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ABSTRACT

ANERI PARAG SHETH. EfficientHRNet: Efficient and Scalable Networks for
real-time Pose Estimation and Segmentation. (Under the direction of

DR. HAMED TABKHI)

Recent years have brought great advancement in 2D human pose estimation. How-

ever, bottom-up approaches that do not rely on external detectors to generate person

crops, tend to have large model sizes and intense computational requirements, mak-

ing them ill-suited for applications where large computation costs can be prohibitive.

Lightweight approaches are exceedingly rare and often come at the price of massive

accuracy loss.

This thesis presents EfficientHRNet, a family of lightweight 2D human pose esti-

mators that unifies the high-resolution structure of state-of-the-art HigherHRNet, a

multi-scale high resolution network with the highly efficient model scaling principles of

EfficientNet to create high accuracy models with significantly reduced computation

costs. In addition, it provides a formulation for jointly scaling the backbone Effi-

cientNet below the baseline B0 and the rest of EfficientHRNet with it. Ultimately,

this work is able to create a family of highly accurate and efficient 2D human pose

estimators that is flexible enough to provide a lightweight solution for a variety of

application and device requirements. The baseline H0 model achieves 64.8% accuracy

on COCO dataset and overall, EfficientHRNet proves to be more computationally ef-

ficient than other bottom-up 2D human pose estimation approaches, while achieving

highly competitive accuracy.

Moreover, inspired by creating a family of EfficientHRNet based models for pose

estimation, this work also provides a similar formulation for creating models in an-

other popular computer vision application, image segmentation. Pose estimation and

image segmentation models created using these methods are further used in the edge

video analytics pipeline as a front-end to evaluate the performance of an end-to-end
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real time system. This thesis also carries out simulation of pose estimation and seg-

mentation model into the real-time vision pipeline.
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CHAPTER 1: INTRODUCTION

Real-time edge video analytics demand accuracy, performance and power efficiency.

Edge video analytics capture video streams from surveillance cameras installed at a

desired location, for instance a parking lot, in case of pedestrian tracking and then

the video is processed on the edge servers and GPUs for further AI processing. The

AI processing includes video analytics applications like pose estimation, image seg-

mentation, human path prediction, person re-identification and action detection. Due

to bulky computations and computations happening on the edge node, it has become

extremely important to have Convolutional Neural Networks (CNNs) customized for

video analytics to achieve real-time performance on power-constrained devices. Fig-

ure 1.1 shows an example of pose estimation, object detection, and segmentation

applications running on a video frame. It shows how these three applications can be

used to get useful information about the entire image for a surveillance application.

In this thesis, pose estimation algorithm design and image segmentation design will

be deeply explored and qualitative and quantitative results are shown.

Figure 1.1: Video Analytics Application
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Two-dimensional human pose estimation is a common task used in many popular

smart applications and has made substantial progress in recent years. There are two

primary approaches to 2D human pose estimation. The first is a top-down approach,

where cropped images of humans are provided and the network uses those cropped

images to produce human keypoints. Top-down approaches rely on object detectors to

provide initial human crops, thus they often come with relatively higher computation

cost, and are not truly end-to-end. The second is a bottom-up approach, where a

network works off the original image and produces human keypoints for all people

in the image. While these methods often do not quite reach the accuracy that is

possible with state-of-the-art top-down approaches, they come with relatively lower

model size and computational overhead.

Even so, state-of-the-art bottom-up approaches are still quite large and computa-

tionally expensive. The current state-of-the-art [1] having 63.8 million parameters

and requiring 154.3 billion floating-point operations. Even though many emerging

applications, such as self-driving vehicles, intelligent surveillance, and augmented re-

ality, require lightweight multi-person human pose estimation, there has been much

less attention towards developing lightweight bottom-up methods. This means that

if an application’s real-time requirements and resource constraints do not match up

well to the existing models, then a sub-optimal solution is the only available choice.

To address this gap, there is a need for a family of lightweight human pose estimation

models that achieves comparable accuracy to the state-of-the-art approaches.

This study presents EfficientHRNet, a family of lightweight scalable networks for

high-resolution and efficient bottom-up multi-person pose estimation. EfficientHR-

Net unifies the principles of state-of-the-art EfficientNet and HRNet, and presents a

new formulation that enables near state-of-the-art human pose estimation while being

more computationally efficient than all other bottom-up methods. Similar to HRNet,

EfficientHRNet uses multiple resolutions of features to generate keypoints, but in a
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Figure 1.2: A comparison of computational complexity and accuracy between bottom-
up human pose estimation methods. Accuracy measured on COCO2017 val dataset.
X-axis is logarithmic in scale.

much more efficient manner. At the same time, it uses EfficientNet as a backbone

and adapts its scaling methodology to be better suited for human pose estimation.

To enable agile lightweight execution, EfficientHRNet further expands the Efficient-

Net formulation to not only scale below the baseline, but also to jointly scale down

the input resolution, High-Resolution Network, and Heatmap Prediction Network.

Through this, a family of networks is created that can address the entire domain of

lightweight 2D human pose estimation while being flexible towards the accuracy and

computation requirements of an application. The models are evaluated on the COCO

dataset [2]. Figure 1.2 demonstrates how EfficientHRNet models provide equivalent

or higher accuracy at lower computational costs than their direct peers. When com-

paring to state-of-the-art models, baseline EfficientNet competes in accuracy while

requiring much less computation. Compared to HRNet [3], EfficientHRNet achieves

0.4% higher accuracy while requiring only 66% the number of operations. When
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comparing to HigherHRNet [1] and PersonLab [4], EfficientHRNet sees between a

1.7% to 5.1% decrease in accuracy, while only requiring between 7% to 17% of the

computation. Even when comparing to models designed specifically for lightweight

execution, such as Lightweight OpenPose [5], a scaled down EfficientHRNet is able

to achieve 10.1% higher accuracy while further reducing computation by 15%. In ad-

dition, EfficientHRNet architecture is applied for image segmentation which achieves

71% accuracy, comparable to the state of the art. Lastly, these two models are added

into the vision pipeline in order to get accurate and efficient results.

1.1 Motivation

Most of the emerging applications like self-driving cars, intelligent surveillance and

more, require lightweight front-end for selecting areas of interest i.e. segmenting

people from scene, understanding the scene, detecting people, etc. Similar to this,

for video surveillance system for privacy aware human pedestrian tracking and action

detection, lightweight models for detecting human and scene i.e. multi-person pose

estimation and image segmentation are required. Figure 1.3 demonstrates a vision

Figure 1.3: Edge video analytics pipeline

pipeline flow and shows the importance of performance for an end-to-end system.

The focus of this study is in selecting areas of interest - detecting people - multi-

person pose estimation and understanding the scene elements - image segmentation.

There has been much less attention towards developing lightweight pose estimation
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and segmentation. This means that if an applicationâs real-time requirements and

resource constraints do not match up well to the existing models, then a sub-optimal

solution is the only available choice. To address this gap, there is a need for a family

of lightweight human pose estimation models as well as segmentation models that

achieves comparable accuracy to the state-of-the-art approaches and are much more

power-efficient than existing methods.

