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ABSTRACT

GABON WILLIAMS. Mitigation of Crossfire Attacks in Software Defined Networks
Using Random Forest Machine Learning Algorithm. (Under the direction of

DR.WEICHAO WANG)

Software Defined Networks have emerged and developed to become a prevalent indus-

try used infrastructure. The mitigation around DDoS (Distributed Denial of Service)

attacks in SDN has been a big topic since the network type has come into the scope

of day to day operations. The crossfire attack is a link flooding Distributed Denial

of Service attack that increases the amount of benign traffic from a massively dis-

tributed botnet to congest a network link, also known as the target link. This spike

in traffic is used to deplete the network resources allocated for the target link. This

attack normally does not contain any malicious payloads, which makes detecting and

mitigating more difficult. This research was inspired by the low likelihood of the

ability to detect and defend against a crossfire attack in software defined networks

and is focused on detection and mitigation of these attacks [1]. The environment

created in this experiment uses SDN Switches on a specific network topology in ad-

dition to the ryu controller. The random forest machine learning model was also

utilized to dynamically analyze traffic and classify when an attack was beginning to

occur. When the classifier alerts the controller that the threshold is being reached

for a particular target link the controller will find and deny flows from the source

which has generated the most traffic and is not regularly generating traffic at such

a high rate. Denying flows closer to the source limits the impact that a flood can

have on legitimate traffic in the topology. The threshold set for the target link in

this experiment is 50 MB. The model is able to classify when an interface needs to be

denied at a rate of 90.625 percent. Considering this is a base work, accuracy could

be improved by having additional functionality applied to the proposed design.
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CHAPTER 1: INTRODUCTION: THE CONCEPTS

The motivation behind this work includes the fast development of SDNs, the unique

challenges to SDN security and the potential impacts of attacks on SDNs. The In-

ternational Data Corporation states that the SDN market will be worth more than

twelve billion dollars in 2022. The developments of SDN in industries such as pro-

tection against misconfigurations of regular networks, its utilization with self-driving

cars and 5G are reasons why the popularity of SDN is growing so fast. However,

with new technologies come new vulnerabilities and new attack surfaces. Attackers

are coming up with ways to exploit the protocol weaknesses in SDN. Attackers are

able to trigger information disclosure inside these networks that can then be used

to exploit other components of the network. The potential impacts of these attacks

include compromise of the network and exhaustion of resources. With attackers be-

coming more sophisticated with C2 Frameworks and DDoS attacks moving inside the

internal network by compromising internal hosts, this research has become necessary

in mitigating such attacks from occurring. The following chapter introduces relevant

background in regards to the concepts discussed in this research. The topic of SDN,

the link flooding attack and machine learning will be introduced.

1.1 Network Technology

Development of networking technology over the past few years has been tremen-

dous in terms of creating substantial resources in order to supply for business needs.

Traditional networks of the past found it hard to support the fast development of

business applications. Network devices were responsible for the control and forward-

ing of traffic but the configuration could not be changed on the fly and it was highly
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cost inefficient. Additionally, with the emergence of cloud computing and storage

and its reliance on flexibility from the network perspective there has been a demand

of making network technology much more flexible. The need for speed is a driving

reason why software defined networking (SDN) has become so prevalent in today’s so-

ciety. SDN is utilized in data centers, intelligent transport systems and in most cloud

environments in order to allow for scalable systems in which traditional networks are

not able to offer a programmatic and swiftly fixable network environment. SDN is

able to virtualize the physical network in order to provide a more elastic and scal-

able network. Cloud environments are causing a shift in network technology because

of the need to have data on premise but not depleting resources and affording high

costs for on premise data centers. Data centers now have the ability to work hand

in hand with virtual private clouds because of SDN’s flexibility allowing for hybrid

environments between private and public cloud environments. The public cloud is an

avenue to storing data in which can be tied in with internal resources, but with all

of these advancements in technology come new attacks vectors for threat actors to

attempt at exploiting. The success of these attacks depends on the network and how

the attacker initiates the attack sequence [1].

1.2 SDN

SDN has allowed for reduction of complexity in networking by providing a sim-

plified, dynamic and centralized network management system in order to accurately

manage the network. SDN does this by decoupling the data plane and control plane

of the network in which allows for faster transmission of data as shown in Figure

1.1. The data plane is responsible for forwarding traffic, while the control plane has

a centralized controller with a view of the entire network and can be programmed

specifically for desired traffic forwarding functionality [2]. On top of the control plane

is the management plane where the APIs and logic are written for management of the

network. In between the management and control plane is a northbound API, while
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in between the control and data plane the southbound API exists. On the northbound

API the REST API is a normal standard for communication. On the southbound

API, the OpenFlow protocol is the standard for communication. In OpenFlow, data

plane devices have flow tables in which are managed by flow rules in the control plane

and these rules classify what occurs to traffic. However, if there is no flow rule for a

packet, then a request is sent to the controller in order to receive information on what

action to perform on the packet. This action normally consists of either dropping or

forwarding the traffic. SDN’s separation into these three planes is what allows the

architecture to be so flexible. It can quickly react to change in the network because

the controller sees the network as a whole and not individually making the updates

swiftly programmable. The International Data Corporation states that SDN provides

security protects against misconfigurations, and they also claim that the SDN market

will be worth more than twelve billion dollars in 2022. The importance of SDN in the

industry is growing in importance due to the need of having self driving cars, which

is intent based networking and supported by SDN.

1.2.1 Cloud’s Reliance on SDN

Cloud computing has developed rapidly due to its advantage over traditional com-

puting environments by reducing operational load and cost. Cloud computing re-

quires SDN as the underlying network resource in order for the improvement of cloud

manageability and scalability to occur. Cloud computing allows for a high avail-

ability environment to be used as needed. The only issues with the development of

cloud computing environments are the lag in development of security for them. SDN

provides features that can defeat new attacks on cloud computing environments. De-

nial of Service attacks eliminate the availability in a cloud computing environment.

