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ABSTRACT 
 
 

JING BI. Constitutive modeling of aluminum foam and finite element implementation for 
crash simulations.  (Under the direction of DR. HOWIE FANG) 

 
 

In the past decades metallic foams have been increasingly used as filler materials 

in crashworthiness applications due to their relatively low cost and high capacity of 

energy absorption. Due to the destructive nature of crashes, studies on the performance of 

metallic foams using physical testing have been limited to examining the crushing force 

histories and/or folding patterns that are insufficient for crashworthiness designs. For this 

reason, numerical simulations, particularly nonlinear finite element (FE) analyses, play 

an important role in designing crashworthy foam-filled structures. An effective and 

numerically stable model is needed for modeling metallic foams that are porous and 

encounter large nonlinear deformations in crashes. 

In this study a new constitutive model for metallic foams is developed to 

overcome the deficiency of existing models in commercial FE codes such as LS-DYNA. 

The new constitutive model accounts for volume changes under hydrostatic compression 

and combines the hydrostatic pressure and von Mises stress into one yield function. The 

change of the compressibility of the metallic foam is handled in the constitutive model by 

allowing for shape changes of the yield surface in the hydrostatic pressure-von Mises 

stress space. The backward Euler method is adopted to integrate the constitutive 

equations to achieve numerical accuracy and stability. The new foam model is verified 

and validated by existing experimental data before used in FE simulations of crushing of 

foam-filled columns that have square and hexagonal cross-sections.  
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CHAPTER 1: INTRODUCTION
 
 

The work on crashworthiness can be traced back to the 1940s in the field of 

military aviation. In the 1950s, the U.S. Army investigated helicopter crashes to improve 

crashworthiness and reduce fatalities. The term “crashworthiness” refers to the ability of 

a structure to protect the occupants in a crash event. The goal of vehicular 

crashworthiness design is to let certain structural components absorb as much kinetic 

energy as possible so as to decrease the dynamic forces and accelerations exerted on the 

occupants while maintaining a sufficient survival space for the occupants. To achieve this 

goal, the energy absorbing structures are typically designed to deform in a controlled 

manner by creating initial imperfections to trigger the desired deformation pattern. 

Head-on collisions, run-off-road collisions, rear-end collisions, side collisions and 

rollovers are the most commonly seen vehicular crashes that often result in property 

damage, injury, and death. They are typically unpredictable and when they cannot be 

avoided, it relies on vehicular crashworthiness to reduce the injury and fatality. The 

deformation characteristics of a crashing vehicle are of interest to many researchers and a 

straight forward way of analysis is by means of full-scale crash testing. In the U.S., all 

new vehicle designs must be tested to pass the safety standards of Federal Motor Vehicle 

Safety Standards and Regulations (FMVSS 1998), such as offset-frontal impacts, side 

impacts and roof crash. FIGURE 1.1 shows an offset-frontal impact test of a 2007 Ford 
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Fusion (IIHS 2010). The vehicular crashworthiness is rated by its performance in these 

tests. 

1.1 Finite Element Simulation of Crashes 

Full-scale crash tests are expensive and time consuming. Due to the destructive 

nature of the crash testing and the limitations of data-acquisition techniques, many 

parameters related to crashworthiness cannot be directly measured in an experiment, e.g., 

the energy absorption and the time history of deformation. In addition, the test specimens 

cannot be reused after a crash; this imposes a significant challenge to full-scale crash 

testing. Consequently, full-scale crash tests are mainly used for safety evaluation and 

validations; they are not appropriate for design exploration and optimization purposes. 

Thanks to the rapid development of computer hardware and associated 

technologies in the late 20th century, nonlinear finite element (FE) simulation has now 

become an important design tool for automotive, aerospace, and other industries. A 

number of commercial codes are now available such as LS-DYNA (LSTC 2010), Abaqus 

(Abaqus 2007), PAM-CRASH (ESI 2008), and ANSYS (ANSYS 2004). Although there 

 
FIGURE 1.1: Offset-frontal impact test of a 2007 Ford Fusion (IIHS 2010) 
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are some initial costs to develop and validate an FE model, the subsequent simulation 

work provides a fast, cost effective, and powerful means for crashworthiness designs. 

In 1981, Pifko and Winter (1981) performed the first crash simulation of a vehicle 

frontal impact and an aircraft crash. They showed that FE simulations could be 

effectively used in the design process. Restricted by the computing power at the time, 

only half of the vehicle was modeled using 504 elements (triangular membrane, link, 

beam and nonlinear spring elements), with a total of 663 degrees of freedom. Dissipative 

nonlinear springs were used to model the front end of the vehicle to obtain the crushing 

behavior. In 1983, Haug et al. (1983) carried out a quasi-static FE analysis of a vehicle-

pillar impact using PAM-CRASH to investigate the application of commercial FE codes 

to industrial crashworthiness studies. Argyris et al. (1986) simulated the frontal impact of 

a car’s frontal structure into a rigid wall at 13.4 m/s, excluding the engine, transmission 

and other internal parts. In this model, they considered material hardening and strain-rate 

effects (from 0.05 to 10.0 s-1) for the standard and high-strength steel components. 

However, the inaccuracies in time integrations and descriptions of the mechanical 

behavior of the materials contributed to the inaccuracies in the resulting stress 

distributions. 

Due to limited computing capabilities such as CPU speed, memory and data 

storage, these early analyses did not include contact calculations or folding/buckling of 

sheet metal structures. Nevertheless, these pioneering crash simulations included several 

features of FE analysis (FEA) that are still being used today, for instance, time integration 

combined with shell elements and plane stress elasto-plasticity. 
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Since the late 1980s, the rapid evolution of computer hardware and super 

computers has promoted the usage of explicit FE codes in crash analysis as well as the 

development of vehicle models, from the early 259-node rough model (Pifko and Winter 

1981) to the more detailed models (Thacker et al. 1998, NCAC 2008). For example, 

Thacker et al. (1998) developed an FE model of a 1997 Honda Accord that included all 

major components with 40 types of materials. This FE model included 177 parts that 

were meshed into 88,000 elements with 93,400 nodes.  

In the past decade, more and more researchers adopted full-scale crash 

simulations to aid the design and safety evaluations of modern vehicles. Williams et al. 

(2000) investigated the overall vehicle response and component interactions using 

nonlinear FEA. They used component-level experimental data to guide the work of 

vehicle modeling. For example, the front tires were modeled in details to describe their 

compression and recovery characteristics reflected in the dynamic tire testing. However, 

no full-scale experimental crash tests were performed to validate the accuracy of the 

predictions given by the FE simulations. 

Full-scale FE simulations were used in many impact scenarios such as side 

impacts, rear impacts and rollovers as seen in the work of Fang et al. (2005b), Mao et al. 

(2005), and Gursel and Nane (2010). Using the results of full-scale simulations of an 

offset-frontal and a side impact, Fang et al. (2005b) performed optimization of 21 

components in the vehicle to maximize energy absorption while minimizing the weight. 

Mao et al. (2005) carried out the first full-scale FE simulations of dynamic roof crushing 

tests. The study revealed that 30% of the roof strength came from the bonded windshield 

and that the roof strength was a function of the roll and pitch angles. The conclusions of 
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this study provided a guideline for choosing the worst-case roll angles for the safety 

specifications on vehicle rollover. Gursel and Nane (2010) simulated the frontal, offset-

frontal and side impacts of a Ford Taurus and a Dodge Intrepid and showed good 

agreement between the experimentally recorded accelerations and FE simulation results. 

They also performed sensitivity analyses of the energy absorption in relation to the door 

thickness. 

In recent years, FE simulations have been applied to highway safety analyses and 

roadside barrier designs. Using full-scale FE simulations, El-Tawil et al. (2005) 

investigated the safety performance of a bridge pier impacted by large-sized utility 

vehicles (a 14-kN Chevy truck and a 66-kN Ford truck). Elmarakbi et al. (2006) simulated 

the process of a vehicle impacting a traffic pole and proposed a pole reinforcement design 

in order to minimize vehicular deformations and to reduce occupant injuries. Different 

types of roadside barrier systems were evaluated using FE simulations as can be found in 

the work of Borovinsek et al. (2007), Ulker and Rahman (2008), and Bi et al. (2010b). 

Borovinsek et al. (2007) used results of FE crash simulations in the evaluation of 

different safety barrier reinforcements to determine the best barrier design. This work 

was also validated using data from physical crash tests. Ulker and Rahman (2008) 

utilized FE simulations to develop design guidelines for a portable concrete barrier 

system. In their sensitivity analysis of pavement types (asphalt and concrete), impact 

speeds and angles, and barrier lengths, they showed that the barrier had less traverse 

displacement on concrete pavement and that the total barrier length needed to be at least 

61 m to stabilize the traverse displacement. Bi et al. (2010b) evaluated the safety 

performance of highway cable median barriers installed on a sloped median using full-
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scale FE simulations. Six cable barrier designs with different cable heights were 

evaluated under vehicular impacts at different angles and speeds. The simulation results 

showed that the post yielding provided more retention to the cables than hook-bolt 

yielding and that cable heights were critical to cable-vehicle engagements.  

1.2 Aluminum Foam-filled Thin-walled Columns 

Thin-walled columns are widely adopted crashworthy structures; they are 

commonly seen as the rails and other crushing members of a vehicle. These columns 

enhance the occupant safety in vehicular collisions by deforming progressively and 

absorbing a large amount of kinetic energy. Moreover, given the concern of today’s 

automotive industry on fuel efficiency and environmental preservation, designing thin-

walled columns is of special interest for their light weight and low manufacturing cost.  

Proper designs of the crushing columns could reduce the impact forces on the rest 

of the vehicular body and the occupants, and thus enhance the safety of the vehicle. A 

preferred crushing column is one that absorbs a large amount of energy, is light weight 

(related to fuel efficiency and manufacturing cost), and retains a sufficient level of 

stiffness. Thin-walled columns are typically subject to loading conditions including axial 

loading, oblique loading (loading in the direction at an angle to the axial direction), and 

pure bending. Under axial loading conditions, the column undergoes successive buckling 

and folding, and thus absorbs a large amount of kinetic energy. Under pure bending 

conditions, the deformation of the member is governed by global buckling or bending in 

which the column absorbs less energy compared to the axial loading condition. In an 

actual crash event, a crushing column often undergoes a combination of pure bending and 

axial loading conditions. 
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Due to the complexity of the crash mechanism, designing crashworthy structures 

using the experimental approach creates significant challenges. To this end, many 

researchers adopted analytical models and/or numerical simulations that could be 

combined with optimization methods to conduct crashworthiness designs.  

The first analytical model to predict the mean crushing force (MCF) and the 

absorbed energy of thin-walled, cylindrical columns was established in the work of 

Alexander (1960). Other theoretical models were subsequently derived to predict the 

deformation modes of thin-walled structures in axial crushing (Abramovicz and Jones 

1984; Abramovicz and Wierzbicki 1989; White and Jones 1999). Numerical analyses and 

experiments were also conducted to verify these analytical models, many of which were 

based on the plastic-hinge concept and assumed a single complete folding within a 

constant length (Santosa et al. 2000; Chen and Wierzbicki 2001; Zhao and Abdennadher 

2004; Song et al. 2005).  

Metallic foams are cellular materials with air-filled pores. These pores can be 

interconnected (open-cell foam) or insulated (closed-cell foam). The porosity of metallic 

foams typically ranges from 5 to 40 pores per inch. One example of the cellular structure 

of aluminum foam is shown in FIGURE 1.2. Due to its many favorable properties such as 

low weight, high gas permeability and high thermal conductivity, metallic foams become 

the attractive materials to automotive, aerospace, military, and other industrial 

applications (Banhart 2001). Examples of its applications include heat exchangers, 

catalyst surfaces, energy absorbers, sandwich panels, air oil separators, aircraft wing 

structures, and fuel tank baffles. 

One of the important applications of metallic foams is as a filler material in 
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extruded metal columns to increase the energy absorption under impact or blast loading. 

Aluminum foam has been extensively studied and shown to have good energy absorption 

under both quasi-static and dynamic loading conditions (Miyoshi et al. 1999; Kanahashi 

et al. 2000; Paul and Ramamurty 2000; Lopatnikov et al. 2003, 2004; Tan et al. 2005a, 

2005b).   

Aluminum foam is one of the commonly used crashing foams and exhibits 

different behaviors under compressive, tensile and shear loadings. Under quasi-static 

compression, the deformations of aluminum foams can be divided into three regions: 

elastic, quasi-plateau and densification regions (Lopatnikov et al. 2003). Elastic 

deformation occurs first at very low stress and strain levels. Buckling and plastic 

collapses of foam cells take place in the quasi-plateau region followed by densification of 

the foam as its density approaches to that of its constituent material (Lopatnikov et al. 

2003). Unlike its constituent material (i.e., the aluminum), the density of a deforming 

foam keeps changing in each of the three regions with the progress of the deformations.  

Several researchers studied the bending mechanism of foam-filled columns. In the 

 
FIGURE 1.2: Cellular structure of an aluminum foam sample 

(Baumeister et al. 1997) 
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work of Kim et al. (2002), a plastic-hinge model was employed to optimize the energy 

absorption of an “S” frame with a square cross-section and filled with aluminum foam. 

Due to localized plastic deformations around the hinges, the specific energy absorption 

(SEA) of the “S” frame was found to be much lower than those of straight columns under 

axial loading. In the work of Zarei and Kroger (2008a, 2008b), the bending behavior of 

foam-filled beams was studied and optimization was performed on square, foam-filled 

tubes to find efficient and lightweight crush absorbers for maximum energy absorption.  

The axial crushing mechanism of foam-filled columns was first studied in the 

work of Seitzberger et al. (2000), who performed physical experiments to analyze the 

crushing forces and energy absorption of steel columns with square, hexagonal, and 

octagonal cross-sections filled with aluminum foam. The study showed that the foam-

filled columns had significant improvement on crushing forces over empty tubes, and that 

the SEAs could be increased by as much as 60%. Zhao and Abdennadher (2004) studied 

the behavior of square, brass columns filled with aluminum foam under axial impact. The 

study utilized both physical experiments and FE simulations to verify the enhancement 

on column strength by filling in aluminum foam. Song et al. (2005) showed that a foam-

filled column had larger energy absorption than the sum of energy absorption of the foam 

and tube when crushed separately. This observation was the same as that in the work by 

Chen and Wierzbicki (2001): the foam functioned as an elastic-plastic foundation to the 

walls of the tubular structures, which accordingly reduced the folding wavelength and 

thus increased the crushing resistance as well as the energy absorption. In addition to the 

above observation, they also pointed out that multi-cell structures had increased SEAs 

over single-cell structures due to the corner effect. When multiple cells (or tubes) were 
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connected together and formed a multi-cell structure, the corners of each cell were then 

supported by walls of surrounding cells. The crushing resistance was enhanced by 

forming a multi-cell structure; this was also shown in the work of Hou et al. (2007) in 

which multi-cell columns were shown to have higher efficiency of energy absorption than 

single-cell columns. 

With the advancement in high performance computing and parallel algorithms, 

FEA has been increasingly used by researchers to perform in design optimization of 

foam-filled thin-walled columns. For example, Mamalis et al. (2008) used LS-DYNA 

(LSTC 2010) to simulate the crushing process of foam-filled, thin-walled rectangular 

columns. However, designing crashworthy structures still imposes significant challenges 

due to the high computational cost and numerical instabilities of the crash simulations 

and the large number of analyses required by an optimization process. To perform 

optimization involving expensive simulations, many researchers employed the response 

surface methodology (RSM) to reduce the computational cost of crash analysis using 

whole vehicle or component models (Avalle et al. 2002; Kurtaran et al. 2002; Fang et al. 

2005b). The RSM was successfully combined with the FE analysis in a number of studies 

on crashworthiness optimization of various columns (Yamazaki and Han 1998, 2000; 

Eby et al. 2002; Lee et al. 2002; Lanzi et al. 2004; Xiang et al. 2006) and other structures 

(Redhe et al. 2004; Fang et al. 2005a). 

In the work by Hou et al. (2007), crashworthiness optimization was performed on 

hexagonal thin-walled columns with single- and triple-cell configurations. The SEA was 

optimized with a constraint on the maximum peak load. It was observed that the triple-

cell configuration outperformed the single-cell configuration, and that the side-connected 
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configuration outperformed the vertex-connected configuration in terms of the SEA. Liu 

(2008) presented the optimum design of straight octagonal and curved hexagonal thin-

walled tubes with the maximum crushing force as a design constraint. These works 

focused on the optimization of tubular geometries and did not include foams in the 

designs. Recently, dual-cell hexagonal columns with honeycomb cores (Zhang et al. 

2008), foam-filled square tubes (Hou et al. 2009) and foam-filled hexagonal tubes (Bi et 

al. 2010a) were studied and optimized for maximum energy absorption.  