1.2 Contributions

EfficientHRNet is a family of lightweight scalable networks for high-resolution and

efficient bottom-up multi-person pose estimation. EfficientHRNet unifies the princi-

ples of state-of-the-art EfficientNet and HRNet, and presents a new formulation that

enables near state-of-the-art human pose estimation while being more computation-

ally efficient than all other bottom-up methods. EfficientHRNet is also customizable

for different computer vision applications like segmentation and object detection and

have proven to achieve high performance (FPS) as compared to other approaches. In

summary, this study has the following major contributions:

• Towards front-end algorithms:

– Proposing a family of efficient and scalable models called EfficientHRNet

for lightweight multi-person pose estimation by unifying the principles of

popular EfficientNet and HRNet.

– Providing a scaling methodology to scale down the backbone and multi-

scale network to generate lightweight models that run efficiently on low

power IoT devices.

– Developing EfficientHRNet based segmentation model to support the pose

estimation in identifying people in the scene for the overall edge video

analytics pipeline.
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• Towards front-end simulation:

– Integrating pose estimation and segmentation models into the vision pipeline

and simulating results on this project’s own image frames in order to eval-

uate the qualitative and FPS performance.

1.3 Thesis Outline

This thesis is outlined as follows: Chapter 2 gives a detailed report on background

related work of pose estimation methods, multi-resolution networks and model scaling

methods. Chapter 3 introduces the network architecture of EfficientHRNet - both for

pose estimation and segmentation. It explains the backbone CNN as well as the

HRNet networks along with the scaling formulation. Chapter 4 is the experimental

results section where an exhaustive evaluation of five different EfficientHRNet models

on the challenging COCO dataset is conducted and the models compared to state-

of-the-art methods. Segmentation model is also evaluated on Cityscapes dataset.

Experimental results also include performance numbers and qualitative results on

this project’s own curated videos illustrating both where the models excel and where

they fall short. Chapter 5 discusses the conclusion and future work of this study.



CHAPTER 2: RELATED WORK

This section first presents related work relevant to the field of top-down and

bottom-up methods for 2D human pose estimation. Then, a survey on multi-scale

high-resolution networks, particularly for computer vision applications, is presented.

Lastly, popular model scaling techniques that have emerged in recent years are dis-

cussed.

2.1 Top down pose estimation methods

Top-down methods rely on first identifying all the persons in an image using an

object detector, and then detecting the keypoints for a single person within a defined

bounding box. These single person [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

and multi-person [17], [18], [19], [20], [21] pose estimation methods often generate

person bounding boxes using object detector [22], [23], [24], [25]. For instance, RMPE

[20] adds symmetric spatial transformer network on top of single person pose estimator

stacked hourglass network [13] to get high-quality regions from inaccurate bounding

boxes and then detects poses using parametric non-maximum suppression.

2.2 Bottom-up pose estimation methods

Bottom-up methods [26], [27], [28], [29], [4], [30], [31], [32], [33], [34] first detect

identity-free keypoints in an image and then group them into persons using various

keypoints grouping techniques. Methods like [31] and [32] perform grouping by integer

linear program and non-maximum suppression. This allows for much faster inference

times as compared to top-down methods with almost similar accuracies. Other meth-

ods further improve upon prediction time by using greedy grouping techniques, along

with other optimizations, as seen in [26], [27], [28], [29], [4]. For instance, OpenPose
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[26], [27] is a multi-stage network where one branch detects keypoints in the form

of heatmaps, while the other branch generates Part Affinity Fields that are used to

associate keypoints with each other. Grouping is done by calculating the line integral

between all keypoints and grouping the pair that has the highest integral. Lightweight

OpenPose [5] replaces larger backbone with MobileNets to achieve real-time perfor-

mance with fewer parameters and FLOPs while compromising on accuracy. PifPaf

[28] uses Part Intensity Fields to detect body parts and Part Associative Fields for

associating parts with each other to form human poses. In [29], a stacked hourglass

network [13] is used both for predicting heatmaps and grouping keypoints. Group-

ing is done by assigning each keypoint with an embedding, called a tag, and then

associating those keypoints based on the L2 distance between the tag vectors. In this

paper, we mainly focus on a highly accurate, end-to-end multi-person pose estimation

method as in [29].

2.3 Multi-scale High Resolution Networks

Feature pyramid networks augmented with multi-scale representations are widely

adopted for complex and necessary computer vision applications like segmentation

and pose estimation [35], [36], [37], [38], [39], [40]. Recovering high-resolution feature

maps using techniques like upsampling, dilated convolution, and deconvolution are

also widely popular for object detection [38], semantic segmentation [41], [42], [43],

[44], [45], [46], [47], [48], [49], [50], [51] and pose estimation [13], [52, 53], [54], [55],

[39], [40], [56], [31], [32]. Moreover, there are several works that focus on generating

high-resolution feature maps directly [57], [58], [59], [60], [61], [62], [3], [1]. HRNet [3],

[62] proposes to maintain high-resolution feature maps throughout the entire network.

HRNet consists of multiple branches with different resolutions across multiple stages.

With multi-scale fusion, HRNet is able to generate high resolution feature maps and

has found its application in object detection, semantic segmentation, and pose estima-

tion [3], [61], [62] thereby achieving remarkable accuracies. Recently, HigherHRNet
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for multi-person pose estimation [1] is proposed which uses HRNet as base network

to generate high resolution feature maps, and further adds a deconvolution module

to predict accurate, high-quality heatmaps. HigherHRNet achieves state-of-the-art

accuracy on the COCO dataset [2], surpassing all existing bottom-up methods. In

this study, the principles of HigherHRNet are adopted for generating high-resolution

feature maps with multi-scale fusion for predicting high-quality heatmaps.

2.4 Model Scaling

Previous works on bottom-up pose estimation [26], [27], [1], [3], [29], [13] often rely

on either large backbone networks, like ResNet [63] or VGGNet [64], or large input

resolutions and multi-scale training for achieving state-of-the-art accuracy. Some

recent works [3],[1] show that increasing the channel dimension of otherwise identical

models can further improve accuracy. EfficientNet [65] and RegNet [66] show that by

jointly scaling network width, depth, and input resolution, better efficiency for image

classification can be achieved compared to previous state-of-the-art networks using

much larger models. More recently, EfficientNet’s lite models remove elements, such

as squeeze and excite and swish layers, to make the network more hardware friendly.

Inspired by EfficientNet, EfficientDet [67] proposes a compound scaling method for

object detection along with efficient multi-scale feature fusion. We observe that there

is a lack of an efficient scaling method for multi-person pose estimation, especially

for embedded devices. Lightweight pose estimation models which are scalable and

comparatively accurate are needed for computer vision applications which focus on

real-time performance. This study proposes compound scaling which is also inspired

by EfficientNet, a method that jointly scales the width, depth, and input resolution of

our network, as well as the repetition within the high-resolution modules, explained

in Chapter 3. In addition, this compound scaling allows the EfficientNet backbone

to scale below the baseline B0, creating even lighter weight models.