SDN’s ability to perform traffic analysis, logical centralized control and forwarding

rules makes it easy for the SDN to detect and react to DDoS attacks in a swift man-

ner. However, with all of the separation involved in the different planes of SDN there
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(a) The SDN Paradigm

Figure 1.1: The Makeup of a Software Defined Network.
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are new attack vectors in which can be used in order to attack SDN from the control

plane, data plane or the management plane SDN needs to be properly equipped to

defend against these attacks [3].

1.2.2 SDN Platform Threat Vectors

Threat actors have multiple reasons to exploit SDN. The components of SDN and

the speed that they provide are created by the controller. The controller is not secure

in most scenarios as there are multiple versions of controllers and the support of most

controllers has been discontinued. The discontinued support has allowed for bugs to

be prevalent in these devices. These controller platforms include but are not limited

to the POX, NOX, Floodlight, Beacon, Maestro and OpenDaylight. The controller

platform used in this research is the RYU controller in which is supported still while

the POX module written in python is no longer supported. Attackers will attempt

to compromise the application, control and infrastructure/data link layers. Denial of

Service is a common attack, which SDN is vulnerable to due to its protocols such as

OpenFlow that can congest the control layer, or all other layers using similar methods

to execute.

1.3 Distributed Denial of Service

DDoS attacks are a significant risk to virtualized environments and to the access-

bility of assets. In traditional environments, DDoS attacks are attacks performed by

targeting a single system from multiple compromised systems called bots or zombies.

The attack is performed in order to deplete the resources of the system with the goal

of leading the service to be unavailable or incidentally hindered. According to Shi

Dong’s research there are seven different classes of DDoS attacks. The seven classes

include flood attacks, amplification attacks, coremelt attacks, land attacks, TCP SYN

attacks, CGI request attacks, and authentication server attacks [4]. For the case of

this experiment the crossfire attack will be listed as the eigth due to its complexi-
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ties and similarities to a coremelt attack. DDoS attacks have been major threats to

individuals in all industries due to the reduction of availability of systems that they

cause.

1.3.1 DDoS Variations

A flood attack is categorized by sending a large number of traffic flows to a target

system with zombies. The amplification attack assumes that the user’s machine has

already been taken over and the attacker sends messages from the victim’s machine

using a broadcast IP address. This then causes the nodes in the subnet to send

answers to the victim’s system, which causes resource depletion. The coremelt attack

is an attack that utilizes a number of machines sending information to one another

and has them surge in order to disable a network link, which is similar to the crossfire

attack except that there is less flexibility of targeting server areas, the persistence of

the attack is lower and that it relies on wanted flows only [5]. The land (local area

network denial) attack is an attack that sends a specially crafted TCP SYN attack

with the same source port and IP address as the destination. This causes the packet

to enter a infinite loop exhausting the system’s resources. The TCP SYN attack is

an attack on the TCP 3-way Handshake relying on a SYN from the source machine,

SYN+ACK bundle from the target machine and an ACK from the source machine

to complete the handshake. In this attack, the handshake is left open by continually

sending SYN packets in an effort to have the machine waiting on ACK packets to

close the connection but never receives one and causes the server to have its CPU

time and memory become depleted. CGI server attack is an attack that exploits

the vulnerability in common gateway interface systems and sends a large amount of

CGI requests in an attempt to consume the CPU cycles of a victim’s computer. The

seventh type which is an authentication server attack in which an attacker sends a

fake signature to the authentication server expending a large number of resources

and causing the servers resources to continually lose computing resources with each
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signature/attempt [4].

1.3.2 Link Flooding

Detection of the DDoS attacks has become more prevalent in today’s society due to

the knowledge of the possiblity of the attacks. The commonality of traditional DDoS

attacks has left them to be known threat vectors in which controls are primarily

focused on defending against. In contrast, indirect DDoS attacks such as link flood-

ing attacks that take servers offline through selective targeting have not had much

protection put into place through traditional mitigation methods. In link flooding

attacks, the attack is coming from a legitimate source making it difficult to block by

IP, signatures or any other method. In addition, detecting link flooding attacks that

send low intensity flows at the same time to flood a link can be even more difficult

to detect [5]. This problem statement is why this research is focused on cutting the

traffic as far close upstream to the source as possible in order to identify and mitigate

the most anomalous traffic source. Another emphasis on why we select the cross-

fire attack is because attackers are becoming more sophisticated with Command and

Control (C2) frameworks and DDoS attacks are moving inside the internal network

by compromising internal hosts.

1.4 Machine Learning

In machine learning, supervised learning model types are models that are supplied

labelled data by users that has the correct answer to a problem in an effort to have

the model produce a correct answer on unforeseen future data. The models are built

scaled and deployed based on the particular problem so that the problem can be

potentially scaled up or scaled down as needed with the algorithm still performing

well. Some examples of supervised learning models are logistic regression and random

forest. Unsupervised learning in contrast pertains to machine learning models that

do not need interaction with the user to learn. These models learn and discover
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information on their own and deal with unlabelled data. Unsupervised learning is

usually used to solve highly complex problems but are highly unpredictable. Some

examples of unsupervised learning are neural networks and cluster analysis. There is

semi-supervised learning and reinforcement learning as well, which will be covered in

the future work of this paper.

