to have continuous paths by The-

orem 18.14 and Lemma 18.15 (van der Vaart; 1998).
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Proof of Lemma 2.

Part (a). Consider the decomposition

n1/2{Êuz(t)− E∗uz(t)} = n−1/2

n∑
i=1

(1− q∗i )Wi(t)Yi(t)Ui(t){µ1(Ωi, ϕ̂1)− µ1(Ωi, ϕ
∗
1)}T

+n−1/2

n∑
i=1

(q̂i − q∗i )Wi(t)Yi(t)Ui(t){Zi(t)− µ1(Ωi, ϕ̂1)}T .(22)

By the first order Taylor expansion of µ1(Ωi, ϕ̂1)− µ1(Ωi, ϕ
∗
1), the first term in (22) is

n−1

n∑
i=1

(1− q∗i )Wi(t)Yi(t)Ui(t)(µ
′
1(Ωi, ϕ

∗
1))T{n1/2Ir ⊗ (ϕ̂1 − ϕ∗1)}+ op(1), (23)

By the Glivenko-Cantelli theorem (Theorem 19.4 of van der Vaart, 1998),

n−1

n∑
i=1

(1− q∗i )Wi(t)Yi(t)Ui(t)(µ
′
1(Ωi, ϕ

∗
1))T

P−→guz,π(t),

uniformly in t ∈ [0, τ ], where guz,π(t) = E{(1 − q∗i )Wi(t)Yi(t)Ui(t)(µ
′
1(Ωi, ϕ

∗
1))T}. Hence

the first term in (22) is guz,π(t)Φ̂1,n + op(1).

The second term in (22) is

n−1/2

n∑
i=1

(π−1(Ωi, ψ̂)− π−1(Ωi, ψ
∗))ξiWi(t)Yi(t)Ui(t){Zi(t)− µ1(Ωi, ϕ

∗
1)}T

−n−1/2

n∑
i=1

(π−1(Ωi, ψ̂)− π−1(Ωi, ψ
∗))ξiWi(t)Yi(t)Ui(t){µ1(Ωi, ϕ̂1)− µ1(Ωi, ϕ

∗
1)}T

= −n−1

n∑
i=1

ξiWi(t)Yi(t)Ui(t){Zi(t)− µ1(Ωi, ϕ
∗
1)}T (π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗)n1/2(ψ̂ − ψ∗)

+op(1)

= −n−1

n∑
i=1

ξiWi(t)Yi(t)[Ui(t){Zi(t)− µ1(Ωi, ϕ
∗
1)}T ]⊗ (π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗)

{n1/2Iq ⊗ (ψ̂ − ψ∗)}+ op(1) (24)

uniformly in t ∈ [0, τ ]. Here the second term is op(1) by the first order Taylor expansion, the
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Glivenko-Cantelli theorem and the fact that ψ̂ − ψ∗ = Op(n
−1/2), ϕ̂1 − ϕ∗1 = Op(n

−1/2). The

details are omitted. Also by the Glivenko-Cantelli theorem,

−n−1

n∑
i=1

ξiWi(t)Yi(t)[Ui(t){Zi(t)−µ1(Ωi, ϕ
∗
1)}T ]⊗ (π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗)

P−→guz,µ1(t),

uniformly in t ∈ [0, τ ].

It follows from (22), (23) and (24) that the last r columns of n1/2{Êux(t)− E∗ux(t)} equals

n1/2{Êuz(t)− E∗uz(t)} = guz,π(t)Φ̂1,n + guz,µ1(t)Ψ̂n + op(1). (25)

Part (b). The proof is same as for part (a) only to replace Ui(t) by Vi(t).

Part (c). Consider the decomposition

n1/2{Êzz(t)− E∗zz(t)} = n−1/2

n∑
i=1

(1− q∗i )Wi(t)Yi(t){µ2(Ωi, ϕ̂2)− µ2(Ωi, ϕ
∗
2)}

+n−1/2

n∑
i=1

(q̂i − q∗i )Wi(t)Yi(t){Zi(t)ZT
i (t)− µ2(Ωi, ϕ̂2)}.(26)

By the first order Taylor expansion of µ2(Ωi, ϕ̂2)− µ2(Ωi, ϕ
∗
2), the first term in (26) is

n−1

n∑
i=1

(1− q∗i )Wi(t)Yi(t)(µ
′
2(Ωi, ϕ

∗
2))T{n1/2Ir ⊗ (ϕ̂2 − ϕ∗2)}+ op(1). (27)

By the Glivenko-Cantelli theorem (Theorem 19.4 of van der Vaart, 1998),

n−1

n∑
i=1

(1− q∗i )Wi(t)Yi(t)(µ
′
2(Ωi, ϕ

∗
2))T

P−→gzz,π(t),

uniformly in t ∈ [0, τ ], where gzz,π(t) = E{(1−q∗i )Wi(t)Yi(t)(µ
′
2(Ωi, ϕ

∗
2))T}. Hence the first

term in (26) is gzz,π(t)Φ̂2,n + op(1).
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The second term in (26) is

n−1/2

n∑
i=1

(π−1(Ωi, ψ̂)− π−1(Ωi, ψ
∗))ξiWi(t)Yi(t){Zi(t)ZT

i (t)− µ2(Ωi, ϕ
∗
2)}

−n−1/2

n∑
i=1

(π−1(Ωi, ψ̂)− π−1(Ωi, ψ
∗))ξiWi(t)Yi(t){µ2(Ωi, ϕ̂2)− µ2(Ωi, ϕ

∗
2)}

= −n−1

n∑
i=1

ξiWi(t)Yi(t){Zi(t)ZT
i (t)− µ2(Ωi, ϕ

∗
2)}(π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗)n1/2(ψ̂ − ψ∗)

