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ABSTRACT

ARNAB A PURKAYASTHA. Empowering reconfigurable platforms for massively
parallel applications. (Under the direction of DR. HAMED TABKHI)

The availability of OpenCL for FPGAs along with High-Level Synthesis tools have

made them an attractive platform for implementing compute intensive massively par-

allel applications. FPGAs with their customizable data-path, deep pipelining abilities

and enhanced power efficiency features offer the most viable solutions for program-

ming and integrating them with heterogeneous platforms. However, OpenCL for

FPGAs raise many design challenges which require an in-depth understanding to

better utilize their enormous capabilities. Inefficient routing of data, high number

of memory stalls exposed to execution and under-utilization of FPGA resources are

significant execution bottlenecks that overshadow the advantages of data-path cus-

tomization. Furthermore, leveraging OpenCL parallelism abilities and throughput

oriented principles is paramount to the success of FPGAs in the high performance

computing environment.

In this research we identify, analyze and categorize the architectural differences be-

tween the OpenCL parallel programming model and FPGA execution semantic. We

propose a generic taxonomy for classifying FPGA parallelism potential to the fullest.

To benefit massive thread-level parallelism, we introduce a unique LLVM based au-

tomation tool to decouple memory access from computation, thereby hiding memory

stalls from the execution path. We further present a novel parallelism granularity

that separates kernels to split them into data-path and memory-path (memory read-

/write) that work concurrently to overlap the computation of current threads with

the memory access of future threads. We validate these principles on the Xilinx based

AWS Cloud FPGA platform.

We then conduct a thorough investigation into the scalability of OpenCL coarse-
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grain parallelism, as well as an examination of Compute Unit(CU) replication, Double

Data Rate (DDR) and Burst Transfer (BT) optimizations on Cloud FPGAs. To

address the issue of programming challenges, we present generic template(s) and a

front end design tool to aid the programmer in rapid exploration and testing. Overall,

this dissertation is an amalgamation of principles and techniques to improve the

performance and programmability of OpenCL on FPGAs when running massively

parallel applications on ’Edge’ as well as the ’Cloud’.
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CHAPTER 1: Introduction

The advent of new technologies like Big Data, Internet of Things (IoT), and Arti-

ficial intelligence (AI) have made a significant impact across various sectors ranging

from healthcare, transportation, manufacturing, education etc., The combined effect

of increased internet usage along with the availability of affordable infrastructure and

continuous monitoring across the globe has led to an avalanche of data that needs

to be stored, processed and decisioned. Design of powerful and efficient computing

engines that can handle large volumes of data is therefore essential.

Instruction Specific Architectures (ISA) such as CPUs have been traditionally em-

ployed to deal with this massively increasing workload. However, consistent decrease

in transistor sizes have resulted in saturation of Dennard scaling [4] and stagnation

of Moore’s law [5]. This has lead to a paradigm shift in computing machinery. Mod-

ern architectures like Graphics Processing Units (GPUs), Application Specific ICs

(ASICs) and Reconfigurable platforms like Field Programmable Gate Array’s (FP-

GAs) are commonplace in today’s computing environment. GPUs have thousands of

general-purpose cores that can deliver teraflops of performance and work on multitude

of tasks at once. Nonetheless, being primarily ISA based, GPUs are power-hungry

devices (Figure 1.1). ASICs, on the other hand are power-efficient devices that offers

limited design flexibility.

FPGAs have bolstered their position in the high performance computing field by

improving performance outside the limits set by slowdown of Moore’s Law [5]. Spe-

cialized hardware employed to accelerate an application is becoming an essential part

for improving application efficiency. FPGAs can provide custom data paths and

memory hierarchies meeting the needs of compute intensive workloads, while being



2

Efficiency

Fl
ex
ib
ili
ty GPU

CPU

FPGA

ASIC

Figure 1.1: Flexibility vs Efficiency of different platforms

power and energy efficient. The demand for FPGAs is thus projected to grow from

$63 billion in 2019 to $117.97 billion in 2026 [6] [7].

Conventional FPGA design requires expertise in complex hardware description lan-

guages (HDLs) and proprietary synthesis tools that suffer from lack of portability and

programming complexity. To counter this shortcoming, the Open Computing Lan-

guage (OpenCL) was introduced for heterogeneous computing platforms as a vendor

neutral programming language. OpenCL for FPGAs offers a wide range of possi-

bilities for increased programmability benefits without getting bogged down by the

complexities of HDL programming. The abstraction and convergence of OpenCL [8]

provide a novel opportunity for massively parallel applications to be accelerated using

FPGAs. Moreover, OpenCL High-Level Synthesis (OpenCL-HLS) allows program-

mers to create a reconfigurable data path on FPGAs that is ideally suited to the

application without going into the low-level implementation details [8].

Despite such promising benefits, the OpenCL language is still in development. In

addition to this, both FPGA developors and application programmers face a slew of

new design challenges. These difficulties stem primarily from the architectural dif-
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Figure 1.2: Overall philosophy of this dissertation

ferences between GPUs and FPGAs. GPUs are multi-threaded instruction flexible

architectures with massive spatial parallelism. Thus, they benefit from the OpenCL

Single Instruction Multiple Threads (SIMT) semantic [9, 10]. Unfortunately, the

potential and difficulties of OpenCL programming have not been considered exten-

sively for the FPGAs [11, 12, 13, 14, 15, 16, 17, 18]. FPGAs offer customizable data

path, operation-level parallelism and the ability to use deep pipelining or temporal

parallelism- aspects that are not captured well in OpenCL. Additionally, in the ab-

sence of a dedicated run time scheduler or an advanced memory hierarchy engine,

execution often stalls due to a lack of availability of data. This results in data-path

under utilization for complex OpenCL kernels with high memory access demands.

Furthermore, OpenCL has been highly optimized for GPUs due to their dominant

position in the heterogeneous computing industry. Thus there is an insufficient lack

of understanding of the impact of design decisions made at the source and synthesis

levels for the created data-path on FPGAs. To fully exploit the flexibility of FPGAs,

new research is imperative to better understand and formalize the design dimensions

while using OpenCL abstractions.

Figure 1.2 shows the overall philosophy of this dissertation. The broad scope of

this research is to identify and mitigate several key problems that hinder the maxi-

mum performance potential of FPGAs while taking into consideration several limita-
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tions in terms of synthesis tools, resources and programming challenges. We combine

best-of-both-worlds of both FPGAs and OpenCL programming platform to provide

several different solutions ranging from efficient data-path creation to maximizing

parallelism, architectural solutions to minimize memory access latency, design au-

tomation tools and provide various solutions across the entire computing stack. We

have open sourced all our work through different contributions linked to our previous

and ongoing publications.

1.1 Contribution and Dissertation Outline

The aim of this dissertation is to explore the execution of massively parallel ap-

plications on reconfigurable devices using novel design methodologies. We employ a

plethora of techniques to improve the performance and energy efficiency of OpenCL

when mapped on to FPGAs (Figure 1.3).

The contributions of this dissertation are summarized as follows.

1. A taxonomy proposed at OpenCL abstraction to improve FPGAs execution

efficiency. The taxonomy guides OpenCL programmers and tool developers to

achieve maximum throughput by identifying and applying the right granularity

of spatial parallelism (Chapter 4)

2. A novel memory decoupling approach at OpenCL abstraction combined with

LLVM-based design automation tool to overcome the bottleneck of memory

stalls exposed to data-path. We validate and scale our approach on a AWS

cloud based FPGA with a new set of applications (Chapter 5) .

3. A generic template for Compute Units (CUs) replication and memory access

parallelism combined with an automation tool to enable programmers achieve

maximum throughout with respect to available FPGA resources and memory

bandwidth (Chapter 6).



5

Conventional OpenCL
mapped on to  FPGAs

Slow Power
hungry

Energy
efficientFast

Proposed solutions

Chapter 4 Chapter 5 Chapter 6
Arnab et al. SOCC ‘18 Arnab et al. MICPRO ‘20 Arnab et al. SOCC ‘20

Arnab et al. ASAP ‘21Arnab et al. HPEC ‘19

Figure 1.3: Dissertation contributions with publications

1.2 Motivation

"Divide and conquer"

-Gaius Julius Caesar

The basic philosophy of this research is to capitalize upon the numerous potentials

of OpenCL programming platform and leverage its parallelism faculties to benefit

reconfigurable platforms using their inherent deep-pipeling and power efficient char-

acteristics. We identify several of the critical issues that hinder OpenCL performance

when mapping massively parallel applications to FPGAs. We investigate each of the

following problems in-depth and systematically present ways and means to counter

them.

Motivation for FPGA taxonomy Parallelism principles on CPUs and GPUs

[19, 20, 21] has been an active research topic. These techniques, while capable of

capturing instruction, data and task level parallelism, were designed for ISA-specific
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architectures. FPGAs and other reconfigurable systems are ISA-independent plat-

forms, so the same classifications does not apply to them. Recent advancements

in OpenCL-HLS tools have provided programmers with new opportunities to work

with massively parallel applications and map it on FPGA’s. Therefore, it is impor-

tant that a standardized taxonomy be adopted to fully exploit OpenCL parallelism

benefits when mapped to FPGAs.

Motivation for efficient architectureAn important observation regarding OpenCL

performance on FPGAs vs CPUs and GPUs is the large disparity in performance due

to inefficient data path. One of the main drawbacks of fine-level temporal parallelism

on FPGAs is memory wall. Memory stalls are explicitly exposed to the execution path

since there is no run-time thread scheduling as in GPUs. Additionally, unlike CPUs,

FPGAs do not have sophisticated data caching or specialized hardware prefetching to

reduce memory access latency. Memory stalls and bandwidth utilization are thus at

odds, severely affecting performance. While there are quite a few available techniques

like use of scratchpad memory, double buffering etc., to mitigate memory stalls, these

methods suffer from additional memory copy time and gross over-allocation of FPGA

on-chip memory.

An interesting mechanism to mitigate stalls is Memory decoupling, that operates

at a finer granularity of data access. By separation of individual memory accesses

into different kernels it overlaps memory access and computation. This approach

does not have the same ability to amortize memory access costs as tiling and double

buffering, but it can be beneficial for certain data that does not follow a streaming

access semantic.

Moreover, modern cloud based FPGAs [22] have a sizeable number of on-chip

resources and increased bandwidth capacities, allowing many opportunities to boost

performance. OpenCL-HLS allows us to explore various optimization techniques that

can be employed in consistence with existing methods to exploit FPGA potential to



7

the fullest

Motivation for generic framework and automation tool Replicating Com-

pute Units (CUs) has been found to improve OpenCL performance by increasing the

scope of spatial parallelism employed on top of existing temporal parallelism [8, 23].

However, replicating CUs comes with its own set of challenges. Since multiple param-

eters (such as FPGA tools, workgroup sizing, and additional costs associated with CU

setup) are involved, CU replication is an NP Hard problem. This necessitates design

space exploration, which can be time consuming and costly in terms of resources,

particularly if the workload is run on cloud-based FPGAs. Moreover, multiple CUs

do not always improve efficiency because over-splitting the job size results in redun-

dant CU setup costs, which can either stabilize or increase the kernel execution time.

Furthermore, there is always the possibility of exhausting FPGA resource utilization

and bandwidth. This, in fact, necessitates the obligation of programmers to use a

’trial and error’ approach because it is difficult to make even an informed guess in

such situations.

Finally, the outline of this dissertation is as follows.

Chapter 2 introduces the traditional FPGA datapath and gives a brief context of

OpenCL programming platform. It overviews OpenCL execution model on FPGAs

and discusses the motivation behind each of the core contribution areas as well as

current and future research direction.

Chapter 3 briefly reviews previous related work in the field upon which we base

our research. We look at several existing approaches of OpenCL parallelism models

and provide hints captivating the reader to question and argue the current approaches.

Chapter 4 presents our first contribution of taxonomy of spatial parallelism on

FPGAs. We build on our understanding of spatial parallelism as opposed to the

default temporal parallelism on FPGAs and formalize these concepts.

Chapter 5 proposes the second contribution of LLVM based memory decoupling
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approach to hide memory access latency on FPGA devices. We further validate our

design principles for Xilinx based AWS cloud FPGAs.

Chapter 6 describes two ideas elaborated in two separate sections. The first sec-

tion proposes a generic template for Compute Unit (CU) replication and proposes a

novel tool to automatically identify optimum number of CUs. The second section ex-

plores Double Data Rate (DDR) and Burst transfer optimization (BT) and formalizes

both these approaches.

In Chapter 7 we summarize the contributions of this dissertation, list our publi-

cations and talk about future research directions.



CHAPTER 2: Background

In this chapter, we look at the trends in programming models starting from tradi-

tional CPUs introduced in the early 60’s to modern multicore devices. We understand

the basic architectural differences between general purpose CPUs, multicore devices

and reconfigurable platforms. We next move on to see the OpenCL programming

model and its execution semantic when mapped onto FPGAs.

2.1 Current Trends in Programming Technology

Programming technology in the initial computing era was driven majorly by two

popular approaches, the single core CPU and fine-grained array architectures. The

general-purpose CPU on one end is an instruction specific architecture where pro-

grammable software instructions are sequentially executed (traditionally), while on

the other end, fine-grained architectures like FPGA are reconfigurable hardware de-

vices that can execute instructions in parallel using programmable Hardware Descrip-

tion Languages (HDLs). Figure 2.1 shows the basic architectural difference of CPUs

and FPGAs. CPUs benefit from the inherent sequential data-path while FPGAs

benefit from the customizable hardware.

Consider a sequence of instructions sum1 through sum7 as shown in Figure 2.1a.

The instructions are stored in the instruction queue before being moved sequentially

to the ALU via functional units for execution. The resulting instruction data-path is

therefore a collection of ALUs, registers, buses and control units inside the CPU. The

main components of an FPGA are Configurable Logic Blocks (CLBs), Programmable

Interconnects and Programmable I/O blocks. These logic blocks can be configured

internally to generate the desired data-path to result into the output logic (Figure
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Instruction Queue
sum1=a1+a2;
sum2=a3+a4;
sum3=a5+a6;
sum4=a7+a8;

sum5=sum1+sum2;
sum6=sum3+sum4;
sum7=sum5+sum6;

ALU

Memory

(a) CPU execution semantic

a1 a2 a3 a4 a5 a6 a7 a8
Registers

CLBs

(b) FPGA execution semantic

Figure 2.1: CPU and FPGA execution semantic

2.1b). In an ideal case with limitless registers, parallelism on FPGA can therefore be

infinite. CPU and FPGA architectures have thus coexisted in the two extremes for

several years, with each form of programmability being extended to various applica-

tion domains.

Increased demands in computation and performance have steered CPU research in

two directions; one- increasing the operating frequency with supply voltage and power

density trade off, and two-extracting Instruction Level-Parallelism (ILP) from the se-

quential execution semantic. Both these approaches have provided enormous benefits

for several decades. However by making device dimensions smaller and smaller, we

have reached the "Power Wall" [24], beyond which it is not feasible to reduce the

operating frequency anymore. Moreover, approaches to extracting ILP by various

techniques like memory prefetching have slowly started to show diminishing returns

after several years of performance improvements thus hitting the "Memory Wall" [25].

Due to the saturation of the previous two approaches, current CPU technologies

have moved from instruction level parallelism to thread level parallelism. There is

a general trend toward highly parallel multicore CPUs (8, 16 or 32 cores) with a
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Figure 2.2: Recent trends in programming models[1]

focus on several simpler processors with significant number of transistors dedicated to

computation. Following the same lines, data-parallel devices like GPUs were designed

with hundreds to thousands of simple cores. In any case, the programmer must

efficiently code their applications to extract parallelism and achieve high performance

on these multicore machines. Each core must be given work in such a way that all

cores will work together to complete a task. FPGA designers do the same thing

when creating high-level system architectures. Latest technology scaling patterns

and increased computational demands have thus led to favourable technologies that

are both programmable and parallel (Figure 2.2).