1.4.1 Random Forest

The random forest algorithm is utilized in this research because it is a promising

classification algorithm in order to classify traffic as attack traffic based on labelled

data. The algorithm will also improve the performance of our network in mitigating

the crossfire attack. In this case we know our patterns of data that are most significant

for our model to recognize due to the ongoing research of this particular area of SDN

so an unsupervised model would not be ideal for this setup. In addition, there needs

to be an understanding of what the algorithm is doing and not just performance

enhancements from utilizing the algorithm. Logistic regression was not used due

to its limitations in handling non-linear relationships in data and multiple expected

outputs. Logistic regression was originally chosen as the model for this experiment

but it was not a successful implementation for the problem. The random forest model

is a compilation of multiple decision trees. Each internal node in a decision tree is

essential in testing and branches will represent the outcome of a particular test. Leaf

nodes on these trees represent the class labels that were given from the training data.

The random forest mitigates the problem of overfitting the decision tree while making

the algorithm more accurate when it comes to classification. Consequently, the best

split of the decision tree is chosen from a random sample of input variables. Random

forest turns out to be the optimal solution for classifying data from all of the input

variables in this experiment.



CHAPTER 2: BACKGROUND: THE CROSSFIRE ATTACK

2.1 SDN Awareness

In detection of target area link flooding attacks of SDN, machine learning is highly

useful in the classification and mitigation of traffic and it can help the controller train

itself to better recognize anomalies [1]. Software Defined Networking has been created

in order to increase network scalability and management capabilities to fit the ad-

vancement of current network technology. As previously stated, SDN reduces network

complexities by providing a dynamic and centralized network management paradigm

that separates the control plane logic and the data plane logic in a network [2]. In

SDN, the control plane has a centralized, programmable controller that maintains a

view of the entire network. In SDN, there is a northbound API and a southbound

API, which allow for communication between the layers of SDN. The southbound

API is what allows the control plane and the data plane to communicate, by using a

protocol like OpenFlow in which allows for communication of SDN switches and the

controller. The northbound API is what allows the application plane to communicate

with the control plane. The northbound API includes the use of a REST API and

others in order to communicate remotely and locally with the controller. The ap-

plication plane holds unified network monitoring and analysis, network visualization,

and security applications including IDS, IPS or a basic firewall [3]. OF devices in the

dataplane have flow tables that are managed by the controller that have instructions

on how to route traffic called flow rules. All incoming packets are compared with the

entries in flow tables and if the traffic type is not found a query is sent to the con-

troller to request further instructions on action requirements for the traffic. The flow

rules then receive an update and the traffic is forwarded to the intended destination
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or dropped [2]. Traffic will now follow the flow rules with the addition in place so

that there is a faster transmission of the packet in comparison to the previous time.

This process enforces policy and network configuration requirements in real-time via

the controller [6].

2.2 SDN DDoS

There are three different types of DDoS attacks when the target is an SDN. As

stated previously there is a management plane also called the application layer, a

control plane also known as the control layer and a data plane also known as the

infrastructure layer. These three planes are what make up the attack vectors for

performing a DDoS attack on a SDN. In the case of this experiment, the main attack

is focused on the data layer due to the attack being on the links responsible for

forwarding the data. The planes provide an attack vector for those with malicious

intent, so discussions of where these attacks occur is a necessary knowledge when

dealing with SDN [4].

2.2.1 Application Layer Attacks

The management plane has two different methods by which an attacker can attempt

to exploit the layer. The attack could potentially focus on the northbound API or it

could focus on attacking the applications running on top to feed the controller. If a

threat actor is able to compromise applications involved with the management of the

SDN it could cause multiple security issues and concerns for breaches in the SDN.

2.2.2 Control Layer Attacks

The control plane is considered to be the most vulnerable point of the SDN in-

frastructure due to the possiblity of having a single point of failure in the network

[4]. The control plane can be attacked from the southbound API, northbound API or

by targeting the controller itself. These issues come into play when the management

plane logic causes the controller to make multiple clashing flow rules in which cause
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the controller to be more vulnerable because it makes the decisions when queried by

the switches of whether to forward the traffic or not. If the switch does not have

a flow built into it for some traffic it queries the controller for instructions on what

to do with the traffic and these query requests pose a threat vector of DDoS on the

controller.

2.2.3 Data Layer Attacks

Data plane attacks can occur through attacking the southbound API or directly

attacking the machines in the network. The data plane is normally attacked through

flooding the network devices through method of DDoS attacks in order to exhaust

the available bandwidth in the topology.

2.3 DDoS Progression

In recent years, DDoS attacks have adapted to become nation-state based attacks.

The need to be undetected is prevalent due to all the controls implemented over the

years to detect DDoS attacks. The traffic is more difficult to detect in the case of

a crossfire attack due to attackers having a link mapped out where bots can send

low-rate protocol-conforming traffic towards the target link [7]. DDoS attacks have

become far more advanced and are now using a network of bots (botnet) in order

to target SDN cloud based targets and environments. A botnet can be defined as

a network of computers, which can be controlled remotely that are infected with

malware. These bots are then communicating with a bot controller and this is called

C2 traffic. C2 traffic allows the botmaster to issue commands to the infected machines.

The crossfire attack uses a large-scale botnet in order to execute an attack with

legitimate traffic. In a crossfire attack, the machines then direct their low intensity

flows to a large number of servers causing an exhaustion of network resources without

being able to detect a difference between the legitimate traffic and the malicious traffic

[1].
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2.3.1 Compromise

Attackers are becoming more sophisticated with their use of C2 servers able to

control remote hosts. The complexity that this topic goes into is beyond the scope

of this research but it is related. If an attacker is able to compromise an internal

host inside the network and is able to control that host without detection then the

attacker would have the ability to carry out this attack from the compromised host.

The attacker would be able to perform reconnaissance on the network and carry

out the basic functions needed to initiate a crossfire attack. With DDoS attacks

moving inside networks due to the network security controls implemented outside of

the internal network it is now even more prevalent in security to obtain a foothold in

the network and be an advanced persistent threat.