CHAPTER 3: EFFICIENTHRNET

EfficientHRNet is a family of scalable and lightweight models customizable for vari-

ous computer vision applications like multi-person pose estimation and segmentation.

In this chapter, firstly a brief review of the proposed architecture will be provided

and then the new compound scaling method in order to generate lightweight models

for EfficientHRNet is described.

3.1 Network Architecture and Formulation

EfficientHRNet comprises of three sub-networks: (1) Backbone Network, (2) High-

Resolution Network, and (3) Heatmap prediction network (pose estimation)/Segmentation

network. The first stage of the network is the backbone, consisting of EfficientNet

[65]. The backbone EfficientNet model outputs four different resolution feature maps

of decreasing resolutions 1
4
, 1

8
, 1

16
, and 1

32
the size of the input image. These feature

maps are passed into the main body of the network, called the High-Resolution Net-

work. The High-Resolution Network is inspired by HRNet [3], [62] and HigherHRNet

[1]. Borrowing the principles of these higher resolution networks brings two major

advantages:

1. By maintaining multiple high-resolution feature representations throughout the

network, heatmaps with a higher degree of spatial precision are generated.

2. Repeated multi-scale fusions allow for high-resolution feature representations

to inform lower-resolution feature representations, and vise versa, resulting in

robust, multi-resolution feature representations that are ideal for multi-person

human pose estimation as well as segmentation.

Figure 3.1 presents a detailed architecture illustration of EfficientHRNet for the
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application of multi-person human pose estimation. It shows the three sub-networks

- the Backbone Network, the High-Resolution Network, and the Heatmap Prediction

Network - in detail. It also provides equations showing how the network scales the

input resolution Rinput and width of feature mapsWbn , which will be further explained

in the next section.

As seen in Figure 3.1, the High-Resolution Network has three stages s1, s2, and

s3, containing four parallel branches b1, b2, b3, and b4 of different resolutions. The

first stage s1 starts with two branches b1 and b2, with each consecutive stage adding

an additional branch, until all four branches are present in s3. These four branches

each consist of high resolution modules with a width of Wbn . Each branch bn contains

feature representations of decreasing resolutions that mirror the resolutions output

by the Backbone Network, as shown in Figure 3.1 and the following equation:

Wbn × Rinput

2n + 1
(3.1)

For instance, stage 2 (s2) has three branches of resolutions 1
4
, 1
8
, and 1

16
of the original

input image resolution and a width Wbn as seen in Figure 3.1. Moreover, each high

resolution module is made up of a number of blocks,Msn , each containing two residual

blocks, each performing three convolution operations with a residual connection.

In order to predict more accurate heatmaps, a DeConv block is added on top of

the High-Resolution Network, as proposed in [1]. Transposed convolution is used to

generate high quality feature maps which are 1
2
the original input resolution. The

input to the DeConv block is the concatenation of the feature maps and predicted

heatmaps from the High-Resolution Network, as shown in the equation below:

34 +Wb1 ×
Rinput

4
× Rinput

4
(3.2)

Two residual blocks are added after the DeConv block to refine the up-sampled feature
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maps, as seen in Figure 3.1.

Lastly, the Heatmap Prediction Network is used to generate human keypoint pre-

dictions. After the end of the DeConv block, a 1x1 convolution is used to predict

heatmaps and tagmaps in a similar fashion to [29], the feature map size of each

shown below:

Tsize = 34× Rinput

4
× Rinput

4

Hsize = 17× Rinput

2
× Rinput

2

(3.3)

The grouping process clusters keypoints into multiple persons by grouping key-

points whose tags have minimum L2 distance. Moreover, much like [1], the High-

Resolution Network is scale-aware and uses multi-resolution supervision for heatmaps

during training to allow the network to learn with more precision, even for small-scale

persons. From the ground truth, heatmaps for different resolutions are generated to

match the predicted keypoints of different scales. Thus, the final heatmaps loss is the

sum of mean squared errors for all resolutions. However, as high resolutions tagmaps

do not converge well, tagmaps are trained on a resolution 1
4
of the original input

resolution, as in [29].

In order to show how EfficientHRNet customizes for other applications, this study

shows its application on image segmentation. As seen in Figure 3.2, the backbone

network and the High-Resolution Network provide the same outputs for the head

network but the head is now customized for Segmentation Network. The output

from the High-Resolution Network having 4 different resolutions - 1
4
, 1
8
, 1
16

and 1
32

are

now upsampled using bilinear transformation. The upsampled outputs are concate-

nated based on the width and 1
2
of the original input resolution. Lastly, a final 3x3

convolution is applied on the concatenated output to get the segmented image with

probabilities of 19 different classes of the Cityscapes dataset [68].
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3.2 Compound Scaling Method

In this part of EffcientHRNet, the compound scaling method is described, which

jointly scales all parts of EfficientHRNet, as seen in Figure 3.1. The aim is to develop

a family of models optimized for both accuracy and efficiency, which can be scaled to

meet a diverse set of memory and compute constraints.

Previous works on bottom-up pose estimation mostly scale the base network by

using bigger backbone networks like ResNet [63] and VGGNet [64], using large in-

put image sizes, or using multi-scale training to achieve high accuracies. However,

these methods rely on scaling only a single dimension, which has limited effectiveness.

Recent works [65], [66] show notable performance on image classification by jointly

scaling the width, depth, and input image resolution. Inspired by EfficientNet, Ef-

ficientDet [67] proposes a similar compound scaling method for object detection,

which jointly scales the backbone network, multi-scale feature network, and the ob-

ject detector network. In this study, a heuristic-based compound scaling method for

bottom-up pose estimation is proposed which is then applied to segmentation, based

on [65], [67], using a scaling coefficient φ to jointly scale the Backbone Network, the

High-Resolution Network, and the Heatmap Prediction Network/Segmentation Net-

work. More precisely, the EfficientNet backbone is scaled down below the baseline

and scale down the overall network in order to maintain near state-of-the-art accuracy

while creating lightweight and flexible networks.