Due to the complicated geometries of foams, they are typically modeled by solid 

elements in FEA using bulk material properties. The large volume and large deformation 

of metallic foams often cause numerical challenges in crash simulations, specifically, in 

solving the constitutive equations, which largely influence the accuracy and stability of 

these analyses. A stable and efficient constitutive model for foams is a necessity for the 

effective employment of FE simulations in designing foam-filled crushing components.  

1.3 Constitutive Modeling of Metallic Foams 

In FE simulations metallic foams are modeled as continuum solids with bulk 

properties that are used in the constitutive equations to produce the deformation 

characteristics of the material. The reliability of an FE crash simulation of a foam-filled 

column largely depends on the accuracy and effectiveness of the constitutive models of 

both the outer metal tube and the inner foam filler.  

Constitutive modeling of metals has been comprehensively studied in the past. All 

commercial FE codes provide a number of material models for metals, most of which are 

based on the von Mises yield criterion. Some models include strain-rate effects and 

failures, for example, material types 19 and 81 in LS-DYNA (LSTC 2010). Pressure 
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dependent models applicable to metals were introduced by Gurson (1977), Chu and 

Needleman (1980), and Tvergaard and Needleman (1984). The Gurson dilatational 

plastic model was implemented as material type 120 in LS-DYNA (LSTC 2010). 

Among the material models in commercial codes such as LS-DYNA, the power 

law, Cowper/Symonds and piecewise linear plasticity models are the most frequently 

used in crash analyses. Rabbani et al. (2009) studied the reliability of these three models 

for use on aluminum, high strength steel and mild steel materials. It was shown that both 

the power law model and the piecewise linear plasticity model provided good agreement 

with experiment data of uniaxial tensile tests. The piecewise linear plasticity model, 

however, requires users to provide stress-strain curves to obtain accurate predictions. The 

Cowper/Symonds model was shown to extremely overestimate the stresses at high strain-

rates (135 s-1). 

The effects of hydrostatic pressure on material yielding are neglected in the above 

mentioned models based on the conclusions drawn by Bridgman (1947) and Hill (1950). 

However, some later experimental work (Spitzig 1975, 1976, 1984; Richmond 1980) 

indicated that yielding was not completely pressure independent, even for metals. 

Recently, the experimental work by Allen (2000, 2002) and Wilson (2002) showed a 

significant effect of hydrostatic pressure on the yielding of various metals.  

The deformation characteristics of metallic foams are different from that of pure 

metals. One difficulty of modeling the metallic foam as a bulk continuum is that the 

observed yielding of the foam involves different mechanisms such as plastic yielding, 

buckling and fracture of cell walls, due to the inhomogeneous nature of the material. The 

inhomogeneity of metallic foams was investigated in the work of Daxner et al. (1999), 
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Gradinger and Rammerstorfer (1999), Meguid et al. (2002) and Reyes et al. (2004). 

Daxner et al. (1999) found that the foam’s inhomogeneity led to stress localizations, 

decreased plateau stresses and efficiency of energy absorption. The same conclusion was 

drawn in the work of Gradinger and Rammerstorfer (1999) that the inhomogeneity could 

decrease the efficiency of energy absorption. Gradinger and Rammerstorfer also found 

that the variation in cell sizes, cell wall thicknesses and other micro-geometrical 

parameters could lead to a variation in foam density that lowered the plateau stresses and 

thus the level of energy absorption. Meguid et al. (2002) developed an FE model of 

multiple cells using shell elements including a random variation of foam density. The 

general trend of the nominal stresses of this model was found to match the nominal 

stress-strain curve from experimental data. The model with uniform density distribution 

showed unrealistic oscillations of the plateau stresses. Reyes et al. (2004) used a 

statistical variation of foam density in their constitutive model in which the initial density 

of each element was given with a normal probability (Gaussian) distribution. However, it 

was concluded that this variation of foam density did not help increase the accuracy of 

simulation results, namely the force-displacement curves. 

The large strain and strain-rate (characteristic strain-rates are around 103 s-1 for 

dynamic loadings) experienced by foam elements in crash simulations are also challenges 

to the incremental stress update. Moreover, the classical J2 flow theory is no longer 

effective due to the existence of the plastic volumetric flow (Dunne and Petrinic 2005). 

Hydrostatic pressure yielding must be included in the constitutive model of foams. 

Over the years, various constitutive models of metallic foams have been 

developed and can be found in literature. These models can be divided into two major 
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types. The first type uses the stress components or the principal stresses to determine the 

yielding of the foam. These models include the ones developed by Shaw and Sata (1966), 

Triantafillou et al. (1990) and Schreyer et al. (1994). Shaw and Sata (1966) used a yield 

function in which the maximum value of the three principal stresses was compared to the 

predefined yield stress. Due to the difficulties with experimental scatter and the lack of 

tensile loading data, the yield surface in the principal stress space was not established. 

Triantafillou et al. (1990) suggested that the yield function be formulated such that when 

a certain stress component reached the yield stress, the material became plastic. The 

authors, however, did not specifically define this function. Schreyer et al. (1994) used a 

spherical yield surface in the principal stress space to account for the strain hardening of 

metallic foams.  

The second type of model uses the first and second stress invariants of the stress 

tensor that correspond to the hydrostatic pressure and the von Mises stress to determine 

the yielding of the foam. Drucker and Prager (1952) first proposed this type of 

constitutive model. Subsequent models are found in the work by Gurson (1977), Ragab 

and Saleh (1999), Wen et al. (2005) and Monchiet et al. (2008). However, the yield 

functions in these models include first or lower order terms of the hydrostatic pressure 

and the von Mises stress.  

Yield functions including second order terms in the hydrostatic and von Mises 

stresses include those proposed by Gibson et al. (1989), Zhang et al. (1997), Miller 

(2000), Deshpande and Fleck (2000) and Doyoyo and Wierzbicki (2003).  

The yield function proposed by Miller (2000) incorporated a polynomial of stress 

invariants into the yield function. A first-order term was adopted in von Mises stress. 
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Both the first- and second-order terms were adopted for the hydrostatic pressure. In order 

to account for strain hardening, the predefined uniaxial yield stress was scaled by the 

volumetric strain and formulated into the yield function. In the work by Doyoyo and 

Wierzbicki (2003), the yield function was composed of a first-order term in the von 

Mises stress and both the first- and second-order term in the hydrostatic pressure.  

The models proposed by Zhang et al. (1997) and Deshpande and Fleck (2000) 

consisted of second-order terms in both the von Mises stress and hydrostatic pressure. 

The yield surfaces in these two models were elliptic in the hydrostatic pressure-von 

Mises stress space. In the work of Deshpande and Fleck (2000), two constitutive models 

were proposed: the self-similar evolution model in which the yield surface expanded with 

material hardening, and the differential hardening model in which both the size and shape 

of the yield surface would change with material hardening. It was found that the 

differential hardening model predicted the stress-strain responses to a high level of 

accuracy and outperformed the self-similar evolution model. However, the differential 

hardening model was too complicated to warrant its practical usage. 

There are a number of material models of metallic foams available in LS-DYNA; 

however, Hanssen et al. (2002) found that none of them could predict, with sufficient 

accuracy, the behavior of different experimental validation data. Moreover, these models 

cannot effectively account for the change of compressibility during the crushing process 

in which the density of the metallic foam increases with accumulation of plastic strains 

and thus reducing the foam’s compressibility. Since these models were implemented into 

the commercial package, they cannot be modified to include the above mentioned 

capability such as modeling the change of material’s compressibility during hardening. 
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In this dissertation a new constitutive model was developed for metallic foams by 

adopting an elliptic yield surface whose shape and size can both be changed with material 

hardening. To include the change of material compressibility, a function was derived to 

explicitly express the compressibility in terms of the volumetric plastic strains. This new 

constitutive model was implemented into LS-DYNA as a user material subroutine. The 

implicit integration method proposed by Aravas (1987) was used to carry out numerical 

integrations of the constitutive equations. The new model was validated using uniaxial 

and diagonal loading tests before being applied to crash simulations of foam-filled 

columns. 

In the remaining chapters of this dissertation, a brief introduction of contact 

theory and modeling is first presented. General aspects of constitutive modeling and six 

built-in foam models in LS-DYNA are then described. The formulation and functionality 

of the new foam model are subsequently introduced. Following the verification and 

validation of the new constitutive model, crash simulations of foam-filled columns using 

the new foam model are presented and compared to those using LS-DYNA built-in 

models. Finally, the work of this dissertation is summarized and some conclusions are 

drawn based on analysis of the simulation results.  

 



 

CHAPTER 2: CONTACT THEORY AND MODELING
 
 

Contact problems exist in many engineering systems. Modeling contacts imposes 

substantial numerical challenges and computational costs. Contact surfaces are usually 

unknown prior to loading and may constantly change after loading. Also, the forces and 

displacements on these surfaces are unknown and need to be calculated during the entire 

course of contacts. In crash simulations, there are a large number of contacts due to the 

large displacements and deformations of the components. Contacts need to be properly 

detected and handled among contacting components to avoid unrealistic penetrations, 

which would significantly reduce the accuracy of numerical simulations. This chapter 

gives some basic strategies that are used in FE analysis to simulate contacts. 

2.1 Contact Methods and Formulations 

The penalty method is commonly used in both explicit and implicit FE codes for 

contact treatment. In this method, imagined normal interface springs are placed between 

all penetrating nodes, and the forces in the springs are calculated based on the levels of 

penetration. The stiffness of these springs is called the contact stiffness, which depends 

on the contacting materials and geometric properties. When a penetration between two 

contacting surfaces is detected, contact forces are calculated and applied to the 

penetrating nodes to separate them from the penetrated surfaces. Contact forces are 

assembled into the system of governing equations (Laursen 2003) given by  

 int c ext( ) ( ( )) ( ( )) ( )t t t t+ + =Md F d F d F��  (2.1) 
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where t  is the time, M  is the mass matrix, intF  is the vector of internal forces, cF  is the 

vector of contact forces, extF  is the vector of external forces, ( )td  is the displacement 

vector at the given time instant, and ( )td��  is the acceleration vector.  Equation (2.1) is 

typically highly nonlinear for contact problems. For example, the internal forces have a 

nonlinear relationship with displacements due to material nonlinearities; the contact force 

is a nonlinear function of displacements due to the nonlinearities of the contact interfaces. 

To obtain the numerical solution of Eq. (2.1), the contact forces are first calculated using 

the contact stiffness cK  whose relationship with the contact force is given by 

 c c( ) ( )
∂=

∂
K d F d

d
 (2.2) 

In the FE implementations of contact treatment, there are different formulations for 

calculating the contact stiffness. The rest of this section explains three commonly used 

formulations. 

2.1.1 Standard Penalty Formulation 

In a contact problem, each of the two contacting interfaces is discretized into a 

group of segments, with one interface denoted as “slave” and the other as “master”. In 

FEA, a segment is typically represented by a shell or solid element on the contact surface 

(FIGURE 2.1). In a contact analysis, a search is carried out for each slave node to find the 

nearest node on the master surface. Elements sharing this node (on the master surface) 

are used to determine the normal projections of the master surface. At each time-step a 

penetration check is performed to determine if any node on the slave surface has 

penetrated through the master surface.  If a penetration is detected, a repulsive contact 
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force is applied to separate the contacting surfaces and eliminate the penetration.  The 

contact force is proportional to the penetration depth and is calculated by  

 c i il k= − × ×f n  (2.3) 

where l  is the penetration depth, ik  is the contact stiffness of the i-th segment, and in  is 

the normal vector of the i-th segment on the master surface at the contact location. For 

shell elements the contact stiffness ik  is defined by 

 
max( )

i i i
i

S K A
k

diagonal lengthof shell
=  (2.4) 

 

FIGURE 2.1: Segments defined on a shell/solid part 
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where iS  is a scale factor (rangeing from 0 – 1 with a default value of 0.1 in LS-DYNA),  

iK   is the bulk modulus of the element, and iA  is the area of the shell element. For solid 

elements the contact stiffness ik  is defined by 

 
2

i i i
i

i

S K A
k

V
=  (2.5) 

where iV  is the volume of the element and iA  is the surface area that contains the i-th 

master segment (Hallquist 2006). The remaining variables have the same meaning as 

those in Eq. (2.4). 

2.1.2 Soft-constraint Formulation 

The soft-constraint formulation is intended for treating contacts between bodies 

with dissimilar material properties (e.g., metals and foams). In addition to the contact 

stiffness calculated by the standard penalty formulation, an alternative stiffness is 

calculated based on the stability of a local spring-mass system, as given by 

 * 1
0.5 ( )cs

c

k SSC m
t

= ⋅ ⋅ ⋅
∆

 (2.6) 

where SSC  is a scale factor, *m  is a function of the masses of the slave and master 

nodes, ct∆  is the current time-step. The stiffness calculated by Eq. (2.6) is compared to 

that calculated by the standard penalty formulation, e.g., Eq. (2.4) or (2.5), and the larger 

of the two is used in calculating the contact force. 

2.1.3 Segment-based Formulation 

The segment-based formulation is another penalty method implemented in FE 

codes such as LS-DYNA. In this formulation the slave and master segments are used 

instead of the slave node and master segment. In the case of two 4-node segments coming 
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into contact, contact forces are applied to the eight nodes. This formulation distributes 

contact forces more evenly and sometimes can be effective for very “stubborn” contact 

problems (Hallquist 2006). In this formulation, an alternative stiffness is defined by 

 1 2

1 2

1
0.5 ( ) ( )cs

c

SFS
m m

k SSG or
m m t

SFM

� �
� �= ⋅ ⋅ ⋅ ⋅� � + ∆� �
� �

 (2.7) 

where SSG  is the scale factor for sliding interface penalties, SFS  is the scale factor on 

default slave penalty stiffness, SFM is the scale factor on default master penalty stiffness, 

1m  and 2m  are masses of the slave and master segments, respectively. For shell elements, 

the segment mass is equal to the element mass; for solid elements, the segment mass is 

equal to half the element mass. This formulation differs from the soft-constraint 

formulation in how the time-step size is updated. The time-step is only updated when it is 

increased by more than 5%. Therefore, the time-step used in this formulation is usually 

constant. 

2.2 Contact Modeling in LS-DYNA 

In an FE model of a contact problem, components that are potentially in contact 

during the simulation need to be predefined in a group or groups, and the algorithm to 

handle each group of contacts needs to be specified. This is called contact definition for 

which there are a variety of contact types in LS-DYNA, each corresponding to a specific 

contact algorithm with a choice of the aforementioned formulations of contact stiffness. 

In this section, four commonly used contact types are introduced, ranging from simple to 

complex contact algorithms. 
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2.2.1 Nodes-to-Surface Contacts 

The nodes-to-surface contact type is a simple one-way treatment of contacts 

between two different parts or two groups of parts, one being called the slave and the 

other the master. Both the master and slave parts need to be specified in the contact 

definition. At each time-step of a contact analysis, each node on the surfaces of slave 

parts is checked for penetration through the master surfaces, as schematically shown in 

FIGURE 2.2. If a penetration is detected, normal and tangential forces are applied 

between the slave node and the contacting surfaces. The magnitude of the normal force is 

proportional to the penetration depth. The magnitude of the tangential force is calculated 

through a Coulomb friction formulation if sliding along the contacting surfaces occurs. 

The coefficient of Coulomb friction is given by 

 ( ) relDC v
c FD FS FD eµ −= + −  (2.8) 

where FD  is the coefficient of dynamic friction, FS  is the coefficient of static friction, 

DC is the exponential decay coeffcient, and relv  is the relative velocity of the contacting 

surfaces. 

Nodes-to-surface contacts are often used in problems where the master part is a 

rigid body and/or when the slave surface has a finer mesh than that of the master surface. 

This type of contact performs a one-way treatment of penetration check. In addition, the 

penetration check is only performed on slave nodes that are pointed by the normal vectors 

of the master surface. Therefore, this type of contact may not work well for contacts 

between highly deformable and/or geometrically complex parts, because penetrations 

may not be detected by the one-way treatment of contact. Consequently, this contact type 
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may be either inaccurate due to undetected contacts or numerically unstable due to large 

penetrations detected at a later stage. 

A modification to the nodes-to-surface contact type is to use a two-way contact 

check and is given by the automatic-nodes-to-surface contact type. The two-way 

treatment is essentially the same as the one-way nodes-to-surface contact type except that 

it checks nodal penetrations on both sides of the master surface. The computational time 

of the automatic-nodes-to-surface contact type is approximately two times that of the 

one-way contact treatment (Hallquist 2006). 

2.2.2 Surface-to-Surface Contacts 

The surface-to-surface contact type is similar to the one-way node-to-surface 

contact type in which a slave and a master surface are specified. At each time-step of the 

contact analysis, each node on the slave surface is checked for penetration through the 

master surface (FIGURE 2.3). Unlike the nodes-to-surface contact type, however, the 

normal orientations of the slave surfaces in surface-to-surface contacts are also critical: 

penetrations will only be checked on nodes of the slave surfaces whose normal vectors 

are oriented towards the master surface. 