2.4 The Crossfire Attack

In the crossfire attack the goal of the attacker is to prevent legitimate traffic from

flowing into a specific region of the internet. The two terms that are utilized in order

to do this are the "target area" and the "target link". The target area can be defined

as the region in which the attacker is trying to cutoff whether it be a city state or

even a country. In addition, a target link is an element of a set of network links in

which the attacker needs to flood so that the target area is cut off from the rest of the

Internet, which makes this the real target [8]. In order to launch a crossfire attack

against a target area, an attacker selects a set of public servers within the target area

in an effort to construct an attack topology. In addition, the attacker also looks for

a set of decoy servers used to create attack flows from the surrounding section of

the target area. The attacker then creates a link map from the bot addresses to the

public servers in an effort to select the best target links that will immediately cut off

the target area’s connectivity. After this the client floods the next closest links to the

target area in an effort to flood the potential route changes in succession. According
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(a) Attacker’s Three Steps in Crossfire Attack Following Compromise

Figure 2.1: Attacker’s Steps in Crossfire Attack.

to the crossfire attack research, there are three main steps to performing the attack

and these consist of link map construction, attack setup and bot coordination [5].

2.4.1 Link Map Construction

In the case of link map construction, often times this is first performed by utilizing

network reconnaissance from bots to gather information on other parts of the network.

The network reconnaissance allows the bots to find all of the routes to the public

servers in the target area and the decoy servers. The bots run these traceroutes

multiple times to check for load balancing that could deter an attack as well as to

see the stability of the route and if it stays the same or changes. The link map

now created needs to be tested for unstable routes. Route instability is caused by

load balancing processes and this causes the difference between transient links and

persistent links. If a link is persistent then it will always appear on a route, but all

transient links which are on the route have to be removed from the set of potential

target links [5].

2.4.2 Attack Setup

The next step for the attacker is to find the most flow dense link for the specified

target area. This will be a link that has high amounts of traffic transmitted through

it and this is how the attacker maps it as a good attack target. The goal is then to

find links that can be flooded one after another and inflict the most damage possible

to the links. The goal is to be able to flood a few target links and block the majority

of connections [5].
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2.4.3 Bot Coordination

After the target links are selected the attacker provides each bot the list of decoy

servers and the rate at which traffic needs to be sent to the corresponding link. This

is the initiation of the attack where the attacker must keep the flow rate of traffic low

enough so that it does not trigger the network protection systems, but the second

part is that it must be assigned evenly to the bots so that anomalies are much more

difficult to detect. The maximum target bandwidth for the target links is already

known. After this, the link is exhausted with the attack flows. The difficulty of

detection can increase if the attacker dynamically is able to change the sets of target

links and therefore making the attack extendable indefinitely. This would be called a

rolling attack in which is caused by dynamically enhancing the attack persistence [5].

2.5 Successful Implications

Subsequently, the attack success relies on the method by which the attacker initiates

the attack as well as the structure of the network being attacked. The attacker

attempts to map the network in order to find a set of target links that are connected

to servers of interest. The servers of interest will be determined by the link. Once

the target link is determined, the target links are flooded and the legitimate traffic is

prevented from reaching the intended destination. In correlation, access for the target

area to reach the internet will be denied [1]. A successful attack should be blocking

legitimate traffic from entering the target area. Link flooding detection has become

more reliant on the SDN paradigm, but the goal of this experiment is to limit the

effect of a crossfire attack without causing too much overhead on the controller and

avoiding latency when mitigating the attempt.

2.5.1 Sophistication Difference

According to research, DDoS attacks in SDN have been difficult to detect due to

the attack traffic characteristics not being easy to identify, the lack of communica-
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tion and collaboration between network nodes, the change of the attack tool being

strengthened, with the threshold of its use decreasing, the widely used address fraud

making it difficult to trace the source of the attack and the duration time of attack

being short and response time being limited [9]. The difference in the crossfire at-

tack is that it uses bots with non-spoofed IP addresses to send traffic to the servers

available. The bots then send the legitimate low rate traffic to the decoy servers in

an attempt to flood the target link. In the case of the crossfire attack, the traffic

engineering module is usually the network process utilized to react to network links

flooded whether it is malicious or non-malicious. Traffic Engineering calculates the

optimal load calculation for each network path while also mapping the traffic flows to

a path in which allows each network link to uphold its calculated optimal load [10].

There are multiple methods to identifying the source of the bot traffic in SDN, one

of these methods constantly utilized in research is to utilize the traceroute profiles

collected from the network by the controller. There is also ICMP monitoring, route

mutation and congestion-link monitoring in which will allow for a defender to be able

to detect when the attack is occurring and mitigate it [8]. The ideology behind this

crossfire attack is to attack on the network level with DNS and TCP traffic while also

attacking on the application level by exhausting server resources. After combining

the targeted protocol levels we achieve a successful attack vector [3]. A network based

mechanism is used in order to defend against the attack vectors. The network based

mechanism checks for the highest anomaly in a link by each threshold that the con-

troller has bestowed on a link and is able to track that anomaly back to its original

source and not allow traffic from that source in an effort to keep the link bandwidth

from becoming depleted [3]. In Rezazad’s work, there is an excellent image for visual

comprehension of the link flooding attack in further detail as shown in Figure 2.2.