2.2 The OpenCL Programming Language

Heterogeneous computing needs across various architectural frameworks have led

to the rise of efficient programming technologies. However, one of the main conflicts

between technology and users is the differences between components that don’t match

well with others, resulting in integration issues and the need for complicated, time-

consuming solutions. As an example, popular programming language like CUDA is

vendor specific only for NVIDIA GPUs making it hard to translate and fit well with

the AMD GPU platform. Therefore, it was realized that a standardized model for

writing programs that can run across all of these platforms is essential. Thus the

OpenCL programming language was born as a close collaboration of Khronos Group
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and Apple Inc.,

Figure 2.3: OpenCL programming models [2]

The Open Computing Language (OpenCL) (Figure 2.3) is a heterogeneous pro-

gramming platform for developing applications that run on a variety of vendor-neutral

devices ([26, 27]). It is a cross-platform API that enables the creation of portable

parallel applications approaching dynamic memory hierarchies and data-parallel exe-

cution in the same way as CUDA does. However, unlike CUDA, OpenCL has a more

complex system management model to support its multiplatform and multivendor

portability.

Figure 2.4: OpenCL Platform Model

OpenCL offers a very promising lexical semantic to work with massive threads in

parallel, especially when a fixed routine over large volumes of data is executed per each

thread. It embraces a broad variety of parallel levels at a higher level of abstraction
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Figure 2.5: OpenCL Device Model

than HDLs and maps heterogeneous networks with CPUs, GPUs, FPGAs and others.

The OpenCL platform model (Figure 2.4) includes a host processor that coordi-

nates program execution and one or more accelerators that can execute OpenCL

code (Figure 2.4) (called kernel). The host is typically an x86 CPU that runs the

serial portions of the program with GPUs or FPGAs that run the parallel part. The

host is also in charge of configuring the systems and overseeing host-to-device and

device-to-host connectivity.

Figure 2.5 shows the internal architecture of OpenCL device. An OpenCL device

can be a CPU, GPU or an FPGA. Any such device consists of Compute Units (CU)

that the main processing blocks similar to execution units and ALUs on multi-core

CPUs or compute cores in GPU. Each Compute Unit internally contains Process

Elements (PE) with its own private memory as shown in Figure 2.6. The PEs are

where a device’s computations take place. CUs are generally called as ’work-group’

(a.k.a Block in CUDA) while PEs are called as ’work-item’ (a.k.a Thread in CUDA)

which execute the flow of instructions.

The 3 major memory types in OpenCL are the Global memory, Local memory and

Constant memory.

Global memory region allows read/write access to all work-items in all work-groups

on any computer in a context. Any part of a memory object can be read from or
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Figure 2.6: OpenCL Compute Unit model

written to by work-items. Depending on the device’s capabilities, reads and writes to

global memory can be cached.

During the execution of a kernel-instance, an area of global memory that remains

constant is called the Constant memory. Memory objects stored in Constant memory

are allocated and initialized by the host.

Finally, Local memory is a Work-group specific memory area. This memory region

can be used to store variables that are shared by all work-items in a work-group.

Local memory is thus shared across multiple process elements within a compute unit.

2.3 OpenCL Execution on FPGAs

In this section, we look at the OpenCL abstraction and execution models when

mapped on to FPGA. OpenCL execution utilizes High Level Synthesis (HLS) tools

(vendor-specific) to generate the desired data-path on the FPGA. The HLS toolchain

is the common link between the high level OpenCL language to the low level bit-

stream. Figure 2.7 shows a generalized HLS toolflow.

The programming model of OpenCL is based on the C programming language.

It provides an API that allows host-based programs to load the OpenCL kernel on
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Figure 2.7: OpenCL HLS toolflow

computing devices. The API is also used to manage system memory independent of

host memory and interact directly with GPU resources. The host and kernel code

written in OpenCL are packed together and fed to CLang compiler that converts high-

level OpenCL code to Low Level Virtual Machine (LLVM) which is an Intermediate

Representation (IR) of the instructions fed to CLang. This IR is then fed to the HLS

toolchain that generates the RTL (Register Transfer Logic) down to the programmable

bitstream. The bitstream is mapped to the FPGA in the form of programmable logic

that is customizable in nature and can be executed. This entire process is called

"Synthesis".

Next, we look at the OpenCL execution model as depicted in Figure 2.8. In

OpenCL, a work-item is the unit of parallelism inside each kernel. The same ker-
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Figure 2.8: OpenCL Execution Model

nel is used for all OpenCL work objects, but the data is different. An ’NDRange’

(a.k.a Grid in CUDA) is the total number of work-items executing kernel code as

specified by the programmer in the host code. The NDRange is a work-item index

space with N dimensions of one, two, or three. The NDRange is divided into work-

groups, each of which includes several work-items, as seen in Figure 2.8.The compiler

defines the NDRange size (also known as global size) and work-group size (also known

as local size) in the host code. A wave-front is a set of work objects that run at the

same time on the system. The system vendor determines the wave-front distance,

which is architecture-dependent.
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2.4 Maximizing the Parallelism on FPGAs

Parallelism concepts on CPUs and GPUs have been extensively studied before

[19, 20, 21]. While these techniques are able to capture instruction and data level

parallelism, they were developed for ISA specific architectures. Reconfigurable plat-

forms like FPGAs are ISA independent architectures and the same classifications

cannot be justifiably applied on them. Moreover, in contrast to GPUs that have

massively parallel fixed ALU cores, an FPGA’s reconfigurable design allows for the

creation of a customized data-path suited for each application. Thus by eliminat-

ing instruction fetch and streamlined thread execution, a custom data-path can be

deeply pipelined to improve throughput. Deep pipelining also allows FPGAs to take

advantage of temporal parallelism through a large number of hardware threads while

sharing a single data path.

Recent improvements in OpenCL-HLS have opened up new opportunities for the

FPGA programmers to work with massively parallel applications on FPGAs and uti-

lize the capabilities of the FPGAs to their full potential. An application developed

at OpenCL abstraction can guide the synthesis tools by explicitly exposing the par-

allelism. While there are quite a few techniques developed to aid the programmer in

this field, what is missing is the lack of insight on the impact of source level design

decisions on the generated data-path on FPGAs. In particular, spatial parallelism

when mapping massively parallel applications on FPGAs has not been well under-

stood and formalized. To fully leverage the benefit of FPGA’s reconfigurability, novel

research is required to understand and formalize the design dimensions when running

OpenCL abstraction on FPGAs.

2.5 Memory Bottleneck

One of the primary limitations of fine-level temporal parallelism on FPGAs is the

issue of Memory Wall. In the absence of a dedicated run-time scheduler like in
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Figure 2.9: Memory stalls and bandwidth utilization for Rodinia applications

Figure 2.10: Baseline bandwidth utilization(%) for Rodinia applications

GPUs, or a sophisticated memory hierarchy (multiple levels of cache), execution on

FPGAs is often stalled due to a lack of data. As a result, if one thread is waiting

for memory, all other threads will be stalled before the current thread receives the

data. This results in data-path under-utilization in complex OpenCL kernels with

strong memory access demands. Memory stalls is also therefore a major cause for

under-utilization of memory bandwidth. To illustrate this we look at baseline profiling

information of some of the applications from the Rodinia Benchmark Suite [11] as

shown in Figure 2.9. For 2 cases, namely BFS (40% memory stalls) and Hotspot(75%

memory stalls)leads to massive under- utilization of available memory bandwidth (4%

in BFS and 5% in Hotspot).

Further to this, figures 2.10 and 2.11 show the low baseline bandwidth utilization
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Figure 2.11: Baseline bandwidth utilization(%) for SDAccel applications

for a set of applications from the Rodinia Benchmark suite and the SDAccel design

suite. Average bandwidth utilization for the applications are less than 25% and 50%

respectively. This significantly limits their achievable performance while opening new

opportunities for optimizations at the same time. As a result, for effective execution of

massively parallel applications on FPGAs, reducing the memory bottleneck is crucial.

2.6 Programmability Challenges and Design Time Complexity

Figure 2.12: DSE of Histogram application.

Many new parallelism possibilities and optimizations are available with OpenCL.

However, applying these methods necessitates a thorough understanding of the de-
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vice’s design, and programmers often settle for a "trial and error" solution, which is

cumbersome and may not yield maximum parallelism benefits. This is partly due to

the time-consuming nature of extensive design space exploration, and partly due to

the lack of generic programming constructs to serve as a reference for FPGA program-

mers. Apart from that, the long synthesis times make the process of development

to deployment very tedious. Figure 2.12 illustrates this problem for a demonstrative

Histogram application. The Design Space Exploration time of Histogram for Com-

pute Unite replication (More on that in Chapter 4) is close to 347 mins! This costs a

lot of valuable time and resources and is therefore a long standing issue with parallel

programming on FPGAs hindering performance efficiency. On the flip side, it also

makes way for tremendous research opportunities in this field.



CHAPTER 3: Related Work

The introduction of OpenCL for FPGAs combined with numerous capabilities of

HLS tools, has sparked a tremendous amount of interest and influenced a large num-

ber of researches in this field. OpenCL for FPGAs has benefited a wide range of

high-performance massively parallel applications. Furthermore, OpenCL abstraction

and unification has the potential for widespread deployment of FPGAs to revolution-

ize them as an omnipresent component of heterogeneous platforms. Overall, despite

numerous studies in the field, OpenCL for FPGAs is still in its infancy. In-depth anal-

ysis and generalized solutions to improve OpenCL execution performance on FPGA

devices are lacking. The main emphasis has been on building an effective application-

specific data-path rather than eliminating critical bottlenecks like memory latency,

optimum resource utilization etc., In this chapter we look across the spectrum of

research that has already been conducted upon which we lay the foundation of this

dissertation.

3.1 OpenCL Parallelism Across Various Architectures

The advent of OpenCL framework has become a very popular topic of interest in the

high-performance community. Performance optimization using OpenCL framework

for massively parallel applications on CPUs/GPUs has also become very popular

[28, 29, 12]. Execution of OpenCL on FPGAs has become a prominent topic [12,

13, 30, 14, 31, 17, 23] in recent times. These approaches primarily focus on the

application-specific performance optimization techniques [13, 30], or basically making

a performance comparison between FPGAs and GPUs.

Many researches [31, 17, 32] have been conducted on OpenCL programming capa-
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bilities to improve FPGAs efficiency. The energy efficiency benefits of FPGA devices

along with the ability to employ pipelined parallelism properties make the evaluation

of OpenCL kernels on these devices very fascinating [13, 14]. Further, [33, 34, 35]

have worked on exploiting the parallelism on FPGAs with OpenCL attributes as well

as by suggesting new architectural modifications to improve performance across var-

ied applications. In particular, we observe a significant interest in accelerating neural

networks and deep learning applications on FPGAs using OpenCL programming ab-

straction [36, 37, 38, 39, 40].

The subject of multi-threaded execution on FPGAs has also been explored [41]

[42, 43, 44, 45, 46]. A small number of researchers have also looked into multi-

threaded execution on single kernels [47, 48]. A framework was proposed to explore

parallelization of instructions and data on ISA-based architectures, that is, CPUs

and GPUs [19] by Michael J Flynn during the early 70’s. Many other works [20,

21] have been studied to provide an extension over Flynn’s taxonomy for different

multiprocessor architectures.

In contrast to existing categories for ISA based machines, the execution model of

FPGAs make them different which leads to a dire need for a classification of their own.

OpenCL-HLS gives the programmer such flexibility by introducing various optimiza-

tion techniques. FPGA design space is not yet well investigated and systematized.

This applies in particular to Compute Unit replication with enormous potential per-

formance. It is therefore important not only to design scalable accelerators but to

design tools that can reduce synthesis design times significantly, which make them

cost-effective infrastructures.

3.2 Memory Wall

Memory stalls as a result of unavailability of data for computation is a major

bottleneck as the cost of data transfer from memory is very expensive. The most

intuitive solution to this problem is to make data available prior to execution. The
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simplest approach to furnish this data is called as prefetching [49, 50]. As the name

suggests, prefetching is to understand the behaviour and keep the data available for

the device prior to computation. There has been a lot of prior research done in

this field. Based on the behavior prefetching can be acheived by hardware called as

hardware prefetching [51, 52, 53] or software called as software prefetching [54, 55, 56].

There have been relevant experiments done to merge both hardware and software

prefetching to achieve maximum performance [57]. Also recently, the focus has shifted

towards various cache prefetching approaches [58, 59].

In the reconfigurable computing community, multi-thread execution on FPGAs is

a very rich topic [41, 60, 42, 43, 44, 45, 61, 62, 46]. The primary focus is on context

switching and partial reconfigurability across multiple applications. However, there is

a less focus on addressing the execution challenges of massively parallel applications

on FPGAs when many threads are sharing same kernel (data-path) over many data

(as in OpenCL). The approach of decoupling has been well elaborated [63] and has

been explored and analyzed more on different variety of devices [64, 65, 66]. Memory

decoupling has made a significant contribution to our understanding of memory access

latency in different system models.

Several other papers, for example [67], introduce a novel Domain-Specific DSE (DS-

DSE) approach for domain-specific computing with an emphasis on streaming appli-

cations, as well as Function-Level Processors (FLPs) [68] to bridge the gap between

ILPs and dedicated hardware accelerators. While performance gains are demon-

strated, these approaches often do not explore the static analysis of application for

memory access behavior or are restricted to well defined accesses with fixed strides.

with no massive thread-level parallelism.

Finally, we also note the interest in using OpenCL pipe semantics for efficient

communication between kernels across several OpenCL kernels [35, 18, 34, 69]. [69],

for example have used pipes for efficient DNA and RNA sequencing on FPGAs.
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Elsewhere [33], proposed analytical models for power and performance evaluation

and optimization of OpenCL kernels on FPGAs. Xilinx in particular, have also taken

advantage of the pipe build to stream data from one kernel to another and thus reduce

latency [22]. These serve as a backbone to our decoupling approach to mitigate the

memory wall problem.

3.3 OpenCL Optimizations on Cloud FPGAs

Designers have used FPGAs for the past 30 years as a quick and easy way to cre-

ate specialized hardware for applications that need more performance than software-

programmed CPUs can provide. In recent years, we observe integration of FPGAs in

many cloud platforms ranging from AWS cloud [70] to Microsoft Brainwave project

focused on real-time AI [71] to Xilinx Zynq platforms [72, 73] for real-time stream

processing at the edge. Today’s cloud-based FPGA instances, also known as FPGA-

based acceleration-as-a-service, enable users to rent time on an FPGA-equipped server

rather than buying a board or an integrated server.

The two major players in the FPGA market viz., Intel and Altera have both im-

proved their High Level Synthesis (HLS) tool-chains to suit a variety of scalable

options on the cloud. As a result a number of optimization tools have sprung up

from both these vendors. Compute Unit replication is a well know optimization

[23, 74, 75] that has shown significant performance benefits although limited due to

lack of systematic approach. Other optimizations like Caching/Tiling, Customized

Pipeline, and Double Buffering [76] do provide benefits along with programmabil-

ity challenges. Furthermore, techniques like explicit data caching, communication

overlap, and scratchpad organization have also shown to improve the performance

[75]. Optimizations such as adjusting the work-group, CU replication and memory

coalescing were performed to get 1.5X improvement on two dimensional Mandelbrot

factorial algorithm [77] employed on the cloud.

Even though current accelerators outperform generic processors, the FPGA design
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space has yet to be fully explored and systematized. This is particularly true for CU

replication, which has a lot of potential in terms of efficiency. As a result, it’s critical

to develop not only scalable accelerators but also tools that can dramatically reduce

synthesis design time while remaining economically viable across all infrastructure.

Overall, despite many interesting researches in the area, OpenCL for FPGAs is still

at its early stages. There is a visible lack of in-depth analysis, generalized tools, frame-

works and solutions to enhance the OpenCL execution efficiency on FPGA devices.

Here in the course of this entire dissertation, we propose a plethora of generic de-

sign solutions. We identify, analyze and mitigate various bottlenecks affecting FPGA

performance. Finally, we propose new automation tools to reduce the gap between

programming challenges and performance efficiency.