 
FIGURE 2.2: Nodes-to-surface contact 
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Similar to the automatic-nodes-to-surface contacts, the automatic-surface-to-

surface contact type also provides a two-way contact treatment. With the ‘automatic’ 

option, this contact type also checks nodes on the master surfaces for penetration through 

the slave surfaces. The automatic-surface-to-surface contact type provides a symmetric 

treatment, that is, defining the slave and master surfaces is arbitrary. It is a recommended 

contact type in analyses such as metal forming simulations that typically involve large 

deformations and unpredictable orientations of the deforming parts (Hallquist 2006). 

2.2.3 Automatic-Single-Surface Contacts 

The automatic-single-surface contact type is among the most widely used contact 

types in LS-DYNA. In this contact type, all the parts are defined as the slave (either a 

single part or a group of parts) and no master is specified. Penetrations between any two 

surfaces of all parts in the group are checked, including self-contacts that are between 

two surfaces of the same part (see FIGURE 2.4). The automatic-single-surface contact 

type makes it easy for defining contacts in applications involving large numbers of 

potentially contacting components. For example, in automotive crash simulations, the 

 
FIGURE 2.3: Surface-to-surface contact 
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entire vehicle can be included in one definition of this single-surface contact where all the 

nodes and elements may interact. 

The automatic-single-surface contact type implements a segment-based contact 

formulation in which segments instead of nodes are checked for penetrations through 

other segments and the contact forces are applied to the nodes of the corresponding 

segments. In addition, the contact stiffness is calculated in a slightly different way from 

the nodes-to-surface and surface-to-surface contact types (including those with the 

‘automatic’ option) in which the contact stiffness is based on the properties of the master 

element.  For segment-based contacts, however, the properties of elements of both slave 

and master segments are used for calculating the contact stiffness (Eq. 2.7).  

2.2.4 Automatic-General Contacts 

The automatic-general contact type is also a non-oriented (penetration can be 

detected from either side of a shell element), segment-based contact. In the case of shell 

elements, contact surfaces are projected normally from the shell mid-plane at a distance 

 
FIGURE 2.4: Automatic-single-surface contact 
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equal to one-half the shell thickness. The automatic-general contact is similar to the 

automatic-single-surface contact but has a major difference in the number of segments 

checked for penetration. In the automatic-general contact type, three contact segments are 

used for each slave node instead of two segments in the automatic-single-surface contact 

by default. The automatic-general contact type also has a higher frequency of 

contact search to identify and track possible master segments for the given slave nodes. 

The contact search is performed at an interval of every ten time-steps, which is ten times 

the frequency of the automatic-single-surface contact. The automatic-general contact type 

is usually more stable than other contact types and is recommended for complicated 

impact/interaction scenarios such as high-speed impact, buckling and folding 

applications, with the cost of significantly increased computational time (Hallquist 2006).  

The automatic-general contact type can also be used on beam-to-beam, beam-to-

shell-edge and shell-edge-to-edge contacts. In these situations, contacts are checked along 

the entire length of the beam elements or the exterior edges of the shell elements, rather 

than only checked at the nodes. At the exterior edge of a shell surface, the contact surface 

wraps around the shell edge with a radius equal to one-half the shell thickness thus 

forming a continuous contact surface. In addition, the ‘interior’ option of the automatic-

general contact (i.e., automatic-general-interior) will initiate contact checking on the 

interior edges of shell elements. FIGURE 2.5 illustrates the definitions of exterior and 

interior edges: an exterior edge is one that belongs to only one element, whereas an 

interior edge is shared by two or more elements. Using the ‘interior’ option will typically 

incur additional computational cost, but this may be necessary for certain applications 
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such as those with sharp corners protruding from contact surfaces due to large 

deformations, commonly seen in crash simulations. 

Due to the searching algorithm and the high frequency of contact checking, the 

automatic-general contact type has an extremely high computational cost. It is therefore 

only recommended for use in situations where edge-to-edge and/or beam-to-beam 

contacts are anticipated. 

 

 
FIGURE 2.5: Exterior and interior edges 

 
 
 



 

CHAPTER 3: CONSTITUTIVE MODELING OF METALLIC FOAMS
 
 

Constitutive modeling is the mathematical description of how a material responds 

to various external loading conditions. A constitutive model is typically formulated in 

terms of one or more stress-strain relationships. Constitutive modeling has been a key 

research area in solid mechanics due to its complexity and significance in engineering 

applications. It covers research topics in elasticity, plasticity, thermoplasticity, creep 

theory, nonlinear FE method and integration of elastoplastic constitutive equations.  

Plasticity theory deals with the calculation of internal stresses and strains of a 

body that is permanently deformed when external forces are applied. Plastic deformations 

are dependent on the loading paths and are calculated incrementally. Classical plasticity 

theory is based on polycrystalline materials whose plastic deformation is shown to be 

governed by the crystal slip from mechanical tests of single-crystal metals. Unlike the 

elastic deformation in which the interatomic bonds are stretched, the interatomic bonds 

may break and reform during plastic deformation, resulting in one layer of atoms 

displacing permanently relative to their neighboring atoms. The crystal slip suggests that 

the plastic deformation originates from a shear yielding process. 

Bridgman (1947) conducted a series of tensile tests on smooth aluminum, copper, 

bronze and steel bars under external hydrostatic pressures up to 3,100 MPa. He found no 

significant change in the yield stress, and the volume change was negligible under high 

plastic strain. He concluded that the pressure dependency of metals on yielding was 
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negligible and thus metals could be treated as incompressible during plastic flows. His 

argument led to two major assumptions in classical plasticity theory: (1) volume does not 

change under hydrostatic pressure (the incompressibility condition); (2) yielding is not 

affected by hydrostatic pressure. A third assumption made in the classical plasticity 

theory is that, in a polycrystalline material, plastic yielding is an isotropic process. These 

three assumptions are the cornerstone of classical plasticity theory.  

The rest of this section gives an overview of the fundamentals of constitutive 

modeling based on classical plasticity theory. 

3.1 Preliminaries 

Consider a right-handed rectangular coordinate system; the second-order stress 

tensor �  can be expressed in the matrix form 

 
x xy xz

yx y yz

zx zy z

σ τ τ
τ σ τ
τ τ σ

� 	

 �= 
 �

 �
� 


�  (3.1) 

The mean stress m� , also known as the hydrostatic pressure, is given by 

 
3

x y z
m

σ σ σ
σ

+ +
=  (3.2) 

The deviatoric stress tensor 'σσσσ  can be expressed in matrix form 

 
'

' '
'
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�  (3.3) 

or in the suffix notation 

 1
'

3ij ij m ij ij kk ijσ σ σ δ σ σ δ= − = −  (3.4) 

where ijδ  is the Kronecker delta whose value is unity when i = j and zero when i ≠ j. 
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3.2 Yield Criteria and Hardening Rules 

The von Mises yield function is defined as 

 e yf σ σ= −  (3.5) 

where eσ is the von Mises stress given by 

 ' '3
2e ij ijσ σ σ=  (3.6) 

The yield criterion is stated as 

 
Elastic deformation
Plastic deformation

f < 0 : 

f = 0 : 
�
�
�

 (3.7) 

where equation f = 0 represents a cylindrical surface in the principal stress space, called 

the yield surface as illustrated in FIGURE 3.1. The material does not yield as long as the 

von Mises stress stays within the cylinder no matter how large the hydrostatic pressure is. 

 

 

 
FIGURE 3.1: Yield surface in the principal stress space 
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Strain hardening refers to the increase of yield stress with increase in plastic 

strain. FIGURE 3.2 shows an idealized stress-strain curve of a uniaxial tensile test in 

which the material has a linear strain hardening in the plastic region. Under uniaxial 

tensile stress, the material deforms elastically at first. When the initial yield stress 0
y�  is 

reached, the plastic deformation starts. After unloading from a point in the plastic region, 

the material recovers the elastic portion of the deformation eε and gains an increased 

yield stress (the stress value at the unloading point). The remaining strain or permanent 

deformation is the effective plastic strain represented by pε

 

in FIGURE 3.2. During a 

loading process, the total strain can be additively decomposed into two portions 

expressed by 

 e pε ε ε= +  (3.8) 

The stress can therefore be written as 

 ( )e pE Eσ ε ε ε= = −  (3.9) 

 
FIGURE 3.2: Stress-strain relationship and decomposition of strains 
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For linear hardening, as illustrated in FIGURE 3.2, the hardening rule can be 

written as 

 0 ( )p
y y effHσ σ ε= +  (3.10) 

where H is the increase over initial yield stress due to strain hardening and is a function 

of the amount of effective plastic strain. For nonlinear hardening, a function can be 

proposed to represent the plastic stress-strain relationship with parameters determined by 

material test data. Alternatively, a piecewise-linear stress-strain curve can be provided to 

approximate the nonlinear hardening curve. 

3.2.1 The Flow Rule 

Once a material yields, the plastic flow follows. In crystalline solids, the plastic 

flow involves the change of shape of the material due to dislocation motion by the 

movement of individual atoms. The plastic flow theory states that the increment of plastic 

strain is in the normal direction of the yield surface at the loading point; this is known as 

the normality flow condition as illustrated in the two-dimensional principal stress space 

in FIGURE 3.3. 

The normality condition can be expressed in terms of the yield function as 

 p f
d dλ ∂=

∂
εεεε

σσσσ
 (3.11) 

where 
pdεεεε  is the plastic strain increment, where 

f∂
∂σσσσ  is the normal vector of the yield 

surface at the initial stress state, and d� is the plastic multiplier to be determined.  
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For the von Mises yield criterion, The von Mises stress can be written in terms of 

the six stress components as 

 
1/2

2 2 2 2 2 2
11 22 33 12 13 23

3
( ) ( ) ( )

2e m m mσ σ σ σ σ σ σ σ σ σ� �� 	= − + − + − + + +� �� 
� �
 (3.12) 

and the normal vector of the yield surface can be written as 

 
'3

2
ij

ij e

f σ
σ σ
∂ =

∂
 (3.13) 

where 'ijσ  is the deviatoric stress components. Thus, the increment of plastic strain can 

be written as 

 
'3

2
ijp

ij e

f
d d d

σ
λ λ

σ σ
∂= =

∂
εεεε  (3.14) 

and the increment of the effective plastic strain is consequently 

 
 

FIGURE 3.3: Plastic flow in a two-dimensional principal stress space 
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where 'σσσσ  is the deviatoric stress tensor; and  the contracted tensor product (A:B) is 

defined by 

 
1 1

:
n n

ij ij
i j

A B
= =

=��A B  (3.16) 

Therefore, in von Mises criterion the value of the plastic multiplier equals the increment 

of the effective plastic strain; and the flow rule is rewritten as 

 3 '
2

p p
eff

e

d dε
σ

= σσσσεεεε  (3.17) 

The consistency condition is used to determine the plastic multiplier or the 

increment of the effective plastic strain. The consistency condition requires that the stress 

state stay on the yield surface during yielding. When strain hardening is considered, the 

stress state changes to a new, expanded yielded surface. The consistency condition is 

given by the following two equations: 

 ( , ) 0p
efff ε =σσσσ  (3.18) 

 ( , ) 0p p
eff efff d dε ε+ + =σ σσ σσ σσ σ  (3.19) 

Eq. (3.19) is expanded by the first-order Taylor series as 

 ( , ) ( , ) :p p p p
eff eff eff effp

eff

f f
f d d f d dε ε ε ε

ε
∂ ∂+ + = + +
∂ ∂

σ σ σ σσ σ σ σσ σ σ σσ σ σ σ
σσσσ

 (3.20) 

From Eqs. (3.18) and (3.20), we have 
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 (3.21) 

In the principal stress space, Eq. (3.21) can be written as 
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effp

eff

f f
d dε

ε
∂ ∂⋅ + =
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σσσσ
σσσσ

 (3.22) 

3.2.2 Implicit and Explicit Integrations of Constitutive Equations 

Eq. (3.21) and the Hooke’s law in the following incremental form where C is the 

fourth-order tensor of material constants, 

 ( )e pd d d d= = −C Cσ ε ε εσ ε ε εσ ε ε εσ ε ε ε  (3.23) 

are the constitutive equations that need to be solved to determine the effective plastic 

strain increment p
effdε  - the same value as the plastic multiplier. Both explicit and implicit 

integration methods can be used to solve the constitutive equations. The following briefly 

presents an explicit and an implicit integration method used in plasticity. 

(a) First-order forward Euler integration 

The first-order forward Euler method is an explicit integration method. This 

method is efficient and easy to implement, but does not ensure the consistency condition 

at time instant t+∆t, where the stress is to be determined using the strain, tangent 

modulus and yield surface normal at time instant t. The stress state calculated by this 

method is not guaranteed to stay on the updated yield surface. Furthermore, this method 

is only conditionally stable due to the explicit scheme. The stability and accuracy of the 

method depend on the time-step size. First-order accuracy is achieved at each time step, 

and the final solution may deviate from the true one. 

Using the first-order forward Euler method, Eqs. (3.17), (3.21) and (3.23) are 

combined and expressed as 
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 ( ) 0p
eff

f
d d dλ λ

ε
∂⋅ − + =

∂
n nC εεεε  (3.24) 

where 3 '
2 e

f
σ

∂= =
∂

n σσσσ
σσσσ . The plastic multiplier, d� is given by 

 

p
eff

d
d

f
λ

ε

⋅= ∂⋅ −
∂

n

n n

C

C

εεεε  (3.25) 

where p
eff

f
h

ε
∂ =

∂
 for linear hardening (h: hardening modulus).  

At time instant t, the plastic multiplier, increment in the stress tensor and the yield 

stress are computed as follows: 

 (t) d (t)
d

(t) (t) h
λ ⋅=

⋅ −
n

n n
C

C
εεεε  (3.26) 

 ( )d (t) d (t) d (t)λ−= nCσ εσ εσ εσ ε  (3.27) 

 yd h d (t)σ λ= ⋅  (3.28) 

The stresses and strains at t+∆t are computed consequently by 

 (t + ∆t) (t) d (t)= +σ σ σσ σ σσ σ σσ σ σ  (3.29) 

 p p p
eff eff eff(t + ∆t) (t) d (t)ε ε ε= +  (3.30) 

 y y y(t + ∆t) (t) d (t)σ σ σ= +  (3.31) 

(b) Radial return method 

The radial return method is an implicit integration method. In this method, an 

elastic trial strain increment is first used, and the correct stresses are obtained by scaling 

back to the updated yield surface. Its name comes from the fact that the von Mises yield 

surface is a circle in the deviatoric-plane (the deviatoric plane is a plane passing through 

the origin and is 60 degrees to all three axes in the principal stress space and is given by 
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1 2 3 0σ σ σ+ + = ) and the back scaling is always in the direction towards the center of the 

circle. 

Hooke’s law can be written in terms of the elastic strain tensor as 

 2
2 ( ) ( )

3
e eG K G tr= + − Iσ ε εσ ε εσ ε εσ ε ε  (3.32) 

The elastic strain tensor at the end of a time-step is further written as 

 
e e e

t

e p
t

= + ∆

= + ∆ − ∆

ε ε εε ε εε ε εε ε ε
ε ε εε ε εε ε εε ε ε

 (3.33) 

where e
tεεεε  is the trial elastic strain. Substituting Eq. (3.33) into Eq. (3.32) and re-

organizing assuming the incompressibility condition ( ( ) 0ptr =εεεε ), the following is 

obtained 

 
2

2 ( ) ( ) ( ) 2
3

2

e e p
t t

tr p

G K G tr G

G

= + ∆ + − + ∆ − ∆

= − ∆

Iσ ε ε ε ε εσ ε ε ε ε εσ ε ε ε ε εσ ε ε ε ε ε

σ εσ εσ εσ ε
 (3.34) 

where trσσσσ  is the trial elastic stress  and 2 pG− ∆εεεε  is the plastic corrector based on the 

plastic strain increment. Substituting the plastic strain increment given by Eq. (3.17), Eq. 