In this research the traffic generating hosts are controlled like a botnet from a

command and control perspective.
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(a) Link Flooding Attack Visual

Figure 2.2: An Example of a Link Flooding adapted from "Detecting Target-Area
Link-Flooding DDoS Attacks using Traffic Analysis and Supervised Learning" M.
Rezazad, 2019, Future of Information and Communication Conference, Volume 2.
Copyright 2019 by Springer Nature Switzerland AG



CHAPTER 3: RELATED WORK

3.1 Detecting and mitigating link-flooding attacks via SDN

Woodpecker is a defense model where researchers work on the possibility of using

SDN’s traffic engineering capability to be able to better detect and mitigate a crossfire

attack. The woodpecker design research shows that implementing SDN in a regular

environment can allow for more flexibility by way of the controller. The controller

will upgrade ordinary nodes into SDN-enabled nodes. Once the nodes are upgraded

the controller already has flow rules installed in order to load balance the link so

that it is detected when a flood attempt occurs. The rules will be triggered in the

SDN-enabled switches once the congestion occurs. After this, the controller rules will

be enforced to balance the attack flows and this congestion information is constantly

updated in the controller’s database allowing it to react on the occurrence of an

attack. This experiment shows how to develop an optimized SDN solution while

upgrading a limited number of nodes. It also how to create a traffic load balancing

scheme using SDN [11]. In Linkscope’s research the proposed LFA defense system

called LFA Defender takes a slightly different approach towards defending against

the crossfire attack. Their approach allows for less overhead in the communication

channels between control and data plane. The LFA Defender system contains four

main modules. Of those four the target link selection and link congestion monitoring

are the first two utilized that are designed to detect the LFA. The other two modules

are traffic rerouting and malicious traffic blocking in which allowed for the mitigation

of the crossfire attack. The target link selection’s ability to grab the OF switches

flow entries from the controller allows for monitoring agents to be distributed on the

links with high flow density. The floodlight controller was used in this environment in
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order to assist with the target link selection module written in python. The scheme

uses traffic rerouting and blocks malicious traffic in order to defend against the link

flooding attack [12]. The scheme is similar to our scheme except that we cut the traffic

back upstream to its original source. In the Software-Defined HoneyNet research Kim

and Shin use a decoy network in an effort to deceive the attacker and evade an attack

of the real network. This scheme leverages global network visibility of SDN in order to

create the potential honey nodes which connect the honeynet. This scheme increases

the traffic cost by making the attack go through the entire network topology of honey

nodes as a first line of defense similar to a honeypot. The scheme needs additional

mitigation efforts in order to be considered a mitigation technique [13].

3.2 Crossfire Attack Detection Using Deep Learning in Software Defined ITS

Networks

Improvements in intelligent transport systems networks recently have allowed for

better safety and security in mobile nodes. In mobile networks, the roadside units

and switches are all OF enabled thanks to SDN. Intellignet transport systems have

all vehicles on the road communicate using roadside units and the components of ITS

networks include internet connected vehicles. As shown in figure 3.1, these nodes

communicate in order to predict the future traffic conditions. This paper introduces

a unique method in the intrusion prevention of mobile network nodes and detection

of security attacks. The researchers developed the deep learning techniques on top

of the SDN controller to be run in order to analyze the traffic characteristics on

network links. The deep learning techniques based on artificial neural networks can

learn traffic behavior to be able to detect whether the network is under an attack

or not. The features used in order to create this algorithm were: number of flows,

aggregate flow size and timestamp. They developed deep learning techniques from

the captured traffic using artificial neural networks, convolutional neural networks,

and long short-term machine learning to train the learning model so that it was able
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to learn the temporal and spatial correlations among flows that originate from com-

promised nodes. The performance was evaluated utilizing the mininet-wifi emulation

platform showing that the approach performs well in precision, accuracy, recall and

F1-score. The results showed that the learning model achieved an accuracy of 80

percent and the LSTM model achieves a detection accuracy of 87 percent. Roadside

units allow for the communication between different vehicles to be fluent and possible,

but if there is a link flood in which occurs there will be no requests allowed through.

Vehicle to vehicle communication can be impacted dramatically making this exper-

iment revolutionary in terms of defending against link flooding attacks in SDN and

SD-ITS networks. This experiment relates to the current work because of the logic

similarities created on top of the controller in order to mitigate link flooding attacks.

The research was interesting in the area of unsupervised learning due to its ability to

take unique parts of data that it has never before seen and create a method to solving

the problem without human interaction with the data. This is ultimately the future

with SDN being a large component in 5G and Vehicular networks, which encompass

SDN, CDN, NFV and cloud. This work would be an interesting addition for future

research when working with intelligent transport system networks. This would allow

for the augment of the research that is currently being performed in order to move

forward into a interesting area of 5G research. [14].

3.3 DDoS Attack Detection based on SVM

In Ye’s work, the experiment utilizes five nodes in order to setup the SDN environ-

ment all on separate connections. The first two machines in the topology are used as

bot hosts and the next two are used for generating normal network traffic samples.

The user attempts to utilize the customizability of the packet generator, hping3, and

its TCL language in order to send and receive data packets by describing a packet’s

string or binary representation. In the experiment the sample period for learning is

in three second intervals. During this process, the flow table data of sixty periods is
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(a) An Example of an ITS Network

Figure 3.1: An Example of an ITS Network. From Crossfire Attack Detection Using
Deep Learning in Software Defined ITS Networks. Narayanadoss 2019, 89th Vehicular
Technology Conference.

collected in the openflow switch. This data is then normalized and processed and the

normal samples as well as the DDoS attack flow samples are shown in order to show

the number of flow entries increasing dramatically in the event of an attack. The

attack is performed based on pseudosource random IP addresses and port numbers

and this causes the destination host not to be able to respond in a timely manner.