CHAPTER 4: OpenCL Parallelism Taxonomy

4.1 Introduction

In this chapter, we begin our exploration of OpenCL spatial parallelism when

mapping OpenCL kernels to FPGAs. This work presents a systematic study to define,

analyze, and categorize the spatial parallelism. We investigate the effects of Data-

Path (DP) and Compute-Unit (CU) replication of OpenCL execution on FPGAs. We

further propose a generic taxonomy for classifying spatial parallelism to be applied

across any application. We have utilized the Intel Altera Stratix V FPGA of the

DE5 family to carry out the experiments in this part of the thesis. Our findings on

eight applications from the Rodinia benchmark suite show that FPGA-aware OpenCL

codes boost performance by 3.4X, 2.2X, and 2.6X on average for SCUMDP, MC-SDP,

and MCUMDP versions over SCUSDP as the baseline implementation.

4.2 Taxonomy Grid

Primary motivation behind this work lies in identifying and classifying the OpenCL

HLS programming techniques and mapping them into a framework which we believe

could provide better programmability to FPGA programmers and help formalize

OpenCL research in near future. To identify all possible spatial parallelism bene-

fits and maximize parallelism potentials on FPGAs, we propose a taxonomy that

provides a clear classification based on the type of parallelism that can be employed

on the FPGAs. Our proposed taxonomy is classified into four categories. Figure 4.1

shows the grid depicting our taxonomy. OpenCL work-groups typically get mapped

to compute unit while work-items get mapped to data-path. We show one through

many compute units on the X-axis of the grid while variation of data-paths are shown
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on the Y-axis. Figure 4.2 through 4.5 shows all possible classifications of OpenCL

parallelism that we have proposed in our work.

SCUSDP MCUSDP

SCUMDPMCUMDP

Compute
UnitData

Path

Figure 4.1: Taxonomy Grid

4.2.1 Single Compute Unit Single Data-Path

The Single Compute Unit Single Data-Path [SCUSDP] is the default synthesis

generated by the HLS tool. We introduce this as a starting point for comparison with

other categories. The SCUSDP which has its own memory, load-store and control

units. SCUSDP does not utilize any spatial parallelism capability when implemented

on the FPGA although the data-path generated across the compute unit does enjoy

temporal pipelining benefits.

4.2.2 Single Compute Unit Multiple Data-Path

Figure 4.3 is a finer grained classification that involves replicating data-paths inside

a single compute unit without replicating the thread dispatcher and the load/store

units. The CU is able to run multiple threads at the same time by replicating the

data-path. SCUMDP resembles the Single Instruction Multiple Threads (SIMT)

paradigm used in GPUs in terms of semantics. On top of the temporal parallelism,

this allows for spatial parallelism. Furthermore, since each compute unit is involved,

each CU has multiple ALUs to execute the same instruction through multiple threads

and data while sharing the same control signals.
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Figure 4.2: Single Compute Unit Single Data-Path

One disadvantage of SCUMDP is that it executes in lock-step between replicated

data-paths, which may cause execution stalls due to a lack of data. Due to the fact

that repeated data paths share the same control signals, they must run in synchronous

lock-step mode. This necessitates the availability of data for all threads; otherwise,

all threads would be stalled. Overall efficiency enhancement is hampered as a result

of this.
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Figure 4.3: Single Compute Unit Multiple Data-Path
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4.2.3 Multiple Compute Unit Single Data-Path

The Multiple Compute Unit Single Data-Path [MCUSDP] (Figure 4.4) is a coarser

level granularity of implementing spatial parallelism over temporal parallelism. This

method replicates the entire data path, thread dispatcher, and load/store units of a

CU. The dispatcher divides the workload among several CUs, with each CU handling

a group of threads. As a result, control signals within each CU are independent

of one another. Employing multiple compute units however can lead to contention

for global memory which in turn might lead to undesired memory access patterns

affecting performance. This can be attributed to the fact that vectorizing a kernel

gives an opportunity to the HLS tool to apply memory coalescing [78].

Further, due to the limitations imposed on FPGA resources, MCUSDP is not

always feasible for complex kernels with large code sizes. In terms of resource con-

sumption, MCUSDP is less effective than SCUMDP. Furthermore, the most signif-

icant disadvantage of MCUSDP is the added memory burden on off-chip memory.

Increased off-chip memory accesses degrade performance in memory-bound kernels

due to CU contention over the device’s limited memory bandwidth.
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Figure 4.4: Multiple Compute Unit Single Data-Path
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4.2.4 Multiple Compute Unit Multiple Data-Path

Another method to maximize spatial parallelism benefits is the use of total spatial

parallelism across all data paths. This concept is utilized in Multiple Compute Unit

Multiple Data-Path [MCUMDP] (Figure 4.5) which is a hybrid model developed

from the previous two classifications. This technique not only makes use of pipelining

potentials but also exploits massive parallelism across each compute unit. This is

the maximum parallelism potential that can be exploited on the FPGAs. MCUMDP

strives to offer a balance between the major bottlenecks of resource utilization and

memory contention in MCUSDP along with stalls observed due to lock step execution

in SCUMDP.
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Figure 4.5: Multiple Compute Unit Multiple Data-Path

4.3 Experiments

To evaluate the taxonomy benefits and validate them we employ eight standard

OpenCL applications from the Rodinia benchmarks suite [31]. They namely are

Nearest Neighbors, Srad_base(Srad extract application), Gaussian, B+Tree, Needle-

man Wunsch(NW), Breadth First Search(BFS), Hotspot and Stream cluster. Our

FPGA implementations are synthesized on the Stratix-V FPGA while we have used

the AMD Firepro W7100 device for our GPU implementation. Table 6.7 lists the
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Table 4.1: System characteristics employed for the study.

Host Intel(R) Core(TM) i7-7700K
Host clock 4.2 GHz

FPGA Family Stratix-V
FPGA Device 5SGXMA7H2FE35C2

CLBs 234,720
Registers 939K

Block Memory bits 52,428,800
DSP Blocks 256
GPU Device AMD Firepro W7100

parameters of our FPGA platform. We use Intel SDK for OpenCL [8] based off on

OpenCL version 1.0 for compiling and synthesizing OpenCL code.

We use eight massively parallel OpenCL applications from the Rodinia benchmarks

suite [31] to test and verify the taxonomic benefits. Nearest Neighbors, Srad base(Srad

extract application), Gaussian, B+Tree, Needleman Wunsch(NW), Breadth First

Search(BFS), Hotspot, and Stream cluster are the chosen candidates. We synthesized

all the applications on the Stratix-V FPGA, and our GPU implementation was cre-

ated on the AMD Firepro W7100. Our FPGA platform’s parameters are described

in Table 6.7. For compiling and synthesizing OpenCL code, we use Intel SDK for

OpenCL [8], which is built on OpenCL version 1.0. The Intel SDK-OpenCL(AOCL)

profiler is also used to extract accurate execution performance. The AOCL profiler

collects kernel output statistics, global memory bandwidth efficiency, and stalls (Per-

centage time that memory access caused the stall in kernel execution).

4.4 Discussion

In this section we present and evaluate our experimental results. At first, we com-

pare FPGA taxonomy classifications based on Speedup, Bandwidth utilization, and

Absolute stalls parameters with respect to the baseline numbers. Following that, we

compare the best FPGA performance obtained from taxonomy against GPU execu-

tion.
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(a) SCUMDP (b) MCUSDP
(c) MCUSDP for
Stream-Cluster (d) MCUMDP

Figure 4.6: Performance Improvements over Single compute-unit Single data-path

(a) SCUMDP (b) MCUSDP
(c) MCUSDP for
Stream-Cluster (d) MCUMDP

Figure 4.7: Bandwidth Variations

4.4.0.1 Performance Analysis

In our experiments we used the OpenCL attributes to set the number of compute

units and data-paths along with sizing the work group dimensions for the purpose

of our design. For the SCUSDP and the MCUSDP configurations we were able

to synthesize all eight selected applications. On the other hand for SCUMDP and

MCUMDP classifications we could synthesize only four applications namely, NN,

Srad_base, Gaussian and B+Tree. The use of several data-paths, which is common

to each of these types, has a drawback of requiring a lock-step execution pattern,

which restricts data-path replication to basic kernels with no data based or conditional

branches. The OpenCL-HLS tool fails to vectorize such applications.

Figure 4.6a through Figure 4.6d show the performance improvement(increase in

times speedup over baseline) for each of the taxonomy categories for every single

application. Legends of SCUMDP and MCUMDP indicate the number of data-paths
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(a) SCUMDP (b) MCUSDP
(c) MCUSDP for
Stream-Cluster (d) MCUMDP

Figure 4.8: Absolute Stalls

from ’2’ through ’16’ while that of MCUSDP indicates number of compute units

from ’2’ through ’8’. The graphs for compute units and data-paths labels marked

’asterisk(*)’ are the ones which could not be compiled due to FPGA resources reaching

its maximum possible capacity.

Speed up due to SCUMDP can be attributed to two basic reasons:- 1. Vectorizing

the kernel allows the creation of multiple data-paths that can execute in a single

instruction multiple thread (SIMT)fashion. 2. It also avails an opportunity for the

HLS tool to introduce memory coalescing to further increase efficiency. On the other

hand performance either saturates or decreases owing to the increase in number of

stalls with every additional data-path due to lock step execution model. Apart from

this, the application itself can affect the parallelism potential.

SCUMDP in Figure 4.6a shows a maximum speed up of 5.6X over baseline for

nearest neighbor application when employing ’8’ data-paths while saturating for ’16’

data-paths. The speed up for Srad_base and B+Tree show similar trends as well.

The Gaussian application on the contrary shows reducing trends, this is due to the

fact that low temporal locality hinders its ability to take full advantage of memory

coalescing thereby reducing its overall performance despite employing data-path par-

allelism. Figure 4.7a and Figure 4.8a show a similar correlation between the results

obtained. While bandwidth utilization tends to improve with increasing number of

data-paths(maximum being at 10.2X for Srad base with 16 data-paths) the effect
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is more or less limited to increase in stalls due to lock step execution observed in

SCUMDP.

MCUSDP in Figure 4.6b shows a maximum speed up of 6.7X over baseline for

srad_base application after replicating ’8’ compute units. The speed up however

isn’t that effective for all other applications maintaining an average of about 1.5X

speed up. Overall more resource utilization in MCUSDP accounts for more memory

contention leading to reduced performance for most of the benchmarks. Figure 4.7b

and Figure 4.8b provide similar characteristics with increasing number of compute

units however with more number of stall percentage compared to SCUMDP attributed

to memory contention.

The stream cluster application for MCUSDP in Figure 4.6c offered negligible im-

provements at low number of compute units while showing a considerable improve-

ment only on increasing the number of CUs from 10 through 40 while achieving a

maximum speed up of 2.89X over baseline before getting limited by resources.

Figure 4.6d shows the performance improvement of MCUMDP. In this case we could

experiment with two compute units and a maximum data-path of four. Anything over

this was not compilable due to the major bottleneck of FPGA resources. However,

the performance improvement observed is once again a trade-off between stalls (Fig-

ure 4.8d) due to memory contention(MCUSDP) and lockstep execution(SCUMDP).

We attained a maximum speed up of 5.6x for the srad_base application using this

approach.

The following two-fold approach was used to quantify and compare the performance

of FPGA and GPU in terms of normalized performance/watt.

1. We used the PIN Tracer tool[79] to find the total number of instructions, mem-

ory and branch accesses per application. We then calculated the total number of

instructions utilized for computation related access as in Equation 5.1. Table 4.2

gives us a comprehensive idea of all the instruction accesses.
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Table 4.2: Number of instructions per application

Application Instructions
Memory Access Branch Access Computation

NN 971583 842826 2825645
Srad_extract 2534227 1613410 4149347

B+Tree 791962001 1431982510 2990223309
NW 37965825 12701717 63215476
BFS 131783847 99622929 135156055

HotSpot 9599430 5732485 9888922
Streamcluster 1086883070 561570230 2041351051

No. of computation access instructions = No. of total instructions−

(No. of memory access instructions + No. of Branch access)

(4.1)

2. Next, we used the CodeXL Power Profiler version 2.5 [80] to give us the GPU

power consumption per application. For the FPGA power we used the Intel SDK-

OpenCL(AOCL) profiler to collect kernel stalls(%) information and bandwidth(MBs)

utilization. We then used the StratixÂ® IV and StratixÂ® V PowerPlay Early

Power Estimator tool to find the total thermal power consumption(Watts) of the

device. The device’s total thermal power is determined by including the Static Power

(PSTATIC), Dynamic Power (PDYNAMIC), and I/O Power [78]. The leakage power

dissipated by the chip, which is independent of consumer clocks, is referred to as

static power. The DC bias power and transceiver DC bias power are the I/O power.

The dynamic power is measured using equal lumped capacitance’s calculated from

internal nodes shifting logic levels within the system, as seen below.

DynamicPower = V CCINT ×
∑

ICCINT(LE/ALM,RAM,

DSP, PLL,Clocks,HSDI,Routing)

(4.2)
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where power is calculated from dynamic power consumed across Adaptive Logic

Modules(ALMs), RAM Blocks(RAM), DSP blocks(DSP), Phase Lock loops(PLLs),

Clock, High Speed Differential I/Os(HSIO) and related routing modules.

Performance/Watt =
No.ofcomputationaccessinstructions/sec

Powerconsumption(Watts)
(4.3)

Figure 4.9: FPGA vs GPU Normalized Performance/Watts

From these results we finally calculate the Performance/Watt for every individual

application as shown in Equation 5.2. We believe that Performance/Watt is an ideal

standard for comparing FPGAs vs GPUs on the same scale. We normalize the values

obtained for curve fitting purposes. Figure 5.14 shows a comparison between Baseline

FPGA vs Best FPGA performance obtained after applying our taxonomy vs GPU.

We observe that after using our taxonomy we get improved FPGA performance as

against baseline FPGA for all the cases. However the FPGA performs fairly better

than GPU only for three applications which have more number of regular accesses

and are embarrassingly parallel. NN, Srad base and NW exhibit such properties.

B+Tree, BFS, Hotspot and Streamcluster on the other hand have a large number

of random accesses and suffer from stalls due to unavailability of data affecting the

entire FPGA pipeline. Such applications although do perform better after applying
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the taxonomy, they cannot compare to the level of performance of GPUs.

4.5 Conclusion

This work’s main contribution is the proposed association between OpenCL par-

allelism abstraction and execution of FPGAs with a new taxonomy. The goal is to

give OpenCL programmers and OpenCL synthesis tools an early look at formalizing

OpenCL written codes on FPGAs in order to improve their performance. FPGA-

conscious OpenCL codes reach up to 6.7X maximum speedup at the same time,

showing an average improvement of 3.4X, 2.2X and 2.6X for SCUMDP, MCUSDP and

MCUMDP over SCUSDP. Furthermore, we also observe that the performance/watt

numbers of at least 3 out of 7 applications fare far better than GPUs.



CHAPTER 5: LLVM Based Memory Decoupling

5.1 Introduction

This chapter introduces our second and most important research contribution. We

present a scalable automatic LLVM based framework to decouple memory access from

computation, effectively ’hiding’ the memory access latency of applications. This

novel LLVM-based tool introduces a new parallelism granularity that breaks down

kernels to distinguish data-path and memory-path (memory read/write), resulting

in a split-kernel approach that creates concurrency between current threads, compu-

tation and memory access with future threads memory access. Simultaneously, this

paper proposes an LLVM-based static analysis method for detecting dynamic variable

access patterns (beyond a constant stride) and controlling data dependencies through

sub-kernels. LLVM analysis senses and distinguishes prefetchable (computable) and

non-prefetchable (run-time dependent) patterns of data access.

5.2 FPGAs Memory Wall

One of the many drawbacks of fine-level temporal parallelism on FPGAs is the

memory wall. Memory stalls are immediately exposed to the execution path since

there is no run-time single-cycle thread scheduling (as in GPUs). In addition, unlike

CPUs, FPGAs lack sophisticated data caching and specialized hardware prefetching

to limit or mask memory access latency. Large numbers of delay buffers are often

used in OpenCL-HLS software to partly mask memory access latency.

Using scratchpad memory or local memory (in the case of FPGAs) is a common way

to alleviate memory stalls. Prior to launching a work-group granularity, OpenCL-HLS

tools transfer data from global memory (off-chip) to local memory (on-chip) via local
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memory allocation (groups of thread that share same local memory exactly similar to

the concept of thread blocks in CUDA memory model). The high number of memory

stalls may thus be reduced by using local memory. However on the flip side, memory

copy time for transferring the next work-group data from global memory space to

local memory space is immediately revealed to the execution.