+op(1)

= −n−1

n∑
i=1

ξiWi(t)Yi(t){Zi(t)ZT
i (t)− µ2(Ωi, ϕ

∗
2)} ⊗ (π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗)

{n1/2Ir ⊗ (ψ̂ − ψ∗)}+ op(1) (28)

uniformly in t ∈ [0, τ ]. Here the second term is op(1) by the first order Taylor expansion, the

Glivenko-Cantelli theorem and the fact that ψ̂ − ψ∗ = Op(n
−1/2), ϕ̂1 − ϕ∗1 = Op(n

−1/2). The

details are omitted. Also by the Glivenko-Cantelli theorem,

−n−1

n∑
i=1

ξiWi(t)Yi(t){Zi(t)ZT
i (t)− µ2(Ωi, ϕ

∗
2)} ⊗ (π′(Ωi, ψ

∗))Tπ−2(Ωi, ψ
∗)

P−→gzz,µ2(t),

uniformly in t ∈ [0, τ ].

It follows from (26), (27) and (28) that the last r× r diagonal block of n1/2{Êxx(t)−E∗xx(t)}

equals

n1/2{Êzz(t)− E∗zz(t)} = gzz,π(t)Φ̂2,n + gzz,µ2(t)Ψ̂n + op(1). (29)

Part (d). Similar to (22),

n1/2{Êzn(t)− E∗zn(t)}T

= n−1/2

n∑
i=1

∫ t

0

(1− q∗i )Wi(s)Yi(s){Ê(Zi(s)Ωi)− E∗(Zi(s)|Ωi)}T dNi(s)

+n−1/2

n∑
i=1

∫ t

0

(q̂i − q∗i )Wi(s)Yi(s){Zi(s)− Ê(Zi(s)|Ωi)}T dNi(s). (30)
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The rest of the proof is similar to the proof for part (a) by letting Ui(·) = 1 and replacing the

terms in the summations with their integrations with respect to dNi(s).

Further, if π(Ωi, ψ) is the correct model for P (ξi = 1|Ωi), then ψ∗ = ψ0, where ψ0 is the

true value of ψ. Thus π(Ωi, ψ
∗) = P (ξi = 1|Ωi) and E(q∗i |Ωi) = E(ξi/π(Ωi, ψ

∗)|Ωi) = 1.

Hence guz,π(t) = 0 by the double expectation property. Similarly, gvz,π(t) = 0, gzz,π(t) =

0, gzn,π(t) = 0. If µ1(Ωi, ϕ1) is the correct model for E(Zi(t)|Ωi) and µ2(Ωi, ϕ2) is the

correct model for E{Zi(t)ZT
i (t)|Ωi}, then ϕ∗1 = ϕ10 and ϕ∗2 = ϕ20, where ϕ10 and ϕ20

are the true values of ϕ1 and ϕ2, respectively. In this case, µ1(Ωi, ϕ
∗
1) = E(Zi(t)|Ωi) and

µ2(Ωi, ϕ
∗
2) = E(Zi(t)Z

T
i (t)|Ωi). Thus E{Zi(t) − µ1(Ωi, ϕ

∗
1)|Ωi} = 0 and E{Zi(t)ZT

i (t) −

µ2(Ωi, ϕ
∗
2)|Ωi} = 0. Under MAR and by the double expectation property, we have guz,µ1(t) =

0, gvz,µ1(t) = 0, gzz,µ2(t) = 0, and gzn,µ1(t) = 0.
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Proof of Theorem 1.

The following notations are introduced for the simplicity of the expressions in the proof

for Theorem 1. Let X(t) = [Y1(t)X1(t), . . . , Yn(t)Xn(t)]T , U(t) = [Y1(t)U1(t), . . . , Yn(t)

Un(t)]T ,N(t) = [N1(t), N2(t), . . . , Nn(t)]T and λ(t) = [λ1(t), λ2(t), . . . , λn(t)]T . LetW (t) =

diag{Wi(t)}, Hq = diag{qi} and H1−q = diag{(1 − qi)} be n × n diagonal weight matri-

ces. Let Ω̃ = (Ω1, . . . , Ωn), E[X(t)|Ω̃] = Vx(t) and E[XT (t)W (t)H1−qX(t)| Ω̃] = Vxx(t).

Let X∗(t) = HqX(t) + H1−qVx(t), U∼(t) = {UT (t)W (t)U(t)}−1UT (t)W (t) and H(t) =

W (t){I − U(t)U∼(t)}.