This causes the proportion of interactive flows to decrease dramatically, in contrast to

the normal circumstance of interactive flow entries being large and fluctuating in the

normal range of traffic. In this experiment, Support Vector Machine (SVM) machine

learning functions were used in R studio in order to train the data to get the SVM

model and predict the test data by using the model. The client then uses a formula in

order to calculate the detection rate and the false alarm rate of the model in order to

understand the accuracy in checking for an attack. The legitimate traffic generated in

the experiment is TCP, UDP and ICMP traffic and the attack traffic consists of these
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three types of traffic as well. The researchers conclude that the model is 95.24 percent

accurate and achieves a false alarm rate of 1.26 percent accroding to the model that

was used in the experiment. The model had a low rate of ICMP flow detection but

this was concluded to be on behalf of the information that ICMP packets lack. ICMP

traffic has no source or destination port making it harder to check by the use of the

researchers model. Overall, the experiment was a success in terms of the researchers

concluding remarks [9].

3.4 Evaluating Link Latency in Distributed SDN Based Control Plane

Architecture

In this work it goes through the importance of having a monitoring system for link

latency due to it being a crucial feature in the transport infrastructure of a 5G service.

It proposes the automatic monitoring of link latency in an SDN control plane without

introducing overhead in the southbound interface. In this research they leverage the

exchange of the link layer discovery protocol, which is utilized by the controller dis-

covers the links in a network topology. They utilize the openflow packet out messages

usually sent by the controller to manage switches and the packet in messages sent

back to the controller for the initial setup. It utilizes this communication method

to send an echo request and echo reply containing the time stamp allowing for the

controller to be able to evaluate the round trip time of the openflow channel. The

methodology also uses the offset evaluation between two controller instances with the

exchange of ad-hoc packets. This allows for the clock offset between those different

controller instances to be monitored. In the results of this work it reports on the link

latency measured maximum and minimum and allows for the measured latency to be

acknowledted in terms of milliseconds. The errors present in the maximum and mini-

mum values were related to the desynchronization of processes during evaluation such

as link layer discovery protocol, round trip time computation and offset evaluation.

The synchronization of these processes would allow for more exact results. Overall,



22

this work was a success in the process of monitoring links but poses no details on

mitigating a link that has been identified with high latency [15].



CHAPTER 4: METHODOLOGY

In this research there is a need for a model that can accurately classify when

traffic is normal, before an attack is about to occur and when an attack is occurring.

Dropping traffic from the ethernet interface that is generating the most anomalous

traffic in terms of a spike will allow for mitigation closer to the source and less impact

on the amount of users not able to utilize the link being targeted. We utilize flow,

port and group statistics in order to feed data into our classification model. Once

that data is fed into the classification model it will then make a decision on how the

traffic will be classified. The algorithm evaluates if the link needs to have traffic flow

through it or if that interface needs to be closely monitored. If it needs to be closely

monitored then the traffic is classified as forthcoming attack and is on the verge of

becoming attack traffic, which is an unusual anomaly. Attack traffic needs to have

all traffic dropped on that interface. As more interfaces become anomalous in their

generation of traffic then more interfaces will be cut off from being able to deliver

traffic to the intended destination. Therefore this will free up the bandwidth utilized

by links in the network. This will also allow for higher throughput and bandwidth of

links in the topology.

4.1 Flows

What are flows? Flows are entries in which provide instructions on the handling of

a packet in SDN. The SDN controller constantly updates the flow entries in the flow

tables in order to have more instructions in the data plane on how to forward traffic.

Each SDN switch contains flow tables and a set of flow entries inside those tables.

The flow entries have match fields, counters and instructions to apply to packets in
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which match a particular entry. If there is no entry in the data plane the control

plane is queried for further instruction.

4.1.1 Exploiting Flows

In the link flooding attack, the attacker is able to flood these links in the topology

abusing the flows that are currently built into the controller. If the switches know to

always forward traffic of a particular type from a certain source to a destination then

an attacker can find out the available bandwidth on the link and attempt depleting

the amount of bandwidth available in that link. If there is no rule to drop all traffic

from potentially anomalistic traffic generation source then the attacker will succeed

in not allowing traffic to reach its particular destination. If we are able to create a

monitoring engine for the traffic in the network then we will be able to create flow

rules that are sophisticated enough to drop traffic at the interface source.

4.2 Monitoring

In order to make an accurate classification of when an attack is about to happen

versus when it is normal or under attack there is a need for monitoring of the network

components. The monitoring will need to be performed on the flow, port, link,

path and switch levels of the network [16]. Monitoring at these levels will allow

our algorithm to make an accurate decision when dealing with a particular interface

generating an abnormal amount of traffic. Performing monitoring of the topology at

these levels will allow for an ample amount of data to be generated. The more data

that is available to feed into our model for analysis then the classification accuracy

will increase.

4.2.1 Mitigation

As our monitored data is fed in from the controller to our supervised learning model

it will allow the model to make decisions on whether to drop all traffic on a particular

interface. The optimal solution to remediation of a denial of service attack is limiting
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the amount of resources and people that are affected. If a design is able to mitigate

the attack upstream from the original generation of the traffic, then the attack would

be ineffective as the source of the attack has been neutralized.

4.3 Classification

In this research, random forest was utilized for the exceptional classification ability

of the algorithm. Random forest is a combination of multiple decision trees. Decision

trees are a form of supervised learning that utilize a created training model in order

to predict the value of importance, which is also known as the target variable. In

decision trees, prediction of the labelled data begins from the root of the tree and

splits into two or more sub-nodes in order to find the corresponding value. In decision

trees each internal node maps to a feature, the branch matches a decision and the

leaves represent the label chosen. In this experiment the random forest of decision

trees was used to classify data based off what label the data most closely resembled.

Classification is a process that utilizes learning and predicting. In this research the

input variables fed into the algorithm allow for it to identify the optimal classification

for the interfaces resembling an anomaly.