Memory stalls on FPGAs can also be hidden using double buffering, also known as

ping-pong buffering, and memory decoupling. Wide arrays of data are separated into

chunks, or tiles, and loaded into on-chip memories in the double buffering method.

Off-chip memory access can be overlapped with computing by reducing the granularity

of data transmission from the whole array to smaller tiles. At the same time, bulk

data transfers between tiles help to amortize much of the setup and transition costs

associated with accessing individual data from off-chip memory. However, this does

not take into account the complexity of an application’s working range, which can

result in gross over-allocation of on-chip memory. Figure 5.1 shows an example of

stencil computation. The blue plane is calculated along with the green planes in each

iteration. The prefetched plane is yellow, and its transition overlaps the computation

[3].

Figure 5.1: Double buffering for stencil computation [3]

Ping-pong buffering optimization necessitates an appreciation of working set size,

such that only enough OCM is allocated for the present and next working sets. Due

to the common occurrence of data duplication across consecutive working sets, this
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usually entails sizing buffer tiles to a fraction of the working set, depending on the data

access stride. Moreover, one of the big drawbacks of this method is that it necessitates

data with a predictable, streaming connection pattern. Despite this drawback, double

buffering on FPGA will result in considerable performance gains [81, 82]. This method

also necessitates a major reorganization of the application’s memory as well as manual

synchronization.

Memory decoupling operates at a finer granularity of data access, separating indi-

vidual memory accesses into different kernels, allowing memory access and computa-

tion on FPGAs to overlap. This approach does not have the same ability to amortize

memory access costs as tiling and double buffering, but it can be used with data

that does not obey a streaming access semantic. Memory decoupling can be achieved

with automated synchronization and minimal memory consolidation by using certain

OpenCL constructs discussed later in this article.

5.2.1 Qualitative Comparison of Various Approaches

Double buffering has the largest potential to minimize stalls from off-chip memory

access while keeping the smallest on-chip memory buffer of the memory optimizations

mentioned above. Unfortunately, achieving high performance for double buffering ne-

cessitates a lot of hand-crafted optimization on the developer’s side, making it difficult

to automate. Simpler implementations don’t always outperform most memory opti-

mization techniques. Furthermore, the restriction on streaming data forbids the use

of double buffering for more irregular and control-intensive programs that do not need

streaming data or have a high spatial localization.

Memory decoupling, on the other hand, can be used to hide memory latency for

the vast majority of data at the expense of more off-chip memory transactions. The

system is only subject to the energy cost of these transfers, with the access delay of

possible compute threads being overlapped with the computation of current threads.

Both stream data and data with run-time dependent addresses will benefit from this
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memory optimization. It is also unaffected by memory data sparsity because data

access granularity is limited to only the data used by a single thread.

Further, this method has trouble dealing with inner loop data access, where the

per-thread memory requirement is high and repeated through threads. This scenario

causes several threads to repeatedly retrieve the same data. This method is relatively

easy to automate, thanks to built-in OpenCL constructs that can automatically han-

dle synchronization through parallel producer-consumer kernels and the ability to

identify complicated patterns.

In comparison to other optimization approaches, local memory optimization has

the smallest performance and reliability gains. It is, however, the easiest optimization

to automate, as it can be used in combination with other optimizations to cover data

that isn’t covered by the other approaches.

5.2.2 OpenCL Pipes

In this section, we briefly introduce the OpenCL Pipe semantic. We use the

OpenCL Pipes to implement ’split-kernels,’ a kernel temporal parallelism solution

that we introduce in this work for memory decoupling approach. The pipe semantic

was first implemented in OpenCL 2.0, and it was later merged into Altera’s (now

Intel’s) OpenCL1.0 environment [8, 83]. It provides an effective data communica-

tions model for OpenCL kernels sharing data in a producer-consumer manner (with

built-in synchronization).

Producer
Kernel

Pipe Memory Buffer

Consumer
Kernel

Tid_0 Tid_1 Tid_n.   .   .   .   .   .

Write to Pipe Read from Pipe

Intermediate Data Buffer

Figure 5.2: OpenCL Pipe semantic
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A simple pipe construct is depicted in the diagram (Figure 5.2). It has a pipe

memory buffer for storing inter-kernel communication data and an intermediate buffer

for synchronizing data communication with thread id. The pipe semantic is often

synthesized in OpenCL-HLS in two ways: (1) Pointer-based and (2) Channel-based.

The real Pipe build is created in the global memory space using a pointer (off-chip).

Channel-based, on the other hand, creates an on-chip Pipe construct assuming FPGA

resources are available. Channel is a fast way to keep inter-kernel data communication

on-chip by eliminating on-chip memory access between kernels.

5.3 Low Level Virtual Machine(LLVM) Framework

LLVM is a compiler framework built to provide a source and target independent

intermediate representation (IR) that enables general purpose code optimization [84].

The LLVM IR provides a level of abstraction similar to that of a traditional assembly

language, while also preserving high-level control semantics through an explicit con-

trol and data flow graph (CDFG). This makes it a useful abstraction for generation

of application-specific hardware as part of a high-level synthesis toolchain like LegUp

[85]. These features can also be used to derive algorithm-specific characteristics in-

cluding memory-access patterns [86] and arithmetic intensity.

5.3.1 Decoupled Access

This work uses the concept of decoupled access to overlap memory access and

thread execution at run-time to solve memory stalls in OpenCL kernels operating on

FPGAs. Decoupling is applied using the OpenCL pipe semantic at a finer granularity,

allowing OpenCL applications to take advantage of a new degree of parallelism while

operating on FPGAs.

FPGAs’ reconfigurability allows them to take advantage of parallelism at different

levels in terms of processing and memory access patterns. The degrees of parallelism

for OpenCL abstraction on FPGA devices are classified in Figure 5.3. The default
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Figure 5.3: Temporal parallelism at multiple levels

parallelism inherent to OpenCL is thread-level parallelism, as seen on the right. On

the left, task-level parallelism is often used by programmers to effectively schedule sev-

eral kernels by defining the application’s longest running kernel. We take advantage

of current kernel-level parallelism and use LLVM-based automated static analysis of

a program to decouple memory accesses from real computation. The suggested solu-

tion, which is a finer degree of parallelism for running massively parallel applications

on FPGAs and hiding the long latency memory accesses, is applied as an extension

over kernel-level parallelism illustrated in the middle.

In order to synchronize execution through parallel producer and user kernels, we

make use of the OpenCL pipe and its channel dependent automatic synchronization

dynamics. Decoupling memory access (read and write) from real computing is the

main insight here. While certain kernels, such as the data producer and data collec-

tor kernels, are only responsible for memory accesses, others execute computations.

As a result of the kernel separation, parallelism is used, which necessitates a formal-

ized data communication and synchronization model through the kernels. We use

the channel build, which automatically synthesizes on-chip memory buffers based on

channel width, to preserve the current in-order thread execution model on FPGAs.

Figure 5.4 shows a conceptual architecture model of the kernel parallelism approach

that we employ using kernel splitting. We propose to divide the kernel running per
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Figure 5.4: Kernel splitting for decoupled access

each Compute Unit (CU) to three major kernels: (1) Read kernel, (2) Compute kernel,

(3) Write-back kernel. The kernels execute concurrently but in an asynchronous

fashion. The Read and Write back kernels are responsible for loading from and

storing to the global memory while the Compute kernel only deals with computation.

The Figure 5.4 depicts a computational design model for the kernel parallelism

technique we use for kernel splitting. We put forward that each Compute Unit (CU)

be divided into three main kernels: (1) Read kernel, (2) Compute kernel, and (3)

Write-back kernel are the three types of kernels. The kernels run in parallel but in an

asynchronous manner. The Read and Write back kernels are in charge of loading and

saving data from and to global memory, while the Compute kernel is solely responsible

for computation.

We recommend using the OpenCL Pipe based Channel build for data transmission

and synchronization across kernels. We use the Channel implementation of the Pipe

build to keep data communicating through the kernels on-chip. Memory accesses

are made in parallel with the computation kernel, and data is exchanged through
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Figure 5.5: Execution pattern comparison

channels. The kernels run through several threads as long as the channels are not

empty.

Figure 5.5 shows how our split-kernel solution, which is based on kernel parallelism,

can be used to hide memory latency. It shows an abstract execution model of one

OpenCL work-group in three different scenarios: (1) baseline (generated by OpenCL-

HLS), (2) baseline with local memory, and (3) decoupled access. Both memory stalls

are immediately exposed to execution in the baseline model (1). The number of real

memory stalls exposed to the execution path can be reduced noticeably in the local

memory model (2).

However, the execution is immediately subjected to the latency of memory transfer

operations, which copy the next work-group data from global space (off-chip) to local

space (on-chip). Through decoupling and operating all processes concurrently, the

decoupled access version model (3) allows for the overlap of memory access latency

and computation. Decoupled access will eliminate most memory stalls from execution
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when there are a large number of threads and a large enough Channel depth range.

5.3.2 LLVM-Based Memory Access Analysis

Memory decoupling has the ability to reduce execution stalls in the computing

pipeline significantly, but handcrafted implementation of this technique becomes ex-

ceedingly time-consuming as an application’s memory access complexity grows. This

method can ideally be streamlined and built into OpenCL modeling software for FP-

GAs. We take a step toward this end goal by using the LLVM abstraction to formalize

the identification of memory accesses that are appropriate for decoupling. The most

fundamental criterion for decoupling a variable access is that the decoupling operation

does not cause a data consistency issue.

OpenCL, as a parallel programming language, already necessitates memory ac-

cesses. We enforce the additional restriction that the variable’s access must not be

managed to any degree by an inner loop index variable due to hardware and power

consumption limitations. This means that the instruction for determining the address

for a specific access is either directly dependent on the inner-loop index variable or in-

directly dependent on another variable that is itself dependent on an inner-loop index

variable. Decoupling without this restriction could necessitate wide channel buffers

and a lot of re-fetching of inner loop variables through threads. Instead, if on-chip

memory is open, these vector accesses should be held in the main computation kernel

and optimized with the local memory flag.

High-level languages like OpenCL use abstractions to mask the details of memory

address intricacies from the end user. We switch to the lower level abstraction of

LLVM to gain further insight into address calculations. LLVM is a target-independent

programming abstraction that offers a micro-ops-level view of an application with no

restriction on the number of registers available. This makes memory accesses easy to

spot, as well as providing insight into how array indexes shift during execution. To

make this investigation easier, we created a C++-based method that parses LLVM
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and automatically identifies variables appropriate for decoupling.

5.3.3 Algorithmic Implementation

Our suggested static memory access analysis is presented in the Algorithm 1. Using

Clang, we get the LLVM IR from our computation kernel. The global point list (line

2) and the control and data flow graph (CDFG) are then extracted from this file (line

3). We then go through our list of global pointers one by one, evaluating each one

for decoupling (lines 4 to 6).

We check our CDFG for any address offset calculations referring each pointer in

our pointer list (lines 9 and 10). LLVM exposes this address offset approximation as a

getelementptr or GEP command. We call the ISSEPARABLE function if we see a

GEP instruction that corresponds to our target pointer to see if it can be decoupled.

Lines 15 to 31 of the ISSEPARABLE function recursively maps the CDFG for

all dependencies of the beginning GEP instruction. If it encounters an inner-loop

index variable, known in LLVM as an induction variable or INDV AR, the pointer

access is automatically marked as non-separable (lines 21 and 22). During regular

compiler passes, these induction variables are automatically detected and named. If

the dependence is on one of our global pointers, we verify its separability by calling
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Algorithm 1 LLVM Analyzer
1: function main()
2: ptrList← PARSE_POINTERS(INPUT_LLVM_FILE)
3: cdfg ← PARSE_CDFG(INPUT_LLVM_FILE)
4: for each ptr ∈ ptrList do
5: PTR_EV AL(ptr, ptrList, cdfg)
6: end for
7: end function

8: function ptr_eval(PTR,PTR_LIST,CDFG)
9: for each node ∈ cdfg do

10: if node.type = GEP and node.ptr = ptr then
11: ptr.separable← IS_SEPARABLE(node, CDFG,PTR_LIST )
12: end if
13: end for
14: end function

15: function is_separable(NODE,CDFG,PTR_LIST )
16: bool separable
17: if NODE.op = THREAD_ID_CALL then
18: return TRUE
19: else
20: for each dep ∈ NODE.deps do
21: if dep.isINDV AR() then
22: separable← FALSE
23: else if dep ∈ PTR_LIST then
24: separable← PTR_EV AL(dep, PTR_LIST,CDFG)
25: else
26: separable← IS_SEPARABLE(dep, CDFG,PTR_LIST )
27: end if
28: end for
29: end if
30: return separable

31: end function
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PTREV AL on that pointer. We assume targeted pointer access to be separable if

we approach the beginning of our CDFG without encountering a INDV AR or non-

separable global pointer. We don’t have to think about tracing variables through

functions and processes because of HLS’ feature inlining restrictions.

A conceptual realization of the proposed design approach is seen in Figure 5.8. The

OpenCL-HLS tool-chain blackbox can automate the entire process. The Figure 5.7

reveals a possible design flow for automation. A CDFG is produced for the kernel

during synthesis, which is used for data-path mapping and synthesis. Our LLVM

parser, as defined in Algorithm 1, is used to define the dependency trees for each

variable access within the CDFG, as seen in Figure 5.7, prior to the final mapping.

The outlined fragments that correspond to the separable variables can then be

separated into different kernels. A channelwrite function call is added to the end

of read kernels to facilitate inter-kernel communication, and a channelread function

call is added to write kernels to support inter-kernel communication.

5.4 Experiments

The experimental findings for testing the utility of our decoupling-based temporal

parallelism approach are presented in this section. For our tests, we use the same

eight OpenCL applications from the Rodinia benchmarks suite [31], which include a

combination of hierarchical grid, graph traversal, linear algebra, and other application
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Figure 5.7: Automated memory access decomposition
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Table 5.1: System characteristics used for study.

Host Intel(R) Core(TM) i7-7700K
Host clock 4.2 GHz

FPGA Family Stratix V
FPGA Device 5SGXMA7H2FE35C2

CLBs 234,720
Registers 939K

Block Memory bits 52,428,800
DSP Blocks 256

domains. B+Tree, BFS, Gaussian, Hotspot, Srad, LUD, and Nearest Neighbour are

the applications employed as the test set. The parameters of our FPGA platform are

mentioned in the Table 6.7. For compiling and synthesizing OpenCL code, we use the

Intel OpenCL SDK with the Quartus back-end [8]. The Intel SDK-OpenCL(AOCL)

profiler is also used to extract accurate execution performance. The profiler collects

kernel output statistics, global memory bandwidth efficiency, and stalls (Percentage

time that memory access caused the stall in kernel execution).

We recorded Logic utilization, Memory blocks, and Register numbers to evaluate

resource overhead since these three parameters are the most influenced by the OpenCL

pipe overhead. Also, even though we have some floating point applications in our

benchmark, we don’t see any significant difference in DSP use because the calculation

of all applications in the decoupled access version stays the same.
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Table 5.2: Kernel global variable data information per application

Benchmarks Number
of

Threads

Decouplable variables Non-Decouplable variables Decouplable(%)Size per
Thread
(Bytes)

Total Size
(Bytes)

Size per
Thread
(Bytes)

Total Size
(Bytes)

B+ Tree FindK 65536 12 786432 8 524288 60
B+ Tree RangeK 65536 20 1310720 0 0 100
Gaussian 65536 12 786432 0 0 100
HotSpot 16384 12 196608 0 0 100
BFS 1048576 8 8388608 12 12582912 40
NN 42764 8 342112 0 0 100
Srad Extract 65536 4 262144 0 0 100
LUD Diagonal 4096 4 16384 0 0 100

Table 5.3: Baseline profiling information for each application

Benchmarks Resource utilization(%) Execution
Time(ms)

Bandwidth
(MBps) Stalls(%) Clock

Frequency
(MHz)

Power
(Watt)Logic

utilization
Memory
blocks Registers

B+ Tree FindK 23 24 11 25.79 3266 19.7 223.56 2.7
B+ Tree RangeK 25 24 12 17.39 5247 3.01 218.6 2.2
Gaussian 21 20 9 6.56 3265.5 8.6 228.2 2.1
HotSpot 23 16 4 0.52 1181.1 76.8 233.5 1.86
BFS 22 17 6 2.34 957.4 40.7 288.4 2.3
NN 20 19 8 0.28 3002.7 0.0 245.2 2.17
Srad Extract 20 16 8 1.23 1862 0.0 250 2.15
LUD Diagonal 23 20 10 0.11 140.4 0.23 234.5 2.27

5.5 Discussion

In this section, we talk about the experimental evaluations that were performed.