We have estimation equation (4)

n∑
i=1

[
qiUi(t)Wi(t){dNi(t)− λi(t) dt}+ (1− qi)E{Ui(t)Wi(t)(dNi(t)

−λi(t) dt)|Ωi}
]

= 0

where λi(t) dt = Ui(t)αi(t) dt+Xi(t)θ dt

With some algebra, this equation can be simplified to

UT (t)W (t)Hq [dN(t)− U(t)dA(t)−X(t)θ dt]

= −UT (t)W (t)H1−q [dN(t)− U(t)dA(t)− Vx(t))θ dt]

UT (t)W (t)[Hq +H1−q]dN(t)− UT (t)W (t)[Hq +H1−q]U(t) dA(t)

= UT (t)W (t)[HqX(t) +H1−qVx(t)] θdt

Where

Vx(t) = E[X(t)|Ω̃]

Since

Hq +H1−q = I
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UT (t)W (t)dN(t)− UT (t)W (t)U(t) dA(t) = UT (t)W (t)X∗(t) θdt

UT (t)W (t)U(t)dA(t) = UT (t)W (t)dN(t)− UT (t)W (t)X∗(t) θdt

dA(t) = U∼(t)[dN(t)−X∗(t)θ dt] (31)

We have estimation equation (5)

n∑
i=0

∫ τ

0

[
qiYi(t)XI(t)Wi(t){dNi(t)− λi(t) dt}+ (1− qi)E{Xi(t)Wi(t)(dNi(t)

−λi(t) dt)|Ωi}
]

= 0

where λi(t) dt = Ui(t)αi(t) dt+Xi(t)θ dt

It can be simplified to

∫ τ

0

{
XT (t)W (t)Hq [dN(t)− U(t)dA(t)−X(t)θ dt]

}
= −

n∑
i=1

∫ τ

0

{
(1− qi)E[Xi(t)Wi(t){dNi(t)− Ui(t)dA(t)−Xi(t)θ dt}|Ωi]

}

∫ τ

0

{
XT (t)W (t)Hq [dN(t)− U(t)dA(t)−X(t)θ dt]

}
= −

∫ τ

0

V T
x (t)W (t)H1−qdN(t)

+

∫ τ

0

V T
x (t)W (t)H1−qU(t)dA(t) +

∫ τ

0

Vxx(t)θ dt

∫ τ

0

{XT (t)Hq + V T
x (t)H1−q}W (t)dN(t)−

∫ τ

0

{XT (t)Hq + V T
x (t)H1−q}W (t)U(t)dA(t)

=

∫ τ

0

{XT (t)W (t)HqX(t) + Vxx(t)}θ dt
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∫ τ

0

(X∗(t))TW (t)dN(t)−
∫ τ

0

(X∗(t))TW (t)U(t)dA(t)

=

∫ τ

0

{XT (t)W (t)HqX(t) + Vxx(t)}θ dt (32)

substituting the value of dA(t) from (31) into (32)

∫ τ

0

(X∗(t))TW (t)dN(t)−
∫ τ

0

(X∗(t))TW (t)U(t)U∼(t)dN(t)

+

∫ τ

0

(X∗(t))TW (t)U(t)U∼(t)X∗(t)θ dt =

∫ τ

0

{XT (t)W (t)HqX(t) + Vxx(t)}θ dt

∫ τ

0

(X∗(t))TW (t)[I − U(t)U∼(t)]dN(t) =

∫ τ

0

{XT (t)W (t)HqX(t) + Vxx(t)

−(X∗(t))TW (t)U(t)U∼(t)X∗(t)}θ dt

∫ τ

0

(X∗(t))TH(t)dN(t) =

∫ τ

0

{XT (t)W (t)HqX(t) + Vxx(t)

−(X∗(t))TW (t)U(t)U∼(t)X∗(t)}θ dt

θ̃ =

{∫ τ

0

[Vxx(t) +XT (t)W (t)HqX(t)

−(X∗(t))TW (t)U(t)U∼(t)X∗(t)] dt

}−1 ∫ τ

0

(X∗(t))TH(t) dN(t) (33)

Ã(t) =

∫ t

0

U∼(s){dN(s)−X∗(s)θ̃ ds} (34)
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Further, recall the definitions given in (6), simple matrix operations show that

n−1UT (t)W (t)U(t) = Euu(t),

n−1UT (t)W (t)X∗(t) = n−1UT (t)W (t){HqX(t) +H1−qVx(t)} = Eux(t),

n−1{XT (t)W (t)HqX(t) + Vxx(t)} = Exx(t),

n−1

∫ t

0

UT (s)W (s) dN(s) = Eun(t) (35)

n−1

∫ t

0

(W (s)X∗(s))TdN(s) = n−1

∫ t

0

W (s){HqX(s) +H1−qVx(s)}TdN(s) = Exn(t).

We note that

U∼(t) = {UT (t)W (t)U(t)}−1UT (t)W (t) = E−1
uu (t)n−1UT (t)W (t) (36)

H(t) = W (t)[I − U(t)U∼(t)] = W (t)−W (t)U(t)E−1
uu (t)n−1UT (t)W (t) (37)

It follows that

(X∗(t))TH(t)dN(t),

= (X∗(t))TW (t)dN(t)− (X∗(t))TW (t)U(t)E−1
uu (t)n−1UT (t)W (t),

= n dExn(t)− nET
ux(t)E

−1
uu (t)dEun(t) (38)

Similarly

Vxx(t) +XT (t)W (t)HqX(t)− (X∗(t))TW (t)U(t)U∼(t)X∗(t)

= nExx(t)− n (Eux(t))
TE−1

uu (t)Eux(t)

(39)
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Substituting the values from (39) and (38) to (33)

θ̃ =

{∫ τ

0

{Exx(t)− ET
ux(t)E

−1
uu (t)Eux(t)}dt

}−1

{∫ τ

0

[dExn(t)− ET
ux(t)E

−1
uu (t)dEun(t)]

}
, (40)

Substituting the values from (36) and (35) to (34)

Ã(t) =

∫ t

0

E−1
uu (s)dEun(s)−

∫ t

0

E−1
uu (s)Eux(s)θ̃ ds, (41)

This completes the proof of Theorem (1)
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Proof of Theorem 2.