Backbone Network. The same width and depth scaling coefficients are maintained

as in EfficientNet [65]. In order to meet the demands of running models on con-

strained devices, a new formulation for scaling EfficientNet below the baseline into a

more compact model is provided.
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Table 3.1: Efficient scaling configs for EfficientHRNet

Model Input size Backbone Width per branch # blocks per stage Tags Heatmaps
(Rinput) network (Wb1 , Wb2 , Wb3 , Wb4) (Ms2 , Ms3 , Ms4) (Tsize) (Hsize)

H0 (φ = 0) 512 B0 32, 64, 128, 256 1, 4, 3 128 256
H−1 (φ = -1) 480 B−1 26, 52, 103, 206 1, 3, 3 120 240
H−2 (φ = -2) 448 B−2 21, 42, 83, 166 1, 2, 3 112 224
H−3 (φ = -3) 416 B−3 17, 34, 67, 133 1, 1, 3 104 208
H−4 (φ = -4) 384 B−4 14, 27, 54, 107 1, 1, 2 96 192

Starting with the baseline EfficientNet-B0 scaling coefficients:

depth : d = 1.2φ

width : w = 1.1φ

resolution : r = 1.15φ

(3.4)

φ, i.e. φ = -1, -2, -3, -4, is inverted to calculate the scaling multipliers for the compact

EfficientNet models, which is symbolized as B−1, B−2, B−3 and B−4 respectively. As

an example, in order to take the baseline resolution, 224, and scale it down for compact

EfficientNet B−1 model, take r, from Equation 3.4, with φ = −1. This would result

in a resolution scaling coefficient of 1.15−1, i.e. 0.87, leaving a scaled resolution size of

ceil(224∗0.87) = 195. This pattern repeats for B−2 — B−4, and can be seen in Table

4.1. These compact EfficientNet models (B−1 to B−4) are trained on ImageNet and

the resulting weights are used for the Backbone Network in EfficientHRNet models.

High-Resolution Network. The High-Resolution Network has three stages and

four branches with four different feature map sizes. Each branch n also has a different

width Wbn and our baseline H0 model has a width of 32, 64, 128, and 256 for each

branch respectively. We selectively pick a width scaling factor of 1.25 and scale down

the width using the following equation:

Wbn = (n · 32) · (1.25)φ (3.5)

where n is a particular branch number and φ is the compound scaling coefficient.
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Furthermore, within each stage, each high resolution module has multiple blocks Msn

which repeat a number of times, as seen in Table 3.1. In our baseline H0 model, blocks

within each stage repeat 1, 4, and 3 times respectively. We found that the number of

repetitions in stage 3 had the largest impact on accuracy. Therefore, the number of

repetitions within a high resolution module Ms2 decreases linearly as the models are

scaled down, starting with stage 2 until reaching a single repetition and then moving

on to stage 3, as shown in Table 3.1.

Heatmap Prediction Network. The DeConv block is scaled in the same manner as

the width of the High Resolution Network (Equation 3.5). The Heatmap Prediction

Network outputs tags and heatmaps whose width remains fixed across all the models.

Segmentation Network. The Segmentation Network head involves upsampling and

concatenating the outputs from the High-Resolution Network and the final output is

the the segmented image along with 19 labeled classes which remain the same for all

the scalable models.

Input Image Resolution. The EfficientNet layers downsample the original input

image resolution by 32 times. Thus, the input resolution of EfficientHRNet must be

dividable by 32, and is linearly scaled down as shown in Equation 3.6.

Rinput = 512 + 32 · φ (3.6)

Based on Equations 3.4, 3.5, and 3.6, a group of pose estimation models are developed

from H0 to H−4 called EfficientHRNet, as shown in Table 3.1.



CHAPTER 4: EXPERIMENTAL RESULTS

In this section, the method to evaluate scaling EfficientNet below the baseline

through classification on the popular ImageNet [69] and CIFAR-100 [70] datasets is

explored. Then, an exhaustive evaluation of five different EfficientHRNet models on

the challenging COCO dataset is done and the results are compared to state-of-the-art

methods. Results on EfficientHRNet Segmentation are also presented. In order to see

the performance on edge devices, FPS numbers are reported for EfficientHRNet Pose

Estimation and Segmentation. Finally, a qualitative evaluation of EfficientHRNet is

presented, illustrating both where the models excel and where they fall short.

4.1 Classification for Compact EfficientNet

Dataset. ImageNet [69] has been a long time standard benchmark for object classi-

fication and detection thanks to its annual contest, the ImageNet Large Scale Visual

Recognition Challenge, that debuted in 2010. The challenge uses a subset of the full

dataset with over a million images spread out over 1000 object classes. For training,

validating, and testing purposes, the trimmed ImageNet is divided into three sets:

800k images will be used for training the network, 150k will be used for validation

after each epoch, and 50k will be used for testing the fully trained model. CIFAR-100

[70] consists of 100 object classes each with 500 images for training, and 100 for test-

ing. This relatively small dataset helps illuminate the lightweight models, which start

to struggle with the larger ImageNet as φ decreases, designed for resource constrained

devices that might not need to classify as many object classes.

Training. Random rotation, random scale, and random aspect ratio is used to crop

the input images to the desired resolutions based on the current EfficientNet model.
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Color jitter was also used to randomly change the brightness, contrast, saturation,

and hue of the RGB channels using principle component analysis [71]. The images

are then normalized using per channel mean and standard deviation. Each model was

trained using Stochastic Gradient Descent [72] with a weight decay of 1e − 4. The

weights were initialized using the Xavier algorithm [73] and underwent five warm-up

epochs with a learning rate of 1e−4 that increased linearly until it reached 0.05. The

networks were then trained for an additional 195 epochs and followed the step decay

learning rate scheduler [74] that reduces the learning rate by a factor of 10 every 30

epochs.

Testing. The compact EfficientNet models were tested for accuracy based on their

respective testsets. For a fair comparison, the number of ImageNet test samples were

reduced to 10,000 to match the test set of CIFAR-100, where the batch size is set to

1. These results can be seen in Table 4.1.

Results on ImageNet and CIFAR-100. Looking at B−1 there is a 15% reduction

in parameters and 25% reduction in operations, yet an accuracy drop of only 1.2%

and 0.5% on ImageNet and CIFAR-100 respectively. More impressively, B−2 sees a

35-40% reduction in parameters and a 50% reduction in operations, yet only a 3.7%

and 2.1% drop in accuracy on the two datasets. This minor accuracy loss is negligi-

ble compared to the massive reduction in model size and computation, allowing for

much faster inference as well as deployment on low-power and resource constrained

devices. In the most extreme, B−4 shows a parameter reduction of 68-75% and a

87.5% decrease in operations while having an accuracy drop of 9.4% and 7.6% on

ImageNet and CIFAR-100. While the accuracy drop is a bit more significant here,

Table 4.1: Compact EfficientNet performance on ImageNet and CIFAR-100 datasets.
ImageNet CIFAR-100

Model Input size # Params FLOPS Top-1 # Params FLOPS Top-1
B0 (φ = 0) 224 5.3M 0.4B 75 4.1M 0.4B 81.9
B−1 (φ = -1) 195 4.5M 0.3B 73.8 3.5M 0.3B 81.4
B−2 (φ = -2) 170 3.4M 0.2B 71.3 2.5M 0.2B 79.8
B−3 (φ = -3) 145 2.8M 0.1B 68.5 1.9M 0.1B 78.2
B−4 (φ = -4) 128 1.3M 0.05B 65.6 1.3M 0.05B 74.3



20

the massive reduction in computation allows for much more flexibility when it comes

to deployment in systems where a lightweight approach is needed. This gives a solid

foundation on which to build EfficientHRNet.

4.2 2D Human Pose Estimation for EfficientHRNet

Dataset. COCO dataset [2] has over 200,000 images with 250,000 person instances

each labeled with 17 keypoints. The COCO dataset has three sets - train set with 57k

images, val set with 5k images and test, which is divided into test-dev with 20k images

and test-challenge with 20k images. The training is performed on all the training on

train set, report results on val set, and compare with state-of-the-art methods on

test-dev set for a fair comparison.