(3.34) is written as  

 '
3tr p

eff
e

G ε
σ

= − ∆ σσσσσ σσ σσ σσ σ  (3.35) 

The deviatoric of the trial stress is given by 

 
' 1

( : )
3

( )

tr tr tr

tr e
tK tr

= −

= − + ∆

I I

I

σ σ σσ σ σσ σ σσ σ σ

σ ε εσ ε εσ ε εσ ε ε
 (3.36) 



�

38 

where 
1

( : )
3

tr Iσσσσ  is the mean trial stress. Since the trace of the plastic strain increment is 

zero for incompressible plasticity ( ( ) 0ptr ∆ =εεεε ), 

 

' ( )

( )

1
( : )

3

tr tr e p
t

tr e

tr

K tr

K tr

= − + ∆ ∆

= −

= −

I

I

I I

σ σ ε ε − εσ σ ε ε − εσ σ ε ε − εσ σ ε ε − ε
σ εσ εσ εσ ε

σ σσ σσ σσ σ

 (3.37) 

From Eq. (3.35), we have 

 1 '
' ( : ) 3

3
tr p

eff
e

G ε
σ

+ = − ∆I I σσσσσ σ σσ σ σσ σ σσ σ σ  (3.38) 

or  

 1
( : ) (1 3 ) '

3

p
efftr

e

G
ε
σ

∆
− = +I Iσ σ σσ σ σσ σ σσ σ σ  (3.39) 

Therefore,  

 ' (1 3 ) '
p

efftr

e

G
ε
σ

∆
= +σ σσ σσ σσ σ  (3.40) 

The trial value of the von Mises stress is then computed by 

 

' '3
:

2

3
(1 3 ) ' : '

2

3

tr tr tr
e

p
eff

e

p
e eff

G

G

ε
σ

σ ε

=

∆
= +

= + ∆

σ σ σσ σ σσ σ σσ σ σ

σ σσ σσ σσ σ  (3.41) 

The yield surface based on the trial values at time instant t+∆t is given by 

 ' 3 0tr p
e y e eff yf Gσ ε σ= − = − ∆ − =σ σσ σσ σσ σ  (3.42) 

Eq. (3.42) is a nonlinear equation in which p
effε∆  is solved implicitly until equilibrium is 

reached. 
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3.3 LS-DYNA Built-in Material Models for Foams 

LS-DYNA has several material models that can be used for foams. In this section, 

the yield criteria, evolution of the yield surface, and plastic flow rules of five models are 

introduced along with brief discussions of the capabilities of these models. 

3.3.1 MAT 5: Soil and Crushable Foam Model 

This model is recommended for use on soils and foams when confined within 

structural or geometric boundaries. The yield function of this model is given by 

 2
0 1 23( ) 0ef a a p a pσ= − + + =  (3.43) 

where �e is the von Mises stress, p is the mean stress/pressure, and a0, a1 and a2 are 

material constants. As illustrated in FIGURE 3.4, if a1 = a2 = 0, the material will have no 

pressure dependency. In the principal stress space, the yield surface is a cylinder, which 

becomes a straight line in the pressure-von Mises stress space (a0 = constant). If a2 = 0, 

the yield surface is an inclined line in the pressure-von Mises stress space. If none of a0, 

a1 or a2 is zero, the yield surface is a parabola in the pressure-von Mises stress space. 

 

 

 

FIGURE 3.4: Yield surfaces in the hydrostatic pressure-von Mises stress space 
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The volumetric and deviatoric parts are considered separately in the formulation 

of this model. The yield function of the volumetric plasticity is given by  

 ( )V P Vf P Y ε= −  (3.44) 

where P is the current pressure and Yp is the predefined volumetric yield stress. The 

deviatoric stress is computed afterwards using the aforementioned radial return method.  

MAT 5 does not have the capability of handling material failure. A similar model 

to MAT 5 in LS-DYNA is MAT 14; it is the same as MAT 5 except that it allows 

defining a failure pressure beyond which an element loses its ability to carry tensile 

loads.  

3.3.2 MAT 26: Anisotropic Honeycomb Model 

This model is intended for use on anisotropic honeycomb and foam materials. 

Normal and shear behaviors are fully uncoupled and need to be defined separately. When 

an element’s stresses are updated, the absolute value of each stress component is 

compared to the yield stress based on the following yield criterion: 

 0ij ij ijf Yσ= − =  (3.45) 

where the yield stresses ijY  are predefined and provided by the user in piecewise linear 

curves of engineering volumetric strains 

 0 ( )ij ij VY Y H ε= +  (3.46) 

Elastic-perfectly plastic behavior is assumed after full compaction when a 

predefined relative volume is reached. The von Mises stress is updated using the radial 

return method, and the mean stress is updated using the volumetric strain at time instant 

1
2

t t+ ∆ . 
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Similar to MAT 26, material model MAT 126 can also be used for honeycomb 

materials and crushable foams with anisotropic material properties. MAT 126 is 

essentially the same as MAT 26 except that strain hardening in MAT 126 depends on the 

associated engineering strain components ijε , thus 

 0 ( )ij ij ijY Y H ε= +  (3.47) 

The application of MAT 126 is restricted by the uncoupled consideration of the 

constitutive behaviors. 

3.3.3 MAT 63: Isotropic Crushable Foam Model 

Material yielding in this model is determined based on the principal stresses given 

as follows: 

 
1

2

3

0 0
0 0
0 0

ij

σ
σ σ

σ

� 	

 �= 
 �

 �� 


 (3.48) 

Shaw and Sata (1966) suggested that the maximum principal stress be used to determine 

yielding with the yield function written as 

 max 0if Yσ= − =  (3.49) 

where the yield stress Y is defined in compression by 

 0 ( )VY Y H ε= +  (3.50) 

where the strain hardening ( )VH ε  is defined by the user with a piecewise stress-strain 

curve (either engineering volumetric strain or logarithmic/true volumetric strain). In 

tension no strain hardening is considered and the yield stress is defined by 

 0
tY Y=  (3.51) 
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After initial yielding in tension, the material is treated as perfectly plastic. 

Another assumption made in this material model is that Young’s modulus is a constant 

and does not vary with deformation. Although this model is easy to formulate 

mathematically; numerical instabilities and inaccuracies have been observed in crash 

simulations when large deformations occur. 

An extension of MAT 63 is the material model MAT 163, which considers strain-

rate effects and includes both volumetric strain and strain-rate in the yield function 

 0 ( , )V VY Y H ε ε= + ����  (3.52) 

A set of stress-strain curves needs to be defined for different strain-rates. The stress strain 

behavior is interpolated from the two bounding curves with the closest strain-rates. 

3.3.4 MAT 75: Bilkhu/Dubois Foam Model 

This is a pressure dependent model intended for use on isotropic crushable foams. 

The yield surface is an ellipse in the hydrostatic pressure-von Mises stress space, given as 

follows: 

 

2

2
1

( )
2 1 0

c t
e

p p p
f

a b
σ

� �− −� � � �= + − =� � � �
� �� �

� �

 (3.53) 

where a and b are the half lengths of the major and minor axes. A constant ratio is 

maintained between a and b during the expansion of the yield surface. The center of the 

ellipse is located at 
1

( ),0
2 c tp p� �−� �
� �

, where pc and pt  are the compressive and tensile 

yield hydrostatic pressures, respectively. Strain hardening is formulated by 

 0 ( )c c p Vp p H ε= +  (3.54) 
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 1
10t cp p=  (3.55) 

 0 ( )VY Y H ε= +  (3.56) 

3.3.5 MAT 154: Deshpande and Fleck Foam Model 

Similar to MAT 75, this material model is also pressure dependent and intended 

for use on isotropic metallic foams. Both the pressure and von Mises stress are used to 

determine yielding. The yield surface is an ellipse in the hydrostatic pressure-von Mises 

stress space where 

 ˆ 0f Yσ= − =  (3.57) 

and σ̂ is the equivalent stress defined as 

 
( )

( )
1
2

2 2 2
2

1

1 / 3
e mσ σ α σ

α

� 	
= +
 �

+
 �� 


����  (3.58) 

where eσ  is the von Mises stress given by Eq. (3.6) and mσ  is the mean stress given by 

Eq. (3.2). The yield function can then be expressed as  

 
( )

( )2 2 2 2
2

1
0

1 / 3
e m Yσ α σ

α
+ − =

+
 (3.59) 

or 

 
( ) ( )

2 2

2 22 2

( ) ( )
1

1( 1 / 3 ) ( 1 / 3 )

e m

Y Y
σ σ

α α
α

+ =
+ +

 (3.60) 

The above equation shows that the uniaxial yield stress is equal to Y both in 

tension or compression; the hydrostatic yield stress is equal to ( )21
1 / 3 Yα

α
+ . FIGURE 

3.5 shows the yield surfaces corresponding to different values of �, which is a shape 
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factor defining the aspect ratio of the elliptic yield surface. For � = 0, the yield criterion 

becomes the von Mises yield criterion defining the material as completely 

incompressible. When �2 = 4.5, the material is fully compressible. If the shape factor is 

chosen appropriately, the material behavior will match well to the experimental data 

(Deshpande and Fleck 2000).  

If � remains constant, the yield surface during evolution will be geometrically 

self-similar; that is, the aspect ratio of the elliptic yield surface remains constant. The 

shape factor � can be related to the plastic Poisson’s ratio �p under uniaxial compression 

in direction-3 as 

 ( )
( )

2

11
2

33

1/ 2 / 3

1 / 3

p
p

p

αεν
ε α

−
= − =

+

����

����
 (3.61) 

 

FIGURE 3.5: Yield surfaces with different values of �2 
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The shape factor and the aspect ratio of the yield surface can then be determined 

by measuring �p. In this model, the plastic Poisson’s ratio is kept constant due to the 

choice of a constant value of � during the process of plastic deformation.  

3.3.6 MAT 193: Drucker-Prager Model 

The Drucker-Prager yield criterion is commonly used on rock, concrete, polymer 

and foam materials. The Drucker-Prager yield surface is given by 

 2 1 0f J I kα= + − =  (3.62) 

where � and k are material constants, I1 is the first stress invariant, and J2 is the second 

stress invariant. In the principal stress space, the yield surface is a right-circular cone with 

its longitudinal axis equally inclined with respect to each principal stress axis and its apex 

in the tension octant (FIGURE 3.6). The drawback of this model is that the proposed 

yield surface does not represent well the yield surface of metallic foams. 

 

 

 
FIGURE 3.6: Drucker-Prager yield surface in the principal stress space 
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3.4 Constitutive Models for Foams 

3.4.1 Deshpande and Fleck Models 

Deshpande and Fleck (2000) developed two pressure-dependent foam models by 

investigating a range of axisymmetric compressive stress states of two types of aluminum 

foams, the Alporas and Duocel foams. They found that the yield surface could be 

represented by quadratic functions in the hydrostatic pressure-von Mises stress space. 

Based on experimental data, they proposed a self-similar hardening and a differential 

hardening model for metallic foams. In these two models the asymmetry in shape about 

the von Mises stress axis was neglected based on findings by Harte et al. (1999) and 

Gioux et al. (2000) that the tensile and compressive yield stresses were approximately the 

same in the experiments (FIGURE 3.7). 

 

 

 

FIGURE 3.7: Comparison of stresses under uniaxial loading tests  
(Deshpande and Fleck 2000) 
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3.4.1.1 Self-similar hardening model 

The yield function of the self-similar hardening model is given by Eq. (3.59) or 

(3.60). The initial yield surface could fit the experimental data well with a properly 

chosen value of the plastic Poisson’s ratio or the shape factor �. This model adopts the 

associated flow rule that assumes the plastic strain-rate is normal to the yield surface. 

This is given by 

 1p
ij kl

ij kl

f f
H

ε σ
σ σ
∂ ∂=

∂ ∂
����

����  (3.63) 

where 
p

ijε����  is the plastic strain-rate, H is the hardening modulus; klσ����  is the Jaumann stress 

rate, and f is the yield function. This model requires a proper choice of the plastic 

Poisson’s ratio as defined in Eq. (3.61). Deshpande and Fleck suggested that this value be 

obtained from uniaxial compressive tests by compressing a specimen to 20~30% true 

strain. Experimental data showed a general trend of large plastic Poisson’s ratios for the 

high density foams (Deshpande and Fleck 2000). 

The plastic work rate conjugate to the equivalent strain-rate is defined as 

 ˆˆ p
ij ijσε σ ε=���� ����  (3.64) 

where σ̂  is the equivalent stress and ε̂����  is the equivalent strain-rate. The plastic work rate 

conjugate pairs allow the computation of the equivalent strain-rate. The equivalent strain-

rate can be explicitly expressed in terms of the von Mises strain-rate and the mean strain-

rate as follows: 

 
2

2 2 2
2

1ˆ 1
3 e m

αε ε ε
α

� 	� � � �= + +
 �� � � �
� � � �
 �� 


���� � �� �� �� �  (3.65) 

where the von Mises strain-rate is expressed as 
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= =
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����

� � �� � �� � �� � �  (3.66) 

and the mean strain-rate is expressed as 

 
( )

2

2

ˆ
ˆ1 / 3

p m
e kk

σα εε ε
σα

= =
� 	+
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����

� �� �� �� �  (3.67) 

The hardening modulus H can be determined from a series of experiments with 

hydrostatic and uniaxial compressive loading conditions that establish the hydrostatic and 

shear limits for the value of H. A simplified version of the self-similar model is to use the 

tangent modulus from a uniaxial compression test as the hardening modulus. 

Acknowledging its merits of simplicity and ease of implementation, the self-

similar hardening model does not predict material responses that are entirely consistent 

with experimental observations. For example, Gioux et al. (2000) found that, for low 

density Alporas foams, the predicted strength was lower than the measured values. 

3.4.1.2 Differential hardening model 

The differential hardening model was also proposed by Deshpande and Fleck 

(2000) in order to account for the non-similar evolution of the yield surface. In other 

words, this model allows the yield surface to change its shape in addition to its expansion 

during plastic deformation. With the hydrostatic and von Mises yield strengths evolving 

independently, the yield surface is defined as 

 
2 2

1 0e mf
S P

σ σ� � � �= + − =� � � �
� � � �

 (3.68) 

where S is the von Mises yield strength and P is the hydrostatic yield strength. The 

hardening rule for this model is defined as 
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P

H
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ε
γ

� � � �
=� � � �

� �� �

���� ����

���� ��������
 (3.69) 

where H
����

 is the hardening matrix 11 12

21 22

h h

h h
� �
� �
� �

that needs to be calibrated by material tests. 

In matrix H
����

, h11 is the slope of hydrostatic pressure versus volumetric plastic strain, and 

h21 is the slope of shear stress versus volumetric plastic strain. Both h11 and h21 are 

obtained from the hydrostatic compression test and given as 

 11
m

m

h
σ
ε

=
����

����
 (3.70) 

 21
m

S
h

ε
=
����

����
 (3.71) 

The differential hardening model assumes that there is a shear hardening during 

hydrostatic straining. For the other two parameters in H
����

, h22 is the slope of shear stress 

versus effective plastic strain and h12 is the slope of hydrostatic pressure versus effective 

plastic strain, both  are obtained from the shear test. 

 22
e

e

h
σ
ε

=
����

����
 (3.72) 

 12
e

P
h

ε
=
����

����
 (3.73) 

In Eq. (3.69), ε����  and γ����  are the hydrostatic strain-rate and the shear strain-rate given 

as  

 m
mP

σε ε=� �� �� �� �  (3.74) 

 e
eS

σγ ε=� �� �� �� �  (3.75) 
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which are the work rate conjugates of P and S, respectively. The work rate conjugate 

pairs are represented by 

 p
m m e e ij ijP Sε γ σ ε σ ε σ ε+ = + =� � � � �� � � � �� � � � �� � � � �  (3.76) 

Substituting Eqs. (3.74) and (3.75) into the hardening rule (3.69), the hardening 

rule is written in the scalar form 

 11 12
m e

m eP h h
P S

σ σε ε= +���� � �� �� �� �  (3.77) 

 21 22
m e

m eS h h
P S

σ σε ε= +���� � �� �� �� �  (3.78) 

From the associated flow rule (Eq. (3.63)), the strain-rates mε����  and eε����  can be 

written as 

 1
m m e

m m e

f f f
H

ε σ σ
σ σ σ

� �∂ ∂ ∂= +� �∂ ∂ ∂� �
���� � �� �� �� �  (3.79) 

 1
e m e

e m e

f f f
H

ε σ σ
σ σ σ

� �∂ ∂ ∂= +� �∂ ∂ ∂� �
���� � �� �� �� �  (3.80) 

which are further simplified to 

 
2 2 2

4 m e e m m
m HP S P

σ σ σ σ σε � �= +� �
� �
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����  (3.81) 

 
2 2 2

4 e e e m m
e HP S P

σ σ σ σ σε � �= +� �
� �

� �� �� �� �
����  (3.82) 

The consistency condition is written as 

 ˆ 0kl
kl

f f f
f S P

S P
σ

σ
∂ ∂ ∂= + + =

∂ ∂ ∂
���� ���� ����  (3.83) 

Substituting Eqs. (3.77), (3.78), (3.81), (3.82) into Eq. (3.83), the hardening modulus H 

can be obtained. The differential hardening model assumes that there is hydrostatic stress 
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hardening during von Mises strain accumulation. Due to the complexity of this model, it 

is difficult to determine the model parameters (e.g., the hardening matrix) using 

experimental data and, further, to efficiently implement it in FE codes.  

3.4.2 The New Foam Model 

3.4.2.1 Evolution of the yield surface 

The Deshpande and Fleck model implemented in LS-DYNA (MAT 154) uses a 

constant value of � to specify the shape of the initial yield surface and assumes no shape 

change throughout the deformation process. However, the shape of the yield surface, 

which is related to material compressibility, does not retain its original shape for foam 

materials. High density or compressed foams are less compressible than low density or 

uncompressed foams due to foam densification caused by yielding and collapsing of the 

internal cells. 