Part (a).

Let Â =
∫ τ

0

{
Êxx(t)− Êxu(t)(Euu(t))−1ÊT

ux(t)

}
dt

and R̂ = Êxn(τ)−
∫ τ

0
Êxu(t)(Euu(t))

−1 dEun(t).

By the arguments preceding Lemma 2 in the Appendix, we have Â
P−→A and R̂

P−→R if

P (ξi = 1|Ωi) = π(Ωi, ψ), and/or both E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and E{Zi(t) ZT
i (t)|Ωi} =

µ2(Ωi, ϕ2) are modelled correctly, where

R =

∫ τ

0

{dexn(t)− exu(t)e−1
uu (t) deun(t)} =

∫ τ

0

{exx(t)− exu(t)e−1
uu (t)eTxu(t)} dt θ0 = Aθ0,

since exn(t) =
∫ t

0
{exu(s)α0(s) + exx(s)θ0} ds and eun(t) =

∫ t
0
{euu(s)α0(s) + eux(s)θ0} ds.

It follows that θ̂ = Â−1R̂
P−→A−1R = A−1Aθ0 = θ0.

Part (b).

LetA∗ =
∫ τ

0

{
E∗xx(t)−E∗xu(t)(Euu(t))−1(E∗xu(t))

T
}
dt andR∗ = Exn(τ)−

∫ τ
0
E∗xu(t)(Euu(t))

−1

dEun(t). Let θ∗ = A∗−1R∗ and write
√
n(θ̂ − θ0) =

√
n(θ∗ − θ0) +

√
n(θ̂ − θ∗).

We first derive the iid decomposition for
√
n(θ∗ − θ0). With similar arguments in part (a), we

have A∗ P−→A and R∗ P−→R = Aθ0.

√
n(θ∗ − θ0) =

√
n
[
A∗−1R∗ − A−1Aγ0

]
=
√
n(A∗−1 − A−1)R∗ +

√
nA−1

[
R∗ − Aθ0

]
= −
√
nA−1(A∗ − A)θ∗+

√
nA−1

[
R∗−

∫ τ

0

{dexn(t)− exu(t)e−1
uu (t) deun(t)}

]
. (42)

Consider the decomposition

A∗ − A =

∫ τ

0

[E∗xx(t)− E∗xu(t)(Euu(t))−1(E∗xu(t))
T − {exx(t)− exu(t)e−1

uu (t)eTxu(t)}] dt

=

∫ τ

0

[{E∗xx(t)− exx(t)} − {E∗xu(t)− exu(t)}(Euu(t))−1(E∗xu(t))
T

+exu(t)e
−1
uu (t){Euu(t)− euu(t)}(Euu(t))−1(E∗xu(t))

T

−exu(t)e−1
uu (t){(E∗xu(t))T − eTxu(t)}] dt.
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By the consistency of θ∗, the uniform convergence of Euu(t)
P−→euu(t) and E∗xu(t)

P−→exu(t)

and by the weak convergence of n1/2{E∗xx(t)−exx(t)}, n1/2{E∗xu(t)−exu(t)}, and n1/2{Euu(t)−

euu(t)}, applying Lemma A.1 of Lin and Ying (2001), the first term of (42) equals

−A−1
√
n

∫ τ

0

[{E∗xx(t)− exx(t)} − {E∗xu(t)− exu(t)}e−1
uu (t)eTxu(t) + exu(t)e

−1
uu (t)

{Euu(t)− euu(t)}e−1
uu (t)eTxu(t)− exu(t)e−1

uu (t){(E∗xu(t))T − eTxu(t)}] dt θ0 + op(1).

(43)

Similarly, the second term of (42) equals

= A−1
√
n

∫ τ

0

[dE∗xn(t)− E∗xu(t)(Euu(t))−1dEun(t)− {dexn(t)− exu(t)e−1
uu (t)deun(t)}]

= A−1
√
n

∫ τ

0

[
d{E∗xn(t)− exn(t)} − {E∗xu(t)− exu(t)}(Euu(t))−1 dEun(t)

+exu(t)e
−1
uu (t){Euu(t)− euu(t)}(Euu(t))−1 dEun(t)− exu(t)e−1

uu (t) d{Eun(t)− eun(t)}
]

= A−1
√
n

∫ τ

0

[
d{E∗xn(t)− exn(t)} − {E∗xu(t)− exu(t)}e−1

uu (t) deun(t)

+exu(t)e
−1
uu (t){Euu(t)− euu(t)}e−1

uu (t) deun(t)− exu(t)e−1
uu (t) d{Eun(t)− eun(t)}

]
+op(1). (44)

Combining (43) and (44) yields

√
n(θ∗ − θ0)