Evaluation. The COCO evaluation defines object keypoint similarity (OKS), and

uses mean average precision (AP) over 10 OKS thresholds as the main evaluation

metric1. The OKS is calculated from the scale of the person and the Euclidean dis-

tance between the GT and predicted points, similar to IoU in object detection. For

the results, average precision and recall scores is reported: AP (mean of AP scores at

OKS = 0.50, 0.55,· · ·, 0.90, 0.95), AP50 (AP at OKS = 0.50), AP75, APM for medium

objects, APL for large objects, and AR (mean of recall scores).

Training. Random rotation, random scale, and random translation for data aug-

mentation is used to crop the input images to a fixed input resolution depending on
1http://cocodataset.org/#keypoints-eval

Table 4.2: Comparisons with bottom-up methods on COCO2017 val dataset
single-scale multi-scale

Model Input size AP AP50 AP75 AP AP50 AP75 # Params FLOPs
PersonLab 1401 66.5 86.2 71.9 - - - 68.7M 405.5B
HRNet 512 64.4 - - - - - 28.5M 38.9B

HigherHRNet 512 67.1 86.2 73.0 69.9 87.1 76.0 28.6M 47.9B
Lightweight OpenPose 368 42.8 - - - - - 4.1M 9.0B

H0 (φ = 0) 512 64.8 85.3 70.7 68.1 87.0 74.1 23.3M 25.6B
H−1 (φ = -1) 480 59.2 82.6 64.0 63.2 84.3 68.6 16M 14.2B
H−2 (φ = -2) 448 52.9 80.5 59.1 56.4 82.2 63.4 10.3M 7.7B
H−3 (φ = -3) 416 44.8 76.7 48.2 46.4 76.6 50.8 6.9M 4.2B
H−4 (φ = -4) 384 35.7 69.6 33.7 40.3 73.0 41.9 3.7M 2.1B
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the EfficientHRNet model. Following HigherHRNet [1], two ground truth heatmaps

of different sizes, 1
2
and 1

4
of the original input size respectively are generated. Each

EfficientHRNet model is trained using Adam optimizer [75] and weight decay of 1e−4.

All models from H0 to H−4 are trained for a total of 300 epochs with a base learning

rate of 1e− 3, decreasing to 1e− 4 and 1e− 5 at 200th and 260th epochs respectively.

To maintain balance between heatmaps loss and grouping loss, the losses are weighted

at 1 and 1e− 3 respectively.

Testing. For testing on COCO val and test-dev sets, the short side of test input

image is resized to match our input resolution while preserving the aspect ratio. As

in HigherHRNet [1], heatmap aggression is done by resizing the predicted heatmaps

to the input resolution and taking the average. The models are tested using both

single scale and multi-scale heatmaps, as is common. Following [29], the output de-

tection heatmaps across different scales are averaged and the tags are concatenated

into higher dimensional tags, making different objects and persons considerably more

scale-invariant.

Results on COCO2017 val. The accuracy of EfficientHRNet H0 to H−4 is reported

on COCO val set along with parameters and FLOPs of the entire network and com-

pare it with other bottom-up methods. As summarized in Table 4.2, the baseline H0

model outperforms HRNet [1] with 0.4% more accuracy, 18% fewer parameters and

34% fewer FLOPs. H−2 and H−3 models outperform Lightweight OpenPose [5] in

accuracy while having fewer FLOPs. H−4 has the worst accuracy of any model in

Table 4.2, however it boast both the smallest model size and fewest number of oper-

ations, that later seeing an over 75% reduction from its lightest weight competitor.

This makes our scaled-down models the new state-of-the-art for lightweight bottom-

up human pose estimation.

Results on COCO2017 test-dev. Table 4.3 compares EfficientHRNet with other

bottom-up pose estimation methods on COCO test-dev set. The baseline H0 model
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with single-scale testing serves as an efficient and accurate model for bottom-up meth-

ods as it is almost comparable to HRNet [1] in accuracy, losing by only 0.1%, while

having a smaller model size and fewer FLOPs. H0 outperforms Hourglass [13] in

both single-scale and multi-scale testing by 7.4% and 1.6% respectively, with H0 re-

markably having about 10% the model size and number of FLOPs as Hourglass. In

all cases where H0 loses in accuracy, it more than makes up for it in a reduction

in parameters and operations. Additionally, our H−1 model, with only 16M param-

eters and 14.2B FLOPs, outperforms both OpenPose [26, 27] and Hourglass [13],

demonstrating EfficientHRNet’s efficiency and suitability for low-power and resource

constrained devices.

As the EfficientHRNet models are scaled down using the compound scaling method,

somewhat minor drops in accuracy with significant drops parameters and FLOPs as

compared to the baseline H0 model are seen. H−1 has 31.3% less parameters and

44.5% less FLOPs as compared to H0 while only being 4.9% less accurate. Similarly,

Table 4.3: Comparisons with state-of-the-art bottom-up methods on COCO2017 test-
dev dataset.

Method Backbone Input size # Params FLOPs AP AP50 AP75 APM APL AR
w/o multi-scale test

OpenPose - - 25.94M 160B 61.8 84.9 67.5 57.1 68.2 66.5
Hourglass Hourglass 512 277.8M 206.9B 56.6 81.8 61.8 49.8 67.0 -
PersonLab ResNet-152 1401 68.7M 405.5B 66.5 88.0 72.6 62.4 72.3 -
PifPaf ResNet-152 - - - 66.7 - - 62.4 72.9 -
HRNet HRNet-W32 512 28.5M 38.9B 64.1 86.3 70.4 57.4 73.9 -

HigherHRNet HRNet-W32 512 28.6M 47.9B 66.4 87.5 72.8 61.2 74.2 -
HigherHRNet HRNet-W48 640 63.8M 154.3B 68.4 88.2 75.1 64.4 74.2 -
H0 (φ=0) B0 512 23.3M 25.6B 64.0 86.2 70.1 59.1 71.1 69.1
H−1 (φ=-1) B−1 480 16M 14.2B 59.1 83.9 66.4 54.6 65.7 64.7
H−2 (φ=-2) B−2 448 10.3M 7.7B 52.8 82.3 58.5 47.3 60.6 59.1
H−3 (φ=-3) B−3 416 6.9M 4.2B 44.5 78.0 47.6 39.8 51.0 51.8
H−4 (φ=-4) B−4 384 3.7M 2.1B 35.5 71.1 32.5 29.9 43.5 42.8

w/ multi-scale test
Hourglass Hourglass 512 277.8M 206.9B 63.0 85.7 68.9 58.0 70.4 -
Hourglass Hourglass 512 277.8M 206.9B 65.5 86.8 72.3 60.6 72.6 70.2
PersonLab ResNet-152 1401 68.7M 405.5B 68.7 89.0 75.4 64.1 75.5 75.4