FIGURES 3.8 and 3.9 include the experimental data showing the evolution of the 

yield surface of low and high density Alporas foams under uniaxial and hydrostatic 

loading. It was observed from FIGURES 3.8 and 3.9 that axial strains cause the yield 

surface to expand (i.e., a change of size) without significant change of its shape. By 

contrast, hydrostatic strains cause the yield surface to change both its size and shape.  

It was further observed that the yield surface corresponding to the lower density 

foam has more of a shape change than that for the higher density foam. All the above 

observations indicate that pressure dependency and compressibility should be included in 

the material model in order to correctly predict the behavior of foams. 
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FIGURE 3.9: Evolution of the yield surface of 16% relative density foam  
(Deshpande and Fleck 2000) 

 

 

FIGURE 3.8: Evolution of the yield surface of 8.4% relative density foam  
(Deshpande and Fleck 2000) 
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3.4.2.2 Compressibility and plastic Poisson’s ratio 

In this section, the compressibility of metallic foams and the concept of the plastic 

Poisson’s ratio are discussed. Certain materials, such as colloidal crystals and re-entrant 

polymer foams, have been found to exhibit negative Poisson’s ratios. Greaves et al. 

(2011) investigated a number of modern materials and found the range of Poisson’s ratio 

for the material examined range from -1 to 0.5. In this dissertation we only consider the 

metallic foam that has a positive Poisson’s ratio. We start by examining the increment of 

the volumetric strain at time instant t  

 V

dV
d

V
ε =  (3.84) 

For ease of discussion and implementation in FE codes, the incremental forms of 

Eq. (3.84) are used in the discussions hereafter. Let l, w and d be the length, width, and 

depth of a cuboid at time t; the volume of the cuboid is given by 

 V lwd=  (3.85) 

Let �l, �w and �d be the changes in length, breadth and depth at time instant 

(t+�t), the new volume of the cuboid is then calculated by 

  
2

( )( )( )

( )

V l l w w d d

lwd lw d ld w wd l o

= + ∆ + ∆ + ∆
= + ∆ + ∆ + ∆ + ∆

 (3.86) 

Ignoring the second order terms in Eq. (3.86), the new volume is given by 

 V lwd lw d ld w wd l= + ∆ + ∆ + ∆  (3.87) 

and the volumetric change is 

 V lw d ld w wd l∆ = ∆ + ∆ + ∆  (3.88) 

Using the incremental form of Eq. (3.84), the increment of volumetric strain during �t is 

calculated as 
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∆ ∆ + ∆ + ∆∆ = =

∆ ∆ ∆= + +

= ∆ + ∆ + ∆

 (3.89) 

Deshpande and Fleck (2000) defined the plastic Poisson’s ratio as 

 
pp
yyp xx

p p
zz zz

εεν
ε ε

∆∆= − = −
∆ ∆

 (3.90) 

where the uniaxial loading is in the z-direction. Combining Eqs. (3.89) and (3.90), the 

increment of volumetric strain can be written in terms of the plastic Poisson’s ratio and 

the plastic strain increment in the z-direction as 

 

(1 2 )

p p p p
v xx yy zz

p p p p p
zz zz zz

p p
zz

ε ε ε ε

ν ε ν ε ε
ν ε

∆ = ∆ + ∆ + ∆

= − ∆ − ∆ + ∆

= − ∆

 (3.91) 

For a completely incompressible material, the increment of plastic volumetric 

strain is zero (i.e., no volume change). Therefore, for any values of plastic strain 

increment in the z-direction, Eq. (3.91) requires the following to hold 

 1 2 0pν− =  (3.92) 

where the plastic Poisson’s ratio is found to be 0.5. 

For fully compressible materials, there will be no expansion in the x- and y-

direction. The increment of plastic volumetric strain is then expressed as 

 p p p p p
v xx yy zz zzε ε ε ε ε∆ = ∆ + ∆ + ∆ = ∆  (3.93) 

Comparing Eq. (3.93) to Eq. (3.91), the plastic Poisson’s ratio is determined to be zero. 

Therefore, from fully compressible to completely incompressible materials, the plastic 

Poisson’s ratio ranges from 0 to 0.5. This suggests that, if the compressibility of the foam 



�

55 

changes during plastic deformation, the plastic Poisson’s ratio (or a related material 

parameter) will also change and should be adjusted during the deformation process.  

In the foregoing discussion, the second-order terms in Eq. (3.86) have been 

ignored in deriving the range of the plastic Poisson’s ratio. To determine if the second-

order terms will change the range of the plastic Poisson’s ratio, the increment of 

volumetric strain is recalculated by including the second-order terms as 

 

v

xx yy zz xx yy xx zz yy zz

V lw d ld w wd l l w d w l d d l w
V lwd

l w d l w l d w d
l w d l w l d w d

ε

ε ε ε ε ε ε ε ε ε

∆ ∆ + ∆ + ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆∆ = =

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆= + + + + + +

= ∆ + ∆ + ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆

 (3.94) 

Substitute Eq. (3.90) into (3.94), the increment of volumetric strain can be 

expressed as 
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∆ = ∆ + ∆ + ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆
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� 	= ∆ ∆ + ∆ − ∆ + +� 


 (3.95) 

 For completely incompressible material the increment of volumetric strain is zero 

and the right-hand side of Eq. (3.95) becomes zero for arbitrary p
zzε∆ . This leads to 

 
( 1) 1

( 1)

p p
zz zzp

p p
zz zz

ε ε
ν

ε ε
∆ + − ∆ +

=
∆ ∆ +

 (3.96) 

The characteristic strain-rates during automotive crash simulations are usually 

between the orders of magnitude 10-3 to 103 sec-1. This is equivalent to 10-9 sec to 10-3 sec 

per time-step when a simulation time-step of 10-6 sec is used. The limit of Eq. (3.96) 

when the strain increment goes to zero can be calculated as 
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Eq. (3.96) is plotted in FIGURE 3.10 for strain-rates ranging from 0 to 103 sec-1 

(Gassan and Harwick 2001). This figure shows the plastic Poisson’s ratio as a function of 

the strain-rate with a simulation time-step of 10-6. The plastic Poisson’s ratio starts from 

0.5 and slightly decreases when the strain-rate increases. However, it can be seen from 

FIGURE 3.10 that for characteristic strain-rate ranges, the plastic Poisson’s ratio can be 

taken as 0.5 for completely incompressible materials. 

 

 

 

FIGURE 3.10: Plastic Poisson’s ratio as a function of plastic strain increment 
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For fully compressible materials, the increment of plastic volumetric strain is 

expressed as 

 p p
v zzε ε∆ = ∆  (3.98) 

Apply Eq. (3.98) to Eq. (3.95), we have 

 2 2 3(1 2 ) ( 2)( ) ( ) ( )p p p p p p p p
zz zz zz zzν ε ν ν ε ν ε ε− ∆ + − ∆ + ∆ = ∆  (3.99) 

where the plastic Poisson’s ratio needs to be zero for arbitrary values of p
zzε∆ . Therefore, 

the range of the plastic Poisson’s ratio can be set from 0 to 0.5 in FE crash simulations, 

representing materials from fully compressible to fully incompressible. 

3.4.2.3 Formulation of the new model 

The yield function of the new form is defined as: 

 
( )

( )2 2 2
2

1ˆ 0
1 / 3

e mf Y Yσ σ α σ
α

= − = + − =
+

 (3.100) 

where σ̂  is the equivalent stress, eσ is the von Mises effective stress, and mσ  is the mean 

stress.  

The flow potential g is defined to be the same as the yield function 

 
( )

( )2 2 2
2

1

1 / 3
e mg Yσ α σ

α
= + −

+
 (3.101) 

and the flow rule is given by 

 p g∂= Λ
∂
��������εεεε

σσσσ
 (3.102) 

where Λ����  is the plastic multiplier. Substituting Eq. (3.101) into Eq. (3.102), we obtain 
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3 1 2
( )

2 1 ( / 3) 9
p
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α σ

α
= Λ +

+
I'��������ε σε σε σε σ  (3.103) 

which can be further decomposed into longitudinal and volumetric plastic strains as 
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v tr
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����� �� �� �� �εεεε  (3.105) 

For uniaxial loading in z-direction, the longitudinal stress deviator can be calculated as 

 ' 3 2zz zz m m m mσ σ σ σ σ σ= − = − =  (3.106) 

Now substitute Eqs. (3.104), (3.105) and (3.106) into Eq. (3.91), the shape factor of the 

yield surface is found to be related to the plastic Poisson’s ratio 

 2 9(1 2 )
2(1 )

p

p

να
ν

−=
+

 (3.107) 

The shape factor �2 of the yield surface represents the material’s compressibility; its 

value ranges from 0 to 4.5 for a feasible plastic Poisson’s ratio, which ranges from 0.5 to 

0. The yield surface of the new model appears similar to the Deshpande and Fleck self-

similar model. However, the shape factor �2 is no longer a constant value and changes 

with respect to the material’s compressibility. 

A relationship between the true volumetric strain and the shape factor needs to be 

established in order to dynamically adjust the value of �2 based on the strain values 

during plastic deformation. Let A be the cross-sectional area of a prismatic block of 

metallic foam that has a density �0 and length l0 before deformation and a density � and 

length l after deformation. By conservation of mass and assuming no change in the cross-

sectional area, we have 

 0 0 0( )Al A l lρ ρ= − ∆  (3.108) 

or 
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0

l
l

ρ ρ
ρ
−∆ =  (3.109) 

The true volumetric strain is given by 

 
0

0

0

ln

ln

ln(1 )

t

V
V
l
l

l
l
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 (3.110) 

Combining Eqs. (3.109) and (3.110), we have 

 0ln( )t

ρε
ρ

=  (3.111) 

or  

 0
te ερ ρ −=  (3.112) 

Equation (3.112) shows that the density grows exponentially with the true volumetric 

strain, as illustrated in FIGURE 3.11 for an initial material density of 0.23 g/cm3.  

Since the plastic Poisson’s ratio is not a material property and is difficult to 

determine for its relationship to the material’s compressibility, a linear relationship is 

assumed between the foam density and the plastic Poisson’s ratio as follows: 

 0
0 0

0

( )
p p

p p Al

Al

ν νν ν ρ ρ
ρ ρ

−= + −
−

 (3.113) 

where 0
pν  is the initial plastic Poisson’s ratio of the aluminum foam, p

Alν  is the plastic 

Poisson’s ratio of virgin aluminum, �0 is the initial density of the aluminum foam, and �Al 

is the density of virgin aluminum and � is the current foam density. Substituting Eq. 

(3.112) into Eq. (3.113), we obtain 
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 0
0 0

0

( 1)t

p p
p p Al

Al

e εν νν ν ρ
ρ ρ

−−= + −
−

 (3.114) 

which can be used in Eq. (3.107) to dynamically determine the shape factor �2. 

Assuming that a sample of aluminum foam has an initial density of 0.23 g/cm3 

and initial plastic Poisson’s ratio of 0.01, and the fully densified aluminum foam has a 

density of 2.7 g/cm3 (the same mechanical property as virgin aluminum) and a plastic 

Poisson’s ratio of 0.5 (completely incompressible). The plastic Poisson’s ratio of 

aluminum foam can then be written in terms of true strain as 

 0.05 0.04tp e εν −= −  (3.115) 

This equation is plotted in FIGURE 3.12, and the shape factor is given by 

 

FIGURE 3.11: Density as a function of the absolute value of true strain 
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 (3.116) 

The shape factor is updated at each time-step in the FE simulations during 

hardening of the metallic foam. The shape of the yield surface will change with respect to 

material yielding and hardening. 

Equation (3.114) is an exponential function with respect to the true strain. This 

will be referred to as the exponential model in the rest of this dissertation. For 

comparison purposes, a linear interpolation function of the plastic Poisson’s ratio with 

respect to the true strain could be used to provide an alternative approximation, which 

will be referred to as the linear interpolation model in the rest of this dissertation. This 

model is given by 

 

FIGURE 3.12: Exponential model of the plastic Poisson’s ratio 
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 (3.117) 

With the same mechanical properties as those used to derive Eq. (3.115), the 

plastic Poisson’s ratio of aluminum foam can be written 

 

 0.01 0.20p
tν ε= −  (3.118) 

This equation is plotted in FIGURE 3.13, and the shape factor is given by 

 2 8.82 3.60
2.02 0.40

t

t

εα
ε

−=
−

 (3.119) 

 

 

 

 

FIGURE 3.13: Linear interpolation model of the plastic Poisson’s ratio 
 
 



 

CHAPTER 4: FINITE ELEMENT IMPLEMENTATION
 
 

In nonlinear FEA, element stresses are calculated and updated incrementally in 

the general form of 

 ( ) ( ) ����ij ij ijt dt t dtσ σ σ+ = +  (4.1) 

where ���� ijσ  is the derivative of the stress tensor with respect to time and is given by 

 ij ij ik kj jk kiσ σ σ ω σ ω= + +����
����  (4.2) 

In Eq. (4.2)  ijσ����  is the Jaumann (co-rotational) stress rate and �ij is the spin tensor, both 

given by 

 ij ijkl klCσ ε=���� ����  (4.3) 
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ij

j i

vv
x x

ω
� �∂∂= −� �� �∂ ∂� �

 (4.4) 

where Cijkl is the stress-dependent constitutive matrix, vi is the velocity vector, and ���� ijε  is 

the strain rate tensor given by 
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����
ji

ij
j i

vv
x x

ε
� �∂∂= +� �� �∂ ∂� �

 (4.5) 

The numerical implementation of Eq. (4.1) can be briefly represented by the 

following equations: 

 
1 1

1 2 2
n nn n n

ij ij ij ijr tσ σ σ
+ ++ = + + ∆����  (4.6) 

where 
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1 1 1
2 2 2( )

n n nn n n
ij ip pj jp pir tσ ω σ ω

+ + +
= + ∆  (4.9) 

where n
ijr  is the rotation of the stress tensor at time instant tn. 

In a user-defined material subroutine (UMAT), the stress rotation in Eq. (4.2), i.e., 

( )ik kj jk kiσ ω σ ω+ , is first calculated by LS-DYNA in order to perform the stress update in 

Eq. (4.1). The UMAT, which contains the users’ own constitutive models and is linked to 

LS-DYNA at run time, is then called to add the incremental stress components (the 

Jaumann stress rate ijσ���� ). 

4.1 User Material Subroutine in LS-DYNA 

In LS-DYNA ver. 971, user subroutines are provided in an interface file named 

dyn21.f, a FORTRAN program (LSTC 2010). In LS-DYNA MPP ver. 971, which was 

used in the work of this dissertation, up to ten subroutines can be implemented 

simultaneously. A bulk modulus and shear modulus must be defined in each material 

subroutine; their values are used for contact interfaces, rigid body constraints and 

calculation of time-step sizes carried out by the LS-DYNA main program. For example, 

the bulk modulus must be used in the calculation of contact stiffness given by Eq. (2.4). 

The new material model was implemented by modifying the source code of the 

standard template file provided by LSTC. The UMAT was compiled and an LS-DYNA 

runtime library was created with file name “libmpp971_d_7600.2.1224_usermat.so” 

using the ‘makefile’ given in Appendix A. The procedure to build and use a UMAT in 
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LS-DYNA is outlined below. 

1. Download the required Object files from LS-DYNA ftp site (ftp://ftp.lstc.com).  

User name: Objects 

Password: computer1 

2. Open the “dyn21.f” file with a text editor, search for “umat41” and comment out 

this subroutine. 

3. Create the new subroutine with name “umat41” and save the source code in a 

separate file with extension of “.f”.  At time instant t, the six local strain 

increments and the six current stress components are known. By integrating the 

constitutive equations, the six new stress components at time instant t+�t will be 

obtained at the end of the subroutine. 

4. Use the “make” command to compile and create an LS-DYNA runtime library 

with file name “libmpp971_d_7600.2.1224_usermat.so”. 

5. Change the library path of LS-DYNA to where the new library file is located. 

6. Call the material ID from the keyword deck, i.e., use MAT 041 in the keyword 

file. 

4.2 Implementation of the New Foam Model 

The flow of the material subroutine includes several major steps. The shape factor 

and yield stress of the current yield surface are first calculated based on the current total 

plastic strains. Given the current stress components and increments of strain components, 

the material subroutine calculates a trial stress and its deviator using the elastic properties 

of the material. A trial value of the equivalent stress is then calculated and compared with 

the current yield stress. If the material has not yielded, the trial stresses are adopted to 
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replace the current stresses. If the material has yielded, the subroutine enters a loop to 

implicitly solve for the strain increments that satisfy the constitutive equations for the 

next time-step until the pre-defined convergence criteria are reached. The solutions are 

then used to update the stress components. The history variables such as the total 

volumetric strain, total equivalent strain, hydrostatic pressure, and von Mises stress, are 

all updated for use in the next time-step. The following subsections give details of how 

the constitutive equations are formulated and integrated. 