= −A−1
√
n

∫ τ

0

[
{E∗xx(t)− exx(t)} − {E∗xu(t)− exu(t)}e−1

uu (t)eTxu(t) + exu(t)e
−1
uu (t)

{Euu(t)− euu(t)}e−1
uu (t)eTxu(t)− exu(t)e−1

uu (t){(E∗xu(t))T − eTxu(t)}
]
dt θ0

+A−1
√
n

∫ τ

0

[
d{E∗xn(t)− exn(t)} − {E∗xu(t)− exu(t)}e−1

uu (t) deun(t)

+exu(t)e
−1
uu (t){Euu(t)− euu(t)}e−1

uu (t) deun(t)− exu(t)e−1
uu (t) d{Eun(t)− eun(t)}

]
+op(1). (45)
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By dexn(t) = {exu(t)α0(t)+exx(t)θ0} dt and deun(t) = {euu(t)α0(t)+eux(t)θ0} dt, ignoring

the op(1) term,
√
n(θ∗ − θ0) equals

A−1
√
n

∫ τ

0

[
d{E∗xn(t)− exn(t)} − {E∗xu(t)− exu(t)}α0(t) dt− {E∗xx(t)− exx(t)}θ0 dt

]
−A−1

√
n

∫ τ

0

exu(t)e
−1
uu (t)

[
d{Eun(t)− eun(t)} − {Euu(t)− euu(t)}α0(t) dt

−{E∗ux(t)− eux(t)}θ0 dt

]
= A−1

√
n

∫ τ

0

{dE∗xn(t)− E∗xu(t)α0(t) dt− E∗xx(t)θ0 dt}

−A−1
√
n

∫ τ

0

exu(t)e
−1
uu (t){dEun(t)− Euu(t)α0(t) dt− E∗ux(t)θ0 dt}. (46)

It is easy to see from here that, ignoring the op(1) term,
√
n(θ∗−θ0) is the sum of independent

identically distributed random variables with mean zero. The first integral in (46) equals

n−1
∑n

i=1 ηx,i, where

ηx,i =

∫ τ

0

Wi(t)Yi(t)
[
{q∗iXi(t) + (1− q∗i )E∗(Xi(t)|Ωi)} dNi(t)

−[q∗iXi(t)X
T
i (t) + (1− q∗i )E∗{Xi(t)X

T
i (t)|Ωi}] θ0 dt (47)

−{q∗iXi(t) + (1− q∗i )E∗(Xi(t)|Ωi)}UT
i (t)α0(t) dt

]
.

The ssecond integral in (46) equals n−1
∑n

i=1 ηu,i, where

ηz,i =

∫ τ

0

exu(t)e
−1
uu (t)Wi(t)Yi(t)

[
Ui(t) dNi(t) (48)

−Ui(t){q∗iXT
i (t) + (1− q∗i )E∗(XT

i (t)|Ωi)} θ0 dt− Ui(t)UT
i (t)dA0(t)

]
.

It follows by (46) that

√
n(θ∗ − θ0) = A−1n−1/2

n∑
i=1

(ηx,i − ηu,i) + op(1). (49)
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Next we consider the iid decomposition for
√
n(θ̂ − θ∗). Note that

√
n(θ̂ − θ∗) = −

√
nA∗−1(Â− A∗)θ̂ +

√
nA∗−1

(
R̂−R∗

)
. (50)

Consider the decomposition

Â− A∗ = −
∫ τ

0

[
{Êxu(t)− E∗xu(t)}(Euu(t))−1(Êxu(t))

T

+E∗xu(t)(Euu(t))
−1{Êux(t)− E∗ux(t)} (51)

−{Êxx(t)− E∗xx(t)}
]
dt.

By Lemma 2 and the weak convergence of n1/2{Ezz(t) − ezz(t)}, n1/2{E∗zx(t) − ezx(t)},

n1/2{E∗xx(t)−exx(t)} and n1/2{E∗xn(t)−exn(t)}, we have the weak convergence of n1/2{Êzx(t)

−E∗zx(t)}, n1/2{Êxx(t) − E∗xx(t)}, and n1/2{Êxn(t) − E∗xn(t)}. By γ̂
P−→γ0, the uniform

convergence of Êxx(t)
P−→exx(t) and Êzx(t)

P−→ezx(t), E∗xx(t)
P−→exx(t) andE∗zx(t)

P−→ezx(t),

and applying Lemma A.1 of Lin and Ying (2001), the first term of (50) equals

−A−1
√
n

∫ τ

0

[
{Êxx(t)− E∗xx(t)}{Êxu(t)− E∗xu(t)}e−1

uu (t)eTux(t)

−exu(t)e−1
uu (t){(Êux(t))− (E∗ux(t))}

]
dt θ0 + op(1), (52)

the second term of (50) equals

−A−1
√
n

∫ τ

0

[
{Êxu(t)− E∗xu(t)}e−1

uu (t) deun(t)− d{Êxn(t)− E∗xn(t)}
]

+ op(1).

(53)
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Combining (52) and (53) yields

√
n(θ̂ − θ∗)

= A−1
√
n

∫ τ

0

[
d{Êxn(t)− E∗xn(t)} − {Êxu(t)− E∗xu(t)}α0(t) dt

−{Êxx(t)−E∗xx(t)} θ0 dt

]
+A−1

√
n

∫ τ

0

exu(t)e
−1
uu{Êux(t)− E∗ux(t)} θ0 dt+ op(1).