First, we used our proposed LLVM analyzer method (presented in Algorithm 1 to

define decouplable variables per kernel, as well as the number of decouplable and

non-decouplable variables for each kernel, in order to conduct the experiments. The

results of our static LLVM analysis for each OpenCL kernel are mentioned in Table

5.2. It displays the parallelism size (number of threads per kernel) as well as the

size of decouplable and non-decouplable variables per thread for each kernel. It also

shows the total number of decouplable and non-decouplable data per kernel in bytes.

The majority of the variables are decouplable in general (suitable for decoupled

memory access). Non-decouplable variables are only found in two kernels: B+ Tree

FindK and BFS. Please keep in mind that the table only displays the global memory

access demand per thread. OpenCL-HLS tools reserve on-chip memory for local
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variables automatically (private memory in OpenCL semantic).

5.5.0.1 Performance Analysis

The baseline profile information is given in Table 5.3, which serves as a basis for

interpreting the comprehensive performance analysis. The naive implementation of

these programs, with no optimization, is the baseline version. The relative perfor-

mance gain of benchmarks (with split-kernels temporal parallelism) over the baseline

implementation as seen in Figure 6.12. It also shows how the local memory solution

has improved from the baseline implementation.

Figure 5.9: Performance improvement over the baseline

We calculate average speedup as a times change over absolute output numbers

observed from each program [87]. Overall, our LLVM-based parallelism solution im-

proves performance by up to 2x as compared to a baseline implementation. For the

hotspot benchmark, it also reaches a maximum output gain of 4.6x. The local mem-

ory solution, on the other hand, can only reach a 1.03x speedup over the baseline

implementation.

In order to provide further insight regarding the source of speedup, Figure 5.10 and

Figure 5.11 reveal the percentage of memory stalls reduction and memory bandwidth

improvement over baseline implementation, respectively 1. On average, we observe
1In Figure 5.10, no improvement in memory stalls are shown by asterisk
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Figure 5.10: Memory stalls reduction over the baseline

26% of stalls reduction over baseline. We also observe 1.6x improvement in bandwidth

utilization on average.

Figure 5.11: Memory bandwidth improvement over the baseline

Figures 5.10 and 5.11 report the memory stalls reduction in percentage and memory

bandwidth gain over baseline implementation, respectively. This gives us more insight

into the origins of speedup.2. We see a 26% drop in stalls on average as compared to

the baseline. On average, bandwidth usage has increased by 1.6 times.

The performance of an application is observed to be a trade-off between percentage

of decouplable variables, memory stalls and total job size. Furthermore applications

that are highly regular and have very low stalls in their baseline versions do not
2In Figure 5.10, no improvement in memory stalls are shown by asterisk
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benefit from our approach. As an example, Srad Extract benchmark has no stalls

initially as shown in Table 5.3 and conversely adds up more stalls(18%) even with

a 1.97x increase in bandwidth utilization. This leads to a very low performance

improvement, only 1.03x. This is similar to the behaviour of the NN application

leading to a performance improvement of a mere 1.3x.

Here we can note, that the percentage of decouplable variables, memory stalls, and

overall job size are all parts of trade-offs in the application output. Additionally, our

solution has little advantage for applications that are extremely routine and have very

few stalls in their baseline models.

5.5.0.2 Memory Bandwidth

In contrast, the hotspot benchmark has higher stalls reduction of 38% and more

decouplable data (as reflected in Table 5.2). This gives a higher performance im-

provement of 4.6X times over baseline. Two other benchmarks namely B+ Tree Find

K and BFS do not achieve comparable speedup since they have more number of

non-decouplable variables which affects their percentage of stall reduction.

The hotspot application, on the other hand, has a 38% lower stall rate and more

decouplable data (as seen in Table 5.2). This results in a 4.6X increase in consistency

over baseline. Two other benchmarks, B+ Tree Find K and BFS, do not reach similar

speedup because they have a greater amount of non-decouplable variables that impair

their stall reduction percentage.

An important consideration here is that the local memory solution will also ac-

complish a similar decrease in memory stalls (26% percent over baseline). However,

since memory copies are part of the execution path, they add to the data-path and

contribute to the overall execution time, resulting in just a minor performance boost.



55

Figure 5.12: Resource utilization overhead over the baseline

5.5.0.3 Resource Overhead

The impact of our proposed LLVM-based parallelism on power, energy and resource

utilization is briefly discussed in this section. The percentage of resource overhead

over the baseline is seen in Figure 5.12 . Zero resource overhead is shown by an

asterisk in Figure 5.12.

Additional register blocks, memory blocks, and combinational logic are all necessary

to create the pipe (channel) semantic, which adds to the resource overhead. We see

a 3% rise in register blocks, a 4% increase in memory blocks, and a 3% increase in

combinatorial logic blocks on average.

5.5.0.4 Power Overhead and Energy Saving

The power overhead induced by increased FPGA resource usage is presented in

this section. We used the Stratix V PowerPlay Early Power Estimator method to

measure the power overhead. The amount of Static Power (PSTATIC), Dynamic Power

(PDYNAMIC), and I/O Power [78] is used to measure total thermal power. Internal

nodes shifting logic levels inside the system in the form of equal lumped capacitance’s

are used to quantify dynamic capacity.

The relative power overhead and energy savings over the baseline implementation

are seen in Figure 5.13. On average, we see a 7% rise in power usage as compared
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Figure 5.13: Power overhead and energy saving over the baseline

to the reference implementation. In comparison to the reference implementation, we

see a 40% reduction in total energy consumption. The energy savings was due to

a substantial increase in execution speed and a decrease in average execution time.

The b+tree rangek benchmark has a maximum power overhead of 13% (due to its

comparatively visible resource overhead, as seen in Figure 5.12.

5.5.0.5 Performance per Watt

We use Performance per watt as an assessment criterion to measure the combined

output and power efficiency of our proposed solution, as we did in previous work. We

need to catch real computation demand (arithmetic operations) per each kernel in

order to quantify Performance per watt.

We used PIN PYtracer [79] to extract the total number of instructions, memory,

and branch accesses across each kernel to determine computation demand. Using the
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Equation 5.1, we calculated the total computation demand per kernel.

#ComputeOps = #TotalInstructions−

(#MemoryInstructions + #BranchInstructions)

(5.1)

Perf/Watt =
#ComputeInstructions/sec

Powerconsumption(Watts)
(5.2)

The results of Perf/Watt (Figure 5.14) show a comparison between normalized

values obtained with respect to our proposed LLVM based parallelism approach. Our

approach clearly wins over baseline and local memory versions for all kernels, except

LUD. Again, we can see that improvement arises due to the cumulative effect of

decouplable variables(Table 5.2), reduction of stalls(Figure 5.10) and improvement in

performance numbers (Figure 6.12), against miniscule power overhead (Figure 6.14)

due to increase in resource utilization (Figure 5.12).

Figure 5.14: Normalized Performance/Watts

5.5.0.6 Channel Depth- A Performance Metric

The width of the channel or pipe is another important factor for the efficiency of

our decoupling process. For example, we use the b+tree rangek to create different
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channels for each statically decouplable global variable. The data-path includes the

private variables that are internal to each kernel. We increase the pipe depths for

each of the global variables from 4 to 256, thus expanding the channel buffer size per

element.

Figure 5.15: B+ Tree RangeK performance improvement and memory stalls over
increasing channel depth

From Figure 5.15 we see a steady change in results (with peak improvement at

the channel depth of 64). The 64-channel depth therefore ensures that memory stalls

are kept to a minimum (2.65 percent of total memory stalls). We see a decrease in

performance gain after channel depth 64, which is attributed to the greater channel

depth’s propagation latency.

5.5.0.7 Additional Factors Affecting Performance

Finally, we add a metric that affects efficiency, namely kernel load-balancing, to our

comprehensive optimizations. Load balancing is the method of evenly distributing

data among read, compute, and write kernels such that more data is fetched and

processed in the same amount of time, resulting in a balanced work allocation and

delivery among the channels. Load balancing can significantly increase efficiency by

reducing certain inherent memory stalls in the pipeline. We show an example of the

BFS application and provide a detailed overview to investigate this effect.

We look at the BFS application for this test. BFS contains 2 internal kernels viz
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BFS Kernel_2Read Compute Write

BFS Kernel_1

Figure 5.16: BFS split-kernel baseline channel version

BFS Kernel_2
Read 1

Compute Write

BFS Kernel_1

Read 2

Figure 5.17: BFS load balanced version 1

BFS Kernel 1 and BFS Kernel 2. Figure 5.16 shows the baseline application. We’ve

kept the channel diameter to a constant size of 4 as a test case for this experiment, and

the blue dotted lines reflect channels. We construct two channels in the Read kernel

and link them to the Compute kernel in the first example. In this case, performance

is a function of memory stalls caused by a load mismatch between the Read and

Compute kernels, since the Read kernel would feed variable data 1 first and then

variable data 2, causing stalls in the Compute kernel.

We next solve this problem by 2 different approaches.

1. As shown in Figure 5.17 making 2 sub-kernels that have concurrently occurring

independent reads.

2. Figure 5.18 that has perfectly balanced read and write kernel paths leading to

efficient data transfer.

We validate the results from Figure 5.19. More details on the veracity of all the

approaches have been detailed in our published work [88].

5.6 Memory Decoupling for Cloud FPGAs

An important and essential part of our work is exploring the validity and scalability

of our proposed approach. In this section we move from the ’edge’ to the ’cloud’
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BFS Kernel_2
Read 1

Compute

BFS Kernel_1

Read 2

Write 1

Write 2

Figure 5.18: BFS load balanced version 2

Figure 5.19: Execution time vs resource utilization results for various configurations
of BFS

platform across different HLS tool-chains viz. Intel HLS to Xilinx SDAccel HLS. The

Xilinx based AWS cloud platform is a bigger and better FPGA as opposed to our

local FPGA. Here we deal with new platforms, new synthesis tools and encounter

unique programmability challenges also.

Memory decoupling to reduce memory access latency has been explored in our

previous works. This work is a continuation of our LLVM based automation tool for

memory decoupling approach on the Xilinx based AWS cloud platform. We learn

to use Xilinx based synthesis tools(SDAccel), identify the programming challenges in

porting the OpenCL codes and suggest a simple, generic approach for decoupling and

mitigate the memory wall bottleneck problem.

This research employs an updated variant of our LLVM-based automatic method,

which statically analyzes an application’s dynamic access behaviour and data depen-

dencies before identifying global variables that can be decoupled from computation.
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Next, we combine this data with the current definition of OpenCL pipes [35, 69, 89]

(introduced in OpenCL version 2.0) to decompose OpenCL application kernels into

distinct ’memory-read/write’ and ’computation’ sub-sections. Then we run each of

those kernels in parallel. The pipe build is in charge of coordination between kernels

and thread synchronization in OpenCL.

This is the very first piece of work to provide a common solution by mixing LLVM

approach and OpenCL pipes for decoupling memory and compute, thus hiding mem-

ory latency and enhancing efficiency when executing on FPGA with massively par-

allel workloads suited for high-performance applications. We’ve open sourced all our

source codes3.

We can list the contributions of this work as follows:-

1. Introduce a new way of modifying the OpenCL pipe principle for FPGA-based

applications applied on the AWS cloud.

2. A comprehensive and generic step-by-step method for implementation of split-

kernel piping with OpenCL.

3. Port 7 of the new Rodinia benchmark suite version applications (version 3.1)

[11] originally written to run on FPGAs in Xilinx cloud based FPGA systems.

5.6.1 OpenCL Semantic on Xilinx Cloud Based FPGAs

FPGA Amazon Machine Interface, contains the pre-installed Xilinx SDAccel HLS

and Vivado Toolchains that is used by Xilinx AWS cloud FPGAs. With its perfor-

mance profiler, the SDAccel provides all the traditional features for production by

finding bottlenecks.

The OpenCL Execution Semantics of the default OpenCL Context created on Xil-

inx FPGA is seen in Figure 5.20. At a higher granularity stage we can see that the

dispatcher work-group and memory interface unit distribute and synchronize work

loads between computer units. A dedicated memory, thread dispatcher, load-store
3https://github.com/TeCSAR-UNCC/OpenCL-Pipes
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Figure 5.20: OpenCL semantic on Xilinx based FPGAs

and control unit is included in the synthesized compute unit (as seen for calculation

unit 0). OpenCL threads share the same data path and run in a stand-alone manner

over several SDAccel HLS tool pipeline levels.

5.6.2 Decoupling Memory Access from Computation

The design of splitting kernels for memory access decoupling is dependent on syn-

chronous communication between each kernel. We do this by simply using the Xilinx

OpenCL pipe semantic’s producer-consumer model, which ensures that threads exe-

cute in the correct order. When the address of the variables is not statically identifi-

able, or in other words, is run-time based, the big stumbling block for kernel splitting

occurs once again as discussed in previous section.

An updated version of our [90] LLVM-based tool is used to statically scan the

application’s run-time behaviour and automatically classify the complete set of global

variables as ’decouplable’ or not. We use the OpenCL ’Queue’ in Xilinx SDAccel

to overlap memory access and execute thread during run-time to allow all the read,

compute, and write-back kernels work simultaneously.Figure 5.21 displays our solution

for the Xilinx toolchain.
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Figure 5.21: Kernel communication through OpenCL pipes

5.6.3 Generic Source-Code Template

In this section, we present a step-by-step guide that can be used as a standard-

ized framework for decoupling memory access and computation in this section. For

demonstration purposes, we use the Nearest Neighbor(NN) application from the Ro-

dinia benchmark suite.

We generate our LLVM codes with CLang (version 3), which are then fed into

the static LLVM analysis method, which helps distinguish between decouplable (pre-

dictable) global variables and run-time dependent global variables (Non-decouplable).

Next, we optimize our kernel by going over the default pipe models.

Listing 5.1: Nearest Neighbor kernel baseline

__kernel void NN(__global LatLong *d_locations ,

__global float *d_distances ...)

{...

if (globalId < numRecords) {

__global LatLong *latLong = d_locations+globalId;

__global float *dist=d_distances+globalId;

*dist = (float)sqrt((lat -latLong ->lat)*(lat -latLong ->lat)+(lng -

latLong ->lng)*(lng -latLong ->lng));

...}
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Listing 5.2: Nearest Neighbor kernel decouplable version

// Declaring Pipe buffer memory with Depth ’DEPTH’

pipe float p0 __attribute__ (( xcl_reqd_pipe_depth(DEPTH)));

pipe float p1 __attribute__ (( xcl_reqd_pipe_depth(DEPTH)));

Listing 5.3: Nearest Neighbor kernel decouplable version(continued)

__kernel void NN_read(__global const float *x,

__global const float *y)

{...

write_pipe_block(p0 , &d_locations[globalId ]);

...}

__kernel void NN_compute (...)

{...

read_pipe_block(p0, &loc_lat);

float d_distances = (...);

write_pipe_block(p1 ,& d_distances);

...}

__kernel void NN_write(__global float *d_distances ,

...)

{...

read_pipe_block(p1, (d_distances+globalId));

}

The Nearest Neighbor application’s baseline kernel is seen in Listing 5.1. Both

local variables and extra computations not related to global memory access have

been omitted from the port list. We will see that all of the global variables in this

case are decouplable using the LLVM static analysis function [90].

The template for splitting the kernels is seen in Listings 5.2 and 5.3. The 5.2 listing

is only used to create OpenCL pipes with a user-defined special Pipe depth. Pipe
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depths of powers of two up to 32768 are possible with the Xilinx SDAccel toolchain.