HigherHRNet HRNet-W48 640 63.8M 154.3B 70.5 89.3 77.2 66.6 75.8 74.9
H0 (φ=0) B0 512 23.3M 25.6B 67.1 88.1 73.6 63.2 72.5 71.8
H−1 (φ=-1) B−1 480 16M 14.2B 62.3 85.1 67.8 58.2 67.8 67.4
H−2 (φ=-2) B−2 448 10.3M 7.7B 55.0 83.1 61.8 51.4 60.0 61.4
H−3 (φ=-3) B−3 416 6.9M 4.2B 45.5 78.2 49.4 42.7 48.9 53.1
H−4 (φ=-4) B−4 384 3.7M 2.1B 39.7 74.2 39.7 35.7 45.5 47.0
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Table 4.4: EfficientHRNet Pose Estimation Performance Evaluation

Model Input size # Params FLOPS Accuracy Runtime FPS
HigherHRNet 512 28.6M 47.9B 67.1% 149.6ms 6.68

Lightweight OpenPose 512 10.3M 22.8B 43.1% 59.84ms 16.71
H0 512 23.3M 25.6B 64.8% 62.68ms 15.95
H−1 480 16M 14.2B 59.2% 76.01ms 13.15
H−2 448 10.3M 7.7B 52.9% 56.76ms 17.61
H−3 416 6.9M 4.2B 44.8% 44.74ms 22.34
H−4 384 3.75M 2.1B 35.7% 27.15ms 36.82

the lightest modelH−4 is 84% smaller and has 91.7% less FLOPs, with a less than 45%

drop in accuracy. Interestingly, EfficientHRNet is the only bottom-up pose estimator

that is able to provide such lightweight models while still having accuracies that are

comparable to state-of-the-art bottom-up methods, as illustrated by both Table 4.3

and Fig 1.2. These results nicely show the validity of this approach to scalability

and efficiency in EfficientHRNet, and its suitability as a lightweight human pose

estimator. Table 4.4 provides the performance comparison of EfficientHRNet models

with HigherHRNet [1] and Mobilenet v2 based Lightweight OpenPose [5]. While it as

shown in the previous table 4.3, that the EfficientHRNet models were highly efficient

than the state-of-the art models, here it is shown by inferencing the models on Nvidia

Xavier embedded platform. While HigherHRNet [1] runs at 6fps, the H0 model run at

more than double speed and the smallest model runs 6x faster. Similarly, Lightweight

OpenPose runs at 16 fps and it’s near comparable model (based on parameters and

FLOPs) run 5.6% faster. These results validates the efficiency and performance of

EfficientHRNet models for pose estimation. Next, results of EfficientHRNet models

for segmentation will be discussed.

4.3 Image Segmentation for EfficientHRNet

Dataset. Cityscapes dataset [68] is comprised of a large, diverse set of stereo video

sequences recorded in streets from 50 different cities. 5000 of these images have high

quality pixel-level annotations; 20000 additional images have coarse annotations to

enable methods that leverage large volumes of weakly-labeled data. The finely an-



24

Table 4.5: EfficientHRNet Segmentation on Cityscapes dataset.

Model Input size Backbone # modules mIOU # Params FLOPS FPS
HRNet 512x1024 HRNet-W48 1,4,3 79.2% 65.7M 692.2B -

HRNet v1 512x1024 HRNet-W18 1,1,1 70.3% 1.5M 31.1B 5.92
HRNet v2 512x1024 HRNet-W18 1,3,2 76.2% 3.9M 71.6B 3.46

EfficientHRNet Seg 512 B0 1,3,2 71% 19.3M 18.9B ∼ 18
EfficientHRNet Seg 512x1024 B0 1,4,3 74.3% 24.2M 70.5B -

notated images are divided into 2,975/500/1,525 images for training, validation and

testing. There are 30 classes out of which 19 are used for evaluation.

Evaluation. Mean Intersection-Over-Union (mIOU) is used for evaluation which is

a common evaluation metric for semantic image segmentation, which first computes

the IOU for each semantic class and then computes the average over classes.

Training. Data augmentation like random rotation, scaling and crop is used to get

the input image into a fixed input resolution. The segmentation model is trained

for a total of 450 epochs with a learning rate of 0.01. SGD optimzer [72] is used to

backpropagate the classification loss.

Testing. For testing on Cityscapes dataset, the original image is resized to match

the input resolution while preserving the aspect ratio. The segmentation model is

evaluated on single-scale and the results are described below.

Results on Cityscapes. The accuracy of EfficientHRNet Segmentation is reported

on Cityscapes test dataset along with parameters and FLOPs of the entire network

and are compared with HRNet based segmentation [62]. As shown in Table 4.5, Ef-

ficientHRNet Segmentation model is much more efficient than its direct competitors

based on HRNet backbone. For instance, HRNet has 692.2B FLOPS while Effi-

cientHRNet has just 18.9B with only 8% drop in accuracy. This is significant for

inference on edge devices. While HRNet, the biggest model does not even an infer-

ence on Nvidia Xavier, the EfficientHRNet model is expected to run at around 18

fps. This shows that EfficientHRNet models are much better for edge devices which

will also be shown in the qualitative results discussed in the next section.
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4.4 Qualitative Results

In this section, qualitative results for EfficientHRNet Pose estimation models are

presented on COCO dataset. Also, the results on our own dataset is presented which

shows pose estimation and segmentation models running in the pipeline along with

tracking and person re-identification.

4.4.1 Qualitative Results of EfficientHRNet on COCO

To show how EfficientHRNet models perform on COCO dataset, qualitative results

are presented on the test-challenge set. Fig. 4.1 shows simple, medium, and complex

examples for all EfficientHRNet models from H0 to H−4. For the simple case, it can

be seen that a single person pose is correctly formed for all our models, but as the

smaller models are used for evaluation, the detected keypoints distort the pose due

to the drop in accuracy. In the case of medium complexity examples, where there

is an occlusion over multiple persons, it is observed that all our models are able to

accurately detect different people in the image. However, smaller models, such as

H−3 and H−4, detect multiple keypoints for the same person, making the pose look

clustered and creating noise. As far as complex examples are concerned, an image

with more than 4 people are shown, all in different poses at different distances from the

H0 H−1 H−2 H−3 H−4

Figure 4.1: Qualitative Results for EfficientHRNet models on COCO2017 test dataset.
Top to bottom: Simple, Medium and Complex examples.
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camera. It is observed that the quality of poses is affected but all the models are still

able to identify all the humans in the image. The smaller models particularly struggle

with merging keypoints across multiple people and detecting multiple keypoints for

the same person, just as in the medium example. These qualitative results nicely

visualize the relationship between detected keypoints and model size, and show that

the overall effect on accurate pose prediction is not significant in simple and medium

examples when the evaluation is done on smaller models. However, complex scenes

can still be a struggle for lightweight pose estimation, and additional post processing

might be needed to redress the output for use in a real-world system.

4.4.2 Qualitative Results of EfficientHRNet in video analytics pipeline

Figure 4.2: EfficientHRNet Pose Estimation and Segmentation in Vision pipeline.
Left: Pose Estimation, Right: Segmentation.