(54)

Next, we derive the explicit expressions for the sum of iid approximation of
√
n(θ̂ − θ∗).

Let θ0(t) = (βT0 , γ
T
0 )T , where β0(t) and γ0(t) are the regression coefficients for V (t) and

Z(t), respectively. Because Ui(t) and Vi(t) are observable, Êuu(t) = E∗uu(t) = Euu(t),

Êvu(t) = E∗vu(t) = Evu(t) and Êun(t) = E∗un(t) = Eun(t).

The first q elements of n1/2{Êxn(t) − E∗xn(t)} are zero. By Lemma 2 (d) and (19)–(21), the

last r elements equal to

n1/2{Êzn(t)− E∗zn(t)}

= n−1/2

n∑
i=1

(
{gzn,π(t)(Ir ⊗ φ1,i)}T + {gzn,µ1(t)(Ir ⊗ ψi)}T

)
+ op(1). (55)

The first q elements of n1/2{Êxu(t)− E∗xu(t)}α0(t) are zero. By Lemma 2 (a) and (19)–(21),

the last r elements equal to

n1/2{Êzu(t)− E∗zu(t)}α0(t)

=
{
guz,π(t)Φ̂1,n + guz,µ1(t)Ψ̂n

}T
α0(t) + op(1)

= n−1/2

n∑
i=1

{
guz,π(t)(Ir ⊗ φ1,i) + guz,µ1(t)(Ir ⊗ ψi)

}T
α0(t) + op(1). (56)
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The first q columns of n1/2{Êux(t)− E∗ux(t)} are zero. By Lemma 2 (a) and (19)–(21),

n1/2{Êux(t)− E∗ux(t)}θ0 = n1/2{Êuz(t)− E∗uz(t)}γ0

= {guz,π(t)Φ̂1,n + guz,µ1(t)Ψ̂n}γ0 + op(1)

= n−1/2

n∑
i=1

(
guz,π(t){Ir ⊗ φ1,i}+ guz,µ1(t){Ir ⊗ ψi}

)
γ0 + op(1). (57)

By Lemma 2 (b) and (19)–(21), the first q components of n1/2{Êxx(t)− E∗xx(t)}θ0 is

n1/2{Êvz(t)− E∗vz(t)}γ0

=
(
gvz,π(t)Φ̂1,n + gvz,µ1(t)Ψ̂n

)
γ0 + op(1)

= n−1/2

n∑
i=1

(
gvz,π(t){Ir ⊗ φ1,i}+ gvz,µ1(t){Ir ⊗ ψi}

)
γ0 + op(1). (58)

By Lemma 2 (b) and (c), and (19)–(21), the last r components of n1/2{Êxx(t)− E∗xx(t)}θ0 is

n1/2{Êvz(t)− E∗vz(t)}Tβ0 + n1/2{Êzz(t)− E∗zz(t)}γ0, (59)

where

n1/2{Êvz(t)− E∗vz(t)}Tβ0

=
{
gvz,π(t)Φ̂1,n + gvz,µ1(t)Ψ̂n

}T
β0 + op(1)

= n−1/2

n∑
i=1

{
gvz,π(t)(Ir ⊗ φ1,i) + gvz,µ1(t)(Ir ⊗ ψi)

}T
β0 + op(1), (60)

and

n1/2{Êzz(t)− E∗zz(t)}γ0

=
{
gzz,π(t)Φ̂2,n + gzz,µ2(t)Ψ̂n

}T
γ0 + op(1)

= n−1/2

n∑
i=1

{
gzz,π(t)(Ir ⊗ φ2,i) + gzz,µ2(t)(Ir ⊗ ψi)

}
γ0 + op(1). (61)
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Plugging the expressions (55)–(61) into (54), we have

√
n(θ̂ − θ∗) = A−1n−1/2

n∑
i=1

(εΦ,i + εΨ,i) + op(1), (62)

where

εΦ,i = −
∫ τ

0

 0q×1

d{gzn,π(t)(Ir ⊗ φ1,i)}T − {guz,π(t)(Ir ⊗ φ1,i)}Tα0(t) dt


−

 gvz,π(t)(Ir ⊗ φ1,i)γ0

{gvz,π(t)(Ir ⊗ φ1,i)}Tβ0(t) + gzz,π(t)(Ir ⊗ φ1,i)γ0

 dt


+

∫ τ

0

exu(t)e
−1
uu (t)guz,π(t)(Ir ⊗ φ1,i)γ0 dt, (63)

εΨ,i = −
∫ τ

0

 0q×1

d{gzn,µ1(t)(Ir ⊗ ψi)}T − {guz,µ1(t)(Ir ⊗ ψi)}Tα0(t) dt


−

 gvz,µ1(t)(Ir ⊗ ψi)γ0

{gvz,µ1(t)(Ir ⊗ ψi)}Tβ0 + gzz,µ2(t)(Ir ⊗ ψi)γ0

 dt


+

∫ τ

0

exu(t)e
−1
uu (t)guz,µ1(t)(Ir ⊗ ψi)γ0 dt. (64)

Because φ1,i, φ2,i and ψi are iid with mean zero, it follows from (63) and (64) that εΦ,i and εΨ,i

are iid random vectors with mean zero. Combining (49) and (62), we have

√
n(θ̂ − θ0) = A−1n−1/2

n∑
i=1

(ηx,i − ηu,i + εΦ,i + εΨ,i) + op(1). (65)

It follows that
√
n(θ̂ − θ0)

D−→N(0, A−1ΣA−1), where

Σ = E{(ηx,i − ηu,i + εΦ,i + εΨ,i)(ηx,i − ηu,i + εΦ,i + εΨ,i)
T}. (66)
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Part (c).