4.2.1 Formulation of Constitutive Equations 

The constitutive model includes two major equations: one for the yield surface and 

the other for the flow rule. This section presents how these equations are formulated, how 

the number of primary unknowns is reduced, and how the stresses are updated using 

solutions of the primary unknowns. 

The equation of the yield surface is given by Eq. (3.100), which includes both the 

hydrostatic pressure �m and the von Mises stress �e. For ease of discussion, the 

hydrostatic pressure is written as p and the von Mises stress is written as q hereafter; and 

the yield surface in terms of p and q at time instant t+�t is given by 

 ˆ( , ) ( , ) ( , ) 0t t t t t tf p q p q Y p qσ+∆ +∆ +∆= − =  (4.10) 

The flow rule is defined in the differential form by 

 p g
d dε ∂= Λ

∂σσσσ
 (4.11) 

where ( , )g g p q=  is the flow potential, dΛ is a positive scalar standing for the 

magnitude of the plastic strain rate. The flow rule can be further represented using the 

chain rule as 
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The incremental form of Eq. (4.12) is given by  
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p
p q t tε ε ε +∆∆ = ∆ + ∆I n  (4.13) 
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 (4.15) 

 
3

2q
σn = '  (4.16) 

Combining Eqs. (4.14) and (4.15) and eliminating ∆Λ , we obtain 

 0p q

t t t t

g g
q p

ε ε
+∆ +∆

� � � �∂ ∂∆ + ∆ =� � � �∂ ∂� � � �
 (4.17) 

Equations (4.10) and (4.17) are the two constitutive equations to be solved at each 

time step. There are two primary unknowns: pε∆  and qε∆ . Combining Eqs. (4.17) and 

(3.8), we obtain the formula for updating the stresses at the end of the subroutine using 

the solutions of the two primary unknowns. 

 2e
t t p q t tK Gσ ε ε+∆ +∆= − ∆ − ∆I + nσσσσ  (4.18) 

where  

 
3

2
e

t t eq
σ+∆ =n '  (4.19) 
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4.2.2 Integration of Constitutive Equations 

In FEA, the integration of constitutive equations is carried out at the integration 

points at each time-step. At time instant t, the local strain increments are given, and the 

integration of the constitutive equations gives the values of the plastic strain increments 

which are then used to update the stresses and state variables at time instant t+∆t. The 

stresses are then used for the next time-step, and this procedure continues. In this 

dissertation, the integration of constitutive equations was carried out by the backward 

Euler method, which is unconditionally stable, to ensure the stability of the integration 

algorithm.  

Using equations of the yield surface and flow potential, given by Eqs. (3.100) and 

(3.101), respectively, Eqs. (4.10) and (4.17) can be represented by the following system 

of nonlinear equations with the two renamed as F1 and F2, respectively. 
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= + − =
+

 (4.20) 

 
( ) ( )

2

2 2 2

1
0

1 / 3 1 / 3
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q p
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αε ε
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+∆ +∆
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= ∆ + ∆ =� � � �

� � � �+ +� � � �
� �� �� �� �  (4.21) 

In the above equations, pε∆  and qε∆  are the primary unknowns to be solved. Let cp and 

cq be the increments of pε∆  and qε∆ ; the system of equations can be linearized and 

solved iteratively by the Newton-Raphson Method. This method is illustrated as follows. 

For a system of two nonlinear equations 

 ( ) 0iF =x  1,2.i =  (4.22) 

where x denotes the vector of unknowns (i.e., p and q in the work of this dissertation). Fi 

can be expanded by Taylor series in the neighborhood of x as 
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F
x

∂
∂

 is the Jacobian matrix denoted by J. Equation (4.23) can be rewritten as 

 2( ) ( ) ( )Oδ δ δ+ = + ⋅ +F x x F x J x x  (4.24) 

Neglecting the high-order terms and setting ( ) 0δ+ =F x x , the system of nonlinear 

equations is converted into a set of linear equations given by 

 δ⋅ −J x = F  (4.25) 

Substituting Eqs. (4.20) and (4.21) into Eq. (4.25), we obtain the system of linear 

equations at the n-th iteration as 
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= -  (4.26) 

With pre-defined initial values of p, q, pε∆  and qε∆ , cp and cq can be calculated using 

methods such as Gaussian elimination or LU decomposition. The values of pε∆  and qε∆  

are then updated by 

 ( 1) ( )n n
p p cpε ε+∆ = ∆ +  (4.27) 

 ( 1) ( )n n
q q cqε ε+∆ = ∆ +  (4.28) 

The values of p and q are subsequently updated by 

 ( 1) ( )n n
pp p k ε+ = + ∆  (4.29) 

 ( 1) ( ) 3n n
qq q g ε+ = − ∆  (4.30) 

The new values of p, q, pε∆  and qε∆ are used in the next iteration to calculate the new 
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values of cp and cq. This procedure is repeated until the prescribed convergence criteria 

are reached. 

4.3 Model Verification  

Model verification ensures that the numerical algorithms are correctly 

implemented in the material subroutine, have good convergence, and produce accurate 

solutions of the mathematical models. In the verification process, the numerical 

simulation results are usually compared with analytical solutions. Due to the complexity 

of the constitutive model, it is very difficult to obtain an analytical solution for metallic 

foam, especially with complicated boundary and loading conditions. In this research, the 

new foam model is verified using LS-DYNA’s built-in material model, MAT 154, by 

setting the shape factor to the same constants in both models. Verification of the user 

subroutine was performed using a uniaxial compression test on a single eight-node solid 

element as shown in FIGURE 4.1.  

 

 

 

FIGURE 4.1: Boundary and loading conditions of the verification test 
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The solid element is used to model a 60-mm cube of aluminum foam. One side of 

the element is fixed for all three degrees of freedom, and nodes on the opposite side have 

a prescribed velocity of 12 mm/s towards the fixed side. The density of the foam is 0.47 

g/cm3. The same stress-strain curve, shown in FIGURE 4.2, is used for both the new 

foam model and LS-DYNA MAT 154. Two constant values of the shape factors were 

tested, �2 = 0.25 and �2 = 4.5, corresponding to nearly incompressible (�p ≈ 0.5) and fully 

compressible (�p = 0) materials, respectively. 

The solid element with selective reduced integration was used. This element 

formulation assumes a constant pressure through the element to avoid pressure locking 

during near incompressible flow. Pressure locking arises when the material is 

incompressible and displacements calculated by the FE method are orders of magnitude 

smaller than they should be. It typically occurs in lower order elements because element 

kinematics is not precise enough to represent the correct solution. The fully integrated 

element formulation was found to be unstable in simulations involving large 

deformations and distortions due to a negative Jacobian at one of the integration points 

despite of the positive volume of the entire element. 

4.3.1 Nearly incompressible foam 

In this test the shape factor was set to a constant value of �2 = 0.25, representing a 

nearly incompressible condition (�p � 0.5) in which the foam element is expected to 

expand in the x- and y- directions under z-direction loading. The element was compressed 

for 54 mm in 4.5 seconds at a constant speed of 12 mm/s. FIGURE 4.2 shows the true 

stress-strain input for the foam in this verification test. 
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The initial and deformed shapes of the element are shown in FIGURE 4.3. The 

right-hand side of FIGURE 4.3 shows the compressed elements, with the four 

unconstrained nodes expanded to preserve the original volume of the element. FIGURES 

4.4 to 4.9 show comparisons of LS-DYNA MAT 154 and the new foam model on x-, y-, 

z-direction stresses, effective plastic strain, pressure and von Mises stress. It can be seen 

that the results of the new foam model match those of LS-DYNA MAT 154. FIGURE 4.6 

shows the time history of the z-direction stress (at time instant t = 3.5 sec) that includes 

the elastic, plateau, and densification regions. The plateau stress is found to be 

approximately 15 MPa and the highest stress is found to be approximately 105 MPa. 

FIGURE 4.7 shows the effective plastic strain, which accumulates during plastic 

deformations. The slope of the curve decreases upon entering the densification region. 

The rate of increase of the effective plastic strain decreases as the material densifies and 

the highest plastic strain is found to be 1.67. 

 

FIGURE 4.2: Stress-strain curve of the verification test 
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a. Initial shape (MAT 154) 

 

b. Deformed shape (MAT 154) 

 

 
 

c. Initial shape (new model) d. Deformed shape (new model) 

FIGURE 4.3: Initial and deformed shapes of the verification test (�2 = 0.25) 
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FIGURE 4.4: Time history of x-direction stress (�2 = 0.25) 

 

 

FIGURE 4.5: Time history of y-direction stress (�2 = 0.25) 
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FIGURE 4.6: Time history of z-direction stress (�2 = 0.25) 

 

 

FIGURE 4.7: Time history of effective plastic strain (�2 = 0.25) 
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FIGURE 4.8: Time history of hydrostatic pressure (�2 = 0.25) 

 

 

FIGURE 4.9: Time history of von Mises stress (�2 = 0.25) 
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4.3.2 Fully compressible foam 

In this test the shape factor was set to a constant value of �2 = 4.5, representing 

the fully compressible condition (�p = 0) in which the foam element will not expand in 

the x- and y-directions when loaded in the z-direction. The element was compressed for 

54 mm in 4.5 sec at a constant speed of 12 mm/s. 

 

 

  

a. Initial shape (MAT 154) b. Deformed shape (MAT 154) 

  

c. Initial shape (new model) d. Deformed shape (new model) 

FIGURE 4.10: Initial and deformed shapes of the verification test (�2 = 4.5) 
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The initial and deformed shapes of the element are shown in FIGURE 4.10 with 

the right-hand side showing the compressed element. It can be seen that the element did 

not expand in the x- and y-directions as expected. Consequently, the volume of the 

element is not preserved. FIGURES 4.11 to 4.13 show comparisons of the new foam 

model and LS-DYNA MAT 154 on x-, y-, and z-direction stresses. In the time history of 

the z-direction stress shown in FIGURE 4.13, the elastic region is observed first followed 

by the plateau region. The densification starts at time instant t = 3.5 sec. The plateau 

stress is found to be 15 MPa and the highest stress is found to be 90 MPa. It can be seen 

from the time histories of stresses that the new foam model matches well to LS-DYNA 

MAT 154. All shear stresses were found to be zero for both the new foam model and LS-

DYNA MAT 154 from the time history data. 

 

 

 

FIGURE 4.11: Time history of x-direction stress (�2 = 4.5) 
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FIGURE 4.12: Time history of y-direction stress (�2 = 4.5) 

 

 

FIGURE 4.13: Time history of z-direction stress (�2 = 4.5) 
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FIGURES 4.14 to 4.16 show comparison of the two models on the effective 

plastic strain, pressure and von Mises stress. It can be seen from FIGURE 4.14 that the 

effective plastic strain remains zero in the elastic region. It then keeps increasing during 

plastic deformation. Upon entering the densification region, the slope of the curve 

decreases. The rate of increase of the effective plastic strain decreases as the material 

densifies. The highest plastic strain is found to be 1.68. It can be seen from the time 

histories of the pressure and von Mises stress that the new foam model generates the 

same behavior as LS-DYNA MAT 154 under the fully compressible condition. 

In both tests, the constitutive equations of the new foam model showed good 

convergence on solutions that match those of LS-DYNA MAT 154 using constant shape 

factors. The element deforms in a predictable and stable manner. With predefined values  

 

 

FIGURE 4.14: Time history of effective plastic strain (�2 = 4.5) 
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FIGURE 4.15: Time history of hydrostatic pressure (�2 = 4.5) 

 

 

FIGURE 4.16: Time history of von Mises stress (�2 = 4.5) 
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of the shape factor, the material exhibits proper responses under both incompressible and 

compressible conditions. This indicates the effectiveness of the new foam model. It is 

therefore concluded that the material subroutine was coded correctly. Before the new 

foam model can be applied to crash simulations, however, comparisons against 

experimental data are needed to demonstrate the accuracy of the new material model. 

This will be discussed in the next sub-section.  

4.4 Model Validation 

The new foam model was validated with two experimental tests, a uniaxial 

compression test and a diagonal loading test, both using 70-mm cubic specimens. Based 

on a convergence study, the mesh size was determined to be 4 mm using constant stress 

solid elements. To evenly divide the 70-mm side of the cube, a mesh size of 3.89 mm was 

actually used. Type 6 hourglass control was applied to the foam to improve the numerical 

stability of the simulations. The foam model of the 70-mm cube had 5832 nodes and 4913 

elements. 

Simulation results using the new model were compared to experimental data as 

well as to results using four LS-DYNA built-in material models. Two different densities 

were analyzed: � = 0.34 g/cm3 for low-density foam and � = 0.51g/cm3 for high-density 

foam. For ease of discussion, the uniaxial compression tests were named U1 and U2 for 

the low- and high-density foams, respectively. Similarly, the diagonal loading tests were 

named D1 and D2 for the low- and high-density foams, respectively. 

4.4.1 Uniaxial loading test 

FIGURE 4.17 shows the configuration of the uniaxial compression test. The 

bottom surface of the cube is constrained in the loading direction. The node at the center 
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of the bottom surface is constrained for all three degrees of freedom to prevent rigid body 

motion. The top surface of the cube is quasi-statically impacted by a rigid wall.  

This uniaxial loading test was simulated using the new foam model and four LS-

DYNA built-in models. FIGURE 4.18 shows the deformed shapes of the low-density 

foam (0.34 g/cm3) using the new model after being crushed for 27 and 54 mm, 

respectively. It can be seen that the foam expands in both the x- and y-directions as the 

foam densifies.  

FIGURES 4.19 to 4.22 show the simulation results of the deformed foams using 

LS-DYNA built-in models, MAT 5, 63, 75, and 154. The model using MAT 5 terminated 

 

 

FIGURE 4.17: Model for the uniaxial loading test 
 
 
 

 

 

FIGURE 4.18: Deformed shapes for Case U1 using the new foam model 
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FIGURE 4.19: Deformed shapes for Case U1 using MAT 5 

 

  

FIGURE 4.20: Deformed shapes for Case U1 using MAT 63 

 

  

FIGURE 4.21: Deformed shapes for of Case U1 using MAT 75 

 

  

FIGURE 4.22: Deformed shapes for Case U1 using MAT 154 
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prematurely due to negative volumes of the foam elements. The model using MAT 63 

showed no resistance to the axial load. The model using MAT 75 was shown to be fully 

compressible and had no expansion in x- and y-directions. The model using MAT 154 

with a shape factor (�2) of 3.7 behaved similarly to the new model but showed less 

traversal expansions due to the constant value of the shape factor (i.e., constant material 

compressibility even after the foam is densified). 

The simulation results were compared with experimental measurements. 

FIGURES 4.23 and 4.24 are force-displacement curves for Cases U1 and U2, 

respectively. The instability of MAT 5 can be seen from the drop in force at a 

displacement of 21 mm for low density foam (FIGURE 4.23) as well as the oscillating 

force-displacement curve for high density foam (FIGURE 4.24). The crushing forces 

using MAT 63 show zero in both cases. This is consistent with the deformation pattern 

observed in FIGURE 4.20. The foam fails to provide resistance to the impact loading. 

MAT 75 provides a more stable and reasonable estimate of crushing force than MAT 5 

and MAT 63. However, the force level during the plateau region is underestimated 

compared to the experimental curves for both low and high density foams. MAT 154 

outperforms all other LS-DYNA built-in material models. The crushing force history for 

the low density foam is reasonably accurate. However, for the high density foam, MAT 

154 significantly overestimated the crushing forces after the crushing distance reached 30 

mm. The material routine fails to converge at certain time instants, and the densification 

region comes earlier than that shown in the experiment. For the low density foam, the 

new foam model matches very well with experimental data. For the high-density foam, 

the new foam model also shows a mismatch of densification compared to experimental 
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FIGURE 4.23: Comparison of force-displacement responses for Case U1 

 

 

FIGURE 4.24: Comparison of force-displacement responses for Case U2 
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data, but it still outperforms all LS-DYNA built-in models. It should be pointed out that 

fractures of high-density foam were observed in experiments but are not considered in all 

simulation models. This could be part of the reason of the mismatch between simulation 

results and experimental data. Nevertheless, the new foam model is shown to provide the 

most accurate estimate of the crushing force histories compared to LS-DYNA built-in 

material models for foams of different densities. 

4.4.2 Diagonal loading test 

FIGURE 4.25 shows the configuration of the diagonal loading test of a 70-mm 

foam cube whose top corner was impacted quasi-statically by a rigid plate. The bottom 

two sides of the foam were embedded in a fixed holder and were free to displace only in 

the direction perpendicular to the figure.  