4.3.1 Why Random Forest?

Decision trees are prone to overfitting due to them not being able to fit all samples

in the data that are supplied into the tree. This therefore allows the training dataset

to classify at a great percentage but the actual test set of data will not perform

accurately. In random forest there is an ensemble of decision trees allowing for all of

the models to operate in accordance with one another. This allows for more features

to be captured in each tree, thus making the model more accurate in solving the

problem. In this model the individual trees’ predictions have low correlation with

each other allowing for a diversity of decision making and no compilation of error on

the same mistake in classification. The principle utilized is bagging, which allows for
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individual trees to be able to randomly sample from the dataset resulting in different

trees. Based on the predefined labels for the data the interfaces are classified based off

of normal traffic, forthcoming attack traffic and attack traffic. The model is able to

accurately classify links in the topology to mitigate the effects of the crossfire attack

due to the model’s efficiency in the process of classification.



CHAPTER 5: EXPERIMENT SETUP AND RESULTS

5.1 Experiment Setup

In this experiment the ryu controller was used in accordance with openvswitch OF

enabled switches in which were deployed in a ubuntu environment. The topologies

utilized in the experiment were generated using mininet. The ryu controller module

utilized in this experiment is a slight modification of the simple switch stp 13 available

through the ryu controller install packages. The topology contains loops so this

module works with the spanning tree protocol and allows for the traffic to be able to

communicate utilizing bridge protocol data unit. There have been multiple sources of

the traffic created and in this experiment, the D-ITG traffic generator and ostinato

tool were utilized to simulate background traffic. In addition, a couple scripts were

written to automate the D-ITG creation process as well as the ostinato generation

process. Other scripts in the background were also running to make the environment

comparable to enterprise environment traffic generation, due to the limitations on the

amount of traffic that D-ITG can generate. The SDN switches are used to output flow

statistics on the traffic to the link targeted. The controller also has statistics that it

will report to the machine learning model. The topology represents an environment

where all traffic transmission is attempting to access one particular segment of the

topology. This segmented region has one link in which can be flooded and stop the

entire flow of traffic to the zone. This link will be recognized as the target link due to

this zone’s hosting all of the legitimate servers and hosts. For the sake of computing

resources the link has 50Mbps allocated and available for traffic transmission flows

and after this bandwidth is exhausted the link will no longer allow traffic through.

Compromised nodes and decoy servers are simulated in the network coinciding with
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(a) An Example of a Network Setting Utilized for Testing Scalability

Figure 5.1: An Example of One of the Topologies Used in This Research.

regular hosts as shown in figure 5.1. The hosts generate normal traffic throughout

the duration of the experiment and the slight traffic spike is generated from these

same hosts making the anomaly detection and restriction more difficult to locate. In

this experiment, the traffic is generated in multiple different classifications including:

DNS, VOIP or TCP, UDP, DCCP, ICMP and SCTP. The D-ITG traffic generator

allows for the diversifying of traffic generation as well as ostinato. The goal is to have

the controller be able to cut traffic flow of an interface at the source of the abnormality

upstream in order to limit the amount of legitimate traffic not allowed to travel to

its destination. This will therefore minimize the amount of users affected. The

tools utilized in this experiment include: python, mininet, the RYU STP controller,

openvswitch switches , ostinato and D-ITG. The machine learning model is ran at

the same time as the controller to collect statistics, classify and send instructions to

the controller for action on classified link flooding attack traffic.
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(a) The Model Utilized for Classification

Figure 5.2: The Model Design for the utilization of Random Forest.

5.1.1 Crossfire Defense

The crossfire attack is difficult to detect because of its spike in the same traffic that

is legitimate. The user will need to implement the random forest classifier model with

an n estimator value of 500 at each monitoring level. This will allow the model to

ingest the data needed for it to perform at its optimal level. The user needs to then

create a message that will inform the controller on the status of links in the network.

The data needs to be cleaned, the accuracy needs to be checked, and there needs to be

constant controller to openvswitch statistic requests. Once this data is all gathered

the actions for links that are classified will be communicated to the controller for

action to be taken. The amount of time it takes to flood the link from the multiple

different sources is what allows for detection and mitigation inside the SDN. Once the

interface is identified that is reaching an abnormal threshold it is classified as about

to be an attack. Once this is classified accurately the controller is able to accurately

assess what to do with future traffic if it continues to develop into a level, which

insinuates attack traffic. The added intelligence from the model communicates the
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(a) Raw Data Collected

Figure 5.3: Raw Collected Data Example.

instructions so that it locates the source with the highest variation off of normality

first and then drops all traffic off of that interface closest to the source upstream.

The controller for when there is an unusual spike of traffic from one segment of the

network RYU has function that is able to set the traffic to disable communication

using the REST API also known to be part of the management plane. Through this

implementation, the crossfire attack on the targeted link is able to be mitigated at its

source because the controller is able to act on data fed to it by the machine learning

model.

5.2 Data Collection and Results

In terms of data collection statistics are collected from the controller and open-

vswitch statistics. The port, flow and group statistics of the network were monitored

by the controller meanwhile the switches also contained volatile information that was

captured. The experiment was ran for multiple hours in order to collect data on the

regular state of the network and the attack state of the network. A python script
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was created to continually extract the data from the controller and switch statistics

to write that data to a file. This data had to be formatted and normalized once

collected. The normalizing processing is done with mmscaler used in sklearn because

it allows for unit variance allowing the labels that are already created to be efficient.

The data supplied to the algorithm included the MAC address, interface, transmit-

ted and received packets, the drop rate, destination, port details and the timestamp.