By Lemma 2, if P (ξi = 1|Ωi) = π(Ωi, ψ) is correctly specified, then guz,π(t) = 0, gvz,π(t) =

0, gzz,π(t) = 0, gzn,π(t) = 0. It follows from (63) that εΨ,i = 0. Similarly, by Lemma 2, if

E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and E(Zi(t)Z
T
i (t)|Ωi) = µ2(Ωi, ϕ2) are both modelled correctly,

then guz,µ1(t) = 0, gvz,µ1(t) = 0, gzz,µ2(t) = 0, gzn,µ1(t) = 0. We have εΦ,i = 0 by (64).

61



Proof of Theorem 3

Part (a).

By (12), Â(t) =
∫ t

0
E−1
uu (s) dEun(s) −

∫ t
0
E−1
uu (s)Êux(s) ds θ̂. By the arguments in the proof

of Theorem 2, if P (ξi = 1|Ωi) = π(Ωi, ψ), and/or both E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and

E(Zi(t)Z
T
i (t)|Ωi) = µ2(Ωi, ϕ2) are modelled correctly, then Êxx(t)

P−→exx(t), Êxn(t)
P−→exn(t)

and Êxz(t)
P−→exz(t) uniformly in t ∈ [0, τ ] as n → ∞. By the consistency of θ̂ proved in

Theorem 2, we have Â(t)
P−→
∫ t

0
e−1
uu (s) deun(s)−

∫ t
0
e−1
uu (s)eux(s) ds θ0 = A0(t).

Part (b).

Let A∗(t) =
∫ t

0
(Euu(s))

−1 dEun(s)−
∫ t

0
(Euu(s))

−1E∗ux(s) ds θ
∗. Write

√
n(Â(t)−A0(t)) =

√
n(A∗(t) − A0(t)) +

√
n(Â(t) − A∗(t)). The weak convergence of

√
n(Â(t) − A0(t)) is

proved through the iid decomposition for each of the two terms.

We consider the following decomposition:

√
n(A∗(t)− A0(t))

=
√
n

{∫ t

0

(Euu(s))
−1 dEun(s)−

∫ t

0

e−1
uu (s) deun(s)

}
(67)

−
√
n

∫ t

0

{(Euu(s))−1E∗ux(s)− e−1
uu (s)eux(s)} ds θ∗ −

∫ t

0

e−1
uu (s)eux(s) ds

√
n(θ∗ − θ0).

By Lemma A.1 of Lin and Ying (2001), the first term of (67) equals

√
n

∫ t

0

[{(Euu(s))−1 − e−1
uu (s)} dEun(s) + e−1

uu (s) {dEun(s)− deun(s)}] (68)

= −
√
n

∫ t

0

{e−1
uu (s)Euu(s)e

−1
uu (s) deun(s)− e−1

uu (s) dEun(s)}+ op(1).

Similarly, the second term of (67) equals

−
√
n

∫ t

0

{(Euu(s))−1E∗ux(s)− e−1
uu (s)eux(s)} ds θ∗ (69)

=
√
n

∫ t

0

[e−1
uu (s)Euu(s)e

−1
uu (s)eux(s)− e−1

uu (s)E∗ux(s)] ds θ0 + op(1).
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The sum of the first two terms of (67) is

√
n

{
−
∫ t

0

e−1
uu (s)Euu(s)α0(s) ds+

∫ t

0

e−1
uu (s) dEun(s)−

∫ t

0

e−1
uu (s)E∗ux(s) ds θ0

}
+ op(1).

=
√
n

∫ t

0

e−1
uu (s){dEun(s)− Euu(s)α0(s) ds− E∗ux(s) ds θ0}+ op(1)

= n−1/2

n∑
i=1

ζi(t) + op(1),

(70)

where

ζi(t) =

∫ t

0

e−1
uu (s)Wi(s)Yi(s)

[
{Ui(s) dNi(s)

−Ui(s)UT
i (s) dA0(s) (71)

−{q∗iXi(t) + (1− q∗i )E∗(Xi(t)|Ωi)}UT
i (t)θ0 dt

]
.

Combining (67), (70) and (49), we obtain

√
n(A∗(t)−A0(t)) = n−1/2

n∑
i=1

{
ζi(t)−

∫ t

0

e−1
uu (s)eux(s) dsA

−1(ηx,i−ηu,i)
}

+op(1), (72)

uniformly in t ∈ [0, τ ].