The template for splitting the kernels is seen in Listings 5.2 and 5.3. The 5.2 listing

is only used to create OpenCL pipes with a user-defined special Pipe depth. Pipe

depths of powers of two up to 32768 are possible with the Xilinx SDAccel toolchain.

Table 5.4: Baseline profiling information for each application

Benchmarks Resource utilization(%) Execution Time(ms) Avg bandwidth utilization(%)LUTs LUTMem REG BRAM
Nearest Neigbor 0.37 0.22 0.25 0.09 5.68 26.49
SRAD Extract 0.33 0.19 0.16 0.05 319.57 56.75

Gaussian 0.37 0.18 0.22 0.05 3681.99 24.95
Hotspot 0.69 0.21 0.37 8.76 47.63 4.58
BFS 0.6 0.36 0.35 0.14 2.498 9.664

LUD Diag 0.34 0.19 0.2 0.23 7.47 16.99
LUD Internal 0.36 0.19 0.22 0.09 0.2 19.76

The exact splitting of kernels into read, compute, and write is seen in Listing 5.3.

The transformed kernel code is renamed in the host source code, and is encapsulated

in the same OpenCL sense as the transformed kernel code, but within three queues

figreffig:pipetransfer. Each queue is divided into separate compute units, each with its

own Thread Dispatcher (TD) and Load/Store unit (LSU), which operate in parallel.

The OpenCL pipe’s property allows for inter-kernel communication as well as thread

synchronization.

5.7 Experiments

We use eight standard applications from the Rodinia benchmark suite [11] for our

experimental evaluation purposes. They namely are Nearest Neighbors, Srad_base(Srad

extract application), Gaussian, B+Tree, LUD Diagonal, LUD internal and Hotspot.

We have used the Intel SDK for OpenCL [8] based on OpenCL version 1.0 for com-

piling the OpenCL code. Our FPGA implementations are synthesized on the Virtex

Ultrascale FPGA while we have used the AMD FirePro W7100 device for our GPU

implementation. systemdetails shows the system parameters of our FPGA and GPU

platform in more detail.
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Table 5.5: System characteristics used for study.

Host Intel(R) Core(TM) i7-7700K
Host clock 4.2 GHz

FPGA Family Virtex Ultrascale
FPGA Device VU9P

LUTs 1,157,112
LUTMem 584,988

REG 2,330,479
Block RAM blocks 2,134

GPU AMD FirePro W7100
GPU Max Compute Units 28

5.8 Discussion

Table 6.1 displays the profiling data for each application’s baseline implementation.

Each OpenCL kernel’s resource consumption, execution time, and average bandwidth

are mentioned. It should be remembered that the Hotspot program consumes the

most energy, while the SRAD Extract consumes the least. The Gaussian application

kernel takes the longest to run, followed by the SRAD, and finally LUD Internal. Each

kernel’s calculation, data collection, and data dependence all relate to the execution

time. The same pattern can be seen in average bandwidth usage, with SRAD Extract

having the highest, NN and Gaussian having equal average bandwidth utilization and

following SRAD, and hotspot having the lowest.

5.8.0.1 Performance Analysis

The relative performance gain of the Rodinia benchmarks with the pipeline imple-

mentation over the reference performance as seen in Figure 5.22. Overall, the pipeline

architecture achieves 6x speedup as compared to the baseline implementation. The

LUD Diagonal implementation achieves the highest efficiency, with a 16x increase in

performance. The LUD Internal program, on the other hand, shows the least change

in efficiency. Since there are more local variables whose values are dependent on the

global variables, the LUD Internal application has more stalls than the LUD diagonal

application.
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Figure 5.22: Performance improvement over baseline

5.8.0.2 Resource Overhead

The amount of LUTs, Registers, BRAM, and LUT memory used to create the

pipe semantics is factored into the resource usage. As a result, when opposed to the

baseline implementation, they display an increase in resource utilization.

Next we look at the resource overhead numbers (Figure 6.8) over the baseline. LUT

and LUT memory have an average utilization of 1.75%, while Registers and BRAM

have an average utilization of 1.5% and 0.5%, respectively. The pipe seems to act as

a single producer-consumer system. As a consequence, multiple access to the same

global variable necessitates the use of separate channels, increasing the register stack,

memory block, and logic gate count. Gaussian’s pipe version consumes 7 pipes,

increasing resource consumption and causing it to consume the highest amount of

resources; similarly, LUD Internal needs 3 pipes, which is comparable to Gaussian.

Figure 5.23: Resource overhead over baseline
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5.8.0.3 Memory Bandwidth Results

Figure 5.24: Bandwidth improvement over baseline

The average bandwidth increase of the pipeline version over the baseline version is

reported in Figure 6.8. Overall, we see a substantial improvement in bandwidth usage

as a result of the reduced number of memory stalls. The Pipeline version consumes

2x the amount of bandwidth as the baseline version. Of the seven programs, LUD

Diagnol and LUD Internal use the most bandwidth, while Gaussian uses the least.

5.8.0.4 FPGA vs GPU Performance Comparison

In this part, we compare GPU and CPU performance for all of our applications.

We ported the Xilinx FPGA OpenCL codes(vs. 2017.4) and made them work for

the GPU version suited for running on our local AMD FirePro W7100 GPU. We

specifically rewrote the entire host code written for Xilinx FPGAs while keeping the

kernel code the same for individual applications. For the implementation part, we

used the generic OpenCL APIs and used AMD C++ bindings. We obtained the CPU

numbers from the Xilinx SDAccel tool.

We compare GPU and CPU output for all of our applications in this section.

We adapted the Xilinx FPGA OpenCL codes (vs.2017.4) to run on the AMD FirePro

W7100 GPU we had on hand. We completely rewrote the host code for Xilinx FPGAs

while leaving the kernel code for individual applications the same. We used the

common OpenCL APIs and AMD C++ bindings for the implementation.
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Table 5.6: GPU vs FPGA performance comparison

Application Timing results(ms)
FPGA Baseline FPGA best GPU

NN 5.68 1.88 0.3
SRAD Extract 319.57 109 70

Gaussian 3681.57 603 406
Hotspot 47.63 12.7 2.0
BFS 2.498 0.62 0.9

LUD Diag 7.47 0.49 2.06
LUD Internal 0.2 0.2 0.01

Finally, we compare the performance numbers obtained across FPGA and GPU

(Table 6.3). Except for a few applications where GPU outperforms FPGA by a

significant margin, GPU efficiency is comparable to FPGA figures. This shows that,

considering their bandwidth limitations, FPGAs behave similarly to GPUs.

5.9 Conclusion

Memory wall is a major hindrance affecting FPGA performance especially when

running massively parallel applications with large workload. The crux of this re-

search revolves around mitigating this crucial issue by hiding the memory latency.

The approach we present is twofold in nature. First, we introduce a novel LLVM

based automation tool to successfully identify and segregate between statically and

run-time decouplable data. We work on the gained insights to present an efficient

architecture that involves the OpenCL pipe construct to decouple memory access and

computation. Thereby we implement a spatial parallelism approach on top of the ex-

isting pipelined parallelism of FPGAs and maximize performance and improve power

efficiency.

For successful validation of our approach, we test our algorithm on two separate

FPGA candidates (edge and cloud) across completely different synthesis tools, appli-

cations and vendors. We further attack the programming challenges while porting our

design and suggest a complete generic framework that can be easily adapted across
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the board. The overall performance benefits verifies our claim and we successfully

mitigate the problem of memory bottleneck.



CHAPTER 6: Throughput-Oriented Design for Cloud FPGAs

6.1 Introduction

The final contribution of this dissertation is laid out in the following pages of

this chapter. The focus in this part is to improve the throughput of reconfigurable

devices of AWS cloud FPGAs.We explore a much larger, higher bandwidth capable

Xilinx based FPGA and the SDAccel HLS toolchain. Our approach is similar to the

previous contributions, in it we look for pressing issues effecting FPGA performance

and propose novel solutions to counter the same. This work can be categorized in

two main parts,

1. Identify the challenges in the existing Compute Unit (CU) replication optimiza-

tion technique. We systematically solve the problems and deliver a generic framework

and an automation tool to exploit CU replication to the fullest.

2. Explore a couple of software solutions (Double Data Rate (DDR) and Burst

transfer) that result in improving the memory access parallelism by addressing effi-

cient traffic between FPGAs global and local memory.

This project has been funded and supported by Xilinx Inc., as a part of research

grant for Xilinx University Program (XUP).

6.2 Design Automation for Compute Parallelism

The goal of this project is to investigate the scalability of OpenCL coarse-grain

parallelism on cloud FPGAs using Compute Unite (CU). We show that for each

application, there is an optimal number of CUs to achieve the best output in terms of

memory bandwidth, memory conflicts caused by CU duplication, and usable FPGA

resources. At the same time, this work includes a source-code template and a front-
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end architecture exploration tool that programmers can use to determine the best

CU number for a given application while hiding the programming and exploration

difficulties.

6.2.1 Compute Unit Replication on Xilinx Platform

Compute unit(CU) replication for the Xilinx FPGAs is a task based parallelism

approach [23, 74, 75] implemented on top of temporal parallelism inherent to the

OpenCL FPGA semantic [91, 92]. Multiple CUs can be instantiated utilizing different

DDR banks for chip-global memory communication. Fig 6.1 shows the architecture

semantic of multiple CUs for Xilinx FPGAs. We have dealt with CU replication

in great detail in Chapter 4. This section outlines 3 fundamental problems in CU

replication and aims to mitigate them in the coming sections.

Global Memory

DDR
BANKBank

‘0’

Bank
‘1’

Bank
‘n’

Compute
Unit 0

FPGA
on chip

Compute
Unit 1

Compute
Unit N

Figure 6.1: Multiple Compute Unit on Xilinx platform

6.2.2 Hard problem of CU replication

CU Replicating comes with its own set of challenges of difficulties. To begin with,

CU replication is an NP Hard problem due to the numerous variables involved (such

as FPGA tools, work-group sizing, and additional costs associated with CU setup).

Unintelligent application of several CUs at the same time does not boost efficiency

because over splitting the job size results in redundant CU configuration costs, which

can either maintain or increase the kernel execution time. As a result, programmers

must take responsibility, as it is impossible to even make an informed guess in such
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situations.

Furthermore, Xilinx employs the AXI interconnect, limiting the number of mas-

ter/slave interfaces for kernels and the interconnect connected to the memory con-

troller to ten. As a result, there’s still a risk of exhausting FPGA capital (Resource

utilization and Bandwidth). Last but not least, the replication of OpenCL CUs on

Xilinx FPGAs presents computing difficulties to the average programmer who employ

a ’trial and error’ strategy to determine the optimum number of compute units for

each application.

Listing 6.1: Generic template of kernel

__kernel void template(__global const float *var_1 ,

__global const float *var_2 ,

__global float *var_n){

int global_id = get_global_id (0);

int size = Y_SIZE/get_global_size (0);

for(y=global_id*size; y<( global_id +1)*size; y++)

{

}

}

6.3 Generic template for CU replication

Listing 6.2: Generic template of host

#include <iostream.h>

................

int main(int argc , char* argv [])

{

................

cl:: NDRange global_size = WORK_GROUP;

cl:: NDRange local_size = 1;
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q.enqueueNDRangeKernel(krnl , 0, global_size , local_size , NULL , NULL)

;

................

}

This section introduces our generic template for CU replication. The template goes

over (listing 6.1 for kernel changes) and (listing 6.2 for host file changes) to be made

on any application.

Each work-group is mapped to each CU [22] with every given program mapped

into Xilinx FPGAs. As a result, we divide the kernel’s outer loop, Y_SIZE, by the

total global job size, which equals the number of CUs (Listing 6.1).

Since the work items are pipelined within the kernel using the xcl_ pipeline loop

pragma given by Xilinx SDAccel optimization, the local work size in the host code is

kept at 1. As a result, throughput and consistency improve. The NDRange OpenCL

API call specifies both the local and global job scale. As a result, every OpenCL

kernel (two-dimensional or three-dimensional) can be conveniently broken up using

the prototype.

Run HW
emulation for
different CUs

Check
conditions

Hardware
synthesis

Iteration controller

Modified OpenCL
kernel code

Figure 6.2: Tool flow

6.4 Automation tool for CU replication

Our proposed automation tool for CU replication is presented in Algorithm 2. The

updated OpenCL kernel code (based on the generic template) is the tool’s primary
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input, which is initialized through the command line by specifying the number of

CUs(WG) to be used (line 2). The tool flow diagram in Figure 6.2 outlines our

proposed algorithm.

At the heart of our tool is the iteration controller(Figure 6.2). We choose Hardware

(HW) emulation for performing different check conditions. We set a multiplication

factor of 0.75 to extract the maximum parallelism without maxing out the resources.

This number is purely a programmer’s choice. The next component of the controller

is Delta (∆)=t (line 4) which is an adaptive value that accounts for difference be-

tween the current and previous CU execution times. Delta (∆) allows for ’automatic

jump through iterations’ i.e, depending on present Delta (∆) value iterations across

number of CUs can be unevenly incremented. This allows for a more complex, quicker

exploration process with much lesser iterations.

In the algorithm, the iteration controller concurrently tests for the following two

conditions:-

1. If Delta (∆) is <t, begin the iteration jump; otherwise, pause.

2. Begin iterating if x(t) is <0.75*x(t-1) (where x(t) is the present value of CU

execution time and x(t-1) is the previous), otherwise end.

Based on resource consumption and bandwidth, the maximum amount of CU per

program can vary. Having a large number of CUs increases the likelihood of resource

exhaustion and lengthens the synthesis cycle. Until the optimum CU number is

created, the TIMING (line 15-20) and RESOURCE (line 21-25) checks are run in

parallel.

6.5 Experiments

For compiling and synthesizing OpenCL code, we use Xilinx SDAccel HLS for

OpenCL [93] software. The SDAccel profiler records kernel performance, global mem-

ory bandwidth efficiency, resource utilization, and power consumption. We also report

our GPU results for kernel performance and power details using the AMD FirePro
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Algorithm 2 Compute Unit Replication Tool
1: function main()
2: Initialize Compute Unit(WG), Execution Argument(nk)
3: V alidate project directory path
4: Set Delta(∆) = Variable t>0
5: while true do
6: WG← parse input host file
7: Run Hardware Emulation
8: if TIMING or RESOURCES then
9: Terminate loop

10: end if
11: end while
12: Execute system synthesis
13: Store results
14: end function

15: function TIMING()
16: y = f(x)← parse profile summary file
17: if (y = f(x) = x(t) < 0.75 ∗ x(t− 1) then
18: y = f(x) = x(t)
19: end if
20: end function

21: function RESOURCES()
22: y = f(x)← parse profile summary file
23: if (LUT or LUTMem or REG or BRAM or BW )<100 then
24: y = f(x) = x(t)
25: end if
26: end function

(a) Hardware emulation results (b) Software emulation results

Figure 6.3: Histogram application results for tool validation
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Table 6.1: Baseline profiling information for each application

Benchmarks Class of
application

Baseline
optimization

Memory
access pattern

Resource utilization(%) Execution
Time (ms)

Average
Bandwidth (%)

FPGA
Power (W)

GPU
Power (W)LUTs LUTMem REG BRAM

Affine Image processing A, B Irregular 1.18 0.25 0.79 0.75 8.04 39.09 35.1 18.4
AES Security C, D Regular 0.66 0.26 0.36 2.06 2.21 100 34.81 18.2

Median Filter Digital filtering A, B, E Irregular 0.74 0.26 0.5 3.05 1.14 6.79 35.01 19.2
Histogram Image processing A, C Regular 4 0.38 2.27 8.2 2.52 96 36.68 19.7

Tiny Encryption Security A, B, C Regular 4.86 0.18 2.24 3.66 7.33 59.1 36.9 18
Watermarking Image processing A, E, F Regular 0.45 0.25 0.31 0.91 0.29 81 37 19.6
Systolic Array Array architecture A, C, G Regular 2.65 0.73 1.1 0.09 0.4 0.51 35.14 18.8

Large Loop OCL Convolution layer A, G Regular 0.56 0.22 0.48 21.72 2391 100 39.08 20.6
Nearest Neighbor Data mining A Regular 0.37 0.22 0.25 0.09 5.68 9.6 34.9 17

LUD Diag Linear Algebra A, G Irregular 0.34 0.19 0.2 0.23 7.74 16.9 35 18
SRAD Extract Image processing A Regular 0.33 0.19 0.16 0.05 316.5 56.7 35 19.2
Gaussian Fan1 Linear Algebra A Regular 0.84 0.44 0.46 0.09 1.52 24.9 34.7 18
Gaussian Fan2 Linear Algebra A Regular 0.87 0.36 0.56 0.19 0.2 19.7 35 18.3

Hotspot Physics Simulation A, C, E Regular 0.69 0.21 0.37 8.06 47.63 4.58 34 18.2
BFS Graph Algorithms A, E Irregular 0.73 0.36 0.45 0.19 2.49 9.6 35 20.6

W7100 GPU and the AMD CodeXL Power profiler.