In order to demonstrate the quality of EfficientHRNet models, the pose estimation

and segmentation H0 models were integrated into the vision pipeline - as a part of
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National Science Foundation Smart City project. The dataset was created as a part

of this research and was used with consent for this particular study. The entire vision

pipeline includes applications like pose estimation, segmentation, tracking, person

re-identification and action detection. As shown in Fig. 4.2, the leftmost images

show EfficientHRNet pose estimation running on a single frame from a sequence of

frames. The rightmost images show EfficientHRNet segmentation. These results

demonstrate the applicability of our models on different datasets with people of small

scale, occluded scenes, and overall a completely different application, surveillance

system in this case.

4.4.3 Challenges in the current pipeline

The keypoint grouping as given in [29], the tags are compared from a given joint

to the tags of the current pool of people, and try to determine the best matching

between them. Two tags can only be matched if they fall within a specific threshold.

In addition, this methods wants to prioritize matching of high detections and thus

perform a maximum matching where the weighting is determined by both the tag

distance and the detection score. If any new detection is not matched, it is used to

start a new person instance. This accounts for cases where perhaps only a leg or

hand is visible for a particular person. However, this does not deal with occlusion or

when two people are very close to each other. This issue was solved by implementing

a function which removes redundant poses. It filters out poses whose joints have,

on average, a difference lower than 3 pixels. This is useful when grouping the joins

together skeleton parts belonging to the same people (but then it does not remove

redundant skeletons). The other challenge is people not detected at a far-away dis-

tance. This is because the training was on COCO which has objects close to the

camera. Also, for segmentation, the classes like doors are not present and these two

issues can be solved by creating own dataset or combining multiple datasets.



CHAPTER 5: CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

In this paper, EfficientHRNet, a family of scalable networks for high-resolution

and efficient bottom-up multi-person pose estimation and segmentation is presented,

especially for low-power edge devices. The principles of state-of-the-art EfficientNet

and HRNet are unified to create a network architecture for lightweight human pose

estimation, and a new compound scaling method is proposed that jointly scales down

the input resolution, backbone network, and high-resolution feature network. Efficien-

tHRNet is not only more efficient than all other bottom-up human pose estimation

methods, but it can maintain accuracy competitive with state-of-the-art models on

the challenging COCO dataset. Along with efficiency, it can also be customized for

other computer vision applications like segmentation and can be used for edge video

analytics pipeline in order to run an end-to-end system. Remarkably, EfficientHR-

Net can achieve this near state-of-the-art accuracy with fewer parameters and less

computational complexity than other bottom-up multi-person pose estimation net-

works. EfficientHRNet is also able to achieve high performance on edge devices and

embedded platforms like Nvidia Xavier and Nano. Thus, this study provides mod-

els and networks which can highly benefit the end-to-end working of a system, like

surveillance video system which runs multiple applications together and require high

performance.

5.2 Future Work

There are several directions in which this work could be continued in the future. In

this study, the focus was on creating lightweight human pose estimation and segmen-
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tation and thus the network was scaled down from the baseline. However, there is

nothing preventing EfficientHRNet from being scaled to a larger network in a fashion

more similar to EfficentNet [65] or EfficientDet [67]. In addition, the following princi-

ples are shown in EfficientNet-lite, certain architectural elements of the EfficientNet

backbone, mainly the squeeze and excite layers, as well as the swish activation, could

be removed or replaced. An exploration of how this impacts inference on different

hardware would be a potential avenue of research. Finally, while the focus was on 2D

human pose estimation and segmentation, the principles and architecture of Efficien-

tHRNet could be applied to numerous other computer vision tasks, such as object

detection, and depth estimation, to name a few examples. The other important future

of this thesis can be combining the pose estimation and segmentation model into one

network i.e. sharing the backbone and potentially the High Resolution Network to

reduce the redundant computations and enable knowledge distillation to learn from

the stand-alone teacher models.



30

REFERENCES

[1] B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang, “Higherhrnet:
Scale-aware representation learning for bottom-up human pose estimation,” 2019.

[2] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. DollÃ¡r, “Microsoft coco: Common objects
in context,” 2014.

[3] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation
learning for human pose estimation,” CoRR, vol. abs/1902.09212, 2019.

[4] G. Papandreou, T. Zhu, L. Chen, S. Gidaris, J. Tompson, and K. Murphy,
“Personlab: Person pose estimation and instance segmentation with a bottom-up,
part-based, geometric embedding model,” CoRR, vol. abs/1803.08225, 2018.

[5] D. Osokin, “Real-time 2d multi-person pose estimation on CPU: lightweight
openpose,” CoRR, vol. abs/1811.12004, 2018.

[6] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible mixtures-
of-parts,” in CVPR 2011, pp. 1385–1392, 2011.

[7] M. Dantone, J. Gall, C. Leistner, and L. Van Gool, “Human pose estimation using
body parts dependent joint regressors,” in 2013 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3041–3048, 2013.

[8] S. Johnson and M. Everingham, “Learning effective human pose estimation from
inaccurate annotation,” in CVPR 2011, pp. 1465–1472, 2011.

[9] B. Sapp and B. Taskar, “Modec: Multimodal decomposable models for human
pose estimation,” in Proceedings / CVPR, IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 3674–3681, 06 2013.

[10] G. Gkioxari, P. Arbelaez, L. Bourdev, and J. Malik, “Articulated pose estima-
tion using discriminative armlet classifiers,” in Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR â13, (USA),
p. 3342â3349, IEEE Computer Society, 2013.

[11] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural
networks,” CoRR, vol. abs/1312.4659, 2013.

[12] A. Jain, J. Tompson, M. Andriluka, G. Taylor, and C. Bregler, “Learning human
pose estimation features with convolutional networks,” 12 2013.

[13] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose
estimation,” CoRR, vol. abs/1603.06937, 2016.



31

[14] A. Bulat and G. Tzimiropoulos, “Human pose estimation via convolutional part
heatmap regression,” CoRR, vol. abs/1609.01743, 2016.

[15] V. Belagiannis and A. Zisserman, “Recurrent human pose estimation,” CoRR,
vol. abs/1605.02914, 2016.

[16] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose ma-
chines,” CoRR, vol. abs/1602.00134, 2016.

[17] U. Iqbal and J. Gall, “Multi-person pose estimation with local joint-to-person
associations,” CoRR, vol. abs/1608.08526, 2016.

[18] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler, and
K. P. Murphy, “Towards accurate multi-person pose estimation in the wild,”
CoRR, vol. abs/1701.01779, 2017.

[19] S. Huang, M. Gong, and D. Tao, “A coarse-fine network for keypoint localization,”
pp. 3047–3056, 10 2017.

[20] H. Fang, S. Xie, Y. Tai, and C. Lu, “Rmpe: Regional multi-person pose esti-
mation,” in 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 2353–2362, 2017.

[21] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid
network for multi-person pose estimation,” CoRR, vol. abs/1711.07319, 2017.