Next, similar to (67), we have

√
n(Â(t)− A∗(t)) −

√
n

∫ t

0

{(Euu(s))−1Êux(s)− (Euu(s))
−1E∗ux(s)} ds θ̂

−
∫ t

0

(Euu(s))
−1E∗ux(s) ds

√
n(θ̂ − θ∗). (73)
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Using similar arguments of the asymptotic theory, the first term of (73) equals

√
n(Â(t)− A∗(t))

= −
√
n

∫ t

0

e−1
uu (s){Êux(s)− E∗ux(s)} θ0 ds

−
∫ t

0

e−1
uu (s)eux(s) ds

√
n(θ̂ − θ∗) + op(1). (74)

By the expressions (55)–(62) and (74),

√
n(Â(t)− A∗(t)) = n−1/2

n∑
i=1

(υΦ,i(t) + υΨ,i(t)) + op(1), (75)

where

υΦ,i(t) =

∫ t

0

e−1
uu (s)guz,π(s)(Ir ⊗ φ1,i)γ0 ds

−
∫ t

0

e−1
uu (s)eux(s) dsA

−1εΦ,i, (76)

υΨ,i(t) =

∫ t

0

e−1
uu (s)guz,µ1(s)(Ir ⊗ ψi)γ0 ds

−
∫ t

0

e−1
uu (s)eux(s) dsA

−1εΨ,i. (77)

From pact (b) of the proof of Theorem 2, εΦ,i and εΨ,i are iid with mean zero. Because φ1,i,

φ2,i and ψi are iid with mean zero, it follows from (76) and (77) that υΦ,i(t) and υΨ,i(t) are iid

random vectors with mean zero.

It follows from (72) and (75) that

√
n(Â(t)− A0(t)) = n−1/2

n∑
i=1

{
ζi(t)−

∫ t

0

e−1
uu (s)eux(s) dsA

−1(ηx,i − ηu,i)
}

+n−1/2

n∑
i=1

{
υΦ,i(t) + υΨ,i(t)

}
+ op(1), (78)
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uniformly in t ∈ [0, τ ]. By Lemma 1,
√
n(Â(t) − A0(t)) converges weakly to a zero-mean

Gaussian process on [0, τ ].

Part (c).

By Lemma 2, (19)–(21), (74)–(75), it is easy to see that when P (ξi = 1|Ωi) = π(Ωi, ψ)

is correctly specified, εΦ,i = 0 and υΦ,i(t) = 0, and when E(Zi(t)|Ωi) = µ1(Ωi, ϕ1) and

E(Zi(t)Z
T
i (t)|Ωi) = µ2(Ωi, ϕ2) are modelled correctly εΨ,i = 0 and υΨ,i(t) = 0.
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Appendix B: Regularity Conditions

Let f(t) be a function [a, b] → R. Given any finite partition Γ = {a = t0 < · · · <

tK = b} of [a, b], the variation of f over [a, b] is V [f ; a, b] = sup{
∑K

k=1 |f(tk) − f(tk−1)| :

Γ is a partition of [a, b]}. The function f has bounded variation on [a, b] if V [f ; a, b] < ∞.

A vector f of functions has bounded variation if each component of f has bounded variation,

and in this case, V [f ; a, b] is the vector of the variations of the component functions.

We assume the following regularity conditions throughout the paper:

Condition A.

A1. The processes Ui(t), Xi(t) and Wi(t), 0 ≤ t ≤ τ , have bounded second moments,

their sample paths are left continuous and of bounded variation. The variations of the

processes Ui(·), Vi(·) and Wi(·) satisfy the conditions (E{‖V [Ui; s, t]‖2})1/2 ≤ C(t −

s)α, (E{‖V [Vi; s, t]‖2})1/2 ≤ C(t− s)α, and (E{‖V [Wi; s, t]‖2})1/2 ≤ C(t− s)α, for

s, t ∈ [0, τ ], where α > 0 and C > 0 are constants, and ‖ · ‖ is the Euclidean norm.

A2. The α(t), euu(t), exx(t) and exu(t) are twice differentiable on [0, τ ], and euu(t) is a

nonsingular matrix, and e−1
uu (t) is bounded over 0 ≤ t ≤ τ .

A3. The matrix A is positive definite.

A4. Wi(t) is a weight process depending only on phase-one variables, Wi(t)
P−→wi(t) uni-

formly in t ∈ [0, τ ] and 1 ≤ i ≤ n, and wi(t) is differentiable with uniformly bounded

derivative.

A5. The censoring is independent in the sense that the censoring does not alter the risk

of failure. This assumption is described by E{dÑi(t)|Xi[0, t], Ui[0, t], T̃i ≥ t} =

E{dN∗i (t)|Xi[0, t], Ui[0, t], Ti ≥ t}, where Ñi(t) = I(T̃i ≤ t), N∗i (t) = I(Ti ≤ t),

and Xi[0, t] = {Xi(s), 0 ≤ s ≤ t} and Ui[0, t] = {Ui(s), 0 ≤ s ≤ t} are the covariate

histories up to time t.
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A6. The phase-two covariate Zi is missing at random (MAR), i.e., P (ξi = 1|Zi, Ωi) =

P (ξi = 1|Ωi).

A7. The function π(Ωi, ψ) is twice differentiable with respect to ψ the compact set Θψ,

π′ψ(Ωi, ψ) = ∂π(Ωi, ψ)/∂ψ is uniformly bounded, and there is a ε > 0 such that

π(Ωi, ψ) ≥ ε > 0 for all i = 1, . . . , n.

A8. The functions µ1(Ωi, ϕ1) and µ2(Ωi, ϕ2) are twice differentiable with respect to ϕ1 and

ϕ2 on the compact sets Θϕ1 and Θϕ2 , respectively.
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