For our studies, we used 15 massively parallel programs (Table 6.1 from the Xilinx

SDAccel repository [94] and the Rodinia Benchmark suite [31]. This allows for a rea-

sonable comparison of output between single work item kernels optimized for FPGAs

and multiple work item kernels optimized for GPUs. In Table 6.1, we can see the

baseline profiling statistics.

6.6 Discussion

6.6.0.1 Tool Validation

In this segment, we choose a histogram program at random and analyze it using

hardware (HW) + software (SW) emulation and real hardware on the FPGA. Due to

the time complexity of synthesis, we restrict our number of experiments. Following

that, we’ll go through the three facets of tool validation that we’ll be talking about.

1. Provide reasoning for Hardware over Software emulation- The execution time

of HW emulation and machine runs is shown in Figure 6.3a, while the execution time

of SW emulation is shown in Figure 6.3b. Both graphs demonstrate the discrepancy

in timing details. While the hardware emulation is accurate, the machine emulation

is quick but inconsistent. For larger kernels and data, however, HW emulation has

a longer compile period. However, when considering the accuracy criteria, this is a

trade-off that we feel.
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Another disadvantage of HW emulation is that logic optimizations performed by

Synthesis and Place & Route will minimize necessary capital, allowing us to put

in more CUs than emulation indicates. However, since we almost never exceed the

resource quota, other considerations such as exceeding maximum bandwidth are the

primary efficiency bottleneck.

2. Show one complete design space exploration to verify our tool results- HW

emulation (Fig 6.3a) shows the optimal speed up with 8 CUs. We validate this by

running an entire design space from CU1 (baseline) through CU91 and observe that

the actual system run also shows the maximum speed up at CU8 after which the

performance degrades. CU8 is therefore the most optimal solution.

3. Timing information-Finally, we report the synthesis time for each iteration of

CUs (Table 6.2) for the same application. We discuss the implications of these results

later in detail.
Table 6.2: Design space exploration of Histogram application
Number of Compute Units(CUs) 1 2 4 8 9

Synthesis time(mins) 87 127 191 330 360
Execution time(milli secs) 2.52 1.69 1.04 0.5 0.53

6.6.0.2 Performance Evaluation

We analyze the performance of our applications in two parts:-

First, we see the relative performance improvement of benchmarks over the base-

line implementation for the CU(CU[N]) that gives the maximum speedup in Figure

6.12. We get a maximum performance improvement of 53.1X over baseline implemen-

tation for the LUD Diag application and a 6.4X on average. However, we either get

a constant or very little speed up for few of the applications like AES, Watermark-

ing, Gaussian Fan1 etc., This can be attributed to 3 factors-baseline execution time,

optimizations, bandwidth usage.

As an illustration, the Gaussian Fan2 application’s baseline performance numbers
1CU10 not synthesized due to resources maxing out
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Figure 6.4: Performance improvement over the baseline

Figure 6.5: Total tool design time

are the lowest. The scheduler will take the least number of CU during the run time

since using a CU will create an overhead of calling the host which is counter productive

to its performance.

LUD Diag on one hand has low bandwidth utilization (Table 6.1) and uses burst

transfer (Table 6.1) where the data transfer happens in larger chunks and therefore

benefits the most (21X improvement) from this approach. AES on the other hand

has a very high baseline bandwidth utilization Table 6.1. This makes bandwidth a

limiting factor hindering its ability to improve speedup.

Next, we observe the total design time that our tool takes to reach the optimal CU

number for maximum speedup in Figure 6.5. The total design time for the tool to

reach the optimal number of CUs is given as in Eq. (6.1):-
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TotalDT =
N∑
i=1

DT(CU) + DT(CUN+1) (6.1)

where,

DT(CU) shows the tool design time for each iteration of compute unit.

We correlate this with the design time of the Histogram application (Figure 6.5)

that takes 46m30s and additional synthesis time (for max CU[8]) of 300m totalling

346m30s. In contrast, the total design space exploration time (Table 6.2) is 1095m.

Our tool achieves over 31% design time improvement for the Histogram application.

The tool design time (DT) is a factor of size of the application(dataset), compu-

tation demands and memory access patterns. Overall, we observe that applications

with regular memory accesses (Table 6.1) run faster since irregular memory accesses

cause divergence affecting the tool design time. As an example, the Watermark app-

plication takes a mere 12m35s vs the BFS that takes 612m25s of tool design time

(DT).

6.6.0.3 Resource and Power overhead

Resource overhead is mainly introduced due to additional register blocks, memory

blocks, combinational logic and block RAMs which are required for replicating CUs

that significantly increase every time a new CU is added. Figure 6.13 shows the

average percentage resource utilization overhead. On average we measured a 6%

increase in LUTs, 4% increase in LUTMem, 8% increase in registers and 8% increase

in Block RAMs.

Power results (Figure 6.14) show similar trends like the resource utilization and

we observe the maximum power usage for the Large Loop OCL application that

shows maximum power usage of 3.6x over baseline owing to its larger BRAM uti-

lization(Table 6.1 and Figure 6.13). However, for most of the applications with very



81

Figure 6.6: Percentage resource utilization overhead over baseline

miniscule baseline resource utilization (Table 6.1), adding more CUs does not affect

power as much. The average power overhead was thus reported a mere 1.33X over

baseline.

Figure 6.7: Power overhead over baseline

6.6.0.4 Bandwidth Improvement

Bandwidth utilization increase (Figure 6.8) represents the maximum read and write

bandwidth improvement that the application can use, thus more the number of CUs

more is the bandwidth. This however is different for applications like Large Loop

OCL that have a large baseline bandwidth number (Table ??). Also, with increasing

bandwidth we do see a increased speed up- pointing to the fact that more CUs can

extract more performance. This is evident from the Hotspot application that saw
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a 21X rise in bandwidth leading to 2.8X speed-up. On average we observe a 3.8X

improvement in bandwidth utilization numbers.

Figure 6.8: Bandwidth improvement over baseline

6.6.0.5 FPGA vs GPU Performance Comparison

In this section (gpufpga) we give a performance perspective for all of our applica-

tions. While Rodinia applications [11] were written for GPUs, we ported the rest of

applications to GPU version using the generic OpenCL APIs and AMD C++ bind-

ings devoid of any optimizations. We chose to run our applications on the AMD GPU

since it has comparable bandwidth [2] to the FPGA.

While our FPGAs best performance beats baseline across most of the applications,

GPU performance is comparable to the FPGA numbers except for a few of the appli-

cations where GPU beats FPGA by a huge margin. Dynamic power (W) numbers of

the applications on both the platforms listed in Table 6.1 are comparable in nature.

This concludes that despite FPGAs being bandwidth limited they perform com-

parably well alongside GPUs. With an increase in bandwidth utilization capacity

FPGAs can surely outperform GPUs in many of the massively parallel applications.

6.7 Memory Access Parallelism on Cloud FPGAs

Software based optimizations enables efficient transfer of OpenCL data between the

global and local memory [23]. The host code and the kernel code needs to be there-
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Table 6.3: GPU vs FPGA performance comparison

Application Timing results(ms)
FPGA Baseline FPGA best GPU

Affine 8.04 2.71 1.05
AES Decrypt 2.21 1.93 0.024
Median Filter 1.14 0.21 0.902

Histogram Equalization 2.52 0.55 87.61
Tiny Encryption 7.33 2.72 1.26

Watermark 0.29 0.29 0.016
Systolic Array 0.40 0.1 0.89
Large loop OCL 2391 244.26 0.0029
Nearest Neighbor 5.68 1.96 0.3

LUD Diag 7.74 0.145 2.06
SRAD Extract 316.5 37.7 70
Gaussian Fan1 1.52 1.52 0.3
Gaussian Fan2 0.20 0.20 0.13

Hotspot 47.63 16.40 2.0
BFS 2.49 2.49 0.9

fore changed for a better data transfer. There are multiple optimizations available for

better data transfer that are vendor specific. Double Data Rate and Burst Transfer

are some of the data transfer optimizations that are currently introduced in the XIl-

inx SDAccel HLS toolchain. However, these techniques being recently introduced [22]

suffer from programmability challenges. We look at both of these optimization tech-

niques and propose generic framework(s) so as to aid the naive FPGA programmer

to apply these on a variety of applications.

Double Data Rate (DDR) is used for the application which needs larger data to be

transferred. A large application with compute intensive workload such as Larg[22] is

an example of such a data hungry neural net benchmark. The data-transfer efficiency

of such an application can be invariably improved by splitting up the global memory

inside the kernel to separate DDRs.

6.8 Double Data Rate [DDR] optimization

This section explains how the Xilinx HLS toolchain implements Double Data Rate

optimization. To extend DDR optimization to a number of applications, we first

formalize different approaches. Next, we’ll take a closer look at a sample program
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Figure 6.9: DDR banks architecture

called "Watermarking."

Between the global and local memory, DDR synchronization is used to transmit

and receive signals twice per clock cycle. However, only one DDR bank is used in

the default created data-path (Refer Figure 4.2, Chapter 4). As seen in Figure 6.9, a

device with several DDR banks can be targeted so that kernels can access all available

memory banks at the same time. By dividing the global memory within the kernel

into different DDRs, the data transfer performance can be increased. On the Virtex

VU9P FPGA, Xilinx HLS has 4 slots/banks (Bank 0 to Bank 3) that can provide up

to 80GB/s raw DDR bandwidth.

It’s important to remember that the effectiveness of DDR success is determined by

a number of factors, including:

• Memory access pattern- nature of global memory accesses, regular or irregular.

• Memory address pattern- nature of memory transaction, contiguous or non-

contiguos.

• Random access pattern- at any given time, the inflow and outflow of data in-

teracting through various banks.
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6.8.1 Generic Template

This segment incorporates a standardized DDR optimization template. To use

several DDR banks, the user must allocate CL memory buffers to separate banks in

the host language, as well as fit the XCL binary file to the branch. These have simply

been divided into two generic groups. The template is spread into parts, Listing 6.3

for host side changes and Listing 6.4 for make file changes that can be made for any

application.

On the Makefile side, Listing 6.4 provides the default prototype of Make. For

each global pointer in the kernel, the max memory ports flag is needed to create

an AXI MM interface. The âsp switch is then used to map AXI interface names to

each corresponding bank. The âsp switch helps the designer to map kernel ports to

individual DDR memory banks using the System Port mapping option.

*Input

Apply_water
mark kernel

*Output

Memory
inerconnect/

controller

DDR bank 0

DDR bank 1

Memory
inerconnect/

controller

Figure 6.10: Understanding generic template using the apply watermark kernel

Listing 6.3: Generic template of Hostfile

#include <iostream.h>

................

int main(int argc , char* argv [])

{

................

cl:: NDRange global_size = WORK_GROUP;

cl:: NDRange local_size = 1;

................
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cl_mem_ext_ptr_t inExt , outExt;

inExt.flags = XCL_MEM_DDR_BANK0;

outExt.flags = XCL_MEM_DDR_BANK ’N’;

inExt.obj = 0 ; outExt.obj = 0;

inExt.param = 0 ; outExt.param = 0;

q.enqueueNDRangeKernel(krnl , 0, global_size , local_size , NULL , NULL)

;

................

}

Listing 6.4: Generic template of Makefile

{

...............

kernelname_CLFLAGS= -I./src --max_memory_ports kernelname

kernelname_LDCLFLAGS=--sp

kernelname_1.m_axi_gmem0:bank0 --sp kernelname_1.m_axi_gmemN:bankN

...............

}

6.8.2 Watermark Application

We’ll now take a look at the "Watermarking" program as an example and add

DDR optimization to it. The watermarking algorithm’s main purpose is to overlay a

logo at a given position in a 1080p HD video stream. The logo may be active, which

is represented by a brief, repeated video clip, or passive, which is usually represented

by a still image. The most common technique used by broadcasting companies is

passive watermarking, used in this example. The Apply Watermark kernel, which

is an efficient implementation of a watermarking algorithm, is at the heart of the

program.

The application takes image data and applies watermarking to it. The kernel char-
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Figure 6.11: DDR 2 banks apply watermark kernel

acteristics are described in Table 6.4. The buffer_inImage and buffer_outImage

frames, respectively, are two-dimensional arrays of pixels represented in a three-

dimensional color space (YCbCr). Every pixel is expressed by three components:

Y stands for luma, Cb for chroma blue-difference, and Cr for chroma red-difference.

Each portion is an 8-bit value, giving the pixel a total of 24 bits. The host processor

retrieves the input video stream from disk and serially transfers it to the FPGA global

memory via a single DDR port in the default FPGA storage line.

The memory access is thus divided between ’N’ DDR ports (2 here) by applying

the generic DDR optimisation system, As a result, the transmission rate is doubled

and the access to local and global memories is increased efficiently.

Table 6.5 shows the output characteristics of the water marking program. The

baseline speeds up to 1.76X, while the bandwidth and transmission rate figures rise

to 1.5X. This shows that applying DDR optimization in the watermarking program

has increased its overall efficiency.
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Table 6.4: Watermark Kernel properties.

Kernel name apply_benchmark
Kernel global arguments input, output

Read Buffer buffer_inImage
Write Buffer buffer_outImage

Table 6.5: Watermark kernel performance numbers.

Combination Execution
time (ms)

Bandwidth
utilization (%)

Transfer
rate (GB/s)

Baseline 0.53 40.8 4.7
2 DDR banks 0.3 62.87 7.24

6.9 Experiments

This section presents our experimental setup and results. We used a total of 9

massively parallel applications comprising of different classes and access patterns

(Table 6.6) from the Xilinx SDAccel repository [22] for our experiments.The baseline

profiling information is shown in Table 6.1. We have used the Xilinx SDAccel HLS

tool for OpenCL [8] based on OpenCL version 1.0 for compiling the OpenCL code.

All our applications were synthesized on Virtex VU9P FPGA deployed on Ama-

zon AWS cloud. Table 6.7 lists the parameters of our FPGA platform. We use

Xililx SDAccel HLS for OpenCL [93] for compiling and synthesizing OpenCL code.

The SDAccel profiler collects kernel performance data, bandwidth efficiency of global

memory and resource utilization. Finally, we compare naive CPU and GPU imple-

mentation with baseline and best case FPGA performance.

For the CPU version of each application we use the Intel(R) Core(TM) i7-7700K as

our host system. We also choose the AMD FirePro W7100 GPU since it provides com-

parable bandwidth as that of our cloud FPGA. To report our GPU implementation

results for kernel performance execution time and average dynamic power consump-

tion, we use the AMD CodeXL Power Profiler version 2.5 [80].
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Table 6.6: List of Applications.

Application Class of application
Affine Image processing

Convolve Convolutional image filtering
Edge detection Image processing
Histogram Image processing

Large Loop OCL Convolution layer of CNN
Median Filter Non-linear digital filtering
Systolic Array Array architecture
Tiny encryption Security
Watermarking Image processing

Table 6.7: System characteristics used for the study

Host System Intel(R) Core(TM) i7-7700K
Host specs 4.2 GHz, 16GB DDR4 Memory
FPGA Family Virtex Ultrascale VU9P
FPGA Device
Specs

LUTs LUT Mem REG BRAM
1157 K 585 K 2330 K 2 K

GPU Device
Specs

AMD FirePro W7100, 8GB DDR5 Memory
Compute=28, Memory Bandwidth= 160GB/s

6.10 Discussion

6.10.0.1 Performance Analysis

Figure 6.12 indicates the efficiency of 2 DDR banks that provide maximum speedup

relative over baseline implementation. For Systolic Array we achieve an overall per-

formance gain of near 2X over baseline and an average of 1,4X. We are, however,

attributable to the three factors mentioned in the Section 6.8, as well as the high

initial bandwidth utilization as seen in the Tab;e 6.1.