The data was labeled in three different ways as normal, about to be an attack or

attack traffic. The labeled data allows for an accurate method to be able to check the

accuracy of the model. The feature extraction was performed for the data provided

and then fed into the Random Forest Classifier. A validation curve was utilized that

computed the validation score on multiple validation sets of data in order to tune

the hyperparameters of the model. Of those hyperparameters that were tuned in the

model the most important was the augment to an n estimator value of 500. The

default value for n estimator is 10 but this only allows for ten decision trees to be

utilized in the model causing problems with overfitting of the data. A validation score

was generated using k-fold cross validation utilizing with k’s value set to 10. This

data was then used to calculate the minimum average that had a percentage of 90.31

percent. The accuracy was checked on the experiment and it achieved an accuracy of

90.63 percent.

Table 5.1: Confusion Matrix

Value Forthcoming Attack Normal Attack
α β γ δ
Value Type Prediction Prediction Prediction
True Values 6 0 1
True Values 1 17 0
True Values 1 0 6
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5.2.1 Effects on The Network

The load balancing of the controller without the added intelligence of the machine

learning model is not able to maintain the amount of traffic flows in the network to-

wards the important servers behind the target link. This causes an increased amount

in the packets dropped and the delay in transmission of packets to that region of the

network. The bandwidth of the target link was periodically checked with a UDP sent

from a dedicated host checking the status. As a result of the attack on the original

topology with no additional intelligence 25 percent of the UDP packets transmitted

are dropped due to bandwidth exhaustion on the link. The machine learning model

was able to allow more flows in to the link over time and increase the throughput

allowing all of the UDP flows to be transmitted and received successfully through

the link with no packets dropped. The delay in transmission increased for the UDP

flows by 400 percent in the original topology without machine learning in comparison

to the topology working with the machine learning model. Therefore our model was

able to accurately mitigate a crossfire attack from occurring although it was strict

in its implementation. As our model learned the network topology more it began to

cut more links inside the topology allowing for higher network throughput for our

links but it was cutting some legitimate traffic as well. The algorithm was a success

in total for the fact that it was able to solve our problem of creating a method for

mitigating a crossfire attack in SDN.
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(a) UDP Flow to Check Statistics On the Target Link for the Topology with no Model

Figure 5.4: Statistics on The Target Link with no Machine Learning.

(a) UDP Flow to Check Statistics On the Target Link for the Topology Enhanced
with the Model

Figure 5.5: Statistics on The Target Link with Machine Learning.
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(a) Target Link Throughput over time. ML Model Added Intelligence vs. Original Topology
with no additional Intelligence

Figure 5.6: Target Link Throughput Over Time.



CHAPTER 6: CONCLUSION

The crossfire attack is a nearly undetectable and indistinguishable target area link

flooding attack in which exhausts the bandwidth of network links. In a traditional

DDoS attack flood end nodes, while in contrast the link flooding attack attempts to

flood the intermediate links [13]. The crossfire attack utilizes a large scale botnet in

order to initiate legitimate traffic flows for saturation of the links bandwidth in the

network. Once the bandwidth of a link is depleted, the link can no longer accept any

types of requests causing multiple users requests to not be completed and their traffic

dropped. This denial of availability is what makes the crossfire attack important in

regards to detection and mitigation. In this paper, a mitigation effort in regards to

the crossfire attack is proposed and defended. The detection and mitigation ability of

the network is built into the logic of the machine learning model in which augments

the controller logic. The algorithm was accurately able to classify all interfaces with

a test score of 90.63 percent. The available network bandwidth able to be maintained

during the attack after the model reached its maximum bandwidth allocated for the

link was 50MB and was able to be maintained at 35MB as traffic generation continued

to increase due to the model’s precision. In conclusion, the model allowed for less

delay in the transmission of data, a lower amount of packets dropped over time to

our target link, and a higher average packet rate.

6.1 Pros and Cons

The model was efficient in mitigated a crossfire attack from being able to occur on

an important link in the topology. This implementation works cutting traffic closest

to the source in which limits the amount of users affected by a link flooding attack.
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The model does not cause a lot of unnecessary overhead to occur in the controller

due to the implemented design that was utilized.



CHAPTER 7: FUTURE WORK

In the future, we would want to scale this on a 5G implementation level. In

addition, we would want to build network slicing on top of the topology that will

provide isolation between slices and allocate bandwidth to machines with higher traffic

output from areas of lower bandwidth consumption in the network [17]. In order to

do this we would utilize a generative adversarial network, which is semi supervised

learning letting the algorithm learn how to perform network slicing on the network

learning it as if it were a game. Additionally, we would want to utilize a solution that

allows for the learning the network as it is continually being augmented. This would

allow for the movement of the work into real time optimization of load balancing and

routing in addition to the solution proposed in this paper [18]. In addition, there

would be a desire to utilize reinforcement learning in order to better optimize the

load balancing process inside the environment. Arena would also be looked into as

a safe and quick method to adjusting the algorithm and finding a solution to the

problem working with the algorithm step by step. We would figure out how this

implementation works at scale. Lastly, we would make service agnostic requests to

a web server and dns server that we spin up in order to check the actual effects of

this experiment in an enterprise like environment with web servers, dns servers and

mail servers etc. This will allow for the understanding of an optimal solution for this

attack moving forward in a 5G ecosystem.

7.1 Problem Statement

Can we raise an early alarm for crossfire attacks when network traffic demonstrates

an anomaly? Can we identify and mitigate the upstream traffic generation closer to
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the source? In this research we were able to create a successful method to slow an

attacker from flooding a volatile link in the topology. We utilized the random forest

machine learning algorithm in order to be able to classify when network traffic was

demonstrating anomalistic behavior. We were also able to utilize the compilation of

the algorithm and the controller in order to mitigate the upstream traffic generation

closest to the source. This model was able to operate at 90.63 percent efficiency in

classifying all traffic. The future model will also include reinforcement learning for

load balancing as well as semi supervised learning in order to perform network slicing

of the topology.
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