The initial and final shapes of the FE simulation using the new foam model are 

shown in FIGURE 4.26. It can be seen that the new foam model matches very well with 

experimental measurements (FIGURE 4.25). The side view (FIGURE 4.26d) shows the 

 

   

 a. Initial configuration b. Final configuration 

FIGURE 4.25: Experimental configuration of the diagonal loading test 
(Reyes et al. 2004) 
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horizontal expansion of the foam. The deformed shape of the foam using MAT 5 is 

shown in FIGURE 4.27. The cross-sectional view of the deformed foam matches that of 

experimental data. However, the side view (FIGURE 4.27b) shows unrealistic expansion 

due to numerical instabilities. The FE simulation using MAT 63 terminated prematurely 

due to negative volumes in foam elements. The final shape is shown in FIGURE 4.28 in 

which the side view (FIGURE 4.28b) reveals the lack of resistance to the impact loading 

and unrealistic horizontal expansion. The FE simulation of MAT 75 completed without 

    

 a. Initial shape b. Final shape (cross-sectional view) 

   

 c. Initial shape (side view) d. Final shape (side view) 

FIGURE 4.26: Initial and deformed shapes for Case D1 using the new foam model 
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numerical issues, and the cross-sectional view of the deformed foam matched that of the 

experiment data. The side view (FIGURE 4.29b) shows no horizontal expansion of the 

foam, which appears to be fully compressible throughout the entire crushing process. The 

simulations using MAT 154 terminated at the initial stage of loading, due to failure of 

convergence when the edge of the foam was impacted. 

FIGURES 4.30 and 4.31 show the simulation results of force-displacement 

responses compared to experimental data for the low- and high-density foams, 

respectively. The simulation results using MAT 5 was shown to underestimate the 

 
a. Final shape 

 
b. Final shape (side view) 

FIGURE 4.27: Deformed shapes for Case D1 using MAT 5 

 

 
a. Final shape 

 
b. Final shape (side view) 

FIGURE 4.28: Deformed shapes for Case D1 using MAT 63 

 

 
a. Final shape 

 
b. Final shape (side view) 

FIGURE 4.29: Deformed shapes for Case D1 using MAT 75 
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FIGURE 4.30: Comparison of force-displacement responses for Case D1 

 

 

FIGURE 4.31: Comparison of force-displacement responses for Case D2 
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crushing forces for both Cases D1 and D2, and exhibited instability at 9 mm displacement 

for Case D1.  The foam using MAT 63 showed no resistance to impact loading, similar to 

the case of uniaxial compression test. The simulations using MAT 75 provided better 

predictions of the crushing forces than MAT 7 and MAT63, but still underestimated the 

crushing forces compared to experimental data. The new foam model was shown to 

match well to experiment data for the cases of both low- and high-density foams. 

To summarize, the new model was validated against experiments by the uniaxial 

compression test and diagonal loading test. In both tests, the new foam model provided 

more accurate predictions than those from the LS-DYNA built-in models. In addition, the 

new foam model was shown to have good numerical stability. The constitutive equations 

in the new foam model were solved implicitly, and convergence was reached before the 

internal stresses were updated. The new foam model used stable and accurate integration 

algorithms to solve the constitutive equations and allowed for shape changes of the yield 

surface. Consequently, the new foam model outperforms those LS-DYNA built-in 

models in the validation tests. In addition, the new material subroutine allows for close 

control and monitoring of the integration process of the constitutive equations. The 

convergence criteria can also be changed easily.  

 



 

CHAPTER 5: APPLICATION IN CRASH SIMULATIONS
 
 

Seitzberger (2000) performed a series of experimental investigations on empty 

and foam-filled steel columns with different materials, dimensions and cross-sectional 

shapes. Aluminum foam was used as the filler material in the quasi-static axial crushing 

tests. Two experimental tests, ZM44 and ZM64 of Seitzberger’s work, were chosen to 

further evaluate the new foam model in crash simulations. TABLE 5.1 gives the cross-

sections, column material and foam density of the test specimens. 

 
 

TABLE 5.1: Selected test specimens from Seitzberger’s experiments 

Test No. Cross-section Steel Tube 
Foam Density 

fρ (g/cm3) 

ZM44 Square ZstE340 0.47 
ZM64 Hexagonal ZstE340 0.47 
 
 
 
The tubes in both tests, ZM44 and ZM64, were made of ZStE340 steel, a 

commonly used material in the automotive industry. The ZStE340 steel has a density of 

7.89 g/cm3 and a yield stress of 340 MPa. The stress-strain curve of ZStE340 steel from a 

uniaxial tensile test is shown in FIGURE 5.1. The aluminum foam used in both tests had 

a density of 0.47 g/cm3. FIGURE 5.2 shows the true stress-strain curve of the aluminum 

foam from a uniaxial compressive test. The geometries of the square tubes used in Tests 

ZM44 and ZM64 are given in TABLE 5.2. 
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FIGURE 5.1: Engineering stress-strain curve of steel ZStE340 

 

 

FIGURE 5.2: True stress-strain curve of aluminum foam (� = 0.47 g/mm3) 
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TABLE 5.2: Tube geometries for Tests ZM44 and ZM64 
Test No. Length (mm) Thickness (mm) Side length (mm) 
ZM44 250 1.5 64.5 
ZM64 250 1.5 40.0 
 
 
 

5.1 Closed-Form Solution of Mean Crushing Force 

Chen (2001) developed a closed-form solution for MCF of a foam-filled square 

column under quasi-static loading based on the super-fold element theory developed by 

Wierzbicki and Abranowicz (1983). The MCF was decomposed into two parts, one from 

the steel tube and the other from the foam, expressed as 

 mf m mP P P= + ∆  (5.1) 

where Pmf is the total MCF of the foam-filled column, Pm is the MCF of the tube without 

foam, and �Pm is the elevated force by adding the foam filler. 

Assuming the compressed fold has a height of 2H, total width of b, wall thickness 

of t and is crushed by a distance of �. The principle of virtual velocities is expressed as 

 P Eδ =���� ����  (5.2) 

where Pδ����  is the rate of work done by the resultant crushing force and E����  is the rate of 

energy dissipation. Eq. (5.2) is integrated into the following form with details given in the 

work of Wierzbicki and Abranowicz (1983) 

 1 2 3
0

mP r b H
A A A

M t H r
= + +  (5.3) 

where M0 is the plastic bending moment, r is the radius of a deformed toroidal surface 

and A1, A2 and A3 are coefficients to be determined from the following equation based on 

an assumption that the collapse mechanism leads to the smallest MCF. 
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 1/3 5/33
1 2 3 0

3
4mP A A A b tσ=  (5.4) 

For a square tube (without the foam filler), the MCF is given by 

 1/3 5/3
013.06mP b tσ=  (5.5) 

and for a hexagonal tube, the MCF is expressed as 

 1/3 5/3
020.23mP b tσ=  (5.6) 

For columns with foam filler, the force elevation �Pm is expressed as a function of 

material properties and geometries of the tube and foam as 

 0( , , , )m fP f b tσ σ∆ =  (5.7) 

where 0σ  is the yield stress of the tube, fσ  is the plateau stress of the foam, b is the side 

length of the tube, and t is the wall thickness of the tube. Based on dimensional analysis 

and curve fitting of experimental data, Chen (2001) developed the following equations 

for calculating force elevations caused by the foam filler: 

 21.8m fP b σ∆ =  (5.8) 

for square columns, and 

 24.68m fP b σ∆ =  (5.9) 

for hexagonal columns. Therefore, the total MCFs of foam-filled columns can be 

expressed as 

 1/3 5/3 2
013.06 1.8mf fP b t bσ σ= +  (5.10) 

for square columns, and 

 1/3 5/3 2
020.23 4.68mf fP b t bσ σ= +  (5.11) 

for hexagonal columns. 
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Using Eqs. (5.10) and (5.11), the estimated MCFs for the two experimental tests are 

obtained and given as 

 1/3 5/3 213.06 340 64.5 1.5 1.8 64.5 7.286 89.56mfP kN= × × × + × × = ����  (5.12) 

for the square column (ZM44) and 

 1/3 5/3 220.23 340 64.5 1.5 4.68 64.5 7.286 100.79mfP kN= × × × + × × = ����  (5.13) 

for the hexagonal column (ZM64). Closed form solutions provide simple and quick 

estimates for assessing the soundness of numerical solutions, such as FE simulation 

results. 

5.2 Finite Element Simulation Setup 

The crash simulation models for square and hexagonal columns are shown in 

FIGURES 5.3 and 5.4, respectively. In both cases, the columns rest on a rigid wall with 

all degrees of freedom fixed and are impacted from the top by another rigid wall 

travelling at a constant velocity of 1 mm/s, the same impact speed used in the 

experiments. Based on mesh convergence studies, the mesh sizes used for the tube and 

the foam were chosen as 3 mm and 4 mm, respectively.  

 

 

FIGURE 5.3: Model of crash simulation of square column 
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FIGURE 5.4: Model of crash simulation of hexagonal column 

 

Nodes-to-surface contacts were defined between the foam and the two rigid walls 

as well as between the tube and the rigid walls. The foam and tube were defined as the 

slave parts and the two rigid walls were defined as the master parts. The rigid walls were 

modeled by shell elements with a mesh size of 100 mm, much larger than the cross-

sectional sizes of the two columns to ensure no penetration. The simple nodes-to-surface 

contact performs stably since there is no deformation of the rigid walls and the master 

normal projections remain unchanged throughout the crushing process. Automatic-single-

surface contact was used between the foam and the tube. Potential penetrations between 

any surfaces of the two parts are checked, including self-contacts that may occur on the 

same part. For example, when the tube folds progressively during the crash, adjacent 

surfaces around the folds may be in contact and must be considered to prevent unrealistic 

penetrations. Interior contact check was also adopted for the foam to account for contacts 

between the layers of the 8-noded solid elements to prevent element inversion. 
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The piecewise-linear plasticity model was adopted for the tube, which has a 

density of 7.89 g/cm3, Young’s modulus of 210 GPa, Poisson’s ratio of 0.3, and yield 

stress of 340 MPa. The stress-strain curve of this model is shown in FIGURE 5.1. The 

Cowper and Symonds model was used to account for the strain rate effect of the steel 

column’s wall. This is shown in Eq. (5.14). The constants D and q were set as 424 and 

4.73, respectively (Cunat 2000). 

 
1/

0 1
����

q

y y D
εσ σ

� 	� �= +
 �� �
� �
 �� 


 (5.14) 

The time-step in a simulation is determined by the minimum value of the time-

steps of all elements expressed as 

 { }1 2 3min , , ,..., Nt a t t t t∆ = ⋅ ∆ ∆ ∆ ∆  (5.15) 

where N is the number of the elements in the simulation and a is a scale factor. For 8-

node solid elements, the following equation is used to calculate the time-step size. 

 

( )
1

2 2 2

e
e

L
t

Q Q c
∆ =

+ +
 (5.16) 

where Le is the characteristic length of the element. This is usually calculated using the 

element volume divided by the largest side area of the element given by 

 
max

e
e

V
L

A
=  (5.17) 

In Eq. (5.16), Q is a function of the linear and quadratic bulk viscosity coefficients C0 and 

C1 given by 

 1 0 0
0 0

e kk kk

kk

C c C L for
Q

for

ε ε
ε

� + <�= �
>��

� �� �� �� �

����
 (5.18) 
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where c is the adiabatic sound speed; and kkε����  is the sum of the three normal strain rates 

expressed as 

 11 22 33kkε ε ε ε= + +� � � �� � � �� � � �� � � �  (5.19) 

Mass scaling is used in the simulations of this dissertation in order to achieve a 

larger explicit time-step. The mass scaling algorithm is processed at the beginning of 

each simulation. The time-step for each element is calculated first. If the time-step of an 

element is smaller than the given mass scaling time-step, LS-DYNA modifies the mass 

density of the element so that the time-step of this element equals that of the mass scaling 

time-step. Although mass scaling can significantly increase the mass during an FE 

simulation, it is particularly useful for quasi-static analyses and simulations with varied 

mesh sizes. The effect of added mass is insignificant for a quasi-static analysis due to the 

low velocity and small kinetic energy relative to the peak internal energy. 

The hourglass-mode deformation of solid elements can swamp the results of a 

simulation. Hourglass-mode deformations are usually resisted by viscosity. Hourglass 

control adds stiffness to the system to prevent materials that undergo extremely large 

deformation, such as foams, from distorting and creating negative volumes. When no 

adaptive re-meshing is used, there is a limit to how much deformation the Lagrangian 

mesh can accommodate. A negative volume calculation will cause the LS-DYNA 

simulation to terminate prematurely. In this research Type 6 hourglass control with a 

coefficient of 0.1 was applied to all solid elements of the metallic foam for the low 

velocity impacts. The hourglass energy was checked to ensure that it did not affect the 

overall energy absorption of the metallic foam. 
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5.3 Analysis of Simulation Results 

Simulation results on the deformation pattern, first peak load, crushing force 

history, and energy absorption are presented and compared to experimental data from 

literature. The MCFs of FE solutions are also compared with closed form solutions 

developed by Chen (2001). FE simulations for the square column are also carried out 

using four of the LS-DYNA built-in material models for the foams. Results are presented 

and the accuracy and stability of each of the models are evaluated. Based on these FE 

simulations, the relative merits of the new foam model are discussed. The new foam 

model is then applied to the crushing of the hexagonal column filled with foam. The 

deformation pattern, crushing force history, and energy absorption characteristics are 

described. 

5.3.1 Square column filled with foam 

FIGURE 5.5 shows the deformed shape of a square column from an FE 

simulation using the new foam material model. The column deformed in a stable and 

progressive folding pattern. The aluminum foam was pushed towards the center of the 

column due to the inward folding of the column wall. In the highly densified area where 

the column wall folds out, the foam elements tend to preserve their dimensions in the 

horizontal direction by extending towards the external column wall.  

Higher densification was observed on foam elements in the outer region between 

the progressive folds of the column due to multi-axial compressions. In both the 

experiment and FE simulation, combinations of asymmetric and symmetric folding 

modes were observed. The asymmetric and symmetric folding modes are schematically 

illustrated in FIGURE 5.6. In an asymmetric folding mode, the sides around the 
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circumference of the column fold alternately inward and outward. In a symmetric folding 

mode, all the sides around the circumference of the column extend outward. In the 

crushing of the square foam-filled column, the highest layer of folding showed a 

symmetric/extensional folding mode and the rest of the column exhibited asymmetric 

folding modes. Seitzberger et al. (2000) explained that asymmetric folding modes are 

more likely to form for columns of simple geometry (e.g., square columns) while 

symmetric/extensional folding modes are more likely to form for more complicated 

columns such as octagonal columns. 

FIGURE 5.7 shows the deformed shapes of the square foam-filled column from 

FE simulation compared to experimental data from the work by Seitzberger et al. (2000). 

It can be seen that the deformation pattern from FE simulation does not completely match 

the pattern observed in the experiment. For example, the folding length of the column 

  

 a. Deformed shape of tube b. Cross-sectional view of  
  deformed foam and tube 

FIGURE 5.5: Deformed shapes of the FE simulation using the new foam model 
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wall was slightly lower than that observed in the experiment. However, both the FE 

simulation and the experiment showed asymmetric folding modes and five layers of 

   

 a. Asymmetric folding mode b. Symmetric/extensional folding mode 

FIGURE 5.6: Folding modes of square columns 

 

   

 a. FE simulation with new foam model b. Experiment (Seitzberger et al. 2000) 

FIGURE 5.7: Comparison of simulation results with experimental data on crushed 
column 
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successive folds (nine lobes) developed in the final deformed shapes. Furthermore, the 

FE simulation was stable and successfully finished with a total crushing distance equal to 

150 mm (60% of its initial length). FIGURE 5.8 shows the internal energy absorption and 

kinetic energy curves obtained from the FE simulation. The energy absorption (i.e., 

internal energy) at the end of the simulation was 1.68×107 N·mm. The kinetic energy was 

in order of 10-1 N·mm, which is less than 0.01% of the total internal energy and is 

considered to be negligible. This negligible kinetic energy found in the FE simulation 

also conforms with the simulation setting of the quasi-static condition. 

The crushing force history from the FE simulation was compared to that measured 

from the experiment. This is shown in FIGURE 5.9. The first maximum peak load was 

 

FIGURE 5.8: Internal and kinetic energy of the square column from FE simulation 
using the new foam model 
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predicted to be 145 kN by FE simulation, while the peak load was found to be 137 kN in 

the experiment. The first peak load was captured in the FE simulation with an error of 

less than 6%. The first peak in the simulation occurred 0.1 seconds before this peak in the 

experiment. This could be due to imperfections in the experimental specimen that caused 

local plastic deformations during testing. 