As an illustration, Systolic array has the least average baseline bandwidth of 0.51%

and results in the most (1.96X) improvement.Histogram on the other hand has a

very high baseline bandwidth utilization (Table 6.1) and gets the least improvement

(1.03X). This makes bandwidth a limiting factor hindering its ability to improve

speedup.
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Figure 6.12: Speedup over baseline

6.10.0.2 Resource Overhead

This section briefly presents the resource utilization overhead on account of addition

of 2 DDR banks per application. Figure 6.13 shows the average percentage resource

utilization. The resource overhead is mainly introduced due to additional register

blocks, memory blocks, combinational logic and block RAMs which are required for

replicating DDR banks that significantly increase every time a new bank/port is

added.The average increase in resource utilization was observed to be a 7.8% increase

in LUTs, 5.3% increase in LUTMem, 3.5% increase in registers and 4.2% increase in

Block RAMs.

Resource utilization overhead is briefly presented in this part (Figure 6.13). The

resource overhead is mainly due to additional register blocks, memory blocks and

RAMs that are used to replicate DDR banks which increase when a new bank is

added. The overall rise in use of resources has been found to increase the LUT’s by

7.8%, LUTME’s by 5.3%, the register’s by 3.5% and Block RAMs by 4.2%.
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Figure 6.13: Resource utilization overhead over baseline

6.10.0.3 Total Dynamic Power Consumption

Figure 6.14 presents the power consumption of all the applications for 2 DDR

banks. The Dynamic power is found from SDAccel power profiler tool that calcu-

lates dynamic power dissipated across each of Adaptive Logic Modules(ALMs), RAM

Blocks(RAM), DSP blocks(DSP), Phase Lock loops(PLLs), Clock, High Speed Dif-

ferential I/Os(HSIO) and associated routing modules. The power results show similar

trends like the resource utilization, however, the power numbers do not vary a lot.

This owing to the fact that low resource overhead was observed for most of the ap-

plications.

The figure 6.14 shows all application’s power consumption. Dynamic power can be

found from individual power component dispensed through each of Adaptive Logic

Modul(ALM), RAM (RAM), DSP(DSP), phase loop(PLLs), clock and related routing

modules. The effects of power indicate related patterns like that of resource utiliza-

tion, but the power rates are not so different. This is because the overhead on most

applications are limited in terms of resources.

For reference we also report the average baseline power of FPGAs to be around
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36W (Table 6.1) while the average power overhead is reported to be a mere 1.06X

over baseline. We also obtain an average GPU on-chip power consumption of 18.8W

using the CodeXL Power Profiler version 2.5 [80].
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Figure 6.14: Power overhead over baseline

6.10.0.4 Timing Comparison Across Various Platforms

We compare the performance of our applications with GPU and CPU in this section

(Table 6.8). We’ve ported the Xilinx FPGA OpenCL (vs. 2017.4) codes to function

on our local AMD FirePro W7100 GPU. As our FPGA has a similar bandwidth, we

have decided to run our applications on the AMD GPU [2]. The entire host code of

Xilinx FPGAs has been specifically rewritten while the kernel code for different ap-

plications is the same. We used generic OpenCL APIs and used AMD C++ bindings

for the implementation component. The host CPU has been provided with the CPU

numbers. Of course, implementations of the CPU and the GPU are naive device ver-

sions without any optimizations whatsoever. The results clearly indicate that FPGA

best performance comfortably beats baseline and CPU numbers across most of the

applications while showing comparable performance with the GPU numbers.
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Table 6.8: FPGA vs GPU vs CPU comparison

Application Timing results(ms)
FPGA Baseline FPGA best CPU GPU

Affine 8.04 7.66 34.35 1.05
Convolve 28.511 18.35 137.09 72.25

Edge detection 0.82 0.74 42.12 73.4
Histogram 2.52 2.51 128.15 0.0078

Large Loop OCL 3385.11 1894.77 766.78 0.0029
Median Filter 1.23 1.14 1.36 0.902
Systolic Array 0.16 0.08 0.24 0.89
Tiny encryption 0.23 0.14 1.69 1.26
Watermarking 0.53 0.303 1.14 0.017

6.11 Burst Transfer [BT] Optimization

In this section we talk about the final optimization technique called, ’Burst trans-

fer[BT]’. Burst transfer works on the principle of transferring chunks of data in single

bursts rather than one after another. This helps reduce memory latency while in-

creasing the memory controller’s bandwidth consumption and performance. Ideally,

burst transfers should be inferred from consecutive data requests from consecutive

address sites, if possible. This maximizes memory controller performance and keeps

the FPGA device’s CU occupied at all times.

The data object’s memory structure is an important thing to remember when

trying to improve data transfer performance. Consider a 3x3 matrix layout, which is

a two-dimensional array in concept, as seen in the matrix logical structure. The burst

transition cannot be achieved if the data is been read column-by-column as shown in

Figure 6.15 since every time a discrete location is encountered. Arrays are physically

stored in row-major order in C/C++ programming, which means that all the data in

a row is stored in the same order (Figure 6.16). This is the required memory layout

for Burst transfer to happen.
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Row/Col 0 1 2
0 a[0][0] a[0][1] a[0][2]
1 a[1][0] a[1][1] a[1][2]
2 a[2][0] a[2][1] a[2][2]

Address Location
0 a[0][0]
1 a[0][1]
2 a[0][2]
3 a[1][0]
4 a[1][1]
5 a[1][2]
6 a[2][0]
7 a[2][1]
8 a[2][2]

Figure 6.15: Inefficient logical layout, BT not applicable

Row/Col 0 1 2
0 a[0][0] a[0][1] a[0][2]
1 a[1][0] a[1][1] a[1][2]
2 a[2][0] a[2][1] a[2][2]

Address Location
0 a[0][0]
1 a[0][1]
2 a[0][2]
3 a[1][0]
4 a[1][1]
5 a[1][2]
6 a[2][0]
7 a[2][1]
8 a[2][2]

Figure 6.16: Efficient physical layout, BT applicable

6.11.1 Generic Template

We continue with our tradition to add a generic template that can be standardized

for any given application. Note the simple procedure here is two fold:

• Ensure data layout is in contiguos memory locations.

• Determine chunk size of data that is to be transferred to local memory.

Let’s consider an example ’kernelread’ as shown in Listing 6.5 to put this into

perspective. The kernel contains ’N’-bit input ’vect1’ which is to be copied to the

device memory for computation. We assume that we have made sure the global

variable vect1 is consecutively arranged and that will be transferred back-to-back

to the local memory buffer variable ’loc’. We use Xilinx pipeline_loop attribute to

ensure that the data path is kept occupied at all times. Consecutive memory transfer



95

in burst mode happens in the inner loop. The data is accessed from global memory

and transferred to local memory via loops. Each CU is equipped with its own local

memory. As a result, each CU can copy the data it needs to process to its local

memory. Also an important consideration here is that local memory is limited and

depends on vendor specific value.

Listing 6.5: Generic template of adding Burst transfer

#define numrows X // Outer loop size of the 2D array matrix

#define rowsize Y // Inner loop size of the 2D array matrix

kernel __attribute__ (( reqd_work_group_size (1, 1, 1)))

void kernelread(

__global uintN *vect1 , // ’vect1 ’ from global memory

uintN *loc , // ’loc’ local memory buffer

..

)

{

for (int i=0; i < numrows; ++i) {

__attribute__ (( xcl_pipeline_loop))

for (j=0; j < rowsize; ++j) { //Burst mode transfer

loc [rowsize*i + j] = vect1[rowsize*i + j];

}

)

}

6.12 Experiments

Burst transfer is used for hiding memory latency during the data transfer. This is

done by loading all the data from global memory to the local memory. The latency

for accessing the local memory is lower than accessing global memory.

For Burst Transfer optimization we tested the Affine application for demonstra-
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tive purposes using our proposed generic template. The Affine application is a kind

of image processing application that linearly maps data points, straight lines and

planes[94]. After an affine transformation is complete, sets of parallel lines remain

parallel. Affine transformations are often used to compensate for dimensional distor-

tions or deformations caused by non-ideal camera angles. We used the same evaluation

setup as in Sec 6.8 to measure Burst Transfer effect on Affine.

6.13 Discussion
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Figure 6.17: Speedup with Burst transfer on Affine application
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Figure 6.18: Bandwidth improvement with Burst transfer on Affine application

Figure(s) 6.17 and 6.18 shows an improvement of 1.4X and increase in 5% band-

width utilization over baseline for the Affine application. The increase is again de-

pendent on the memory access nature of the application. However, a combination

of BT with DDR (6.8) can highly effect the performance numbers of the application

with minimum resource and power overhead.
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6.14 Conclusions

Double Data Rate (DDR) and Burst Transfer (BT) are a few optimization tech-

nique(s) that can be applied to improve thread-level utilization, performance, and

occupancy on FPGAs. The major contribution of this work primarily lies in propos-

ing generic framework(s) for both these techniques based on OpenCL parallelism

abstraction and execution semantic of FPGAs. The aim is to provide a formalized

template for OpenCL written codes in order to enhance their memory access paral-

lelism efficiency guiding FPGA programmers to better utilize High-Level Synthesis

(HLS) tools.

Overall, our results on nine applications of SDAccel benchmark applications indi-

cate that DDR based FPGA-aware OpenCL codes can achieve up to 1.4X maximum

throughput while consuming minimum dynamic power and resource utilization over-

head compared to baseline implementation. While Burst transfer for one demonstra-

tive application achieved a 1.4X speedup and 5% increase in bandwidth utilization.



CHAPTER 7: Conclusions

This dissertation presents new architectural tools and techniques to enhance the

thread-level utilization, performance and occupancy of OpenCL based massively par-

allel applications when mapped on to FPGAs. The focus is to identify, optimize and

make algorithmic decisions that result in a more efficient application specific data-

path. We present three main insights from this research. The primary work focuses

on proposing a new taxonomy based on the correlation between OpenCL parallelism

abstraction and execution semantic of FPGAs. The aim is to leverage the granularity

of OpenCL threads that can exploit spatial parallelism on top of temporal parallelism.

Further, we formalize OpenCL written codes on FPGAs to enhance their efficiency

guiding both OpenCL programmers and OpenCL synthesis tools. Overall, we achieve

a maximum speedup of 6.7X over baseline implementation with minimal resource and

power overhead.

Next, our proposed LLVM based automation tool for memory decoupling provides

the opportunity to prefetch the data of future threads along with the execution of cur-

rent threads by creating a concurrency model between the computation and memory

accesses among the OpenCL threads. This proposed approach uses OpenCL channel

semantic to realize splitting of kernels for temporal parallelism, and LLVM static anal-

ysis to identify the decouplable data. Our experimental results over eight Rodinia

kernels running on Intel Stratix-V FPGA demonstrates an average of 2X speedup

with 40% energy reduction and minimum resource utilization overhead compared to

baseline implementation. To validate our approach we ran an entirely different set

of applications on Xilinx’s cloud FPGA. Here, we were able to achieve an average

of 5.2X speedup with a 2.2X increase in bandwidth utilization and just under 2.5X
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resource utilization overhead.

Finally, the dissertation expanded on the throughput oriented design principles on

cloud FPGAs and carried out 2 separate projects. Our fully automatic rapid design

space exploration tool for identifying the optimum number of Compute Units(CUs)

resulted in a a maximum of 53X and 6.4X average speedup over 15 massively par-

allel OpenCL applications. Further, FPGA aware OpenCL code for increasing the

throughput of memory access parallelism using Double Data Rate and Burst Transfer

optimization resulted in a performance improvement of 1.2X on average over naive

baseline implementation and 1.47X increase in speed up for the Affine application

respectively.

Overall, this dissertation opens up a lot of research possibilities on OpenCL for

FPGAs while resolving many critical issues that hinder parallelism capabilities on

FPGAs.

7.1 Future Directions

Reconfigurable platforms have played a key role in the high-performance comput-

ing community. The novel techniques and optimization explorations on the OpenCL

programming framework have given us deep insights and opened up many new oppor-

tunities for establishing an efficient data-path, better utilization of the resources and

maximizing the parallelism potential on deeply pipelined FPGA architectures. We

believe this dissertation can result in the following exciting future research directions.

1. With the help of a generalized taxonomy for leveraging spatial parallelism

(Chapter 4), OpenCL programmers and tool developers now have a better idea

of various source level decisions that can be taken to increase thread level par-

allelism on FPGAs. One key insight that we obtain from the results is that

the parallelism approaches do not affect the applications in the same manner.

A much needed trade-off between availability of FPGA resources, timing con-

straints etc., is imperative to efficient data path design considerations. One
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attractive research area that could thus stem from this work is a way to con-

sider these trade-offs and develop a much-sophisticated tool to further improve

performance leading to more power-efficient solutions.

2. The validation of our novel memory decoupling approach presented in Chap-

ter 5 to overcome memory stall bottleneck has many new possibilities. The

general idea is that applications with most decouplable variables benefit from

this approach. Thus the proposed tool and framework can be applied across

applications that are streaming in nature with less amount of inter-thread de-

pendencies. Moreover, our LLVM based static analysis tool can be further

developed to give more insight on the nature of the application. Such an under-

standing can truly benefit to categorize applications that can truly benefit from

memory decoupling as opposed to other available methods like local memory or

double buffering. This also presents an opportunity to finally answer the raging

question of what works the best on FPGA vs the GPU.

3. In addition to the generic template for Compute Units (CUs) and a design

space exploration tool presented in this research (Chapter 6), there are a lot of

profiling and optimization techniques supported by the leading FPGA vendors

that we have left unexplored due to the vastness in scope to cover in this work.

One among them is the I-I (Initiation Interval), which is of particular interest.

I-I values are used as a profiling tool to make sure that the pipelined data path

is kept busy at all times. However, this is also a much unexplored territory and

significant improvement can be made by incorporating a optimization ’knob’

for I-I values.

7.2 Publications

This dissertation has resulted in outcome of the following publications :

1. A. A. Purkayastha, S. A. Shiddhibhavi and H. Tabkhi, "Taxonomy of Spatial
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Parallelism on FPGAs for Massively Parallel Applications," 2018 31st IEEE

International System-on-Chip Conference (SOCC), Arlington, VA, USA, 2018,

pp. 55-60, doi: 10.1109/SOCC.2018.8618501.[PUBLISHED [23]]

2. A. A. Purkayastha, S. Raghavendran, J. Thiagarajan and H. Tabkhi, "Explor-

ing the Efficiency of OpenCL Pipe for Hiding Memory Latency on Cloud FP-

GAs," 2019 IEEE High Performance Extreme Computing Conference (HPEC),

Waltham, MA, USA, 2019, pp. 1-7, doi: 10.1109/HPEC.2019.8916236. [PUB-

LISHED [95]]

3. Arnab A. Purkayastha, Samuel Rogers, Suhas A. Shiddibhavi, Hamed Tabkhi,

LLVM-based automation of memory decoupling for OpenCL applications on

FPGAs, Microprocessors and Microsystems, Volume 72, [PUBLISHED [88]]

2020,102909,ISSN 0141-9331,https://doi.org/10.1016/j.micpro.2019.102909.

4. J. Thiagarajan, A. A. Purkayastha, A. Patil and H. Tabkhi, "Exploring the

Scalability of OpenCL Coarse Grained Parallelism on Cloud FPGAs," 33rd

IEEE International System-on-Chip Conference (SOCC), [ACCEPTED]

5. A. A. Purkayastha and H. Tabkhi, "Design Study on Impact of Memory Ac-

cess Parallelism for Cloud FPGAs", Submitted to 2021 IEEE 32nd Interna-

tional Conference on Application-specific Systems, Architectures and Processors

(ASAP), USA. [Under Review]
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