[22] B. Cheng, Y. Wei, H. Shi, R. S. Feris, J. Xiong, and T. S. Huang, “Decoupled
classification refinement: Hard false positive suppression for object detection,”
CoRR, vol. abs/1810.04002, 2018.

[23] B. Cheng, Y. Wei, H. Shi, R. S. Feris, J. Xiong, and T. S. Huang, “Revis-
iting RCNN: on awakening the classification power of faster RCNN,” CoRR,
vol. abs/1803.06799, 2018.

[24] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,
“Feature pyramid networks for object detection,” CoRR, vol. abs/1612.03144,
2016.

[25] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time
object detection with region proposal networks,” CoRR, vol. abs/1506.01497,
2015.

[26] Z. Cao, T. Simon, S. Wei, and Y. Sheikh, “Realtime multi-person 2d pose esti-
mation using part affinity fields,” CoRR, vol. abs/1611.08050, 2016.

[27] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “Openpose: Realtime multi-
person 2d pose estimation using part affinity fields,” CoRR, vol. abs/1812.08008,
2018.



32

[28] S. Kreiss, L. Bertoni, and A. Alahi, “Pifpaf: Composite fields for human pose
estimation,” CoRR, vol. abs/1903.06593, 2019.

[29] A. Newell and J. Deng, “Associative embedding: End-to-end learning for joint
detection and grouping,” CoRR, vol. abs/1611.05424, 2016.

[30] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited: People
detection and articulated pose estimation,” pp. 1014 – 1021, 07 2009.

[31] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V. Gehler,
and B. Schiele, “Deepcut: Joint subset partition and labeling for multi person
pose estimation,” CoRR, vol. abs/1511.06645, 2015.

[32] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele, “Deeper-
cut: A deeper, stronger, and faster multi-person pose estimation model,” CoRR,
vol. abs/1605.03170, 2016.

[33] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang, E. Levinkov, B. An-
dres, and B. Schiele, “Articulated multi-person tracking in the wild,” CoRR,
vol. abs/1612.01465, 2016.

[34] M. Kocabas, S. Karagoz, and E. Akbas, “Multiposenet: Fast multi-person pose
estimation using pose residual network,” CoRR, vol. abs/1807.04067, 2018.

[35] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs,” CoRR, vol. abs/1606.00915, 2016.

[36] L. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale: Scale-
aware semantic image segmentation,” CoRR, vol. abs/1511.03339, 2015.

[37] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,”
CoRR, vol. abs/1612.01105, 2016.

[38] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,
“Feature pyramid networks for object detection,” CoRR, vol. abs/1612.03144,
2016.

[39] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang, “Learning feature pyramids
for human pose estimation,” CoRR, vol. abs/1708.01101, 2017.

[40] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid
network for multi-person pose estimation,” CoRR, vol. abs/1711.07319, 2017.

[41] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[42] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.



33

[43] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic
segmentation,” CoRR, vol. abs/1505.04366, 2015.

[44] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution residual
networks for semantic segmentation in street scenes,” CoRR, vol. abs/1611.08323,
2016.

[45] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested
u-net architecture for medical image segmentation,” CoRR, vol. abs/1807.10165,
2018.

[46] G. Lin, A. Milan, C. Shen, and I. D. Reid, “Refinenet: Multi-path refinement net-
works for high-resolution semantic segmentation,” CoRR, vol. abs/1611.06612,
2016.

[47] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel matters
- improve semantic segmentation by global convolutional network,” CoRR,
vol. abs/1703.02719, 2017.

[48] Z. Zhang, X. Zhang, C. Peng, D. Cheng, and J. Sun, “Exfuse: Enhancing feature
fusion for semantic segmentation,” CoRR, vol. abs/1804.03821, 2018.

[49] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” CoRR,
vol. abs/1802.02611, 2018.

[50] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual parsing for
scene understanding,” CoRR, vol. abs/1807.10221, 2018.

[51] J. Fu, J. Liu, Y. Wang, and H. Lu, “Stacked deconvolutional network for semantic
segmentation,” CoRR, vol. abs/1708.04943, 2017.

[52] A. Bulat and G. Tzimiropoulos, “Binarized convolutional landmark localizers
for human pose estimation and face alignment with limited resources,” CoRR,
vol. abs/1703.00862, 2017.

[53] X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, and X. Wang, “Multi-context
attention for human pose estimation,” CoRR, vol. abs/1702.07432, 2017.

[54] L. Ke, M. Chang, H. Qi, and S. Lyu, “Multi-scale structure-aware network for
human pose estimation,” CoRR, vol. abs/1803.09894, 2018.

[55] W. Tang, P. Yu, and Y. Wu, Deeply Learned Compositional Models for Hu-
man Pose Estimation: 15th European Conference, Munich, Germany, September
8â14, 2018, Proceedings, Part III, pp. 197–214. 09 2018.

[56] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation and
tracking,” CoRR, vol. abs/1804.06208, 2018.



34

[57] S. Saxena and J. Verbeek, “Convolutional neural fabrics,” CoRR,
vol. abs/1606.02492, 2016.

[58] Y. Zhou, X. Hu, and B. Zhang, “Interlinked convolutional neural networks for
face parsing,” CoRR, vol. abs/1806.02479, 2018.

[59] D. Fourure, R. Emonet, E. Fromont, D. Muselet, A. TremÃ©au, and C. Wolf,
“Residual conv-deconv grid network for semantic segmentation,” 01 2017.

[60] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Wein-
berger, “Multi-scale dense convolutional networks for efficient prediction,” CoRR,
vol. abs/1703.09844, 2017.

[61] J. Wang, S. ke, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan,
X. Wang, W. Liu, and B. Xiao, “Deep high-resolution representation learning for
visual recognition,” 08 2019.

[62] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu,
and J. Wang, “High-resolution representations for labeling pixels and regions,”
CoRR, vol. abs/1904.04514, 2019.

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” CoRR, vol. abs/1512.03385, 2015.

[64] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” 2014.

[65] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” CoRR, vol. abs/1905.11946, 2019.

[66] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. DollÃ¡r, “Designing
network design spaces,” 2020.

[67] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object
detection,” 2019.

[68] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic ur-
ban scene understanding,” CoRR, vol. abs/1604.01685, 2016.

[69] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[70] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech. rep.,
2009.

[71] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, NIPSâ12,
(Red Hook, NY, USA), p. 1097â1105, Curran Associates Inc., 2012.



35

[72] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,
vol. abs/1609.04747, 2016.

[73] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics (Y. W. Teh and M. Titterington, eds.),
vol. 9 of Proceedings of Machine Learning Research, (Chia Laguna Resort, Sar-
dinia, Italy), pp. 249–256, PMLR, 13–15 May 2010.

[74] R. Ge, S. M. Kakade, R. Kidambi, and P. Netrapalli, “The step decay sched-
ule: A near optimal, geometrically decaying learning rate procedure,” CoRR,
vol. abs/1904.12838, 2019.

[75] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2015.