The MCF obtained from the FE simulation was 87.50 kN, which represents a 2% 

error compared to the closed form solution (89.56 kN) and a 7% error compared to 

experimental data (81.70 kN). Thus, one can see from the crushing force history in 

FIGURE 5.9 that the resultant crushing forces were captured relatively well. The 

 

 

FIGURE 5.9: Force-displacement curves: new foam model vs. experimental results 
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aluminum foam acted as a foundation for the column wall and elevated the resultant 

crushing forces as the column was crushed.  

For comparison purposes, the same experiment was simulated using four of the 

LS-DYNA built-in material models (MAT 5, MAT 63, MAT 75 and MAT 154). The 

same impact conditions and simulation setup (boundary conditions, time-step, contact 

formulations, mass scaling, etc.) were used. Among these four models, the simulations 

using MAT 5, MAT 63 and MAT 154 did not successfully finish.  

The FE simulation using MAT 5 terminated at a displacement of 18 mm due to 

negative volumes occurred in foam elements. A plastic strain of 2.95 mm/mm was 

reached in a solid element just before the negative volume occurred in this element, and 

the FE simulation terminated at 18 sec (FIGURE 5.10). The negative volume problem 

could not be eliminated by decreasing the time-step of simulation. A potential weakness 

of this material model lies in its inability to adequately handle multi-axial 

 

 

FIGURE 5.10: Foam elements after deformation (MAT 5) 
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compression in conjunction with large deformations. FIGURE 5.11 shows the crushing 

force history of the FE simulation using MAT 5. It can be seen that the first peak load 

and the subsequent levels of crushing force were significantly underestimated. This 

quantitatively shows that MAT 5 was unable to estimate the resultant crushing force 

including the force elevated from the non-filled column. Although MAT 5 may be 

suitable for FE simulations of soils and certain foams with carefully chosen material 

parameters, it is not appropriate for metallic foams used in crash simulations when multi-

axial compression and large deformations are expected. 

The FE simulation using MAT 63 also exhibited premature termination at a 

displacement of 20 mm. An erroneous strain value of 3.56 mm/mm was found in a solid 

element just before negative volumes were found in this element and adjacent elements 

(FIGURE 5.12). The time history of crushing force versus displacement is shown in 

FIGURE 5.13. It can be seen that MAT 63 underestimated the force levels, largely due to 

the inaccurate calculation of internal stresses.  

The deformed shapes of the FE simulation using MAT 75 are shown in FIGURE 

5.14. The column wall exhibited a symmetric/extensional folding mode. This is because 

the foam failed to expand horizontally into the folds of the column walls. This non-

expandable behavior was possibly the cause of the mismatch on the deformed shapes 

between simulation results and experimental observation. The crushing force history is 

shown in FIGURE 5.15. It can be seen that the first predicted peak load was 130 kN, 

showing a good match to the 137 kN from the experiment. Subsequent crushing force 

levels, however, were significantly overestimated and accompanied with significantly 

larger fluctuations than those in the experiment due to the symmetric folding mode. This 
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FIGURE 5.11: Force-displacement curves: MAT 5 vs. experimental results 

 

 

FIGURE 5.12: Foam elements after deformation (MAT 63) 
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FIGURE 5.13: Force-displacement curves: MAT 63 vs. experimental results 

 

    

 a. Deformed shape of column wall b. Deformed shape of foam 

 FIGURE 5.14: Deformed shapes of the FE simulation using MAT 75 
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observation is consistent with the experimental findings of Setzberger et al. (2000). The 

simulation using MAT 75 was expensive due to the low convergence rate during 

integration of the constitutive equations. For this reason the crushing was only simulated 

for an 85 mm crush distance. 

The FE simulation using MAT 154 exhibited premature termination. A global 

bending was observed to be the dominant deformation mode, as shown in FIGURE 5.16. 

When reached a displacement of 30 mm, the material subroutine stopped converging, and 

the simulation finally terminated at a displacement of 85 mm due to out-of-range 

velocities. FIGURE 5.17 shows the crushing force history predicated by MAT 154. The 

first peak load was not captured due to a lag in the elevated force provided by the foam. 

The force elevation occurred at a later time, approximately at 15 sec and produced the 

second peak load at a displacement of 15 mm. Although the MCF from simulation using 

MAT 154 was similar to the experimental data, the significant difference in the 

deformation patterns indicated that it was less accurate than the new foam model, not to 

mention the instability of MAT 154 for its premature termination of the simulation. 

For comparison purposes, the linear interpolation model of the plastic Poisson’s 

ratio with respect to the true strain, given by Eq. (3.116), was also implemented and 

tested. FIGURE 5.18 shows the deformed shapes of the FE simulation using the linear 

interpolation model. The column wall folded progressively for the first three layers with 

an asymmetric folding mode. However, global buckling was formed afterwards as shown 

in FIGURE 5.19. The use of a linear interpolation formulation maintained a constant rate 

of increase on the shape factor even after the foam became densified and thus resulted in 

a global buckling deformation mode. 
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FIGURE 5.15: Force-displacement curves: MAT 75 vs. experimental results 

 

   

 a. Deformed shape of column wall b. Deformed shape of foam 

FIGURE 5.16: Deformed shapes of the FE simulation using MAT 154 
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FIGURE 5.17: Force-displacement curves: MAT 154 vs. experimental results 

 

  

 a. Deformed shape of tube b. Cross-section view of deformed foam and tube 

FIGURE 5.18: Deformed shapes of the FE simulation using linear interpolation 

model 
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The crushing force history of the FE simulation using the linear interpolation 

function was compared to results using the exponential model and experiment data, as 

shown in FIGURE 5.20. The simplified linear interpolation model provided a similar 

prediction on crushing forces to that of the more precise exponential model. The first 

peak load was predicted to be 145 kN (same as the value obtained from the exponential 

model), while the experiment data showed the peak load to be 137 kN. The first peak load 

was captured in the FE simulation with an error less than 6%. The occurrence of the first 

peak in the simulation was 0.1 seconds before the peak load in the experiment. This could 

be due to imperfections in the experimental specimen that caused local plastic 

deformations during testing. 

A mismatch of the resultant crushing force was found at displacements of 40 mm 

and 70 mm. This could be due to the occurrence of the global buckling. However, the 

MCF was captured well. The MCF obtained from the FE simulation was 86.50 kN. This 

 

FIGURE 5.19: Global buckling mode of the square column 
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represents a 1% error compared to the closed form solution of 87.04 kN and a 5.88% 

error compared to the experimental data of 81.70 kN.  

5.3.2 Hexagonal column filled with foam 

As shown in the case of the square column, the new foam model, particularly the 

one with exponential plastic Poisson’s ratio, provides the most stable and accurate 

solutions for crash simulations compared to the LS-DYNA’s built-in material models. In 

this section the new foam model is used to simulate crushing of a hexagonal foam-filled 

column.  

FIGURE 5.21 shows the deformed shape of the hexagonal column with the 

symmetric/extensional folding mode. This can be identified from the more pronounced 

oscillations in the crushing force curve shown in FIGURE 5.22. In the 

 

FIGURE 5.20: Force-displacement curves: new foam models vs. experimental results 
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 a. Deformed shape of column wall b. Deformed shape of foam 

FIGURE 5.21: Deformed shapes of the FE simulation using the new foam model 

 

 

FIGURE 5.22: Force-displacement curves: new foam model vs. experimental results 
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experiment, however, the asymmetric folding was observed to be the dominant 

deformation mode and thus resulted in a relatively flat crushing force curve. This is due 

to the lower horizontal strength of the column wall when asymmetric folding occurs 

(Seitzberger et al. 2000).  

It can be seen from FIGURE 5.21 that the foam was pushed towards the center of 

the column. No foam extended into the folds formed by the column wall, likely due to the 

more complex geometry of the cross-section. As mentioned in the work of Seitzberger et 

al. (2000), more symmetric folding modes were observed in experiments when the cross-

sectional geometry became more complicated. For example, asymmetric folding modes 

were observed for all the tested square columns, but symmetric folding modes were 

observed for all the tested octagonal columns. The tested hexagonal column, which is the 

same one as that studied in this work, deformed in an asymmetric manner 

induced/triggered by material imperfections in the specimen. However, since no 

triggering mechanism was used in the FE simulation conducted for this dissertation, a 

symmetric folding mode was obtained. 

FIGURE 5.22 shows the crushing force history of the hexagonal column. The 

experimental data was unavailable beyond 125 mm crushing distance. The first peak load 

in the FE simulation was found to be 175 kN; this represented an 8% error compared to 

the experimental measurement of 162.00 kN. Due to the symmetric folding mode in the 

simulation, the subsequent crushing forces in the simulation exhibited larger fluctuations 

than those observed in the experiment. However, the mean value of the fluctuating forces 

in the simulation was similar to the mean value of the experimental curve. The MCF was 

found to be 99 kN in the FE simulation. This is only a 2% error when 
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 a. Deformed column wall b. Deformed foam 

FIGURE 5.23: Deformed shapes of the FE simulation using linear interpolation 

model 

 

 

FIGURE 5.24: Force-displacement curves: new foam models vs. experimental results 
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compared to the experimental value of 101.20 kN and also a 2% error when compared to 

the closed form solution of 100.79 kN.  

The foam model using a linear interpolation function for the plastic Poisson’s 

ratio was also tested using the hexagonal column. FIGURE 5.23 shows the deformed 

shapes of the column from FE simulation using the linear model. It can be seen from 

FIGURE 5.23 that the foam was pushed towards the center of the column, similar to the 

results using the exponential model. In addition, the symmetric/extensional folding mode 

was also observed. This can be explained by the pronounced oscillations in the crushing 

force history, as shown in FIGURE 5.24. For the hexagonal column, the first peak load 

from the FE simulation was found to be 176 kN, giving a 9% error compared to the 

experimental measurement of 162 kN. The subsequent crushing forces were very similar 

to those from the exponential model; and the mean value of the fluctuating forces in the 

simulation was similar to the mean value calculated using experimental data. The MCF 

was found to be 99.56 kN in the FE simulation. This only gives a 2% error when 

compared to the experimental value of 101.20 kN and a 1% error when compared to the 

closed form solution of 100.79 kN. 

 



 

CHAPTER 6: CONCLUSIONS
 
 

In this dissertation, a new constitutive model for metallic foams was developed to 

improve the accuracy and numerical stability of crash simulations. Metallic foams are 

porous materials that are commonly used in crashworthiness designs to increase energy 

absorption; however, they are difficult to model in numerical simulations such as finite 

element (FE) analysis. In the commercial FE code LS-DYNA, six material models (MAT 

5, 26, 63, 75, 154, and 193) can be used to model foams, but none of them adequately 

captures the pressure-dependency and compressibility of foams. For example, MAT 75 

considers pressure dependency, but the compressibility of the foam was not included. 

Although MAT 154 has a parameter for the material’s compressibility, it does not allow 

for the change of this parameter with the progress of plastic deformations.  

In the new constitutive model developed in this dissertation, both pressure-

dependency and compressibility of the metallic foam were accounted for and related to 

material deformations. To achieve this, a yield function was defined to include both the 

von Mises stress and the hydrostatic pressure. To dynamically change the foam’s 

compressibility based on deformation, the plastic Poisson’s ratio was taken to be an 

exponential function of the strain so as to reduce the compressibility with increased 

material densification. A simplified linear function of strains was also tested for the 

plastic Poisson’s ratio in an effort of reducing the computational time while maintain 

accuracy. In the new foam model the constitutive equations are solved implicitly using 
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the backward Euler integration method to ensure numerical stability and accuracy of the 

model.  

The new foam model was implemented in LS-DYNA as a material subroutine and 

verified using a one-element model to confirm its correctness and convergence. In the 

two test cases, one with a nearly incompressible foam (plastic Poisson’s ratio �p � 0.5) 

and the other with a fully compressible foam (plastic Poisson’s ratio �p = 0), the element 

was compressed by an axial displacement of 54 mm. The simulation results showed that 

the new model could adequately capture the foam’s compressibility: exhibiting a large 

transverse expansion for nearly incompressible foams and no transverse expansion for 

fully compressible foams. The new foam model was compared to LS-DYNA MAT 154 

using a constant plastic Poisson’s ratio. The results of both models matched well on 

normal stresses, effective plastic strains, hydrostatic pressures, and von Mises stresses. 

To validate the new constitutive model, simulations of a uniaxial loading and a 

diagonal loading test of a cubical foam specimen were performed. The simulation results 

were compared to experimental measurements of force-displacement history and were 

shown to match the experimental data. It was observed that the largest discrepancy 

occurred on the high-density foam under uniaxial loading. This could be due to the fact 

that the new foam model did not capture fracture of foam cells that were observed in the 

experiments. Simulations of these two tests were also performed using four LS-DYNA’s 

built-in foam models (MAT 5, 63, 75, and 154) to compare with the new model. 

Simulations with these four models were either numerically unstable or produced results 

that did not match the experimental data. 

The new foam model was also compared to four LS-DYNA models using quasi-
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static crushing tests of foam-filled, thin-walled columns with square and hexagonal cross-

sections. For the square columns, the FE simulation using the new foam model was stable 

and the crushed tube showed progressive folding patterns. The aluminum foam acted as a 

foundation and increased the crushing forces of the column compared to a non-filled 

column, as observed in experiments. The time history of the crushing force from the 

simulation was found to match the experimental data. For example, the first peak 

crushing force from the simulation was 145 kN, which was 5.84% higher than the 

experimental measurement (137 kN). The mean crushing force was found to be 87.50 kN 

for the simulation, which was comparable to the experimental result (81.70 kN). The 

simulation using the linear model of the plastic Poisson’s ratio exhibited global buckling 

deformation mode due to a higher rate of change of the shape factor then reality. The first 

peak crushing force was captured with an error of less than 6%. The mean crushing force 

was obtained at 86.50 kN, which was a 5.88% error relative to the experimental value 

(81.70 kN). For the same square column using LS-DYNA models (MAT 5, 63, 75 and 

154), the simulations either converged very slowly on solving the constitutive equations 

or encountered premature terminations due to numerical instabilities, such as negative 

volumes or out-of-range velocities for highly compressed elements of the foam. In 

addition, the crushing forces and/or folding patterns from these simulations did not match 

well with experimental measurements. 

For the hexagonal column, the FE simulation using the new foam model was 

stable, and the crushed tube showed progressive folding patterns. The aluminum foam 

acted as a foundation and increased the crushing forces of the column compared to a non-

filled hexagonal column, as observed in experiments. The first peak crushing force from 
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the simulation was 175 kN, which was 8% higher than the experimental measurement 

(162 kN). The time history of the simulation crushing force was found to exhibit stronger 

fluctuations than in the experimental time history due to the symmetric folding mode in 

the simulation. The difference of the folding modes of the experiment versus the 

simulation (and thus crushing forces) could be due to the lack of a proper triggering 

mechanism in the FE simulation and the complicated geometry of the hexagonal cross-

section. However, the mean crushing force was found to be 99 kN from the simulation, 

which was comparable to the experimental result (101.20 kN). The simulation using the 

linear model of the plastic Poisson’s ratio exhibited similar folding patterns compared to 

those using the exponential model. The first peak force was found at 176 kN, which was a 

9% error relative to the experimental result. The mean crushing force was captured with 

2% error when compared to the experimental value (101.20 kN). 

In summary, the new constitutive model for metallic foams developed in this 

dissertation was shown to outperform existing models implemented in the commercial FE 

code, LS-DYNA. This is mainly attributed to the consideration of both hydrostatic 

pressure and von Mises stress during the entire process of plastic deformation. The 

method of dynamically changing the foam’s compressibility based on its plastic 

deformation was not found in any of the existing LS-DYNA foam models. The FE 

simulations using the new foam model were found to be stable and efficient, even for 

large deformations at a crushing distance of 60% of the original column length. For 

future investigations, element failures, (i.e., fractures of the foam cells), should be 

considered and incorporated into the foam model to reduce the small discrepancy 

between the current model and the experimental results.  
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APPENDIX A: MAKEFILE FOR BUILDING LS-DYNA DYNAMIC LIBRARY
 
 
# Makefile for building mpp971 dynamic lib 

# 

MODEL = NF 

OBJS = $(MODEL).o dyn21.o dyn21b.o 

OPTIONS = -c -w95 -W0 -zero -safe_cray_ptr -assume byterecl,buffered_io -

mP2OPT_hlo_fusion = F -save -traceback -save -pad -nodps -DLINUX -

DNET_SECURITY -DADDR64 -DINTEL -DXEON64 -DFCC80 -DMPP -DMPICH -

DHPMPI -DAUTODOUBLE -DNEWIO -i8 -r8 -xW -fpic  -O2 -I.  

mpp971: $(OBJS) 

 mpif90 -shared -o libmpp971_d_7600.2.1224_usermat.so $(OBJS) 

$(MODEL).o: $(MODEL).f 

 mpif90 $(OPTIONS) $(MODEL).f 

dyn21.o: dyn21.f 

 mpif90 $(OPTIONS) dyn21.f 

dyn21b.o: dyn21b.f 

 mpif90 $(OPTIONS) dyn21b.f 

# 

# End of file 

 


